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ABSTRACT

This dissertation is composed of nine publications and this introduction, which
outlines the theories of superconductivity, magnetism and non-equilibrium physics
that are applied in the publications. The publications can be divided into two bodies
which share some common themes.

The publications of the first body deal with the physics of flat electronic
bands, and in particular the superconducting and magnetic phase transitions on
them. In the related part of the introduction part I present the basic theories of
superconductivity and magnetism, and discuss the properties which make the flat
bands prone to spontaneous symmetry breaking. We formulate the theory of electron-
phonon superconductivity on a flat band model, and show how its predictions differ
from those of a simpler BCS model. Of the materials which have flat bands, we are
particularly interested in those based on graphene e.g., twisted bilayer graphene,
for which we show that the conventional BCS theory of superconductivity based
on the attractive electron-phonon interaction is compatible with the experimental
observations. Flat bands are often enabled by some topological property. We classify
the topological transitions on a system of rhombohedrally stacked honeycomb lattices.

The publications of the second body are about superconducting spintronics.
One central theme in these publications is the magnetic proximity effect and its
various application. We propose that a magnetically proximitized superconductor
can be used as the functional unit of a new kind of thermoelectric radiation detector.
A second theme is the effect of superconductivity on the spin pumping effect. This is
studied in four publications, in which we predict e.g. a cooling effect due to precessing
magnetization, a giant spin battery effect, and an antiferromagnetic coupling between
two magnets mediated by spin supercurrent. A third theme is the Higgs mode i.e. the
amplitude mode of the superconducting order parameter. The magnetic proximity
effect enables a new coupling between a charge degree of freedom and the Higgs mode,
which can be utilized to measure it electrically. We also study the magnon-Higgs
coupling mediated by spin-orbit interaction. In the introductory part related to this
body, I outline the Keldysh theory of non-equilibrium states and the quasiclassical
theory of superconductivity, which have been heavily utilized in the publications.

Keywords: superconductivity, ferromagnetism, spintronics, quasiclassical formalism,
non-equilibrium, flat bands



TIIVISTELMÄ (ABSTRACT IN FINNISH)

Tämä väitöskirja koostuu yhdeksästä julkaisusta sekä johdanto-osasta, joka käsittelee
tutkimusten taustalla olevia suprajohtavuuden, magnetismin ja epätasapainotilojen
teorioita. Väitöskirjaan sisällytetyt julkaisut voidaan jakaa kahteen kokonaisuuteen,
joilla on joitain yhteisiä teemoja.

Ensimmäisen kokonaisuuden julkaisut käsittelevät litteiden elektronisten vöiden
(tasovöiden) fysiikkaa, ja erityisesti niillä tapahtuvia magnetismiin ja suprajohta-
vuuteen johtavia olomuodonmuutoksia. Ensimmäiseen kokonaisuuteen liittyvässä
johdanto-osan luvussa esittelen suprajohtavuuden ja magnetismin teoreettisen pe-
rustan ja käsittelen tasovöiden erikoispiirteitä. Julkaisuissa muotoilemme elektroni-
fononi-suprajohtavuuden teorian tasovyömallille, ja näytämme kuinka sen ennus-
tukset eroavat BCS-mallin ennustuksista. Erityishuomion kohteena ovat hiilipoh-
jaiset tasovyömateriaalit, esimerkiksi kierretty kaksitasografeeni, jolle näytämme
että elektroni-fononi-vuorovaikutukseen perustuva suprajohtavuuden malli on yh-
teensopiva kokeellisten havaintojen kanssa. Tasovöiden taustalla vaikuttaa usein
jokin topologinen ominaisuus. Tähän liittyen luokittelemme romboedrisesti ladotun
hunajakennohilan topologisia transitioita.

Toisen kokonaisuuden julkaisut käsittelevät suprajohtavaa spintroniikkaa. Yh-
tenä kantavana teemana näissä töissä on magneettinen läheisyysilmiö ja sen sovellu-
tukset. Näytämme että tätä ilmiötä voidaan käyttää uudenlaisen lämpösähköisen
säteilyilmaisimen kehittämiseksi. Toinen keskeinen teema on suprajohteen järjestys-
parametriin dynamiikkaan liittyvä Higgsin moodi, jonka ennustamme kytkeytyvän
magneettisen läheisyysilmiön kautta uusilla tavoilla, jotka mahdollistavat sen säh-
köisen havaitsemisen. Kolmas keskeinen teema ovat suprajohtavuuden vaikutukset
prekessoivan magnetisaation aikaansaamaan spinpumppaukseen. Tätä aihetta käsitel-
lään eri näkökulmista neljässä julkaisussa, joissa ennustamme mm. spinpumppauksen
tuottaman jäähdytyksen, jättimäisen spinakku-ilmiön, spinsupravirran tuottaman
kytkennän kahden prekessoivan magneetin välillä, sekä spin–rata-vuorovaikutuksen
välittämän kytkennän magnonien, magneettisten värähtelyiden, sekä Higgsin moodin
välillä. Esittelen johdanto-osassa näiden ilmiöiden kuvailuun käytettävän epätasapai-
notilojen Keldysh-teorian sekä suprajohtavuuden kvasiklassisen teorian.

Avainsanat: Suprajohtavuus, ferromagnetismi, spintroniikka, kvasiklassinen formalis-
mi, epätasapainotila, tasovyö
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1 INTRODUCTION

In 1959, Richard Feynman gave a lecture ”There’s Plenty of Room at the Bottom”
at an American Physical Society meeting in Caltech in which he imagined the
possibilities of manipulating and controlling matter at very small scales, all the way
to the atomic scale.[1] Feynman’s lecture has often been cited as the starting point
of nanoscience. Although such attribution is historically incorrect,[2] the lecture
still seems almost prophetic from today’s perspective, and many of the advances
Feynman called for have been achieved in last few decades.

Such improved control over the nanoscale fabrication processes and technologies
like scanning tunnelling microscope, together with digital tools and rapidly increasing
theoretical understanding of condensed matter systems, have given rise to a concept
of designer materials, which are artificial materials tailored to have the desired
functionalities. Possible functionalities that can be controlled not only encompass
the mechanical and electrical properties of the materials, but also their quantum
properties, such as susceptibility to certain phase transitions.[3, 4] On the atomic
scale, we are of course bound to work with the elements of the periodic table and
with the chemistry between them, there is no way around that. However, on the
wide intermediate scale between the atomic and the macroscopic scales, which I refer
here as nanoscale, there remains a large freedom in the ways the atoms or molecules
can be organized. Different structures imply different functionalities to be exploited
in technologies that promise more energy-efficient information processing or data
storage units, sensors with improved sensitivity, or building blocks for the quantum
computer.

This dissertation is situated in the realm of theoretical condensed matter physics.
It can be roughly divided into two main topics which share some common themes.
A central theme that runs through the whole dissertation is the phenomenology of
superconductivity and magnetism, and their interplay on mesoscopic scale. As phases
of electronic matter, superconductivity and ferromagnetism have some similarities.
Both are macroscopic manifestations of quantum mechanical properties of matter
and exhibit a special kind of coherence. For a superconductor, this coherence is
in the quantum-mechanical phase of the Cooper pair wavefunction, whereas for
a ferromagnet it is the spin directions of the individual electrons that are locked
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together. In macroscopic materials there is not much interplay between the two states,
as they are largely incompatible with one another; the (s-wave) superconducting
state requires a symmetry between the spins, whereas the ferromagnetic state is
based on breaking of that symmetry.

The first main topic of the dissertation is the phenomenology of flat electronic
bands and phase transitions on them. The defining property of the flat band
materials is the large degeneracy in the electronic spectrum, which makes them
strongly correlated and prone to many kinds of phase transitions. One example of a
flat-band system is the magic-angle twisted bilayer graphene (MATBG), which was
first fabricated in 2018, and which was the first purely graphene-based system in
which superconductivity was found in a repeatable fashion. MATBG is composed of
two graphene sheets held together by van der Waals forces, and it is a prototypical
example of a more general class of designer materials known as the van der Waals
materials. materials.[5]

In the publications that are related to this topic, we e.g., consider the compe-
tition between superconductivity and magnetism of a flat band model, show that
superconductivity in MATBG is compatible with the phonon-mechanism of super-
conductivity, and classify the topological transitions on graphite-like rhomhohedral
honeycomb lattices.

The second main topic of the dissertation is the interplay between magnetism
and superconductivity in more perhaps more traditional kind of artificial materials
which are composed of thin films of magnetic and superconducting materials. What
makes such hybrid structures interesting is that in small length scales the boundaries
between the superconducting and magnetic parts of the system become blurred
by the so-called proximity effects. If a superconductor is placed in contact with a
ferromagnet, Cooper pairs tend to spill out of the superconductor and induce some
superconducting properties to the ferromagnet. At the same time, the magnetic
correlations leak into the superconductor, which becomes magnetically polarized.

The proximity effects induce a plethora of secondary effects which are studied in
this dissertation. In particular, I study their effect on spin transport. Together with
my collaborators, we predict e.g., a cooling effect due to precessing magnetization, a
giant spin battery effect, and dynamic effects related to antiferromagnetic coupling
between two ferromagnetic insulators mediated by spin supercurrent. Two of the
publications discuss the Higgs mode or the amplitude mode of the superconducting
order parameter, which can be coupled to the charge degree of freedom by the
magnetic proximity effect.

In this dissertation, I use mostly the natural units in which ~ = kB = 1. When
relevant, for example when comparing to values in SI units, ~ and kB are restored to
the equations.

Organization of the thesis

The dissertation is composed of two parts: the included publications, and this
overview which serves as an introduction to the publications. In the overview, the
focus is on the underlying theoretical framework and concepts, and on the connections
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between the works. In the overview, the publications themselves are only shortly
summarized, and some of the key results are highlighted.

The organization of the overview is as follows. Chapter 2 introduces the basic
concepts of electron-phonon superconductivity and ferromagnetism in equilibrium.
We apply these concepts to systems with flat electronic bands, focusing on two
graphene-based systems: twisted bilayer graphene and rhombohedrally stacked
multilayer graphene. As an example of topologically protected flat bands, we discuss
the properties of rhombohedrally stacked multilayers.

We then shift the topic to the interplay between magnetism and supercon-
ductivity in conventional metals interfaced with magnetic materials. Chapter 3
introduces the theoretical tools used to describe non-equilibrium superconductivity:
the Keldysh formalism for non-equilibrium states, and the quasiclassical theory of
superconductivity. In Chapter 4 we introduce the field of spintronics and apply the
tools of nonequilibrium superconductivity to superconducting spintronics.



2 SUPERCONDUCTIVITY AND MAGNETISM IN
EQUILIBRIUM

2.1 Superconductivity

Superconductivity was discovered in 1911 by H. Kamerlingh Onnes. [6] Kamerlingh
Onnes was a pioneer of low-temperature physics and had been the first to liquefy
helium few years earlier. He used the liquid helium as a refrigerant for studying the
electrical resistivity of metals at low temperatures, and noticed that the resistance
of a mercury wire abruptly vanished at 4.2 K. Kamerlingh Onnes realized the wire
had passed to a new state of matter, and named the phenomenon superconductivity.
Another effect which characterizes the superconducting state is the Meissner effect [7],
which is the expulsion of magnetic fields from the bulk of the superconductor.

What is the common factor for these seemingly separate effects? A partial
answer was given in 1935 when a set of phenomenological equations describing the
electrodynamics of a superconductor were developed by brothers Fritz and Heinz
London. [8] According to these equations a superconductor supports a supercurrent

js = −DsA, (1)

where Ds is the superfluid weight, a constant related to the density of the supercon-
ducting carriers, and A is the vector potential1. What distinguishes supercurrents
from regular ohmic currents is that they are dissipationless and can exist even in
equilibrium.2

It is easy to see that the supercurrent naturally explains the observed zero
resistivity of superconductors. To see that the Meissner effect can also be explained
in the same terms, we invoke Ampère’s law ∇×B = µ0js, where B is the magnetic
1 Eq. (1) is valid in the London gauge, in which ∇ ·A = 0, A = 0 in the superconductor

bulk, and n ·A = 0, where n is a surface normal of the superconductor.
2 Dissipationless currents can also exist in the normal (non-superconducting) state, for

example in rings with nonzero magnetic flux threaded through, but in the normal state
they are very small because there is no phase coherence and different components of
the current tend to cancel each other.
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flux density and µ0 is the vacuum permeability. Taking the curl from both sides, we
find that the magnetic field obeys the equation

(∇2 − µ0Ds)B = 0, (2)

which means that magnetic fields are screened from the bulk of the superconductor
with the characteristic scale λL = 1/

√
µ0Ds called the London penetration depth.

The screening is due to the circulating surface supercurrents induced by the magnetic
field.

Despite their success, the London equations offer little insight into the nature
of the superconducting state or the supercurrent. In 1950 Ginzburg and Landau [9]
proposed a phenomenological free energy model, in which the transition to the
superconducting state occurs as a spontaneous breaking of the electromagnetic U(1)
gauge symmetry, and the supercurrent is given by the phase gradient of the order
parameter. The existence of the supercurrent (1) is thus explained by the phase
rigidity3 of the superconducting state quantified by superfluid weight Ds.

A satisfactory microscopic description of superconductivity in terms of a many-
body wavefunction was finally given in 1957 by Bardeen, Cooper and Schrieffer [10].
This theory now known as the BCS theory forms the basis for our understanding
of superconductivity. The key element of the BCS theory is the coupling between
electrons and phonons, the vibrations of the atomic lattice. At low frequencies,
the phonon system mediates a weak attractive interaction between the electrons.
This attraction then leads to an instability of the electron system, and a new
superconducting ground state with broken symmetry forms, as in the Ginzburg-
Landau theory. The London equation (1) emerges from the BCS theory at the
long-wavelength, low temperature limit.

2.1.1 Bogoliubov-de Gennes equations

To study the BCS theory in more detail, let us consider a Hamiltonian consisting of
a single particle part H0 and a local attractive interaction

H =
∑
σσ′

ˆ
dx

[
ψ†σ(x)H0(x)σσ′ψσ′(x)− V ψ†↑(x)ψ†↓(x)ψ↓(x)ψ↑(x)

]
, (3)

where ψσ(x) is the field operator for electron with spin σ and V > 0 is the strength
of the attractive interaction. This attractive interaction serves as a toy model for
the attractive part of the electron-phonon interaction. Next comes the magic step:
To diagonalize the Hamiltonian, we approximate the interaction term with a mean
field in the particle-hole channel as

λψ†↑(x)ψ†↓(x)ψ↓(x)ψ↑(x) ≈ ∆(x)∗ψ↓(x)ψ↑(x) + ψ†↑(x)ψ†↓(x)∆(x)− |∆(x)|2
V

(4)

where ∆(x) = λ〈ψ↓(x)ψ↑(x)〉 is the anomalous correlator, and the order parameter
for the superconducting state. Since BCS theory formulated in terms of simplified
3 Phase rigidity is related to the energy cost of the order parameter phase gradient.
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interactions and band structures does not accurately represent the normal state
of any real material, we disregard the normal state Hartree-Fock mean-field terms
which are not specific to the superconducting state.

The peculiar property of the superconducting mean-field is that the Hamiltonian
does not conserve particle number, as it contains terms of the form ψµψν and
ψ†µψ

†
ν . This reflects the fact that charge can be transported by the superconducting

condensate. The charge conservation is not violated as long as the order parameter
is calculated in a self-consistent way. To diagonalize the Hamiltonian we need to
expand the space in which we are operating. We define a bi-spinor

Ψ(x) =
(
ψ↑(x) ψ↓(x) −ψ†↓(x) ψ†−↑(x)

)ᵀ
, (5)

in which the last two components are the time-reversed copies of the first two. We
refer to this extra structure as the Nambu space, so that the above spinor is the outer
product of Nambu and spin spaces. The mean-field Hamiltonian can be written as

H = 1
2

ˆ
dxΨ†(x)

(
Ĥ0(x) ∆̂(x)
∆̂†(x) −σ2Ĥ0(x)∗σ2

)
︸ ︷︷ ︸

HBdG

Ψ(x), (6)

where σi are the Pauli matrices in spin space. Correspondingly, the Pauli matrices in
Nambu space are denoted by τj. We have chosen the structure of the time-reversed
spinor in Eq. (5) so that the s-wave order parameter is proportional to unit matrix
in spin space, ∆̂ = ∆σ0. The factor of one-half in front of the Hamiltonian is due to
double counting of the degrees of freedom in the Nambu spinor. This particle-hole
redundancy4 is reflected in the relation

Ψ†(x) = −[σ2τ2Ψ(x)]ᵀ, (7)

between the Nambu spinor creation and annihilation operators. The particle-hole
redundancy also constrains the possible forms of the Bogoliubov-de Gennes (BdG)
Hamiltonian HBdG, so that it always has the symmetry

σ2τ2HBdG(x,x′)∗σ2τ2 = −HBdG(x,x′). (8)

The normalized solutions wn(x) of the BdG Hamiltonian are found by solving
the eigenvalue equation

ˆ
dx′HBdG(x,x′)wn(x′) = Enwn(x). (9)

From a single solution wn(x), one can define a Bogoliubov operator for a quasiparticle
excitation

γn = V−1
ˆ

dxw†n(x)Ψ(x), (10)

4 Also known as charge conjugation symmetry. [11] The particle-hole redundancy is
distinct from the particle-hole symmetry, which refers to the symmetry between the
normal state electron and hole excitations. In ideal metals there is an approximate
particle-hole symmetry at low energy.



19

which is a mixture of particle and hole excitations and has a non-integer charge. The
particle-hole redundancy implies that given an eigenvector wn, there is a particle-
hole conjugated eigenvector wn̄ = σ2τ2w

∗
n with energy En̄ = −En. The associated

annihilation and creation operators are related by γ†n = γn̄. One can use this to
remove any reference to the negative-energy states. The inverse transformation from
Nambu field operators to positive-energy Bogoliubov operators is

Ψ(x) =
∑
En>0

[
wn(x)γn + wn̄(x)γ†n

]
. (11)

The Bogoliubov transformation to the quasiparticle basis gives a diagonal Hamiltonian

H =
∑
En>0

Enγ
†
nγn + const., (12)

where the restricted set of positive energy Bogoliubov creation/annihilation operators
have the usual fermionic anticommutation relations {γn, γ†m} = δnm and {γn, γm} =
0. Thus, the quasiparticle excitations obey Fermi-Dirac statistics. In thermal
equilibrium, the expectation values are given by 〈γ†nγm〉 = δnmf(En), where f(E) is
the Fermi-Dirac distribution function.

When the eigenstates have been solved, the value of the order parameter can
be determined from the self-consistency equation, i.e. the definition of ∆:

∆(x) = λ
〈
ψ↑(x)ψ↓(x)

〉
= λ

4
〈
Ψ†(x)(τ1 − iτ2)Ψ(x)

〉
= λ

4
∑
En>0

v†n(x)un(x) tanh
(
En
2T

)
,

(13)

where un and vn are the electron and hole parts of the bispinor wᵀ
n =

(
uᵀn vᵀn

)
.

The order parameter and the eigenstates depend on each other, and are usually
solved by iteration: (1) The eigenstates for HBdG[∆] are solved with fixed ∆. (2)
The eigenstates are substituted into the self-consistency equation and ∆ is updated.
One starts with some initial guess for ∆ and repeats the steps (1) and (2) until ∆
converges.

2.1.2 BCS theory for metals

The above is the general theory for any s-wave superconductor with local attractive
interaction. In a translation-invariant and isotropic system with the normal state
Hamiltonian H0 = εp − µ, and assuming that the value of ∆ does not depend on
position, the eigenstates are planes waves and the self-consistency equation becomes

∆ = λ

ˆ ωD

−ωD

dεN(ε) ∆√
ε2 + |∆|2

tanh

√
ε2 + |∆|2

2T

 , (14)

where N(ε) is the density of states at energy ε relative to the chemical potential
µ in the normal state. To regularize the theory, we have inserted a cutoff at the
Debye frequency ωD � µ, which is related to the typical phonon frequency. When
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the Fermi energy is large compared to the Debye frequency, the density of states is
almost constant within the cutoff, and we can approximate N(ε) ≈ N0 where N0 is
the density of states at Fermi energy, and define a dimensionless interaction constant
g = λN0. Adding a cutoff is required due to the simplified interaction model. Below
we see that a more detailed description of electron-phonon interaction provides a
natural soft cutoff.

The simplest observables one can calculate from the BCS theory are ∆0, the
order parameter at zero temperature, which determines the gap of the excitation
spectrum, and the transition temperature

Tc = ωD exp(−1/g), (15)

where we have assumed weak coupling g � 1. In metals the zero-temperature gap
is related to the transition temperature by the ratio ∆0/Tc ≈ 1.764. This ratio is
universal in the sense that it does not depend on the value of g or ωD. However, it
does depend on the interaction model and on the details of the electronic dispersion.

The BdG approach puts the emphasis on the diagonalization of the Hamiltonian
and is suited for clean systems which are periodic or otherwise simple enough. We
use the BdG approach in Publication IV to study superconductivity on twisted
bilayer graphene. For inhomogeneous problems, non-equilibrium states, or disordered
systems, it is better to use Green’s function methods, which allow more varied
approximation schemes.

2.1.3 Phonon-mediated superconductivity

Conventional s-wave superconductivity requires an attractive interaction between
the electrons. In most of the superconductors this is provided by the phonon system
which interacts with an electron and mediates a retarded response to the other
electrons. In most of the included publications we do not focus on the interaction
mechanism, but model the interaction with the simplified BCS interaction as above.
In contrast to that, in Publication I we are interested in the frequency-dependence of
the electron-phonon interaction. In Publications I and IV we also discuss the effect
of Coulomb interaction on the superconducting state. In Publications III and VII
we also consider the other major role the phonon system has; it acts as a heat bath
for the electrons.

To give some background for the publications, let us now discuss the Eliashberg
theory, which is a field-theoretical formulation of the electron-phonon superconduc-
tivity that goes beyond the instantaneous BCS interaction and describes all the
above effects in a natural way.[12] A classic text which gives a good introduction
to electron-phonon superconductivity is due to Schrieffer.[13] There is also a recent
review on the contemporary formulations by Marsiglio.[14] In this section we con-
centrate on the equilibrium properties of electron-phonon superconductors. The
electron-phonon energy relaxation is described in Sec. 3.2.5.

The Hamiltonian for the coupled electron-phonon system is

H = He +He−e +Hph +He−ph, (16)
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where He/ph are the Hamiltonians for free electrons and free phonons. He−e contains
the Coulomb interaction between the electrons, and He−ph is the interaction between
the electrons and phonons. Let us at first disregard the Coulomb interaction and
only consider the electron-phonon interaction, given by

He−ph =
∑
p,q,s

(gpqϕ†q + g∗pqϕ−q)c
†
p−q,scp,s, (17)

where ϕ†q is the bosonic creation operator for a phonon with momentum q, c†pσ is
the electron creation operator, and gpq is the electron-phonon coupling constant. In
practice, there are multiple phonon branches which can contribute to the interactions
between the electrons, but for simplicity, we consider here only a single branch.

The Green’s function (GF) method allows for a natural description of the
dynamic phonon-mediated interaction. In the superconducting state, we define the
electronic GF as the matrix

Ĝ(1, 2)µν = −(τ3)µµ
〈
TτΨµ(1)Ψ†ν(2))

〉
, (18)

where the indices µ and ν indicate the Nambu-spin components. Correspondingly,
the phonon propagator is defined as

D(1, 2) = −D
〈
Tτϕ(1)ϕ†(2)

〉
, (19)

where the condensed notation 1 = (x1, τ1) includes the space and imaginary time
variables, Tτ is the contour-ordering operator for the imaginary-time contour, and
the operators are in the Heisenberg picture Ψ(†)(1) = eHτ1Ψ(†)

S (x1)e−Hτ1 . The
conventional τ3 Pauli matrix is introduced into the electronic GF in order to make
the resulting equations more symmetric.

The electron and phonon GFs are determined from the Dyson equations

Ĝ−1 = Ĝ−1
0 − Σ̂, (20)

D−1 = D−1
0 − Π, (21)

where Σ and Π are the electron and phonon self-energies, respectively. The free-
electron and free-phonon propagators are G0 = [iωnτ3 − ξpτ0]−1, and D0(q, iνn) =
−2ωq/(ω2

q + ν2
n), where ξp and ωq are the electron and phonon dispersion relations,

and ωn and νn are fermionic and bosonic Matsubara frequencies, respectively. The
self-energies can be defined as the sums of all the irreducible single-particle Feynman
diagrams.

In a fully self-consistent theory, the phonon and electron self-energies depend
on each other, but in Eliashberg theory one typically adopts a view that the phonon
parameters which determine the propagator D0 are to be obtained from experiment
and we should not do any further renormalizations to them in the theory, as this
would correspond to an overcounting of the diagrams. Thus the phonon propagator
is assumed as given. Similarly, the electronic properties of the normal metal are
assumed as given so that one only needs to consider the parts of the self-energy
which depend on superconductivity. Modern variants of the Eliashberg theory often
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take a different approach, aiming to solve the properties of the coupled system of
electrons and phonons from the first principles.[14]

The lowest order contribution to the electronic self-energy is given by the
Fock diagram which describes a virtual phonon emission from an electron and its
subsequent absorption:

Σ̂e−ph(p) =
∑
p′
g2D(p− p′)τ3Ĝ(p′)τ3 (22)

This self-energy can be decomposed into four Nambu components Z, χ, Reφ and
Imφ as

Σ̂e−ph(p) = i[1− Z(p)]ωnτ3 + χ(p)τ0 + iφ̂(p), (23)

where φ̂(p) = Reφ(p)τ1 + Imφ(p)τ2. If there are no other self-energies to consider,
the GF is

Ĝ(p, ωn) = [iωnτ3 − ξpτ0 − Σ̂e−ph(p, ωn)]−1

= [ξp + χ(p, ωn)]τ0 − iZ(p, ωn)ωnτ3 + iφ̂(p, ωn)
Ω(p, ωn) ,

(24)

where Ω(p, ωn) = [Z(p, ωn)ωn]2 + [ξp +χ(p, ωn)]2 + |φ(p, ωn)|2. The different compo-
nents have different roles: Z renormalizes the quasiparticle weight, χ is a frequency
and momentum dependent renormalization of the chemical potential, and φ is the
superconducting order parameter. The usual notation ∆ for the order parameter is
reserved for the the renormalized quantity

∆̂(ωn) ≡ φ̂(ωn)
Z(ωn) , (25)

which is more closely related to the excitation gap than φ.
Substituting Eq. (24) into the electron-phonon self-energy (22), we obtain the

Eliashberg equations,

φ(p, iωn) = −
ˆ dp′

(2π)3T
∑
m

g2
p−p′D(p−p′, iωn−iωm)φ(p′, iωm)

Ω(p′, iωm) , (26)

Z(p, iωn) = 1−
ˆ dp′

(2π)3T
∑
m

g2
p−p′D(p−p′, iωn−iωm)ωm

ωn

Z(p′, iωm)
Ω(p′, iωm) , (27)

χ(p, iωn) = +
ˆ dp′

(2π)3T
∑
m

g2
p−p′D(p−p′, iωn−iωm)ξp

′ + χ(p′, iωm)
Ω(p′, iωm) , (28)

which are the set of self-consistency equations for the superconducting state. They
can be regarded as a generalization of the self-consistency Eq. (13). For a metal with
a large Fermi energy µ� ωD the equations can be simplified as before by noting that
the self-energy is largely independent of |p| and we can carry out the |p| integral, so
that only the properties of the Fermi surface matter.

The BCS model is recovered from the Eliashberg theory by approximating the
interaction as a constant interaction which only exists at low energies

g2D(ωn, ωm)N0 → λθ(|ωn| − ωD)θ(|ωm| − ωD).
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FIGURE 1 a) Hartree diagram. b) Fock diagram. The solid line is the electron propagator,
and the wiggly line is the interaction.

χ vanishes in metals due to (approximate) electron-hole symmetry, but the quasi-
particle renormalization Z does not vanish. For weak coupling Z ≈ 1− g, and the
self-consistency equation becomes

∆ = φ

Z
≈ g

1 + g

∑
|ω|<ωD

∆√
ω2
n + |∆|2

, (29)

which is the BCS equation with a renormalized coupling.
The above is for a metallic system. In Sec. 2.3 and Publication I we formulate

the Eliashberg theory for a flat band system, in which the Debye energy is larger
than the bandwidth of the electronic band. Flat bands are generally very favorable to
phase transitions, and we find that electron-phonon superconductivity is no exception.

2.1.4 Coulomb interaction

Surprisingly, even though the direct Coulomb interaction between the electrons is
the strongest interaction in the system, it can be mostly disregarded in the theory of
superconductivity. This is partially due to the general philosophy of the Eliashberg
theory, which assumes that the normal state properties are already taken into account
in the parameters of the single-particle Hamiltonian, and we are just studying the
residual superconducting effects. The diagonal (in Nambu space) Coulomb self-
energies are thus usually discarded, or considered as Fermi liquid effects. That the
residual effects of Coulomb interaction on the superconducting state are small can
be traced to the separation between the phonon and electron scales ωD and EF. Let
us see how this goes in some detail.

For simplicity, instead of starting from the microscopic Coulomb interaction
and describing the the screening in detail, we model the screened Coulomb interaction
with a local Hubbard interaction

H ′e−e = U

ˆ
dxψ†↑(x)ψ†↓(x)ψ↓(x)ψ↑(x), (30)

where the Hubbard parameter U > 0 determines the strength of the interaction. The
lowest order diagrams for the self-energy related to this interaction are the Hartree
and Fock diagrams shown in Fig. 1. Together, they give the self-energy

Σ̂C = U
∑
p

(
τ3 Tr[Ĝ(p)τ3]− τ3Ĝ(p)τ3

)
, (31)
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where the first term is called the Hartree term and the second one is called the
Fock term. The Hartree term describes a classical interaction between the electrons
and the local charge density. It is only relevant when we are interested in the
capacitance of the system or when the electron distribution is inhomogeneous, as
otherwise it can be included into the chemical potential. The Fock term on the other
hand describes a quantum mechanical process of an emission and absorption of a
virtual photon. Unlike the phonon-mediated interaction, the Coulomb interaction
is practically instantaneous and does not have a high-energy cutoff. This is also
reflected in the fact that the Coulomb self-energy does not depend on frequency.

Let us consider how the Coulomb interaction affects superconductivity. The
Nambu off-diagonal component of the Fock diagram gives a correction to the order
parameter

φC = U

ˆ dp′
(2π)3T

∑
ωm

φ(p′, iωm)
Ω(p′, iωm) , (32)

so that the full order parameter φ includes contributions from both electron-phonon
and Coulomb interactions, φ(ωn) = φph(ωn) + φC. Here φph is defined by Eq. (26)
by using the full φ on the right hand side and φph on the left hand side of that
equation. Since the Coulomb interaction is repulsive, it does not by itself cause a
superconducting instability in the s-wave channel, but it can modify and suppress
the instability induced by the phonon-mediated attraction.

In order to write the superconducting problem as an effective theory for the
low-energy modes, we integrate out the high-energy modes |ξp| > ωD and high
frequencies |ωn| > ωD from the self-consistency equation. For the electron-phonon
interaction, there is a soft cutoff and the Matsubara sums can be truncated at
Debye frequency ωD without much effect. For the Coulomb interaction, one splits
the Matsubara sum into low and high-energy parts (Fig. 2), and uses the fact that
φph ≈ 0 and φC �

√
ω2
n + ξ2

p at high frequencies to obtain the equation

φC = U
∑
p∈low

φ

Ω(p, ωn) + U
∑
p/∈low

φC

ω2
n + ξ2

p

. (33)

This can be partially solved for φC as

φC = U

1 + Uχh

∑
p∈low

φ(ωn)
Ω(p, ωn) , (34)

where

χh =
∑
p/∈low

1
ω2
n + ξ2

p

= 2
ˆ D

−D
dε

ˆ ∞
ωD

dω
2π

N(ε)
ω2 + ε2

≈ N ln
(
D

ωD

)
,

(35)

and we have approximated the electronic dispersion as if it had a constant density of
states N for energies |ε| < D, and assumed that the bandwidth D is large compared
to the Debye frequency ωD. This term diverges logarithmically as the bandwidth
increases, and is not very sensitive to details of the dispersion.
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FIGURE 2 Self-energy diagram for the Coulomb pseudopotential effect. Dashed line is
the Coulomb interaction, thin solid line with single arrow is the normal state
propagator, thick solid line with double arrows is the anomalous propagator.
At low energies the anomalous propagator is calculated self-consistently and
includes the electron-phonon self-energy, whereas the high-energy propagator
has been approximated with the lowest order contribution from the Coulomb
self-energy.

After integrating out the high-energy bands and high Matsubara frequencies,
we find a self-consistency equation which includes both interactions, and only refers
to low Matsubara frequencies and low-energy bands

φ(p, iωn) = −
ˆ dp′

(2π)3T
∑
m

[
g2
p−p′D(p−p′, iωn−iωm)− U+

] φ(p′, iωm)
Ω(p′, iωm) . (36)

The original Coulomb interaction has been replaced with a Coulomb pseudopotential
U+ = U/(1 + Uχh), which approaches 1/χh when U →∞. The physical picture for
the Coulomb pseudopotential effect is that the high-energy pair correlations give a
negative feedback for the low-energy pair correlations and try to suppress them.

In Sec. 2.3 we discuss Publications I and IV and consider the effect of the
Coulomb pseudopotential on a flat band systems.

2.2 Simple models for magnetism

Let us now contrast superconductivity with another symmetry broken state; the
ferromagnetic state. Both ferromagnetism and superconductivity are quantum me-
chanical phenomena in which a material obtains a macroscopic coherence. Unlike
superconductivity, ferromagnetism occurs in common materials well above room tem-
perature, and magnetic materials have been known since antiquity. The theoretical
understanding of the microscopic origin of magnetism has only been acquired after
the development of quantum mechanics.

Magnetization of a material occurs when the microscopic magnetic moments of
the material become ordered. For a free electron, the magnetic moment is

µ = −µB(L+ gS), (37)

where µB is the Bohr magneton, g ≈ 2 is the electron g-factor, and L and S
are the orbital and spin angular momentum, respectively. In many materials the
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orbital contribution to magnetism can be disregarded, and here we only consider the
magnetic moment due to spin. Because of the negative charge of an electron, its
magnetic moment and spin point into opposite directions.

The magnetic moments in the materials can become ordered in different ways
and the phenomenology of the magnetic materials is rich and varied. Let us introduce
some simple classes of magnetic materials. In a paramagnetic material, unpaired
spins of the material are randomized by thermal fluctuations and point into random
direction, so that the total magnetic moment vanishes. If an external magnetic field
is applied, there is an energy penalty of E = gµBB · S which tends to align the
individual electronic spins antiparallel to the magnetic field and the material obtains
a total magnetic moment.

2.2.1 Heisenberg model

The material can also magnetize spontaneously due to interactions. This is exemplified
by the Heisenberg model [15]

H = −J
∑
〈ij〉
Si · Sj, (38)

where Si are the spin operators on some lattice and ∑〈ij〉 indicates the sum over
pairs of nearest neighbours. The spin operators represent the spins of the unpaired
valence electrons. If the exchange interaction J is positive, the energy is minimized
when all the spins point in the same direction. The materials which have a ground
state with this kind of arrangement are known as ferromagnets. The ferromagnetic
state is a symmetry-broken state; in the absence of an external field, no single spin
direction is preferred and the direction of the magnetization is picked spontaneously.
At high temperatures the system is always in the non-symmetry-broken state. The
temperature at which ferromagnetism vanishes is known as the Curie temperature
(TC). For T > TC the material is in the paramagnetic state, in which it can be
magnetized by an external field, but has no intrinsic magnetization in the absence of
such field.

If J is negative, the preferred arrangement can be more complicated. If the
system is bipartite, i.e. can be divided into two interlocking lattices so that the
nearest neighbours always belong to different lattices, then the ground state is
antiferromagnetic; every other spin points in the up direction, and every other to the
down direction. Again, “up“ is spontaneously chosen. In this case the total magnetic
moment vanishes, but there still exists a magnetic order within the material. If
the system is not bipartite, the configuration becomes frustrated, as one cannot
simply minimize each term of the Hamiltonian individually to obtain the lowest
energy configuration. In this case, the ground state can have a more complicated
spin structure.

2.2.2 Stoner model

The Heisenberg model applies to insulating magnets with localized spins. In metals,
the magnetism may also originate from the interactions between the delocalized
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conduction electrons, described by the Stoner Hamiltonian [16]

H =
ˆ

dx
 ∑
σ=↑,↓

ψ†σ(x)
(
−∇2

2m − µ
)
ψσ(x) + Uψ†↑(x)ψ†↓(x)ψ↓(x)ψ↑(x)

 , (39)

where ψσ are the field operators for the conduction electron with spin σ, and U > 0
is the repulsive Hubbard interaction. We assume that the number of electrons N is
fixed. This model does not give a good description of magnetism in e.g. rare-earth
metals, for which the magnetism originates from the localized 4f electrons. [17]

The Hamiltonian (39) is rotationally symmetric. The kinetic energy is min-
imized when the lowest energy states (in terms of the noninteracting dispersion)
are filled equally for both spins. In the absence of interactions, U = 0, the ground
state of the system is non-magnetic. However, when there are interactions, the spin
symmetry can be spontaneously broken and the system can become spontaneously
magnetized.

At the mean-field level, the energy contribution from interactions comes from
the Hartree and Fock terms discussed above. The Hartree term only depends on
the electron density and does not play a role here. In contrast, the Fock self-energy
for an electron with spin σ depends only on the density of spin σ electrons. With
repulsive U , the Fock energy is minimized when the system is fully polarized so
that all the electrons have the same spin. However, such an arrangement increases
the kinetic energy of the system, as the electrons have to occupy states with higher
momentum. Thus, there is a competition between the kinetic energy and the Fock
self-energy. If U is large enough to overcome the kinetic energy cost, there is an
instability towards a magnetic state.

Let us calculate the critical interaction strength. In fact, we have already
done all the heavy work when discussing the superconducting system. Here all we
need to do is to identify the difference between up and down spin self-energies as
the order parameter h (which we call the exchange field) and calculate its value
self-consistently:

h ≡ 1
4 Tr[σ3Σ̂] = U

4
∑
ω,p

Tr[σ3Ĝ(p, ω)]

= U

4

ˆ ∞
0

dεN(ε) [fFD(ε− µ− h)− fFD(ε− µ+ h)] ,
(40)

where µ is chosen so that the number of electrons is N . Taking h → 0 gives a
derivative of the Fermi-Dirac distribution at the chemical potential5 ε = µ. At zero
temperature it becomes a delta function and we obtain

1 = Uχ(T ). (41)

where χ(T ) =
´

dεN(ε)dfFD/dε is the spin susceptibility of the non-interacting
system at temperature T . This is known as the Stoner criterion. At zero temperature,
χ(0) = N(εF). If the right-hand-side is larger that 1, the system is unstable against
spontaneous magnetization.
5 Because of the spin rotation symmetry, the chemical potential does not change to

linear order in h.
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FIGURE 3 a) Structure of ABC graphite. γi are the tight-binding hopping parameters.
b) Cross-section of the dispersion for 15-layer ABC graphene with chiral
symmetry near the K point. Blue lines are the surface states and gray lines
are the bulk states. The red dashed line is the Dirac dispersion of single
graphene layer.

2.3 Superconductivity and magnetism on flat electronic bands

Since the initial discovery of superconductivity there has been a push for finding
superconducting materials with high critical temperatures. In 1988 Bednorz and
Müller discovered the first high-Tc superconductor which only requires liquid nitrogen,
which has the boiling point of 77 K, as a coolant. In subsequent years, increasing
the transition temperature up to room temperature has become the holy grail of
superconductivity research. This goal may have been achieved in 2020 when room
temperature superconductivity was reported in carbonaceous sulfur hydride.[18] The
result has been called into question because the alleged superconducting transitions
are anomalously sharp as a function of temperature, and their widths do not change
with the applied magnetic field.[14] Even if the result is valid, it is of limited practical
value, since it was only achieved in a diamond anvil cell under an extreme pressure
of 267 GPa. The search for practical room-temperature superconductors continues.

In this section, I discuss how flat bands can lead to an increase in the critical
temperature, and to an emergence of superconductivity in materials which are
not usually superconducting at any temperature, and how such degeneracy can be
engineered in graphene-based systems.

2.3.1 Flat bands in ABC graphite

Flat bands can be generated by a variety of mechanisms. A trivial flat band can
be made by taking a set of identical atoms with strongly localized electronic states
and arranging them in a lattice. If there is no coupling between the nearby localized
states, the resulting system is an atomic insulator with dispersion relation ε(p) = εa,
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where εa is the localized state energy. This system does not support any currents
and is arguably very boring.

Flat bands with more interesting properties can arise due to either topological
reasons or from interactions. [19] As an example of topologically protected flat band,
let us consider rhombohedral graphite (RHG), a naturally occurring metastable
allotrope of graphite, in which N graphene layers are stacked in ABC order (Fig. 3a).
The in-plane coupling between the carbon atoms is due to covalent bonds, whereas
coupling between the layers is due to weaker van der Waals forces. This system
has been studied in Publication II. The properties of RHG can be described with a
tight-binding model which includes the in-layer nearest-neighbour hopping γ0, and
hoppings γ1, γ3 and γ4 between the neighbouring sites in adjacent layers as shown in
Fig. 3. Generally, the hopping strength depends strongly on the distance between the
sites. The sites connected by γ1 are directly on top of each other, whereas sites for γ3
and γ4 are offset in the in-plane direction. This implies a hierarchy γ0 � γ1 � γ3, γ4
between the hopping parameters. Below, for simplicity, we disregard the hoppings
γ2, γ3 and γ4.

The Hamiltonian for N rhombohedrally stacked graphene layers can be written
in 2N × 2N sublattice-layer space as a matrix[20, 21]

H(k) =



Ĥ0(k) Ĥ+(k) 0 · · · 0
Ĥ+(k)† Ĥ0(k) Ĥ+(k) ...

0 Ĥ+(k)† . . . . . . 0
... . . . . . . Ĥ+(k)
0 · · · 0 Ĥ+(k)† Ĥ0(k)


. (42)

The submatrices are

Ĥ0(k) = −γ0
∑
i

eiδi·kσ̂+ + h.c. and Ĥ+(k) = γ1σ−, (43)

where k = (kx, ky) is the transverse momentum, σ± = (σx± iσy)/2 are the sublattice
ladder operators, and δi are the three nearest-neighbour vectors inside the layers.
The dispersion for RHG with 15 layers (with γ1 � γ0 and γ3 = γ4 = 0) is shown in
Fig. 3b. The surface states are at almost zero energy for |k −K| < γ1/vF .

For a fixed transverse momentum k the above Hamiltonian coincides with the
one-dimensional Su-Schrieffer-Heeger (SSH) model with an even number of sites.[22]
The SSH model has two topological phases which can be distinguished by the bulk
topological invariant. The corresponding bulk Hamiltonian is

Hbulk(k, kz) =
(

0 Φ(k, kz)
Φ(k, kz)∗ 0

)
, Φ(k, kz) = −γ0

∑
i

eiδi·k − γ1e
ikzd, (44)

where d is the distance between the layers. This Hamiltonian has a chiral symmetry
Hbulk(k, kz) = −σ̂zHbulk(k, kz)σ̂z, which allows us to define the topological invariant,
the winding number, as

W (k) = − i

2π

ˆ dz(kz)
z

, z = Φ(k, kz)
|Φ(k, kz)|

, (45)
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phases have been classified in terms of the existence of various symmetries [4,5], and
the variety of the different types of momentum-space topological defects is even richer
in gapless systems [1,5–29]. One interesting class of three-dimensional topological
semimetals is the Dirac-line (nodal line) semimetals supporting band crossings along
one-dimensional curves in the momentum space. These band crossings can in princi-
ple be protected by chiral symmetry [1,5,9,13] (often an emergent or an approximate
symmetry) or the structural symmetries of the systems [5,15–18,20,28,29]. From the
viewpoint of topological materials the main question is what kind of topologically
distinct Dirac-line semimetal phases can exist in the presence of the various structural
symmetries. For example, there exists a class of nodal lines carrying a nontrivial Z2
monopole charge so that they can be created and annihilated only in pairs, whereas the
nodal lines carrying a trivialZ2 monopole charge can be created and annihilated one by
one [17,28,29]. In certain topological semimetals, such as Bernally stacked graphite,
there exists multiple Dirac lines which meet and merge at certain high-symmetry lines
in the momentum space forming a protected triple degeneracy point of bands called
nexus [19–21].

In this paper we study Dirac lines protected by time-reversal, inversion and spin
rotation symmetries with the help of a general model for rhombohedrally (ABC)
stacked honeycomb lattices. We show that these Dirac lines can form closed loops
inside the Brillouin zone (Type A Dirac line in Fig. 1) [5,15–18] or they can extend
through the whole Brillouin zone in one of the directions in the momentum space
(Type B Dirac line in Fig. 1) [13] depending on the ratio of intra- and interlayer
tunneling amplitudes. We show that Type A and Type B Dirac lines are topologically

ν = 1

ν = 0
(a) (b)

Fig. 1 Two different types of Dirac-line semimetal phases in the presence of SU(2) spin rotation, time-
reversal and inversion symmetries. a In Type A Dirac-line semimetals the nodal lines are closed loops fully
inside the Brillouin zone (blue line). Thus, they go through the full Brillouin zone ν = 0 times. They carry
a topological charge Q = 1 defined with the help of a Berry phase for a path going around the Dirac line.
Type A Dirac lines can be gapped one by one. b In Type B Dirac-line semimetals the nodal lines extend
through the whole Brillouin zone in one of the directions (blue and red curves). Thus, they go through the
full Brillouin zone ν = 1 times. They carry a topological charge Q = 1 which can be defined with the help
of Berry phase, but now the radius of the closed path going around the Dirac line can be taken arbitrary large
(as long as it does not go around another Dirac line). Therefore, it is possible to define a topological charge
for each Type B Dirac line as an integral over a closed surface [Eq. (5)] describing their monopole-like
nature: Type B Dirac lines can be gapped only by first merging them in a pairwise manner (Color figure
online)

123

FIGURE 4 (a) Type A nodal lines (blue lines) are closed loops fully inside the Brillouin
zone. (b) Type B nodal lines (blue and red lines) extend throught the Brillouin
zone. The nodal lines carry a topological charge defined with help of the
Berry phase for a path around the Dirac line (black lines). Reprinted with
permission from Publication II, Copyright 2018 Springer Science+Business
Media, LLC, part of Springer Nature.

where the integration is from kz = 0 to kz = 2π/d. Depending on the transverse
momentum, the winding number obtains the value 0 or 1. The bulk-boundary
correspondence implies that the change in the winding number across an interface
equals the number of zero-energy surface states. The winding number can only
change when the gap closes at some point along the integration path. The gap-
closing condition Φ(k, kz) = 0 defines momentum-space curves known as Dirac nodal
lines. The two topologically different regions and the surface states are bounded
by the 2D projections of these curves. For γ1 < γ0 the surface flat bands occur for
in-plane momentum close to K and K ′ points as shown in Fig. 3b.

In Publication II we show that one can distinguish between two types of nodal
lines (Fig. 4). Type A nodal lines form loops within the Brillouin zone and can be
shrunk continuously into a point, whereas the Type B nodal lines go around the
Brillouin zone (which has the topology of a torus) and cannot be shrunk into a point.
To destroy Type B lines, one has to bring two lines of opposite charge together so
that they annihilate each other and transform into Type A lines. When γ1 < γ0
the K and K ′ points are surrounded by the projections of Type B nodal lines with
opposite charge. At γ0 = γ1 the two nodal lines collide and for γ0 < γ1 < 3γ0, the
projection of a single Type A nodal line surrounds the Γ point. At γ1 = 3γ0 the
Type A nodal line shrinks into a point, and for γ1 > 3γ0 the system becomes a 3D
topological insulator and the surface flat bands occur at all momenta.[23]

With nonzero γ2 and γ4 the chiral symmetry is only approximate. However,
as we show in Publication II, the nodal lines are topologically protected even if the
system only has SU(2) spin rotation symmetry, time-reversal symmetry and inversion
symmetry. These assumptions are well met in graphene-based systems which have
a low spin-orbit coupling. Breaking of the chiral symmetry modifies the dispersion
of the surface states, which are no longer exactly flat in the thermodynamic limit
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N →∞, but become approximately flat drumhead states bounded by the projected
Dirac lines.

2.3.2 Competition between magnetism and superconductivity

The occurrence of flat bands can increase the superconducting transition temperature.
To see why this happens, let us consider first metallic systems with constant density
of states near the Fermi surface. As we see in Sec. 2.1.2, the superconducting critical
temperature depends on the density of states at the Fermi energy, Debye energy and
interaction strength as

Tc = ωD exp
(
− 1
λN0

)
. (46)

This is valid at the weak-coupling limit when the bandwidth is large compared
to the Debye energy and to the emergent superconducting energy scale Tc. The
above equation suggests that the critical temperature could be increased either by
increasing the interaction strength, Debye energy, or the density of states.

Let us consider the third option, and modify the density of states. Instead of a
constant density of states, we assume that we have a flat band so that the density of
states has a delta-function form N(ε) = νFBδ(ε− ε0), where νFB is the degeneracy of
the flat band. Now consider the BCS theory for such a system. When the chemical
potential coincides with the degeneracy, µ = ε0, the BCS self-consistency Eq. (14)
becomes [24]

∆ = λνFB tanh
(

∆
2T

)
. (47)

By expanding around ∆ = 0 we find the critical temperature Tc = λNFB/2. Instead
of being exponentially small, the critical temperature scales linearly as a function
of the interaction constant. This suggests that if we could take a material and
perturb its electronic structure to create a flat band, there could be a large increase
in the superconducting transition temperature. Alternatively, by engineering a flat
band, superconductivity can emerge in materials which ordinarily would not be
superconducting at any temperature.

In Publication I we study the phase transitions with a model Hamiltonian
which approximates the RHG surface states. With chiral symmetry the surface
states for N -layer graphene have the dispersion εp = ±ε0|p̃|N(1 − |p̃|2) [21], where
ε0 = vFpFB, p̃ = p/pFB, and pFB = γ1/vF is the momentum-space radius of the flat
band. In the model we only consider the A sublattice on the bottom layer and B
sublattice on the top layer, as the low-energy surface states are localized on those
parts of the system, and neglect the interaction with the bulk. The dispersion of the
surface states is roughly reproduced by taking the momentum space Hamiltonian to
be

H = ε0

(
0 p̃N

p̃N 0

)
(48)

in the |A, 1〉 ⊕ |B,N〉 space.
To study the competition between symmetry-broken phases in this system, we

assume that there are two interactions, the attractive electron-phonon interaction,
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described within the dynamic Eliashberg model (Sec. 2.1.3), and the repulsive
Coulomb interaction approximated with the Hubbard U interaction. In 2D systems
controlled with nearby electric gates, the Hubbard U parameter which we include
into the model can be related to the Coulomb interaction and to the Thomas-Fermi
screening length, which is determined partially by the possible metallic gate electrodes
near the system under consideration, and partially by the intrinsic properties of that
system. [25].

If the electron-phonon interaction would be approximated with a static BCS
interaction λ, the total interaction would be simply a sum V = U − λ, which would
have a definite sign and only enable superconductivity when V < 0 or a magnetic
state when V > 0, but there would be no competition between the two states on the
mean-field level. However, due to the retardation of the electron-phonon interaction,
there are two separate interaction channels. A low energy attractive channel enables
a possible superconducting transition, and the repulsive channel with high-energy
component enables the possible magnetic phases.

What would be the structure of the magnetic phase? The on-site interaction
favors a locally ferromagnetic alignment on each of the surfaces, i.e. creates an
exchange field on each of the surfaces with a relative angle θ between them. To
determine this angle we note that the two exchange fields are coupled by the
wavefunctions which extend from one surface to the another.

A similar situation occurs in the superconducting state with θ replaced by the
relative phase ϕ between ∆s on the two surfaces. Comparing the magnetic free energy
with the free energy of the superconducting state, one notices that the free energy for
the antiparallel magnetization has the same structure as the superconducting state
with ϕ = 0 phase difference. Correspondingly, the state with parallel magnetization
coincides with the ϕ = π superconducting state. In the superconducting state
the Josephson energy fixes the phase difference to ϕ = 0. By analogy, the stable
magnetization state is the one with antiparallel alignment between the surfaces. The
situation is also analogous to an antiferromagnetic spin density wave in a system
with a nesting property.[26]

For the antiparallel magnetic state, the Stoner criterion (41) can still be written
as Uχ(T ) = 1, but now with the susceptibility

χ(T ) =
ˆ ∞
−∞

dεN(ε)
ε

tanh
(
ε

2T

)
. (49)

Because the magnetic structure is not fully uniform, this susceptibility differs from
the (ferromagnetic) spin susceptibility in Eq. (41). For a flat band with density of
states N(ε) = νFBδ(ε), the transition temperature is Tc = UνFB/2, which is linear
in the interaction strength.

In addition to the low-energy flat band, there are high-energy bands which
cannot be completely neglected since they give a logarithmic contribution to the
susceptibility (49). As we see in Sec. 2.1.4, for the superconducting state the high-
energy bands create the pseudopotential effect by screening the Coulomb repulsion
at low energies. We can do a similar separation into high and low energy bands for
the magnetic state, but the effect is opposite; the high-energy bands give a positive
feedback and enhance the effective Coulomb interaction at low energies.
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FIGURE 5 Mean-field phase diagram at T = 0 for rhombohedral graphite surface states,
when the high-energy states are neglected (χh = 0). The thin dashed line
shows the phase boundary in the case of instantaneous interactions. The
retardation effects modify the phase boundary. Reprinted with permission
from Publication I, Copyright 2018 American Physical Society.

The high-energy bands can be included as a parameter

χh =
ˆ D

Λ
dεN(ε)
|ε|
≈ N log(D/Λ), (50)

where Λ is the cutoff frequency between low and high energy bands, D is the
bandwidth and N is an average density of states. The effective interactions for the
particle-particle (−) and particle-hole (+) channels are

V± = U± − g, where U± = U

1± Uχh
. (51)

For the particle-particle channel, the interaction strength diverges at Uχh = 1. This
means the Stoner criterion is fulfilled already by the high-energy bands, and indicates
that with the chosen cutoff Λ, the theory is not fully self-consistent and one needs to
use a larger cutoff. In addition to the pseudopotential effect, the retardation also
gives a frequency dependence for the electron-phonon interaction g, which modifies
the quasiparticle weights through the self-energy component Z and has a minor effect
on the phase diagram as shown in Fig. 5.

Recently, bilayer AB graphene and trilayer ABC graphene were found to exhibit
superconductivity with maximum Tc’s of 30 mK and 50 mK, respectively, at carefully
tuned gate voltages and displacement fields. [27, 28] Based on the above arguments,
one expects that if a rhombohedrally stacked system with larger number of graphene
layers can be fabricated, it will have a larger critical temperature [21]. In trilayer
ABC graphene, the superconducting state occurs on the cusp of a magnetic transition.
This observation is consistent with the above model, in which the magnetic and
superconducting phases share no common interaction mechanism, but are enabled
by the large degeneracy of the flat band.[28]
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FIGURE 6 (a) Twisted bilayer graphene and its moiré superlattice. The upper layer is
rotated by an angle θ relative to the lower layer. (b) Position dependence of
the self-consistent ∆, shown here at T = 0 for the magic angle θ = 0.96◦ and
λ = 5 eVa2. In both figures also a line passing through high-symmetry points
with AB, AA, and BA stacking is shown. Reprinted with permission from
Publication IV, Copyright 2018 American Physical Society.

2.3.3 Magic-angle twisted bilayer graphene

The system which popularized the study of flat bands on a large scale is the magic-
angle twisted bilayer graphene (MATBG), which was found in 2018 to host multiple su-
perconducting and correlated insulator phases tunable simply with a gate voltage. [29,
30] It was the first purely graphene-based system that exhibits superconductivity in
a reproducible manner.6

MATBG consists of two layers of graphene coupled by van der Waals forces,
and twisted relative to each other so that the unit cells of the two graphene layers
are at angle θ relative to each other (Fig. 6a). The two overlaid honeycomb lattices
create a moiré pattern. The electronic structure of the individual graphene sheets
is modified by the spatial modulation of the overlap between π orbitals of the two
sheets. As a consequence of the moiré pattern with large unit cell Amoiré, the graphene
Brillouin zone fragments into a much smaller superlattice Brillouin zone. At twist
angle θ ≈ 1.1° the level repulsion between the bands flattens the Dirac cones of the
lowest lying bands so that the Fermi velocity vanishes, creating an approximate flat
6 Indications of superconductivity with high transition temperature have been reported

in highly oriented pyrolytic graphite (HOPG) samples since 1999.[31, 32] However,
these samples are not as well controlled as MATBG systems, and have not received
similar attention. The superconductivity in HOPG is related to the interfaces in the
sample, and may share a common mechanism with MATBG. [33]



35

band state.
The experimental phase diagram of MATBG depends on the sample, but in

the original experiments [29, 30] it was found that there were insulating correlated
states at integer fillings ν = nAmoiré ∈ {±2,±3}, where n is the number density of
electrons relative to the charge neutral state, and superconducting domes around
the insulating states (Fig. 7). This is reminiscent of the phase diagram of some
high-Tc superconductors, in which the superconducting pairing is assumed to be
mediated by spin or electronic fluctuations, so that the superconducting state and
the correlated insulating state share a common mechanism and the insulating state
functions as a precursor phase for the superconducting transition. In some theoretical
works, the phase diagram was taken as an indication that also in MATBG the
superconductivity might not be mediated by phonons, but by Coulomb interaction [34–
43]. If superconductivity in MATBG were to share a similar mechanism with (some
of) the high-Tc superconductors, this would be useful indeed, since the MATBG is
much more easily controlled. For example, in high-Tc superconductors the electron
density needs to be controlled by introducing inpurity atoms, and each data point
thus requires a fabrication of a new sample. In MATBG the electron density is
tunable simply by gating, and the whole phase diagram can be explored in a single
sample.

However, in later experiments with cleaner samples, the location of the super-
conducting state and the insulating states on the phase diagram do not seem to be
correlated quite so closely [44], and the phase diagram is not so suggestive of the
high-Tc physics anymore. Moreover, it can be argued that the phonon mechanism
is sufficient to explain the superconducting state. In the phonon hypothesis, the
only common factor for the superconducting and insulating states are the flat bands,
which tend to make the system unstable in many different channels.

In Publication IV, we study arguably the simplest possibility for the supercon-
ducting state in MATBG, namely s-wave superconductivity enabled by an attractive
local interaction, which we identify with the electron-phonon interaction. The normal
state of TBG is described with a tight-binding model of Refs. [45, 46], which describes
the two graphene layers at twist angle θ coupled by a hopping which depends on the
distance between the sites. We solve the BdG Eqs. (9–13) for this model and find
that even a relatively weak electron-phonon interaction can explain the supercon-
ducting Tc’s observed in the experiments, and the phonon hypothesis is consistent
with the experimental observations. The phonon hypothesis is also supported by
other works,[47, 48] and by experiments where the screening of Coulomb interaction
is enhanced by using a thinner hBN layer between the gate and the sample. [49]
The insulating state is not observed in such experiments, but superconductivity
remains. The structure of the order parameter is still an open question, but there is
some evidence that it may have nodes.[50] Since the local density of states varies
significantly within the moiré unit cell, being largest at the sites with AA stacking
and lowest at the sites with AB or BA stacking, the order parameter also has a
significant position dependence within the moiré unit cell (Fig. 6b).

In general, the mean-field ∆ is not a sufficient condition for superconductivity.
A proper superconducting state should also support a finite supercurrent (Eq. (1)),
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FIGURE 7 Gate-tunable superconductivity and insulating phases in MATBG as observed
in Ref. [29]. (a) Two-terminal conductance as a function of the carrier density
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respectively. The upper axis shows the filling factor ν = n/(ns/4). (b,c) Four-
terminal resistance for two samples at densities close to ν = −2 shows the
correlated (Mott) insulator phase and the adjacent superconducting domes.
Reprinted with permission from Ref. [29], Copyright 2018 Springer Nature.
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which requires a nonzero superfluid weight i.e. phase rigidity. In conventional
systems the superfluid weight can be related to the effective electron mass meff by
the relation [51]

Ds = e2ns/meff , (52)

where ns is the superfluid density. In flat band systems the effective mass diverges
and this definition gives a vanishing superfluid weight. However, there can be other
contributions to the superfluid weight which originate from the band geometry [52].
In particular, the superfluid weight for rhombohedral graphite surface states [21] and
MATBG is finite [53]. For an in-depth discussion of superfluid weight in flat-band
systems, see the recent review [54].

At finite temperatures and in two-dimensional systems the long-range order can
also be destroyed by thermal fluctuations. Above the so-called Berezinskii-Kosterlitz-
Thouless (BKT) transition temperature TBKT the system becomes unstable against
the creation of pairs of vortices, quantized topological defects in the order parameter
texture, and as the number of vortices increases the phase coherence is lost. Cooper
pairs may still exist in the system, but the resistance becomes finite. In the mean-field
theory the order parameter is regarded as a static quantity, and the effect of such
fluctuations is not captured. In two-dimensional superconductors, the observed
resistance transition happens at the BKT temperature TBKT, not at the mean-field
critical temperature.

Two-dimensional charged superfluids such as thin-film superconductors con-
stitute a special case of the BKT theory, which in its original form only concerns
neutral superfluids and analogous systems.[55–57] In neutral superfluids the BKT
transition happens because when the distance between a pair of vortices is large,
the interaction energy between two vortices increases logarithmically as a function
of distance. In contrast, in bulk superconductors the interaction energy between
two vortices falls off exponentially as a function of distance, and there is no BKT
transition. In thin-film superconductors the interaction strength is asymptotically
inversely proportional to the distance, and thus Kosterlitz and Thouless initially
suggested that they should not exhibit a BKT transition.[57]

However, as pointed out by Beasley, Mooij and Orlando,[58] the asymptotic
form of the interaction energy used by Kosterlitz and Thouless only applies for
distances larger than the Pearl penetration depth λ⊥,[59] the magnetic penetration
depth for fields perpendicular to the film, which is inversely proportional to the film
thickness. For thin films, λ⊥ can reach values that are of the order of centimeters.[60]
For distances smaller than λ⊥, the interaction energy between the vortices increases
logarithmically just like in neutral superfluids. Thus, in principle there is no BKT
phase transition in superconductors in the thermodynamic limit, but since the
experiments are never done in the thermodynamic limit, the BKT transition in
superconductors can be in practice be indistinguishable from a true phase transition
and one can almost directly apply the methods of the original BKT theory in
superconductors.[60] In the case of MATBG, this avenue has been pursued by the
co-authors of Publication IV. [53]



3 NON-EQUILIBRIUM SUPERCONDUCTIVITY

Above we describe the equilibrium properties of superconducting and magnetic
materials. However, many applications and experimental probes induce a non-
equilibrium state. Here we are in particular interested in the non-equilibrium
properties of superconductors, in which the density of states depends strongly on
energy. This feature provides them with unique properties, but also complicates
the theoretical description, forcing us to develop some rather heavy calculational
machinery to calculate the responses to time-dependent fields.

We start by describing the general formal tools for the non-equilibrium situation.
The idea here is not to develop the theory in full, but rather to trace out the path
from basic quantum mechanics to the quasiclassical formalism of non-equilibrium
superconductivity. The full details can be found in the review articles [61–63] and
the textbooks [64–66].

3.1 Keldysh formalism

A rather general approach to non-equilibrium dynamics is to use the Keldysh
formalism. It has some advantages over the alternatives such as Matsubara formalism:
it allows to the description of transient effects and systems far away from thermal
equilibrium. There is also no need for analytical continuation, even though the
analytical structure of the response functions does sometimes show up in the theory.
A feature unique to Keldysh theory is that it allows the calculation of full counting
statistics, giving access to all cumulants of an observable. The main drawback of the
Keldysh theory is that it doubles the matrix size of the Green’s function, and can
sometimes be cumbersome to use.
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FIGURE 8 Keldysh contour. The contour-ordering operator orders the contour-time
variables in the order s+ < s′+ < s′− < s−.

3.1.1 Keldysh contour

The time evolution of a quantum mechanical system is determined by its Hamiltonian
H. We assume that we can divide the Hamiltonian into three parts,

H = H0 +H int +H ′(t), (53)

where H0 is a time-independent single-particle Hamiltonian, which is can be easily
diagonalized and used to determine the basis states. H int describes the interactions
between the particles and is solvable only with approximations. The last part
H ′ is explicitly time-dependent and describes the processes which induce the non-
equilibrium state.

In the interaction picture the expectation value of an operator Ô can be
expressed as

O(t) =
〈
U(t0, t)Ô(t)U(t, t0)

〉
. (54)

The time-evolution from some initial state is given by the Dyson expansion

U(t, t0) = T
[
e
−i

´ t
t0

dτHint(τ)+H′(τ)
]
, (55)

with the time-ordering operator T . The time-dependent operators X(t) in the
interaction picture are defined relative to the Schrödinger picture operator XS as
X(t) = eiH0tXSe

−iH0t. We assume that the system is coupled to a thermal bath
with temperature T and take the initial time to be far away in the past, t0 → −∞.
The coupling to the thermal bath washes out any initial correlations, so that the
expectation value is evaluated about the thermal equilibrium 〈·〉 ≡ Z−1 Tr[e−βH0 · ],
where β = 1/T is the inverse temperature and Z = Tr[−βH0] is the non-interacting
partition function. In particular, we do not need to specify the initial state of the
system at t = t0.

We then define a contour ordering operator TC which orders the operators in
an increasing order in the contour variable on a closed path C (Fig. 8) on which t
goes from −∞ to ∞ on the forward branch C+, and then back from ∞ to −∞ on
the backward branch C−. The expectation value can be concisely written as

O(t) =
〈
TC[SCÔ(t)]

〉
, (56)

where the S-matrix is defined as SC = exp[−i
´
C dτH int(τ) +H ′(τ)]. Similarly, we

define the contour-ordered Green’s function

G(1, 1′) =
〈
TC
[
SCψ(1)ψ†(1′)

]〉
, (57)
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where the concise coordinate notation 1 = (x1, t1) includes at least temporal and
spatial coordinates and can include additional degrees of freedom (e.g. spin).

The above formal trick is useful because under the contour-ordering operator
TC the operators can be treated as if they are numbers and the S-matrix can be
expanded in Taylor series. It can then be shown that Wick’s theorem generalizes for
the contour-time operators, and any string of operators can be expressed as a sum of
products of zeroth order GFs

G0(1, 1′) =
〈
TC
[
ψ(1)ψ†(1′)

]〉
, (58)

and interaction vertices. The contour-ordering can thus be used to develop a
perturbation theory, namely the Feynman diagram expansion.

3.1.2 Real-time matrix structure

Instead of contour-time, we are ultimately interested in the values of the observables
in real time. To see how we get back to the real time, let us consider a simple
example. Suppose that the interaction Hamiltonian is given by the one-body operator
H int = V (x)ψ†(x)ψ(x) and that the time-dependent part vanishes, H ′(t) = 0.
Expanding the S-matrix in Eq. (57) to the first order in V gives

G(1, 1′) = G0(1, 1′) +
ˆ

dx2

ˆ
C

ds G0(1, 2)V (2)G0(2, 1′) + O(V 2). (59)

We break the contour integrals into two real-time integrals
ˆ
C

ds X(s) =
( ˆ

C+

ds+
ˆ
C−

ds
)
X(s) =

ˆ ∞
−∞

dt X(t,+)−
ˆ +∞

−∞
dt X(t,−), (60)

For a pair of real times t, t′, we get four different Green’s functions depending on
whether the two times reside on the forward (+) or backward (-) branch of the
contour:

G++(1, 1′) = −i
〈
T [ψ(1)ψ†(1′)]

〉
, G+−(1, 1′) = ∓i

〈
ψ†(1)ψ(1′)

〉
, (61)

G−+(1, 1′) = +i
〈
ψ(1′)ψ†(1)

〉
, G−−(1, 1′) = −i

〈
T̃
[
ψ(1)ψ†(1′)

]〉
, (62)

where ψ are now operators in the Heisenberg picture, and T̃ is the anti-time-ordering
operator, which orders the operators to the opposite order than T . For G+− the
upper sign is for bosons, and the lower sign is for fermions. The four GFs can be
collected in one matrix propagator with components [Ǧ]αβ = Gαβ. In terms of the
matrix propagator the above expansion can be written as

Ǧ(1, 1′) = Ǧ0(1, 1′) + dx2

ˆ ∞
−∞

dt2
ˆ

Ǧ0(1, 2)τ̌3V (2)Ǧ0(2, 1′). (63)

where τ̌3 is the third Pauli matrix.
To clarify the physical content of the matrix propagator, it is useful to transform

to the Larkin-Ovchinnikov representation for fermions, in which the matrix structure
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is rotated Ǧ → LǦL† with L = (1̌ − iτ̌2)/
√

2, and the matrix propagator obtains
the trigonal structure:

Ǧ =
(
GR GK

0 GA

)
, (64)

where the retarded (R), advanced (A) and Keldysh (K) propagators can be defined
as

GR(1, 1′) = −iθ(t− t′)
〈
[ψ(1), ψ†(1′)]∓

〉
, (65)

GA(1, 1′) = iθ(t′ − t)
〈
[ψ(1), ψ†(1′)]∓

〉
, (66)

GK(1, 1′) = −i
〈
[ψ(1), ψ†(1′)]±

〉
, (67)

with [X, Y ]∓ = XY ∓Y X, where − and + signs are for bosons and fermions, respec-
tively. By definition, the retarded and advanced functions are related by GA(1, 1′) =
GR(1′, 1)∗ and Keldysh function is anti-hermitean: GK(1, 1′) = −GK(1′, 1)∗.

The Larkin-Ovchinnikov representation for the GF is useful since its com-
ponents admit a clear physical interpretation. The retarded and advanced GFs
encode spectral information; e.g. in equilibrium the density of states is given by
N(ε) = V−1 ´

x
Tr[GR(x, ε)−GA(x, ε)]. The Keldysh GF on the other hand encodes

information about the distribution function. In equilibrium it is determined by the
fluctuation-dissipation theorem:

GK(x, ε) =
[
GR(x, ε)−GA(x, ε)

]
tanh

(
ε

2T

)
, (68)

where T is the bath temperature. In general, the Keldysh GF can be parametrized
in terms of the distribution function F as GK = GR ⊗ F − F ⊗ GA, where F is
hermitean: F (1, 1) = F (1′, 1)∗.

In the Larkin-Ovchinnikov representation the inverse GF and the self-energy
share the same structure as the GF itself:

Ǧ−1 =
(

(GR)−1 (G−1)K
0 (GA)−1

)
, Σ̌ =

(
ΣR ΣK

0 ΣA

)
. (69)

The inverse is defined as (X ⊗ X−1)(1, 1′) = 1̂δ(1 − 1′) where ⊗ is a convolution
product in space-time arguments. In terms of the distribution function F , the
Keldysh part of the inverse propagator is (G−1)K = (GR)−1 ⊗ F − F ⊗ (GA)−1.

As in the equilibrium case, the matrix propagator obeys the Dyson equation

(Ǧ−1
0 − Σ̌)⊗ Ǧ = δ(1− 1′)1̌, (70)

where the zeroth order Green’s function is

G
R/A
0 (p, ε) = 1

ε−Hp ± iδ
. (71)

Here Hp is the single-particle Hamiltonian. The self-energy Σ is defined as the
difference between the bare and the dressed GFs, or equivalently as the sum of
all the irreducible single particle diagrams which are obtained by expanding the
S-matrix.[64]
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Here we operate within the (self-consistent) mean-field approximation, and
only include the Hartree-Fock skeleton diagrams which give the self-energy

Σ(k) = −V (0)τ̂3 Tr[τ̂3G] + V (q) Tr[τ̂3G(k − q)τ̂3], (72)

for some two-body interaction V . This approximation closes the equations of motion,
so that one only needs to solve the coupled equations for G and Σ.

It may seem that we use a sledgehammer to crack a nut in developing all this
formalism to calculate things within the mean-field approximation, which reduces
the problem to an effective single-particle problem. However, we occasionally want
to step out of the linear response theory and then it is useful that the formalism
does not get in the way.

3.1.3 Full counting statistics

For a stochastic transport process, e.g. electron transfer through a tunnel barrier,
full counting statistics means that we not only calculate the average rate of the
process, but instead consider the probability distribution related to that process
and calculate all its cumulants. The Keldysh theory provides a practical method to
obtain the generating function for the cumulants.[62]

In Keldysh formalism, a single time t maps onto two variables s± on the contour,
one on the forward branch and the other on the backward branch. All operators Ô
corresponding to physical fields can only depend on the real time and are defined
symmetrically on the two branches: Ô(s−) = Ô(s+). However, it is also possible to
define operators Â which are antisymmetric on the contour: Â(s−) = −Â(s+). The
fields defined by such operators are called counting fields and can be used to develop
the full counting statistics of an observable.

We use this technique in Publication V, in which we derive an Keldysh action
for a tunnel junction between a nanomagnet with precessing magnetization and a
spin-split superconductor. The full counting statistics for charge, spin and energy
transfer over the junction are obtained as derivatives of the action with respect to
the counting fields.

3.2 Quasiclassical theory of superconductivity

Many properties of metals can be described with the phenomenological Fermi liquid
theory [67, 68]. A Fermi liquid is an interacting system with rather strong interactions,
but due to phase space restrictions the quasiparticle excitations near Fermi surface
cannot decay and the ground state resembles that of a Fermi gas. One then only
needs to describe the residual interactions between the excitations. The dynamics of
a Fermi liquid can be described with a fairly simple Boltzmann kinetic equation in
terms of the distribution function fpσ(x).

The quasiclassical theory is a natural generalization of the Fermi liquid theory
to the superconducting state. [69] Such a generalization is needed because for many
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applications of interest, the full Gor’kov equations for the GFs are too cumbersome
to solve. The quasiclassical theory is based on the observation that the typical
interactions in metals do not depend strongly on momentum near the Fermi surface,
and consequently the quasiparticle poles remain sharp in momentum space. This
makes it possible to integrate the equations of motion over momentum. This
procedure neglects some (inessential) information and results into a simpler set
of equations of motion. The quasiclassical theory for equilibrium states was first
obtained by Eilenberger [70]. The extension to non-equilibrium states was initially
developed by Eliashberg, Larkin and Ovchinnikov [71, 72].

In the works included in this dissertation, we do not consider Fermi liquid
interactions explicitly, apart from the attractive BCS interaction, which enables
superconductivity. However, the philosophy of the Fermi liquid theory is present in
the sense that we are only concerned on the excitations near the Fermi surface.

3.2.1 Eilenberger equation

The formal way of obtaining the quasiclassical equations of motion is sketched below.
In the following we separate the order parameter matrix ∆̂ from other self-energy
terms, which include contributions such as inelastic electron-phonon relaxation and
impurity scattering. We begin by subtracting the left and right-handed versions of
the Gor’kov–Dyson equations

Ǧ⊗ (Ǧ−1
0 − ∆̂− Σ̌) = 0, and (Ǧ−1

0 − ∆̂− Σ̌)⊗ Ǧ = 0, (73)

with zeroth order GF

Ǧ−1
0 (t− t′) =

(
i∂tτ̂3 + iδ − ξp 2iδF eq(t)

0 i∂tτ̂3 − iδ − ξp

)
δ(t− t′), (74)

from each other, to obtain the equation

[Ǧ−1
0 − ∆̂− Σ̌ ,⊗ Ǧ] = 0, (75)

The infinitesimal δ > 0 sets the analytical structure, and the infinitesimally small
Keldysh part determines the distribution function F eq(ε) = tanh(ε/2T ), where T is
the bath temperature. The self-energy contains the electron-electron and electron-
phonon interactions and impurity scattering. We specify it in detail only for the
diffusive case.

The next step of the process is the Wigner transform, in which internal and
external length scales of the problem are separated. Here we do the Wigner transform
in spatial coordinates but not in the temporal coordinates, because we are interested
in periodic driving and the structure of the temporal Fourier transforms is better
preserved this way. We define the center-of-mass coordinate R = (x1 + x2)/2 and
relative coordinate r = x1 − x2. The Fourier transform with respect to the relative
coordinate is

G(R,p) =
ˆ

dreip·rG(R+ r/2,R− r/2), (76)
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This is the mixed-coordinate representation of G. In mixed coordinates, the space-
time convolution product of two two-coordinate functions is

(A⊗B)(R,p) = e
i
2 (∇p1 ∇R2−∇p2 ∇R1 )A(R1,p1) ◦B(R2,p2)

∣∣∣
p1/2=p,R1/2=R

, (77)

where ◦ is a time-convolution product. For functions with slow R dependence (as
compared to internal length scales, i.e. Fermi wavelength) the above exponential can
be expanded in Taylor series for spatial gradients.

Applying the gradient expansion to the left-right subtracted Dyson equation
(75) and retaining only the terms in the lowest non-vanishing order in gradients,
one obtains a local equation of motion for G(R,p, t, t′). Integrating that equation
over the momentum magnitude |p|, we then obtain the Eilenberger equation for the
quasiclassical propagator ǧ [70]

vF p̂ ·∇ǧ = [−iετ3 + Σ̌ + ∆̂ ,◦ ǧ], (78)

where vF = pF/m is the Fermi velocity and the self-energy is restricted to the Fermi
surface Σ(p) ≈ Σ(pFp̂). The quasiclassical propagator is defined as

ǧ(R, p̂) = i

π

 
dξpǦ(R,p). (79)

The slash over the integral indicates that the integration over ξp = p2

2m − εF is
restricted to energies near the Fermi surface [61, 70]. To uniquely fix the solution,
the Eilenberger equation is solved together with a normalization condition ǧ ◦ ǧ = 1̌.
According to the Eilenberger equation, the quasiparticles move in straight lines in
the direction p̂ until they scatter off the boundary or some impurity. This is similar
to propagation of light in geometric optics. This is not a coincidence, as geometric
optics can be derived from Maxwell’s equations by using a similar gradient expansion
as above [73].

To give a concrete example of the quasiclassical GF, let us consider the homo-
geneous BCS state. Integrating over the Gor’kov GF (24), we obtain

ĝR/A(ε) = ετ̂3 + i∆τ̂1

i
√

∆2 − (ε± iδ)2
, (80)

where
√
· refers to the principal branch of the square root function.

In terms of the quasiclassical GFs, the density of states is

N(ε) = N0

2 Tr τ3[gR(ε)− gA(ε)] = N0 Re
 ε√

(ε+ iδ)2 −∆2

 , (81)

where N0 is the normal-state density of states at Fermi energy. In the normal state,
the propagator gR/A(ε) = ±τ3 has no energy dependence. This is a consequence
of the quasiclassical approximation; the information about the electron-hole asym-
metry in the normal state is completely lost and the quasiclassical theory cannot
describe normal state thermoelectric effects or any other effects which depend on the
dimensionless ratios Tc/εF, T/EF , ω/EF , q/pF and V/EF , where Tc is the transition
temperature and ω, q and V are the frequency, wavevector and strength of an external
perturbation.[74]
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FIGURE 9 Electron motion in (a) a clean system, (b) a disordered system.

3.2.2 Usadel equation

The Eilenberger equation describes a clean superconductor in which the electrons
experience a perfectly periodic lattice with Bloch wave eigenstates. Real materials
are always to some extent disordered, with the perfect periodicity broken by im-
purity atoms and lattice defects, rendering the Bloch wave picture invalid. In the
Hamiltonian, the impurities can be modeled by starting from a perfect lattice and
introducing a stochastic field of randomly distributed point-like scattering centers.
In Born approximation, the impurity scattering self-energy (at the Fermi surface) is

Σ̌ =

〈
ǧ
〉
θ

τimp
, (82)

where τimp is the impurity scattering rate and 〈·〉θ is an average over the momentum
directions. The scattering from impurities is elastic; it randomizes the momentum
direction, but does not mix states with different energies.

When the impurity scattering length l = vFτimp is small compared to the other
length scales of the system such as system size L, superconducting coherence length
ξ0 and spin scattering length1 ls, the quasiclassical propagator can be approximated
by the first two spherical harmonics:

ǧ = ǧs + p̂ · ǧp + O(τ 2
imp) (83)

Expanding the Eilenberger equation and the normalization condition in spherical
harmonics [61] and using the assumption τ−1

imp � ∆0, one finds that the p-wave
component can be expressed as the gradient of the s-wave component,

ǧp = −2lǧs∇ǧs. (84)
1 Impurity scattering length has to be larger than Fermi wavelength, as otherwise the

quasiclassical approximation is invalid.
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Substituting this to the s-wave part of the Eilenberger equation, we find an
equation of motion for ǧs = ǧs(R, t, t′) (from now on we drop the subscript s) in the
disordered limit:

D∇ · (ǧ∇ǧ) + [iετ̂3 − ∆̂− Σ̌, ǧ] = 0. (85)

This equation is known as the Usadel equation [75], and like the Eilenberger equation,
it is complemented by the normalization condition ǧ ◦ ǧ = 1̌. Unlike in the clean
limit where quasiparticles move ballistically, here the quasiparticles are constantly
scattering off the impurities, and the electron motion is diffusive, with diffusion
constant D = v2

Fτimp (Fig. 9b). The above equation is valid for the time-independent
case.

For simplicity, we write down most of the equations for the time-independent
case. However, in the publications we often consider a time-dependent drive. The
Usadel equation and all the associated definitions can be translated to a time-
dependent case by making the Fourier replacement

[iετ̂3, ǧ] −→ τ̂3∂tǧ + ∂t′ ǧτ̂3, (86)

for the energy variable in (85), and by replacing the ordinary matrix products with
time-convolution products, denoted here by the ◦ operator.

3.2.3 Spectral equation

Let us now consider the structure of the Usadel equation (85). The quasiclassical
GF ǧ is an 8× 8 matrix in Keldysh-Nambu-spin space. The Keldysh structure is

ǧ =
(
ĝR ĝK

0 ĝA

)
, (87)

where ĝR/A/K are 4× 4 matrices with the Nambu-spin structure

ĝR(R, ε) =
3∑

i,j=0
gRij(R, ε)σ̂iτ̂j, (88)

The choice of the Nambu spinor [Eq. (5)] ensures that if there are no spin-dependent
fields present, gR/A/K are proportional to the unit matrix σ̂0 in spin space. In
particular, we have chosen the Nambu spinor so that the singlet pairing is in the σ0
component.

Expanding the Keldysh matrix multiplications in Eq. (85), and picking the R
component gives the spectral equation2

D∇ · (ĝR∇ĝR) + [iετ̂3 − ∆̂, ĝR] = [Σ̂R, ĝR], (89)

which is solved together with the normalization condition

(ĝR)2 = 1̂. (90)
2 The correct analytical branch is obtained by replacement ε→ ε+iδ, with small δ > 0.
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These equations determine the spectral function ĝR, and apart from the self-consistent
∆ = ∆[ǧ], they can be solved independently of ĝK . There is no need to solve
an equation for ĝA, since one can show from the definitions (66) and (65) that
ĝA = −τ̂3(ĝR)†τ̂3. Solving a differential equation (89) together with a nonlinear
constraint (90) can be complicated. A common strategy is to parametrize ĝR in such
a way that the normalization condition is automatically satisfied and then solve the
resulting unconstrained differential equation for those parameters. We discuss the
parametrization of ĝR in Sec. 3.2.10.

3.2.4 Kinetic equation

The Keldysh component of the normalization condition is

ĝRĝK + ĝK ĝA = 0. (91)

The normalization condition is automatically satisfied by introducing the distribution
function f̂ such that

ĝK = ĝRf̂ − f̂ ĝA. (92)
The distribution function is not yet uniquely defined, as one can substitute

f̂ → f̂ + ĝRĥ+ ĥĝA, (93)

with arbitrary ĥ without affecting ĝK . [76] To fix f̂ uniquely, we restrict it to a
diagonal matrix in Nambu space[77]

f̂(R, ε) =
fL +

3∑
j=1

fTjσ̂j

 τ̂0 +
fT +

3∑
j=1

fLjσ̂j

 τ̂3, (94)

and label the components fL/Tj according to the generalized Schmid-Schön notation,
where L and T stand for longitudinal and transverse, respectively [63, 78, 79]. The
components correspond to different non-equilibrium modes. The modes fL, fT are
related to energy and charge accumulation, [51] and the spin-dependent modes fTj
and fLj are related to spin accumulation and spin-energy accumulation, respectively.

To obtain an equation of motion for the distribution function, we define the
matrix current

Ǐ = Dǧ∇ǧ, (95)
and write the Usadel equation in a concise form

∇ · Ǐ = [Λ̂ + Σ̌, ǧ] = 0, (96)

where Λ̂ = −iετ̂3 + ∆̂. The Keldysh component of the matrix current can be written
in terms of the distribution function as

ÎK = D
(
∇f̂ − gR∇f̂ gA

)
+D

(
ĝR∇ĝR

)
︸ ︷︷ ︸

IR

f̂ − f̂ D
(
ĝA∇ĝA

)
︸ ︷︷ ︸

IA

, (97)

where the first term describes the currents due to gradients of quasiparticle density,
which can only exist in a non-equilibrium state. The last two terms on the other
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hand can be non-zero also in equilibrium and describe the possible charge and spin
supercurrents.

Taking the Keldysh component of the Usadel Eq. (85), and subtracting the
supercurrent terms IR/A from both sides using the spectral Usadel equation gives
the equation

D
[
∇2f̂ − ĝR(∇2f̂)ĝA

]
= ĝR(ZH + Z∇ + ZΣ)− (ZH + Z∇ + ZΣ)ĝA, (98)

for the distribution function. The time-derivative and the order parameter, spectral
gradients, and the self-energies are contained in the terms

ZH = fΛ− Λf (99)

Z∇ = D

2
[(

∇gR
)
· (∇f)− (∇f) ·

(
∇gA

)]
, (100)

ZΣ = ΣK − ΣRf + fΣA. (101)

In analogy to the Boltzmann equation, the equation (98) is often called the kinetic
equation.

Let us consider what kind of physics the different terms of Eq. (98) describe.
The left hand side of Eq. (98) describes the coupled diffusion of the non-equilibrium
modes. [63] In the superconducting state the density of states is strongly energy-
dependent and the effectiveness of diffusion depends on the quasiparticle energy. On
the right hand side, the first term of Λ = −iετ3 + ∆̂ gives the time-derivative of the
quasiparticle accumulation (in the time-dependent situation), whereas the ∆ term
describes conversion between supercurrent and quasiparticle charge currents. The
spectral gradients in Z∇ can be generated by supercurrents, and they couple the
different non-equilibrium modes. The self-energy terms ZΣ give the collision integral
which relaxes the distribution function towards the equilibrium distribution.

3.2.5 Self-energies

In the publications included in this dissertation, we are interested in spin dynamics
in nonequilibrium systems. To describe such systems, we need to consider some spin
and energy relaxation mechanisms.

In disordered materials, the spin imbalance can relax by scattering from im-
purities. Depending on whether the impurities are magnetic or not, the associated
self-energies are given in the first Born approximation by

Σsf = τ3σ · ǧστ3

6τsf
, (102)

or

Σso = σ · ǧσ
6τso

. (103)

The former describes spin-flip relaxation due to scattering from magnetic impurities,
and the latter describes Elliott-Yafet spin relaxation due to spin-orbit scattering from
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a non-magnetic random impurity potential [80]. These processes are parametrized by
spin-flip and spin-orbit relaxation times τsf and τso, respectively.

In the normal state, there is no difference between the two terms within the
approximations used here, and one can simply define a total spin-relaxation time
τ−1

sn = τ−1
so + τ−1

sf . In the superconducting state, the two spin relaxation processes act
differently because the spin-orbit scattering is time-reversal invariant, but magnetic
impurity potential is not. Anderson’s theorem states that s-wave superconductivity
is robust against time-reversal invariant perturbations [81], and so the spin-orbit
scattering does not lower the critical temperature. Anderson’s theorem does not
apply to time-reversal breaking perturbations, and one finds that magnetic impurities
decrease the critical temperature of the superconducting state.

In addition to the above elastic spin relaxation processes, there always exists
some processes which provide inelastic relaxation, relaxing the quasiparticle distribu-
tion towards a thermal distribution. An important source of inelastic relaxation is
the electron-phonon scattering, given by the self-energy [63, 71]

Σ̂R,A
e−ph(ε) = −ige−ph

ˆ ∞
−∞

dωDK(ω)ĝR,A(ε+ ω)−DR,A(ω)ĝK(ε+ ω) (104)

Σ̂K
e−ph(ε) = −ige−ph

ˆ ∞
−∞

dωDK(ω)ĝK(ε+ ω)−DRA(ω)ĝRA(ε+ ω), (105)

where XRA = XR −XA, DR,A = ±iω|ω|, DK = DRA(ω) coth(ω/2Tph), and Tph is
the phonon temperature.

The above phonon self-energy is often too complicated to implement in practice.
A toy model for energy relaxation is given by

Σ̂R,A
ie = ±iΓτ̂3, (106)
Σ̂K

ie = 2Γf eq(ε)τ̂3, (107)
where Γ > 0 is the Dynes parameter, f eq = tanh(ε/2T ), and T is the bath tempera-
ture. This model gives the collision integral

ZΣ = −2Γ(f̂ − feq)τ̂3, (108)
where Γ−1 is the energy relaxation rate. Apart from relaxing the quasiparticles, a
finite Dynes parameter also affects the spectral properties, softening the gap edge
singularity in the BCS density of states. This is often useful in when solving the
Usadel equation numerically, as the sharp divergence at the gap edge can cause
problems with some numerical algorithms.

3.2.6 Self-consistency equation

As before, the order parameter is determined from the self-consistency equation.
The BCS self-consistency Eq. (14) generalizes to a time-dependent and spatially
inhomogeneous case in terms of quasiclassical GF as

∆(R, t) = λ

2 Tr[τ−gK(R, t, t)]

= λ

2

ˆ ωD

−ωD

dε
2π Tr[τ−gK(R, ε, t)],

(109)
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where t is the center-of-mass time, and τ− = (τ1 − iτ2)/2. If the non-equilibrium
electronic system is time-dependent, the order parameter can also oscillate.

At the weak coupling limit ∆0 � ωD, where ∆0 is the order parameter at zero
temperature in the absence of external fields, one can eliminate the dependence
on the Debye frequency and the interaction constant by taking ∆0 as a parameter
instead. One way to accomplish this is to write number 1 in two ways using two
different self-consistency equations:

λ

2

ˆ ωD

−ωD

dε
2π Tr

[
τ−
gK(R, ε, t)

∆(R, t)

]
= 1 = λ

2

ˆ ωD

−ωD

dε
2π Tr

[
τ−
gK0 (ε)

∆0

]
. (110)

The interaction constants λ and the high-energy parts of two equations cancel against
each other, and we can impose a new cutoff Λ such that ∆� Λ� ωD. Although Λ
may initially seem like an an unnecessary additional parameter, it is useful in heavy
numerical applications, since now the cutoff can be chosen to be quite low (Λ = 4∆0
is often good enough) without loss of accuracy. Solving for ∆, using the BCS solution
for gK0 , and taking the limit ωD →∞ gives a new self-consistency equation

∆ = 1
C(∆)

ˆ Λ

0
dεTr[τ−gK ], (111)

with the coupling constant

C(∆) = 1
2 ln

(
Λ +
√

Λ2 −∆2

∆0

)
, (112)

which has no reference to λ or ωD. The above equation has good convergence
properties in fixed-point iteration.

3.2.7 Observables

In quasiclassical theory, the charge, spin, energy, and spin-energy current densities
can be obtained from the matrix current (95) as

ji = eN0

4

ˆ
dεTr[τ̂3Î

K
i ], jki = ~N0

4

ˆ
dεTr[σ̂kτ̂0I

K
i ], (113)

jq,i = N0

4

ˆ
dε εTr[τ̂0Î

K
i ], jkq,i = N0

4

ˆ
dε εTr[σ̂kτ̂3Î

K
i ]. (114)

The related non-equilibrium charge, spin, energy, and spin-energy accumulations are

µ(r, t) = −
ˆ dε

16 Tr[τ̂0ĝ
K ], µs,k(r, t) = −

ˆ dε
16 Tr[σ̂kτ̂3δĝ

K ], (115)

q(r, t) = −
ˆ dε

16εTr[τ̂3δĝ
K ], qs,k(r, t) = −

ˆ dε
16εTr[σ̂kτ̂0δĝ

K ], (116)

where δĝK = ĝK − ĝKeq is the change in the Keldysh component relative to the
equilibrium state. Since the quasiclassical formalism only describes the processes
near the Fermi surface, it does not capture fully the possible band-shift effects due
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to interactions or external fields. Thus the charge and spin densities defined above
have to be corrected by non-Fermi surface contributions in some cases.

The Usadel equation written as in Eq. (96) has the form of a continuity equation,
and the Nambu-diagonal components of the Usadel equation give the continuity
equations for charge, heat, spin and spin-energy currents [63]. In the normal state
the spectral functions are trivial (ĝR,A = ±τ3) and the energy-integrated kinetic
equations give e.g. the familiar charge and spin-diffusion equations

∂tρ+ ∇ · j = 0, (117)

∂tSk + ∇ · jki = Sk
τsn
, (118)

with charge and spin densities ρ = N0µ, Sk = N0µs,k and normal state diffusion
currents ji = D∂iρ and jks,i = D∂iSk. In the superconducting state, there is no such
simple relation between currents (113) and accumulations (115).

3.2.8 Quasiclassical symmetries

Let us now consider the redundancy of the description that is present in the quasi-
classical GFs. The retarded and advanced propagators are related to each other by
definitions (65) and (66), and the definition (67) for the Keldysh propagator contains
a similar symmetry relating it to itself:

gA(t, t′) = −τ3g
R(t′, t)†τ3, (119)

gK(t, t′) = +τ3g
K(t′, t)†τ3, (120)

where the †-operator acts only on the matrix structure, and the exchange of the time
coordinates is written separately. Together with the parametrization (92), the latter
equation constrains the distribution function by f̂(t, t′) = f̂(t′, t)†.

In Nambu basis, the positive and negative energy excitations are not inde-
pendent of each other, and the particle-hole redundancy (7) gives an additional
constraint between positive and negative energy GFs. In time-domain this constraint
is written as

ǧ(t, t′) = −σ2τ2ǧ(t, t′)∗σ2τ2. (121)

For the Fourier transformed GFs, the symmetries (119–121) give the relations

gA(ε, ω) = −τ3g
R(ε,−ω)†τ3, gR(ε, ω) = −σ2τ2g

R(−ε,−ω)∗σ2τ2, (122)
gK(ε, ω) = +τ3g

K(ε,−ω)†τ3, gK(ε, ω) = −σ2τ2g
K(−ε,−ω)∗σ2τ2 (123)

where the Fourier convention is such that g(ε, ω) =
´

dt dt′g(t, t′)e−i(ε−ω/2)t+i(ε+ω/2)t′ ,
i.e. energy ε is the Fourier pair of the relative time coordinate t−t′, and the frequency
ω is the Fourier pair of the center-of-mass time coordinate (t+ t′)/2.

The above constraints reduce the number of equations one needs to solve by
a factor of 4, as the advanced GF can always be obtained from the retarded GF,
the distribution function must be Hermitean, and the negative energy solutions can
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FIGURE 10 Wavefunction at an interface between two materials. Quasiclassical func-
tion (yellow) can be discontinuous, while the full wavefunction (blue) is
continuous.

be obtained from the positive energy solutions.3 For the non-equilibrium modes in
steady state (ω = 0), the symmetries imply that the longitudinal modes fL, fLj are
odd in energy, the transverse modes fT , fTj are even in energy, and that all the
modes fL/Tj are real-valued.

3.2.9 Boundary conditions

As a differential equation, the Usadel equation is not fully determined without
specifying the boundary conditions. In the Schrödinger equation the boundary
conditions can be derived from the potential by requiring that the wavefunction is
continuous. The quasiclassical GF however only measures the envelope function
which can be discontinuous on quasiclassical length scales (Fig. 10). As one also
has to take into account the effect of the impurity potential, the derivation of the
boundary conditions for the Usadel equation is a non-trivial task. A comprehensive
derivation of boundary conditions for magnetic and non-magnetic interfaces from
scattering theory has been achieved in Ref. [82]. Boundary conditions have also been
suggested on more phenomenological grounds [83].

Often one wants to consider transport through the interface so that the current
depends on e.g. the voltage or temperature difference across the boundary. These
kind of boundary conditions are encoded as Robin boundary conditions and can be
written for the Usadel equation in the general form

n · Ǐ(R) = [Σ̌bc(R) ,◦ ǧ(R)], (124)

where n is the interface normal and R ∈ S is a point at the interface. Σ̌bc is some
Keldysh-Nambu-spin matrix which encodes the properties of the interface and the
GFs on both sides of the interface. The commutator structure ensures that the
boundary condition is compatible with the quasiclassical normalization condition.

A simple, but useful example is a tunneling interface described by Kuprianov-
3 In case of Matsubara GF, the same symmetries give a connection between negative

and positive Matsubara frequencies and constrain the individual σiτj components of
Matsubara GF so that they must be either purely real of purely imaginary.
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Lukitchev boundary condition [84]

Σ̌bc = σN ǧn (125)

where ǧn is the GF on the other side of the interface, and σN is the normal state
conductance through the interface. Boundary conditions for ferromagnetic interfaces
are discussed below in Secs. 4.1.1 and 4.3.1.

3.2.10 Parametrization of the spectral functions

The retarded part of the Usadel equation is a set of coupled differential equations
which have to be solved under the normalization condition g ◦ g = 1. To simplify
the solution procedure we parametrize the GF in such a way that the normaliza-
tion condition is automatically satisfied and rewrite the Usadel equation for those
parameters.

To find a suitable parametrization, we note that the normalization condition
implies that gR only has eigenvalues ±1 and the particle-hole constraint implies that
Tr gR = 0. Thus there exists a similarity transformation U such that

gR = U−1 ◦ τ3U, with U =
(

1 a

b 1

)
, (126)

where a and b are 2× 2 spin matrices. This parametrization is known as the Riccati
parametrization [69]. The diagonal elements of U have been set to unity to make
the transformation unique. Expanding gR in a and b gives

gR =
(
A 0
0 B

)
◦
(

1− a ◦ b 2a
2b −(1− b ◦ a)

)
, (127)

where A = (1 + a ◦ b)−1 and B = (1 + b ◦ a)−1. We find that a and b characterize the
superconducting correlations, so that in the normal state a = b = 0. The relative
phase of a and b is related to the phase of the order parameter. For example, if
∆̂ = ∆τ1, then a = b.

By conjugating the retarded block of the Usadel equation with U−1 and using
representation (126), one obtains the differential equations for the Riccati parameters

D∇2a =
(
1 a

)
◦
(
Λ̂− Σ̂R

)
◦
(
−a
1

)
+D

(
0 ∂ia

)
◦ ĝR ◦

(
∂ia

0

)
, (128)

D∇2b =
(
−b 1

)
◦
(
Λ̂− Σ̂R

)
◦
(

1
b

)
+D

(
∂ib 0

)
◦ ĝR ◦

(
0
∂ib

)
, (129)

with Λ = i(ε−h ·σ)τ3− ∆̂. Analogously, the boundary conditions of the form (124)
can be written as

Dn ·∇a =
(
1 a

)
◦ ΣR

bc(x) ◦
(
−a
1

)
, (130)

Dn ·∇b =
(
−b 1

)
◦ ΣR

bc(x) ◦
(

1
b

)
, (131)
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The resulting set of equations forms an 8-component second order differential equation.
By writing it as a 16-component first order differential equation, it can be solved
using out-of-the-box diffential equation solvers. The Frobenius norm of the Riccati
parameters is bounded; 0 ≤ ‖a‖ , ‖b‖ ≤ 1, and typically the equations are quite
well-behaved.

The Usadel equation does however contain spurious solutions. This can be seen
by considering the Riccati equations for the simplest nontrivial case, a homogeneous
BCS superconductor without any scattering. The equations

∆a2 − 2iεa−∆ = 0, and ∆b2 − 2iεb−∆ = 0, (132)

have the solutions a, b ∈ (−iε ±
√

∆2 − ε2)/∆. The choice of the correct branch
is done on physical grounds, as only the solution a = b = (−iε −

√
∆2 − ε2)/∆

gives a non-negative density of states. This problem of multiple branches puts some
emphasis on a good choice of an initial guess for the numerical solution procedure.
In energy domain the solution procedures are typically most unstable towards a
non-physical solution near the DOS singularities. A finite Dynes parameter Γ can be
used to round the singularities and make the numerical solution more stable.



4 SUPERCONDUCTING SPINTRONICS

Spintronics, a portmanteau of spin and electronics, is a research area studying the
active manipulation of spin degrees of freedom in solid-state systems. [85] Because
spin behaves in different ways in materials such as ferromagnets, antiferromagnets,
topological insulators, superconductors, semiconductors, molecules and semimetals,
spintronics is a very diverse field. It has many subfields which focus on specific
systems, such as magnonics [86], insulatronics [87], skyrmionics [88], orbitronics [89].
In this dissertation we are interested in superconducting spintronics [63, 82, 90, 91].

Although the name “spintronics” was invented only in 1996 [85], the prehistory
of spintronics goes back to the 19th century discoveries such as Faraday’s law, Lorentz
force and Hall effect which demonstrate the macroscopic coupling between magnetic
fields and charge currents. Since spin is not a conserved quantity like charge, many
spin-transport effects only occur over length scales smaller than the spin-relaxation
length of the material, and a microscopic description is necessary. An early study
to consider the microscopic aspects of spin transport was the theory of electrical
transport in ferromagnetic transition metals by Neville Mott in 1936. [92, 93]

The oft-quoted promise of spintronics is to try and provide faster and more
energy-efficient storage, memory and logic elements for computing.[94] Spintronics
emerged as a major field of study when the giant magnetoresistance effect (GMR)
was discovered in 1988 by the groups led by Albert Fert and Peter Grünberg [95,
96]. Fert and Grünberg shared the 2007 Nobel Prize in physics for their discovery.
In GMR the resistance of a magnetic multilayer depends strongly on the relative
orientation of the magnetization. It allows magnetic memories to be read efficiently
with an electrical signal, and has been utilized in magnetic random-access memories.
Spintronics systems can also have other benefits, such as high sensitivity in detector
elements, as discussed in Publication III. From the point-of-view of a theoretical
physicist, we can consider spintronics as the study of all forms of angular momentum
in condensed matter systems. This is a fundamental physics interesting in itself,
even apart from any short-term industrial applications.

In this chapter, we consider the effects which arise from introducing supercon-
ducting elements to magnetic multilayers. One of the main effects from coupling
superconducting thin films with magnetic films is the magnetic proximity effect,
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which splits the spectrum of the SC into two non-degenerate spin bands. We first
describe the spin splitting in the BdG framework and discuss the appropriate bound-
ary condition with which to describe the effect in the Usadel framework. We then
proceed to study some of the effects brought about by the spin splitting of the SC
spectrum. As the first application, we consider a radiation detector which utilizes
the thermoelectric effects between a FM and a spin-split SC.

We move on to consider the magnetization dynamics of thin film ferromagnets in
the presence of superconducting contacts. Both the magnetization of the ferromagnet
and the electronic spin of the superconductor are forms of angular momentum, and
it can be transferred between SC and FM in the reciprocal processes known as
spin-transfer torque and spin pumping. The theory of these processes is well known
in the normal state, and we discuss how it is modified in the SC state. A unique
effect which arises in superconductors is spin supercurrent, a coherent spin current
enabled by the spin polarization of the Cooper pairs.

Finally, in a spin-split superconductor, spin dynamics is coupled to the Higgs
mode, the amplitude mode of the SC order parameter. We discuss the properties of
this coupling, and how it can be used to study the properties of the Higgs mode. We
also discuss how this coupling is modified if there is a strong interfacial spin-orbit
coupling.

4.1 Spin-splitting field in a superconductor

To understand how the Zeeman field h affects the properties of an s-wave supercon-
ductor, let us consider the normal state Hamiltonian

H0 = p2

2m − µ− hσ3. (133)

In the normal state, the Zeeman field splits the two spin bands so that the Fermi
momenta for the two spin species are pF,σ ≈ pF + σh/2µ (top left panel of Fig. 11).

To describe superconducting state, we use the Bogoliubov-de Gennes description
of Sec. 2.1.1. In this case, the corresponding BdG Hamiltonian (6) is

HBdG = ξpτ3 −∆τ1 − hσ3, (134)

where ξp = p2/2m− µ. Since hσ3 is proportional to the unit matrix in Nambu space,
the eigenvectors are the same as in the h = 0 case. In contrast, the eigenenergies are
shifted by the Zeeman field:

Epσ± = ±
√
ξ2
p + ∆2 + σh. (135)

The eigenenergies enter the self-consistency equation (13) only through the statistical
functions. At T = 0 the statistical function only depends on the sign of the energies
(135). If h < ∆, the signs do not change from the h = 0 case, so the value of ∆
and the structure of the ground state is unchanged. At a finite temperature the
self-consistency equation is affected since now the quasiparticles on the branch with
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FIGURE 11 Left panel: quasiparticle excitation spectrum for a regular BCS superconduc-
tor (top) and for spin-split superconductor with exchange field h (bottom).
Right panel: the respective spin-resolved densities of states. Thin grey lines
indicate the normal-state spectrum and density of states.

energy E ≤ ∆− h are more easily excited by the thermal processes, and the order
parameter diminishes. For ∆ < h signs of the energies (135) do change, and the only
solution of the BdG equations at T = 0 is the normal state ∆ = 0.

The existence of a solution for the BdG equations is not a sufficient criterion
for the superconducting ground state, as it only implies that the superconducting
state is a local energy minimum. To determine whether the superconducting or the
normal state is the global minimum, i.e., the ground state, we need to consider the
free energy. At zero temperature, the free energy of the spin-split superconductor
relative to the normal state is1

Fs − Fn = VN0

(
h2 − ∆2

2

)
, (136)

where the last term is the condensation energy and the first one gives the energy
penalty due to the Zeeman field. [98] From the free energy we see that the super-
conducting state is the ground state only for h < hc, where hc = ∆0/

√
2 is the

Chandrasekhar-Clogston limit, and ∆0 is the value of ∆ at h = 0 and T = 0.
The Zeeman field splits the quasiparticle excitation spectrum into two separate

spin bands, which have a well-defined spin of ±~/2. (Fig. 11) The spin-up quasi-
particles are linear combinations of spin-up electron and spin-down hole excitations,
and the spin-down quasiparticles are linear combinations of spin-down electron and
1 This expression for the free energy is rather limited. A more general expression for

SC at finite temperature, with impurity scattering self-energies and inhomogeneities
has been obtained in the context of quasiclassical theory in Ref. [97].
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spin-up hole excitations. If there are no spin-scattering self-energies, the spin-bands
are simply shifted about the Fermi level by ±h. [63] The spin-splitting affects the
transport properties of the SC, as reviewed in Ref. [63].

The Zeeman field can be induced into a spin-split SC in two ways. First one is
by applying an external in-plane magnetic field. If the SC is thin enough, the orbital
effect from the field is negligible, and the main effect is from the Zeeman term. The
problem with this approach is that to achieve sizable effects, one needs h . ∆/2,
which for e.g. aluminum implies a strong magnetic field of the order of 1 T. Another
way is by magnetic proximity effect, which I describe below.

4.1.1 Magnetic proximity effect

Consider an interface between a metal and an insulator. By definition, there are
no electronic states in the bulk of the insulator at the Fermi energy. However, near
the interface, the states from the metal extend to the insulator as evanescent states,
with a decay length which depends on the insulating gap. Now, if the insulator
is magnetic, the insulating gap and the decay length of the evanescent states are
spin-dependent.

When an electron scatters from the surface of the insulator, the up and down-
spin components [where the direction is taken relative to the spin-quantization axis
of the ferromagnetic insulator (FI)] acquire different phases φ↑ and φ↓. If we consider
only the states near Fermi energy, we can assume that the phases do not depend on
energy. We are interested in the effect of the relative phase ϕ = φ↑ − φ↓ between
the spins, which can cause the spin states to mix when an electron scatters from the
interface. To see how, let us assume that the electron is initially at an eigenstate
σx = +1, and scatters from the metal/insulator interface: [99]

|+〉 = |↑〉+ |↓〉√
2
−→eiϕ|↑〉+ e−iϕ|↓〉√

2
= cosϕ|+〉+ sinϕ|−〉.

(137)

where |±〉 are the eigenstates of the σx operator, and we neglected the total phase
φ↑ + φ↓. After the scattering, we find that spin has rotated about the z-axis. The
phase ϕ is called the spin-mixing angle, and in general it depends on the angle of
incidence. [99]

In general, spin mixing causes pair-breaking: when ϕ = π, the interface is a
perfect pair breaker, which suppresses ∆ completely near the interface. However,
here we are interested in materials for which the spin-mixing angle is small, ϕ� 1.
In such materials, the pair breaking effect is negligible, and the main effect is the
exchange coupling between conduction electrons of the metal and FI spins. [99].

If we are not interested in the normal state effect which has a short length scale,
we may use the quasiclassical theory. In the normal state, the equilibrium effects from
the interface average out within the distance λ ∼ 1/kF from the interface. This is the
length scale of the Ruderman–Kittel–Kasuya–Yosida (RKKY) interaction[100–102],
which is relevant for atomically thin layers.[103] However, in the superconducting
state the changes in the spectrum are mediated by the superconducting condensate
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and decay at the much larger scale of the superconducting coherence length ξ. The
quasiclassical theory captures the superconducting effect, but cannot be used to
describe the normal state RKKY interaction.

For the Eilenberger Eq. (78), the boundary condition for the FI/SC interface
is [99]

ǧ(x = 0, p̂) = Ŝǧ(x = 0, p̂)Ŝ†, (138)

where p̂ and p̂ = p̂− 2(p̂ · n)n are the incident and reflected momentum directions,
respectively, n is the interface normal, and the scattering matrix Ŝ = exp(iϕm·στ3/2)
describes the spin mixing. In general, the spin-mixing angle ϕ depends on the cosine
of the incident angle p̂n = n · p̂. Expanding Ŝ ≈ 1 + iϕm·στ3/2 gives a relation

ǧ(p̂)− ǧ(p̂) = iϕ[m · στ3, ǧ(p̂)], (139)

between the incident and reflected GFs.
In the dirty limit, ǧ(p̂) ≈ ǧs + p̂ · ǧp is a good approximation in the bulk,

but not within an impurity scattering length from the interface, where the GF can
depend sharply on the momentum direction. To obtain the boundary condition for
the Usadel equation, one needs to consider the process of isotropization, i.e. the
averaging of the momentum direction by impurity scattering, as we get farther away
from the interface. The relevant piece of information is that the angle-averaged
matrix current, given in the clean limit by Ǐ = −3vF

´ dΩp

4π p̂ ǧ(p̂), and in the dirty
limit by Ǐ ≈ D(ǧs∇ǧs), is conserved in the isotropization process.[104]

Thus, calculating the matrix current in the clean limit using Eq. (139), we find
the boundary condition for the Usadel equation2

n · Ǐ = iJ [m · στ3, ǧ], (140)

where the interfacial exchange field J is given by an angular average of the spin-mixing
angle, [104, 105]

J = vF

2

ˆ 1

0
dp̂np̂nϕ(p̂n). (141)

The effects beyond a weak spin-mixing angle can be incorporated by using the
boundary conditions of Refs. [82, 104].

If the thickness of the SC is smaller than the coherence length, we can average
the Usadel equation over the SC and use the boundary condition (140) to obtain the
equation

[i(ε− h · σ̂)τ̂3 − ∆̂− Σ̌, ǧ] = 0, (142)

where the effective exchange field inside the SC is h = Jm/d. The generalizations of
this equation are used below to describe various aspects of spin-split superconductors.

2 Here we again suppress the subscript of ǧs.
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FIGURE 12 (a) Thermoelectric radiation sensor element. FI provides the exchange
field for the SC, and the SC and FM are coupled by a tunnelling contact.
Absorbed photon heats the SC, and the resulting temperature difference
between SC and FM is converted to an electric signal (Vth) with the giant
thermoelectric effect. (b) Semiconductor diagram for the giant thermoelectric
effect in spin-split SC/FM tunnel junction. Solid lines are the densities of
states for spin-up (red) and spin-down (blue) electrons, and the dashed line
is the Fermi-Dirac distribution function. Spin-up and spin-down currents
flow to the opposite directions. If the FM has a finite polarization at the
Fermi surface, there is a net charge current through the interface. Adapted
from Publication III.

4.1.2 Thermoelectric effects at the SC/FM interface

In Publications III, V and VI, we study systems in which a central element is
a tunnel junction between a spin-split SC and a ferromagnetic metal (Fig. 12a).
Most of the predicted phenomena are enabled by thermoelectric effects over the
tunnel junction. The main thermoelectric effects are the Seebeck effect, generation
of a voltage or charge current by a temperature difference, and the Peltier effect:
generation of heat current from a voltage difference. These effects are related to each
other by Onsager reciprocity and only exist if there is an asymmetry between the
densities of states for the electron-like and the hole-like excitations.

Electron tunneling between a spin-split SC and FM can be described with the
semiconductor model, [51] which gives the charge current [106]

Ic = GT

2e

ˆ ∞
−∞

dε
∑
σ=±

NS,σ(ε)NF,σ′(ε)[f(ε− V − σVs, TF )− f(ε, TS)]. (143)

Here, NS/F,σ are the spin resolved densities of states normalized by the Fermi level
DOS per spin, f(ε, T ) is the Fermi distribution function, TS/F are the temperatures
of SC and FM electrons, V is the voltage, Vs is a spin-dependent voltage, [63]
and GT the tunneling conductance. The reduced DOS of the spin-split SC is
NS,σ(ε) = NBCS(ε− σh), where NBCS is the reduced BCS DOS. The reduced DOS of
the FM is NF,σ = (1 + Pσ)/2, where P ∈ [−1, 1] is the Fermi-level spin polarization.
The prefactors from the densities of states have been absorbed into GT . Here the
magnetizations of the FM and FI are collinear. The structure of the tunnel current
is illustrated in Fig. 12b. A similar definition can be given for heat and spin
currents. [106].

In total, the SC DOS is always electron-hole symmetric near the Fermi surface
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due to the BdG symmetry (8), and thus there is no thermoelectric effect between a
SC and normal metal within the quasiclassical accuracy. The introduction of the
Zeeman field makes the spin-resolved densities of states highly asymmetric, but
does not break the total electron-hole symmetry of the SC. The total electron-hole
symmetry is only broken by connecting the spin-split SC to a FM, which has different
densities of states for minority and majority spins, so that the two spin bands are
weighted asymmetrically. The FM is not described by the quasiclassical theory and
does not obey the BdG symmetry (8).

At linear response, the average charge, energy and spin-z currents over the
FM/spin-split SC tunnel junction are given by the matrix

 IcĖS
Isz

 =

 G Pα PG

Pα GthT α

PG α G


 V

−δT/T
Vs/2

 , (144)

where δT = TS−TF . The symmetry of the matrix is due to Onsager reciprocity [106].
The conductance G, thermal conductance Gth, and the thermoelectric coefficient α,
are given by

G = −GT

2

ˆ ∞
−∞

dε [NS,+(ε) +NS,−(ε)] ∂f(ε, T )
∂ε

, (145)

α = −GT

2e

ˆ ∞
−∞

dε ε [NS,+(ε)−NS,−(ε)] ∂f(ε, T )
∂ε

, (146)

Gth = −GT

2e2

ˆ ∞
−∞

dε ε2 [NS,+(ε) +NS,−(ε)] ∂f(ε, T )
∂ε

. (147)

The conductance and thermal conductance depend on the average DOS. The thermo-
electric coefficient depends on the difference between the densities of states between
the two spins, since this is one of the two factors which determines the electron-hole
asymmetry of the junction. The second factor is P , the Fermi-level spin polarization
of the magnet.

The thermoelectric effect described above is dubbed as the giant thermoelectric
effect, since it is huge compared to the thermoelectric effects usually observed in
metals, which are of the order kBT/EF . The thermopower of the junction may
exceed kB/e, and the thermoelectric figure of merit ZT can be larger than unity. As
a heat engine, the efficiency of the junction can be made to be close to the Carnot
limit.[106]

In Publication III, we propose that the giant thermoelectric effect can be
utilized as a sensitive thermoelectric radiation detector, in which the measurable
electric signal is generated by the temperature gradient across the junction due to
heating from the absorbed radiation. The ongoing SUPERTED project [107] funded
by European Union’s Horizon 2020 research and innovation programme, aims to
realize a proof of concept of this device.
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4.2 Magnetization dynamics and spin pumping

In Publications V, VI, VII, VIII, and IX we are interested in dynamical aspects
of magnetization. The dynamics can be induced by ac electromagnetic fields or ac
currents, or as in some cases considered in Publication V, by parametric instabilities
caused by dc temperature or voltage biases.

4.2.1 Landau-Lifschitz-Gilbert equation

In a strong ferromagnet, it is much easier to change the direction of the magnetization
than to change its modulus |M |. For example, a Stoner ferromagnet with an exchange
field hF has two kinds of basic magnetic excitations. First, there are single-particle
Stoner excitations, which move an electron from the occupied state on one spin
band to an unoccupied state on the other spin band. In the process, the total spin
(magnetization) of the magnet changes by ∆S = ±~. At long wavelengths q ≈ 0,
these excitations occur at frequency ωq=0 = 2hF . Second, there are spin waves,
the Goldstone modes associated with spontaneously broken spin-rotation symmetry,
which rotate the magnetization coherently around the equilibrium direction. In the
absence of an external magnetic field, the dispersion of the long-wavelength modes is
gapless.

If we consider a response to an external field with low frequency ω � hF and a
long wavelength, we can neglect the Stoner excitations and consider the dynamics
with fixed modulus, |M (t)| = Ms, where Ms is the saturation magnetization of the
magnet. In this approximation, the magnetization direction m = M/Ms evolves
according to the Landau-Lifshitz-Gilbert (LLG) equation [108, 109]

dm
dt = −γ(m× µ0H) + α

(
m× dm

dt

)
, (148)

where the first term on the right-hand side describes precession in an external magnetic
field µ0H. The gyromagnetic ratio γ is the ratio between the magnetic moment
and the angular momentum of an electron inside the ferromagnet. The second term
is a phenomenological Gilbert damping term parametrized by the dimensionless
Gilbert damping constant α, which relaxes the magnetization towards the equilibrium
direction. A main source of Gilbert damping is spin-orbit interaction, which couples
the time-dependent magnetization to the lattice dynamics.[110] Because of the
cross-product structure, both terms on the right hand side conserve the modulus of
magnetization.

The potential energy of a ferromagnet can also depend on the magnetization
direction due to factors other than the external field. For example, there are fields
due to crystalline anisotropy, and a demagnetizing field which depends on the shape
of the sample. Such terms can be included into the LLG equation by replacing µ0H

with the effective magnetic field

µ0Heff = −∇MU(M), (149)
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where U(M ) is the potential energy of the magnet. The concept of the effective field
can also be extended to include time-dependent fields.

4.2.2 Ferromagnetic resonance

A simple case which can be described with Eq. (148) is the ferromagnetic resonance
(FMR) experiment, in which resonant absorption of a ferromagnetic film is studied.
In FMR, a static magnetic field is applied in the plane of the film, and an ac field is
applied perpendicular to the static field. The power absorption is measured as the
field strength is swept over the resonance condition. The line shape of the power
absorption reveals information about the magnetic properties of the sample.

Let us describe the FMR experiment as a linear response to an ac magnetic
field. For simplicity, we neglect the anisotropy fields and the demagnetization field.
Let the static field H0 be along the z-axis, and let there be an ac field at frequency ω

Bac(t) = Bac
√

2 [cos(ωt)x+ sin(ωt)y] , (150)

which is circularly polarized on x-y plane. The factor of
√

2 is included for later
convenience.

A good basis for problems involving precession is the angular momentum basis

e± = ∓(x± iy)/
√

2, e0 = z, (151)

in which the basis vectors have the properties

e∗l · ek = δlk, l, k ∈ {±1, 0} (152)
e0 × e± = ∓ie±, e+ × e− = ie0. (153)

The benefit of using this basis is that it preserves the rotational symmetry about the
z-axis.

In linear response we assume a weak ac drive (150), which can be written in
the angular momentum basis as Bac(t) = Re(Bace

−iωte+). Expanding m in powers
of Hac, the magnetization has a static zeroth order component along the z-axis, and
a first order component oscillating at frequency ω:

m(t) ≈ z + Re(mωe
−iωte+) . (154)

In the angular momentum basis the LLG Eq. (148) becomes a scalar equa-
tion, which can be solved in a straightforward manner. We define the magnetic
susceptibility

Mµ(ω) = χµν(ω)Bac
ν (ω), (155)

where the vector components are defined as Mµ = e∗µ·M . In this case, the suscepti-
bility is diagonal, with the diagonal component

χ++(ω) = γMs

(ω − γµ0H0) + iωα
. (156)
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FIGURE 13 Steady precession of the magnetization, and spin pumping from ferromagnet
to a metallic contact. The precession of the magnetization pumps a primary
current Ipump

s into the metallic contact. The pumped current generates a
spin accumulation near the interface, which in turn induces a back-action
current Iback

s .

Since both the driving field and the magnetization are real-valued, the other diagonal
component of the susceptibility is given by χ−−(ω) = χ++(−ω)∗. In this simple case,
the resonance frequency coincides with the Larmor frequency ωres = γµ0H0. The
anisotropy energies and the demagnetization field break the rotational symmetry, so
that the magnetic susceptibility is no longer diagonal if they are included, and the
resonance frequency is given by the Kittel formula.[111]

In FMR experiment, instead of sweeping the frequency of the applied field,
one usually fixes the driving frequency ω and sweeps the external field strength to
find the resonance field Hres. Since the linewidth is directly proportional to Gilbert
damping coefficient, the FMR experiment can be used to study the spin relaxation in
the material. This can be used to study the spin pumping effect, introduced below.

4.2.3 Spin pumping in the normal state

The spin pumping effect refers to the generation of dc spin current to a metallic
contact (N) by an adiabatically precessing magnetization in a ferromagnet (F), as
illustrated in Fig. 13. Here we assume that the contact is in the normal state. The
generalization to the SC state is considered below.

In the normal state, the spin and charge currents through the F/N interface
are determined by the distribution matrices in F and N near the interface, and the
2× 2 conductance tensor [112, 113]

Gσσ′ =
∑
nm

[δnm − rnmσ (rnmσ′ )∗] , (157)

where rnmσ are the reflection coefficients in a spin-diagonal reference frame, and M is
the number modes on the normal metal side of the contact. Let us for simplicity
assume that F is in equilibrium, so that the charge and spin accumulations, µc
and µs, are non-zero only in N. The charge current is determined by the diagonal
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elements of the conductance matrix [112]

Ic = e

2h
{

2(G↑↑ +G↓↓)µc + (G↑↑ −G↓↓)(µs ·m)
}
, (158)

where m is the magnetization direction of F. The spin-quantization axis of Gσσ′ is
determined by m.

Calculating the spin current requires the whole conductance matrix, and is
given by [112]

Iacc
s = 2(G↑↑ −G↓↓)µcm+ (G↑↑ +G↓↓)[µs ·m]m

+G↑↓r m× µs ×m+G↑↓i µs ×m.
(159)

The longitudinal spin current on the first line depends only on G↑↑ and G↓↓. In
contrast, the transverse spin current on the second line is determined by the complex
spin-mixing conductance G↑↓ = (G↓↑)∗, which has been decomposed into the real
and imaginary parts G↑↓r,i.

Now assume that the magnetization direction m is not fixed, but rotates
adiabatically. One can use time-dependent scattering theory to show that the change
in the magnetization direction generates a current [112]

Ipump
s = G↑↓r m×

dm

dt
+G↑↓i

dm

dt
, (160)

which depends on the spin-mixing conductance. The spin direction of the generated
spin current is perpendicular to the instantaneous magnetization direction.

Let us assume a steady circular precession at angle θ around the z-axis,

m(t) = sin θ [cos(ωt)x+ sin(ωt)y] + cos θz. (161)

Now, “pumping” usually refers to creation of dc currents by a periodic drive. Here
we find that the current (160) indeed has a dc component

Ipump
s,z (ω = 0) = G↑↓r ω sin2 θ, (162)

with spin along the z-axis. In spintronics applications, spin pumping can be used to
create a source of spin-polarized currents.[114]

Spin pumping is usually modified by back-action effects. The pumped spin
current (160) induces a spin accumulation in N, which diffuses from the interface
and relaxes according to the spin diffusion equation [115]

∂tµs = D∂2
xµs −

µs
τsn
, (163)

which can be derived from the kinetic Eq. (98). The boundary condition

D∂xµs(x = 0) = Ipump
s + Iacc

s , (164)

takes into account the spin pumping current (160) and the back-action current due
to induced spin accumulation [(159)]. The back action is not simply a reduction in
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the magnitude of the spin current, but it can also change its structure. For example,
with purely imaginary spin-mixing conductance G↑↓r = 0, the dc part of the direct
spin pumping (160) is zero. Spin diffusion away from the interface and relaxation of
spin make the direction of spin accumulation lag behind the magnetization direction,
which in turn generates a dc component in the back-action current. The above effect
can also be considered as happening at the interface, in which case it contributes to
the real part of the spin-mixing conductance.[116]

4.2.4 Spin-transfer torque

From the point of view of the ferromagnet, spin current pumped into the metallic
contact shows up as a loss of angular momentum,

dS

dt

∣∣∣∣∣
spin current

= −Is. (165)

The total spin is related to the magnetization by S = −γMV , where V is the
volume of the ferromagnet, and the minus sign is due to the negative charge of an
electron. A dc spin current implies that the magnet is steadily losing its angular
momentum to the contact. To hold a steady precession, there needs to be a driving
force to compensate for this loss.

To include the spin current in the LLG equation, one should project out the
longitudinal current Is ‖m, as it does not conserve the normalization |M | = Ms.
There are physical reasons to do this as well. In an insulating ferromagnet the
diagonal part of the conductance is zero, and the interfacial current (159) only has
a transverse component, so the projection does nothing. In a metallic ferromagnet
the interfacial current can have both longitudinal and transverse components. For a
strong magnet, the relaxation time for transverse currents is very short and we can
assume that they are absorbed at the interface. The longitudinal spin accumulation
on the other hand has a longer relaxation time, does not necessarily vanish inside
the ferromagnet, and can influence the dynamics. Here we assume that it relaxes
fast towards the “equilibrium” value determined by the Coriolis force.

Thus, to account for the absorption of transverse spin currents in Eq. (148),
we add the Slonczewski term: [117]

dm
dt = −γ(m× µ0H) + α

(
m× dm

dt

)
+ γ

V
m× Is ×m, (166)

where the action of the double cross product is to project out the longitudinal part
of the spin current. Since only the transverse currents are included, the extra term
is compatible with the normalization |m| = 1. Here we have assumed that when the
spin current is absorbed, all the angular momentum flows into the magnetization,
and not directly to the lattice or to some other degrees of freedom.

What is the effect of this additional term on the magnetization dynamics? First
of all, the added term does not need to be generated by spin pumping, but also
includes situations in which the magnetization is driven by applying a spin-polarized
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current through the magnet.[117] In the case of spin-pumping current it is natural
to divide the transverse current into two perpendicular components

m× Is ×m = If ṁ+ Id(m× ṁ). (167)

The first term is a field-like current, which can be combined with the left-hand side
of Eq. (166) and has the effect of renormalizing the gyromagnetic ratio. The result is
a shift in the FMR resonance frequency. The second term is a damping-like current,
which can be combined with the Gilbert term and gives an extra contribution to
the Gilbert damping. The increase in the Gilbert damping can be observed as an
increase of the FMR resonance linewidth.

A comparison with the spin pumping current, Eq. (160), shows that the real
part of the spin-mixing conductance contributes to damping, whereas the imaginary
part gives a field-like contribution. This is consistent with the fact that only the real
part of the spin-mixing conductance generates a dc spin current, which leads to a
loss of z-component of the angular momentum and a change in the precession angle
θ.

4.3 Spin pumping in the superconducting state

Above consideration have been for the normal state, for which the spin diffusion
can be expressed in terms of energy-integrated quantities. In the superconducting
state, we cannot neglect the energy dependence as easily, and the theory is more
complicated. Before going into a detailed description, let us summarize the main
effects which superconductivity has on spin pumping. It is useful to consider the
linear spin response of the superconductor to an exchange field at a finite frequency,

S(ω) = χ̂(ω)h(ω), (168)

where χ̂ is the 3 × 3 spin susceptibility tensor and h is the dynamic exchange
field. Below, we identify some processes through which a ferromagnet with dynamic
magnetization interacts with the superconductor.

First, the dynamical magnetization of the ferromagnet can excite quasiparticles
in SC. If the ferromagnet is a metal, the quasiparticle excitations can be tunneled
between FM and SC, and if it is an insulator, the time-dependent exchange field
at the interface can directly excite quasiparticles in SC. The strength of the latter
process can be directly related to the imaginary part of the spin susceptibility
Imχ++(ω) (Fig. 14a, bottom panel). Quasiparticle excitations are suppressed at
low temperatures and at low frequencies due to the superconducting gap, so that
the imaginary part of the spin susceptibility vanishes.[119–122] In most of the
publications, we assume that the spin currents are created by the spin pumping effect.
However, there can also be spin currents driven a temperature difference between F
magnons and SC electrons. This process is considered in Publication VII.

The ferromagnet can also act as a pair-breaker and suppress ∆ at the interface.
This effect can also be modified by the induced spin currents,[123] or depend on the
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FIGURE 14 (a) Top: Real part of the spin susceptibility in the SC state as a function of
temperature. The real part is associated with the magnetic proximity effect,
and it vanishes in the normal state. Bottom: Imaginary part of the spin
susceptibility, normalized by its normal state value. The imaginary part is
associated with quasiparticle excitations, and it vanishes at low temperatures
and at zero frequency. The coherence peak below Tc is due to spin-orbit
scattering. Here, τ−1

so = 0.2∆0 and Γ = 0.01∆0, and for the imaginary part
ω = 0.02∆0. (b) Enhanced spin transport in the superconducting state in
Pt/Nb/Ni80Fe20/Nb/Pt multilayers. Temperature dependence of the FMR
linewidth µ0∆H (top) and the resonance magnetic field µ0Hres (bottom)
for various Nb thicknesses. The dashed lines indicate their Tc. The samples
with 45 nm and 60 nm Nb layer show the expected suppression of Gilbert
damping, but the other samples show an enhancement. Panel (b) is reprinted
with permission from Ref. [118], Copyright 2018 Springer Nature.
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relative angle between the magnetizations in a system with multiple magnets.[124,
125] This effect has a minor role in Publication VIII, but is otherwise not studied in
this dissertation.

A charge supercurrent flowing in a ferromagnetic weak link is accompanied
by a spin current, and in systems with multiple SCs and inhomogeneous magne-
tization, there is a coupling between the magnetization direction and the relative
superconducting phase between the elements. This coupling manifests as long-range
triplet supercurrents[126, 127], pair amplitude oscillations[128], and the π-Josephson
effect[129, 130]. In this dissertation, we restrict our study to systems with a single
superconductor.

Finally, the magnetic proximity effect from the ferromagnet can polarize the
SC.[63] The strength of the proximity effect is related to the real part of the spin
susceptibility (Fig. 14a, top panel). The exchange field inside the SC follows the
direction of the dynamic magnetization, and it can also excite quasiparticles in the
SC. In Publication VIII we show that the magnetization gradients caused by the
proximity effects from non-collinear sources are associated with spin supercurrents.
Unlike the quasiparticle currents, the spin supercurrent is not suppressed at low
temperatures, but its temperature dependence instead follows that of Reχ++, shown
in Fig. 14a.

In FMR experiments, dc spin pumping can be identified from the increase in the
effective Gilbert damping of the ferromagnet.[112] The suppression of quasiparticle
excitations show as a suppression of interfacial Gilbert damping below the SC transi-
tion temperature.[119, 131] However, as shown in Fig.14b, in some experiments an
increase in Gilbert damping below the transition temperature has been observed.[118,
132, 133] In Publication VIII we argue that in some cases this may be attributed to
an increased coupling between the different layers mediated by spin supercurrents.

4.3.1 Boundary condition to a ferromagnetic metal

To derive a suitable boundary condition for the interface between a SC and a
ferromagnetic metal with dynamic magnetization, let us start by considering the
effect of the precessing magnetization on the conduction electrons of the ferromagnetic
metal. This effect can be calculated in different ways. For example, one can make a
connection with the Berry phase, and notice that the time-evolution has two terms:
an ordinary dynamical phase, and a spin-dependent geometric phase which generates
the spin accumulation, and ultimately the spin pumping effect[134]. Here, we use
quasiclassical theory to calculate the distribution function and to complement the
Berry phase description, which does not explicitly describe the relaxation processes.

The conduction electrons are described by the Hamiltonian

H(t) = p2

2m − µ+ J(t) · σ, (169)

where the time-dependent exchange field is J(t) = Jm(t). For the quasiclassical
theory to be applicable, the exchange field must be small compared to the Fermi
energy. This requirement comes from the normalization condition which does not
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allow for the two spin bands to have different densities of states at the Fermi level.
The magnetization precesses circularly according to Eq. (161). We also assume that
there is some coupling which provides spin relaxation with rate τ−1

s and inelastic
relaxation with rate τ−1

e-ph.
In the normal state, we can neglect the Nambu structure and write the kinetic

equation (98) as

∂tf̂(t, t′) + ∂t′ f̂(t, t′) + i[f̂ ,◦ J ·σ](t, t′) = 3f̂(t, t′)− σ·f̂(t, t′)σ
3τs

+Ze-ph(t, t′), (170)

where Ze-ph includes inelastic relaxation. The time-dependence of J(t) can be
removed by applying a unitary transformation U(t) = exp(−iωtσ3/2), which takes
us into a frame rotating along the magnetization. The transformed distribution
function

f̃(t− t′) = U(t)f̂(t, t′)U(t′)†, (171)

depends only on the relative time, and the corresponding spin accumulation is static.
By applying the unitary transformation on Eq. (170), taking the spin trace, and
integrating over energy, we obtain the equation

µ̃s ×
[
Jm(0)− ωz

2

]
+ µ̃s − ωz

τs
= 0. (172)

Because the form of σ · f̂(t, t′)σ is not invariant under the unitary transformation, the
spin relaxation has an unusual form in the rotating frame. The inelastic relaxation
does affect the spin accumulation, so τe-ph vanishes from this equation.

With strong exchange field J � ω, τ−1
s , the spin accumulation can only have a

longitudinal component
µ̃s = (ω cos θ)m(0). (173)

At the opposite limit of a vanishing exchange field J = 0, the time-dependence of
the Hamiltonian (169) vanishes, and the system stays in equilibrium. In the rotating
frame, the equilibrium state has a spin accumulation µ̃eq

s = ωz generated by the
time-dependent unitary transformation. On the other hand, since Eq. (173) for J 6= 0
differs from the equilibrium value µ̃eq

s , it corresponds to a finite spin accumulation
in the laboratory frame. This spin accumulation drives the spin current associated
with the spin pumping effect between the FM and a contact.

What is the distribution function which gives the spin accumulation (173)?
Since the distribution function depends on energy and thus contains more information
than the spin accumulation, the answer depends on the inelastic relaxation rate. For
simplicity, we assume a fast inelastic relaxation, so that each spin band has its own
thermal distribution, displaced in energy by a spin-dependent voltage:

f̃(ε) = tanh
(
ε− (ω cos θ/2)m(0) · σ

2T

)
. (174)

The spin accumulation and the distribution function are frame-dependent quantities.
The laboratory frame distribution function is obtained by making a Fourier transform
of Eq. (174) and inverting the unitary transformation (171).
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Now we are in the position to give the boundary condition which can describe
spin pumping from a ferromagnetic metal to a SC. However, we would like to go
beyond the quasiclassical limit and describe a strong ferromagnet with non-negligible
Fermi surface spin polarization P . To emulate the Fermi surface spin polarization
we can use the spin-filter boundary condition of Ref. [135]. It states that

n · Ǐ = κ[Γ̂ ◦ ǧF ◦ Γ̂ ,◦ ǧ], (175)

where κ parametrizes the conductance of the junction, ǧ is the quasiclassical GF of
the SC at the interface, and ǧF is the quasiclassical GF of the ferromagnetic metal,
with components

gRF (t, t′) = −gAF (t, t′) = τ3δ(t− t′), (176)
gKF (t, t′) = 2f̂(t, t′). (177)

The distribution function characterizing ǧF is hence obtained from Eqs. (171) and
(174). The spin-filter matrices are Γ̂(t) = T + Um(t)·στ3, with U2 + T 2 = 1, and
2UT = P .

The above boundary condition is utilized in Publication V,3 where we consider
a heterostructure of a metallic nanomagnet with a dynamic magnetization coupled
with a spin-split SC. In this system, we predict a non-linear spin torque, driven either
by a temperature difference or a voltage across the interface. We extend the linear
response matrix (144) by including the precession frequency ω as a driving force, and
the dc spin torque ~τz = −Isz as a current. We derive for the interface a Keldysh
action, describing the coupled charge, heat and spin transport in the presence of a
precessing magnetization, which can be used to calculate the full counting statistics of
the currents. We also predict a cooling effect, in which the precessing magnetization
can cool either the FM or the SC.

4.3.2 Boundary condition to a ferromagnetic insulator

An interface between a ferromagnetic insulator and a superconductor can be described
in the Usadel equation with the boundary condition (140), which can be directly
generalized for time-dependent magnetization by replacing the ordinary products
with time-convolution products:

n · Ǐ(t, t′) = iJ [m · στ3 ,◦ ǧ](t, t′). (178)

To find the spin pumping current we take a spin trace from both sides and inte-
grate over energy. The details are given in Supplementary information Sec. I.B of
Publication VII. The spin current is given by

Is(t) = JN0[µs(t)×m(t)− ∂tm(t)], (179)
3 In fact, we formulate the boundary condition between FM and SC in Publication V

in a slightly different way by using the momentum-integrated GFs for ferromagnetic
metal, but the final result coincides with the above quasiclassical approach.
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FIGURE 15 Ferromagnetic insulator/superconductor/ferromagnetic insulator trilayer.
(a) Spin supercurrent mediated by the spin triplet condensate function ft.
(b) Sketch of the experimental setting for a FMR experiment. The heavy
metal layer (HM) has a strong spin relaxation and controls the Gilbert
damping of the second FI. Reprinted from Publication VIII, Copyright 2022
the authors.

where µs is the spin accumulation inside the SC near the interface. The first term
describes the current due to spin accumulation, and the second one is the spin
pumping current. Comparing to Eqs. (159) and (160), we can identify JN0 with the
imaginary part of the spin mixing conductance.

The boundary condition (178) is used in Publications VII, VIII and IX to
study spin pumping from an insulating ferromagnet to a SC. In Publication VII the
focus is not on spin pumping, but on the related spin battery effect, where a dynamic
magnetization in FI induces a static spin accumulation in the SC. This effect is
enhanced in the SC by several orders of magnitude relative to the normal state due
to the spin-energy mixing enabled by the magnetic proximity effect. Related to this
finding, we predict a giant Seebeck effect in FI/SC/FM structures, driven by the
temperature bias between the FI magnons and the SC electrons.

4.3.3 Spin supercurrent

In Publication VIII we study a system in which a superconductor is sandwiched
between two ferromagnetic insulators with noncollinear magnetization. (Fig. 15)
This system supports a spin supercurrent, which is a dissipationless spin current.

Spin current comes in different forms. There are incoherent spin currents
associated with the gradients of non-equilibrium spin accumulation, given in the
normal state by

jks = D∇µs,k. (180)

These are fundamentally non-equilibrium currents, since spin accumulation vanishes in
equilibrium. Then there are spin currents associated with gradients of magnetization.
For example, in a Heisenberg ferromagnet with inhomogeneous equilibrium spin
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density Sk(x), there is a current

jks = K
3∑

i,j=1
εijkSi ×∇Sj, (181)

where K is the exchange stiffness of the ferromagnet. This kind of currents can exist
in equilibrium if the non-homogeneous magnetization is stabilized by some external
forces. Since spin is not generally a conserved quantity, equilibrium spin currents
have been a subject of some controversy.[136].

Superconductors can support both kinds of spin currents. The diffusive spin
current is carried by quasiparticle excitations like in normal metals. At low tempera-
tures the quasiparticles become difficult to excite and the quasiparticle currents are
suppressed. The equilibrium spin currents on the other hand require a magnetiza-
tion which is usually absent in a SC but can be introduced by magnetic proximity
effect. If the proximity field is introduced from multiple sources which have a non-
collinear magnetization, the spin-splitting field in the SC develops gradients and a
spin supercurrent is induced.

In Publication VIII we consider spin currents in a superconducting film sand-
wiched between two ferromagnetic insulators (Fig. 15). Even if the two magnets
are collinear in equilibrium, a FMR drive can induce a dynamically generated non-
collinearity. This creates an ac spin supercurrent which couples the two magnets.
We propose that this effect can explain the observed Gilbert damping increase below
Tc in multilayers with ferromagnetic and superconducting elements. [118, 132, 133,
137]

4.4 Higgs mode

The superconducting order parameter is a dynamic quantity which responds to
the perturbations in the electronic state in accordance with the self-consistency
equation (109). In single-band s-wave superconductors, there are two collective
modes related to the broken U(1) gauge symmetry. The first mode is the Nambu-
Goldstone mode, the oscillation of the phase of the order parameter, which acts to
restore the gauge symmetry. In a neutral superfluid, the Nambu-Goldstone mode has
a linear dispersion, but in a superconductor, in which the elementary constituents of
the superfluid are charged, the Coulomb interaction couples the Nambu-Goldstone
mode to plasma oscillations and lifts it to the plasma frequency. The other mode is
the (Anderson-)Higgs mode, the oscillation of the modulus of the order parameter.
The properties of the Higgs mode are in the focus in this section. The two modes
are illustrated in Fig. 16a.

The Higgs mode is analogous with the Higgs boson in electroweak theory, the
unified theory of electromagnetic and weak interactions. Both superconductivity and
electroweak theory are gauge theories, and the breaking of the gauge symmetry in
both theories is described by the Anderson-Higgs mechanism. In superconductivity,
the Anderson-Higgs mechanism explains how the photon acquires a mass inside the
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FIGURE 16 (a) Superconducting free energy with Nambu-Goldstone (red) and Anderson-
Higgs (dark blue) modes generated in the symmetry breaking. (b) Polariza-
tion operator. Blue is the real part and orange is the imaginary part. The
Higgs mode is at frequency ω = 2∆.

SC (i.e. hybridizes with electrons to form a plasmon[138]). In electroweak theory,
the same mechanism explains why the W and Z gauge bosons are massive but the
photon remains massless. A brief history of the connection between the two theories
is given by Anderson in Ref. [139]. In particle physics, the Higgs boson is of central
importance, but in superconductivity the amplitude mode was largely neglected until
its discovery by Littlewood and Varma in 1982.[140]

In Publications VI and IX we consider the Higgs mode at the dirty limit using
the Usadel equation. Although the disorder is not essential for the existence of the
Higgs mode, it does alter the coupling between the Higgs mode and the external
electromagnetic field, making it easier to excite the Higgs mode with fields with a
small wavevector.[105] Because Higgs mode is charge-neutral, it does not couple to
electromagnetic fields linearly. Even in the dirty limit one needs nonlinear fields to
excite it.

We can picture the superconductor as if it consisted of two coupled dynamical
systems, the electronic system described by the Usadel equation, and the Cooper
pairs described by the self-consistency equation. Let us assume that we apply some
driving force at frequency ω, which perturbs the electronic system from its equilibrium
configuration. In linear response, the direct perturbation of the electronic system by
the force is encoded in the propagator ǧ(1)(ε, ε−ω), which enters the self-consistency
equation and excites an order-parameter amplitude oscillation ∆(1)(ω). The back-
action from ∆(1)(ω) perturbs the electronic system, and the electronic perturbation
excites further order-parameter oscillations. The total order-parameter oscillation is

∆(ω) = ∆(1)(ω) + Π(ω)∆(1)(ω) + Π(ω)2∆(1)(ω) + . . .

= Π(ω)∆(ω) + ∆(1)(ω),
(182)

where the polarization operator Π(ω) describes the back-action from an order-
parameter oscillation to itself, mediated by the electronic system. The above equation
has the solution

∆(ω) = ∆(1)(ω)
1− Π(ω) . (183)
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FIGURE 17 (a) Parabolic dispersion split by Rashba SOC. Arrows indicate the spin
direction. (b) Device geometry for Rashba-enabled Higgs excitation by
magnons. Panel (b) reprinted from Publication IX (CC BY 4.0).

The denominator diverges for z ∈ C such that Π(z) = 1. The condition Re Π(ω) = 1
corresponds to the Higgs mode.

The polarization operator can be calculated using the Usadel equation by
considering the linear response to an order parameter oscillation ∆(ω), and substi-
tuting the solution into the self-consistency equation. In Matsubara formalism, the
polarization operator can be expressed as [105]

Π(2Ωn) = 1 + πλT
∑
ωm

∆2 + Ω2
n

(ω2
m − Ω2

n)
√
ω2
m + ∆2

, (184)

where Ωn and ωm are bosonic and fermionic Matsubara frequencies, respectively. The
expression for the polarization operator for a real frequency[140] can be obtained
using the analytical continuation.[105] Above, the explicit λ-dependence cancels
against the λ-dependence of ∆(1)(ω). The polarization operator is shown in Fig. 16b.
The Higgs mode is not a Lorentzian like a regular resonance. Mathematically it
comes from the branch cut in the square root function in Eq. (184), and is instead
called a pseudoresonance.[141]

In Publication VI we consider the Higgs mode in spin-split superconductors.
It turns out that the spin splitting does not change the properties of the Higgs mode
much. It still exists at the same frequency and remains charge neutral. However, it
does now couple to a longitudinal spin, since the order parameter depends on the
exchange field strength h: ∂∆/∂h 6= 0 if h 6= 0. Utilizing the spin-charge coupling at
a SC/FM interface allows for the conversion of the Higgs signal to a charge signal. We
propose an experimental scheme in which the Higgs mode is excited by a non-linear
ac electric field, and the resulting charge signal is measured.

4.5 Spin-orbit coupling

In relativistic quantum mechanics, the total angular momentum J = L + S of
an electron is conserved in a spherically symmetric potential, but orbital angular

https://creativecommons.org/licenses/by/4.0/
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momentum L = r×p and spin S are not separately conserved. At the non-relativistic
limit, this non-conservation manifests as a spin-orbit coupling (SOC)

Hso = − ~
4m2c2σ · p× (∇V ), (185)

where m is the electron mass, c is the speed of light, and E = ∇V is the electric
field. In crystalline solids the electric potential is generated by the atomic cores,
and thus the heavy elements induce larger spin-orbit fields than the light ones. The
form of the spin-orbit coupling is determined by the crystal symmetry. SOC can also
arise from the potential of random impurity atoms. [97] SOC arising from impurity
potential is known as extrinsic SOC in contrast to a SOC arising from the crystalline
potential, which is called intrinsic SOC.

A special kind of SOC arises from structural inversion asymmetry. For example
at an interface between two different materials there generally are electric fields
pointing towards the bulk (here we assume the interface is on the xz-plane). This
gives the Rashba SOC with the Hamiltonian

HRashba = ασ · (p× y), (186)

where α is the Rashba coefficient. The Rashba field splits the dispersion so that the
eigenstates with pz = 0 are eigenstates of σz, whereas eigenstates with px = 0 are
eigenstates of σx. (Fig. 17).

In Publication IX we consider a thin-film superconductor interfaced with a
ferromagnetic insulator. The FI induces two proximity fields inside the supercon-
ductor: the Zeeman field h = h0 + h⊥(t), which has a dynamic component h⊥ due
to magnons propagating in FI along the SC/FI interface, and the Rashba field. In
the absence of the Rashba field, the magnons cannot excite the Higgs mode due
to a spin-rotation symmetry about the static field h0. With the Rashba field this
symmetry is broken and the magnons can excite the Higgs mode. As shown in the
Publication, the coupling to the Higgs mode modifies the spin susceptibility of the
SC, which can be experimentally detected by measuring the magnon-induced voltage
generated by the inverse spin Hall effect.



5 CONCLUSIONS AND SUMMARY

In this dissertation, I studied theoretically the interactions between superconductivity
and magnetism in two settings: as the competition between the magnetic and
superconducting orders on flat band materials, and as the interplay between the two
orders on nanoelectronic hybrid structures.

In the first part of this dissertation, the emphasis was on electron-phonon
superconductivity on graphene-based materials. Our results on magic-angle twisted
bilayer graphene (MATBG), and other observations[49] suggest that the observed
superconductivity can be explained with the conventional phonon mechanism. Al-
though the interaction enabling superconductivity in MATBG may not be exotic,
MATBG is still an exciting material, as it and the other van der Waals materials offer
a uniquely controllable platform for designer quantum matter.[5] By combining layers
of materials with different properties one can create systems with emergent properties
and exotic physics. This field can be expected to produce further breakthroughs and
calls for further studies, both theoretical and experimental.

Purely graphene-based materials also hold further promise. As the discovery
of magic-angle twisted bilayer graphene shows, even after years of intense research,
graphene still manages to surprise researchers. The combination of the recent
discovery of superconductivity in untwisted few-layer graphene structures,[27, 28] and
the earlier hints of high-temperature superconductivity in highly oriented pyrolytic
graphite with large number of layers[31, 32] associated with flat bands[33] suggest
that it may be possible to achieve a surprisingly high Tc in materials based purely
on graphene. This would no doubt have plenty of technological uses. Whether
such promise can be realized in near future depends largely on the development of
fabrication techniques for van der Waals materials with many layers.

In the second part of the dissertation, I studied spintronics systems with
superconducting elements. Spintronics is a promising research direction in the
attempt to develop more energy-efficient memory and logic devices.[85, 142] Since the
modern societies run on data processing and electronic communication, increasing
energy-efficiency of information and communications technology (ICT) is at the
center of the fight against the climate change. As of 2020 globally more than
10% of the generated electricity is consumed by ICT. [143, 144] Much of this
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electricity is produced by burning fossil fuels, or could be used to replace them.
What superconductivity also adds to spintronics are the effects related to quantum
coherence, nonlocality, and entanglement.[91, 94, 145] These concepts are central
for quantum computing, and thus superconducting spintronics may also provide
solutions for quantum information processing.

In the overview part of the dissertation, I presented the theory of the quasiclas-
sical superconductivity in combination with the Keldysh theory for nonequilibrium
states. The initial forms of both of these theories were originally laid out in the 1960s
and have since then reached a mature state. However, extensions to the quasiclassical
theory are still being developed, especially with regards to magneto-electric effects
enabled by spin-orbit coupling,[97, 146] which are currently only partially understood
in a dynamic setting.

In the publications related to the second part, we envisioned new functionalities
enabled by the magnetic proximity effect, such as a thermoelectric detector based on
the giant thermoelectric effect, a cooling effect driven by the magnetic precession, a
coupling between the Higgs mode of the superconductor and the spin degrees of free-
dom, a giant spin battery effect, and a coupling between precessional magnetic modes
mediated by the spin supercurrent. These studies either suggest new experimental
schemes or were motivated by recent experiments[118, 132, 133]. Although we have
suggested in the publications some theoretical interpretations for these experiments,
it can be said they are still only partially understood, and especially a quantitative
comparison between the theory and the experimental results requires further work.
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The effective attractive interaction between electrons, mediated by electron-phonon coupling, is a well-
established mechanism of conventional superconductivity. In metals exhibiting a Fermi surface, the critical
temperature of superconductivity is exponentially smaller than the characteristic phonon energy. Therefore, such
superconductors are found only at temperatures below a few kelvin. Systems with flat energy bands have been
suggested to cure the problem and provide a route to room-temperature superconductivity, but previous studies
are limited to only BCS models with an effective attractive interaction. Here we generalize Eliashberg’s theory
of strong-coupling superconductivity to systems with flat bands and relate the mean-field critical temperature to
the microscopic parameters describing electron-phonon and electron-electron interaction. We also analyze the
strong-coupling corrections to the BCS results and construct the phase diagram exhibiting superconductivity
and magnetic phases on an equal footing. Our results are especially relevant for novel quantum materials where
electronic dispersion and interaction strength are controllable.

DOI: 10.1103/PhysRevB.98.054515

I. INTRODUCTION

The overarching idea in quantum materials is to design the
electronic (or optical, magnetic, etc.) properties of materials
to perform the desired functionality [1]. This goal is aided by
generic models and concepts, such as specific lattice models
that lead to certain topological phases. Often the studied
models and the resulting topological phases for electronic
systems are noninteracting and do not include the possibility
of spontaneous symmetry breaking. However, such noninter-
acting models are platforms for exotic electron dispersions
that provide a basis for studying symmetry-broken interacting
phases. In particular, certain models support approximate flat
bands [2–10], and here we consider microscopic mechanisms
for symmetry-breaking phases in such systems.

We analyze the interplay of electron-phonon [11] and
(screened) electron-electron interaction in providing means
for a symmetry-broken phase transition, thereby coupling
together works on flat-band superconductivity [2,7,10,12]with
those on flat-band (Stoner) magnetism [9,13–17]. In both
cases the resulting mean-field critical temperature is linearly
proportional to the coupling constant [18], thus allowing for
a very high critical temperature. The two types of inter-
action mechanisms work in opposite directions and, in the
case of weak interactions, in a symmetric way. However,
upon increasing the coupling strength the retarded nature
of the electron-phonon interaction shows up (as opposed
to the instantaneous electron-electron interaction), breaking
the symmetry between the two. In particular, we generalize
Eliashberg’s strong-coupling theory of superconductivity [19],
usually formulated for systems with a Fermi surface, for
flat bands. As a result, we describe the dimensionless BCS
attractive interaction [20] in terms of the electron-phonon
coupling and the characteristic phonon frequency [Eq. (8)].
In addition, we provide the generalization of the well-known
McMillan formula of strong-coupling superconductivity (for

Fermi surface systems) [21] to the case with flat bands in
Eq. (14).

In addition to superconductivity, we consider flat-band
Stoner magnetism. Because of the retarded nature of the
electron-phonon interaction, the combined interaction can
simultaneously have attractive and repulsive components, and
thus the system can be unstable with respect to both singlet su-
perconductivity and magnetism (see a generic strong-coupling
phase diagram inFig. 1).Oftenoneof the phases still dominates
and suppresses the other, but we find that when the critical
temperatures of the phases are similar, both phases are local
minima of the free energy at low temperatures. We find that
their bulk coexistence and the resulting odd-frequency triplet
superconducting order [22,23] are only realized as an unstable
solution. On the other hand, these phases can form metastable
domains inside the sample, and therefore an odd-frequency
triplet order parameter can appear at the domain walls.

The structure of this paper is as follows. In Sec. II we
introduce the model of surface bands with electron-phonon
and Coulomb interactions. In Sec. III we formulate the
Eliashberg model extension for the surface bands, describe
all possible ordered states that can appear within this model,
and calculate the critical temperatures of the superconducting
and antiferromagnetic states. We study the competition and
possible coexistence of these two types of ordering in Sec. IV.
Conclusions are given in Sec. V.

II. MODEL

As a low-energy model for the flat band, we assume two
sublattices coupled through an electronic Hamiltonian [3]

Hel,p =
(

0 εp

εp 0

)
, with εp = ε0

(
p

pFB

)N

, (1)
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FIG. 1. Strong-coupling phase diagram for flat-band systems
as a function of electron-phonon attraction λ for electron-electron
repulsion u = 0.5ωE [Eq. (8)]. T CE

C is the temperature at which the
TC’s of magnetic and superconducting order coincide. In the striped
region these phases can form metastable domains inside the sample.
This diagram is for N → ∞. For finite N the overlap region between
the phases is smaller.

where an integer N parametrizes the flatness of the dispersion,
and ε0 is the energy at p = pFB. The model is electron-hole
symmetric and the two energy bands have the dispersions±εp.
For largeN , the stateswith lowmomenta, |p| < pFB, are almost
at zero energy and the density of states is very high. The
states with momenta larger than pFB do not contribute much
to the momentum integrals due to their low density of states.
Therefore, the results for large N do not depend much on the
momentum cutoff, as long as it is larger than pFB. In our model
we take the cutoff to infinity and consider only the casesN > 2.
This is in contrast to models with isolated flat bands extending
throughout the Brillouin zone. The effects discussed below in
the case of large N are mostly applicable also to such models
(provided they have the type of sublattice degree of freedom
discussed below), as long as pFB is taken as the size of the
Brillouin zone. Equation (1) is approximately realized for the
surface states of N -layer rhombohedrally stacked graphite. In
that system the surface states delocalize into the bulk at the
edges of the flat band and this gives a momentum-dependent
correction in the low-energy Hamiltonian [12,24]. In the case
of N → ∞ the delocalization of the surface states to the bulk
leads to strong amplitude mode fluctuations invalidating the
mean-field theory [24]. Therefore, the theory considered in
this paper is applicable to rhombohedral graphite only in the
case where N is not too large.

We model the electron-electron interaction as a repul-
sive on-site Hubbard interaction [25] with energy U . The
magnitude of U depends on the microscopic details of the
system and its environment. The coupling between electrons
and phonons, with strength g, creates an effective attraction
between the electrons and makes the system susceptible to
superconductivity [19]. We mostly consider Einstein phonons
with constant energy ωq = ωE and discuss generalizations in
the Supplemental Material [26].

The total Hamiltonian incorporating these effects is

H =
∑
p,σ

�†
pσHel,p�p,σ +

∑
q,ρ

ωqb
†
q,ρbq,ρ

+ U

2N
∑

p, k, q

ρ, σ, σ ′

ψ
†
p+q,σρψ

†
k−q,σ ′ρψk,σ ′ρψp,σρ

+ g√N
∑

p,q,σ,ρ

(b†−q,ρ + bq,ρ )ψ
†
p+q,σρψp,σρ, (2)

where N is the number of lattice points in the system and
�

†
pσ = (ψ†

pσA, ψ
†
pσB ) is a pseudospinor in sublattice space.We

assume that the low-energy states on the two sublattices ρ =
A/B are spatially separated (e.g., localized on the two surfaces
in rhombohedral graphite), so that neither the electron-electron
interactions nor the phonons couple them. The only coupling
between the sublattices comes from the off-diagonal dispersion
relation. In the Supplemental Material we also show that
the flat-band phenomenology applies to linear, graphenelike
dispersion with an electronic Hamiltonian

Hel,p = vF

(
0 px − ipy

px + ipy 0

)
, (1′)

and with an energy cutoff εc and Fermi velocity vF , provided
the interaction energy scales are large compared to εc. Hence,
our results may also apply as an effective model for twisted
bilayer graphene close to its “magic” angles [30].

In the theory of electron-phonon superconductivity of met-
als, the neglect of higher-order diagrams in the perturbation
theory is typically justifiedwith the help of theMigdal theorem
[31]. In that case, the expansion parameter gets an additional
factor of ωE/EF , where EF is the Fermi energy. Because of
theMigdal theorem, the theory of superconductivity for metals
is not strictly limited to weak coupling with respect to the
interaction parameter.

In the flat band, however, the chemical potential is located at
the bottom of the band and there is no Fermi energywith which
to compare theDebye energy.Migdal’s theoremcannot be used
in this case. In the intermediate case of narrowelectronic bands,
corrections in the higher orders of the adiabatic parameter
ωE/EF have been studied in Refs. [32–35] and the Eliashberg
theory has been found also to be in agreement with Monte
Carlo results in the weak-coupling regime when ωE/EF = 1
in Ref. [36]. We find that the diagrams beyond the mean-field
approximation do not influence the self-energies significantly
if the effective pairing constant introduced below in Eq. (8) is
small, λ � 1, and ωE, u � ε0. Moreover, although the mean-
field theory is applied beyond its formal limits of validity in
the strong-coupling regime, this theory captures the interesting
possibility that the retarded nature of the electron-phonon
interaction can lead to the presence of attractive and repulsive
components at the same time. As a result, the system can
be simultaneously unstable with respect to the appearance of
both singlet superconductivity and magnetism as discussed in
Sec. IV.

054515-2
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FIG. 2. Quasiparticle dispersions E(p) for different kinds of
symmetry breakings with N = 5. (a) In the noninteracting case,
the spin bands are degenerate with E(p) = ±ε(p). (b) For the
ferromagnetic (FM) or the superconducting (SC) phase with a θ = π

phase shift between the sublattices, one quasiparticle band is shifted
up and the other down in energy. In this case, no energy gap is opened.
(c) For the antiferromagnetic (AFM) or the SC phase with θ = 0 an
energy gap is opened and quasiparticle bands are doubly degenerate.

III. ORDERED STATES

Hamiltonian (2) allows for a number of spontaneous
symmetry-breaking phases. We restrict our study to spatially
homogeneous phases. Therefore, the order parameter can
appear in the spin, sublattice (pseudospin), and electron-hole
(Nambu) spaces. The general self-energy is

�(iωn) =
3∑

i,j,k=0

�ijk (iωn)τiσjρk, (3)

where τi , σj , and ρk are the Pauli matrices in electron-hole,
spin, and sublattice spaces, respectively. We characterize the
different components �ijk and determine their values within
the self-consistent Hartree-Fock model. This reduces to solv-
ing a set of nonlinear integral equations, known as Eliashberg
equations in the context of conventional superconductors.

To explore the possible phases of the system, we first
assume that theU (1) gauge symmetry is broken, but the SU (2)
spin-rotation symmetry is not. After fixing the overall phase
of the superconducting order parameter, we are left with the
self-energy �000(iωn) and three degrees of freedom for the su-
perconducting singlet order parameter: the magnitudes of the
order parameter on the sublattices �A and �B and the relative
phase θ . Choosing θ = 0 leads to a gapped quasiparticle
dispersion [Fig. 2(c)], whereas θ = π would imply a gapless
dispersion [Fig. 2(b)]. Thus, in the case of an instantaneous
interaction the total energy is minimized when θ = 0 and
�A = �B . Generalizing the above to the frequency-dependent
interactions, we choose the singlet to be proportional to the

τ2σ2ρ0 component, whose magnitude and the functional form
are obtained from the self-consistency equation. The self-
energy for the fermionic Matsubara frequency ωn is

�SC(iωn) = −i�ω
n 1 + φnτ2σ2, (4)

where �ω
n = (1 − Zn)ωn is the frequency renormalization

by the retarded interaction [19]. To simplify the equations,
we define renormalized frequencies ω̃n = Znωn. We use the
symbol φn for the “bare” singlet order parameter and � for the
maximum value of the renormalized singlet order parameter
�n ≡ φn/Zn related to the energy gap.

When SU (2) spin-rotation symmetry is broken but U (1)
gauge symmetry is not, the self-energies describe the frequency
renormalization and the magnetization. After fixing the di-
rection of the magnetization on one sublattice, the relevant
degrees of freedom are reduced to three similarly as in the
superconducting case. These can be chosen as the magnitudes
of the magnetizations in the two sublattices hA and hB and
the relative angle ϕ between their directions. The quasiparticle
dispersion in the magnetic case is the same as in the supercon-
ducting case if we identify �A,B = hA,B and θ = π−ϕ (see
Fig. 2). In this case, the relative angle ϕ = 0 leads to a gapless
quasiparticle dispersion [Fig. 2(b)], and ϕ = π to a gapped
dispersion [Fig. 2(c)]. Thus, the energy minimum is obtained
with hA = hB and ϕ = π . The stable magnetization is hence
antiferromagnetic, with opposite magnetizations on the two
sublattices, so that the self-energy is

�AFM(iωn) = −i�ω
n 1 + hnτ3σ3ρ3, (5)

where hn is the frequency-dependent exchange field. This
result agrees with density functional theory (DFT) studies on
rhombohedral graphite [37], and similar magnetization struc-
ture has been predicted also in the case of flat bands appearing
at the zigzag edges of graphene nanoribbons [38–40]. We also
note that the AFM state is insulating [see Fig. 2(c)]. If the
noninteracting dispersion is completely flat at zero energy, the
sublattices are uncoupled and the antiferromagnetic state is
degenerate with the ferromagnetic ϕ = 0 state.

By calculating the Hartree-Fock self-energies, we find the
self-consistency equations, from which we can determine the
values of the self-energy terms. For the superconducting (SC)
self-energy (4), they are

φn = 2T
∞∑

m=−∞
(λnm−u)

∫ ∞

0

dp p

p2
FB

φm

ω̃2
m + ε2

p + φ2
m

, (6)

Zn = 1 + 2T
∞∑

m=−∞
λnm

ωm

ωn

∫ ∞

0

dp p

p2
FB

Zm

ω̃2
m + ε2

p + φ2
m

, (7)

where the interaction kernel is λnm =
λω3

E/[ω2
E + (ωn − ωm)2]. The functional form of the

interaction kernel is determined by the phonon propagator
from which it is derived. The width in frequency space is
determined by the characteristic phonon frequency, which in
this case is the Einstein frequencyωE . The effective interaction
constants in the flat band are

λ = g2

ω2
E

�FB

�BZ
, u = U�FB

�BZ
, (8)

054515-3



OJAJÄRVI, HYART, SILAEV, AND HEIKKILÄ PHYSICAL REVIEW B 98, 054515 (2018)

where �FB and �BZ are the momentum-space areas of the flat
band and of the first Brillouin zone, respectively.

For an antiferromagnet with self-energy (5), the self-
consistency equations are

hn = 2T
∞∑

m=−∞
(u−λnm)

∫ ∞

0

dp p

p2
FB

hm

ω̃2
m + ε2

p + h2
m

, (9)

Zn = 1 + 2T
∞∑

m=−∞
λnm

ωm

ωn

∫ ∞

0

dp p

p2
FB

Zm

ω̃2
m + ε2

p + h2
m

. (10)

Superconductivity and magnetism are thus symmetric with
each other also on the level of the self-consistency equations,
but with the roles of u and λnm switched. Tovmasyan et al. have
shown that this duality is also broken by taking into account
higher-order terms in the perturbation theory [41].

To solve the self-consistency equations (6)–(10), we trun-
cate theMatsubara sumswith a cutoffωC ∼ 10ωE . This causes
no numerical error if we use the pseudopotential trick and
simultaneously replace u with an effective value u∗, which
depends on the cutoff [42]. For superconductivity (magnetism),
cutting off high-energy scatterings is compensated by a reduc-
tion (increase) in the low-energy effective interaction.

After the pseudopotential trick, the solutions are found by
a fixed-point iteration. The iteration is continued until all of
the components have converged. The fixed-point method only
finds the stable solutions; to find the unstable solutions, we
used a solver based on Newton’s method.

The number of parameters in Eqs. (6)–(10) can be reduced
by defining new interaction constants λ̃ ≡ λ(ωE/ε0)2/N and
ũ = uω

2/N−1
E /ε2/N , so that one parameter is eliminated com-

pletely and the results become proportional to ωE .
For weak coupling, λ � 1, the frequency dependence of

λnm can be disregarded and we can approximate Z ≈ 1 and
� ≈ φ. AssumingλωE > u, the superconducting gap atT = 0
and the critical temperature are

�0

ωE

= 1

2

[
(λ̃ − ũ)

√
π�

(
1
2− 1

N

)
N sin

(
π
N

)
�

(
1− 1

N

)
] N

N−2

, (11)

T sc
C

ωE

= 1

2π

[
(λ̃ − ũ)ζ

(
2− 2

N

)(
22− 2

N −1
)

N sin
(

π
N

)
] N

N−2

. (12)

These results are valid for N > 2 as the momentum integrals
diverge without a cutoff for N � 2. Note that the T = 0
limit can thus be taken before the flat-band limit of large N .
Analogous results have been obtained before within the BCS
model in Ref. [12]. For large N , �0 is linear in the coupling
and its magnitude is proportional to the phonon energy scale.
Hence the associated critical temperature can be very large.
Relabeling �0 → h0 and λ̃ ↔ ũ, we find similar equations for
magnetism. Here h0 is the magnetic order parameter at T = 0.

At strong coupling, the retardation matters and the results
for magnetism and superconductivity diverge from each other.
For superconductivity, we can improve on the weak-coupling
result by including some of the corrections from the Eliashberg
theory when N→∞. We still neglect the full frequency
dependence, but we include the electron mass renormalization
as a static factor Z0 = 1 + λ. The order parameter at zero

FIG. 3. Critical temperatures for superconducting and magnetic
phases for N → ∞. (a) Superconductivity is suppressed when λ �
u/ωE . Above the critical point λC (u), T sc

C is linear in λ. With
increasing λ, the electron-phonon renormalization increases and this
limits the critical temperature. The dashed line is the approximation
in Eq. (14). (b) Critical interaction strength for superconductivity as
a function of u. When λ < λC (u), superconductivity is suppressed.
The dashed line is the instantaneous approximation. (c) Magnetism
is suppressed when u/ωE � λ. Above the critical point uC (λ), T m

C is
linear inu. (d)Critical interaction strength formagnetismas a function
of electron-phonon interaction. When u < uC (λ), magnetism is sup-
pressed. The dashed line is the instantaneous approximation. In this
figure, we do not take into account the possible magnetic instability
of the superconducting state, or vice versa.

temperature becomes

�0 = λωE−u

2(1 + 2λ)
. (13)

In metals with a Fermi surface [43], the electron-phonon
interaction renormalizes the pairing potential with the factor of
1+λ instead of 1+2λ as in Eq. (13). Thus, for weak coupling,
the electron-phonon renormalization is more effective in the
flat band than in the usual metals. This difference is more
pronounced at strong coupling, as we see next.

By linearizing Eqs. (6) and (7) with respect to φ, we can
solve for the critical temperature [see Fig. 3(a)]. We find that
whenN → ∞, the critical temperature scales as T sc

C ∝ λ0.2ωE

for large λ. In metals [43] the asymptotic scaling goes as T sc
C ∝

λ1/2ωE .
Whenu 
= 0, there is a critical pointλC such that forλ < λC

there is no superconducting transition at any temperature. For
small u/ωE , λC is linearly proportional to the Coulomb inter-
action. For large u, λC increases sublinearly [see Fig. 3(b)].
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FIG. 4. Effect of finiteN on critical temperature when u = 0. For
small λ̃, the results coincide with the instantaneous approximation
of Eq. (12) (shown with the dashed lines). For large λ̃, the strong-
coupling corrections limit the increase in T sc

C .

An approximate numerical equation for T sc
C is

T sc
C = λωE − u(1 − 0.3u/ωE )

4(1 + 2.6λ0.8)
. (14)

This is a flat-band analog of the McMillan equation [21],
which for the conventional superconductors incorporates the
Eliashberg and Coulomb corrections to T sc

C . The u2 term in the
numerator accounts for the retardation correction to λC as in
Fig. 3(b). The form of the denominator is chosen to show the
λ0.2 power-law behavior for large λ. The factor 2.6 is obtained
by a fit in the region λ < 1 for u = 0. The fit is shown as the
dashed line in Fig. 3(a).

The ratio �0/T
sc
C is not constant, but depends on both N

and λ. ForN → ∞, the ratio has the value 2 for weak coupling
and increases as λ increases. For λ = 1 the ratio is 2.56. For
the critical temperature at finite N , see Fig. 4.

The phenomenology of themagnetism can be understood as
follows. According to the Stoner criterion, themagnetization is
related to the competition between the exchange energy gain
and the kinetic energy penalty from moving electrons from
one spin band to another. For a flat band with N → ∞, there
is no kinetic energy penalty, and at zero temperature with
λ = 0 even a small exchange interaction leads to a complete
magnetization of the flat band. In the presence of the electron-
phonon interaction the competition is between the exchange
energy gain and the electron-phonon energy penalty, which
coincide at u = uC . If we can neglect the retardation, the total
interaction in Eq. (9) is u − λωE . The flat band is completely
magnetized when u > uC ≈ λωE . Due to retardation, for large
λ the critical point is reduced from the linear estimate [see
Fig. 3(d)].

Above, we have discussed the superconducting order pa-
rameter φ. The other important property of the superconduct-
ing state is the existence of a supercurrent. In the flat band the
electronic group velocity vanishes and it is not immediately
clear that there can be a finite supercurrent. However, the flat-
band surface states of superconducting rhombohedral graphite
do support a finite supercurrent [44] and similarly it is known
that quantum Hall pseudospin ferromagnets can support a
finite pseudospin supercurrent [16]. More generally, Peotta
and Törmä [7] have shown that for a topological flat band

FIG. 5. Mean-field phase diagram for N = ∞ obtained by deter-
mining the line onwhich the critical temperatures for superconductiv-
ity and antiferromagnetism are equal. The thin dashed line shows the
phase boundary λ = u/ωE in the case of instantaneous interactions.
When the energy scales of interactions are small compared to ωE we
recover the BCS results. The phase diagram for finite N looks similar
but the retardation effects are weaker, so that the deviation from the
BCS approximation is smaller.

there is an additional geometric contribution to the superfluid
weight so that the critical current is finite. As we have not
fixed the underlying topology in our model, it can be applied
to topologically nontrivial flat bands.

As one can see, the Eliashberg model describes the nucle-
ation of both the magnetic and superconducting phases which
can have rather close critical temperatures as shown in Fig. 3.
In the next section we consider the nonlinear problem by
calculating the entire phase diagram of the ordered states to
study the competition and the possible coexistence between
the superconductivity and antiferromagnetism.

IV. COMPETITION BETWEEN THE PHASES

If the electron-phonon interaction is approximated as in-
stantaneous, we can sum the two interactions together and
have either a total interaction, which makes the normal state
unstable to the superconducting transition (λωE−u > 0) or
to the magnetic transition (λωE−u < 0), but not to both at
once. On the other hand, if the electron-phonon interaction
is retarded, the situation is different, as the total interaction
can be attractive for low frequencies but repulsive for high
frequencies. There is then a parameter range in which both
phases are local minima of the free energy. This occurs when
λ is large enough to overcome the suppressing effect of u in the
case of superconductivity [λ > λC (u) in Fig. 3(b)], but at the
same time u is large enough to overcome the suppressing effect
of λ and create a magnetic instability [u > uC (λ) in Fig. 3(d)].

We study the phase diagram of the system by determining
the statewith a higher critical temperature as a function ofu and
λ (Fig. 5). The phase diagram is almost symmetric with respect
to SC and AFM phases except that the lack of retardation in
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electron-electron repulsion favors the AFM phase for strong
coupling.

Even if there is a parameter region in T , u, and λ where
both SC and AFM self-consistency equations have a finite
solution, it does not mean that both phases are necessarily
simultaneously present. To determine the stability, we con-
struct the coupled self-consistency equations in the case when
both order parameters are nonzero and interact with each other
[26]. By linearizing the coupled self-consistency equationwith
respect to SC, and solving the AFM part fully, the stability
of the AFM phase with respect to the SC transition can be
determined, and vice versa. Figure 1 shows the region in λ-T
space with fixed u, where the two phases are stable. The figure
shows that in the region where SC is dominant, the AFM
phase is unstable near the expected second-order transition (the
solid line between the magnetic and paramagnetic phases) but
becomes a localminimumof free energy at lower temperatures.
The same happens for superconductivity when the AFM phase
dominates. The transition between SC and AFM phases is of
the first order.

When discussing superconductivity in the presence of an
exchange field (either induced or spontaneous), we have an
additional ingredient in the self-energy, namely, the supercon-
ducting triplet order parameter [22,45], which has been dis-
cussed in the context of the Eliashberg model in Ref. [46]. The
triplet is spatially isotropic, and in order to satisfy the fermionic
antisymmetry, it has to beodd in frequency. It is generated in the
self-energy only when there is an odd-frequency component
in the interaction. In the retarded interaction, this is always
satisfied.When calculating the stability of the AFMphase with
respect to SC, the triplet appears in the linear order. It hence
modifies the boundaries of the region where both AFM and
SC phases are stable. We have taken this effect into account in
Fig. 1.

Besides the competition between AFM and SC phases,
we need to consider the possibility of a coexistence phase in
the dashed region of Fig. 1, where both phases can show up
alone. We indeed have numerically found such a coexistence
solution, but tests based on fixed-point iteration revealed it to
be unstable at every temperature that we checked. This finding
is in accordancewith a simplifiedmodelwhere both interaction
channels are instantaneous and independent of each other [26].

However, the fact that the two phases are simultaneously
local minima of the free energy suggests that this system
could have domains of antiferromagnetic order coexistingwith
superconducting domains. Such domains would be separated
by a domain wall mixing the two kinds of phases and inducing
odd-frequency triplet pairing, as schematically illustrated in
Fig. 6. In addition to providing amechanism for the appearance
of odd-frequency triplet pairing, the domain walls can support
interesting excitations. In particular, it is known that flat-
band ferromagnets can support interesting topological and
domain-wall excitations in the form of different kinds of spin
textures [16,47], and various combinations of spin textures
and superconductivity may lead to the appearance ofMajorana
zero modes [48–52]. Also, alternatively to the intrinsic domain
structure generation, the ferromagnetic superconductors can
support different types of nonuniform magnetic order and
spontaneous vortex states [53–55]. A detailed analysis of
different possibilities goes beyond the scope of this paper.

FIG. 6. Sketch of a domain wall between magnetic (red) and su-
perconducting (blue) domains.At the domainwall a triplet component
(purple) is induced.

V. CONCLUSIONS

We have proposed a simplified model of a flat-band system
with a retarded electron-phonon interaction and a repulsive
Hubbard interaction. For this model, we have determined the
self-consistency equations in the Hartree-Fock approximation
and all the possible homogeneous phases. Antiferromagnetism
and superconductivity are essentially symmetric in this system,
with the only difference coming from the retardation of
the electron-phonon interaction. For large λ, the retardation
suppresses the increase in � more effectively in a flat band
than inmetals with a Fermi surface.We find that the retardation
also creates a situation in which both phases are separately
local minima of the free energy, suggesting a possibility of
coexisting antiferromagnetic and superconducting domains
inside the sample.

Our results indicate how flat-band superconductivity can
be generated from electron-phonon interaction and provides
means to estimate the mean-field critical temperature when
the details of the electron-phonon coupling and the screened
interaction are known. The superfluid transition in low-
dimensional systems occurs in the form of a Berezinskii-
Kosterlitz-Thouless (BKT) transition at a temperature that is
lower than the mean-field transition temperature. That the
latter is nonzero is ensured by the possibility of having a
nonvanishing supercurrent (see, for example, Refs. [7,10,44])
in a flat-band superconductor. Our results are of relevance in
designing novel types of quantum materials for the interplay
of superconducting and magnetic order, and the search for
systems exhibiting exotic superconductivity with a very high
critical temperature, up to room temperature. They may also
shed light on recent evidence of high-temperature supercon-
ductivity in graphite interfaces [56].

Our results could also explain some of the phenomena
associated with the recent experiments on bilayer graphene
[30,57]. (For amoremicroscopic descriptionof that casewithin
the BCSmodel, see Refs. [58,59].) In the experiment, the twist
angle between two superimposed graphene layers is chosen
to a certain magic angle, so that the two Dirac cones in the
graphene layers hybridize, forming a pair of flat bands. Our
model can be adjusted to describe this situation with small
changes (see the SupplementalMaterial [26] for details).When
the chemical potential was tuned to the lower of these bands,
the system became an insulator. From our point of view, this
could be the insulating AFM state we describe. When the
chemical potential is tuned slightly off from the flat band, a
superconducting dome in the T -μ phase diagramwas observed
on both sides. These domes can be the s-wave SC phases
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we describe here. The competition between the particle-hole
(AFM) and the particle-particle (SC) channels in the presence
of the chemical potential was considered by Löthman and
Black-Schaffer in Ref. [8], and for a range of parameters, they
reproduce a similar phase diagram near the flat band, with the
AFM state at the level of the flat band and two superconducting
domes with doping away from the flat band (see Fig. 2(b) in
Ref. [8]). In the experiments, SC domes are only observed
on the hole-doped side. The electron-doped side exhibits only
insulating behavior near theflat band.Onepossible explanation
is the difference in screening, which changes the relative
magnitude of the repulsive and attractive interactions, so that

the AFM state covers the SC domes completely. However,
we leave the detailed treatment of the effects of doping and
screening (both intrinsic and that provided by the environment)
for further work.
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NOTE ON INTERACTION CONSTANTS AND THE TIGHT BINDING MODEL

The Hamiltonian studied in the main text is derived from a tight binding model, in which the size of the system is
naturally characterized by the number of lattice sites N . However, in approximating the sum over all momenta, it is
more natural to use the area A of the system. The ratio A/N is the area of the real space unit cell Ac, which in turn
is inversely proportional to the area of the first Brillouin zone ΩBZ. For an infinite system, the momentum sum can
be written in the following form.

1

N

∑
p

=
A

N

∫
BZ

d2p

(2π)2
=

Acπp
2
FB

2π2

∫ pc

0

dp p

p2FB
= 2

ΩFB

ΩBZ

∫ pc

0

dp p

p2FB
, (S1)

where ΩFB ≡ πp2FB is the area of the flat band and pc is the momentum cutoff. We define a shorthand for the
sum/integral over momenta and Matsubara frequencies

∑
p,m

= 2T
∑
ωm

∫ pc

0

dp p

p2FB
. (S2)

We find that the effective interactions on the flat band are characterized by the constants

u ≡ UΩFB

ΩBZ
, (S3)

λnm = −g2

2

ΩFB

ΩBZ
D(iωm−iωn) =

λω3
E

ω2
E + (ωm−ωn)2

, with λ ≡ g2

ω2
E

ΩFB

ΩBZ
. (S4)

where D(z) = −2ωE/(ω
2
E − z2) is the phonon propagator. In other words, interactions are proportional to the ratio

between the area of the flat band and that of the first Brillouin zone.

SELF-ENERGY COMPONENTS

In total, there are 43 = 64 combinations of Pauli matrices in spin, Nambu and sublattice spaces. The ones
off-diagonal in sublattice space are not possible (see below), as the interactions in the model do not couple the
two sublattices. This reduces the number by a factor of 2. We are left with 16 components symmetric and 16
components antisymmetric in sublattice index ρ. Of these 32 components, the 16 components diagonal in Nambu
space are associated with non-superconducting properties. The τ0σ0ρ0-component renormalizes the frequencies in the
propagator [1]. It vanishes if the interaction is instantaneous and is always present if the interaction has a nontrivial
frequency structure. The τ3σ0ρ0-component on the other hand renormalizes the chemical potential, and is usually
induced by finite temperature or interaction effects. In this model it vanishes because of the electron-hole symmetry
of the model at half-filling. There could in principle also be a term proportional to τ0σ0ρ3. Its effect would be to
renormalize frequencies antisymmetrically in the sublattices. However, it is not induced by any of the other terms, so
the only way to have it would be by spontaneous symmetry breaking. It should be odd in frequency, and this makes it
vanish in the BCS limit. Even in Eliashberg theory, it is unlikely, as it is supported only by the odd-frequency part of
the interaction. In this text, we do not consider this and other antisymmetric frequency renormalization components
any further.

The remaining 12 components diagonal in Nambu space are due to magnetism. The magnetization direction on
one sublattice is described with the three components σiτ3. We can parametrize the six degrees of freedom associated
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with magnetization with the overall magnitude and the relative magnitude of the order parameter, two angles for the
overall magnetization direction, and two angles for the relative direction. The six other terms of the form σiτ0ρj are
spin-antisymmetric frequency renormalization components.

The 16 components off-diagonal in Nambu space are associated with superconductivity. Four of these are associated
with the singlet and its phase and the sublattice: overall phase, relative phase between the sublattices, overall
magnitude of the order parameter and the relative magnitude between the sublattices. The remaining 12 off-diagonal
Nambu components describe the three components of the triplet and its phase and sublattice degrees of freedom.
Because both the spatial and the spin parts of the triplet are symmetric, it must be odd in frequency to preserve
the fermionic antisymmetry [2]. Such components are supported by the odd-frequency part of the electron-phonon
interaction [3].

HARTREE-FOCK SELF-ENERGIES

Starting from the Hamiltonian and using the above definitions for the interactions, we can write the self-energies
in the Hartree-Fock approximation as

Σc
H = −u

∑
p,m,ρ

Pρ Tr[PρG(p, iωm)] (S5)

Σc
F = u

∑
p,m,ρ

PρG(p, iωm)Pρ (S6)

Σph
H = 0 (S7)

Σph
F (iωn) = −

∑
p,m,ρ

λnmPρG(p, iωm)Pρ, (S8)

where Pρ is the projection operator to sublattice ρ, ρ ∈ A,B. It is immediately clear from the above expressions
that the self-energy cannot have terms with A−B mixing, as the projection operators force it to be diagonal in the
sublattice space. We assume that the radius of the flat band is much smaller than the maximum phonon momentum,
so that the phonon cutoff does not need to be enforced in the momentum sum.

With a contact interaction, the only differences between the Hartree and Fock terms come from the sign change
(from the fermionic loop in the Hartree term) and from the summation over spins. The total Coulomb self-energy is

Σc
σ,ρ = −u

∑
p,m

Gσ̄,ρ(p, iωm). (S9)

Note that the self-energy for up spin is determined from the propagator for the down spin and vice versa.
For electron-phonon interaction we only include the Fock term. The Hartree term vanishes because there is no p=0

-phonon mediating the Hartree interaction.

Σph
σ,ρ(iωn) = −

∑
p,m

λnmGσ,ρ(p, iωm). (S10)

This is written without particle-hole (Nambu) basis and must be extended to include superconductivity. For now, we
consider the normal state to find what would be the stable phase if superconductivity would not be present.

The total self-energy for spin σ and surface ρ is

Σσ,s(iωn) = −
∑
p,m

[λnmGσ,s(p, iωm) + uGσ̄,s(p, iωm)] . (S11)

Below we use this to study the possibility of a pseudospin analogue of the magnetic state.

PSEUDOSPIN MAGNETISM

Let us now consider the self-energy

Σps(iωn) = −iΣω
n1+ hps

n ρ3, (S12)
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where hps is an analogous order parameter to ferromagnetic ordering, but with spin replaced by a pseudospin ρ
(sublattice index). The propagator is

G−1(p, iωn) = iω̃n1− εpρ1 − hps
n ρ3, (S13)

where ω̃n = ωn +Σω
n = Zωn is the renormalized frequency.

Instead of Eq. (S11) with a complicated matrix structure, it is more useful to consider the components of the
self-energy that are symmetric and antisymmetric in spin and sublattice indices σ and ρ. We get the self-consistency
equations

−iΣω
n = −

∑
p,m

λnm
1

4

∑
σ,ρ

Gσ̄,ρ(p, iωm) + Δμ, (S14)

hps
n =

∑
p,m

[−u− λnm]
1

4

∑
σ,ρ

ρGσ̄,ρ(p, iωm), (S15)

where we isolate a correction to the chemical potential as Δμ. We assume a fixed particle number, and therefore this
correction is counteracted by a shift in the chemical potential to the opposite direction and as a result, it vanishes.

In the normal state, we can write G as a 4× 4 matrix. Its inverse is

G−1(p, iωn) =

⎛
⎜⎜⎝
iω̃n − hps

n −εp
−εp iω̃n + hps

n

iω̃n − hps
n −εp

−εp iω̃n + hps
n

⎞
⎟⎟⎠, (S16)

where the basis is chosen as Ψ†
p = (c†A↑p, c

†
B↑p, c

†
A↓p, c

†
A↓p). The matrix can be inverted in 2 × 2 blocks labeled with

spin:

Gσ(p, iωn) =
1

Ωσ(p, iωn)

(
iω̃n + hps

n εp
εp iω̃n − hps

n

)
, (S17)

where

Ωσ(p, iωn) = (iω̃n + hps
n )(iω̃n − hps

n )− ε2p = − [
ω̃2
n + ε2p + (hps

n )2
]
. (S18)

The self-consistency equations for pseudo-spin magnetism are

Zn = 1 +
∑
p,m

λnm
ωm

ωn

Zm

ω̃2
m + ε2p + (hps

m)2
(S19)

hps
n =

∑
p,m

(−u− λnm)
hps
m

ω̃2
m + ε2p + (hps

m)2
.. (S20)

We see from these equations that a pure pseudo-spin magnetism can be ruled out, as the interactions do not support
it: both interaction terms in Eq. (S20) are negative; compare with Eqs. (S23,S35). We would need to have a repulsive
electron-phonon interaction or an attractive Coulomb interaction in order to obtain a nonzero solution. The unequal
form of the interactions in spin-magnetism versus pseudospin-magnetism originates from the lack of an exchange term
in the electron-phonon interaction.

ANTIFERROMAGNETISM

For antiferromagnetism (AFM), the self-energy has the form

ΣAFM(iωn) = −iΣω
n1+ hnτ3σ3, ρ3, (S21)

where hn is the frequency-dependent exchange field. As for the pseudospin magnetism above, the self-consistency
equations for AFM are

Zn = 1 +
∑
p,m

λnm
ωm

ωn

Zm

ω̃2
m + ε2p + h2

m

., (S22)

hn =
∑
p,m

(u−λnm)
hm

ω̃2
m + ε2p + h2

m

, . (S23)
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In contrast to Eq. (S20), the sign of u is now positive, and this makes the normal state unstable to the AFM phase.
Here we take the momentum cutoff to infinity. For large N the results do not depend on the cutoff provided it is
larger than pFB. For N ≤ 2 the momentum integration diverges without a cutoff, so the results below do not apply
for those cases.

To numerically solve the above equations, we need to impose a cutoff ωmax in the Matsubara summation. To do
that, we need to replace the Coulomb interaction with a modified term using the pseudopotential trick [4]. The form
of the pseudopotential depends on the details of the self-consistency equation, so it has to be formulated separately
for different equations. The differences are in the details, and the basic idea stays the same: in the Coulomb part
of the self-energy we divide the Matsubara summation to low-energy and high-energy parts. Then we solve for the
self-energy term and define a new interaction constant, which takes into account the high-energy contribution [4].
The exact form of the contribution from the high energy sum is the part which differs between different equations.
We formulate equations in a form which is easy to solve numerically.

For AFM equations, we can calculate the high energy part to be

α = 2T
∑

|ωn|>ωmax

∫ ∞

0

dp p

p2FB

1

ω2
n + ε2p

= 2T

⎛
⎝∑

ωn

−
∑

|ωn|<ωmax

⎞
⎠ ∫

dp p

p2FB

1

ω2
n + ε2p

=
x2−N
max

ε0(N − 2)
+

1

ε0

∫ xmax

0

dxx1−N tanh

(
ε0x

N

2T

)
− π

N sin(π/N)
2T

∑
|ωn|<ωmax

(ωn/ε0)
2/N

2ω2
n

,

(S24)

where the cutoff xmax is chosen so that ε(pFBxmax) � 2T . An argument larger than 4 is already large enough in order
to approximate the hyperbolic tangent by unity, so we can choose xc = (8T/ε0)

1/N . In total, the pseudopotential is

u− =
u

1− uα
. (S25)

For a better accuracy at the strong coupling and low-temperature regime, we also include the Coulomb part of the
exchange field hc in Eq. (S24), so that α depends self-consistently on hc. The non-self-consistent α given above is
sufficient for the calculation of TC .

With cutoff and a pseudopotential, Eqs. (S22-S23) become

hn = 2T
∑

|ωm|<ωmax

(u−−λnm)

∫ ∞

0

dp p

p2FB

hm

ω̃2
m + ε2p + h2

m

, (S26)

Zn = 1 + 2T
∑

|ωm|<ωmax

λnm
ωm

ωn

∫ ∞

0

dp p

p2FB

Zm

ω̃2
m + ε2p + h2

m

, (S27)

which can be solved numerically.

Linearized equations for solving the critical temperature

To determine the critical temperature, the self-consistency equations can be linearized with respect to h. In this
case the momentum integrals can also be done analytically. We obtain

Zn = 1 + αNT
∑

|ωm|<ωmax

λnm

ωnω̃m

(
ω̃m

ε0

)2/N

,

hn = αNT
∑

|ωm|<ωmax

[
u− − λnm

] hm

ω̃2
m

(
ω̃m

ε0

)2/N

, (S28)

where αN = N sin(π/N)/π.
If λ = 0, then Z = 1 and also the Matsubara summation can be done analytically. We find Tm

C in terms of the
Riemann ζ-function,

Tm
C =

1

2π

⎡
⎣u ζ(2− 2

N )
(
22−

2
N −1

)
ε
2/N
0 N sin

(
π
N

)
⎤
⎦

N
N−2

, (S29)

which approaches the value Tm
C = u/4 when N → ∞.
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SUPERCONDUCTIVITY

Extending the formalism to the particle-hole space to include superconductivity, we define a Nambu vector Ψ† =
(ψ†

A,p,↑, ψ
†
B,p,↑, ψ

†
A,p,↓, ψ

†
B,p,↓, ψA,−p,↑, ψB,−p,↑, ψA,−p,↓, ψB,−p,↓). The Feynman rules are then changed so that the

interaction vertex gets an additional Nambu structure; Pρ is replaced by Pρτ3. The Hartree-Fock self-energy terms
are

Σ̌c
H = −uPρτ3 Tr

[
Pρτ3Ǧ(p, iωn)

]
(S30)

Σ̌c
F = u

∑
p,m,ρ

Pρτ3Ǧ(p, iωm)τ3Pρ (S31)

Σ̌ph
H = 0 (S32)

Σ̌ph
F (iωn) = −

∑
p,m,ρ

λnmPρτ3Ǧ(p, iωm)τ3Pρ. (S33)

We note that the Hartree term only affects the normal-state self-energy components, and not the off-diagonal ones
associated with superconductivity. Superconductivity is determined only from the Fock terms.

The order parameter is the same on both sublattices, φA = φB . In principle, the order parameter could also have
a different phase and magnitude on the two surfaces, but this choice is the one with the lowest energy [5]. The
self-consistency equations for the superconducting phase are

Zn = 1 + 2T
∑
ωm

λnm
ωm

ωn

∫ ∞

0

dp p

p2FB

Zm

ω̃2
m + ε2p + φ2

m

, (S34)

φn = 2T
∑
ωm

(λnm − u)

∫ ∞

0

dp p

p2FB

φm

ω̃2
m + ε2p + φ2

m

. (S35)

In Eq. (S35) we can impose a Matsubara cutoff ωmax if we simultaneously replace u with a pseudopotential u+, like
in Eqs. (S24, S27). Compared to the AFM case, there is a sign change in the pseudopotential,

u+ =
u

1 + uα
. (S36)

The interpretation of the pseudopotential is that for superconductivity, the scattering at high energies reduces the
effect of interaction at lower energies, whereas for magnetism, the effect is reversed. If we remove the high-energy
scattering from the theory, the interaction has to be replaced by an effective pseudopotential to account for their
effect.

Correction to the critical temperature due to retardation

To obtain an approximation for the effect of the electron-phonon renormalization on superconductivity, we first
solve the renormalization function Z at zero temperature by approximating the self-consistency equation as

Z(iω) = 1 + lim
ε→0

λ

ω

∫
dω′

2π

ω3
E

ω2
E + (ω − ω′)2

Z0ω
′

(Z0ω′)2 + ε2
, (S37)

where ε = 0+ is used to regularize the integral. Inside the integral we approximate Z by its peak value Z0 ≡ Z(iω = 0).
The integral yields

Z(iω) = 1 +
λω2

E

Z0(ω2
E + ω2)

. (S38)

For ω = 0, we have Z0 = 1 + λ/Z0, whose solution in the first order in λ is Z0 = 1 + λ.
Now the approximate self-consistency equation for φ is

φ0 = λ

∫
dω

2π

ω3
E

ω2
E + ω2

φ0

(Zω)2 + φ2
0

−−−−→
φ0→0

λωE

2Z0
. (S39)
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At zero temperature, for Δ = φ/Z, we have

Δ0 =
φ0

Z0
=

λωE

2Z2
0

=
λωE

2(1 + 2λ)
. (S40)

At weak coupling, the critical temperature is half the value of Δ0,

T sc
C ≈ Δ0

2
=

λωE

4(1 + 2λ)
. (S41)

The above calculation accounts for the electron-phonon renormalization in a very crude manner. A better agreement
with the numerical results is obtained by a direct fit to the numerical results. This way we obtain Eq. (15) in the
main text.

Linear dispersion

An alternative to the electronic Hamiltonian with the pN -dispersion used in the main paper is a Dirac Hamiltonian

Hel,p = vF

(
0 px − ipy

px + ipy 0

)
, (S42)

where vF is the Fermi velocity. The pseudospin-structure of the Hamiltonian is unchanged from Eq. (2) in the main
text and it can also be considered as the N = 1 case of the pN -dispersion. Unlike for the pN -dispersion with N > 2
for which we can approximate the cutoff as infinite, the results for the linear dispersion are highly dependent on the
cutoff. We assume a momentum cutoff pc and approximate the Brillouin zone as being circular. The momentum
cutoff corresponds to energy cutoff εc = vF pc.

This Hamiltonian is realized approximately in twisted bilayer graphene (TBG) when the twist angle between the
two graphene layers is larger than the magic twist angle of θmagic ≈ 1.1◦. TBG is only periodic in a large scale moiré
superlattice, corresponding to a superlattice Brillouin zone which is small compared to graphene Brillouin zone. The
lowest energy bands are described by the Hamiltonian (S42) with vF becoming smaller and smaller as the twist angle
approaches the magic angle. The rest of the Brillouin zone of the original graphene is folded into higher energy bands
which we neglect. The low-energy Hamiltonian for TBG can be derived with perturbation theory when the twist
angle θ > 1.8◦ [6]. In the perturbative model, the layers are decoupled from each other. The simple perturbation
expansion fails near the magic angle, but the layers remain decoupled up to the magic angle [7].

We describe TBG in terms of bare graphene, so in applying Eq. (9) of the main paper we take ΩFB as the size of the
superlattice Brillouin zone and ΩBZ as the original Brillouin zone of graphene. In the momentum integrals the cutoff
pc is the radius of the superlattice Brillouin zone pFB . The interaction constants become λ = g2/nω2

E and u = U/n,
where n is the ratio between the areas of the original graphene and the superlattice Brillouin zones, or equivalently
the ratio between the number of lattice sites in the superlattice and the original graphene unit cells.

After doing the momentum integrals, the self-consistency equations for superconductivity become

φn = T

∞∑
m=−∞

(λnm−u)
φm

ε2c
log

[
1 +

ε2c
ω̃2
m + φ2

m

]
, (S43)

Zn = 1 + T
∞∑

m=−∞
λnm

ωm

ωn

Zm

ε2c
log

[
1 +

ε2c
ω̃2
m + φ2

m

]
, (S44)

Again, antiferromagnetism has a similar set of equations. If we assume that εc 	 φ0 and εc 	 ωE so that the
argument of the logarithm is small for both small and large ωm/ωE , the logarithm can be approximated with the first
order term,

1

ε2c
log

[
1 +

ε2c
ω̃2
m + φ2

m

]
≈ 1

ω̃2
m + φ2

m

. (S45)

In this limit, the dependence on the cutoff energy vanishes and we recover the self-consistency equations for a com-
pletely flat band.

Unlike for the pN dispersion, superconductivity only appears for the linear dispersion if λ is stronger than some
critical value λC,0 even if u = 0 [8]. This is due to vanishing density of states near zero energy. This value can be
found by linearizing the self-consistency equation (S43) both in φ and T sc

C . For an interaction without retardation,
we find that λC,0 = εc/ωE . With εc 	 ωE , the phase diagram of Fig. 5 in the main paper for the linear case is the
same as for N = ∞, except near the phase boundary, where the normal state is the ground state.
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Effect of Debye dispersion

In a real material, the phonon dispersion is obviously not described by the Einstein model adopted in the text. To
get an idea how much the exact phonon dispersion affects the results, we consider also the Debye model.

For the Einstein model phonons there is no momentum dependence in the interactions, and for this reason the
self-energy is also independent of momentum. For Debye phonons the interaction obtains a momentum dependence
through the phonon dispersion. Without calculating the full momentum dependent theory, we can estimate the effect
of the dispersion by estimating the typical energy of the exchanged phonon and the average interaction constant.

The maximum phonon energy exchanged within the flat band is limited by the flat band diameter 2pFB to be
ω0 = pFBωD/qM , where ωD is the Debye energy and qM is the maximum phonon momentum. As typically qM is of
the order of the size of the Brillouin zone, ω0 	 ωD and the energy scale is reduced. On the other hand, we find that
the dimensionless interaction constant is enhanced: λ∝ 1/ω2

0 . However, because Δ0 ∝ λ0.2ω0, the magnitude of Δ0

is restricted by ω0 and the total effect is a smaller critical temperature than with the Einstein phonons with energy
ωE equal to the Debye energy.

The above concerns interactions within one flat band. We can also consider Debye phonons in the context of
two flat bands separated by the distance pd � pFB in momentum space. The momentum range of Debye phonons
connecting the two parts of the Brillouin zone is limited to pd, and they can be treated as if they had a constant
energy ω0 = ωDpd/qM . In this case they act essentially as Einstein phonons with an effective energy scale ω0.

EQUATIONS FOR COMPETING MAGNETIC AND SUPERCONDUCTING PHASES

We now concentrate on the possible coexistence of antiferromagnetism and superconductivity for N → ∞. The
presence of AFM (ρ3σ3τ3) and the singlet superconducting order parameter (σ2τ2) induces a triplet component
proportional to

ρ3σ3τ3 × σ2τ2 ∝ ρ3σ1τ1. (S46)

The triplet is induced into the propagator, but it also enters in the self-energy if the interactions support it. This
requires that the interactions have an odd-frequency part, which is true with the retarded interaction, but not present
with the instantaneous interaction.

The inverse propagator is

Ǧ−1(iωn) = iω̃n1− hρ3σ3τ3 − φσ2τ2 − idρ3σ1τ1. (S47)

To invert this, we notice that the matrix separates into four 2 × 2 blocks. Labeling these blocks by the spin and
pseudo-spin of their particle part (the hole part is associated with the opposite spin and same pseudo-spin), we can
write them as

G−1
ρσ (iωn) =

(
iω̃n − ρσhn −σφn + iρdn
−σφn + iρdn iω̃n − ρσhn

)
. (S48)

The inverse of this is

Gρσ(iωn) = − (ω̃2
n − h2

n + φ2
n − d2n)− 2iρσ(hnω̃n + φndn)

(ω̃2
n − h2

n + φ2
n − d2n)

2 + 4(hnω̃n + φndn)2

(
iω̃n − ρσhn σφn − iρdn
σφn − iρdn iω̃n − ρσhn

)

≡ −γn − iρσδn
ζn

(
iω̃n − ρσhn σφn − iρdn
σφn − iρdn iω̃n − ρσhn

)

= − i

ζn

(
γnω̃n + δnhn −ρn(γndn + δnφn)

−ρn(γndn + δnφn) γnωn + δnhn

)
+

1

ζn

(
ρσ(γnhn − δnω̃n) −σ(γnφn − δndn)
−σ(γnφn − δndn) ρσ(γnhn − δnω̃n)

)
,

(S49)

where, in the last line, we have separated the odd and even frequency parts. Above, we define

γn = ω̃2
n − h2

n + φ2
n − d2n, (S50)

δn = 2(hnω̃n + φndn), (S51)

ζn = γ2
n + δ2n. (S52)
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From these, ω̃, d and δ are odd in ωn, and the other terms are even in ωn. The diagonal self-energies depend on the
propagator for the inverted spin, and for them we add a sign change to h and φ.

The self-consistency equations are

dn = T
∑

|ωm|<ωmax

λ−
nm

γmdm + δmφm

ζm
, (S53)

Σω
n = −T

∑
|ωm|<ωmax

λ−
nm

γmω̃m + δmhm

ζm
, (S54)

φn = T
∑

|ωm|<ωmax

[
λ+
nm − u+

c

] γmφm − δmdm
ζm

, (S55)

hn = T
∑

|ωm|<ωmax

[
λ+
nm − u−

c

] γmhm − δmω̃m

ζm
, (S56)

where we assume the Matsubara sum to have a cutoff which determines the values of the pseudopotential terms. The
equation for Σω can also be expressed in terms of Z as

Zn = 1 + T
∑

|ωm|<ωmax

λ−
nm

γmω̃m + δmhm

ζm
. (S57)

The odd and even electron-phonon interaction kernels are

λ±
nm =

1

2
[λ(ωn − ωm)± λ(ωn + ωm)]ωE . (S58)

The Coulomb interaction only has an even part, so it only affects the even-frequency self-energy terms, namely φ and
h. The coexistence modifies the pseudopotentials u± slightly as the high-frequency part of both order parameters has
to be taken into account. It is still defined as u± = u/(1± ucα±), but now with

α± =
sinh

(
φc+hc±(φc−hc)

2T

)
(φc + hc ± (φc − hc))

[
cosh

(
φc

T

)
+ cosh

(
hc

T

)] − T
∑

|ωm|<ωmax

ω2
m ∓ h2

c ± φ2
c

(ω2
n − h2

c + φ2
c)

2 + 4h2
cω

2
n

. (S59)

We solve these equations numerically to study the competition of the two phases.

A TOY MODEL FOR THE COMPETITION BETWEEN THE PHASES

To understand the phenomenology of the two co-existing order parameters, let us consider a toy model where there
are two order parameters Δ and h, and two separate interaction channels, λ and u. We assume that the interactions
are separate in the sense that λ only mediates superconductivity and u mediates the magnetization. For simplicity,
we assume that the interactions are frequency independent so there is no triplet component and no electron-phonon
renormalization term.

This model is not realized in the weak coupling as in that case the interaction channels are not separate, but have
always opposing signs. The superconducting channel is mediated by the interaction with strength λωE − u and the
magnetic channel has the strength u−λωE . The channels are separate only in strong coupling, as the low interaction
frequencies are attractive to superconductivity and the high frequencies for magnetism.

In the the full coexistence model the dispersions for two non-equivalent bands are Ep = Δ±
√

ε2p + h2. For N → ∞
this reduces to Epσ = Δ± h. We take this dispersion as the starting point. For notational simplicity, we assume that
Δ > 0 and h > 0. The fields Δ and h are also included in the partition function,

Z

Z0
= Z−1

0

∏
p∈FB,ωn

[
ω2
n + (Δ+ h)2

] × [
ω2
n + (Δ− h)2

] × e−βΔ2/λ × e−βh2/u

=
∏

p∈FB

cosh

(
β(Δ + h)

2

)
cosh

(
β(Δ− h)

2

)
× e−βΔ2/λ × e−βh2/u.

(S60)
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(a) (b)

FIG. 1: (a) Stream plot of the gradient of the free energy (S61) for λ = u at temperature T < T sc
C , Tm

C . There are two local
minima, which correspond to the magnetic and superconducting phases, and a saddle point which is the unstable coexistence
solution. (b) Phase diagram with fixed u. When λ < u and T < Tm

C , the thermodynamically stable state is the magnetic state
and when λ > u and and T < T sc

C the stable state is the superconducting state. The dividing line λ = u is marked with the
red dotted line. On the striped region, both phases are possible as metastable states.

Above, the product over the Matsubara frequencies is evaluated using a standard Matsubara trick. The overall
constant cancels against the normal state partition function Z0. The free energy relative to the normal state is

F (Δ, h) = −T log

(
Z

Z0

)
= C

(
Δ2

λ
+

h2

u
− T log

[
cosh

(
Δ+ h

2T

)
cosh

(
Δ− h

2T

)])

= C

(
Δ2

λ
+

h2

u
− T log

[
1

2
cosh

(
Δ

T

)
+

1

2
cosh

(
h

T

)])
,

(S61)

where the momentum sum gives the multiplicative factor C > 0.
The self-consistency equations are given as derivatives of the free energy with respect to fields Δ and h:

Δ =
λ

2

sinh(Δ/T )

cosh(Δ/T ) + cosh(h/T )
, (S62)

h =
u

2

sinh(h/T )

cosh(h/T ) + cosh(Δ/T )
. (S63)

As a check, we see that if there was no frequency dependence in the interactions, Eqs. (S55) and (S56) would
give similar equations after the Matsubara summation. The difference is that in the full model with instantaneous
interactions, there is effectively only one interaction constant λeff = λωE−u.
The self-consistency equations (S62) and (S63) for Δ and h should be solved simultaneously. At low temperatures,

T 	 h,Δ, we can approximate the hyperbolic functions with exponentials, and obtain

Δ(T = 0) = lim
T→0

λ

2[1 + exp
(
h−Δ
T

)
]
=

⎧⎪⎨
⎪⎩
Δ0 for h < Δ

Δ0/2 for h = Δ

0 for h > Δ,

(S64)

where Δ0 = λ/2 is the zero-temperature order parameter for h = 0. For h in terms of Δ, an analogous expression
can be found,

h(T = 0) = lim
T→0

u

2[1 + exp
(
Δ−h
T

)
]
=

⎧⎪⎨
⎪⎩
h0 for Δ < h

h0/2 for Δ = h

0 for Δ > h,

(S65)
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with h0 = u/2. At zero temperature, coexistence is only possible if u = λ and Δ = h = λ/4. This coexistence point
is a saddle point of free energy. This is illustrated in Fig. 1a. Similar kind of solutions are also found at a finite
temperature.

Assuming a second order phase transition from the normal state to a superconducting state, we can linearize (S62)
with h = 0 to find a critical temperature T sc

C = λ/4. We will see below that when u > λ the phase transition is
actually of the first order from a magnetic state to the superconducting state, but we still use the above definition for
T sc
C to set a temperature scale. Similarly, assuming a second order phase transition from normal state to a magnetic

state, we linearize (S63) to find a critical temperature Tm
C = u/4, which we take as the definition of Tm

C .

Stability of the phase with lower TC

From the free energy we see that when λ < u, the magnetic phase is stable and the superconducting phase is either
metastable or unstable. When λ > u, the roles are reversed. The solution is (meta)stable if it is a local minimum of
the free energy. The criterion is

∂2F

∂h2

∂2F

∂Δ2
−

(
∂2F

∂Δ∂h

)2

> 0 and
∂2F

∂h2
> 0. (S66)

When h = 0 or Δ = 0 the cross derivatives vanish, and the stability condition becomes ∂2F/∂h2 > 0 and ∂2F/∂Δ2 >
0.

Let us consider the (meta)stability of the superconducting phase when 0 < λ < u and T < T sc
C , where T sc

C = λ/4.
The stability condition becomes

0 <
∂2F

∂h2

∣∣∣∣
h=0

= C

(
2

u
− 1

T + T cosh
(
Δ
T

)
)
. (S67)

At low temperatures, the first term in the parentheses dominates and the superconducting phase is metastable. Near
T sc
C the second term dominates and the superconducting phase becomes unstable against a spontaneous magnetization.

In this case, Δ ≈ 0, and

2

u
− 1

T + T cosh
(
Δ
T

) ≈ 2

u
− 1

2T sc
C

= 2

(
1

u
− 1

λ

)
< 0. (S68)

The transition temperature T ∗ at which the system becomes unstable can be determined from the condition
∂2F/∂h2 = 0, which is equivalent to solving the magnetic critical temperature by linearizing Eq. (S62) with Δ
as solved from Eq. (S63) with h = 0.

For λ > u > 0, the magnetic phase is the metastable one, and the equations apply after interchanging u ↔ λ,
h ↔ Δ and T sc

C ↔ Tm
C . The numerical solution for the transition temperature of both phases is shown in Fig. 1b as

the dashed line.
Similar stability analysis can be used with the full model, except in that case the frequency dependence of the self-

energy functions complicates the situation. We can however simplify the problem by projecting the order parameters
on the linearized solution.

COMPETITION IN THE FULL FREQUENCY-DEPENDENT MODEL

Now we return to the full frequency-dependent Eqs. (S53)–(S56). We do for the full model the same kind of
analysis as in the previous section for the toy model. As explained after (S68), the stability is determined by solving
the critical temperature of the phase with higher TC in the presence of the other order parameter.

Stability of the superconducting phase

We now consider parameters λ, u to be such that 0 < T sc
C < Tm

C and determine the temperature T ∗ above which
the superconducting phase is unstable against a magnetic instability.
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To do this, we linearize Eqs. (S53)–(S56) with respect to h and d. We assume the singlet order parameter φ to be
finite. The equations for Σω and φ are

Σω
n = −T

∑
|ωm|<ωmax

λ−
nm

ω̃m

ω̃2
m + φ2

m

, (S69)

φn = T
∑

|ωm|<ωmax

(λ+
nm − u+)

φm

ω̃2
m + φ2

m

. (S70)

The equations for h and d are coupled to one 2× 2 matrix,[
dn
hn

]
= T

∑
|ωm|<ωmax

1

(ω̃2
m + φ2

m)2

[
λ−
nm(ω̃2

m + 3φ2
m) 2λ−

nmφmω̃m

2(u− − λ+
nm)φmω̃m (u− − λ+

nm)(ω̃2
m − φ2

m)

][
dm
hm

]
. (S71)

With the high-frequency cutoff, the equation can be written as a 2M × 2M matrix, where M is the number of
Matsubara frequencies below the cutoff. The critical temperature T ∗ of this AFM/triplet phase is then determined
numerically by finding the temperature at which the largest eigenvalue of the matrix becomes larger than unity [3].

Stability of the magnetic phase

Conversely, let us now consider parameters λ, u such that 0 < Tm
C < T sc

C and determine the temperature T ∗ above
which the magnetic phase is unstable against a superconducting instability. Now we linearize Eqs. (S53)–(S56) with
respect to φ and d. We assume the field h to be finite. The equations for Σω and h are

Σω
n = −T

∑
|ωm|<ωmax

λ−
nm

ω̃m

ω̃2
m + h2

m

, (S72)

hn = T
∑

|ωm|<ωmax

[
u− − λ+

nm

] hm

ω̃2
m + h2

m

. (S73)

The equations for φ and d are coupled, and can be written as a matrix equation[
dn
φn

]
= T

∑
|ωm|<ωmax

1

(ω̃2
m + h2

m)2

[
λ−
nm(ω̃2

m − h2
m) −2λ−

nmhmω̃m

2(λ+
nm − u+)hmω̃m (λ+

nm − u+)(ω̃2
m − h2

m)

][
dm
φm

]
(S74)

Again, with the Matsubara cutoff, this is a matrix equation and the critical temperature T ∗ can be solved by searching
for the temperature at which the largest eigenvalue crosses 1. The solution curve for both cases, Tm

C < T sc
C and

Tm
C > T sc

C , is shown as a dashed boundary line in the phase diagram, Fig. 1 in the main text.
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Abstract Three-dimensional topological semimetals can support band crossings
along one-dimensional curves in the momentum space (nodal lines or Dirac lines)
protected by structural symmetries and topology. We consider rhombohedrally (ABC)
stacked honeycomb lattices supporting Dirac lines protected by time-reversal, inver-
sion and spin rotation symmetries. For typical band structure parameters there exists
a pair of nodal lines in the momentum space extending through the whole Brillouin
zone in the stacking direction. We show that these Dirac lines are topologically dis-
tinct from the usual Dirac lines which form closed loops inside the Brillouin zone. In
particular, an energy gap can be opened only by first merging the Dirac lines going
through the Brillouin zone in a pairwise manner so that they turn into closed loops
inside the Brillouin zone, and then by shrinking these loops into points. We show
that this kind of topological phase transition can occur in rhombohedrally stacked
honeycomb lattices by tuning the ratio of the tunneling amplitudes in the directions
perpendicular and parallel to the layers. We also discuss the properties of the surface
states in the different phases of the model.

Keywords Graphite · Topological matter · Flat bands

1 Introduction

Topological materials are characterized by momentum-space topological defects,
topological invariants and protected surface states [1–5]. The fully gapped topological
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phases have been classified in terms of the existence of various symmetries [4,5], and
the variety of the different types of momentum-space topological defects is even richer
in gapless systems [1,5–29]. One interesting class of three-dimensional topological
semimetals is the Dirac-line (nodal line) semimetals supporting band crossings along
one-dimensional curves in the momentum space. These band crossings can in princi-
ple be protected by chiral symmetry [1,5,9,13] (often an emergent or an approximate
symmetry) or the structural symmetries of the systems [5,15–18,20,28,29]. From the
viewpoint of topological materials the main question is what kind of topologically
distinct Dirac-line semimetal phases can exist in the presence of the various structural
symmetries. For example, there exists a class of nodal lines carrying a nontrivial Z2
monopole charge so that they can be created and annihilated only in pairs, whereas the
nodal lines carrying a trivial Z2 monopole charge can be created and annihilated one by
one [17,28,29]. In certain topological semimetals, such as Bernally stacked graphite,
there exists multiple Dirac lines which meet and merge at certain high-symmetry lines
in the momentum space forming a protected triple degeneracy point of bands called
nexus [19–21].

In this paper we study Dirac lines protected by time-reversal, inversion and spin
rotation symmetries with the help of a general model for rhombohedrally (ABC)
stacked honeycomb lattices. We show that these Dirac lines can form closed loops
inside the Brillouin zone (Type A Dirac line in Fig. 1) [5,15–18] or they can extend
through the whole Brillouin zone in one of the directions in the momentum space
(Type B Dirac line in Fig. 1) [13] depending on the ratio of intra- and interlayer
tunneling amplitudes. We show that Type A and Type B Dirac lines are topologically

ν = 1

ν = 0
(a) (b)

Fig. 1 Two different types of Dirac-line semimetal phases in the presence of SU(2) spin rotation, time-
reversal and inversion symmetries. a In Type A Dirac-line semimetals the nodal lines are closed loops fully
inside the Brillouin zone (blue line). Thus, they go through the full Brillouin zone ν = 0 times. They carry
a topological charge Q = 1 defined with the help of a Berry phase for a path going around the Dirac line.
Type A Dirac lines can be gapped one by one. b In Type B Dirac-line semimetals the nodal lines extend
through the whole Brillouin zone in one of the directions (blue and red curves). Thus, they go through the
full Brillouin zone ν = 1 times. They carry a topological charge Q = 1 which can be defined with the help
of Berry phase, but now the radius of the closed path going around the Dirac line can be taken arbitrary large
(as long as it does not go around another Dirac line). Therefore, it is possible to define a topological charge
for each Type B Dirac line as an integral over a closed surface [Eq. (5)] describing their monopole-like
nature: Type B Dirac lines can be gapped only by first merging them in a pairwise manner (Color figure
online)
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distinct. Namely, it is possible to define a topological invariant ν by counting how
many times the Dirac line goes through the whole Brillouin zone, and ν = 0 (ν = 1)
for Type A (Type B) Dirac lines (see Fig. 1). Since the Brillouin zone is a torus, ν

essentially describes the winding of the Dirac line around this torus. We show that
this topological difference has important consequences. Namely, it allows defining
a topological charge for Type B Dirac lines describing their monopole-like nature
(different from the monopole charge proposed in [17]): Type B Dirac lines are robust
nodal lines which must always come in pairs. Therefore, Type A Dirac lines can be
created and annihilated individually by shrinking them to a point, but Type B Dirac
lines can be gapped only by first merging them in a pairwise manner so that they
become Type A Dirac lines. We discuss the nature of this kind of topological phase
transition in rhombohedrally stacked honeycomb lattices and depict the momentum-
space structure of the surface states for the different phases of the model. We point
out that the monopole-like nature and robustness of the Type B Dirac lines have been
discussed also in Refs. [28,29] from different perspectives.

2 Model, Symmetries and Topological Invariants

The rhombohedral stacking of honeycomb lattices is illustrated in Fig. 2. The tight-
binding model for such kind of three-dimensional system [in the sublattice space] can
be written as

H(k) =
(

Θ(k) Φ(k)

Φ∗(k) Θ(k)

)
,

Φ(k) = − γ0

∑
i

eiδi ·k − γ1eikz − γ3e−ikz
∑

i

e−iδi ·k

Θ(k) = − γ2

∑
i

eini ·k − γ4

[
eikz

∑
i

e−iδi ·k + e−ikz
∑

i

eiδi ·k
]

(1)

The hopping parameters γi are illustrated in Fig. 2. The nearest-neighbor vectors
δi inside the layers (connecting different types of sublattice atoms) are normalized so
that the vectors ni connecting neighboring unit cells inside the layers (i.e., connecting
the same type of sublattice atoms) have unit length. In z-direction we use the spacing
between the layers as the unit length.

The important symmetries of the model are the lattice translation symmetries (guar-
anteeing that k is a good quantum number), SU(2) spin rotation symmetry [so that
we do not need to include spin degree of freedom into Hamiltonian (1)], time-reversal
symmetry

H∗(−k) = H(k) (2)

and inversion symmetry
σx H(−k)σx = H(k). (3)

In many materials, such as graphite, spin-orbit coupling is negligible, and there-
fore the assumption about SU(2) spin rotation symmetry is well justified. The other
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γ0

γ1

γ1

γ1

γ2

γ4

γ3

Fig. 2 Illustration of rhombohedrally stacked honeycomb lattices. The hopping amplitude γ0 describes the
nearest-neighbor hopping inside the layers. In rhombohedral stacking the layers are stacked in such a way
that the nearest-neighbor interlayer hopping amplitudes γ1 always connect one type of sublattice atom in
the lower layer to the other type of sublattice atom in the upper layer. The further-neighbor hoppings γ2, γ3
and γ4 are also shown. The period in the stacking direction is three times the distance between the layers,
and therefore, rhombohedral stacking is often called ABC stacking (Color figure online)

symmetries are just structural symmetries of the system, and therefore, they are sat-
isfied independently on which hopping processes are included in the Hamiltonian.
They could be broken only via a spontaneous symmetry breaking occurring due to
interactions between the fermions.

It is useful to point out that if the further-neighbor hoppings are neglected γ2 =
γ4 = 0, the system supports also a chiral symmetry

σz H(k)σz = −H(k). (4)

This symmetry is valid as a good approximation in many systems, such as graphite,
and it is useful in understanding the surface state spectrum of the model (see Sect. 4).
The chiral symmetry can in principle also protect the existence of the Dirac lines [13].
However, in this paper we show that this approximate chiral symmetry is not necessary
for the existence of the Dirac lines. The Dirac lines in this model are in fact much
more robust because they are stabilized by the structural symmetries of the system.

Due to the existence of SU(2), time-reversal and inversion symmetries σx H∗(k)σx

= H(k), and therefore for any closed path in the momentum space the Berry phase
is quantized to be φ = 0 or φ = π .1 Moreover, it is easy to show that φ = π if and
only if the path goes around a Dirac line. Therefore, the Dirac lines in this symmetry
class carry a Z2 topological charge, which can be defined as Q ≡ φ/π , where φ can
be chosen to be the Berry phase for any path that goes around the Dirac line (see

1 Berry phase φ depends on the convention used for the overall phase of the wavefunctions. Therefore, it is
uniquely defined only up to n2π (n ∈ Z). Here, for simplicity we fix the convention for the overall phase in
such a way that 0 ≤ φ < 2π . This automatically fixes also a specific convention for the Berry connection
A(k).
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Fig. 1). Thus, the Dirac lines are stable against small perturbations. If the Dirac line
forms a closed loop within the Brillouin zone (Type A Dirac line), it can be smoothly
annihilated only by first shrinking it to a point so that we can no longer define a path
going around it. However, there are no restrictions concerning the number of Type A
Dirac lines because they can be gapped one by one in this way.

Interestingly, there exists also a topologically different type of Dirac lines in this
symmetry class. Intuitively, this is easy to understand because we can visualize the
Brillouin zone as a three-dimensional torus and we can define three different topolog-
ical invariants for each Dirac line by counting how many times the Dirac line winds
around the torus in different directions. Here, we concentrate on this kind of topo-
logical invariant ν corresponding to the stacking direction kz . For the Type A Dirac
lines, which are closed loops fully inside the Brillouin zone, ν = 0. The other topo-
logically different Dirac lines extend through the full Brillouin zone in kz direction,
so that ν �= 0 (see Fig. 1). It turns out that these Dirac lines have different properties
than the ones with ν = 0. In order to understand these differences we consider the
Dirac lines with ν = 1 shown in Fig. 1b. Similarly as above the Berry phase φ = π

for any closed path going around the Dirac line. For each value of kz we can now
choose a path in the (kx , ky)-plane with arbitrary large radius (as long as it does not
go around another Dirac line), and we can express the corresponding Berry phase as a
line integral around that path φ = ∮

l dk · A(k), where A(k) is the Berry connection
(see footnote 1). Since the line integral is φ = π independently on kz , we can define
a new topological charge

QM = 1

2π2

∫ π

−π

dkz

∮
l
dk · A(k), (5)

so that for ν = 1 this topological charge is quantized to QM = 1. The difference
to the earlier topological charge Q is that QM is expressed as a surface integral over
a closed surface which encloses the whole Dirac line, and this surface can be taken
arbitrarily far away from the Dirac line as long as it does not enclose any parts of other
Dirac lines. (The surface is closed if one considers the momentum space as a torus so
that kz = ±π are the same point within the torus.) Therefore, QM can be considered
as a topological charge calculated over a closed surface, which is different from the
monopole charge proposed in Ref. [17]. Furthermore, QM distinguishes Type A and
Type B Dirac lines since for Type A Dirac lines QM = 0. Thus, the topological charge
QM can be used in the identification and search of Type B Dirac lines. More generally,
it is related to ν because QM = ν mod 2.

If we now take the path in calculation of the Berry phase to go around the full Bril-
louin zone in the (kx , ky)-plane, we find that the surface integral is always necessarily
zero. Therefore, it is impossible to have only a single Dirac line with ν = 1 in the
Brillouin zone. This means that the existence of the charge QM enforces the Dirac
lines to come in pairs. Therefore, these Dirac lines cannot be created and annihilated
individually, and the only way to open a gap in a Type B Dirac-line semimetal is to first
merge the Dirac lines in a pairwise manner. (More generally, in this symmetry class
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the Dirac lines with odd ν must always come in pairs.2) In Sect. 3 we illustrate this
type of topological phase transition taking place as a function of γ1/γ0 in the model
for rhombohedrally stacked honeycomb lattices [Eq. (1)].

3 Phase Diagram

Typical realization of stacked honeycomb lattices is one where the layers are loosely
coupled to each other (such as graphite). In that case, the band structure parameters
obey the hierarchy γ0 � γ1 � γ2, γ3, γ4 and the model for the rhombohedrally
stacked honeycomb lattices supports a pair of Dirac lines in the momentum space
extending through the whole Brillouin zone in the kz direction [13]. These Dirac
spirals are centered at the K and K ′ points in the (kx , ky)-plane, so that the projection
of the spiral into this plane is a circle with radius proportional to γ1/γ0 [see Fig. 3a, b].
As discussed in the previous section these Type B Dirac lines are protected by SU(2)
spin rotation, time-reversal and inversion symmetries, and they can be gapped only
by merging them in a pairwise manner. We first concentrate on the evolution of these
Dirac lines with increasing γ1/γ0 for γ2 = γ3 = γ4 = 0 and discuss the effects of the
further-neighbor hoppings γ2, γ3 and γ4 afterward.

The evolution of the Dirac lines with increasing γ1/γ0 is shown in Fig. 3. For
γ1 < γ0 there exist two Type B Dirac lines (red and blue) extending through the whole
Brillouin zone along the kz direction [Fig. 3a, b]. At γ1 = γ0 there occurs a topological
phase transition where the Type B Dirac lines merge in a pairwise manner and turn into
Type A Dirac lines [Fig. 3c]. The merging of the Type B Dirac lines occurs at the time-
reversal invariant momenta k1,2,3

T =: (0, 2π/
√

3,−2π/3), (π,±π/
√

3,±2π/3). In
the vicinity of these merging points at the topological phase transition (γ1 = γ0) the
low-energy theory can be written as

H(k1
T + q) = γ0

(
qz − 2√

3
qy

)
σy + γ0

(−3q2
x + q2

y + 6q2
z

12

)
σx (6)

This means that in the (kx , ky)-plane the Dirac dispersions turn into a semi-Dirac
dispersion at the topological phase transition. Somewhat similar topological phase
transitions where the merging of two Dirac points leads to an appearance of semi-Dirac
fermions have been studied previously in various two-dimensional systems [25,30–
37] and topological phase transitions associated with merging of Weyl points have
also been studied in three-dimensional systems [38–40]. Generically, at the merging
transitions the dispersion turns from linear to parabolic in the direction where the

2 We can generalize the argument also to the case where the system has a chiral symmetry. In this case,
the Hamiltonian can be always block-off-diagonalized and the Berry phase φ/π in Eq. (5) can be replaced
with the winding number of the determinant of the off-diagonal block of the Hamiltonian. The difference
is that this new winding number does not have the same ambiguity as the Berry phase related to the shifts
of n2π (n ∈ Z) and therefore QM becomes a Z topological invariant. Because in these symmetry classes
|QM | = ν only the Dirac lines with ν = 0 can be created and annihilated individually. In the special
case of 2×2 Hamiltonian with time-reversal and inversion symmetries, the Hamiltonian automatically has
a chiral symmetry up to terms proportional to σ0. Because the terms proportional to σ0 do not influence the
existence of the Dirac lines the Z topological invariant can be defined also in this case.
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Fig. 3 Evolution of the Dirac lines in the model for rhombohedrally stacked honeycomb lattices [Eq. (1)]
with increasing γ1/γ0: a γ1/γ0 = 0.3, b γ1/γ0 = 0.9, c γ1/γ0 = 1, d γ1/γ0 = 1.005, e γ1/γ0 = 1.5,
f γ1/γ0 = 3. a, b For γ1 < γ0 there exist two Type B Dirac lines (red and blue) extending through the whole
Brillouin zone along the kz direction. The light red and light blue curves show replicas of these two Dirac
lines which are obtained by shifting the original Dirac lines with a reciprocal lattice vector. c At γ1 = γ0
there occurs a topological phase transition where the Type B Dirac lines merge in a pairwise manner and
turn into Type A Dirac lines. The merging of the Type B Dirac lines occurs at the time-reversal invariant
momenta k1,2,3

T =: (0, 2π/
√

3, −2π/3), (π, ±π/
√

3, ±2π/3) (intersection points of red and blue lines).
d, e For γ1 > γ0 the system supports a single Type A Dirac line. Replicas of this Dirac line are shown with
light red and light blue curves to illustrate how this Type A Dirac line is created by merging the Type B Dirac
lines. By increasing γ1/γ0 further, the radius of the Type A Dirac line shrinks. f At γ1 = 3γ0 Type A Dirac
line shrinks to a point, and there occurs another topological phase transition where the system becomes
fully gapped by increasing γ1/γ0 further. We have assumed γ3 = 0, but this parameter only renormalizes
the critical points of the topological phase transitions so that the picture stays qualitatively the same as long
as |γ3| < 0.5γ0. The other further-neighbor hoppings γ2 and γ4 do not have any effect on the Dirac lines
(Color figure online)

merging occurs. In this case the dispersions around the Dirac lines are linear in qx

before the merging (γ1 < γ0), but they turn parabolic in qx at the transition (γ1 = γ0).
For γ0 < γ1 < 3γ0 the system supports a single Type A Dirac line [Fig. 3d,e]. By

increasing γ1/γ0, the radius of the Type A Dirac line shrinks. At γ1 = 3γ0 the Type A
Dirac line shrinks to a point at the time-reversal invariant momentum k4

T = (0, 0, π),
and there occurs another topological phase transition where the system becomes fully
gapped by increasing γ1/γ0 further. In the vicinity of the transition the low-energy
theory can be written as

H(k4
T + q) = γ1qzσy +

(
3γ0 − γ1 + −γ0q2

x − γ0q2
y + 2γ1q2

z

4

)
σx . (7)

123



42 J Low Temp Phys (2018) 191:35–48

This low-energy Hamiltonian describes the typical phase transition, where as a func-
tion of a parameter γ1 the radius of Type A Dirac loop (proportional to

√
3 − γ1/γ0

for γ1 < 3γ0) shrinks to a point at the transition (γ1 = 3γ0), and then, the system
becomes fully gapped by further increasing the parameter (γ1 > 3γ0). Similar tran-
sition is discussed for example in Ref. [17] for Dirac loops which do not support a
monopole charge so that they can be gapped after they have been shrunk to a point.

We now discuss the effects of the further-neighbor hoppings on the transitions
discussed above. The terms γ2 and γ4 do not have any effect on the Dirac lines or
transition points except that they shift the band crossings to a finite energy. The terms
proportional to γ2 and γ4 give rise to extra terms in low-energy Hamiltonians (6) and
(7)

δH(q) = (C + Dx q2
x + Dyq2

y + Dzq2
z + Eqyqz)σ0, (8)

where C , Dx , Dy , Dz and E are coefficients which depend on γ2 and γ4. These terms
only lead to small quantitative changes in the dispersions around the band crossing
points but do not affect the qualitative nature of the transitions.

The parameter γ3 only renormalizes the critical points of the topological phase
transitions, but the picture stays qualitatively the same and the transitions even occur
at the same time-reversal invariant momenta k1,2,3,4

T as long as |γ3| < 0.5γ0. In the
presence of γ3, the topological phase transition from Type B Dirac lines to Type A
Dirac lines occurs at γ1 = γ0+γ3 and the transition from Type A Dirac line to a gapped
system occurs at γ1 = 3γ0 − 3γ3. Additionally, γ3 just renormalizes the numerical
coefficients in the low-energy Hamiltonians and gives rise to some unimportant cross-
terms proportional to qyqz multiplying σx in low-energy Hamiltonian (6). It does not
lead to terms proportional to qx qz and qx qy because of the mirror symmetry of the
structure with respect to the (y, z)-plane. In Hamiltonian (7) these cross-terms cannot
arise at all because of the mirror symmetry with respect to the (y, z)-plane and rotation
symmetries by ±2π/3 around the z-axis.

4 Surface State Spectrum

In order to compute the momentum-space structure of the surface states we follow a
similar approach as in Ref. [20]. Namely, we first assume that the further-neighbor
hoppings can be neglected γ2 = γ3 = γ4 = 0, and discuss their effects afterward. The
Hamiltonian then satisfies a chiral symmetry [Eq. (4)], which simplifies the calculation
of the surface state spectrum. We start by considering the surface states at the top
and bottom surfaces (Fig. 4). Because of translational invariance in the x- and y-
directions kx and ky are good quantum numbers, and by fixing them, we get a 1D
Hamiltonian Hkx ,ky (kz), which depends only on kz . Because of the chiral symmetry
the 1D Hamiltonians Hkx ,ky (kz) have well-defined topological invariants. To calculate
this topological invariant, we first notice that the Hamiltonian can be written in a
block-off-diagonal form

H(k) =
(

0 Φ(k)

Φ∗(k) 0

)
. (9)
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Fig. 4 W (kx , ky) for γ2 = γ3 = γ4 = 0 and various values of γ1/γ0: a γ1/γ0 = 0.3, b γ1/γ0 = 1, c
γ1/γ0 = 1.5, d γ1/γ0 = 3. |W (kx , ky)| determines the number of zero-energy surface states at the top
and bottom surfaces. The transitions between different values of W occur at the momenta of the projected
Dirac lines so that the surface states form flat bands in regions of (kx , ky) bounded by the projected Dirac
lines. a For γ1 < γ0, there exist two Type B Dirac lines and the flat bands are formed inside the regions
bounded by each of them separately (regions bounded by red and blue lines). b At γ1 = γ0 there occurs
a topological phase transition where Type B Dirac lines merge in a pairwise manner and turn into Type A
Dirac lines. This merging transition shows up as a unification of the regions of the flat bands. c For γ1 > γ0
the system supports a single Type A Dirac line. The flat band is now formed everywhere outside the region
bounded by its projection. d At γ1 = 3γ0, the Type A Dirac line shrinks to a point and surface flat bands
now appear at all momenta (kx , ky) except this point (kx , ky) = 0 (Color figure online)

The topological invariant can then be defined as a winding number

W (kx , ky) = − i

2π

∫
dz(kz)

z
, z = Φ(k)

|Φ(k)| , (10)

where the integration is over the 1D Brillouin zone in kz direction. W (kx , ky) is
well defined whenever there are no gap closings as a function of kz , and in these
cases |W (kx , ky)| determines the number of zero-energy surface states for each kx

and ky . Therefore, the winding number and the number of topologically protected
zero-energy states can only change at the momenta of the projected Dirac lines. By
computing W (kx , ky) for various values of γ1/γ0 we arrive at a flat band (zero energy)
spectrum in the regions of the (kx , ky) with W �= 0 in Fig. 4. For γ1 < γ0 the
flat bands are formed inside the regions bounded by each of the Type B Dirac lines
separately [Fig. 4a] as discussed in Refs. [13,14]. At γ1 = γ0 the Type B Dirac lines
merge in a pairwise manner and turn into Type A Dirac lines, and this shows up as
a unification of the regions of the flat bands [Fig. 4b]. Similar merging of flat band
surface states in a rhombohedral multilayer graphene-like system has been considered
earlier as a function of an increasing anisotropy in the intra-layer hopping parameters
[41]. Interestingly, for γ1 > γ0 the flat band is formed everywhere outside the region
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Fig. 5 Winding number W (kx , kz) for γ2 = γ3 = γ4 = 0 and various values of γ1/γ0: a γ1/γ0 = 0.3,
b γ1/γ0 = 1, c γ1/γ0 = 1.5. |W (kx , kz)| determines the number of zero-energy surface states at the
side surface with the specific surface termination shown in the figure both from above and from a three-
dimensional perspective. For γ1 < γ0 there are regions in the momentum space with more than one surface
flat band |W (kx , kz)| > 1. Such regions are possible because the period of the surface in the z-direction is
three times the distance between the layers, so that there exist three different projections of each of the bulk
Dirac lines in the (kx , kz)-plane (red and blue lines). After the merging transition (γ1 > γ0) the Type A
Dirac line gives rise to regions with W (kx , kz) = 1 and W (kx , kz) = −1. The different signs of W (kx , kz)

indicate that the surface states are localized in the different sublattices. By increasing γ1/γ0, the regions of
the flat bands shrink and they disappear at γ1 = 3γ0 (Color figure online)

bounded by the projected Type A Dirac line [Fig. 4c], and therefore when the Type
A Dirac line has shrunk to a point at γ1 = 3γ0 the surface flat bands appear at all
momenta (kx , ky) except this point (kx , ky) = 0 [Fig. 4d]. For γ1 > 3γ0 the system
is fully gapped, but the zero-energy surface flat bands still appear at all momenta and
they are completely detached from the bulk bands. This type of surface flat bands have
been found previously in two-dimensional systems [42].

We can now use a similar procedure to compute the momentum-space structure of
the surface states at the side surfaces. This way we obtain that W (ky, kz) = 0 for all
values of ky and kz , which means that there are no surface flat bands at the surface
perpendicular to the x-direction. This result is analogous to the earlier finding that there
are no flat bands at the armchair edge in graphene [9]. (The surface perpendicular to the
x-direction consists of a stack of armchair edges.) On the other hand, for the surface
perpendicular to the y-direction we find regions with W (kx , kz) �= 0 indicating the
existence of flat bands. The momentum-space structure flat bands for various values
of γ1/γ0 are shown in Fig. 5. Importantly, for γ1 < γ0 there exist also regions in the
momentum space with more than one surface flat band |W (kx , kz)| > 1. Such regions
are possible because the period at the surface in the z-direction is three times the
distance between the layers, and therefore, there are three different projections of each
of the bulk Dirac lines in the (kx , kz)-plane (see Fig. 5). The detailed momentum-space
structure of the flat bands for γ1 < γ0 can be understood by noticing that the surface
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perpendicular to the y-direction contains a periodic sequence of stacks with two zigzag
edges and one bearded edge (see Fig. 5). Therefore, by utilizing the results found in
Ref. [9], we can interpret our numerical results in such a way that the two zigzag
edges essentially give rise to the two flat bands in the region with W (kx , kz) = 2 and
the bearded edge is responsible for the region with W (kx , kz) = −1 in Fig. 5a. The
different signs of W (kx , kz) indicate that the surface states are localized in the different
sublattices. After the merging transition (γ1 > γ0) the Type A Dirac line gives rise
to regions with W (kx , kz) = 1 and W (kx , kz) = −1, indicating that there still exists
surface states localized in the different sublattices. By increasing γ1/γ0, the regions of
the flat bands shrink and they disappear at the topological phase transition where the
system becomes gapped (γ1 = 3γ0). The detailed momentum-space structure of the
flat bands depends on exact surface termination similarly as in the case of graphene
[9]. The only generic property of the surface states, which is independent of the surface
termination, is that the surface flat bands are always bounded in the momentum space
by the projected Dirac lines.

The effects of the further-neighbor hoppings on the surface states can be computed
quantitatively similarly as in Ref. [20] for the case of Bernal graphite. Here, we only
discuss these effects qualitatively. The term proportional to γ3 obeys chiral symmetry.
Therefore, the same procedure of calculation of W (kx , ky) and W (kx , kz) can be
repeated also for γ3 �= 0. Because for |γ3| < 0.5γ0 all the transitions stay qualitatively
similar, the only effect of γ3 in this regime is a small modification of the shape of the
projected Dirac lines, so that the boundaries of the regions where the flat bands appear
are slightly modified. On the other hand, the parameters γ2 and γ4 break the chiral
symmetry and cause the Dirac lines to appear at finite energy. Similarly as found
in Ref. [20] for the case of Bernal graphite, the terms breaking the chiral symmetry
also modify the dispersions of the surface states, so that they turn the flat bands into
drumhead surface states which are bounded by the projected Dirac lines both in energy
and in momentum. In the region in between the Dirac lines, the surface states are no
longer flat and their dispersions are determined by the terms proportional to γ2 and γ4
[43]. If these parameters are small, the surface bands are still approximately flat.

5 Summary and Discussion

We have shown that in the presence of time-reversal, inversion and spin rotation
symmetries there can exist two different types of Dirac lines depending on whether
the Dirac lines form closed loops fully inside the Brillouin zone (Type A Dirac lines)
or they extend through the whole Brillouin zone in one of the directions (Type B Dirac
lines). In the case of Type B Dirac lines, an energy gap can be opened only by first
merging the Type B Dirac lines in a pairwise manner so that they turn into Type A
Dirac lines, and then by shrinking these loops into points. We show that this kind of
topological phase transition can occur in rhombohedrally stacked honeycomb lattices
by tuning the ratio of the tunneling amplitudes. We have also discussed the properties
of the surface states in the different phases of the model.

The Dirac-line semimetals considered in this paper are particularly interesting
because of the possible symmetry-broken states at the surface triggered by the large
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density of states caused by the topologically protected approximately flat bands. These
symmetry-broken states may for example lead to realization of high-temperature super-
conductors or interesting magnetic orders [44–46]. Moreover, they are expected to be
exotic states of matter since they cannot be described with a mean field theory [47].

Rhombohedral graphite has been studied also experimentally, and evidence of the
surface flat bands has been reported [48,49]. Moreover, the accumulated experimental
evidence (e.g., sharp drop of resistance as a function of temperature and Josephson-like
I-V characteristic) for graphite samples indicates the existence of high-temperature
granular superconductivity which is localized at internal interfaces [50–54]. Nev-
ertheless, a development of a consistent and comprehensive theory for all graphite
experiments is a difficult and unsolved problem. In particular, the recent experi-
ments for rhombohedral graphite were interpreted as evidence of a bulk energy gap
Egap ∼ 100 meV for rhombohedral graphite [55]. In the light of the theory devel-
oped in this paper this observation is mysterious. Namely, according to the theory
the rhombohedral graphite should be a Type B Dirac-line semimetal protected by the
lattice translation, time-reversal, inversion and spin rotation symmetries. Moreover,
the only way to open an energy gap in the presence of these symmetries (in a mean
field theory description) is to merge the two Type B Dirac lines with each other, which
requires a huge perturbation on the order of γ0. Since this is not feasible in rhombohe-
dral graphite, the only possible explanation (assuming high-quality crystal structure
so that the symmetries are not explicitly broken) would be that this bulk energy gap is
due to interaction effects. Strong interactions could in principle either lead to a spon-
taneous symmetry breaking in the bulk destroying the protection of the Dirac lines or
to a strongly correlated state which cannot be described with a mean field theory. In
both cases the opening of an energy gap is in principle possible. Moreover, such kind
of strong interaction effects is in principle possible. According to a simple theoretical
estimate the Hubbard U parameter in graphite can be U ∼ 6 eV [56], whereas γ0 is
typically assumed to be γ0 ∼ 2.8 eV [57].

In addition to the relevance of our theory for the rhombohedral graphite, we have
made explicit predictions concerning the topological phase transition between Type B
and Type A Dirac-line semimetals. These transitions could be realized experimentally
in systems where the lattice potential can be controlled, so one essentially needs a
three-dimensional generalizations of the type of two-dimensional systems where the
merging transition of Dirac points has already been observed [33–36].
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We suggest an ultrasensitive detector of electromagnetic fields exploiting the giant thermoelectric effect
recently found in superconductor-ferromagnet hybrid structures. Compared with other types of super-
conducting detectors where the detected signal is based on variations of the detector impedance, the
thermoelectric detector has the advantage of requiring no external driving fields. This is especially rel-
evant in multipixel detectors, where the number of bias lines and the heating induced by them are an issue.
We propose different material combinations to implement the detector and provide a detailed analysis of
its sensitivity and speed. In particular, we perform a proper noise analysis that includes the cross corre-
lation between heat and charge current noise and thereby describes also thermoelectric detectors with a
large thermoelectric figure of merit.

DOI: 10.1103/PhysRevApplied.10.034053

I. INTRODUCTION

Some of the most accurate sensors of wideband elec-
tromagnetic radiation are based on superconducting films.
Such sensors, in particular the transition-edge sensor
(TES), are used in a wide variety of applications requir-
ing extremely high sensitivity. Those applications include
detection of the cosmic microwave background [1–3] and
other tasks in astrophysics [4], generic-purpose terahertz-
radiation sensing used, for example, in security imaging
[5], gamma-ray spectroscopy of nuclear materials [6], and
analysis of materials by detection of fluorescent x-rays
excited by ion beams [7], short laser-driven x-ray pulses
[8], or syncrotrons [6]. Many of these applications would
benefit from the addition of more pixels (i.e., more sensors)
to increase the collection efficiency, detection bandwidth,
or the spatial or angular resolution. However, operating
large arrays of TESs can be problematic as each pixel
requires a bias line. This can be cumbersome in the pres-
ence of thousands of pixels, even with advanced multiplex-
ing techniques [6]. Moreover, the bias lines tend to carry
heat into the system especially by radiation, reducing, for
example, its overall noise performance. In addition, a TES
always dissipates power at the pixel, giving constraints
on the cryogenic design for large arrays. One alternative

*tero.t.heikkila@jyu.fi

is the kinetic inductance detector (KID) [9–11] and its
variants [12,13], the most common being the type with
passive frequency-domain multiplexing using supercon-
ducting microwave resonators [14]. With such a device,
a single pair of coaxial cables can be used to probe a large
array of pixels, but the probe power is, by necessity, also
partially dissipated at the detectors.

Both the TES and the KID are based on the measure-
ment of an impedance of the sensor (i.e., response to a
probe signal). It would generally be beneficial if one could
get rid of the probe signal altogether, so that the measured
signal would result directly from the radiation coupled to
the detector. This is what happens in thermoelectric detec-
tion [15–17], where the temperature rise caused by the
absorption of radiation is converted into an electric voltage
or current that can then be detected. Such thermoelectric
detectors have been discussed before, but they have not
been considered for ultrasensitive low-temperature detec-
tors for the simple reason that thermoelectric effects are
typically extremely weak at low temperatures. On the other
hand, at high temperatures, where such thermoelectric
effects would be strong enough, the thermal noise hampers
the device sensitivity.

We suggest overcoming these problems in a
superconductor-ferromagnet thermoelectric detector
(SFTED) [18] by exploiting the newly discovered giant
thermoelectric effect that occurs in superconductor-

2331-7019/18/10(3)/034053(11) 034053-1 © 2018 American Physical Society
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ferromagnet heterostructures [19–22] for radiation sens-
ing. As this thermoelectric effect can be realized with close
to Carnot efficiency [19,22] even at subkelvin tempera-
tures, the resulting detector can have a large signal-to-noise
ratio, and a noise-equivalent power (NEP) rivaling those
of the best TESs and KIDs without the burden of hav-
ing to use additional bias lines for probing the sensor, and
with zero (for ideal amplification) or at most very small
nonsignal power dissipation at the sensor location. The
only part of the system where external power is needed
is in the detection of the thermoelectric currents (i.e., at the
amplifier), which can be taken far from the active sensing
region.

Recently the use of superconductor-ferromagnet struc-
tures in thermometry has been discussed [23]. Despite
some similarities, thermometers and radiation detectors
have quite different requirements regarding their sensi-
tivity. In particular, the sensitivity of radiation detectors
is typically dictated by the temperature-fluctuation noise,
which is not an issue as such for thermometers. In this
paper we concentrate on finding and optimizing the rele-
vant figures of merit for radiation detection, and hence we
cannot benefit much from the results in thermometry.

For concreteness, we consider the detector realization
depicted in Fig. 1. The sensor element (i.e., one pixel
of a possible detector array) is formed from a thin-film
superconductor–ferromagnetic insulator bilayer coupled to
superconducting antennas via a clean (Andreev) contact.
This bilayer is further connected, via a tunnel junction
(magnetic or normal) to a ferromagnetic electrode [24].
The current injected into the ferromagnetic electrode or the
voltage generated across the tunnel junction is detected by
a superconducting-quantum-interference-device (SQUID)
current amplifier or a field-effect transistor, respectively. In
what follows, we describe conditions for measuring radia-
tion in the far-IR region, in which case it can be coupled to
the detector via antennas. Alternatively, the detector could
be used for measuring radiation at higher frequencies (such
as x-ray frequencies), in which case the system should be
connected to an additional, larger absorber element.

We consider the radiation to be directed to the detec-
tor via a superconducting antenna (not shown in Fig. 1)
that is coupled via a clean (Andreev) contact to the active
superconductor–ferromagnetic insulator region (absorber).
To prevent heat leaking from the absorber, the supercon-
ductor used in the antenna should be fabricated from a
material with a higher superconducting gap �A than the
one used in the absorber, �. One possible combination
could be a Nb antenna and an Al absorber. For opti-
mal quantum efficiency, the normal-state resistance of the
absorber (seen by radiation at frequencies higher than �/h,
where h is Planck’s constant) should be matched to the
specific impedance of the antenna, typically somewhat
below the vacuum impedance. For an Al film thickness
of 10 nm, a typical sheet resistance is 5–10 �. Hence, a

Phonons

Electrode

(a)

(b)

FIG. 1. (a) The thermoelectric detector, where a temperature
difference TS − TF drives a thermoelectric current Ith and/or a
thermovoltage Vth across a spin-polarized junction. The latter is
composed of either a normal insulator and a ferromagnetic elec-
trode (F) or a ferromagnetic insulator (FI) and a normal metal
electrode. (b) Heat balance: incoming radiation power heats up
the quasiparticles in the spin-split superconductor (S), and the
amount of heating depends on the heat conductances to the main
heat baths.

1-μm-wide film with length l = 10 μm would have resis-
tance Rγ = 50–100 � seen by the radiation, thereby
matching well with typical antennas. In what follows, we
hence choose an absorber region of this size. Reducing
(increasing) the width and length while keeping their ratio
constant would result in the same quantum efficiency but
decreased (increased) noise and dynamic range.

The absorber superconductor is placed in contact with
a ferromagnetic insulator that exerts a magnetic proximity
effect on the former, resulting in a spin-splitting exchange
field h inside the superconductor. In Al, large induced spin-
splitting fields have been detected by contacting it, for
example, with EuS [25] or EuO [26]. At low temperatures
compared with the superconductor critical temperature Tc,
the exchange field does not have a major effect on the
order parameter � [27,28]. However, it results in a strong
(and opposite) electron-hole asymmetry in each spin com-
ponent in the direction specified by the magnetization of
the ferromagnetic insulator. This asymmetry can be used
to generate a thermoelectric signal if the superconductor
is connected via a spin filter to another electrode [19,22].
This spin filtering is provided here by the ferromagnetic
electrode and is quantified by the normal-state spin polar-
ization P = (G↑ − G↓)/(G↑ + G↓) ∈ [−1, 1], where Gσ

is the normal-state conductance of the superconductor-
ferromagnet contact for spin channel σ . In what follows,
we also characterize this contact via its spin-averaged
normal-state conductance GT. In practice, oxide contacts
with ferromagnetic metals such as Ni, Co, or Fe have P ∼
0.1–0.45 [29,30], whereas use of ferromagnetic insulator
contacts may lead to polarizations exceeding P ∼ 0.9 [31].
The precise value of GT for a given area of the junction can
be controlled by the thickness of the tunnel junction.
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II. NOISE-EQUIVALENT POWER OF A
THERMOELECTRIC DETECTOR

We first consider a generic thermoelectric element work-
ing as a radiation sensor and analyze its figures of merit, in
particular the NEP and the thermal time constant τT, both
defined in detail below. As the radiation with power Pγ is
absorbed in the absorber, it first creates a strong nonequi-
librium state of the quasiparticles. This nonequilibrium
state relaxes via (i) quasiparticle-quasiparticle collisions,
(ii) spurious processes such as quasiparticle-phonon relax-
ation, and (iii) the escape of the quasiparticles to the (fer-
romagnetic) electrode. The last process yields the detected
signal. Moreover, some of the excitations may escape as
quasiparticles to the antenna. We assume that relaxation
via quasiparticle-quasiparticle collisions dominates so that
the quasiparticles thermalize between themselves before
escaping to the antenna, and therefore in what follows
we disregard escape of excitations as quasiparticles to the
antenna. As a result of this chain of events, the quasipar-
ticles in the absorber heat up to temperature TS = T + �T
determined from a heat-balance equation [32]:

Ch
d�T

dt
= Pγ − Gtot

th �T + αVth, (1)

where Ch is the heat capacity of the absorber and Gtot
th =

Gq-ph + Gth, where Gq-ph and Gth denote the heat con-
ductances from quasiparticles to the phonons and to the
ferromagnetic electrode, respectively. In the linear regime
we assume that both reside at the bath temperature T.
The last term results from the Peltier heat current driven
by the induced thermovoltage across the superconductor-
ferromagnet junction, and it is proportional to the temper-
ature difference �T. We assume that the detector operates
at low powers Pγ so that these linear response relations are
sufficient. The detector characteristics depend strongly on
the chosen T.

The induced temperature difference (in the frequency
domain) �T = (Pγ + αVth)/(iωCh + Gq-ph + Gth) drives
a thermoelectric current Ith = α�T/T − GVth into the fer-
romagnet and ultimately to an amplifier. To focus on
detector performance limits first, we disregard the back-
action noise from the amplifier, and consider the amplifier
only as a reactive element: either a capacitor or an induc-
tor, corresponding to a field-effect transistor or SQUID
amplifier, respectively. Therefore, the thermoelectric cur-
rent equals Vth[iωC + 1/(iωL)] across the amplifier with
capacitance C and inductance L in parallel. One can obtain
the practical limits of voltage (current) measurements by
considering ω �= 0 and taking the limit L → ∞ (C → ∞).
From these relations we can obtain the voltage and current
responsivities:

λV ≡ Vth

Pγ

= α

Ytot
th YtotT − α2 , λI ≡ IL

Pγ

= λV

iωL
, (2)

where IL is the current across the inductor. The relevant
responsivity depends on the choice of the amplifier. Here
Ytot

th = iωCh + Gtot
th and Ytot = G + iωC + 1/(iωL) are the

thermal and electrical admittances, respectively. Note that
ZT(ω) = αλV is a finite-frequency generalization of the
usual thermoelectric figure of merit.

We next consider the temperature fluctuation δT, volt-
age noise �V across the capacitor, and current noise �IL
across the inductor. These are driven by the three intrinsic
noise sources: the charge and heat current noises δI and
δQ̇J across the thermoelectric junction and the heat current
noise δQ̇q-ph for the quasiparticle-phonon process. The heat
balance equation and the Kirchoff law for the noise terms
read

Ytot
th δT = δQ̇q-ph + δQ̇J + α�V, (3a)

Ytot�V = δI + αδT/T. (3b)

Solving these yields

�V = λV(δQ̇q-ph + δQ̇J + Ytot
th TδI/α) (4)

and �IL = �V/(iωL). To find the second-order correla-
tor of these noise terms, we assume that the intrinsic
correlators satisfy

〈δI 2〉 = 4kBTG, (5a)

〈δQ̇2
J 〉 = 4kBT2Gth, (5b)

〈δIδQ̇J 〉 = −4kBTα, (5c)

〈δQ̇2
q-ph〉 = 4kBT2Gq-ph. (5d)

These result from the fluctuation-dissipation theorem for
the individual contacts. In particular, the cross-noise term
is important for strong thermoelectric response, and was
not taken into account before; it was, for example, dis-
regarded in Ref. [16]. The total voltage-noise spectral
density is (note that this is the symmetrized voltage-noise
correlator, and therefore one needs to take the absolute
value squared)

SV = 〈�V2〉 = |λV|24kBT2 Gtot
th (GTGtot

th − α2) + ω2ChGT
α2 .

(6)
The term in parentheses is positive semidefinite due to the
thermoelectric stability condition α2 ≤ GTGtot

th valid for all
thermoelectric systems. The current-noise spectral density
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across the inductor, SI , has the same form as SV in Eq. (6),
but where λV is replaced by λI .

The square of the NEP P2
ne is the power spectral den-

sity for which the induced-thermoelectric-voltage spectral
density across the capacitor equals SV, or for which the
thermoelectric current spectral density across the induc-
tor equals SI . These yield the same results, SV/|λV|2 =
SI/|λI |2,

P2
ne ≡ SV

|λV|2 = 4kBT2 Gtot
th (GTGtot

th − α2) + ω2C2
hGT

α2 . (7)

This may be written in a more tractable form by use
of the zero-frequency thermoelectric figure of merit zT =
α2/(Gtot

th GT − α2) [33] and the thermal time constant τT =
Ch/Gtot

th :

P2
ne = 4kBT2[1 + ω2τ 2

T (1 + zT)]Gtot
th

zT
. (8)

The zero-frequency thermoelectric NEP thus equals the
usual thermal bolometer NEP [34] from the thermal fluc-
tuation noise divided by the square root of the figure of
merit. Moreover, the thermal time constant determining the
frequency band for the detection is increased by the factor√

1 + zT.
Above discussion disregards the contribution from the

amplifier noise. This is discussed separately below.
The NEP written above can be optimized, as typically

the overall level of the thermoelectric junction conduc-
tance can be chosen almost at will, and the coefficients α

and Gth scale with the same prefactor. In the sensor dis-
cussed here, this means optimizing the normal-state con-
ductance of the thermoelectric junction. On the other hand,
for a given absorber volume �, the thermal conductance of
the spurious process Gq-ph cannot be affected much. There-
fore, choosing a too small junction conductance results in a
poor thermoelectric figure of merit zT, whereas increasing
the junction conductance increases the thermal fluctua-
tion noise and the Johnson-Nyquist current noise of the
junction. In addition, a high junction conductance may
lead to a heating of the normal-metal (ferromagnetic) elec-
trode, thereby reducing the temperature gradient across
the junction, and the associated thermoelectric effects.
In what follows we assume that this electrode is thick
enough so that its heating can be disregarded. For zero-
frequency NEP, the optimum is obtained with conductance
Gth/Gph = √

1 + zTi, where zTi = α2/(GthGT − α2) is the
intrinsic figure of merit of the junction (not including
the heat conductance to the phonons). With this choice, the
optimal NEP of the thermoelectric detector is

P2
ne,opt = 4Gq-phkBT2(1 + √

1 + zTi)
2

zTi
. (9)

It hence reaches the limit set by the thermal fluctuation
noise of the spurious process for zTi → ∞.

The above discussion holds for arbitrary thermoelectric
sensors of the type depicted in Fig. 1(b). However, typ-
ically strong thermoelectric effects are found only above
room temperature, which renders the thermal fluctuation
noise very large. The combination of a spin-split super-
conductor with a spin-polarized contact circumvents this
problem, leading to large thermoelectric response even at
subkelvin temperatures. In the following, we analyze this
system in more detail.

III. SUPERCONDUCTOR-FERROMAGNET
THERMOELECTRIC RADIATION DETECTOR

First, following Ref. [19], we write the thermoelec-
tric coefficients of the spin-polarized junction between
the spin-split superconductor and the nonsuperconducting
contact as

G = GT

∫ ∞

−∞
dE

N0(E)

4kBT cosh2
(

E
2kBT

) , (10a)

Gth = GT

e2

∫ ∞

−∞
dE

E2N0(E)

4kBT2 cosh2
(

E
2kBT

) , (10b)

α = GT

2e
P

∫ ∞

−∞
dE

ENz(E)

4kBT cosh2
(

E
2kBT

) . (10c)

Here GT is the normal-state electrical conductance of
the junction, and N0(E) = (N↑ + N↓)/2 and Nz = N↑ −
N↓ are the spin-averaged and the spin-difference den-
sity of states (DOS) of the superconductor, normalized
to the normal-state DOS νF at the Fermi level. They are
obtained from N↑/↓ = NS(E ∓ h), with NS(E) = Re[|E +
i�|/

√
(E + i�)2 − �2], where h is the spin-splitting field

and � � � describes pair-breaking effects inside the
superconductor. Analytic approximations for Eq. (10) are
detailed in Ref. [19].

The heat capacity of the absorber with volume � is
obtained from

Ch = d
dT

(
νF�

∫ ∞

−∞
dEEN0(E)feq(E)

)

= νF

4kBT2

∫ ∞

−∞

E2N0(E)

cosh2
(

E
2kBT

) = νF�e2

GT
Gth. (11)

The thermal time constant of the junction, Ch/Gth, hence
remains independent of superconductivity or spin splitting.
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FIG. 2. Optimal normal-state tunnel conductance GT of the
thermoelectric junction. For Al of volume 10−19 m3, a value of
1 corresponds to G−1

T = 20 �. At the lowest temperatures the
results depend strongly on the value of the broadening param-
eter � used in the numerics. The solid lines are calculated with
� = 10−4� and the dashed lines are calculated with � = 10−3�.

The electron-phonon heat conductance of a spin-split
superconductor in the pure limit can be obtained from [35]

Ge-ph = 
�

96ζ(5)k5
BT2

∫ ∞

−∞
dEE

∫ ∞

−∞
dω

× ω2|ω|LE,E+ωFE,ω, (12)

with

FE,ω= − 1
2

[
sinh

( ω

2T

)
cosh

(
E
2T

)
cosh

(
E+ω

2T

)]−1

,

(13)

LE,E′ = (1/2)
∑

σ=± Nσ (E)Nσ (E′){1 − �2/[(E + σh)(E′
+ σh)]}, and σ = ± for spin ↑ / ↓. Here 
 is the material-
dependent electron-phonon coupling constant (for typical
values, see Ref. [34]), � = wld is the volume of the super-
conductor island, and ζ(x) is the Riemann zeta function.

In the low-temperature limit kBT � � − |h|, the
electron-phonon heat conductance can be approximated as

Ge-ph = 
�

96ζ(5)
T4[cosh h̃e−�̃f1(�̃)

+ π�̃5e−2�̃f2(�̃)], (14)

where h̃ = h/kBT and �̃ = �/kBT. The function f1 can
be approximated with an expansion f1(�̃) = ∑∞

n=1 Cn/�̃
n

with coefficients C0 ≈ 440, C1 ≈ −500, C2 ≈ 1400, and
C3 ≈ −4700. An expansion for f2 is f2(�̃) = ∑∞

n=1 Bn/�̃
n

with coefficients B0 = 64, B0 = 64, B1 = 144, and B2 =
258. The derivation of Eq. (14) is presented in the
Appendix.

FIG. 3. Thermoelectric figure of merit as a function of the
exchange field for junctions with different polarizations P at
temperature T = 0.1�/kB, with GT = 5 × 10−4e2
��3 and
� = 10−3�.

In the following, we use the above formulas to dis-
cuss the behavior of the SFTED. For this, we eval-
uate the above integrals numerically to obtain predic-
tions of the optimal junction conductance, the thermo-
electric figure of merit zT, the total NEP, and the time
constant. The optimal normal-state junction conductance
GT is plotted as a function of temperature in Fig. 2.
As the electron-phonon heat conductance dies out faster
than the junction heat conductance at low temperatures,
the optimal GT also depends strongly on temperature.
Note that for an Al absorber with electron-phonon cou-
pling constant 
 = 0.3 × 109 W/m3 K5, volume � =
10−19 m3, and � = 200 μeV, the dimensionless parameter
k5

BGT/(e2
��3) = GT × 20 �. The optimal normal-state
resistance of the junction is thus within the range from
20 k� to 20 M�. Moreover, since both GT and 
�

depend on the area of the absorber, the real optimiz-
able parameters are the absorber film thickness and the
junction conductance per unit area. In what follows, we
use GT = 5 × 10−4e2
��3, corresponding to a junction
resistance of 40 k�, optimal roughly at T ≈ 0.1�/kB ∼
200 mK. This corresponds to a resistance times unit area
of 400 k� μm2, which is quite easily reached with AlO2
tunnel junctions [36], but would be somewhat challenging
for spin-filter EuS barriers, ranging typically between 10
and 1000 M� μm2 [25].

On the other hand, the thermoelectric figure of merit zT
depends strongly on the detector polarization. We show
this by plotting zT for the parameters indicated above as
a function of the exchange field at T = 0.1�/kB in Fig. 3.
Because of the presence of the electron-phonon process
acting as an extra heat channel, the figure of merit does
not exceed unity.
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FIG. 4. Zero-frequency NEP as a function of the exchange
field for junctions with different polarizations P at temperature
T = 0.1�/kB, with GT = 5 × 10−4e2
��3 and � = 10−3�.
For the parameters considered in this paper,

√
GT�3/e2 ≈

10−18 W/
√

Hz.

The most interesting characteristic of any detector is its
sensitivity, in this case the NEP. We plot this as a function
of exchange field in Fig. 4 and as a function of temper-
ature in Fig. 5. The NEP is normalized to

√
GT�3/e2,

which corresponds to approximately 10−18 W/
√

Hz for
the parameters chosen. The dashed line in Fig. 5 indi-
cates the NEPbolometer = 4Gq-phT2 obtained for a TES with
the same absorber volume at the corresponding tempera-
ture, with its heat conductance limited by electron-phonon
coupling (i.e., a hot-electron TES [37]). In Fig. 4 that
reference value is exactly unity for the parameters cho-
sen. As the TES operates in the dissipative regime at the
transition, the normal-state value for Gq-ph must be used.
Moreover, this estimate disregards the bias-induced heat-
ing, which sets the operating temperature higher than the
bath temperature, and extra noise sources often found in
TES realizations. We find that a SFTED can reach similar
or better values than such a TES even with quite modest
values of the junction polarization at low temperatures.
Note that these results depend a bit on the precise value
of the junction conductance—with a higher conductance,
NEP at higher temperatures would be lower (see Fig. 2),
and vice versa.

In practice, the most-sensitive TES bolometers to date
have been fabricated from suspended structures where the
thermal conductance to the bath is limited by phonon trans-
port, achieving NEP on the order of 1 × 10−19 W/

√
Hz

[38,39] at Tc of around 100 mK. On the basis of Fig. 5, the
SFTED is also predicted to reach a lower NEP than that.

For completeness, we show the behavior of the thermal
time constant τ ∗ = τT

√
1 + zT as a function of tempera-

ture in Fig. 6. It is given in the units of τ0 = νF�e2/GT.

FIG. 5. Zero-frequency NEP as a function of the tempera-
ture for junctions with different polarizations P with exchange
field h = 0.2�, with GT = 5 × 10−4e2
��3 and � = 10−3�.
For the parameters considered in this paper,

√
GT�3/e2 ≈

10−18 W/
√

Hz. The dashed line shows the thermal-fluctuation-
noise NEP =

√
20
�T6 for a TES of the same volume.

For νF = 1047 J−1 m−3, � = 10−19 m3, and G−1
T = 2 M�,

τ0 ≈ 0.1 ms. At low temperatures, the tunnel junction
dominates the heat conductance, and τ ∗ ≈ τ0. In this case
zT is also appreciable, and slightly modifies τ ∗. On the
other hand, at high temperatures electron-phonon heat con-
duction takes over, and the detector becomes faster. To
illustrate this crossover, we show the time constant for two
different values of GT.

The above results are obtained by disregarding spin
relaxation. Aluminum is a light material, and therefore the
spin-orbit scattering in it is typically quite weak, and the
spin relaxation is dominated by spin-flip scattering. The
typical spin relaxation times τsr in Al are on the order
of 100 ps [40], and therefore �/(τsr�) ∼ 0.03, and the
model disregarding spin relaxation is more or less jus-
tified. However, spin-flip scattering in the presence of
exchange field yields a nonzero DOS inside the supercon-
ducting gap, and eventually leads to pair breaking [22].
Above, such effects are taken into account with the param-
eter �. For heavier materials, such as Nb, spin relaxation
is caused by spin-orbit scattering, and the thermoelectric
effects become weaker. Therefore, use of such heavier
materials, for example, to increase the operation temper-
ature of the thermoelectric detector beyond the critical
temperature of Al, would require further analysis of the
effects of spin relaxation.

A. Contribution of amplifier noise

In the preceding analysis we disregard the noise due
to the voltage or current measurement. We can include it
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FIG. 6. Temperature dependence of the detector time constant
τ ∗ determining the (angular) frequency bandwidth 1/τ ∗ where
the NEP is low. We chose h = 0.2�. The solid lines are cal-
culated with GT = 5 × 10−4e2
��3, whereas the dashed lines
correspond to 10 times larger conductance. For the former, τ0 ≈
0.1 ms, and for the latter, τ0 = 0.01 ms.

by assuming an added voltage-noise spectral density SA
V

or current-noise spectral density SA
I for the amplifier used

for voltage or current measurement. In the case of voltage
measurements, the amplifier adds to NEP the contribution
(for ω = 0, for simplicity)

P2
ne,A,V = SA

VGTGtot
th

zT(1 + zT)
, (15)

whereas in the case of current measurement the contribu-
tion is

P2
ne,A,I = SA

I (1 + zT)Gtot
th T

GzT
. (16)

We can hence see that the relative contribution from the
voltage amplifier to the overall NEP decreases as the
thermoelectric junction resistance increases. On the other
hand, in the case of current measurement, the amplifier
contribution becomes independent of the junction resis-
tance when Gtot

th is dominated by the junction heat con-
ductance. Another way to estimate the contribution of
amplifier noise is by dividing the corresponding NEPs by
the total thermoelectric NEP from Eq. (8) (at ω = 0). We
hence get

rV ≡ P2
ne,A,V

P2
ne

= SA
V

4kBT
G

(1 + zT)
, (17a)

rI ≡ P2
neA,I

P2
ne

= SA
I

4kBT
(1 + zT)

G
. (17b)

A typical good voltage preamplifier for low-frequency
measurements has a voltage noise on the order of√

SV = 1.5 nV/
√

Hz at room temperature and
√

SV =
0.3 nV/

√
Hz at cryogenic temperatures [41]. Together

with the normal-state tunnel conductance used above, and
the � for Al, the latter value yields the relative NEP for
voltage measurements as rV ≈ G�/(GTkBT)(1 + zT)−1.
This is much below unity in the entire relevant temperature
range (kBT � �) due to the exponential suppression of G.
On the other hand, a very good current amplifier can have
an added noise of

√
SI = 0.5 fA/

√
Hz. With that value

we get rI ≈ 10−4�/(kBT) × (1 + zT)GT/G. This exceeds
unity below kBT ≈ 0.1� (the precise value depends on
the exchange field chosen), and the current measurement
accuracy starts limiting the thermoelectric detector NEP
for T � 0.1�/kB. This difference between the two types
of measurements originates from the fact that the thermo-
electric voltage can be on the order of the temperature
difference itself due to the thermopower on the order of
kB/e, whereas the thermoelectric current is exponentially
suppressed [19] and hence harder to measure. However,
ultimately at very low temperatures the voltage measure-
ment also becomes harder as it requires the voltmeter
impedance to far exceed that of the junction, and this
condition becomes harder to meet at low temperatures.

Typical absolute-thermometer-based radiation detectors
operating at the bath temperature (i.e., in contrast to, for
example, a TES, where the bias sets the operating point
above bath temperature) suffer from chip temperature fluc-
tuations due to fluctuations in the cooling power. However,
a thermoelectric detector measures a temperature differ-
ence �T instead of the absolute temperature. Because the
chip temperature fluctuations affect both the temperature of
the absorber and that of the measurement electrode, they do
not affect �T (to the lowest order). This is an added benefit
for TEDs in comparison with detectors based on resistance
or inductance measurements.

IV. CONCLUSIONS

Thermoelectric radiation detection is not a new concept
[15]. However, most of the previously studied thermo-
electric detectors have relied on using semiconducting
thermoelectric materials, operating at and above room
temperature TRT. Because the spurious heat-conduction
processes have heat conductance that scales at least as
approximately T3 (typical phonon heat conductivity [34]),
the corresponding NEP is (TRT/T)5/2 ∼ 1015/2 times larger
than that considered here (this estimate assumes the Debye
temperature exceeds room temperature, but it should in
any case be taken as indicative). On the other hand,
quantum-dot structures may exhibit strong thermoelectric
effects even at low temperatures [42]. In contrast to the
superconductor-ferromagnet structure considered here, in
those devices the thermoelectric effects are single-channel
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FIG. 7. One possible scheme for frequency-domain multiplex-
ing of the thermoelectric detectors. Here a broadband electro-
magnetic wave, or a frequency comb, is divided into different
frequency components via narrow-band-pass filters (BPFs), and
directed through field-effect transistors whose conductance is
modulated by the voltage from the detectors. As a result, the
output spectrum contains pixel-specific information about the
absorbed radiation power.

phenomena, and therefore it may be difficult to make the
electronic thermal conduction dominate over the spurious
heat-conduction channels.

In this paper, we show how a combination of supercon-
ducting and magnetic materials can be used to construct a
low-temperature radiation detector relying on the thermo-
electric effect and thereby not requiring extra bias power to
be applied to the device. The proposed device thus differs
qualitatively from the other previously known supercon-
ducting detectors such as TES and KID. The lack of the
need to have extra bias power leads to simpler designs of
arrays of such detectors, and helps in maintaining the low
operating temperatures required for ultrasensitive opera-
tion. In addition, ultrasensitive TES bolometers necessarily
have a very low tolerance for excess power loading, as the
device can be saturated and pushed out of the transition
region with it. For the detectors discussed here, there is
no such abrupt effect, although excess power could lead
to performance degradation due to overheating. Neverthe-
less, because of the lack of the bias lines, novel multi-
plexing strategies may need to be designed. We present
one possible scheme in Fig. 7. There the output looks
quite similar to that of frequency-multiplexed TES or KID
read-out schemes, but the possible heating effects in the
(dissipative) field-effect transistors can be engineered far
apart from the pixels absorbing the radiation. Nevertheless,
the optimal multiplexing strategies are a topic for further
research.
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APPENDIX: ELECTRON-PHONON HEAT
CONDUCTANCE

We calculate the electron-phonon heat conductance
coefficient Ge-ph beginning from Eq. (12). We first extract
the temperature-dependent prefactor by scaling all the
quantities with dimensions of energy by temperature; for
example, Ẽ = E/kBT. The scaled quantities are dimension-
less and are denoted with a tilde over the variable. We then
change the integration variables to x = Ẽ and y = Ẽ + ω̃.
We obtain

Ge-ph = 
�T4

96ζ(5)

∑
σ=±

Iσ

4
, (A1)

where

Iσ =
∫∫

dxdysgn[(x + σ h̃)(y + σ h̃)]

×
x|x − y|3

[
(x + σ h̃)(y + σ h̃)− �̃2

]
√

([x + σ h̃]2 − �̃2)([y + σ h̃]2 − �̃2)

4e−(|x|+|y|)/2

sinh x−y
2

.

(A2)

Above, both x and y are integrated from −∞ to +∞,
excluding the region [−�̃ − σ h̃, �̃ − σ h̃], in which the
spin-split DOS vanishes. We also assume that � − h �
kBT so that we can make an approximation

cosh x ≈ e|x|

2
, x > �̃ − h̃, (A3)

and similarly for cosh y.
The integral is divided into four separate quadrants by

the gaps in the DOS. The integral over the quadrant n for
the spin σ is Iσ

n . Because the integrand of Eq. (A2) is sym-
metric with respect to simultaneous inversion of x, y, and
σ , the contributions from the opposing quadrants are equal:

I = 1
4

4∑
n=1

∑
σ=±

Iσ
n = 1

2

∑
σ=±

(
Iσ
1 + Iσ

2

)
. (A4)

We calculate the integral over the first quadrant. This part
of the integral represents scattering processes, for which
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x, y > 0. Physically, this means that, the interacting quasi-
particles are both particlelike. By shifting the integration
limits, we get

Iσ
1 =

∫ ∞

�̃−σ h̃
dx

∫ ∞

�̃−σ h̃
dy

×
x|x − y|3

[
(x + σh)(y + σh) − �̃2

]
√

[(x + σh)2 − �̃2][(y + σh)2 − �̃2]

8
ex − ey

=
∫ ∞

0
dx

∫ ∞

0
dy

×
(x + �̃ − σ h̃)|x − y|3

[
xy + (x + y)�̃

]
(ex − ey)

√
xy(x + 2�̃)(y + 2�̃)

8e−�̃+σ h̃.

(A5)

Above, we have h̃ dependence in two places: in the expo-
nential outside the integral and as a linear term in the
numerator. However, the parts of the numerator that are
symmetric with respect to exchange x ↔ y do not con-
tribute to the integral. Therefore, we can write the integral
as

Iσ
1 = e−�̃+σ h̃

∫ ∞

0
dx

∫ ∞

0
dy

× 8x2|x − y|3(y + �̃)

(ex − ey)

√
xy(x + 2�̃)(y + 2�̃)

= e−�̃+σ h̃f1(�̃), (A6)

where f1(�̃) is a monotonically increasing function with
values f (2) ≈ 326 and lim�̃→∞ f1(�̃) ≈ 438. We can per-
form a Taylor expansion f1(�̃) = ∑∞

n=0 Cn/�̃
n by first

expanding the integrand into series in �̃−1 and then inte-
grating separately for each term. The first few coefficients
are C0 ≈ 440, C1 ≈ −500, C2 ≈ 1400, and C3 ≈ −4700.

Doing the sum over the spins, we find the contribution
from the first quadrant:

I1 =
∑
σ=±

Iσ
1 = 2 cosh h̃e−�̃f1(�̃). (A7)

The second quadrant describes the contribution from the
recombination processes, for which one quasiparticle is
holelike (x < 0) and the other is particlelike (y > 0):

Iσ
2 = −

∫ −�̃−σ h̃

−∞
dx

∫ ∞

�̃−σ h̃
dy

8ex

ex − ey

×
x(x − y)3

[
(x + σh)(y + σh) − �̃2

]
√

[(x + σh)2 − �̃2][(y + σh)2 − �̃2]

=
∫ ∞

0
dx

∫ ∞

0
dy

(x + y + 2�̃)3
[
xy + (x + y)�̃ + 2�̃2

]
√

xy(2�̃ + x)(2�̃ + y)

× 8(x + �̃ + σ h̃)e−x−ye−2�̃, (A8)

where we approximate e2�+x+y − 1 ≈ e2�+x+y . Above,
the exchange field σ h̃ appears only as a linear term. If we
sum over the two spin directions, terms odd in σ cancel
and we can write I2 in the form

I2 =
∑

σ

Iσ
2 = 2π�̃5e−2�̃f2(�̃). (A9)

Within the approximation given by Eq. (A3), the exchange
field does not modify the contribution from the recombina-
tion processes.

The function f2 is defined as

f2(�̃) =
∫ ∞

0
dx

∫ ∞

0
dy

×
(x + y+2�̃)3

[
xy + (x + y)�̃ + 2�̃2

]
π�̃5

√
xy(2�̃ + x)(2�̃ + y)

× 8e−x−y(x + �̃). (A10)

The function f2 is a monotonically decreasing func-
tion with values f2(4) ≈ 123 and lim�̃→∞ f2(�̃) = 64.
An expansion f2(�̃) = ∑∞

n=0 Bn/�̃
n is obtained by first

expanding the integrand asymptotically at �̃ = ∞ and
then calculating the integral term by term. The first
few coefficients are B0 = 64, B1 = 144, B2 = 258, and
B3 = 693/2.

By combining Eqs. (A1), (A4), (A7), and (A9), we
find the electron-phonon heat conductance for a spin-split
superconductor: Eq. (14). At low temperatures, when �̃ �
1, scattering processes dominate the heat conductance. The
two processes become of the same order of magnitude
when kBT ≈ 0.1�. At high temperatures, recombination
processes dominate.

[1] D. Hanson, S. Hoover, A. Crites, P. Ade, K. Aird, J.
Austermann, J. Beall, A. Bender, B. Benson, and L. Bleem
et al., Detection of B-Mode Polarization in the Cosmic
Microwave Background with Data from the South Pole
Telescope, Phys. Rev. Lett. 111, 141301 (2013).

[2] P. Ade, Y. Akiba, A. Anthony, K. Arnold, M. Atlas, D. Bar-
ron, D. Boettger, J. Borrill, S. Chapman, and Y. Chinone

034053-9



HEIKKILÄ et al. PHYS. REV. APPLIED 10, 034053 (2018)

et al., A measurement of the cosmic microwave background
b-mode polarization power spectrum at subdegree scales
with polarbear, Astrophys. J. 794, 171 (2014).

[3] M. Madhavacheril, N. Sehgal, R. Allison, N. Battaglia, J.
R. Bond, E. Calabrese, J. Caligiuri, K. Coughlin, D. Crich-
ton, and R. Datta et al., Evidence of Lensing of the Cosmic
Microwave Background by Dark Matter Halos, Phys. Rev.
Lett. 114, 151302 (2015).

[4] D. Farrah, K. E. Smith, D. Ardila, C. M. Bradford, M.
Dipirro, C. Ferkinhoff, J. Glenn, P. Goldsmith, D. Lei-
sawitz, and T. Nikola et al., Far-infrared instrumenta-
tion and technology development for the next decade,
arXiv:1709.02389.

[5] M. K. A. Luukanen, R. Appleby, and N. Salmon, in
Millimeter-Wave and Terahertz Imaging in Security Appli-
cations, Terahertz Spectroscopy and Imaging, edited by
K. E. Peiponen, A. Zeitler and M. Kuwata-Gonokami
(Springer, Berlin Heidelberg, 2013), Chap., p. 491.

[6] J. N. Ullom and D. A. Bennett, Review of supercon-
ducting transition-edge sensors for x-ray and gammaray
spectroscopy, Supercond. Sci. Technol. 28, 084003 (2015).

[7] M. Palosaari, M. Käyhkö, K. Kinnunen, M. Laitinen, J.
Julin, J. Malm, T. Sajavaara, W. Doriese, J. Fowler, and
C. Reintsema et al., Broadband Ultrahigh-Resolution Spec-
troscopy of Particle-Induced X Rays: Extending the Limits
of Nondestructive Analysis, Phys. Rev. Appl. 6, 024002
(2016).

[8] L. Miaja-Avila, G. C. O’Neil, Y. I. Joe, B. K. Alpert, N.
H. Damrauer, W. B. Doriese, S. M. Fatur, J. W. Fowler, G.
C. Hilton, and R. Jimenez et al., Ultrafast Time-Resolved
Hard X-Ray Emission Spectroscopy on a Tabletop, Phys.
Rev. X 6, 031047 (2016).

[9] E. N. Grossman, D. G. McDonald, and J. Sauvageau, Far-
infrared kinetic-inductance detectors, IEEE Trans. Magn.
27, 2677 (1991).

[10] N. Bluzer and M. G. Forrester, Superconducting quantum
detectors, Opt. Eng. 33, 697 (1994).

[11] A. Sergeev, V. Mitin, and B. Karasik, Ultrasensitive hot-
electron kinetic-inductance detectors operating well below
the superconducting transition, Appl. Phys. Lett. 80, 817
(2002).

[12] F. Giazotto, T. T. Heikkilä, G. P. Pepe, P. Helistö, A. Luuka-
nen, and J. P. Pekola, Ultrasensitive proximity josephson
sensor with kinetic inductance readout, Appl. Phys. Lett.
92, 162507 (2008).

[13] J. Govenius, R. Lake, K. Tan, and M. Möttönen, Detec-
tion of Zeptojoule Microwave Pulses Using Electrothermal
Feedback in Proximity-Induced Josephson Junctions, Phys.
Rev. Lett. 117, 030802 (2016).

[14] P. K. Day, H. G. LeDuc, B. A. Mazin, A. Vayonakis,
and J. Zmuidzinas, A broadband superconducting detector
suitable for use in large arrays, Nature 425, 817 (2003).

[15] R. C. Jones, The ultimate sensitivity of radiation detectors,
JOSA 37, 879 (1947).

[16] A. Varpula, A. V. Timofeev, A. Shchepetov, K. Grigoras, J.
Hassel, J. Ahopelto, M. Ylilammi, and M. Prunnila, Ther-
moelectric thermal detectors based on ultra-thin heavily
doped single-crystal silicon membranes, Appl. Phys. Lett.
110, 262101 (2017).

[17] D. V. Vechten, K. Wood, G. Fritz, A. Gyulamiryan, V.
Nikogosoyan, N. Giordano, T. Jacobs, and A. Gulian,

Thermoelectric single-photon detectors: Isotropic see-
beck sensors, in Eighteenth International Conference on
Thermo- electrics, IEEE, Baltimore, (1999).

[18] Patent pending, filing number IT 102017000107007.
[19] A. Ozaeta, P. Virtanen, F. Bergeret, and T. Heikkilä, Pre-

dicted Very Large Thermoelectric Effect in Ferromagnet-
Superconductor Junctions in the Presence of a Spin-
Splitting Magnetic Field, Phys. Rev. Lett. 112, 057001
(2014).

[20] P. Machon, M. Eschrig, and W. Belzig, Nonlocal Thermo-
electric Effects and Nonlocal Onsager Relations in a Three-
Terminal Proximity-Coupled Superconductor-Ferromagnet
Device, Phys. Rev. Lett. 110, 047002 (2013).

[21] S. Kolenda, M. J. Wolf, and D. Beckmann, Observation
of Thermoelectric Currents in High-Field Superconductor-
Ferromagnet Tunnel Junctions, Phys. Rev. Lett. 116,
097001 (2016).

[22] F. S. Bergeret, M. Silaev, P. Virtanen, and T. T. Heikkila,
Nonequilibrium effects in superconductors with a spin-
splitting field, arXiv:1706.08245.

[23] F. Giazotto, P. Solinas, A. Braggio, and F. Bergeret,
Ferromagnetic-Insulator-Based Superconducting Junctions
as Sensitive Electron Thermometers, Phys. Rev. Appl. 4,
044016 (2015).

[24] The system presented in Fig. 1 is perhaps the sim-
plest realization that does not require an external mag-
netic field. Alternatively, the upper superconductor-
insulator-ferromagnet part could be replaced by either
superconductor–ferromagnetic insulator–normal metal or
superconductor-ferromagnetic insulator–superconductor,
where the ferromagnetic insulator would act as the spin
filter. In that case it would also be possible to remove the
lower ferromagnetic insulator

[25] J. Moodera, X. Hao, G. Gibson, and R. Meservey, Electron-
Spin Polarization in Tunnel Junctions in Zero Applied Field
with Ferromagnetic Eus Barriers, Phys. Rev. Lett. 61, 637
(1988).

[26] P. Tedrow, J. Tkaczyk, and A. Kumar, Spin-Polarized Elec-
tron Tunneling Study of an Artificially Layered Supercon-
ductor with Internal Magnetic Field: Euo-al, Phys. Rev.
Lett. 56, 1746 (1986).

[27] A. M. Clogston, Upper Limit for the Critical Field in Hard
Superconductors, Phys. Rev. Lett. 9, 266 (1962).

[28] J. Alexander, T. Orlando, D. Rainer, and P. Tedrow, Theory
of fermi-liquid effects in high-field tunneling, Phys. Rev. B
31, 5811 (1985).

[29] R. Meservey and P. Tedrow, Spin-polarized electron tunnel-
ing, Phys. Rep. 238, 173 (1994).

[30] J. S. Moodera and R. H. Meservey, in Magnetoelectronics,
edited by M. Johnson (Academic Press, San Diego, 2004),
p. 151.

[31] J. S. Moodera, T. S. Santos, and T. Nagahama, The phe-
nomena of spin-filter tunnelling, J. Phys. Condens. Matter
19, 165202 (2007).

[32] We choose the convention where the heat currents are into
the absorber, and charge currents are out of it. Alternative
conventions lead to some sign changes in the equations.

[33] Note that zT is not the zero-frequency limit of ZT, but
should be considered as a definition.

[34] F. Giazotto, T. T. Heikkilä, A. Luukanen, A. M. Savin, and
J. P. Pekola, Opportunities for mesoscopics in thermometry

034053-10



THERMOELECTRIC RADIATION DETECTOR... PHYS. REV. APPLIED 10, 034053 (2018)

and refrigeration: Physics and applications, Rev. Mod.
Phys. 78, 217 (2006).

[35] P. Virtanen, T. Heikkilä, and F. Bergeret, Stimulated quasi-
particles in spin-split superconductors, Phys. Rev. B 93,
014512 (2016).

[36] E. Strambini, V. Golovach, G. De Simoni, J. Mood-
era, F. Bergeret, and F. Giazotto, Revealing the magnetic
proximity effect in eus/al bilayers through superconduct-
ing tunneling spectroscopy, Phys. Rev. Mater. 1, 054402
(2017).

[37] B. S. Karasik and R. Cantor, Demonstration of high opti-
cal sensitivity in far-infrared hot-electron bolometer, Appl.
Phys. Lett. 98, 193503 (2011).

[38] A. D. Beyer, M. Kenyon, P. Echternach, B. Bumble,
M. Runyan, T. Chui, C. Bradford, W. Holmes, and
J. Bock, in Millimeter, Submillimeter, and Far-Infrared

Detectors and Instrumentation for Astronomy VI (Interna-
tional Society for Optics and Photonics, 2012), Vol. 8452,
p. 84520G.

[39] T. Suzuki, P. Khosropanah, M. Ridder, R. Hijmering, J.
Gao, H. Akamatsu, L. Gottardi, J. van der Kuur, and B.
Jackson, Development of ultra-low-noise tes bolometer
arrays, J. Low Temp. Phys. 184, 52 (2016).

[40] N. Poli, J. P. Morten, M. Urech, A. Brataas, D. B. Havi-
land, and V. Korenivski, Spin Injection and Relaxation in a
Mesoscopic Superconductor, Phys. Rev. Lett. 100, 136601
(2008).

[41] N. Beev and M. Kiviranta, Fully differential cryogenic
transistor amplifier, Cryogenics 57, 129 (2013).

[42] A. Svilans, M. Leijnse, and H. Linke, Experiments on the
thermoelectric properties of quantum dots, C. R. Phys. 17,
1096 (2016).

034053-11



IV

MEAN-FIELD THEORY FOR SUPERCONDUCTIVITY IN
TWISTED BILAYER GRAPHENE

by

T.J. Peltonen, R. Ojajärvi, and T.T. Heikkilä 2018

Physical Review B 98, 220504(R), doi:10.1103/PhysRevB.98.220504

Reproduced with permission. Copyright 2018 American Physical Society.

https://doi.org/10.1103/PhysRevB.98.220504


PHYSICAL REVIEW B 98, 220504(R) (2018)
Rapid Communications

Mean-field theory for superconductivity in twisted bilayer graphene

Teemu J. Peltonen, Risto Ojajärvi, and Tero T. Heikkilä
Department of Physics and Nanoscience Center, University of Jyvaskyla, P.O. Box 35 (YFL), FI-40014 University of Jyvaskyla, Finland

(Received 11 May 2018; published 10 December 2018)

Recent experiments show how a bilayer graphene twisted around a certain magic angle becomes super-
conducting as it is doped into a region with approximate flat bands. We investigate the mean-field s-wave
superconducting state in such a system and show how the state evolves as the twist angle is tuned, and as a
function of the doping level. We argue that part of the experimental findings could well be understood to result
from an attractive electron-electron interaction mediated by electron-phonon coupling, but the flat-band nature
of the excitation spectrum also makes the superconductivity quite unusual. For example, as the flat-band states
are highly localized around certain spots in the structure, also the superconducting order parameter becomes
strongly inhomogeneous.

DOI: 10.1103/PhysRevB.98.220504

I. INTRODUCTION

Experiments on strongly doped graphene [1–4] have shown
that with proper preparations, graphene can be driven to the
superconducting state. Such experiments indicate that the lack
of superconductivity in undoped graphene is not necessarily
due to a lack of an (effective) attractive electron-electron
interaction with strength λ that would drive graphene to be
superconducting, but rather the small density of states (DOS)
close to the Dirac point. Technically, in contrast to the Cooper
instability for metals taking place with arbitrarily small λ,
superconductivity in an electron system with a massless Dirac
dispersion ε2

p = v2
F p2 and an energy cutoff εc has a quantum

critical point [5] λc = πh̄2v2
F /(2εc ) such that for λ < λc,

mean-field superconductivity does not show up at any tem-
perature. From this perspective, doping to a potential μ leads
to an increased DOS, and thereby to a nonvanishing critical
temperature Tc ≈ |μ| exp[−(λc/λ − 1)εc/|μ| − 1]. An alter-
native approach would be to change the spectrum and increase
the density of states close to the Dirac point. The extreme
limit would be an approximately flat band of size �FB, where
the group velocity tends to zero. In such systems the critical
temperature is a linear function of the coupling strength [6,7],
Tc = λ�FB/π2, and a quite high Tc can be expected even
without extra doping [8–13].

Recent observations [14] of superconductivity in twisted
bilayer graphene [TBG, see Fig. 1(a)] take place in systems
where theoretical studies have predicted the occurrence of
asymptotically flat bands [15–25]. There have been many
suggestions of an unconventional superconducting state both
for regular graphene [26,27] and for TBG [24,28–36], typ-
ically directly related with the Coulomb interaction, and in
some cases related with nonlocal interactions. Here, we study
the mean-field theory of superconductivity in such systems,
starting instead from the hypothesis that the observations
could be explained with the conventional electron-phonon
mechanism from the flat-band perspective [37]. This hy-
pothesis is justified on the grounds that the relative strength
and the screening of attractive and repulsive interactions are

uncertain. Furthermore, phonon-mediated attraction is consid-
ered a viable mechanism for the observed superconductivity
on doped graphene [1–4,38].

In particular, we use the model of Refs. [15,20] for the
spectrum of the twisted bilayer, add an on-site (leading to
s-wave superconductivity) attractive interaction of strength λ,
and evaluate the mean-field order parameter profile. We find
that the order parameter, and along with it the mean-field
critical temperature, have a similar nonmonotonous behavior
with respect to the twist angle as in the experiments. We also
predict the behavior of the density of states in the supercon-
ducting state, resulting from the peculiarities of the flat-band
eigenstates and from the position dependence of the supercon-
ducting order parameter [Fig. 1(b)]. Even if our pairing inter-
action is quite simple, the resulting energy-dependent density

FIG. 1. (a) Twisted bilayer graphene and its moiré superlattice.
The upper layer is rotated by an angle θ relative to the lower layer. (b)
Position dependence of the self-consistent �, shown here at T = 0
for the magic angle θ = 0.96◦ and λ = 5 eV a2. In both figures also
a line passing through high-symmetry points with AB, AA, and BA
stacking is shown.

2469-9950/2018/98(22)/220504(6) 220504-1 ©2018 American Physical Society
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of states is quite unusual. In addition, we show how doping
away from the flat band eventually destroys superconductivity.

II. NORMAL STATE

We describe the normal state of TBG with the model of
Refs. [15,20]. With this model, we can describe the twist
angles θ at which the lattices L and Lθ of the two graphene
layers are commensurate, so that the system as a whole is
periodic in the moiré superlattice SL. Here, we study only
the simple commensurate structures, characterized by a single
rotation parameter m ∈ N, for which the rotation angle is
given by

cos(θ ) = 3m2 + 3m + 1/2

3m2 + 3m + 1
. (1)

According to Ref. [20], these structures approximate arbitrary
commensurate structures. The primitive vectors of the super-
lattice SL are given by t1 = ma1 + (m + 1)a2, t2 = −(m +
1)a1 + (2m + 1)a2, and the primitive vectors of the re-
ciprocal superlattice SL∗ are G1 = 4π

3||t1||2 [(3m + 1)a1 + a2],

G2 = 4π
3||t1||2 [−(3m + 2)a1 + (3m + 1)a2], where the lattice

constant of the superlattice is ||t1|| = √
3m2 + 3m + 1 a and

the graphene lattice primitive vectors are a1 = (1,
√
3)a/2

and a2 = (−1,
√
3)a/2 with a the lattice constant [15]. In the

following, we assume that G ∈ SL∗ belongs to the reciprocal
superlattice, k ∈ R2/SL∗ to the first Brillouin zone of the su-
perlattice, and also that the corresponding sums and integrals
are restricted to these sets.

In the normal state, TBG is described by a low-energy
effective Hamiltonian [15]

Hρk(G, G′) =
(
[h̄vF σ ρ · (k + G + ρ�K/2) − μ]δG,G′ t

ρ

⊥(G − G′)

t
ρ

⊥(G′ − G)† [h̄vF σ
ρ
θ · (k + G − ρ�K/2) − μ]δG,G′

)
, (2)

where the matrix structure corresponds to the layer structure
and ρ ∈ {+,−} is the valley index with + corresponding
to K and − to K ′ = −K . Furthermore, each entry is a
2 × 2 matrix due to the sublattice structure in graphene. The
diagonal terms in Eq. (2) describe the Dirac dispersion in the
two layers and are diagonal also in G. Here, σ ρ = (ρσx, σy ).
For the second layer we include the rotation θ so that σ

ρ
θ =

e+iθσz/2σ ρe−iθσz/2. �K = K θ − K is the relative shift of the
Dirac cones between the layers. The coordinates correspond
to those of layer 1 as measured from the K point, but shifted
with a vector +�K/2 for layer 1 and −�K/2 for layer 2.
With this choice, the relative momentum k on both layers
corresponds to the same absolute momentum. Furthermore, μ
is the chemical potential describing the effect of doping, here
taken to be equal in both layers.

The off-diagonal terms in the Hamiltonian describe the
coupling between the two layers. The matrix element at valley
ρ between a state in sublattice α in layer 1 and a state in
sublattice β in layer 2 is

t
ρ,αβ

⊥ (G) = 1

N

∑
r

e−iG·(r+δαBδ1 )eiρ K θ ·δαβ (r )t⊥[δαβ (r )], (3)

where δαβ (r ) is the horizontal displacement vector between
the site at r , sublattice α in layer 1, and the nearest neighbor at
sublattice β in layer 2. δ1 denotes one of the nearest-neighbor
vectors connecting the graphene A and B sublattices. The
sum is over the graphene A sublattice sites in the super-
lattice unit cell, and N denotes the number of these sites.
For the interlayer hopping energy t⊥(δ) we use the same
Slater-Koster parametrization as in Ref. [15]. Furthermore,
we approximate the interlayer coupling by only including the
matrix elements with G ∈ {0,−G1,−G1 − G2} (valley K ) or
G ∈ {0, G1, G1 + G2} (valley K ′), since they are an order of
magnitude larger than the rest.

For θ ≈ 1◦, the electronic dispersion becomes almost flat
[19] and the group velocity dεp/dp tends towards zero.
In Fig. 2 we plot the resulting normal-state dispersion

[Figs. 2(a)–2(c)] and the (local and total) density of states
[Figs. 2(d)–2(i)] close to this “magic” angle. The exact value
of this magic angle depends on the details of the hopping
model. In our case it is around 0.96◦, i.e., somewhat lower
than what was found in Ref. [19]. However, the qualitative
behavior of the local density of states (LDOS) is rather similar
to the previous models. In particular, there are two closely
spaced DOS peaks signifying the flattening of the bands.
The local density of states is plotted along the line shown in
Fig. 1, including three high-symmetry points with AB, AA,
and BA stacking. These correspond to r = −1/3, 0, and 1/3,
respectively.

III. SUPERCONDUCTING STATE

We assume that there is a local attractive interaction
λσ1σ2 (r1, r2) = δσ̄1σ2δ(r1 − r2)λ with strength λ, which re-
sults [7] in an order parameter �αi (r ) depending only on the
center-of-mass coordinate r (and sublattice α and layer i).
On the other hand, the classification of the order parameter
symmetries to s, d, f , etc., is based only on the relative
coordinate r1 − r2, which in our model is always zero. Thus
the symmetry is purely s wave.

We do not consider the specific nature of the pairing
interaction and for the purposes of this Rapid Communication
it can be mediated by phonons or other bosonic modes.
This model disregards the retardation effects due to such a
mechanism, but is a valid approximation to the more general
Eliashberg approach for weak coupling [39,40]. That theory
also shows that a direct Coulomb interaction, typically mod-
eled via the Hubbard model, is less effective in reducing �

than what could be naively expected, and should be included
in the low-energy self-consistency equation as a Coulomb
pseudopotential [7,40,41] u∗ = u/(1 + uα), where u = Ua2,
U is the Hubbard interaction constant, and α is a constant
measuring the amount of renormalization due to the high-
energy bands above the electron-phonon cutoff frequency
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FIG. 2. (a)–(c) Normal-state dispersion, (d)–(f) local, and (g)–(i) total density of states for three different angles near the magic angle
θ = 0.96◦ in the normal state. The bottom row (j)–(l) shows the corresponding total density of states in the superconducting state, in the case
T = 0 and λ = 5 eV a2 and when doped to the point μ0 marked as a dashed line in (g)–(i).

ωD . For TBG we find from a simplified model [7] α ≈
0.2 eV−1 a−2. Thus, a combination of electron-phonon and
Coulomb interactions leads to an effective interaction strength
λeff = λ − u∗. As long as λeff > 0, there is a possibility for a
superconducting state even if u > λ. For example, for U =
5 eV, u∗ = 2.5 eV a2 is in the same regime as the value of
λeff in Figs. 3–5. Note that in what follows, we refer to this
λeff simply as λ.

Within a mean-field theory in the Cooper channel we find
a self-consistency equation for a local superconducting order

parameter [7]. Assuming that this order parameter shares
the periodicity of the moiré superlattice, we find the self-
consistency equation

�αi (G) = λ
∑
ρ,b

∑
G′

∫
dk

(2π )2
tanh

(
Eρbk

2kBT

)

× uρbk,αi (G′)v∗
ρbk,αi (G

′ − G), (4)

where the band sum b is calculated over the positive energy
bands, α ∈ {A,B} is the sublattice index, i ∈ {1, 2} is the
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FIG. 3. Maximum of the position-dependent superconducting
order parameter �(r ) at T = 0 as a function of (a) the rotation angle
and (b) the coupling strength for θ = 0.96◦. In (b) we also show how
doping to the DOS peak affects the small-λ behavior.

layer index, and uρbk and vρbk are the eigenvectors of the
Bogoliubov–de Gennes equation,

∑
G′

(
Hρk(G, G′) �(G − G′)

�∗(G′ − G) −Hρk(G, G′)

)(
uρbk(G′)

vρbk(G′)

)

= Eρbk

(
uρbk(G)

vρbk(G)

)
. (5)

We solve this self-consistent order parameter with a few
values of the interaction constant λ and for a few different
twist angles θ close to the magic angle. We include in the
sum the energy levels closest to zero energy. We have checked
that the results are not sensitive to the value of the energy
cutoff, which we implement as a cutoff in the b and G
sums. For comparison between different angles, we measure
the chemical potential from μ0, corresponding to the charge
neutrality and marked in Figs. 2(g)–2(i) with a dashed line,
by writing μ = μ0 + δμ. The chemical potential shift μ0 is
caused by the interlayer coupling. Unless otherwise stated,
all the results concern the behavior at δμ = 0. The resulting
total density of states is plotted in Figs. 2(j)–2(k), to allow
for a comparison to the normal state. The corresponding local
density of states (not shown) has the same localized structure
as in the normal state, but the energy dependence is modified
similarly as the total DOS. The effect of finite temperature
on the superconducting DOS and LDOS happens solely via
�(T ), which is calculated below.

The maximum of the position-dependent �, which accord-
ing to numerics is equal in both layers and sublattices, is
plotted in Fig. 3(a) for different values of the twist angle
and for four different coupling strengths. The precise angle
for the maximum depends a bit on the chosen coupling
strength. Moreover, max(�) is almost a linear function of λ

[see Fig. 3(b)], as appropriate for a flat-band superconductor
[6]. This linearity is even more pronounced when the system
is doped to the DOS peak at δμ ≈ 0.26 meV. Far from the
magic angle, the Fermi speed vF (θ ) increases so that the
chosen λ is below the critical value λc. This is why � vanishes
for angles θ � 1.1◦.

FIG. 4. max(�) as a function of temperature in the case θ =
0.96◦ for two values of λ, showing the approximate linear relation
kBTc ≈ 0.25max[�(T = 0)] for the critical temperature. The dots
are the calculated values and the lines are a guide to the eye.

We can analyze the resulting magnitude of � based on
a flat-band result (assuming a position-independent � and
Eρbk ≈ � for an extreme flat band) according to which [7]
� = λ�FB/π2, where �FB ≈ �moiré = 8π2/(

√
3||t1||2). This

yields � = 1.3 × 10−3λ/a2 for m = 34 corresponding to the
magic angle. For comparison, a linear fit to the linear region in
Fig. 3(b) gives max(�) = −0.2 meV + 1.0 × 10−3λ/a2. The
magnitude hence agrees very well with this simple model.
Note that the precise values of these parameters especially for
small λ depend on the exact value of doping as shown below.

In Fig. 4 we show the temperature dependence of � for
m = 34, from which we may infer the approximate linear
relation kBTc ≈ 0.25max[�(T = 0)] for the critical temper-
ature. The prefactor is somewhat lower than for an extreme
flat band with a constant �, for which [7] kBTc = �/2.
The difference is most likely explained by the nonvanishing
bandwidth and the position-dependent � of our model. The
maximum critical temperatures for the models calculated in
Fig. 3(a) range from 3 to about 20 K. The lower end of these
values, calculated with λ = 1 eV a2, is thus quite close to that
found in Ref. [14].

We stress that the above result is the mean-field criti-
cal temperature; the observed resistance transition is most
likely rather a Berezinskii-Kosterlitz-Thouless (BKT) tran-
sition [42,43]. Therefore, the mean-field Tc gives an upper
bound for the measured transition temperature. Furthermore,
even the BKT transition temperature can be calculated from
the mean-field superfluid weight [44]. The mean-field results
are also relevant in that the DOS and LDOS can be experimen-
tally measured by tunneling experiments and this depends on
the structure and magnitude of mean-field � at temperatures
below the BKT transition. Note that despite the flatness of the
bands, the supercurrent can be nonvanishing in the case when
the eigenstate Wannier functions overlap [45], as is the case
for TBG.

Besides θ dependence, we can check how doping away
from the center of the two DOS peaks affects the super-
conducting state. In Fig. 5(a) we plot the order parameter

220504-4



MEAN-FIELD THEORY FOR SUPERCONDUCTIVITY IN … PHYSICAL REVIEW B 98, 220504(R) (2018)

FIG. 5. Effects of electrostatic doping μ = μ0 + δμ for θ =
0.96◦. (a) max(�) vs chemical potential for various values of λ at
T = 0. (b) Charge density in the normal state at T = 0 as a function
of chemical potential. The units of the charge density n are e/Amoiré,
where e is the electron charge and Amoiré is the area of the moiré unit
cell. In both figures the vertical dashed lines mark the location of the
DOS peaks at δμ ≈ ±0.26 meV.

max[�(δμ)] for different values of the doping δμ as measured
from the charge neutrality point. Close to the magic angle,
for λ � 1 eV a2 the energy scale of superconductivity exceeds
that of the normal-state dispersion, and hence the only effect
of the doping is to move away from the flat-band regime,
suppressing superconductivity [46]. For smaller values of λ,
max(�) is smaller than the bandwidth, and hence doping to
the DOS peaks enhances superconductivity. Especially for
λ � 0.3 eV a2 there are separate superconducting domes with
doping levels close to the DOS peaks, which resembles the
phase diagram in Ref. [14] for hole (n < 0) doping, apart
from the insulating state at n ≈ −2e/Amoiré. For electron
doping (n > 0), superconductivity is absent in the experi-
ment, whereas our model is electron-hole symmetric. Since
Ref. [14] uses charge density n as a unit for the doping
level while our theory is formulated in terms of the chemical
potential μ, for easier comparison we show the dependence
between the charge density [7] and chemical potential in
Fig. 5(b). From the figure we find that the DOS peaks cor-
respond to approximately ±2 extra electrons per moiré unit
cell.

IV. CONCLUSIONS

Concluding, we find that a BCS-type mean-field model
with a relatively weak attractive interaction constant possibly
even due to electron-phonon coupling can explain the occur-
rence of superconductivity in twisted bilayer graphene. We
also make a number of predictions concerning the mean-field
superconducting state, in particular, the density of states and

doping dependence. Our results form hence a checkpoint for
further studies, that use a simplified picture of the TBG flat-
band states or consider mechanisms beyond the one in this
Rapid Communication. Our results could also have relevance
in explaining the observations of superconductivity in twisted
interfaces of graphite [47–49].

Our mean-field theory fails to explain the insulator state
[50] found experimentally in TBG at n ≈ ±2e/Amoiré as well
as the lack of superconductivity for electron doping [14,51].
However, the latter of these cannot be seen as a drawback
of our model as in another experiment [52] some samples
were found to be superconducting also on the electron-doped
side, and thus it clearly depends on the samples and on the
experimental setup. Regarding the insulator phase, it is plau-
sible that the mean-field theory fails when the doping level
corresponds to an integer number of electrons per superlattice
unit cell. The biggest discrepancy is, however, most likely
caused by the possible dependence of λeff on the charge den-
sity, because the effect of the Coulomb interaction depends on
charge screening. Within the flat-band model of Ref. [40], the
case λeff > 0 corresponds to a superconducting state, whereas
for λeff < 0 an insulating antiferromagnetic state is realized.
Thus, by taking the chemical potential dependence of λeff into
account, it may be possible to describe both superconducting
and insulating phases found in the experiment [14]. A detailed
description would require generalizing Refs. [40,53] to the
TBG case.

We point out that our simple BCS model disregards the
strain effects in moiré bands, as well as the possible depen-
dence of the interaction constant on the twist angle and doping
level. Whereas such mechanisms may play a role in TBG, we
believe that the simplest BCS-type mean-field superconduc-
tivity should also be considered as a viable effective model
of the observations. Nevertheless, even in this case supercon-
ductivity would be highly exceptional, for example, because
it can be so strongly controlled by electrostatic doping.

Note added. Recently, we became aware of Ref. [54],
which addressed a similar BCS-type model as here, obtaining
consistent results with this Rapid Communication. In addition
to local interactions leading to s-wave superconductivity, they
considered also nonlocal interactions opening the possibility
to d-wave superconductivity. They found out that without
including Coulomb repulsion the s-wave channel is more
stable, having a higher Tc.
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Here we present the details of calculating the self-consistent order parameter of the twisted bilayer
graphene. We also derive an expression that relates the charge density to the dispersion that we
calculate. In addition, we present a simplified model which connects a given dispersion relation to the
value of the superconducting gap. In particular, this shows why pristine graphene needs to be very
strongly doped to find any signs of superconductivity, whereas a system with an approximate flat
band of the size of the first Brillouin zone of the moiré superlattice can show superconductivity with
the observed critical temperature even for quite weak effective attractive interaction. We furthermore
present a way to include the Coulomb interactions by calculating the Coulomb pseudopotential in
a simplified model.

I. DERIVATION OF THE SELF-CONSISTENCY EQUATION

The Hamiltonian for a local attractive interaction of strength λ > 0 is

Hint = −λ

2

∑
σ,α,i

∫
dr ψ†

σ,αi(r)ψ
†
σ̄,αi(r)ψσ̄,αi(r)ψσ,αi(r), (S1)

where ψσ,αi(r) is the annihilation operator for spin σ at position r, layer i ∈ {1, 2}, and sublattice α ∈ {A,B}. Doing
the mean field approximation in the Cooper channel, assuming only intervalley coupling, and transforming to the
valley operators by ψσ,αi(r) =

∑
ρ e

iρK·rψσρ,αi(r) the interaction Hamiltonian becomes

Hint =
1

2

∑
σ,ρ,α,i

∫
drΔσ,αi(r)ψ

†
σρ,αi(r)ψ

†
σ̄ρ̄,αi(r) + h.c. +

1

2λ

∑
σ,α,i

∫
dr |Δσ,αi(r)|2, (S2)

where the local superconducting order parameter is Δσ,αi(r) = −λ
∑

ρ 〈ψσ̄ρ̄,αi(r)ψσρ,αi(r)〉. Then by moving to the
Nambu space and doing the Bogoliubov transformation we find that the self-consistency equation for the up-spin
Δαi := Δ↑,αi becomes

Δαi(r) = λ
∑
ρ,b

∫
dk

(2π)2
tanh

(
Eρbk

2kBT

)
uρbk,αi(r)v

∗
ρbk,αi(r), (S3)

where uρbk,αi is the (α, i)-component of the spinor uρbk and the b sum goes over the positive energy bands. The
spinors uρbk and vρbk are determined by solving the Bogoliubov–de Gennes equation

(Hρ(r) Δ(r)
Δ∗(r) −Hρ(r)

)(
uρbk(r)
vρbk(r)

)
= Eρbk

(
uρbk(r)
vρbk(r)

)
, (S4)

where Δ is a diagonal 4 by 4 matrix including the components Δαi. Substituting the Bloch wave expansion

(
uρbk(r)
vρbk(r)

)
= eik·r

∑
G′

eiG
′·r

(
uρbk(G

′)
vρbk(G

′)

)
(S5)

for the eigenstates into Eq. (S4) and assuming Δ(r) to be periodic in the superlattice, we find the Fourier space
Bogoliubov–de Gennes equation [Eq. (5) in the main text] and the Fourier space version of the self-consistency
equation [Eq. (4) in the main text].
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II. CHARGE DENSITY

The non-coupled system of twisted bilayer graphene is charge neutral at the chemical potential μ = 0. The charge
density due to the electrons at that potential is

n0 =
2e

V

∑
b∈B,k

f0(ε0,bk) =
2e

V

∑
b∈Ω,k

f0(ε0,bk) + nhigh, with nhigh =
2e

V

∑
b∈B\Ω,k

f0(ε0,bk) (S6)

where e is the electron charge and the factor of 2 comes from the spin. We formulate the calculation so that the k-sum
goes over the superlattice Brillouin zone L∗

BK/SL∗, B is the set of bands and ε0,bk is the non-interacting dispersion.
f0 is the Fermi-Dirac distribution function at zero temperature. In the second step we introduce a cutoff by dividing
the sum over the bands into two terms; to a sum over a set of low-energy bands Ω and to a sum over high-energy
bands B\Ω.

In the presence of interlayer coupling, (normal state) dispersion changes to εbk. The number of bands stays constant
and if the interactions, temperature and chemical potential are small compared to the energy of the lowest energy
band (in absolute value) of B\Ω in the non-interacting case, the index set B can be chosen so that the bands in B\Ω
that were full (empty) in the non-interacting case, are still full (empty) in the interacting case. The interacting charge
density is

ñ(μ) =
2e

V

∑
b∈B,k

f(εbk − μ) =
2e

V

∑
b∈Ω,k

f(εbk − μ) + nhigh, (S7)

where f is the Fermi-Dirac distribution at temperature T and nhigh has the the same value as in Eq. (S6). The above
has been formulated in the non-linearized theory. To calculate the excess charge relative to the charge neutrality
point in the linearized theory, we split the bands between the two valleys and find

n(μ) := ñ(μ)− n0 =
2e

V

∑
ρ,b∈Ω,k

[f(ερbk − μ)− f0(ε0,ρbk)] = 2e
∑
ρ,b∈Ω

∫
dk

(2π)2
[f(ερbk − μ)− f0(ε0,ρbk)] , (S8)

where n is the excess charge density and Ω is now the set of bands in one valley.

The charge neutrality point μ∗ is determined from the equation n(μ∗) = 0. It is shown for different twist angles in
Figs. 2(g–i) of the main text, and is always located in the middle between the two DOS peaks.

III. SIMPLIFIED MODEL OF THE SUPERCONDUCTING STATE

The notion of weak or absent electron–phonon mediated superconductivity in pristine graphene is widely known.
Here we reconcile this notion with our results claiming that a quite simple BCS-style model could describe the
observations of superconductivity in twisted bilayer graphene. These results are not new, but we follow especially the
treatments in Refs. 1 and 2 and adopt to the notation of the main paper, along with some estimates.

We start from the generic self-consistency equation for the mean-field order parameter Δ. If Δ is position indepen-
dent, the Bogoliubov–de Gennes equation can be solved to yield

Δ = 4λ

∫ kc dk

(2π)2
Δ

Ek
tanh

(
Ek

2kBT

)
, (S9)

where the prefactor 4 comes from summation over the valley and band indices, where in the band sum we include
only the doubly degenerate lowest positive energy band. The cutoff kc is specified more below. We moreover assume
that Ek =

√
ε2k +Δ2. Here and below, without loss of generality we assume Δ = |Δ| ≥ 0. Our idea is to solve the

self-consistency equation in three cases: (i) at the Dirac point for a Dirac dispersion ε2k = �
2v2F k

2, (ii) for a Dirac
dispersion at non-zero doping μ, i.e., ε2k = (�vF k − μ)2, and (iii) for a flat band with and without doping, εk ≈ μ for
k ∈ ΩFB. In each case we have the normal-state solution Δ = 0, which we exclude by dividing both sides in Eq. (S9)
by Δ.

Note that Eq. (S9) does not represent the full self-consistency equation solved in the main text. Rather, we use it
here simply to provide estimates of the behavior of Δ in various limits.
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A. Linear dispersion, no doping

Far away from the magic angle, the twisted bilayer behaves as if the two graphene layers would be almost uncoupled.
This means that the low-energy dispersion exhibits two separate copies of the graphene Dirac dispersion. Inserting
an ultraviolet energy cutoff εc = �vF kc and performing the integral for the T = 0 gap function, the self-consistency
equation goes to the form

π�2v2F
2λ

= −Δ+
√
Δ2 + ε2c (S10)

or

Δ =
π�2v2F

4

λ2 − λ2
c

λλ2
c

, (S11)

where λc = π�2v2F /(2εc). Since Δ ≥ 0, this solution makes sense only if λ > λc, and otherwise the only possible
solution is the normal state Δ = 0.

In pristine graphene, the critical interaction strength can be written also in terms of the nearest-neighbour hopping
term3 γ0 ≈ 3 eV. Namely, within a nearest-neighbour tight-binding model the Fermi speed of graphene is vF =√
3γ0a/(2�), where a is the graphene lattice constant. We hence get

λc =
3π

8

γ0
εc

γ0a
2. (S12)

If the attractive interaction results from electron–phonon coupling, a typical cutoff energy could be of the order of the
Debye energy4 200meV. In this case λc ≈ 50 eVa2, 5 to 50 times larger than the values of λ used in our work. 100 to
200 meV is also the range of the maximum cutoff energy that we have used in our numerical results when including
the contribution from higher bands. Even if the cutoff εc would be of the order of γ0, the resulting λc would be one
order of magnitude larger than the smallest λ used in our results.

B. Linear dispersion, with doping

Let us try to reconcile the observations of superconductivity in Li or Ca doped graphene with the above idea. These
cases are more accurately described by5 within the Eliashberg theory. Here we just show in which sense doping fits
into the above picture. Assuming εk = ±�vF k−μ and Δ < εc, and cutting the integral at εk = εc the self-consistency
equation at T = 0 becomes1

π�2v2F
2λ

=
√

Δ2 + ε2c −
√
Δ2 + μ2 + |μ| ln |μ|+

√
Δ2 + μ2

Δ
. (S13)

Let us assume that Δ � |μ|, εc so that we can expand the right hand side in Δ. In this case we find an analytic
solution for Δ,

Δ = 2|μ| exp
[
− εc
|μ|

(
λc

λ
− 1

)
− 1

]
. (S14)

Let us assume a cutoff energy εc = 200meV and a coupling strength λ = λc/22 (corresponding to about 5 eVa2

with the above estimates). In this case, with μ = 0.7 eV we would get Δ = 1.3meV. This corresponds to a critical
temperature of 9K, in the same range as the one that was measured in Li or Ca doped graphene.6–9

C. Flat band estimate

Let us now make similar estimates for the flat-band case of the moiré superlattice. In this case, we assume that Δ
is larger than the bandwidth of the lowest-energy band. Within that band, we can hence approximate Ek ≈ Δ in
Eq. (S9) and at T = 0 the integral is over a constant function. As a result, we get

ΔFB =
λ

π2
ΩFB =

8λ√
3(3m2 + 3m+ 1)a2

, (S15)
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where ΩFB = 8π2/[
√
3(3m2 + 3m+ 1)a2] is the area of the first Brillouin zone of the moiré superlattice. Within the

model adapted in the main text, the magic angle is around m ≈ 34, in which case we would get ΔFB = 1.3×10−3λ/a2.
In Fig. 3b of the main text, the solid line has a slope of 1.0× 10−3λ/a2, i.e., very close to this simple estimate.

The temperature dependent Δ in the flat-band case is obtained by solving

Δ = ΔFB tanh

(
Δ

2kBT

)
. (S16)

At the critical temperature, Δ → 0, and we can hence expand the right hand side to the linear order in Δ/(2kBTc).
This directly yields kBTc = ΔFB/2.

In the case of a non-zero potential μ, we can use Ek ≈
√

μ2 +Δ2 in the self-consistency equation. It then becomes
(for Δ > 0)

Δ = ΔFB
Δ√

μ2 +Δ2
, or Δ =

√
Δ2

FB − μ2. (S17)

In this case superconductivity is hence suppressed when the absolute value of the chemical potential is larger than
ΔFB.

IV. SIMPLIFIED MODEL FOR COULOMB PSEUDOPOTENTIAL

Coulomb interaction differs from the electron–phonon interaction due to the fact that photons are almost instan-
taneous, whereas for phonon-mediated interaction we have to take the retardation into account. Usually in BCS
theory, and also in our model, we approximate the retardation by imposing an energy cutoff at the maximum phonon
frequency ωD in the self-consistency equation. For Coulomb interaction there is no physical cutoff, and consequently,
we cannot operate in purely low-energy regime. The high energy states do contribute logarithmically to Δ at low
energies.

The proper way to formulate the low-energy theory with a cutoff which also applies to the Coulomb interaction,
is to define a modified pseudopotential u∗ which replaces the bare interaction in the self-consistency equation and
takes the high-energy parts into account. If Δ(r) is position-dependent, the pseudopotential will be a matrix of two
position coordinates u∗(r, r′). If Δ is constant in space, the pseudopotential is a scalar.

We want to consider the effect of the Hubbard interaction, described in the continuum limit by the Hamiltonian

HHubbard =
u

2

∑
σ,α,i

∫
dr ψ†

σ,αi(r)ψ
†
σ̄,αi(r)ψσ̄,αi(r)ψσ,αi(r), (S18)

where u = Ua2 and U is the Hubbard parameter describing the on-site interaction in the tight-binding model. We
assume that U > 0 so that the interaction is repulsive. The inclusion of such an interaction has multiple effects in a
inhomogeneous system, but here we only consider the effect on the order parameter through the modification of the
self-consistency equation.

As we are now not doing a low-energy calculation, separation into valleys is not useful and we cannot do the
continuum approximation in which we assume that the graphene lattice L is duplicated infinitely many times in the
superlattice. Therefore, in the following the sums and integrals are done over the sets G ∈ SL∗/L∗ and k ∈ R

2/SL∗.
The two graphene valleys are then separated from each other by a large, but finite G-vector. The valley sum is thus
included in the sum over G and there is no valley index ρ.

For simplicity, we assume Δαi(G) = ΔδG,0 so that Δ has no position dependence and is the same on both layers and
sublattices. With this simplification, we can diagonalize the Hamiltonian Hk and the order parameter simultaneously
in the BdG equation (Eq. (5) of the main paper), which we write as(Hk Δ1

Δ∗1 −Hk

)(
ukb

vkb

)
= Ekb

(
ukb

vkb

)
, (S19)

where the underlined quantities are matrices/vectors with indices G, α, and i. Let Gk be a unitary transformation
which diagonalizes the normal state Hamiltonian Hk. Then the above equation becomes(

εk Δ1
Δ∗1 −εk

)(
u′
kb

v′kb

)
= Ekb

(
u′
kb

v′kb

)
, (S20)



5

where u′
kb = Gkukb, v

′
kb = Gkvkb and εk = GkHkG†

k. We now label the normal state eigenstates with band index
b. With constant Δ, the positive-energy BdG eigenstates are in simple correspondence with the eigenstates (both
positive and negative energy) of the normal state, and can also be labeled with the same indices. Concentrating to a
single Nambu-block of the BdG-equation,(

εkb Δ
Δ∗ −εkb

)(
u′
kb

v′kb

)
= Ekb

(
u′
kb

v′kb

)
, (S21)

we find that the eigenenergies and eigenstates assume the usual BCS form

Ekb =

√
ε2kb + |Δ|2, (S22)

ukb =
eiφ√
2

(
1 +

εkb
Ekb

)1/2

, (S23)

vkb =
1√
2

(
1− εkb

Ekb

)1/2

, (S24)

where φ = arg(Δ).
The self-consistency equation [Eq. (4) in the main text with G = 0 and generalized to include energy-dependent

interactions] can be written in the above matrix notation as

Δkb,αi =
∑
b′

∫
dk′

(2π)2
V bb′
kk′

(
u†
k′b′Παivk′b′

)∗
tanh

(
Ek′b′

2kBT

)
, (S25)

where Παi is the projection operator to the sublattice α and layer i. We assume that the interaction has the simplified
BCS form

V bb′
kk′ = λθ(|εkb| − ωD)θ(|εk′b′ | − ωD)− u, (S26)

with electron–phonon cutoff at Debye energy ωD.
The sum of complete set of projection operators is an identity:

∑
α,i Παi = 1. To get rid of the projection operator,

we take the average over α and i. As Δkb,αi = Δkb, we get

Δkb =
1

4

∑
b′

∫
dk′

(2π)2
V bb′
kk′

(
u†
k′b′vk′b′

)∗
tanh

(
Ek′b′

2kBT

)
(S27)

=
1

4

∑
b′

∫
dk′

(2π)2
V bb′
kk′u′

k′b′(v
′
k′b′)

∗ tanh
(
Ek′b′

2kBT

)
. (S28)

In the second line, we did a basis transformation with the matrix G†
p.

We now divide Δkb = Δλ
kb+Δu into two parts, with Δλ

kb corresponding to the λ part of the interaction in the RHS
of Eq. (S28) and Δu corresponding to the u part of the interaction.10 The difference between the two terms is in the
energy dependence. Δλ

kb vanishes above the cutoff, but Δu has no energy dependence and persists at high energies.
With this division, the self-consistency equation splits into two coupled equations,

Δλ
kb =

λ

4

∑
b′

∫
|εk′b′ |<ωD

dk′

(2π)2
u′
k′b′(v

′
k′b′)

∗ tanh
(
Ek′b′

2kBT

)
× θ(|εkb| − ωD), (S29)

Δu = −u

4

∑
b′

∫
|εk′b′ |<ωD

dk′

(2π)2
u′
k′b′(v

′
k′b′)

∗ tanh
(
Ek′b′

2kBT

)
− u

4

∑
b′

∫
|εk′b′ |>ωD

dk′

(2π)2
u′
k′b′(v

′
k′b′)

∗ tanh
(
Ek′b′

2kBT

)
. (S30)

Above, we also split the sums and integrals over the eigenstates to low and high energy parts with ωD as the cutoff.
Assuming ωD 
 T,Δu, we can approximate that for high energy states

u′
kb(v

′
kb)

∗ tanh
(

Ekb

2kBT

)
≈ Δu

2|εkb| . (S31)
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FIG. S1. Dependence of the graphene pseudopotential renormalization constant α on the electron-phonon cutoff ωD. Pseu-
dopotential renormalization constant of TBG can be approximated with that of graphene if |t⊥| � ωD.

Inserting this into Eq. (S30), we can (partially) solve for Δu to obtain an equation which only refers to the low energy
states,

Δu = −u∗

4

∑
b′

∫
|εk′b′ |<ωD

dk′

(2π)2
u′
k′b′(v

′
k′b′)

∗ tanh
(
Ek′b′

2kBT

)
. (S32)

The high energy states renormalize the interaction constant, which is replaced by the Coulomb pseudopotential

u∗ =
u

1 + uα
, where α =

1

4

∑
b

∫
|εk′b′ |>ωD

dk

(2π)2
1

2|εkb| . (S33)

The equation for the full order parameter, including both interactions, is now

Δ =
λeff

4

∑
b′

∫
|εk′b′ |<ωD

dk′

(2π)2
u′
k′b′(v

′
k′b′)

∗ tanh
(
Ek′b′

2kBT

)
with λeff = λ− u∗. (S34)

If Δ(r) is position dependent, the derivation becomes more complicated, and in the end, the pseudopotential becomes
a matrix u∗(G,G′) instead of a scalar like above.

The pseudopotential renormalization parameter α now depends on structure of the high energy bands. It is not
very sensitive to the parameters of the system and for this calculation we assume t⊥ = 0 so that the two graphene
layers are completely independent of each other. The sums and integrals then transform as

α =
1

4

∑
b

∫
R

2/SL∗

|εkb|>ωD

dk

(2π)2
1

2|εkb| ≈
1

4

∑
i

∑
b∈±1

∫
R

2/L∗

|εkb|>ωD

dk

(2π)2
1

2|ε0kb|
(S35)

where ε0kb are the graphene eigenenergies calculated from the tight binding model with only nearest neighbour hoppings.
If approximated as above, α corresponds to the pseudopotential constant for graphene. We show the dependence

on the cutoff ωD in Fig. S1. With parameters ωD = 200meV and nearest neighbour hopping t = 3 eV, we find
that α ≈ 0.2 eV−1a−2, which holds as long as μ � ωD. The maximum value for the pseudopotential is thus
u∗
max = 1/α ≈ 5 eVa2, which is obtained in the limit U → ∞. For U = 5 eV, the effective interaction strength is

reduced to half of the bare interaction strength, u∗ ≈ 0.5u = 2.5 eVa2.
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We study the effects of the coupling between magnetization dynamics and the electronic degrees of freedom
in a heterostructure of a metallic nanomagnet with dynamic magnetization coupled with a superconductor
containing a steady spin-splitting field. We predict how this system exhibits a nonlinear spin torque, which can be
driven either with a temperature difference or a voltage across the interface. We generalize this notion to arbitrary
magnetization precession by deriving a Keldysh action for the interface, describing the coupled charge, heat, and
spin transport in the presence of a precessing magnetization. We characterize the effect of superconductivity
on the precession damping and the antidamping torques. We also predict the full nonlinear characteristic of
the Onsager counterparts of the torque, showing up via pumped charge and heat currents. For the latter, we
predict a spin-pumping cooling effect, where the magnetization dynamics can cool either the nanomagnet or the
superconductor.

DOI: 10.1103/PhysRevB.101.115406

I. INTRODUCTION

The intriguing possibility to control magnetization dynam-
ics by spin torque suggested over two decades ago [1] and
its reciprocal counterpart [2,3] of spin pumping [4] have
been widely studied in magnetic systems. In such systems
charge and spin transport are closely linked and need to be
treated on the same footing. Recently there has also been
increased interest in coupling superconductors to magnets and
finding out how superconductivity affects the magnetization
dynamics [5–19]. On the other hand, recent work has shown
that a combination of magnetic and superconducting systems
results in giant thermoelectric effects [20–24] which couple
charge and heat currents. These works [21,22] also imply a
coupling of spin and heat. However, a general description of
the implications for the magnetization dynamics, dynamical
heat pumping effects, and the behavior in the nonlinear regime
at energies comparable to the superconductor gap �, has been
lacking.

In this work, we fill this gap by constructing a theory which
provides a combined description of pumped charge and heat
currents, spin torques, magnetization damping, voltage, and
thermal bias. We consider a metallic nanomagnet F with a
magnetization precessing at a rate � which is determined by
an external magnetic field, the shape of the magnet, and the
crystal anisotropy, [26] at a slowly varying angle θ to the
precession axis [Fig. 1(a)]. The magnet is tunnel coupled to
a superconducting electrode S that also contains a constant
spin-splitting (exchange or Zeeman) field [25,27].

*risto.m.m.ojajarvi@jyu.fi
†tero.t.heikkila@jyu.fi
‡pauli.t.virtanen@jyu.fi

Main features of the problem can be understood in a
tunneling model, shown schematically in Fig. 1(b). Both the
spin splitting h and nonzero � shift the spectrum, whereas
� generates also effective spin-dependent chemical potential
shifts [28] providing a driving force which pumps the cur-
rents across the interface. The interplay of the two enables a
coupling between the magnetization dynamics and the linear-
response thermoelectric effect [20,21,23] originating from the
spin-selective breaking of the electron-hole symmetry in the
superconductor with respect to the chemical potential. As
a consequence, a temperature difference between the two
systems leads to a thermal spin torque, which in a suitable
parameter regime yields an antidamping sufficient to obtain
flipping or stable precession of the nanomagnet. The Onsager
counterpart of the thermal spin torque is a Peltier-type cool-
ing (or heating) driven by the precessing magnetization. In
the nonlinear response, the precession also pumps a charge
current, as already shown in [29]. We discuss the general
picture for the spin-split superconductor, and, in addition to
the thermomagnetic effects, find the Keldysh action [Eq. (20)]
describing the stochastic properties of the S/F junction. The
action allows identifying thermodynamical constraints, cur-
rent noises, a spintronic fluctuation theorem, and describes the
probability distribution of the magnetization direction and the
spectrum of its oscillations.

The manuscript is structured as follows: We introduce
a simple tunneling model in Sec. II and discuss the tun-
neling currents in Sec. III. Implications on magnetization
dynamics are considered in Sec. IV, including thermal
transport associated with the ferromagnetic resonance and
physics of spin torque oscillators driven by the thermal ef-
fects. In Sec. V we focus on studying the stochastic mag-
netization dynamics based on a Keldysh action approach
to the tunneling model, and discuss probability distribu-
tions and linewidths for the oscillators. We conclude in

2469-9950/2020/101(11)/115406(8) 115406-1 ©2020 American Physical Society
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FIG. 1. (a) Schematic ferromagnetic island–superconductor tun-
nel junction (F/I/S) setup. The direction m of magnetization in F
precesses at a rate � at an angle θ around the axis (ẑ) of its effective
field. Electron tunneling and intrinsic damping produces torque τ

on m. The superconductor has an internal spin splitting exchange
field h, from external magnetic field, or a ferromagnetic insulator
(FI) bilayer structure [25]. We consider also thermal and electric
biasing (δT,V ). (b) “Semiconductor picture” for pumping, in the
frame rotating with m (for h ‖ ẑ). Gray solid line is the chemical
potential when � = 0. Increasing the precession frequency to � �= 0
shifts both the spectrum and the chemical potentials (dashed lines)
by � cos θ in F and by � in S. The exchange field h only shifts the
spectrum in S.

Sec. VI. Certain details of derivations are postponed to the
Appendixes.

II. TUNNELING MODEL

The main effects can be understood with a tunneling
Hamiltonian description (below h̄ = e = kB = 1),

H = HS + R̂(t )HFR̂(t )
† +

∑
j j′σ

Wj j′e
−iV t c†jσd j′σ + H.c., (1)

where c jσ and d jσ are the F and S conduction elec-
tron operators and W the tunneling matrix elements for
spin/momentum states σ = ±, p j , and V is a bias voltage.
The Hamiltonian HS describes the spin-split superconduc-
tor [23], and HF the magnet with magnetization paral-
lel to the ẑ direction. The magnetization direction m(t ) =
(cosφ sin θ, sin φ sin θ, cos θ ) is specified by a spin rotation
matrix R̂(t )c jσ R̂(t )† = ∑

σ ′ Rσσ ′ (t )c jσ ′ . In the frame rotating
with R [28,30], assuming m(t ) varies adiabatically so that
an equilibrium electron distribution is maintained, the Berry
phase ϕ(t ) = ∫ t dt ′φ̇(1 − cos θ ) can be absorbed (c.f. Refs.
[31,32] and Appendix B) to the spin rotation,

R = e−iφ(t )σz/2e−iθ (t )σy/2eiφ(t )σz/2e−iϕ(t )σz/2, (2)

where σx/y/z are the spin matrices. Varying m(t ) results to
effective spin-dependent voltages [30] in the tunneling part.
For uniform precession, they are �σσ ′ = (σ − σ ′ cos θ )�/2
[see Fig. 1(b)]. From the model, we can compute in leading
order in W the tunneling charge, energy, and spin currents
(Ic, Ė , Is) via a standard Green function approach (see Ref.
[33] and Appendix A). The assumption of local equilibrium
implies that the rates of tunneling and other nonequilibrium-
generating processes on the magnetic island should be small
compared to electron relaxation [34–36].

Consider precession with frequency � around the z axis,
φ(t ) = �t with |θ̇ | � �. From the above model, we find the
time-averaged currents and h̄τz = −(m × Is × m)z, [1,28] the
z component of the time-averaged spin transfer torque:

Ic = GT

2e

∫ ∞

−∞
dε

∑
σσ ′

〈σ |σ ′〉2NS,σNF,σ ′ [ fF − fS], (3)

ĖS = GT

2e2

∫ ∞

−∞
dε

∑
σσ ′

ε〈σ |σ ′〉2NS,σNF,σ ′ [ fF − fS], (4)

τz = −GT sin2 θ

8e2

∫ ∞

−∞
dε

∑
σσ ′

σNS,σNF,σ ′ [ fF − fS]. (5)

Here, fF = f0(ε −V − �σσ ′,TF ), fS = f0(ε,TS ) are the
Fermi distribution functions in F and S, 〈σ |σ ′〉2 = (1 +
σσ ′ cos θ )/2 the spin overlap between m and the z axis,
and NS/F,σ=± the densities of states (DOS) for up/down
spins [quantization axis m(t ) for F, and ẑ for S] normalized
by the Fermi level DOS per spin, and GT the tunneling
conductance. Of these, Eq. (3) was previously discussed in
Ref. [29] for h = 0. Using a basic model for F and S, we
have NF,σ = 1 + σP and NS,σ = ∑

±
1±σ ĥ·ẑ

2 N0(ε ∓ h), where
P = (νF,+ − νF,−)/(νF,+ + νF,−) is the spin polarization in
terms of the majority/minority Fermi level DOS νF,±, and
N0(ε) the Bardeen-Cooper-Schrieffer density of states [37].
The tunneling described by Eqs. (3)–(5) can be understood in
a semiconductor picture, as shown in Fig. 1(b). The broken
electron-hole symmetry around the chemical potentials for
both spins in S and spin polarization in F results to thermally
driven spin currents causing torques, and the rotation-induced
potential shifts pump charge and heat currents.

III. TUNNELING CURRENTS

Expanding for small voltage biasV , temperature difference
δT = TS − TF , and the precession speed �, the time-averaged
currents are described by a linear-response matrix:⎛
⎝ Ic
ĖS

τz

⎞
⎠ =

⎛
⎝ G Pα cos θ 0

Pα cos θ GthT
α
2 sin2 θ

0 −α
2 sin2 θ −G

4 sin2 θ

⎞
⎠

⎛
⎝ V

−δT/T
�

⎞
⎠,

(6)

where G and Gth are the linear-response electrical and ther-
mal conductances. Here, α = −(GT /2)

∫ ∞
−∞ dεε[NS,+(ε) −

NS,−(ε)] f ′
0(ε) is a thermoelectric coefficient [20,21], which

originates from the exchange field h generating the electron-
hole asymmetry in the superconductor. It is nonzero only
when S is both superconducting and has a spin splitting h �= 0.
The response matrix L in Eq. (6) has the Onsager sym-
metry Li j = Ltr

ji, where tr refers to time reversal, αtr = −α,
Ptr = −P.

The coefficient for charge pumping is here zero, unlike
in the ferromagnet-ferromagnet case [30], because the spin-
(anti)symmetrized DOS of S is also (anti)symmetric in energy.
This also suppresses linear-response contributions to charge
current from thermal magnetization fluctuations [31], which
are also related to the magnon spin–Seebeck effect [3,18,31].

Importantly, the spin splitting of the superconductor en-
ables the precession to pump energy current at linear response,
and as its Onsager counterpart, there is nonzero thermal
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spin torque (terms with α �= 0). This is made possible by
the nonzero thermoelectric coefficient [20,21] driving spin
currents due to a temperature difference. This effect is (in
metals) parametrically larger by a factor εF/� 
 1 than that
from normal-state DOS asymmetry [3,35,38] in systems with
Fermi energy εF .

A. Symmetries

Let us now consider the joint probability P of changes δns
and δES in the electron number and energy of S, and a change
δmz in the magnetization of F, during a time interval of length
t0. It satisfies a fluctuation relation [39,40]:

Pt0 (δn, δES, δmz ) = eT
−1
F V δn+(T−1

S −T−1
F )δES+T−1

F �Sδmz

× Ptr
t0 (−δn,−δES, δmz ). (7)

Here, we denote S = VMs/(h̄γ ) as the effective macrospin of
the ferromagnetic island, V and γ are the F volume and gyro-
magnetic ratio, and Ms the magnetization. Moreover, Ptr cor-
responds to reversed polarizations and precession (NS/F,σ �→
NS/F,−σ , � �→ −�). The Onsager symmetry of Li j in Eq. (6)
is a consequence of fluctuation relations [41]. The energy
transfer δEF into the ferromagnet (generally, δEF �= δES)
is determined by energy conservation δEF + δES = V δn +
�Sδmz, which implies ĖS + ĖF = IcV − �τz. These results
arise from the symmetries of Eqs. (19) and (20) below, for the
case where there is no external magnetic drive.

B. Nonlinear response

The pumped charge current is shown in Fig. 2(a), and the
energy current into S in Fig. 2(b). The charge pumping is
nonzero above the quasiparticle gap, |�| � � ± h [29]. The
heat current shows the presence of a region of cooling of
either of the two leads, depending on the relative orientation
of h and �ẑ. Nonzero h enables the N/S cooling effect to be

(a)

(b)

(c)

FIG. 2. (a) Pumped differential current for TS = TF = 0.1TC
where TC is the critical temperature of the superconductor. Blue,
yellow, and red lines are for h = −hẑ, hx̂, hẑ, respectively. (b) and
(c) Energy current into the superconductor ĖS (blue line) and into
the magnet ĖF (red line) for (b) h = −hẑ and for (c) h = hẑ. F and
S are at temperature T = 0.6TC . Dashed lines represent the linear
response. In all figures,V = 0, θ = π

8 , P = 1, and h = 0.3�0, where
�0 is the superconductor gap at zero temperature.

present already at linear response, similarly as with voltage
bias [23,42].

IV. MAGNETIZATION DYNAMICS

The Landau-Lifshitz-Gilbert-Slonczewski (LLG) equation
for the tilt angle is

−S∂t cos θ = τz − SA0� sin2 θ + η , (8)

where the spin transfer torque τz is given by Eq. (5). We
include the intrinsic Gilbert damping [28] phenomenologi-
cally, and A0 is the dimensionless damping constant. More-
over, η is a Langevin term describing the torque noise
[32,39,44,45] with the correlation function 〈η(t )η(t ′)〉 =
2[D(θ ) + SA0T ] sin2(θ )δ(t − t ′); see below. Equilibrium
torques are here included in the LLG effective magnetic field
�ẑ (see Appendix A). We consider the limit of weak damping,
where it is sufficient to consider only the equation for the z
component.

A. Heat balance in ferromagnetic resonance

Let us consider a ferromagnetic resonance (FMR) [26] in a
thin magnetic layer on a spin-split S, driven by a resonant cir-
cularly polarized rf magnetic field (at frequency ω = �), and
in the case of S acting as a reservoir at a fixed temperature T .
The electrical circuit is open, so that no charge flows between
F and S. The FMR driving acts as a power source. We
assume that a fraction λ ∈ [0, 1] of the power dissipated by
the intrinsic Gilbert damping heats the F electrons; the value
of λ depends on into which bath(s) its microscopic mechanism
dissipates the energy (see also Sec. VA below). In a steady
state, the total energy current into F, the overall torque, and
the charge current are zero:

ĖF,tot = ĖF + λPG = 0, (9)

τz + τz,rf + τz,G = 0, (10)

Ic = 0, (11)

where τz and Ic are the contributions related to the tunneling
between F and S, from Eqs. (3) and (5), and ĖF = IcV −
�τ z − ĖS is found from the tunneling model via a similar
calculation as in Eq. (4). Moreover, τz,G = −SA0� sin2(θ )
and PG = SA0�

2 sin2(θ ) are the torque due to the intrinsic
damping and the rate of work done by it. At resonance, the
rf drive creates a torque τz,rf = γS (m × hrf )z = γShrf sin θ ,
where hrf is the amplitude of the rf field. From the above it
follows that the power,

ĖS + ĖF,tot = Prf − (1 − λ)PG, (12)

is absorbed by the electron system, where Prf = �τz,rf is the
total rf power absorbed at resonance [28].

Expanding Eqs. (3)–(5) in the linear order inV , δT/T , and
θ2, but not in �, we find the charge and heat currents,⎛

⎝ Ic
ĖS

τz

⎞
⎠ =

⎛
⎝ G Pα P(G − G̃)
Pα GthT α + α̃ + G̃�

2
0 0 −G̃

⎞
⎠

⎛
⎝ V

−δT/T
�
4 θ2

⎞
⎠. (13)
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Unlike the linear-response matrix in Eq. (6), the above matrix
is not symmetric, as there is no Onsager reciprocity between
τz and θ2. The coefficients are

α̃ = GT

2

∫ ∞

−∞
dε

∑
σ

(
ε − σ�

2

)
NS,σ (ε)

f0(ε−σ�) − f0(ε)

�
,

(14)

G̃ = GT

2

∫ ∞

−∞
dε

∑
σ

σNS,σ (ε)
f0(ε − σ�) − f0(ε)

�
. (15)

These coefficients are defined so that lim�→0 G̃ = G and
lim�→0 α̃ = α, and they assume the values G̃normal = GT and
α̃normal = 0 in the normal state.

The torque balance (10) determines the precession angle
θ ≈ γShrf/(SAeff�), where SAeff = SA0 + G̃

4 . To quadratic

order in hrf , ĖF = G̃�2θ2/4 − ĖS . Using this, and the condi-
tions (9) and (11) for heat and charge currents, we find the
FMR induced temperature difference and voltage,(

V
− δT

T

)
=

(
G Pα

Pα GthT

)−1
(

−P(G−G̃)
4 �

−α+α̃
4 � + [

G̃
8 + λSA0

]
�2

)
θ2.

(16)

The coupling between ĖS and θ2 is of the linear order in �,
whereas the coupling between Ic and θ2, the rf power, and the
magnetic dissipation are of the quadratic order in �. Thus, for
� � T the induced temperature difference and voltage are

V � Pα

GT
δT, δT � α

2
(
Gth − (Pα)2

GT

)�θ2. (17)

The denominator G̃th = Gth − (Pα)2

GT is always positive [21].
For � � T , F is refrigerated when α > 0, which corresponds
to h · ẑ < 0. Restoring the SI units, the magnitude of the
coefficient between δT and �θ2 is |h̄α/(G̃the)| � h̄/kB .

At higher frequencies the magnetic dissipation, nonlinear-
ities of α̃ and G̃, and the coupling between charge and preces-
sion start to play a role and limit the attainable temperature
difference. For SA0/GT = 0.1, the magnitude of the effect
is illustrated in Fig. 3. The maximum value of A0 for which
refrigeration is possible is shown in Fig. 4 as a function of
T and �. If λ = 1, the parameter regime is similar to that
where the spin-torque driven oscillations occur (see Sec. IVB
below). However, if the intrinsic damping dissipates the en-
ergy to systems different from the F conduction electrons

(a) (b)

FIG. 3. Electromagnetically driven FMR induced refrigeration
for h = −0.3�0 ẑ, P = 1, and A0 = 0.1h̄GT /(e2S ). (a) For λ = 0
and (b) for λ = 1. Dynes broadening � = 10−3�0 was assumed [43].

FIG. 4. Maximum intrinsic damping, expressed as
� × λe2SA0/(GT�0), for which the system can be refrigerated,
with h = −0.3�0 ẑ, P = 1, and Dynes broadening � = 10−5�0.
The maximum intrinsic damping is determined by solving A0 from
Eq. (16) with δT = 0.

(λ < 1), refrigeration is easier to obtain than auto-oscillations.
Therefore, measuring the temperature difference δT via the
thermoelectrically induced voltage V allows for a direct study
of the energy dissipation mechanism of the intrinsic Gilbert
damping. Note that also in the absence of the spin splitting in
S (and therefore α = 0), it is possible to induce a nonzero volt-
age via FMR driving [29]. However, that generally requires
higher frequencies � � � than the case analyzed above.

If the thermoelectric coefficient is zero, F always heats up.
In the normal state we have

δTnormal = −GT + 8λSA0

8Gth
�2θ2 < 0, (18)

which shows the combined heating effect from the different
sources of dissipation. However, in that case the induced
voltage V = 0, and the temperature difference would have to
be measured via some other mechanism.

B. Spin torques

The junction also exhibits a voltage-driven spin torque.
With an exchange field such that h · ẑ < 0 and � � 2h,
the torque due to tunneling becomes antidamping at large
voltages. When it exceeds the intrinsic damping, the θ = 0
equilibrium configuration is destabilized, and a new stable
steady-state configuration τz,tot (θ∗) = 0 is established. An ex-
ample of the signs of the torque and the resulting configuration
is shown in Fig. 5(a): The stable angle is θ∗ = 0 at small
voltages, after which there is a voltage range for which
0 < θ∗ < π . There, the system realizes a voltage-driven spin
oscillator [46,47]. At large voltages the stable angle is θ∗ = π ,
corresponding to a torque-driven magnetization flip.

Similarly, the thermal torque is shown in Fig. 5(b). Due
to the nonzero linear-response coupling, it is antisymmetric
in small δT , in contrast to the voltage-driven torque. Conse-
quently, antidamping regions occur for both signs of �. In
linear response [Eq. (6)], for temperature differences satis-
fying sgn(α)δT < δTo = [1 + e2SA0/(h̄G)]Ph̄�/(2e|s|), the
spin torque drives θ → 0, damping the precession. Here,
s = −Pα/(GT ) is the junction thermopower, which can be
|s| � kB/e. [21] Above the critical temperature difference δTo,

115406-4



NONLINEAR SPIN TORQUE, PUMPING, AND COOLING … PHYSICAL REVIEW B 101, 115406 (2020)

(a)

(c) (d)

(b)

FIG. 5. (a) Torque vs angle θ and voltage V at � = 0.3�/h̄
for TS = TF = 0.5TC , h = −0.3�0 ẑ, and P = 1. The arrows indicate
where the torque drives the angle. The solid black line indicates
the stable precession angle θ∗, and the dashed line the unstable
one. At V = 0, θ∗ = 0. (b) Torque vs angle and temperature dif-
ference at � = 0.5�/h̄ for TS = 0.5TC , h = 0.3�0 ẑ, P = 1, and
V = 0. Moreover, SA0 = 0. The dashed green line indicates δTo.
(c) Magnetization distribution normalized by its maximum value,
for a thermally driven spin oscillator with S = 100, TS = 0.5TC ,
h = 0.3�0 ẑ, P = 1, V = 0, and � = 0.5�/h̄. When TF ≈ 0.31TC
(dashed line), the distribution is significantly bimodal. (d) Full width
at half maximum (FWHM) of the dipole spectrum Sxx (ω) (black
line) and the average magnetization (red line) with GT = e2/h̄. The
dashed line indicates θ∗ and the dots correspond to (c).

the thermal spin torque drives the system away from θ∗ = 0
(or θ∗ = π for � < 0). The stable precession angle is shown
in Fig. 5(b): There is a range of δT in which θ∗ �= 0, π and the
system exhibits thermally driven [35] spin oscillations.

In Fig. 5, we neglect the effect of the intrinsic damping
A0 on the magnetization oscillations. However, it is the main
obstacle in reaching auto-oscillations in FMR devices, and
we estimate its effect here. For the superconducting systems,
generally the effective bias |s|δT can be at most �. Consider-
ing the value δTo given above, this results to a requirement
for the resistance-area product of the S/F junction: RA �
(RA)0 = h̄γ�

e2A0MsdF |�| ≈ 10−4 �μm2 × 1 T nm�
μ0MsdFA0|h̄�| , where dF

is the ferromagnet thickness. Meeting the requirement is likely
challenging. Values RA ∼ 0.1�μm2 have been achieved in
∼(100 nm)2 lateral size magnetic junctions [46,48]. With
such RA and μ0MsdF = 5T nm (e.g., Co layer [46]) and
A0 = 0.01 [28], the condition is satisfied for f = |�|/(2π ) <

0.02�/h ≈ 1GHz (for Al as superconductor). The FMR re-
frigeration has a similar requirement but with � �→ �/λ, and
hence may be easier to achieve, if the microscopic mechanism
is such that λ < 1.

V. KELDYSH ACTION

To properly describe the metastable states in the mag-
netization precession, we need to extend the formalism.
The dynamics beyond average values can be described by
an effective action S = S0 + ST for the spin including the
tunneling, derived [32,34–36,39,45,49,50] by retaining the
Keldysh structure [51] for the orientation of the magnetization

mean field. The action S describes the generating function of
the joint probability distribution Pt0 (δn, δES, δEF , δmz ) [see
Eq. (7)], with a source field χ , ξS , ξF , ζ associated with each
of the arguments. The free part reads

S0 = 2S
∫ ∞

−∞
dt

[(
ζ

2
+ φq

)
∂t (cos θ )c − (cos θ )q(φ̇c − �)

]
,

(19)

where c and q denote the symmetric/antisymmetric com-
binations xc/q = x+±x−

2 of quantities on the two Keldysh
branches (+/−), for example, (cos θ )c/q = 1

2 [cos(θ
c + θq) ±

cos(θ c − θq)]. Concentrating on slow perturbations around
the semiclassical (S 
 1) precession trajectory φc(t ) = �t ,
the tunneling action can be expressed as ST � − i

∫ ∞
−∞ dtsT

with [39]

sT = GT

2

∫ ∞

−∞
dε

∑
σσ ′=±

NF,σ ′NS,σ

{
cos θq + σσ ′ cos θ c

2

× [eiησσ ′ fF (1 − fS ) + e−iησσ ′ fS (1 − fF )]

− 1 + σσ ′(cos θ )c

2
[ fF (1 − fS ) + fS (1 − fF )]

}
, (20)

where ησσ ′ = χ + εξS − (ε −V − �σσ ′ )ξF − 2φq �σσ ′
�

. Here,
we have neglected terms that renormalize �. For computing
time averages, the source fields are taken nonzero between t =
0 and t = t0, e.g., χ (t ) = χθ (|t0| − |t |)θ (t sgn t0). The results
(3)–(5) can be found as Ic = −i∂χ sT |0, ĖS = −i∂ξS sT |0, and
τz = 1

2i∂φq sT |0, where |0 indicates φq = θq = χ = ξS/F = 0.
Expansion around the saddle point gives Eq. (8), and
the correlator characterizing the spin torque noise is D =
− 1

8∂
2
φq sT |0 csc2 θ = − 1

8∂
2
θq sT |0.

A. Intrinsic damping

We can include the phenomenological Gilbert damping
term A0m × ṁ of the LLG equation into a corresponding term
in the action, iSG = ∫ ∞

−∞ dtsG(t ). With the weak-damping as-
sumptions φ̇c � �, |θ̇ c| � |φ̇|, the leading term in the torque
is produced by sG � −2iSA0� sin2(θ c)φq.

Further reasoning is required for thermodynamic consis-
tency. Let us first assume that the Gilbert damping is caused
by a coupling that ultimately dissipates energy into the bath
of conduction electrons in F (λ = 1). We can express the
conservation of energy in conversion of magnetic energy
to energy of conduction electrons as the symmetry sG[ξF +
x, φq + �x/2] = sG[ξF , φq] for all x. In addition, to pre-
serve the thermodynamic fluctuation relations and the second
law at equilibrium, the fluctuation symmetry sG[ξF , φq] =
sG[iT−1

F − ξF ,−φq] should be fulfilled [39]. The above fixes
the series expansion in ξF , φq, T−1

F to have the form,

sG[ξF , φq] � −2A0S sin2(θ c)

[
i�

(
φq − �

2
ξF

)

+ 2TF

(
φq − �

2
ξF

)2]
+ · · · . (21)

If the Gilbert damping dissipates energy directly to multiple
baths (e.g., magnons, phonons), more terms of this form
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appear, where ξF and TF should be replaced by the cor-
responding bath variables, and only a fraction 0 � λ � 1
of the total A0 comes from conduction electrons. Including
Eq. (21) in the total action S = S0 + ST + SG then produces,
e.g., the correlation function of the Langevin noise terms in
Eq. (8), and the additional term in the heat balance equation
Eq. (9). These are of course possible to find also directly, by
assuming the fluctuation-dissipation theorem, and reasoning
about magnetic work done by the damping.

For the external rf drive, we similarly have a term srf =
2iSmq · γ hrf � 2iγ hrfS sin(θ c)φq, at resonance. It does not
obey the above energy conservation symmetry, as power is
externally provided and the mechanism generating hrf is not
included in the model. As a consequence, as noted in Eq. (12)
ĖS,tot + ĖF,tot �= 0, and the fluctuation relation (7) is modified.

B. Spin oscillator

The probability distribution of the magnetization angle θ

can be obtained from Eqs. (19) and (20) [39,44], within a
semiclassical method applied to s̃T = sT |θq=χ=ξ j=0 [39,51].
In this approach, at equilibrium, the fluctuation symmetry
s̃T (φq = −i�/2T ) = 0 results to the Boltzmann distribution
P(cos θ ) = NeS cos(θ )�/T . In the nonequilibrium driven state
(V �= 0, δT �= 0), the distribution deviates from this.

The probability distribution is shown in Fig. 5(c) for the
thermally driven oscillator. The figure shows the spin torque-
driven transition from the magnetization pointing in the
direction of the magnetic field (cos θ = 1) for high TF , to
the opposite direction of the field (cos θ = −1) at low TF .
In the intermediate range TF ≈ 0.25–0.3Tc, the probability
distribution becomes bimodal, reflecting the two locally stable
configurations in Fig. 5(b): One of these corresponds to the
oscillating state.

C. Emission spectrum

A driven spin oscillator produces electromagnetic emission
which can be detected. [46,47] This can be characterized
with the classical correlator of the magnetic dipole, whose
spectrum is approximately a Lorentzian centered at frequency
�. The classical spectrum of the magnetic dipole correlator
can be written as

Sxx(ω) = S2
∫ ∞

−∞
dt0e

iωt0〈mx(t0)mx(0)〉, (22)

where mx = cosφ sin θ , and the average is over the driven
steady state of the system. To evaluate it, the average over
φ can be taken first, noting that 〈cosφ(t0) cosφ(0)〉φ =
1
2 Re〈eiφ(t0 )−iφ(0)〉φ = 1

2 Re
∫
D[φc, θq] eiSeiφ

c (t0 )−iφc (0) =
1
2 Re

∫
D[φc, θq] eiS

′
, where the exponential factor is

removed by a shift (cos θ )q �→ (cos θ )q + sgn(t0)θ (|t0| −
|t |)θ (t sgn t0)/(2S ). For S 
 1, this results to S′ − S �
�t0 + i|t0|S−2D csc2 θ c =: ψ (t0) so that 〈mx(t0)mx(0)〉φ �
1
2 sin2 θ Re eiψ (t0 ). Evaluating the Fourier transform, we get

Sxx(ω) � 1

2

∑
±

〈D/[(ω ± �)2 + (S−2D csc2 θ c)2]〉θ . (23)

A similar calculation is done in Ref. [44], via Langevin and
Fokker-Planck approaches. The remaining average is over the
steady-state distribution P(cos θ ).

The linewidth of the spectrum [black line in Fig. 5(d)]
in this nonequilibrium system is a nontrivial function of
the system parameters. For TF ≈ 0.31TC precession at θ∗
becomes possible, and as a result the linewidth (∝ csc2 θ )
narrows rapidly, becoming significantly smaller than the near-
equilibrium fluctuations at θ ∼ 0, π .

VI. DISCUSSION

In this work, we explain how the thermomagnetoelec-
tric effect of a spin-split superconductor couples the mag-
netization in a magnetic tunnel junction to the temperature
difference across it. The thermoelectric coefficient in the
superconducting state is generally large, and enables a mag-
netic Peltier effect and thermal spin torque, with prospects
for generating thermally driven oscillations detectable via
spectroscopy. Superconductivity also offers possibilities to
characterize and control the thermal physics via both the
electric and magnetic responses or external field coupling of
the magnetization.
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APPENDIX A: TUNNELING CURRENTS

Calculation of the tunneling currents from the model (1) in
the main text can be done with standard Green function ap-
proaches [33]. Assuming a spin and momentum-independent
matrix element (Wj j′ = W ), the k-spin component of the spin
current to S reads

Iks = GT

32

∫ ∞

−∞
dε tr

σk

2
[(RǧFR

†)+ǧS − ǧS (RǧFR
†)−]K ,

(A1)

where the superscript K refers to the Keldysh component
and GT = πνFνS|W |2 is the normal state tunneling conduc-
tance. The charge and energy currents can be obtained by
replacing σk/2 �→ τ̂3 and σk/2 �→ ε in Eq. (A1), respectively.
Here, σ j and τ̂ j are Pauli matrices in the spin and Nambu
spaces, with the basis (ψ↑, ψ↓,−ψ

†
↓, ψ

†
↑ ), and X+(ε, t ) =∫

dt ′eiε(t−t ′ )X (t, t ′), X−(ε, t ) = ∫
dt ′eiε(t

′−t )X (t ′, t ). More-
over, ǧF/S (ε) = 2i

πνF/S
τ̂3

∑
j ǦF/S (ε, p j ) are state-summed

Keldysh Green’s functions, normalized by the total density of
states (DOS) νF/S at the Fermi level of the ferromagnet and
the spin-split superconductor. The rotation matrix,

R = e−iφσz/2e−iθσy/2eiφσz/2

× e−i
∫ t dt φ̇(1−cos θ )σz/2e−iV τ̂3t , (A2)

contains the Euler angles of the time-dependent magnetization
direction vector (m · σ = RσzR†), a Berry phase factor, and
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voltage bias V . The Berry phase appears from the Green
function [31,32] of the conduction electrons in F follow-
ing adiabatically the changing magnetization. For a metallic
ferromagnet, ĝRF − ĝAF � 2

∑
±(τ̂3 ± σz )

νF,±
νF

and ĝK = [ĝR −
ĝA](1 − 2 f0(ε)), where νF,↑/↓ := νF,± are the densities of
states of majority/minority spins at the Fermi level and
f0(ε) = (1 + eε/T )−1 is the Fermi distribution function.

Evaluating Eq. (A1) for the different currents pro-
duces Eqs. (3)–(5) in the main text, with NS/F,σ=± =
1
2 tr[ 1+τ̂3

2
1+σσz

2 (ĝRS/F − ĝAS/F )].
Beyond linear response (6), we find the second-order con-

tributions to the current and torque:

δ(2)Ic = −α−
2,0

2

[
sin2(θ )

(
V� − P cos θ

4
�2

)
+ P cos(θ )V 2

]

−P cos(θ )
A

2

(
δT

T

)2

− B
δT

T
V, (A3)

δ(2)τz

sin2(θ )
= α−

2,0

4

[
V 2 − P cos(θ )V� + 3 + cos(θ )

8
�2

]

+ A

4

(
δT

T

)2

+ B

4

δT

T
�, (A4)

where α∓
i, j = −(GT /2)

∫ ∞
−∞ dεε j[NS,+(ε) ∓ NS,−(ε)] f (i)0 (ε),

and A = 2α−
1,1+α−

2,2, B = α+
1,0+α+

2,1.
For � � �, the onset of the voltage-driven spin oscilla-

tions [Fig. 5(a)] can be determined from Eqs. (6) and (A4) to

occur at Vo = ±4
√
e2SAeff�/α−

2,0.

In addition to the spin transfer torque (STT) discussed in
the main text, the electron transfer between F and the spin-
split S generates also other torque components acting on F .
This effect can be found from Eq. (A1), and appears in
the torque components τx/y perpendicular to the equilibrium
magnetization ẑ.

In the main text, we neglect these torques, because any
equilibrium torques can be absorbed to a renormalization of
the effective magnetic field, and moreover, in the limit of weak
damping and torques the components perpendicular to ẑ such
that τx/y � S� have little effect on the dynamics. In contrast,
the component in the main text has a significant effect already
at τz ∼ A0S� � S�.

For completeness, we write here the expressions for all
torques, as obtained from Eq. (A1). Equation (5) in the main
text gives the dissipative contribution to τz. Similar contribu-
tions can be found for τx/y:

τx/y = −GT

8

∫ ∞

−∞
dε

∑
σσ ′

(1 + σσ ′ cos θ )2

2
NS,x/y

× [ fF (ε − �σσ ′ −V ) − fS (ε)], (A5)

where NS,0/x/y/z = 1
2 tr 1+τ3

2
σ0/x/y/z

2 (ĝRS − ĝAS ).
In addition, there are two remaining contributions, the

equilibrium spin torque, and a Kramers-Kronig counterpart to
the density of state term. Terms of the latter type commonly
appear in calculations of time-dependent response. To find
it, we need ĝR+A = ĝR + ĝA. We can evaluate them, e.g.,
in a model with a parabolic spectrum in three dimensions,
ξk = k2/(2m) − μ. In the superconductor, h,� � μS and in

the magnet, � = 0. Evaluating the momentum sum yields

ĝR+A
S

μS→∞� ĝRS,qcl + ĝAS,qcl + ĝR+A
F |hF �→h,μF �→μS ,

ĝR+A
F = 2iaRe

√
−[(ε − hFσz )τ̂3 + μF ]/|μF | +C. (A6)

Here ĝR/A
S,qcl are quasiclassical low-energy Green functions [52],

1/a = ∑
±

√
1 ± hF/μF , and hF = ν2

F↓−ν2
F↑

ν2
F↓+ν2

F↑
μF the internal

exchange field in F in the model. Moreover, C are scalars
independent of ε, h, and �, and drop out from expressions
for the observables here.

Neglecting terms of order �/μ,T/μ,�/μ, we find the
remaining terms in the spin current,

I′′
S = I′′

S,eq + δI′′
S, (A7)

δI′′
S = −GT

64

∫ ∞

−∞
dε

∑
σσ ′

tanh
ε − �σσ ′ −V

2TF

× (σ ẑ + σ ′m(t )) × P(ε)NF,σ ′ , (A8)

where P(ε) = 1
2i tr

1+τ3
2 σ[ĝRS,qcl(ε) + ĝAS,qcl(ε)]. It has the sym-

metry P(−ε) = P(ε). For a BCS superconductor, the inte-
grand is nonzero only inside the gap, |ε ± h| < �.

The equilibrium spin current I′′
S,eq is related to the exchange

coupling between F and FI mediated by the electrons in the
superconductor. It can be absorbed to a small renormalization
of the effective magnetic field acting on F. While its value
can be calculated in the above tunneling model, the model
is not sufficient for describing this non-Fermi surface term
in the realistic situation. The superconducting correction δI′′

S
vanishes at equilibrium, but may contribute to nonequilibrium
response. This torque, however, has τ ′′

z = 0 and can be ne-
glected similarly as in Eq. (A5).

APPENDIX B: ADIABATIC GREEN FUNCTION

In the tunneling calculation of Eq. (A1), an expression for
the adiabatic Green function of the electrons on the ferromag-
net with dynamic magnetization appears. For completeness,
we discuss its meaning here. The nonequilibrium Green
function for free electrons in a time-dependent exchange
field,H (t ) = ∑

nσσ ′ c†nσ [Hn(t )]σσ ′cnσ ′ ,Hn(t ) = εn + h(t ) · σ,
with a thermal initial state at t = 0 is G>

n (t, t
′) =

−iUn(t, 0)(1 − ρn)Un(0, t ′)†, where i∂tUn(t, t ′) = [εn −
h(t ) · σ]Un(t, t ′), U (t, t ) = 1, and ρn = [1 + eHn (0)/T ]−1.
In an adiabatic approximation for |ḣ| � h2, Un(t, t ′) �
e−i(t−t ′ )εnR(t )eiϕn (t,t ′ )σz/2R(t ′)†, where R(t )σzR(t )† = h(t ) · σ

and ϕn(t, t ′) = i
∫ t
t ′ dt

′′ tr σzR(t ′′)†∂t ′′R(t ′′). In terms of
Euler angles h = (cosφ sin θ, sin φ sin θ, cos θ ) we write
R = e−iφσz/2e−iθσy/2eiφσz/2e−iχσz/2. The function χ (t ) is
arbitrary, but Un does not depend on it. For simplicity, we
choose χ = ∫ t dt ′φ̇(1 − cos θ ), which gives ϕn = 0. With
this choice, the adiabatic Green function becomes

G>
n (t, t

′) = R(t )G>
n,0(t − t ′)R(t ′)†, (B1)

and the electron Berry phase appears only in the rotation
matrix. This is equivalent to the “rotating frame” picture used
in the main text and other works [28,30].

115406-7



RISTO OJAJÄRVI et al. PHYSICAL REVIEW B 101, 115406 (2020)

[1] J. C. Slonczewski, J. Magn. Magn. Mater. 159, L1 (1996).
[2] M. Johnson and R. H. Silsbee, Phys. Rev. B 35, 4959 (1987).
[3] G. E. W. Bauer, E. Saitoh, and B. J. van Wees, Nat. Mater. 11,

391 (2012).
[4] Y. Tserkovnyak, A. Brataas, and G. E. W. Bauer, Phys. Rev. B

66, 224403 (2002).
[5] C. Bell, S. Milikisyants, M. Huber, and J. Aarts, Phys. Rev. Lett.

100, 047002 (2008).
[6] M. Houzet, Phys. Rev. Lett. 101, 057009 (2008).
[7] K.-R. Jeon, C. Ciccarelli, A. J. Ferguson, H. Kurebayashi, L. F.

Cohen, X. Montiel, M. Eschrig, J. W. A. Robinson, and M. G.
Blamire, Nat. Mater. 17, 499 (2018).

[8] Y. Yao, Q. Song, Y. Takamura, J. P. Cascales, W. Yuan, Y. Ma,
Y. Yun, X. C. Xie, J. S. Moodera, and W. Han, Phys. Rev. B 97,
224414 (2018).

[9] K.-R. Jeon, C. Ciccarelli, H. Kurebayashi, L. F. Cohen, X.
Montiel, M. Eschrig, T. Wagner, S. Komori, A. Srivastava,
J. W. A. Robinson, and M. G. Blamire, Phys. Rev. Applied 11,
014061 (2019).

[10] K. Rogdakis, A. Sud, M. Amado, C. M. Lee, L. McKenzie-Sell,
K. R. Jeon, M. Cubukcu, M. G. Blamire, J. W. A. Robinson,
L. F. Cohen, and H. Kurebayashi, Phys. Rev. Materials 3,
014406 (2019).

[11] J. P. Morten, A. Brataas, G. E. W. Bauer, W. Belzig, and Y.
Tserkovnyak, EPL 84, 57008 (2008).

[12] H. J. Skadsem, A. Brataas, J. Martinek, and Y. Tserkovnyak,
Phys. Rev. B 84, 104420 (2011).

[13] M. Inoue, M. Ichioka, and H. Adachi, Phys. Rev. B 96, 024414
(2017).

[14] S. Teber, C. Holmqvist, and M. Fogelström, Phys. Rev. B 81,
174503 (2010).

[15] C. Richard, M. Houzet, and J. S. Meyer, Phys. Rev. Lett. 109,
057002 (2012).

[16] C. Holmqvist, M. Fogelström, and W. Belzig, Phys. Rev. B 90,
014516 (2014).

[17] H. Hammar and J. Fransson, Phys. Rev. B 96, 214401 (2017).
[18] T. Kato, Y. Ohnuma, M. Matsuo, J. Rech, T. Jonckheere, and T.

Martin, Phys. Rev. B 99, 144411 (2019).
[19] P. Dutta, A. Saha, and A. M. Jayannavar, Phys. Rev. B 96,

115404 (2017).
[20] P. Machon, M. Eschrig, and W. Belzig, Phys. Rev. Lett. 110,

047002 (2013).
[21] A. Ozaeta, P. Virtanen, F. S. Bergeret, and T. T. Heikkilä, Phys.

Rev. Lett. 112, 057001 (2014).
[22] M. Silaev, P. Virtanen, F. S. Bergeret, and T. T. Heikkilä, Phys.

Rev. Lett. 114, 167002 (2015).
[23] F. S. Bergeret, M. Silaev, P. Virtanen, and T. T. Heikkilä, Rev.

Mod. Phys. 90, 041001 (2018).
[24] T. T. Heikkilä, M. Silaev, P. Virtanen, and F. S. Bergeret, Prog.

Surf. Sci. 94, 100540 (2019).
[25] P. M. Tedrow, J. E. Tkaczyk, and A. Kumar, Phys. Rev. Lett.

56, 1746 (1986).

[26] C. Kittel, Phys. Rev. 73, 155 (1948).
[27] T. Tokuyasu, J. A. Sauls, and D. Rainer, Phys. Rev. B 38, 8823

(1988).
[28] Y. Tserkovnyak, A. Brataas, G. E. W. Bauer, and B. I. Halperin,

Rev. Mod. Phys. 77, 1375 (2005).
[29] M. Trif and Y. Tserkovnyak, Phys. Rev. Lett. 111, 087602

(2013).
[30] Y. Tserkovnyak, T. Moriyama, and J. Q. Xiao, Phys. Rev. B 78,

020401(R) (2008).
[31] B. Flebus, G. E. W. Bauer, R. A. Duine, and Y. Tserkovnyak,

Phys. Rev. B 96, 094429 (2017).
[32] A. Shnirman, Y. Gefen, A. Saha, I. S. Burmistrov, M. N.

Kiselev, and A. Altland, Phys. Rev. Lett. 114, 176806 (2015).
[33] F. S. Bergeret, A. Verso, and A. F. Volkov, Phys. Rev. B 86,

214516 (2012).
[34] T. Ludwig, I. S. Burmistrov, Y. Gefen, and A. Shnirman, Phys.

Rev. B 95, 075425 (2017).
[35] T. Ludwig, I. S. Burmistrov, Y. Gefen, and A. Shnirman, Phys.

Rev. B 99, 045429 (2019).
[36] T. Ludwig, I. S. Burmistrov, Y. Gefen, and A. Shnirman,

arXiv:1906.2730.
[37] M. Tinkham, Introduction to Superconductivity (Courier Corpo-

ration, North Chelmsford, 2004).
[38] M. Hatami, G. E. W. Bauer, Q. Zhang, and P. J. Kelly, Phys.

Rev. Lett. 99, 066603 (2007).
[39] P. Virtanen and T. T. Heikkilä, Phys. Rev. Lett. 118, 237701

(2017).
[40] Y. Utsumi and T. Taniguchi, Phys. Rev. Lett. 114, 186601

(2015).
[41] D. Andrieux and P. Gaspard, J. Chem. Phys. 121, 6167 (2004).
[42] F. Giazotto, T. T. Heikkilä, A. Luukanen, A. M. Savin, and J. P.

Pekola, Rev. Mod. Phys. 78, 217 (2006).
[43] R. C. Dynes, J. P. Garno, G. B. Hertel, and T. P. Orlando, Phys.

Rev. Lett. 53, 2437 (1984).
[44] A. L. Chudnovskiy, J. Swiebodzinski, and A. Kamenev, Phys.

Rev. Lett. 101, 066601 (2008).
[45] D. M. Basko and M. G. Vavilov, Phys. Rev. B 79, 064418

(2009).
[46] S. I. Kiselev, J. C. Sankey, I. N. Krivorotov, N. C. Emley, R. J.

Schoelkopf, R. A. Buhrman, and D. C. Ralph, Nature (London)
425, 380 (2003).

[47] W. H. Rippard, M. R. Pufall, S. Kaka, S. E. Russek, and T. J.
Silva, Phys. Rev. Lett. 92, 027201 (2004).

[48] Y. Nagamine, H. Maehara, K. Tsunekawa, D. D. Djayaprawira,
N. Watanabe, S. Yuasa, and K. Ando, Appl. Phys. Lett. 89,
162507 (2006).

[49] J. Fransson and J.-X. Zhu, New J. Phys. 10, 013017 (2008).
[50] J.-X. Zhu, Z. Nussinov, A. Shnirman, and A. V. Balatsky, Phys.

Rev. Lett. 92, 107001 (2004).
[51] A. Kamenev, Field Theory of Non-equilibrium Systems (Cam-

bridge University Press, Cambridge, 2011).
[52] G. Eilenberger, Z. Phys 214, 195 (1968).

115406-8



VI

SPIN AND CHARGE CURRENTS DRIVEN BY THE HIGGS
MODE IN HIGH-FIELD SUPERCONDUCTORS

by

M.A. Silaev, R. Ojajärvi and T.T. Heikkilä 2020

Physical Review Research 2, 033416, doi:10.1103/PhysRevResearch.2.033416

Reproduced with permission. Copyright 2020 American Physical Society. Published
under the terms of the Creative Commons Attribution 4.0 International license.

https://doi.org/10.1103/PhysRevResearch.2.033416


PHYSICAL REVIEW RESEARCH 2, 033416 (2020)

Spin and charge currents driven by the Higgs mode in high-field superconductors

Mikhail A. Silaev,1,2 Risto Ojajärvi ,1 and Tero T. Heikkilä 1

1University of Jyvaskyla, Department of Physics and Nanoscience Center, P.O. Box 35 (YFL), FI-40014 University of Jyväskylä, Finland
2Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region 141700, Russia

(Received 1 July 2019; revised 23 August 2020; accepted 25 August 2020; published 15 September 2020)

The Higgs mode in superconducting materials describes slowly decaying oscillations of the order parameter
amplitude. We demonstrate that in superconductors with a built-in spin-splitting field the Higgs mode is strongly
coupled to the spin degrees of freedom, allowing for the generation of time-dependent spin currents. Converting
such spin currents to electric signals by spin-filtering elements provides a tool for the second-harmonic genera-
tion and the electrical detection of the Higgs mode generated by the external irradiation. The nonadiabatic spin
torques generated by these spin currents allow for the magnetic detection of the Higgs mode by measuring the
precession of the magnetic moment in the adjacent ferromagnet. We discuss also the reciprocal effect, which is
the generation of the Higgs mode by the magnetic precession. Coupling the collective modes in superconductors
to light and magnetic dynamics provides an opportunity for the study of superconducting optospintronics.

DOI: 10.1103/PhysRevResearch.2.033416

I. INTRODUCTION

Oscillations of the order parameter amplitude in
condensed-matter systems are often called Higgs modes
(HMs) [1–5], in analogy with the Higgs boson in particle
physics [6]. These collective excitations are generic for
ordered states such as antiferromagnets, charge density
waves [7], superfluids [8–10], cold atomic gases [11,12] and
superconductors [2,13–27]. In general, one can call HMs all
the possible collective modes of the order parameter, other
than the Nambu-Goldstone modes [4].

Higgs modes have been observed by Raman scattering in
superconductors with charge density wave order [14,15,17,28]
and by the nuclear magnetic resonance in superfluid 3He
[8–10]. In usual superconductors the HMs are charge neutral
and thus decoupled from charge current. In such systems the
observation of HMs has been facilitated by the development
of low-temperature terahertz spectroscopy [18,19,24,29–32].
With this technique, HMs have been observed in NbTiN and
NbN compounds [18,19]. Higgs modes have been observed
indirectly as the AC linear conductance peak in current-
carrying films of NbN [24] and Al [33].

Here we suggest a different mechanism allowing electrical
detection of HMs due to their coupling with spin and charge
degrees of freedom in high-field superconductor/ferromagnet
junctions. Unusual transport properties of such systems have
attracted intense attention [34–37], stimulating both experi-
mental [38–47] and theoretical efforts [34,48–57].

The underlying physical mechanism behind the suggested
electrical measurement of the HM is rooted in the strong cou-
pling between the superconducting order parameter dynamics

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

and electron spins. The possibility to transmit spin signals
by the order parameter excitations has been elucidated using
the example of mobile topological defects, i.e., Abrikosov
vortices [55,56]. Here we demonstrate that time-dependent
spin currents can be generated by the collective amplitude
modes in superconductors.

The structure of this paper is as follows. In Sec. II we
introduce the setup and model. Section III shows the effect of
the HM on AC spin and charge currents. Their use in access-
ing the HM either in second-harmonic generation or via the
measurement of an avoided crossing between ferromagnetic
resonance and HMs is discussed in Sec. IV. We conclude in
Sec. V with an outlook to the range of phenomena affected by
the HM.

II. SETUP AND MODEL

The generic setup that we study is shown in Fig. 1(a). Its
basic element is a superconducting film placed in contact with
a ferromagnetic (FM) material. An effective spin-splitting
field h entering as the Zeeman term in the Hamiltonian of
the superconductor (SC) is induced by an external in-plane
magnetic field. Alternatively, h could be induced by the prox-
imity to a ferromagnetic insulator [58–62]. The system is
exposed to an external irradiation E�ei�t which generates a
time-dependent perturbation of the order parameter ampli-
tude δ�(t ) = �2�e2i�t through the second-order nonlinearity
�2� ∝ E2

� [63,64].
We model the SC/FM junction using the tunneling Hamil-

tonian approach [65,66], which has been used extensively to
study both AC and DC tunnel currents [65,67–69],

HT =
∑
kk′α

A†
kα (�̂B̂k′ )α + H.c., (1)

�̂ = T τ̂3 + U (m · σ̂). (2)

Here Akα (Bkα) annihilates an electron with momentum k
and spin α in the SC (ferromagnet), the unit vector m
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(a) (b)

FIG. 1. (a) Setup of the superconductor/ferromagnet structure.
The exchange field h is induced by an external magnetic field B.
The double-frequency gap modulation can be excited by the exter-
nal electromagnetic irradiation �2� ∝ E 2

� and is enhanced due to
the coupling to the HM. (b) Semiconductor model of the current
generation by a slowly varying perturbation of the order parameter
amplitude δ�(t ). Only the spin-down band is shown. The ferro-
magnet has an equilibrium distribution n0(ε), while the distribution
n(ε, t ) of the superconductor is shifted with respect to the equi-
librium distribution (dashed line) by δ�(t ) away from the Fermi
level. Due to the Zeeman shift h, the perturbation in the number of
excitations is asymmetric with respect to the Fermi level εF . This
results in net spin and charge currents flowing into the attached FM
electrode through the tunnel barrier (I).

defines the spin quantization axis of the barrier, τ̂k and
σ̂k are the Pauli matrices in Nambu and spin spaces, re-
spectively, and U and T are the spin-independent and
spin-dependent matrix elements of the tunneling Hamiltonian,
respectively [70]. The matrix tunneling current through the
spin-polarized barriers can be expressed through momentum-
averaged Green’s functions (GFs) in the superconducting and
FM electrodes νSĝS = τ̂3

∑
k〈 T Âk (τ )Â

†
k (τ

′)〉 and νF ĝF =
τ̂3

∑
k〈 T B̂k (τ )B̂

†
k (τ

′)〉, respectively. Here τ and τ ′ are imag-
inary times, T is the time-ordering operator, and νS and νF
are the normal metal densities of states on the two sides of the
junction. For simplicity, we assume momentum-independent
tunneling coefficients [70,71]. The time-dependent tunneling
current for the general nonequilibrium state in the electrodes
derived in Appendix A reads

Î (τ ) = i
νSνF

2
[ĝS ◦ (�̂ĝF �̂) − (�̂ĝF �̂) ◦ ĝS]τ ′=τ , (3)

where ◦ denotes time convolution. The overall tunnel current
amplitude is determined by κ = νSνF (T 2 + U2) and the ef-
fective spin-filtering polarization is P = 2T Um/(T 2 + U2).

Tracing the general expression with appropriate Pauli ma-
trices, we extract the charge current I = eTr(τ̂3Î ) and the spin
current Is = Tr(σ̂ Î ). The real-time response is obtained by the
method of analytic continuation, described in Appendix B.

We assume that the electrodes are in the diffusive regime
and can be described by the time-dependent Usadel equation
for quasiclassical GFs. In the imaginary-time representation it
has the form (we set h̄ = 1 here and below)

−i{τ̂3∂τ , ĝ}τ = D∂̂r(ĝ ◦ ∂̂rĝ) − i[τ̂3Ĥ , ĝ]τ , (4)

where D is the diffusion constant, Ĥ = �τ̂1 + h · σ̂, and h
is the exchange field. The quasiclassical GFs also satisfy
the normalization condition (ĝ ◦ ĝ)τ,τ ′ = δ(τ − τ ′). The time

derivative, convolution product, and differential superoperator
in Eq. (4) are

{τ̂3∂τ , ĝ}τ = τ̂3∂τ1 ĝ(τ1, τ2) + ∂τ2 ĝ(τ1, τ2)τ̂3, (5)

( f ◦ g)(τ1, τ2) =
∫ β

0
dτ3 f (τ1, τ3)g(τ3, τ2), (6)

∂̂r = ∂r − ie

c
[τ̂3A(τ ), ·], (7)

respectively, where e is the elementary charge and c is the
speed of light.

III. RESULTS

A. Qualitative description

In Fig. 1(b) we adapt the usual semiconductor picture of
the tunnel current in superconductor junctions [72] to show
how the time-dependent gap function creates a nonequilib-
rium state n(ε, t ) in the superconducting electrode. Due to the
Zeeman shift h, this state is nonsymmetric with respect to the
Fermi level εF and therefore produces spin current through
the tunnel barrier between the SC and the adjacent normal
metal. This qualitative picture is based on the time-dependent
energy spectrum Eσ =

√
ξ 2
p + �(t )2 + σh, with σ = ±1 for

spin-up/down Bogoliubov quasiparticles, respectively, where
ξp is the kinetic energy counted from the Fermi level εF .

For a slow time-dependent order parameter the spin-
resolved perturbation of the quasiparticle distribution function
can be written as (�̇/�) d

d�
Nσ , where the number of thermally

excited states in equilibrium is Nσ = ∫
dξpn(Eσ (ξp,�)), with

n(E ) = tanh(E/2T ). The inelastic scattering relaxation rate �

is given by the Dynes parameter [73].
The spin-dependent perturbation of the distribution func-

tion results in the spin current

Is(t ) = κ

�
�̇

d

d�
(N+ − N−), (8)

where κ is the effective barrier transparency. As shown below,
Eq. (8) is obtained in the low-frequency limit � � � from
the general result (21). The advantage of Eq. (8) is that it
allows for the cartoon interpretation in terms of the semicon-
ductor model in Fig. 1(b). However, for the most interesting
case when the frequency of the �(t ) ∝ e2i�t oscillation is
comparable to the gap � ∼ � and hence is coupled to the
HM [13,16,74,75], the picture becomes more complicated and
requires calculations using Eqs. (3) and (4) as described in
Sec. III C.

B. Second-harmonic generation due to the broken
particle-hole symmetry

Spin current generated by the HM can be converted to
charge current using spin-filtering FM electrodes. In the
setup shown in Fig. 1(a) the spin current is effectively
converted to the charge current while passing through the
spin-filtering barrier characterized by the polarization vec-
tor P. The time-dependent charge current induced in this
way by the order parameter amplitude oscillation is therefore
qualitatively given by I (t ) ∝ P · Is(t ), which results in the
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estimate I (t ) ∝ (P · h)∂t�. Modulation of the order param-
eter amplitude can be induced, for example, by an external
irradiation [63,64] �(t ) ∝ A2(t ), where A(t ) is the vector
potential of the external field. Hence this charge current I (t ) ∝
(P · h)∂tA2, being quadratic in the vector potential, demon-
strates the second-harmonic generation (SHG) controlled by
the superconducting order parameter.

Despite the large amount of attention to the nonlinear ef-
fects in superconductors, SHG has not been obtained before.1

Hence only third-harmonic generation has been studied in
superconductors [19,32,63,64,76]. We show below that such
a kind of SHG is not prohibited by the generic symmetries of
the problem, but is eliminated by the approximate symmetry
of Fermi surface systems, made exact in the widely used
quasiclassical approximation [77].2 This additional symmetry
of the GF satisfying the Usadel equation (4) is

ĝ(A, h,�) = −τ̂1ĝ(−A, h,�∗)τ̂1. (9)

The off-diagonal Nambu space Pauli matrix τ̂1 interchanges
the particle and hole blocks in the Hamiltonian [77], so the
physical interpretation of Eq. (9) is a particle-hole symmetry.
For the nonstationary charge current generated by the time-
dependent vector potential this symmetry yields I (A,�) =
−I (−A,�∗). Further, in the absence of supercurrent or ex-
ternal orbital fields we can assume the order parameter to be
real � = �∗. Then even the broken inversion symmetry near
surfaces does not help to produce SHG in superconducting
systems in contrast to the normal metal counterpart of this
effect. Because of this symmetry, the direct coupling between
the HM and the charge current is prohibited. However, as we
see below, it allows for the spin currents driven by the HM and
external field even with a nonferromagnetic barrier, that is, at
P = 0.

The particle-hole symmetry is broken in superconducting/
FM systems leading to large thermoelectric [34,78,79] and
anomalous Josephson effects [77]. For real � the transforma-
tion (9) applied to the general tunnel current yields

I (A, h, P) = −I (−A, h,−P). (10)

This relation allows for SHG. Because the sign of P is inverted
there is no longer a symmetry with respect to the mere flipping
of the vector potential, I(A) �= −I(−A). Hence, for the AC
external field A�ei�t , Eq. (10) allows for the double-frequency
charge current component I2�ei�t with the amplitude I2� ∝
|�|2A2

�(P · h) as well as the DC tunnel current [51] IDC ∝
|�|2A�A−�(P · h). The resonant SHG of spin and charge
currents through the excitation of HM by electromagnetic
irradiation is discussed below in Sec. III C.

C. Calculation of spin and charge currents

We assume that the superconducting electrode is driven
out of equilibrium by the electromagnetic field described
by the time-dependent vector potential A�ei�t . It produces

1Here we exclude the trivial SHGwhich results from the third-order
nonlinearity when both the oscillating and constant fields are applied.

2The Fermi surface symmetry present in the quasiclassical approx-
imation is broken here by the spin polarization of tunneling.

the second-harmonic perturbation of the GF and tunnel
current (3)

ĝS (τ, τ
′) = T

∑
ω

ĝS (ω+, ω−)eiω+τ−iω−τ ′
, (11)

Î2� = i
νSνF

2
T

∑
ω

[�̂ĝS�̂ĝ0(ω−) − ĝ0(ω+)�̂ĝS�̂], (12)

where ω± = ω ± � are the fermionic Matsubara frequencies
shifted by the frequency � of the external field. We define
ĝS = ĝS (ω+, ω−) and assume that the ferromagnet is in the
equilibrium state determined by the GF ĝF (ω) = ĝ0(ω) ≡
sgn(ω)τ̂3.

There are two qualitatively different terms in the nonequi-
librium GF ĝS = ĝAA + ĝ�. The first one is generated by
the direct coupling to the external electromagnetic field. The
second term is generated by the order parameter oscillations,
which can be induced by either the electromagnetic field or
other sources, for example, the spin current. Direct coupling to
the electromagnetic field is described by the GF perturbations
of second order by the vector potential.

From the Usadel equation (4) we find that the perturbation
ĝAA(ω+, ω−) satisfies the equation

s+ĝ0(ω+)ĝAA − s−ĝAAĝ0(ω−)

= D

(
eA�

c

)2

[ĝ0(ω+)τ̂3ĝ0(ω)τ̂3 − τ̂3ĝ0(ω)τ̂3ĝ0(ω−)].

(13)

Expanding the normalization condition in perturbation series
provides an anticommutation rule ĝAAĝ0(ω−) = −ĝ0(ω+)ĝAA,
which can be used to solve Eq. (13),

ĝAA = D

(
eA�

c

)2
τ̂3ĝ0(ω)τ̂3 − ĝ0(ω+)τ̂3ĝ0(ω)τ̂3ĝ0(ω−)

s+ + s−
,

(14)

where s± = ŝ(ω±) and ŝ(ω) =
√

�2 − (iω − h · σ̂ )2. Above,
we abuse the notation slightly by writing the matrix inverse
[s+ + s−]−1 as a scalar division. No ambiguity is introduced
as ŝ(ω)’s commute with the terms in the numerator. Further-
more, in the final expression for the spin current (21) we shift
the energy integration and remove the exchange field from the
ŝ(ω)’s, making their spin structure trivial.

Corrections to the GF induced by the time-dependent or-
der parameter amplitude �2�e2i�t can be found in the form
ĝ�(τ, τ ′) = T

∑
ω ei(ω+τ−ω−τ ′ )ĝ�(ω+, ω−). From the Usadel

equation (4) that ĝ�(ω+, ω−) satisfies the equation

s+ĝ0(ω+)ĝ� − s−ĝ�ĝ0(ω−) = �2�[τ̂2ĝ0(ω−) − ĝ0(ω+)τ̂2].

(15)

Again using the normalization condition, the solution of this
equation is given by

ĝ� = �2�
ĝ0(ω+)τ̂2ĝ0(ω−) − τ̂2

s+ + s−
. (16)

The amplitude �2� can be found from the self-consistency
equation

�2� = −λT
∑

ω

Tr[τ̂2(ĝAA + ĝ�)], (17)
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where we introduce the dimensionless pairing constant λ and
the Pauli matrix τ̂2 corresponds to the superconducting ampli-
tude vertex.

The part which is directly produced by the irradiation pro-
vides a source of the Higgs mode

F�(2�) = −λT
∑

ω

Tr[τ̂2ĝAA]. (18)

The other part determines the self-induced corrections to the
order parameter �̃2� = �(2�)�2� described by the polariza-
tion operator

�(2�) = 1 + πλT
∑

ω

Tr

[
�2 + �2

s−s+(s− + s+)

]
, (19)

where the trace is taken over the spin degree of freedom. Col-
lecting all the contributions to the self-consistency equation
(17), we get

�2� = F�/[1 − �(2�)]. (20)

This expression describes the HM excitation in the super-
conductor driven out of equilibrium by a continuous-wave
irradiation as shown schematically in Fig. 1(a). The resonance
condition corresponding to the HM is satisfied for � = �∗
when 1 − �(2�∗) = 0 + o(

√
�). Hence the maximal ampli-

tude of the order parameter oscillations is determined by
the broadening parameter �, leading to a sharp peak in
�2�(�,T ) for � ≈ �∗(T ). In the absence of spin relaxation
processes �∗ = �(T ).

Using the found GF corrections (14) and (16), we calcu-
late the spin and charge components of the tunneling current
(12). The HM contribution is determined by the term ĝ�.
Using the procedure of analytical continuation described in
Appendix B, we obtain the amplitude of real-frequency spin
current Is(�)e2i�t driven by the HM,

Is(�) = iκh�2��
∑

σ

σ

h

∫
dε

4π

ε[n(ε+) − n(ε−)]

sR+sA−(sR+ + sA−)
, (21)

where n(ε) is the equilibrium distribution function. Here the
spin splitting has been shifted from the spectral functions to
the distribution functions, so ε± = ε ± � + σh and sR,A =
−i

√
(ε ± i�)2 − �2. In the low-frequency limit � � � we

obtain Eq. (8) when the spin current is driven by the adiabatic
time dependence of � in accordance with the qualitative pic-
ture shown schematically in Fig. 1(b).

In the presence of the HM, which is the slowly decaying os-
cillations of the order parameter �(t ) [13,16], the spin current
is given by the sum of the corresponding Fourier components
with the amplitudes given by (21). As a result of Eq. (21) we
get slowly decaying oscillations of the spin current Is(t ) which
can be measured using electrical probes after the supercon-
ductor is initially driven into a nonequilibrium state by a field
pulse.

Taking into account the relation (20), we obtain the SHG
spin and charge currents induced by the external irradiation in
accordance with the qualitative discussion in Sec. III B. The
resonant behavior of the double-frequency spin current Is(�)
resulting from the HM mode excitation is shown in Fig. 2.

FIG. 2. Amplitude of double-frequency spin current Is(�)e2i�t

driven through the SC/ferromagnet tunnel junction by an exter-
nal field A�ei�t . The current is normalized to I0 = κD(eA�/c)2;
Tc is the critical temperature. The sharp maximum at frequencies
�(2�) ≈ 1 corresponds to the resonant excitation of the Higgs
mode. (a) Is(�, T ) and (b) Is(T ) at different frequencies �/�0 =
0.4, 0.8, 0.95, 1.2. The exchange field is h = 0.2�0 and the Dynes
parameter � = 0.005�0. The peaks are at temperatures determined
by �(2�) ≈ 1.

IV. DISCUSSION

A. Electrical detection of the Higgs mode

The suggested effect of SHG charge current coupled to the
HM can be measured, for example, in thin films of Al super-
conductor placed in a tunnel contact with FM iron electrodes
similar to the setups used in the measurement of the non-
local spin signals [38–40,43–47]. With Tc = 1.6 K and gap
�0 = 2 × 10−4 eV, the spin-splitting field h = 0.2�0 can be
obtained with an external in-plane magnetic field B ≈ 0.5 T,
and the polarization of this type of FM contact [44] is P = 0.2.
With large enough area, the normal-state tunnel conductance
can be eκ = 10−2 S. The electromagnetic part of the setup can
be similar to the experiments on stimulated superconductivity
[80,81]. The electromagnetic power is characterized by the pa-
rameter α = D(eA�/c)2, which can be made as large as α =
0.1Tc without destroying the superconductivity [82]. For Al it
yields α ≈ 10−5 eV. With such parameters the charge current
amplitude corresponding to Fig. 2 is ePI0 = 20 nA, which is
two orders of magnitude larger than the nonlocal thermoelec-
tric current measured recently in a similar setup [47]. The
maximal HM resonance frequency in Al is 2� = 100 GHz,
which is within the capability of modern spectrum analysers.
A 10-nA current across 50� corresponds to the signal ampli-
tude −113 dBm, which means that the signal-to-noise level
exceeding unity can be obtained within a 1-s measurement
time with state-of-the-art high-frequency microwave spectrum
analysers with a noise floor about −120 dBm/Hz.

B. Spin torques generated be the Higgs mode

If the exchange field h in the SC is noncollinear with the
magnetization m in the ferromagnet, the HM generates a spin
torque acting on m. The generic system which can realize this
configuration is shown in Fig. 3(a). Here the exchange field
h ‖ m0 is created by the ferromagnetic insulator layer with a
fixed magnetic moment m0 [34].

The spin-transfer torque (STT) generated by the HM is
shown schematically in Fig. 3(a). The polarization of the
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FIG. 3. Setups for studying transverse spin currents coupled to
the HM in the superconductor (S). The exchange field in S is gener-
ated by the adjacent ferromagnetic insulator (FI) with magnetization
m0. (a) The spin torque τ is generated in an adjacent ferromagnet
(F) with noncollinear magnetization m ∦ m0. (b) Magnetization pre-
cession m(t ) induces the spin current Is and the spin battery effect
leading to a perturbation of the order parameter amplitude δ�.

nonequilibrium spin current Is is determined by the direc-
tion of the exchange field h. Assuming that the transverse
component of the spin current is absorbed in the ferromag-
net [83–87], we obtain the STT τ = Ish⊥/h, where h⊥ =
h − m(m · h) is the perpendicular component of the exchange
field.

The reciprocal effect shown in Fig. 3(b) is the perturbation
of the gap δ� by the magnetic precession. The pumped spin
current [83] Is ∝ m × ṁ has a longitudinal component Is ‖ h
which generates a time-dependent spin accumulation μs in the
SC. In combination with the spin-splitting field h, this results
in [51,88]

δ� = λ�

1 − �
μs∂�(N+ − N−), (22)

where 1 − � ∝ λ is the low-frequency asymptotic of the
polarization operator. This expression demonstrates the pos-
sibility to couple the order parameter amplitude with the
magnetization dynamics. Thus the higher-frequency magne-
tization precession with � ∼ � generates the HM in the
superconductor with a spin-splitting field.

This effect can be viewed as the HM-mediated transfer of
the spin angular momentum from the ferromagnetic insulator
to the metallic ferromagnet shown in Fig. 3(a). Oscillating
STT generated by the order parameter amplitude mode can
excite the ferromagnetic resonance (FMR) in the attached
ferromagnet. Hybridization of the FMR and Higgs resonance
should show up as the avoided crossing of the peaks in
the second-harmonic response of the systems. Such an ex-
periment will directly demonstrate the dynamical coupling
of the magnetic and superconducting orders. Modification
of the FMR linewidth by superconducting correlations in
ferromagnet/SC structures has been observed [89–91]. In
permalloy films the FMR has been measured in fields up to
0.3 T corresponding to a frequency of 20 GHz. For such a
frequency the Higgs resonance in Al is expected to occur
at T ≈ 0.92Tc. Thus varying the field, one can measure the
temperature-controlled hybridization of the HM and FMR
mode in Al/permalloy structures within the currently acces-
sible range of parameters.

V. CONCLUSION

We have demonstrated that spin and charge currents can
be effectively generated by the collective amplitude modes of

the superconducting order parameter. Owing to the fact that
the HM can be generated by external irradiation [27,92], our
result paves the way for a conceptually different direction of
superconducting optospintronics: the study of spin currents
and spin torques generated by light interacting with supercon-
ducting materials.

We have suggested a detection scheme for the HM based on
measuring resonant electric signals, either the charge current
or voltage generated across the spin-polarized tunnel junction
by the external field. Because these signals appear at the
doubled frequency of the external field, our setup introduces
a system featuring second-harmonic generation controlled by
superconductivity. The suggested SHG can be studied using
optical or microwave detectors [93] and the tunneling current
I2� can be detected using electrical probes. This feature of the
SHG as compared to the previously known nonlinear response
techniques allows for an electrical detection of the HM in
superconductors.

Finally, a qualitatively similar effect should occur provided
the ferromagnet is replaced by another spin-filtering element
such as a semiconductor nanowire in proposed Majorana-
based qubits [94–97]. The charge noise which is important in
such devices [97] can cause the order parameter oscillations
coupled to the splitting of Majorana zero modes. This cou-
pling opens possibilities for many interesting effects to study.
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APPENDIX A: TUNNEL CURRENT

We model the spin-dependent tunneling through the
SC/ferromagnet interface by the tunneling Hamiltonian (1).
We calculate the tunneling current as a function of the time
on the contour running along the imaginary axis from 0 to
β = 1/T .

The matrix tunneling current in terms of the imaginary time
functions reads

Î (τ ) = i

2

∑
k

[∂τ ĜS (τ, τ
′, k, k) + ∂τ ′ĜS (τ, τ

′, k, k)]τ=τ ′ .

(A1)

To find the perturbation we consider the contour-ordered GF

ĜS (τ1, τ2, k, k
′) = 〈 T ŜÂk (τ1)Â

†
k′ (τ2)〉, (A2)

where T is the contour-ordering operator and

Ŝ ≈ 1 −
∫ β

0
dτ3HT (τ3). (A3)
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In the interaction representation with respect to the tunneling Hamiltonian the equation of motion is

∂τ Âk = [Âk,HT ] =
∑
k′

(�̂kk′ B̂k′ ). (A4)

Using the equation of motion we get

−∂τ1ĜS (τ1, τ2, k, k) = −
∑
q

〈T Ŝ[�̂kqB̂q(τ1)]Â
†
k (τ2)〉

≈
∑
q

〈
T

∫ β

0
dτ3HT (τ3)�̂kqB̂q(τ1)Â

†
k (τ2)

〉

=
∑
k1,k′

1,q

〈
T

∫ β

0
dτ3B̂

†
k′
1
(τ3)�̂

†
k1k′

1
Âk1 (τ3)�̂kqB̂q(τ1)Â

†
k (τ2)

〉

=
∑
k1,k′

1,q

∫ β

0
dτ3�̂kq

〈
T B̂q(τ1)B̂

†
k′
1
(τ3)

〉
�̂k′

1k1

〈
T Âk1 (τ3)Â

†
k (τ2)

〉

=
∑
k1,k′

1,q

∫ β

0
dτ3�̂kqĜF (τ1, τ3, q, k′

1)�̂k′
1k1ĜS (τ3, τ2, k1, k) (A5)

and

−∂τ2ĜS (τ1, τ2, k, k) = −
∑
q

〈T ŜÂk (τ )[�̂kqB̂q(t
′)]†〉

≈
∑
q

〈
T

∫ β

0
dτ3HT (τ3)Âk (τ1)[�̂kqB̂q(τ2)]

†

〉

=
∑
k1,k′

1,q

〈
T

∫ β

0
dτ3�̂k1k′

1
B̂k′

1
(τ3)Â

†
k1
(τ3)Âk (τ1)B̂

†
q(τ2)�̂

†
qk

〉

= −
∑
k1,k′

1,q

∫ β

0
dτ3

〈
T Âk (τ1)Â

†
k1
(τ3)

〉
�̂k1k′

1

〈
T B̂k′

1
(τ3)B̂

†
q(τ2)

〉
�̂qk

= −
∑
k1,k′

1,q

∫ β

0
dτ3ĜS (τ1, τ3, k, k1)�̂k1k′

1
ĜF (τ3, τ2, k′

1, q)�̂qk. (A6)

Hence the matrix current is given by

Î (τ ) = i

2

∑
k,k1,k′

1,q

∫ β

0
dτ ′[ĜS (τ, τ

′, k, k1)�̂k1k′
1
ĜF (τ

′, τ, k′
1, q)�̂qk

− �̂kqĜF (τ, τ
′, q, k1)�̂k1k′

1
ĜS (τ

′, τ, k′
1, k)

]
. (A7)

We assume that GFs are spatially homogeneous, so ĜF (τ, τ ′, q, k1) = δq,k1ĜF (τ, τ ′, q) and the matrix element is momentum
independent �̂kk′ = �̂. Then we can introduce the quasiclassical functions

∑
q ĜF,S (τ, τ ′, q) = νF,S τ̂3ĝF,S (τ, τ ′) to write the

current as

Î (τ ) = i
νSνF

2
[ĝS ◦ (τ̂3�̂ĝF �̂τ̂3) − (τ̂3�̂ĝF �̂τ̂3) ◦ ĝS]τ ′=τ . (A8)

Taking into account that the normal metal GF ĝF commutes
with τ̂3, Eq. (A8) can be reduced to Eq. (3).

APPENDIX B: ANALYTICAL CONTINUATION

In order to find the real-frequency response we need
to implement the analytic continuation of Eq. (12). These
second-order responses are obtained by the summation of

expressions which depend on the multiple shifted fermionic
frequencies such as g(ω1, ω2, ω3). The analytic continuation
of the sum by Matsubara frequencies is determined according
to the general rule [98]

T
∑

ω

g(ω1, ω2, ω3) →
3∑

l=1

∫
dε

4π i
n0(εl )

[
g
(
. . . ,−iεRl , . . .

)
− g

(
. . . ,−iεAl , . . .

)]
, (B1)
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where n0(ε) = tanh(ε/2T ) is the equilibrium distribution
function. On the right-hand side of (B1) we substitute in
each term ωk<l = −iεRk and ωk>l = −iεAk for k = 1, 2, 3, and
we define εk = ε + (2 − k)�, εR = ε + i�, and εA = ε − i�.
Here the term with � > 0 is added to shift the integration
contour into the corresponding half plane. At the same time, �
can be used as the Dynes parameter [73] to describe the effect
of different depairing mechanisms on spectral functions in the
superconductor.

We implement the analytical continuation in such a way
that s(−iεR,A) = −i

√
(εR,A)2 − �2, assuming that the branch

cuts run from (�,∞) and (−∞,−�). In the presence of the
spin-splitting field the energy in Eq. (B1) should be shifted to
ε + σh, where σ = ±1 is the spin subband index.

The equilibrium GF in the imaginary frequency domain is
given by ĝ0(ω) = (τ̂3ω − τ̂2�)/s(ω). The real-frequency con-
tinuation reads ĝR,A

0 (ε) = (τ̂3εR,A − iτ̂2�)/
√
(εR,A)2 − �2.

Example. To demonstrate the analytical continuation in
practice we calculate the spin current driven by the Higgs
mode. For real frequencies the spin current obtained from
(A8) can be written in terms of the Keldysh component

Is = κ

8π

∑
σ

σ

∫
dε Tr[ĝF (ε+)ĝS (ε) − ĝS (ε)ĝF (ε−)]K

= κ

8π

∑
σ

σ

∫
dε[n(ε+) − n(ε−)]Tr

[
τ̂3ĝ

a
S

]
, (B2)

where ε± = ε + σh ± ω. In deriving (B2) we used the fact
that ĝR (A)

F = ±1 do not depend on energy. The anomalous part
of the nonequilibrium GF in the superconductor is

ĝaS = �2�
ĝR(ε+)τ̂2ĝA(ε−) − τ̂2

sR+ + sA−
, (B3)

where we define sR,A
± = sR,A(ε±). Substituting the solution

(B3) and using Tr[τ3gR+τ2gA−] = 2i�0ε/sR+s
A
−, we get

Is = iκ�0�2�

∑
σ

σ

∫
dε

4π

(ε + σh)[n(ε+) − n(ε−)]

sR+sA−(sR+ + sA−)

= iκ�0�2�

(ω + i�)

∫
dε

16π

∑
σ

σ [n(ε+) − n(ε−)]

(
1

sR+
− 1

sA−

)
,

(B4)

where we use (sR+)2 − (sA−)2 = 4(ε + σh)(ω + i�). In the
low-frequency limit we can substitute n(ε+) − n(ε−) =
2ω∂εn and sR+ = −sA+ = −i

√
ε2 − �2. Then the spin current

can be written in the simple form

Is = κ

�

∑
σ

σ
d

dt

∫
dξpn(Eσ (ξp,�(t )))

= κ

�
�̇

d

d�
(N+ − N−), (B5)

where Eσ (ξp,�(t )) =
√

ξ 2
p + �2(t ) + σh is the spectrum of

Bogoliubov quasiparticles shifted by the spin-splitting field h.
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We develop a theory of the spin battery effect in superconductor/ferromagnetic insulator (SC/FI) systems
taking into account the magnetic proximity effect. We demonstrate that the spin-energy mixing enabled by the
superconductivity leads to the enhancement of spin accumulation by several orders of magnitude relative to the
normal state. This finding can explain the recently observed giant inverse spin Hall effect generated by thermal
magnons in the SC/FI system. We suggest a nonlocal electrical detection scheme which can directly probe
the spin accumulation driven by the magnetization dynamics. We predict a giant Seebeck effect converting the
magnon temperature bias into the nonlocal voltage signal. We also show how this can be used to enhance the
sensitivity of magnon detection even up to the single-magnon level.

DOI: 10.1103/PhysRevB.103.224524

Generation and detection of pure spin signals is one of the
main paradigms in spintronics [1,2] and spin caloritronics [3].
Spin pumping [4–6] in ferromagnet/metal multilayers affects
ferromagnetic resonance (FMR) and spin Hall magnetoresis-
tance measurements [7,8]. Spin Seebeck effect [8,9] converts
thermal nonequilibrium states into pure spin currents and can
be used for the detection of magnons propagating through FI
materials without electrical losses [10,11]. Pure spin current
flowing from the ferromagnet into the adjacent metal leads to
the buildup of spin accumulation known as the spin battery
effect [5].

Recently it has been discovered [12–17] that super-
conductivity strongly increases spin relaxation times and
lengths, which makes superconducting materials promis-
ing for spintronics [18–20]. Long-range nonequilibrium spin
states created in superconductors by electrical and thermal
injection of Bogoliubov quasiparticles have been intensively
studied [20–28]. The question of how the weak spin relaxation
in superconductors shows up in spin pumping properties have
remained unexplored and is addressed in the present paper.

Most of the experimental [13,15,16,29–34] and theoretical
works studying magnetization dynamics in superconduc-
tor/ferromagnet systems focus on the FMR properties [35–41]
and spin torques [42,43]. Here we consider the spin battery
effect [5] that is the static spin accumulation of Bogoliubov
quasiparticles in a superconductor (SC) generated either by
the coherent FMR drive or by the thermal magnons in the
adjacent FI. Our study is motivated by the recent experiment
demonstrating that magnons induce a giant inverse spin-Hall
signal in the transition state of the Nb/YIG superconduc-
tor/ferromagnetic insulator system [34]. Due to the close
relation between the spin Hall signal and spin density, this
observation hints that the spin accumulation induced by ther-
mal magnons is modified in a highly nontrivial way by the
superconducting correlations.

The considered setup is detailed in Fig. 1(a) which shows
the time-averaged quasiparticle spin accumulation 〈μs〉 gen-
erated in SC. It can be measured [12,13,15,16] in the nonlocal
circuit Fig. 1(b) consisting of the spin-polarized tunnel contact
with a metallic ferromagnet (FM) near FI and the distant
normal metal electrode (NM). The dc voltage VD induced into
this tunnel contact in the absence of a charge current through
it is [23]

VD = GFn

GF
PD · 〈μs〉. (1)

Here GF = GFn
∫ ∞
0 dεN (ε)∂εn0 is the linear local tunneling

conductance and PD the spin polarization of the SC/FM junc-
tion, N (ε) is the density of states in the superconductor, and
n0 = tanh(ε/2T ) is the equilibrium distribution function.

In the superconducting case the information carried by
the strength of the spin pumping which determines the FMR
linewidth is different from that in 〈μs〉. It is generally pro-
portional to the amplitude of magnetization dynamics 〈μs〉 ∝
〈m × ∂tm〉, where m(t ) is the unit vector of magnetization
direction in FI. In superconductors, however, the proportion-
ality constant of 〈μs〉 is sensitive to the magnitude of energy
relaxation time �−1 and its magnitude compared to the spin-
relaxation time τs. In the typical case �−1 � τs the resulting
nonlocal voltage VD can be parametrically larger in the su-
perconducting state than in the normal state by the factor
∼(�τs)−1. In superconductors Nb and Al these times are of
the order [15,44] of τs ≈ 0.1T−1

c in Al and and τs ≈ T−1
c

in Nb, while �−1(Tc) ≈ 103T−1
c in both materials [45,46].

Therefore in these superconductors one can expect an en-
hancement of spin accumulation induced by spin pumping by
the factor of (�τs)−1 ∼ 102–103 as compared to the normal
state.

The origin of the very large spin accumulation in FI/SC
contacts is twofold. First, magnetization dynamics results
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FIG. 1. Schematic FI/SC setup to measure spin accumulation
induced by magnons. (a) Nonequilibrium magnon distribution in FI,
generated either by a coherent FMR drive or a temperature bias,
induces spin and energy currents js and je to the SC, which create
spin and energy accumulations μs andW in SC. Proximity to FI also
induces a static exchange field h0 in the SC. The spin accumulation
is converted to electrical voltage VD in the ferromagnetic electrode
(FM) with the polarization PD. (b) Nonlocal circuit to measure
magnon-induced voltage VD.

in the energy current [4,47] je = α〈|∂tm|2〉, where α is
the contribution to the Gilbert damping coefficient due to
the contact. Second, in superconductors the spin splitting
in the Bogoliubov spectrum generated by FI through the
magnetic proximity effect [20,23,48,49] leads to the strong
coupling between energy and spin degrees of freedom [23].
The mechanism of converting pumped quasiparticle energy
to spin accumulation via elastic spin-relaxation processes is
demonstrated in Fig. 2 which shows nonequilibrium quasipar-
ticle states on the spin-split Bogoliubov branches Ep(p) for
different momenta p. The spin quantization axis is determined
by the Zeeman field h0 = h0z induced by the magnetic prox-
imity effect, when the static magnetization direction is m0 = z.

Energy current je generates spin-neutral energy accu-
mulation W by nonequilibrium quasiparticle states shown
schematically by the filled circles in Fig. 2(a). The important
feature of this distribution is that both spin-up and spin-down
branches have the same number of occupied states. Due to the
spin splitting the spin-up and spin-down branches are filled up

FIG. 2. Spin-split Bogoliubov spectrum in SC and its occupation
driven by magnons. (a) State with pure energy accumulation W
and no spin accumulation. Horizontal arrows represent elastic spin
scattering. (b) Elastically relaxed state. Elastic relaxation produces
spin accumulation μsz from energy accumulation W . The full/half-
filled/empty circles represent occupied/partially filled/unoccupied
states. The effect depends on the asymmetry between spin-resolved
density of states N↑(ε) and N↓(ε) and is therefore absent in the
normal state.

to different energy levels. The resulting population imbalance
can relax due to the elastic spin scattering process. As a
result, all spin-up and spin-down states with identical energies
become equally populated. As one can see from Fig. 2, in
this state the net spin accumulation is nonzero because of
the energy interval � − h0 < Ep < � + h0 where only the
spin-down states exist [50].

The energy-to-spin conversion processes can be quantified
using kinetic equations together with the collision integrals
corresponding to the spin-orbit or spin-flip scattering. Intro-
ducing the distribution functions f↑/↓ and densities of states
N↑/↓ in spin-up/down subbands, normalized to N↑ + N↓ = 1
in the normal state, we obtain [51] the spectral densities
for spin and energy accumulations fs = N↑ f↑ − N↓ f↓ and
fe = ε(N↑ f↑ + N↓ f↓). The elastic spin-scattering collision
integral is given by Is = ( fs − κse fe)/T1, where T1 is the
longitudinal spin relaxation time in the superconducting state
[23] and spin-energy coupling coefficient κse(ε) = (N↑ −
N↓)/[ε(N↑ + N↓)]. For weak spin splitting h0 � �2, we can
estimate κse ∼ h0/(ε�), where � is the superconducting gap.

The spin-diffusion equation modified by the spin-energy
coupling is given by

∂xJsz = fs(ε) − κse fe
T1

, (2a)

∂xJe = Ie−ph + � fe, (2b)

where Jsz(ε) and Je(ε) are the spectral densities of the
time-independent spin jsz = ∫

dεJsz and energy je = ∫
dεJe

currents. The sources of these currents are determined by the
boundary conditions at the FI interface with dynamical mag-
netization fixing the values of interfacial currentsJe(x = 0) ∝
〈|∂tm|2〉 and Jsz(x = 0) ∝ z · 〈m × ∂tm〉. They are obtained
generalizing the theory of normal-state spin battery effect [5]
for the superconducting case [51]. In the limit of small SC film
thickness d the solution for spin accumulation μsz = (μs · z)
is μsz = −d−1

∫
dε(�−1κseJe + T1Jsz ). The first term has a

large prefactor �−1 and provides the possibility of spin signal
enhancement by the parameter κse/(�T1) as compared to the
normal state, where only the second term contributes. The
detailed calculation [51] described below shows that both Je

and Jsz are not dramatically smaller than their normal state
magnitudes down to T ≈ 0.3Tc. Thus μsz is enhanced by the
factor κse/(�T1) at T/Tc ≈ 0.8–0.9.

In the limit of a short elastic mean-free path, the described
effects are quantified using the Keldysh-Usadel equation
[39,40]

−{τ̂3∂t ◦, ǧ} + ∂x(Dǧ ◦ ∂xǧ) = [�τ̂1 + �̌ + 	̌so
◦, ǧ ] (3)

for the quasiclassical Green’s function (GF) ǧ in 8×8 space
consisting of Keldysh, Nambu, and spin indices [23]. The dif-
fusion constant is D, the elastic spin relaxation is determined
by the spin-orbit scattering self-energy 	̌so = σ · ǧσ/(6τso)
[51], while �̌ describes the coupling to the normal reservoir
to model the inelastic relaxation [52].

The spin splitting and pumping induced by the electron
scattering at the FI interface x = 0 are modelled by the dy-
namical boundary conditions [40,53]

Dǧ ◦ ∂xǧ(x = 0) = iJsd [τ̂3σ̂m ◦, ĝ] , (4)
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FIG. 3. (a) Quasiparticle excitation processes of the spin-split Bogoliubov spectrum. Vertical blue/red arrows are due to the absorption of
a magnon with spin ±1. Horizontal arrows represent rapid spin relaxation. The filling of the circles shows the occupation of the states after
spin relaxation. The corresponding peaks are labeled as I–III in the next panels. (b) Pumped spin accumulation (Tc0/h2

�)μz(T, �), (c) nonlocal
voltage (eTc0/h2

�)VD(�,T ), and (d) pumped energy accumulationW (T, �)/W (Tc, �), generated by the magnetization dynamics in the setup
of Fig. 1. The parameters used for (b)–(d) are �/Tc0 = 10−3, h0/Tc0 = 0.528, and τ−1

so /Tc0 = 1.19. For these parameters Tc ≈ 0.9Tc0, where
Tc0 is the critical field at h0 = τ−1

so = 0.

where we denote [A◦,B](t1, t2) = ∫
dtA(t1, t )B(t, t2) −

B(t1, t )A(t, t2) and similarly for the anticommutator
{X ◦,Y }. Here the interface is characterized by the effective
exchange coupling [54] Jsd . Within the minimal model
of the FI [53,55] it can also be expressed through the
spin-mixing angle [39,40]. The longitudinal spin-relaxation
time can be expressed in terms of the Green functions as
T −1
1 = N↑+N↓

6N↑N↓τso
Tr[(ĝRAs )2 − (ĝRAt )2], where ĝRAs and ĝRAt are the

singlet and triplet parts of ĝR − ĝA = ĝRAs + ĝRAt [23].
We assume the time-dependent magnetization is m⊥(t ) =

m�(cos(�t ), sin(�t ), 0) consisting of the left- and right-
hand parts m⊥(t ) = m�,l ei�t (x − iy) + m−�,re−i�t (x + iy)
with m�,l = m−�,r = m�/2. In general, solving Eqs. (3) and
(4) to the second order in time-dependent field we obtain the
stationary second-order correction to the Keldysh component
of the GF ĝK (ε) ∝ m2

�. It consists of corrections to the spectral
function analogous to those induced by the electromagnetic ir-
radiation [56,57] and of the anomalous part [58–61] ĝa which
determines the stationary spin accumulation and thereby the
nonlocal voltage in Eq. (1). The calculation of ĝa and its rela-
tion to the observables W , μsz and the distribution functions
f↑, f↓ is presented in Supplemental Material [51]. It provides
the general expression for the spin accumulation

μsz(�,T ) = χlr (�,T )ml,�mr,−�, (5)

where χlr is the second-order spin response function.
Here we consider a superconductor film with thickness

dS � 
sn, ξ0 small compared to the spin relaxation and co-
herence lengths in the superconductor. Then Eqs. (3) and (4)
can be reduced [51] to the coordinate-independent Usadel
equation with an effective Zeeman field h = Jsdm/d so that
h0 = Jsd/d and h� = h0m�.

The calculated dependencies of pumped spin accumula-
tion μsz, nonlocal voltage VD, and energy W are shown in
Figs. 3(b)–3(d). One can see the clear correlation between
these three quantities resulting from the strong spin-energy
coupling in spin-split superconductors. The key feature of
μsz(�) and VD(�) dependencies are the sharp peaks labeled
by I and II as well as the less pronounced peak labeled by III
corresponding to the different spin excitation processes shown
schematically on the energy level diagram Fig. 3(a).

The excitation processes I and II create nonequilibrium
quasiparticle states on the spin-down branch at the energy
interval � − h0 < Ep < � + h0, which corresponds to the
situation with spin-energy accumulation shown in Fig. 2.
Such states can relax only due to the slow energy relaxation
which determines the large amplitude of the peaks I and
II in Figs. 3(b) and 3(c). The size of these peaks scale as
min(τs,�−1)h0/(τs�) as demonstrated by the series of plots
for different parameters [51]. The process III is more compli-
cated since it requires the existence of subgap spin-up states
at [� − h0,� + h0] energy interval which appear due to the
broadening of spin subbands by the spin relaxation. The equi-
libration of spin-up and spin-down populations shown by the
horizontal arrow leads to f↑ = f↓ but the spin accumulation
appears due to the DOS difference N↓ > N↑.

Results in Figs. 3(b) and 3(c) predict sizable spin and
voltage signals even for low frequencies � � �0. They
are especially pronounced near the peak II associated with
electron paramagnetic resonance frequency � ≈ 2h0 usually
reached in FMR experiments with resonance frequencies
around several GHz. The excitation process II in Fig. 3(a)
polarizes existing quasiparticles and therefore disappears at
low temperatures T � Tc. The processes I and III exist even
at T → 0 since they break Cooper pairs and create spin-
polarized quasiparticles out from the vacuum state. As a result
peaks I and III become exponentially diverging in the voltage
signal at low temperatures T � Tc [not shown in Fig. 3(c)],
VD ∝ e�/T since the local conductanceGF ∝ e−�/T in Eq. (1).

Because of energy conservation W (�) = α(�)�2m2
�/�,

where α(�) is the frequency-dependent increase of Gilbert
damping. The plot of the ratio W (�,T )/W (�,Tc) =
α(�,T )/α(�,Tc) shows the presence of the superconducting
gap since the damping is generally suppressed for � < 2�0.
For temperatures somewhat below Tc there is a coherence peak
[37–40] at around � ≈ 2h0.

Next, we consider the spin accumulation driven by the
stochastic magnetization corresponding to the magnon ther-
mal field at temperature Tm �= T which can be controlled with
the help of electrical spin injection based on the spin Hall
effect [11,34]. For that we find μsz by averaging Eq. (5) over
the fluctuations of magnetization. This can be done [51] by
replacing the product of classical field components with the
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FIG. 4. Magnon Seebeck coefficient S(T ) in FI/SC/FM setup
calculated using (a) model energy relaxation (3) with � = 10−3Tc0
or (b) quasiequilibrium model (7) with electron-phonon relaxation.
Red (blue) curves correspond to (h0 · m0 ) > (<)0. Blue curves in
(a) are multiplied by 20 for clarity. Solid and dashed lines are for
|h0| = 0.5Tc0, τ−1

so = 1.1Tc0 (Nb) and |h0| = 0.9Tc0, τ−1
so = 0.12Tc0

(Al), respectively; PD = 0.5, PD · h0 > 0.

nonequilibrium Keldysh magnon propagator ml,�mr,−� →
vsδDK (�), where vs is the volume per spin, and summing
over �. In the stationary case δDK (�) = DRA(�)δ fm(�),
where DRA(�) and fm are the magnon density of states
and the distribution function [51]. For the thermally bi-
ased magnon state δ fm(�) = nB(�/Tm) − nB(�/T ), where
nB(�/T ) = coth(�/2T ). This approach generalizes the cal-
culation of the magnon-driven spin current [38,62,63] to that
of the magnon-driven spin accumulation.

For small magnon temperature bias this spin accumulation
μsz ∝ (T − Tm) and the detector voltage (1) can be expressed
through the linear Seebeck coefficient characterizing the con-
version of magnon temperature into the electric signal in
FI/SC/FM nonlocal circuit VD = S(T − Tm)

S = PDvsm
3/2
M

GFn

eGF

∫ ∞

0

√
�χlr∂T nBd�, (6)

where vs, the volume per unit spin in FI, determines the
number of magnon modes. For YIG [64], mM ≈ 1 eV−1 Å−2

and [65] vs ≈ 500 Å3. Figure 4 shows S(T ) for parameters
qualitatively corresponding to the EuS/Al and YIG/Nb based
FI/SC bilayers that have been studied recently [34,49].

The spin signals are enhanced even more due to the energy
dependence of the inelastic scattering rate when the relaxation
is due to the electron-phonon coupling. This can be demon-
strated in the quasiequilibrium limit, assuming the rapid
internal thermalization process that allows us to parametrize
the distribution function by temperature TS and the spin-
dependent chemical potential shift eVs. Then kinetic Eq. (2)
can be written as the following system describing energy, spin,
and charge currents at SC/FI and SC/FM interfaces

Ge-ph(TS − Tph) = Gme(Tm − TS )

VSνeVs/τsa = Gms(Tm − TS )

(GF/GFn)VD = PDVs + αth(TS − TF ). (7)

Here Ge-ph is the electron-phonon thermal conductance,
αth = ePD

∫ ∞
0 (N↑ − N↓)∂T n0dε is the thermoelectric coeffi-

cient at the SC/FM interface [20,21], VS the superconductor

volume, ν its density of states, and the energy-averaged spin
relaxation rate is τ−1

sa = ∫ ∞
0 dε (∂εn0)T −1

1 N↑N↓/(N↑ + N↓).
The magnon-electron conductances for spin and heat,Gms and
Gme, are expressed [51] through the linear spin susceptibil-
ity [40,66] and were previously studied in the normal state
[67,68]. Further we assume that the temperature of the phonon
heat bath is equal to that of the ferromagnetic metal electrode
TF = TS to obtain the electric Seebeck coefficient

S = GFn

GF

(
PDτsaGms

VSν
+ αthGme

Gme + Ge-ph

)
. (8)

The second term is again due to the spin-energy mixing, and it
provides the dominating contribution in the superconducting
state. The Seebeck coefficient is plotted in Fig. 4(b) [69].
Compared to the full nonequilibrium case [Fig. 4(a)], we find
that due to the rapid decrease of the electron-phonon coupling
with decreasing temperature, the signal persists to lower tem-
peratures and is mainly limited by the Seebeck coefficient of
the SC/FM junction [21].

The large value of the Seebeck coefficient converting the
magnon temperature difference to an electrical voltage indi-
cates that this device can be used as an ultrasensitive detector
of propagating magnons [51], analogous to the thermoelec-
tric detector suggested in Refs. [70,71]. The detector can
have a very low noise equivalent power of the order of
NEP2 ∼ GthT 2, limited by the weak thermal conductance
Gth = Gme + Ge-ph from the superconductor to the relevant
heat baths. Similar to the other nanoscale superconducting
detectors [72–74], they will also have a very good energy reso-
lution �E = NEP

√
τeff , provided that the thermal relaxation

time τeff is not too long. With suitable setting one can then
approach even the detection of single propagating magnons
with frequencies of a few tens of GHz.

To conclude we have shown how the electron-hole sym-
metry breaking present in SC/FI bilayers mixes the spin and
energy modes and leads to a giant enhancement of the spin
battery effect. This leads to the large magnon-driven Seebeck
effect which can be considered as a very sensitive detector of
magnons. We expect this effect also to explain the giant spin-
Hall signal measured in Ref. [34], but its precise description
would require appending the theory with the description of the
spin-Hall angle [75–77].

The mechanism of producing giant spin signals does not
necessarily require superconductors, but we expect similar
effects in any system exhibiting strong spin-resolved electron-
hole asymmetry, such as semimetals in the presence of large
exchange fields or magnetic topological insulators [78]. Such
systems allow for an electrical access to the energy dissipation
processes in ferromagnetic resonance or detailed studies of
the magnon spectra via the heat conductance Gme between
electrons and magnons.
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I. SUPPLEMENTARY MATERIAL

Here we provide technical details of the formalism, ver-
ification of our approach by comparison with known re-
sults as well as the extended results of calculations for
wide range of parameters. In Sec. IA we describe the
general formalism of Keldysh-Usadel equation with the
dynamical boundary conditions at the S/FI interface. In
Sec. I B we show that our general formalism yields the
conventional expression for the spin current with pumped
and backflow terms. In Sec. I C we show that our formal-
ism in the normal superconducting state yields the usual
expression for static spin current and spin accumulation
(spin battery effect).

The generalization of kinetic equations to describe spin
accumulation in the superconducting spin sink are de-
rived in Sec. ID.

In Sec. I E we describe the perturbation theory ap-
proach to solving Keldysh-Usadel equation to the second
order of the driving Zeeman field to calculate the station-
ary spin accumulation. Here we present the extended cal-
culation results of spin and energy accumulation as well
as the non-local voltage driven by the magnetization dy-
namics for a wide range of parameters.

Beyond perturbation theory we have also developed
the numerically exact solution of the non-stationary
Keldysh-Usadel equation with the time-dependent Zee-
man field. The method is described in Sec. I F.

Using the results for spin accumulation driven by the
deterministic magnetic signal we can treat the case of
stochastic magnetization dynamics driven by the field of
thermal magnons. The approach based on the calcula-
tion of electron-magnon collision integral is presented in
Sec. IG. We verify our approach by deriving the known
results for the magnon-driven spin and energy currents
in the normal state of FI/metal bilayer.

In Sec. IH We demonstrate that general relations be-
tween pumped spin and energy currents are valid in the
superconducting state.

Section I I considers the FI/SC/FM system as a
magnon detector and estimates the corresponding figures
of merit.

A. General formalism

We describe the superconducting film using Keldysh-
Usadel equation [1] with a gradient term and without
external Zeeman field

− {τ̂3∂t ,◦ ǧ}+ ∂xǏ = [Δτ̂1 + Γ̌ + Σ̌so ,◦ ǧ]. (S1)

Here ǧ is the quasiclassical Green’s function (GF) in the
8×8 space consisting of Keldysh, Nambu and spin in-
dices, D is the diffusion coefficient and Ǐ = D(ǧ ◦ ∂xǧ)
is the matrix current in the x-direction.[1] We assume
translation invariance in the y−z plane. For double-time
variables ◦ is a convolution product

(A ◦B)(t1, t2) =

∫
dtA(t1, t)B(t, t2). (S2)

For single-time variables it reduces to a product

(a ◦B)(t1, t2) = a(t1)B(t1, t2),

(B ◦ a)(t1, t2) = B(t1, t2)a(t2).
(S3)

The commutator is [X ,◦ Y ] = X ◦ Y − Y ◦ X, and the
time-derivative acts as

{τ̂3∂t ,◦ ǧ}(t1, t2) = τ̂3∂t1 ǧ(t1, t2) + ∂t2 ǧ(t1, t2)τ̂3. (S4)

The value of the superconducting order parameter Δ
is determined from the self-consistency equation

Δ =
λ

16i

∫ ΩD

−ΩD

dεTr[τ̂1ĝ
K(ε)]. (S5)

We assume the weak-coupling limit, so that the coupling
constant λ and the high-energy cutoff ΩD can be elim-
inated in favor of the transition temperature Tc0 in the
absence of pair-breaking effects.[1] We do not include the
non-equilibrium correction to Δ, as it only gives a spec-
tral correction to the GFs and does not affect the second-
order perturbation theory results for the non-local volt-
age VD or the energy accumulation W .
The coupling to the normal reservoir self-energy has

spectral components Γ̂R,A = ±Γτ̂3 and the Keldysh
component Γ̂K = 2Γτ̂3n0 with the equilibrium distri-
bution function in the Fourier representation n0(ε) =
tanh(ε/2T ). The spectral components of this self-energy
yield the frequently used Dynes[2] parameter which de-
termines the smearing of the BCS density of states singu-
larity. In addition, this self-energy determines the relax-
ation of spin-independent non-equilibrium distribution
functions.
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Elastic spin relaxation in the ladder approximation is
determined by the spin-orbit scattering self-energy [3]

Σ̌so = σ̂ · ǧσ̂/(6τso). (S6)

The differential equation (S1) is supplemented by dy-
namical boundary conditions at x=0 describing the spin
splitting and pumping induced by the electron scattering
at the FI interface with time-dependent magnetization.
These boundary conditions are derived from the spin-
dependent scattering matrix at the FI/SC interface[4]

Ǐ(x = 0) = iJsd[σ̂mτ̂3 ,◦ ǧ]. (S7)

The boundary condition determines the interfacial ma-
trix current.

B. Boundary condition for spin current

To demonstrate how the spin pumping arises in this
formalism, we now derive an expression for the energy-
integrated spin current generated at the interface. The
Fourier transform of the Keldysh part of the matrix cur-
rent is

ÎK(ε, ε−Ω)= iJsd

∫
dω

(
m̂ωg

K
ε−ω,ε−Ω−gKε,ε−Ω+ωm̂ω

)
,

(S8)
where m̂ω ≡ ∫

dtτ3σm(t)e−iωt. Fourier convention for
double-time functions is

f(ε1, ε2) =

∫
dt1dt2f(t1, t2)e

−iε1t1+iε2t2 . (S9)

We extract the quasiclassical part of the energy-
integrated current by imposing an energy cutoff Λ sat-
isfying Δ0, Tc0,Ω � Λ � EF , so that

ÎK(Ω) =

∫ +Λ

−Λ

dεÎ(ε+Ω/2, ε− Ω/2) (S10)

= iJsd

∫
dω

∫ +Λ

−Λ

dε
(
m̂ωg

K
ε+Ω/2−ω,ε−Ω/2

− gKε+Ω/2,ε−Ω/2+ωm̂ω

)
.

In terms of a matrix n̂(ω) =
∫ +Λ

−Λ
dεgKε−ω/2,ε+ω/2, the

current is

ÎK(Ω) = iJsd

(∫
dω(m̂ωn̂Ω−ω−n̂Ω−ωm̂ω)− 4ΩσmΩ

)
.

(S11)
The last term appears from energy shifts about the cutoff,
where gKε,ε−ω ≈ 2 sgn(ε)τ3δ(ω) does not depend on the
state of the system.

Transforming to the time domain and extracting the
spin-dependent part, we find the boundary condition for
the spin current

js(x = 0) = 2Jsd [μs(t)×m(t)−∂tm(t)] . (S12)

Here the spin current and the quasiclassical part of the
spin accumulation are defined as

js(t) = −1

8

∫ ∞

−∞
dεTr[σÎK(ε, t)], (S13)

μs(t) = −1

8

∫ ∞

−∞
dεTr[σ̂τ3ĝ

K(ε, t)], (S14)

respectively, with an implicit high-energy cutoff. Above,
the center-of-mass time-coordinate t is the Fourier trans-
form of the frequency Ω = ε1 − ε2 and ε = (ε1 + ε2)/2 as
in Eq. (S9). In Eq. (S12), the latter term is the pumped
spin current and the former term is the back-flow current
due to spin accumulation. This expression corresponds
to the general one[5] with a purely imaginary spin-mixing
conductance associated with the interfacial exchange con-
stant [6] g↑↓ = −2iJsd/ν.

C. Spin diffusion in the normal state

Consider a normal metal (N) in contact with FI with
time-dependent magnetization m(t). In the normal
state Eq. (S1) is greatly simplified because we know the
spectral functions ĝR/A = ±τ3 and they are not per-
turbed by the time-dependent boundary conditions (S7).

The Keldysh function is given by ĝK = 2τ3f̂ where

f̂ = fL + fσ̂. The distribution functions fL and f
parametrize the energy and spin accumulations, respec-
tively. The spin accumulation is given by

μs(t) = −
∫ ∞

−∞
dεf(t, ε) (S15)

js = D∂xμs (S16)

Spin diffusion equation in the normal metal, obtained
from the Keldysh part of Eq. (S1), is

∂xjs = ∂tμs + μs/τs, (S17)

where τ−1
s is the spin relaxation rate in the normal state.

In the normal-state we can use the energy-integrated
Eq. (S12) as the boundary condition for the spin current
generated at the FI/N interface at x = 0. The length
of the normal metal is d and the other interface is to
vacuum so that the current vanishes at x = d.

From the diffusion equation (S17), we find that the
spin accumulation at frequency ω is determined by the
spin current at x = 0 at the same frequency,

μs(x, ω) = −js(x = 0, ω)
cosh[κ(x− d)]

Dκ sinh(κd)
, (S18)

and the boundary condition mixes the harmonics. Here
the wavevector is κ =

√
1 + iωτs/λs with the spin diffu-

sion length λs =
√
Dτs. We assume the FI magnetiza-

tion m has a circularly polarized alternating component
m⊥(t) = Re[mΩ(x + iy)eiΩt], with m∗

Ω = mΩ. It drives
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the alternating spin accumulation (S18) with frequency
ω = ±Ω and for static spin accumulation with ω = 0.
The latter one determines the spin battery effect [5, 7]

〈μs〉(x) = −〈js〉(x=0)
λs cosh[(x− d)/λs]

D sinh(d/λs)
, (S19)

where 〈..〉 denotes the time averaging.
We assume the FI magnetization m has a static com-

ponent m0 = z and a circularly polarized alternating
componentm⊥(t) = Re[mΩ(x+iy)eiΩt], withm∗

Ω = mΩ.
Solving Eqs. (S12) and (S18), we find the linear response
spin accumulation at the interface,

μs(x = 0,Ω) = χl(Ω)mΩ(x+ iy), (S20)

χl(Ω) = − Ω

1− i(Dκ/2Jsd) tanh(κd)
. (S21)

In time-domain, μs(t) is real, so the negative frequency
is given by μs(x = 0,−Ω) = μs(x = 0,Ω)∗.

At the second order in m⊥(t), the static spin current
at the interface is given by the boundary condition (S12)
as

〈js(x = 0)〉 = Jsdμs(x = 0,Ω)∗ ×m(Ω) + c.c.

= −2Jsd Im[χl(Ω)]m
2
Ωz.

(S22)

In the low-frequency limit ωτs � 1 we can put κ = λ−1
s

so that combining Eqs. (S21–S22) we get the constant
spin current in the conventional form [5, 7]

ν〈js(x = 0)〉 = ReA↑↓
eff〈m× ∂tm〉 (S23)

1

A↑↓
eff

= − ν

2iJsd
+

νD

λs

1

tanh(d/λs)
(S24)

Here the first term is the inverse of pure imaginary spin-
mixing conductance of the FI interface −2iJsd/ν while
the second term is the usual contribution from the spin
relaxation in the spin sink[5] with νD/λs is the dimen-
sional resistance of the normal metal layer of the thick-
ness λs.

In the thin-film limit d � λsd and beyond the small
frequency limit the susceptibility (S21) becomes

χl(Ω) = 2h0Ω/(Ω− 2h0 − i/τs), (S25)

with the effective field h0 = Jsd/d. It corresponds to the
Bloch equation

∂tμs + 2μs × h+ μs/τsn = 2∂th (S26)

with h = h0m. Here we have electron paramagnetic
resonance at Ω = 2h0.

D. Derivation of kinetic equations

The stationary non-equilibrium Keldysh function can
be presented in the form

ĝKhh = n0(ε)(ĝ
R
hh − ĝAhh) + ĝahh, (S27)

where ĝR,A
hh are the corrections to the spectral func-

tion and ĝahh is the anomalous part which contains the
information about non-equilibrium quasiparticles. The
anomalous and spectral parts can be calculated sepa-
rately.

In general, the corrections to GF satisfy the relation
coming from the normalization condition

gR0 g
a
hh + gahhg

A
0 = −gRh ◦ gah − gah ◦ gAh , (S28)

where g
R/A/a
h are the first-order corrections and g

R/A/a
hh

are the second-order corrections. To derive the simpli-
fied description in terms of the stationary kinetic equa-
tions one can use a parametrization in terms of the spin-
dependent distribution functions

ĝahh = (ĝR0 − ĝA0 )(fLτ0 + fT3σz). (S29)

This parametrization implies that ĝR0 ĝ
a
hh + ĝahhĝ

A
0 = 0

and therefore it is not exact. It neglects the contribution

ĝRh ◦ f̂h − f̂h ◦ ĝAh to the second-order correction to the

anomalous function, where f̂h is the first-order correction
to the distribution function. However this contribution
does not contain large parts determined by the inelastic
relaxation. Therefore by comparing the results given by
this parametrization (S29) with the general form of gahh
we find that they coincide with good accuracy for not
very small spin relaxation, that is when Γτs � 1. All
numerical results in paper are obtained with general ĝahh
as explained in Sec. I E With good accuracy we can thus
parametrize the stationary anomalous GF with the help
of the distribution functions.

Distribution functions satisfy stationary kinetic equa-
tions

∂xJe + Γε(NfL +Nzfz) + Iph = 0 (S30)

∂xJs + Iso = 0, (S31)

where the spin-relaxation collision integral is given by

Iso = Tr(σz[Σso, ĝ]
K)/4 = τ̃−1

so NfT3 (S32)

with spin relaxation time given by τ̃−1
so =

(1/6Nτso)Tr[(g
RA
s )2− (gRA

t )2] with spin-singlet gRA
s and

spin-triplet gRA
t parts of the difference ĝRA = ĝR − ĝA.

The spectral densities of currents are given by

Jsz = DT3∂xfL +DL∂xfT3 (S33)

Je = ε(DL∂xfL +DT3∂xfT3) (S34)

with diffusion coefficients found in [8]. These kinetic
equations can be rewritten in terms of the spin-up and
spin-down distribution functions f↑/↓ = fL ± fT3. Then
we obtain the spectral densities for spin and energy ac-
cumulations fs = N↑f↑−N↓f↓ and fe = ε(N↑f↑+N↓f↓).
In this representation the spin-orbit scattering collision
integral (S35) is given by

Iso =
fs − κsefe

T1 (S35)
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where T1 = τ̃soN↑N↓/N2 is the longitudinal spin relax-
ation time and spin-energy coupling is quantified by the
coefficient

κse(ε) =
1

ε

N↑ −N↓
N↑ +N↓

. (S36)

Note that κse(ε) 	= 0 requires the description of the
static magnetic proximity effect, i.e., the generation of
the spin splitting h0 in the superconductor. The spin-
diffusion equation modified by the spin-energy coupling
is given by

∂xJsz =
fs − κsefe

T1 (S37a)

∂xJe = Ie−ph + Γfe, (S37b)

where Jsz(ε) and Je(ε) are the spectral densities of the
time-independent spin and energy currents. The sources
in Eqs. (S37a–S37b) are determined by the boundary
conditions for these currents at the FI/SC interface, gen-
erated by the magnetization dynamics. We obtain it from
the general boundary conditions (S106–S107) by leaving
only the anomalous part of the sources

J (a)
sz (ε) =

iJsd
8

Tr(σz[σmτ̂3 ,◦ ĝh]a)(ε) (S38)

J (a)
e (ε) =

iJsd
4

εTr([σmτ̂3 ,◦ ĝh]a)(ε). (S39)

The anomalous part of the boundary conditions can
be calculated by subtracting the spectral part, i.e., the
part independent of the nonequilibrium state of the sys-
tem, from the full Keldysh component of the currents.
We assume the magnetization dynamics given by m(t) =
m0z + m⊥(t) with rotating time-dependent component
given by m⊥(t) = mΩ(cos(Ωt), sin(Ωt), 0). It can be rep-
resented as the sum of left-hand and right-hand compo-
nents with the same amplitudes m⊥(t) = mΩ,le

iΩt(x −
iy) +m−Ω,re

−iΩt(x+ iy) where mΩ,l = m−Ω,r = mΩ/2.
This signal can be induced in the standard ferromagnetic
resonance setup. The frequency Ω can be tuned by the
external magnetic field.

The spectral part of the boundary conditions reads

i

4
Tr(τ̂3σz[σm ,◦ ĝh]sp)(ε) = ml,Ωmr,−Ωn0(ε)× (S40)

[χRA
r (ε− Ω, ε)− χRA

l (ε, ε− Ω)−
χRA
l (ε+Ω, ε) + χRA

r (ε, ε+Ω)]

With that we obtain the anomalous part

i

4
Tr(τ̂3σz[σm ,◦ ĝh]a)(ε) = (S41)

ml,Ω[χ
K
r (ε− Ω, ε)− χRA

r (ε− Ω, ε)n0(ε)]

−mr,−Ω[χ
K
l (ε, ε− Ω)− χRA

l (ε, ε− Ω)n0(ε)]+

mr,−Ω[χ
K
l (ε+Ω, ε)− χRA

l (ε+Ω, ε)n0(ε)]

−ml,Ω[χ
K
r (ε, ε+Ω)− χRA

r (ε, ε+Ω)n0(ε)]

Substituting these expressions to (S38,S39) we get the
spectral densities of the anomalous parts of spin and en-

ergy currents. The examples of J (a)
sz (ε, T ), J (a)

e (ε, T )
functions at a given frequency of the driving magnetiza-
tion are shown in Fig. 1.

FIG. 1. Spectral densities of interfacial currents generated
by the magnetization dynamics. (Left column): Energy cur-
rent Je(ε, T ). (Right column): Spin current Jsz(ε, T ). The
energy-like quantities h0, τ

−1
s ,Ω are given in terms of Tc0.

E. Numerical perturbation calculations in the thin
film limit

In this section we develop the perturbation theory
which allows for calculating the corrections to spectral
and anomalous parts of the GF in FI/SC system to the
second order of the time-dependent magnetization. This
calculation yields the boundary conditions for spin and
energy currents which are the sources for kinetic equa-
tions discussed in Sec. ID. Besides that here we consider
a general form of the anomalous function and hence can
go beyond the approximation used for deriving the ki-
netic equations. This allows to study the limit of vanish-
ing spin relaxation.

Integrating Eq. (S1) by thickness using boundary con-
ditions (S7) we get the time-dependent Eilenberger equa-
tion

− {τ̂3∂t ,◦ ǧ} = [σ̂hτ̂3 +Δτ̂1 + Γ̌ + Σ̌so ,◦ ǧ] (S42)

where σ̂k, τ̂k, k = 0, 1, 2, 3 are Pauli matrices. The effec-
tive Zeeman field is h = (Jsd/d)m. In the presence of
both the non-zero spin-splitting field h and spin relax-
ation we can solve Eq. (S42) only numerically. Let us
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write the iteration scheme for Eq. (S42) considering the
time-dependent Zeeman field h(t) as a perturbation.

− {τ̂3∂t ,◦ ǧ} = i[στ3 ,◦ ǧ] + [h0σzτ3 +Δτ̂1 + Γ̌ + Σ̌s ,◦ ǧ].
(S43)

Zeroth order solution is found in the form ĝ0(t1, t2) =
ĝ0(ε)e

iε(t1−t2), with the Keldysh component ĝK0 (ε) =
gRAn0(ε). The spectral components satisfy the station-
ary equilibrium Eilenberger equation

[(h0σz + ε± iΓ)τ3 +Δτ̂1 + Σ̌so, g
R,A
0 ] = 0 (S44)

The first-order perturbation solutions
gh(12)e

iε1t1−iε2t2 and gh(21)e
iε2t1−iε1t2 where ε1 = ε2+Ω

are determined by

[(iε1 + Γε1)τ3 + Λ+ Σ̌0(1)]gh(12)−
gh(12)[τ3(iε2 + Γε2) + Λ + Σ̌0(2)]+ (S45)

Σh(12)g0(2)− g0(1)Σh(12) =

i[ǧ0(1)hΩστ3 − hΩστ3ǧ0(2)]

[(iε2 + Γε2)τ3 + Λ+ Σ̌0(2)]gh(21)−
gh(21)[τ3(iε1 + Γε1) + Λ + Σ̌0(1)]+ (S46)

Σh(21)g0(1)− g0(2)Σh(21) =

i[ǧ0(2)h−Ωστ3 − h−Ωστ3ǧ0(1)].

Here we also denote Λ = h0σzτ3 +Δτ̂1.
The second order perturbation yields the stationary

correction from ghh(ε)e
iε(t1−t2)

[(iε+ Γ̌)τ3 + Λ+ Σ̌0, ghh] + [Σhh, g0] =

i[ǧh(12)h−Ωστ3 − h−Ωστ3ǧh(31)]+

i[ǧh(13)hΩστ3 − hΩστ3ǧh(21)]−
[Σ̌h(12)gh(21)− gh(13)Σ̌h(31)+

Σ̌h(13)gh(31)− gh(12)Σ̌h(21)]. (S47)

Here the spin-orbit terms are

Σ̌h(12) = σĝh(12)σ/6τso (S48)

Σ0 = σg̃0σ/6τso. (S49)

The linear spin response is diagonal in the circu-
lar basis. Provided that there are components hl,Ω,
hr,−Ω we can write μs(Ω) = χlhl,Ω(x + iy)/h0 and
μs(−Ω) = χrhr,−Ω(x − iy)/h0. For left-hand field,
hΩ = (1, i, 0)hl,Ω/2, the first-order (imaginary-time)
Green function solution reads

gh(12) = ihl,Ωσ+
τ3 − g+(1)τ3g−(2)

s+(1) + s−(2) + 2
3τso

. (S50)

Here g0(ε) =
1+σz

2 g+(ε) +
1−σz

2 g−(ε), and g± = (ω±τ3 +
Δ±τ1)/s±, ω± = −iε ± ih0 +

ω∓
3τsos∓

, Δ± = Δ + Δ∓
3τsos∓

,

s± =
√

ω2± +Δ2±. The algebraic equations for ω±, Δ±

need to be solved numerically. The R, A components are

obtained via gR,A
h (12) = gh(1

R,A, 2R,A) where εR,A =
ε ± iΓ. The spin susceptibility is conveniently obtained
via the analytic continuation,

χK
l (1, 2) = χl(1

R, 2R) tanh
ε2
2T

− χl(1
A, 2A) tanh

ε1
2T

+ χl(1
R, 2A)[tanh

ε1
2T

− tanh
ε2
2T

] , (S51)

where χl(12) = h0

8hl,Ω
tr τ3σ−gh(12). The calculation for

χ has been previously discussed in Refs. 9 and 10.
Now let us consider the equation for the rectified spin

polarization μsz ∝ z · (mΩ×m−Ω) which is given by the
second-order non-linear spin response of the supercon-
ductor. We search for the correction to Keldysh function
in the form

ĝKhh = n0(ε)(ĝ
R
hh − ĝAhh) + ĝahh (S52)

where ĝR,A
hh are the corrections to the spectral func-

tion and ĝahh is the anomalous part which contains the
information about non-equilibrium quasiparticles. The
anomalous and spectral parts can be calculated sepa-
rately from Eq. (S47). We are interested in the anoma-
lous part since it determines the non-equilibrium spin ac-
cumulation and thereby the non-local voltage in Eq. (1)of
the main text

μs = −
∫ ∞

−∞
dεTr [τ̂3σ̂g

a
hh(ε)]/8 (S53)

W = −
∫ ∞

−∞
dεTr[τ̂3ĝ

a
hh(ε)]/4 (S54)

Using the scheme described above we calculate
μsz(Ω, T ), W (Ω, T ) and V (Ω, T ) in the wide range of
parameters. The series of calculation results for varying
h0 and τs are shown in Figs. 2, 3.

F. Numerical higher-order calculation in thin-film
limit

Numerical calculations can be also performed beyond
low-order perturbation theory. The Usadel equation in
the thin-film limit can be written as

[Ω(g), g] = 0 , g2 = 1 , (S55)

where Ω = ∂tδ(t − t′) + X where X is the operator on
the r.h.s. of Eq. (S42). This is formally solved by

g = sgn(Ω(g)) , (S56)

where sgn is the sign function, defined as the analytic
continuation sgn z = sgnRe z of sgn from real axis to
complex plane, so it extends to an operator-valued func-
tion. For finite matrices, it can be defined via the
eigenvalue decomposition X = V diag(λ1, . . . , λn)V

−1 as
sgn(X) = V diag(sgnReλ1, . . . , sgnReλn)V

−1.
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FIG. 2. (1st column): Pumped energy of the electronic system W (T,Ω)/W (Tc,Ω). (2nd column): Pumped spin accumulation
(Tc0/h

2
Ω)μz(T,Ω). (3rd column): Non-local voltage generated by the pumped spin accumulation (eTc0/h

2
Ω)V (Ω, T ). (4th

column): Magnon-induced spin accumulation.. (5th column): nonlocal Seebeck coefficient in the FI/SC/FM bilayer. Parameters
are h0/Tc0 = 0.88, energy relaxation rate Γ/Tc0 = 10−3. We consider circular polarization hl,Ω, hr,−Ω �= 0. Scan over Ω, T ,
different values of spin relaxation.

To deal with the time convolutions, for periodic forces
h(t) = h(t + 2πΩ−1), we can make a Green function

Floquet Ansatz,

g(t, t′) =
∫ ∞

−∞

dω dω′

4π2
e−iωt+iω′t′g(ω, ω′) , (S57)

g(ω, ω′) =
∑
k

g0,k(ω)2πδ(ω − ω′ + kΩ) , (S58)

gm,n(ω) = g0,n−m(ω +mΩ) . (S59)
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FIG. 3. (1st column): Pumped energy of electronic system W (T,Ω)/W (Tc,Ω). (2nd column): Pumped spin accumulation
(Tc0/h

2
Ω)μz(T,Ω). (3rd column): Non-local voltage generated by pumped spin accumulation (eTc0/h

2
Ω)V (Ω, T ). (4th col-

umn): Magnon-induced spin accumulation. (5th column): nonlocal Seebeck coefficient in FI/SC/FM bilayer. Parameters are
(τsoTc0)

−1 = 1.19, energy relaxation rate Γ/Tc0 = 10−3. We consider circular polarization hl,Ω, hr,−Ω �= 0. Scan over Ω, T ,
different values of Zeeman splitting.

One can now check that (A ◦ B)m,n(ω) =∑
k Am,k(ω)Bk,n(ω). Moreover, (ε)m,n(E) =

(E + nω)δm,n, and (h)m,n(E) =
∫
dt e−i(n−m)Ωth(t).

We take

h = h0ẑ +Re[hac,xe
iΩt]x̂+Re[hac,ye

iΩt]ŷ ,

(S60)

hm,n(E) = h0ẑδm,n + x̂
1

2
(hac,xδm,n+1 + h∗

ac,xδm,n−1)

(S61)

+ ŷ
1

2
(hac,yδm,n+1 + h∗

ac,yδm,n−1) .

Hence, Ω �→ (Ω)m,n(E), and Eq. (S56) becomes a matrix
equation. The matrix size is infinite, but when the time-

dependent perturbations are not too large, when solv-
ing for g0,0(E) we can limit the equations to gm,n(E),
|m|, |n| ≤ N for some cutoff N . Second-order perturba-
tion theory corresponds to N = 1. The iteration (S56) is
reasonably convergent, and can be solved numerically in
a straightforward way also for large N . However, if τso
is small, Newton method is preferable.

The results are compared with the perturbation cal-
culation of the previous section in Fig. 4. For the small
excitation amplitude chosen here, results coincide.
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FIG. 4. Comparison of energy and spin accumulation cal-
culated from the numerically exact solution (left panels) and
second-order perturbation theory (right panels).

G. Spin pumping by the stochastic field of
magnons

Here we show how to derive the electron-magnon col-
lision integral in the case of a spin-split superconductor.
The approach is relatively standard [11, 12], but the de-
tails related with superconductivity are new. We present
it here for the convenience of the reader.

We can quantize time-dependent components of mag-
netization by introducing the bosonic creation and anni-
hilation operators

He−m =
1√
S0

∑
p,p̄

Θp,p̄â
†
pm̂âp̄ (S62)

m̂ = (b̂σ̂+ + b̂†σ̂−)τ̂3, (S63)

where S0 is the value of the localized spin, the matrix
Θp,p̄ describes spin-dependent scattering at the surface

and b̂, b̂† are the magnon field operators at the interface.
They are expressed through the operators of the magnon

modes in the usual way b̂(r) =
∑

k
eikr√
NFI

b̂k, where NFI

is the number of sites in the FI.
To calculate the matrix current driven by the electron-

magnon interaction (S62) we calculate the corresponding
electron-magnon collision integral. We work in the inter-
action representation with respect to Hem, so that the
Heisenberg equations are

∂tâp = i[Ĥe−m, âp] = −iΘp,p̄m̂âp̄ (S64)

∂tâ
†
p = i[Ĥe−m, â†p] = iΘp,p̄â

†
p̄m̂ (S65)

The contour-ordered GF is defined as

Ĝ(t1, t2, p, p
′) = 〈TcSap(t1)a†p′(t2)〉 (S66)

S = Tc exp(−i

∫
c

He−mdt) (S67)

The e-m collision integral Ĵ(t1, t2) is given by

Ĵ(t1, t2) = ∂t1Ĝ(t1, t2) + ∂t2Ĝ(t1, t2) (S68)

Using equations of motion (S64,S65) and expanding

the S-matrix S ≈ 1− i
∫
c
Ĥe−m(t)dt we get

− ∂t1Ĝ(t1, t2) = (S69)

− 〈Tc
∫
c

dtĤe−m(t)m̂(t1)Θ̂p̄p̄′ âp̄′(t1)â
†
p(t2)〉 =

〈Tc
∫
c

dtâ†p1
(t)m̂(t)Θ̂âp̄1(t)m̂(t1)Θ̂âp̄′(t1)a

†
p(t2)〉 =

S−1
0 〈Tc

∫
c

dtâ†p1
(t)σ̂+Θ̂âp̄1(t)σ̂−Θ̂âp̄′(t1)a

†
p(t2)b̂(t)b̂

†(t1)〉+

S−1
0 〈Tc

∫
c

dtâ†p1
(t)σ̂−Θ̂âp̄1

(t)σ̂+Θ̂âp̄′(t1)a
†
p(t2)b̂

†(t)b̂(t1)〉 =∫
c

dtΣ(t1, t, p̄
′, p̄1)G(t, t2, p̄1, p).

Here the self-energy is

S0Σ(t1, t) = (S70)

σ̂−Θ̂G(t1, t)Θ̂σ̂+D
(l)(t, t1) + σ̂+Θ̂G(t1, t)Θ̂σ̂−D(r)(t, t1)

where the left- and right-hand polarized magnon propa-
gators are

D(l)(t, t1) = 〈Tcb̂(t)b̂†(t1)〉 (S71)

D(r)(t, t1) = D(l)(t1, t) (S72)

Differentiating with respect to the second time variable
gives

∂t2Ĝ(t1, t2) = 〈Tc
∫
c

dtĤe−m(t)âp̄(t1)a
†
p(t2)Θ̂m̂(t2)〉 =

〈Tc
∫
c

dtâ†p1
(t)m̂(t)Θ̂âp̄1(t)âp̄(t1)a

†
p(t2)Θ̂m̂(t2)〉 =

S−1
0 〈Tc

∫
c

dtâp̄(t1)a
†
p1
(t)σ̂+Θ̂âp̄1(t)âp(t2)σ̂−Θ̂b̂(t)b̂†(t2)〉+

S−1
0 〈Tc

∫
c

dtâp̄(t1)a
†
p1
(t)σ̂−Θ̂âp̄1(t)âp(t2)Θ̂σ̂+b̂(t)b̂

†(t2)〉 =∫
c

dtG(t1, t, p̄, p1)Σ(t, t2, p̄1, p).

Thus the matrix double-time current which can be con-
sidered as the electron-magnon collision integral (CI) is
given by

Ĵ(t1, t2) = Ĝ ◦ Σ− Σ ◦ Ĝ. (S73)
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The self-energy can be represented as the sum of the parts
associated with right- and left-hand polarized magnons
Σ = Σ(l) +Σ(r).

Switching to the Keldysh contour, we express the con-
volution product as matrix components coupling different
segments of the contour, i.e.,

S0Σ
(r)
11 = σ̂+Θ̂[G11D

(r)
11 +G12D

(r)
21 ]Θ̂σ̂− (S74)

S0Σ
(r)
22 = σ̂+Θ̂[G22D

(r)
22 +G21D

(r)
12 ]Θ̂σ̂− (S75)

S0Σ
(r)
12 = σ̂+Θ̂[G12D

(r)
22 +G11D

(r)
12 ]Θ̂σ̂− (S76)

S0Σ
(r)
21 = σ̂+Θ̂[G21D

(r)
11 +G22D

(r)
21 ]Θ̂σ̂−. (S77)

and

S0Σ
(l)
11 = σ̂−Θ̂[G11D

(l)
11 +G12D

(l)
21 ]Θ̂σ̂+ (S78)

S0Σ
(l)
22 = σ̂−Θ̂[G22D

(l)
22 +G21D

(l)
12 ]Θ̂σ̂+ (S79)

S0Σ
(l)
12 = σ̂−Θ̂[G12D

(l)
22 +G11D

(l)
12 ]Θ̂σ̂+ (S80)

S0Σ
(l)
21 = σ̂−Θ̂[G21D

(r)
11 +G22D

(r)
21 ]Θ̂σ̂+. (S81)

Next we use the RAK representation [12] G → ĤĜĤ
which yields

S0Σ
R
r = σ̂+Θ̂[DR

r G
K +DK

r GR]Θ̂σ̂−/2 (S82)

S0Σ
A
r = σ̂+Θ̂[DA

r G
K +DK

r GA]Θ̂σ̂−/2 (S83)

S0Σ
K
r = σ̂+Θ̂[DK

r GK + (DR
r −DA

r )(G
R −GA)]Θ̂σ̂−/2

(S84)

S0Σ
R
l = σ̂−Θ̂[DR

l G
K +DK

l GR]Θ̂σ̂+/2 (S85)

S0Σ
A
l = σ̂−Θ̂[DA

l G
K +DK

l GA]Θ̂σ̂+/2 (S86)

S0Σ
K
l = σ̂−Θ̂[DK

l GK + (DR
l −DA

l )(G
R −GA)]Θ̂σ̂+/2

(S87)

The left- and right- handed magnon propagators are

D
R/A/K
l,r =

∑
k D

R/A/K
l,r (Ω, ωk) where

D
R/A/K
l (Ω, ωk) = DR/A/K

r (Ω,−ωk) (S88)

DK
r/l = (DR

r/l −DA
r/l)nB(Ω/Tm), (S89)

where

DR
r = (DA

r )
∗ =

1

(Ω + iα)− ωk
. (S90)

The dc part of the collision integral (S73) is given by
the sum of two terms corresponding to the left- and right-
handed magnons ĴK = Ĵl + Ĵr where e.g.

S0Ĵr = 〈[Θ̂σ̂+ĜΘ̂σ̂−, Ĝ]K(12)〉DK
r + (S91)

σ̂+Θ̂GK(1)σ̂−Θ̂GK(2)DR
r +

σ̂+Θ̂GRA(1)σ̂−Θ̂GA(2)DRA
r −

GK(1)σ̂+Θ̂GK(2)σ̂−Θ̂DR
r −

GR(1)σ̂+Θ̂GRA(2)σ̂−Θ̂DRA
r

where the angular brackets 〈..〉 denote the average by
momentum and disorder.

Since only the first term in Eq. (S91) depends on the
distribution of magnons and the collision integral is zero
in equilibrium we can write it as Ĵ(ε,Ω) = Ĵr + Ĵl where

S0Ĵr(ε,Ω) = χ̂rl(ε,Ω)δD
K
r (Ω) (S92)

S0Ĵl(ε,Ω) = χ̂lr(ε,Ω)δD
K
l (Ω). (S93)

Here we denote the response functions

χ̂rl(ε,Ω) = 〈[Θ̂σ̂+ĜΘ̂σ̂−, Ĝ]K(12)〉 (S94)

χ̂lr(ε,Ω) = 〈[Θ̂σ̂−ĜΘ̂σ̂+, Ĝ]K(12)〉, (S95)

where G(1) = G(ε), G(2) = G(ε + Ω) and δDK
r/l

are the non-equilibrium parts of magnon Keldysh func-
tions. In the stationary case they can be parametrized
by the magnon distribution function δDK

r/l(Ω) =

DRA
r/l (Ω)δfm(Ω). If the non-equilibrium is determined

by the temperature difference between superconductor
and magnon subsystem, the distribution function reads
δfm(Ω) = coth(Ω/2Tm)− coth(Ω/2T ). For small damp-
ing α � ωk we can write DRA

r = 2iδ(ωk−Ω) We can sum
by the magnon states to replace DRA

r/l with the density of

states for magnons as

1

NFI

∑
k

DRA
r (ωk) ≈ (S96)

ivsDm(Ω)(1 + Step(Ω))/2

where mM is the magnon mass and Step(x) is a step
function, vs = VFI/NFI is the volume per spin, Dm(Ω) =

m
3/2
M |Ω|1/2 is the magnon density of states. To avoid

extra parameters in the model, we have set the magnon
gap to vanish, but it can be easily added if needed.

Using the symmetry relation DK
l (Ω) = DK

r (−Ω) we
can write the total current

Ĵ(ε) = vs

∫ ∞

−∞
dΩ[χ̂rl(ε,Ω) + χ̂lr(ε,−Ω)]δDK

r (Ω),

(S97)

where vs = VFI/S0NFI is the volume per spin in FI.
The correlators in Eqs. (S92–S93) can be determined

by calculating the matrix currents generated by the clas-
sical time-dependent exchange field

Ĵcl
r (Ω, ε) = [χ̂rl(Ω, ε) + χ̂lr(−Ω, ε)]mr,Ωml,−Ω (S98)

Ĵcl
l (Ω, ε) = [χ̂lr(Ω, ε) + χ̂rl(−Ω, ε)]ml,Ωmr,−Ω (S99)

where mr/l,Ω = (mx,Ω ± imy,Ω) are the right-hand and

left-hand polarized components. The expressions for Ĵcl
r/l

can be found using the quasiclassical equations. Then,
to get the magnon-driven current we can replace the
classical field amplitudes by the magnon propagators
mr,Ωml,−Ω → vsδD

K
r /Ω and ml,Ωmr,−Ω → vsδD

K
l /Ω.
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Using this general matrix current we can calculate
spin and energy currents as je = ν

∫∞
−∞ Jedε and jsz =

ν
∫∞
−∞ Jszdε where the spectral densities are

Js(ε) =
1

8
Tr[στ̂3Ĵ(ε)] (S100)

Je(ε) =
ε

4
Tr[τ̂3Ĵ(ε)] (S101)

As shown in the next section, these currents can be in
general expressed through the linear spin susceptibility

jsz = νJsd

∫ ∞

−∞
Im(χl)δD

K
l dΩ (S102)

je = νJsd

∫ ∞

−∞
Ω Im(χl)δD

K
l dΩ (S103)

In the normal state and low-frequency regime we have

seen in Sec. I C that νJsdImχl = ΩReA↑↓
eff . Then taking

into account (S96)

jsz = ReA↑↓
eff

∫ ∞

0

Im(χl)Dm(Ω)Ω[nB(Tm)− nB(T )]dΩ

(S104)

je = ReA↑↓
eff

∫ ∞

0

Im(χl)Dm(Ω)Ω2[nB(Tm)− nB(T )]dΩ

(S105)

coincides with that derived in [13, 14]. In the normal
state the expression coincides with that derived in [13,
14].

H. Spin-energy pumping: general relations

For coherent magnetization precession at frequency Ω,
boundary conditions for dc spin and energy currents are

Js(ε) =
iJsd
8

Tr(σ[σmτ̂3 ,◦ ĝh]K)(ε) (S106)

Je(ε) =
iJsd
4

εTr([σmτ̂3 ,◦ ĝh]K)(ε) (S107)

The currents can be written as

Jsz(ε) = (Jsd/2)ml,Ωmr,−Ω× (S108)

{(χK
r (ε− Ω, ε)− χK

l (ε, ε− Ω)−
[χK

l (ε+Ω, ε)− χK
r (ε, ε+Ω)])},

Je(ε) = (εJsd)ml,Ωmr,−Ω× (S109)

{(χK
r (ε− Ω, ε)− χK

l (ε, ε− Ω)+

[χK
l (ε+Ω, ε)− χK

r (ε, ε+Ω)]), }
where we introduce the linear response functions for the
Keldysh GF

i

4
Tr[σ̂−τ̂3gK(ε− Ω, ε)] = mr,−Ωχ

K
r (ε− Ω, ε) (S110)

i

4
Tr[σ̂+τ̂3g

K(ε+Ω, ε)] = ml,Ωχ
K
l (ε+Ω, ε), (S111)

and where σ̂± = (σ̂x ± iσ̂y)/2.
The total energy and spin currents are defined as je =∫ Jedε and jsz =

∫ Jszdε, respectively. They can be
written as

jsz = νJsd[χr(−Ω)− χl(Ω)]ml,Ωmr,−Ω, (S112)

je = νJsdΩ[χr(−Ω)− χl(Ω)]ml,Ωmr,−Ω, (S113)

where we introduce

χl(Ω) =

∫ ∞

−∞
dεχK

l (ε, ε− Ω), (S114)

χr(Ω) =

∫ ∞

−∞
dεχK

r (ε, ε− Ω). (S115)

The total spin and energy currents satisfy the relation

je = Ωjsz (S116)

Using the relation χr(−Ω) = χ∗
l (Ω) we obtain for the

currents

jsz = 2Jsd Imχl(Ω)ml,Ωmr,−Ω, (S117)

je = 2Jsd Ω Imχl(Ω)ml,Ωmr,−Ω. (S118)

Let us establish the connection between spin current and
the Gilbert damping coefficient. From the boundary con-
dition (S12), the linearized spin current can be written
as

jsl(Ω) = 2iJsd[χl(Ω)− χ(0) + Ω]ml,Ω, (S119)

where χ(0) is the nonlinear static spin susceptibility.
Spin current can also be parametrized in terms of the
damping-like and field-like components as

j(t) = −α(m× ∂tm)− (δΩ/Ω)∂tm, (S120)

where α is the Gilbert damping coefficient and δΩ is the
FMR frequency shift. Comparing the two expressions for
the current, the coefficients in (S120) can expressed as

α =
Re(jsl)

Ωml,Ω
= 2Jsd

Im(χl)

Ω
, (S121)

δΩ =
Im(jsl)

ml,Ω
= 2Jsd {Re[χl(Ω)− χ(0)] + Ω} . (S122)

The last term in the frequency shift drops out when com-
paring difference in the frequency shift between the su-
perconducting state and the normal state. We find that
the energy current can be in general written as

je = Ω2α(Ω)ml,Ωmr,−Ω. (S123)

As shown in Sec. IG the magnon-driven currents
are obtained by replacing the classical field amplitudes
by magnon propagators mr,Ωml,−Ω → vsδD

K
r and

ml,Ωmr,−Ω → vsδD
K
l

jsz = 2νJsd

∫ ∞

−∞
Im(χl)δD

K
l dΩ (S124)

je = 2νJsd

∫ ∞

−∞
Ω Im(χl)δD

K
l dΩ (S125)
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For thermal magnons with small temperature bias we
can write jsz/e = Gms/meδT , with thermal spin and heat
conductances defined as

Gms = 2VSνh0vsm
3/2
M

∫ ∞

0

Ω1/2Im(χl)∂TnBdΩ (S126)

Gme = 2VSνh0vsm
3/2
M

∫ ∞

0

Ω3/2Im(χl)∂TnBdΩ ,

(S127)

where ν is the density of states and VS the volume.

I. Superconductor as an ultrasensitive magnon
detector

The giant magnon-induced voltage signal in the super-
conductor can be used to realize a bolometric or calori-
metric magnon detector and an optimized device could
reach single-magnon sensitivity down to tens of GHz of
magnon frequencies. Assuming unit quantum efficiency,
i.e., that the main damping mechanism of magnetization
dynamics in the junction is provided by the coupling to
the quasiparticles in the superconductor, we can then
proceed analogously to the description of the thermo-
electric read-out of the dissipated spin signal as in the
case of thermoelectric detection of electromagnetic radi-
ation, presented in Refs. 15 and 16. In particular, the

noise equivalent power NEP can be made of the order of
the thermal fluctuation noise due to the heat contacts to
the phonons and magnons. The optimum regime is one
where the heat conductances Gth to both are of the same
order of magnitude, in which case the thermal fluctuation
noise is given by [15]

NEP 2
TFN = kBT

2Gth(1 +
√
1 + ZTi)

2/ZTi, (S128)

where ZTi is the intrinsic thermoelectric figure of merit
of the junction. For low temperatures and not too large
spin polarization P of the superconductor-ferromagnet
contact, it is ZTi = P 2/(1 − P 2) [17]. On the other
hand, the energy resolution in a calorimetric detection is
given by[16]

ΔE = NEP
√
τeff , (S129)

where τeff ≈ τth, the thermal relaxation time in the super-
conductor. For an Al detector at kBT ∼ 0.2Δ, with a su-
perconductor volume of 10−19 m−3, we would then obtain
NEP ∼ 10−19 W/

√
Hz and energy resolution enough for

single-magnon detection accuracy for magnons with fre-
quency above 200 GHz. On the other hand, with 100
times smaller detector sizes, still within reach of regular
sample preparation techniques, the figures of merit could
be 10 times smaller, and hence a single-magnon regime
could be reached with magnon frequencies above 20 GHz.
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Phys. Rev. Lett. 114, 167002 (2015).

[9] K. Maki, Phys. Rev. B 8, 191 (1973).

[10] M. A. Silaev, Phys. Rev. B 102, 144521 (2020).
[11] H. Adachi, K.-i. Uchida, E. Saitoh, and S. Maekawa, Rep.

Prog. Phys. 76, 036501 (2013).
[12] A. Kamenev, Field theory of non-equilibrium systems

(Cambridge University Press, 2011).
[13] S. A. Bender and Y. Tserkovnyak, Phys. Rev. B 91,

140402(R) (2015).
[14] L. J. Cornelissen, K. J. H. Peters, G. E. W. Bauer, R. A.

Duine, and B. J. van Wees, Phys. Rev. B 94, 014412
(2016).
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A conventional superconductor sandwiched between two ferromagnets can maintain coherent equi-
librium spin current. This spin supercurrent results from the rotation of odd-frequency spin corre-
lations induced in the superconductor by the magnetic proximity effect. In the absence of intrinsic
magnetization, the superconductor cannot maintain multiple rotations of the triplet component but
instead provides a Josephson type weak link for the spin supercurrent. We determine the analogue
of the current-phase relation in various circumstances and show how it can be accessed in experi-
ments on dynamic magnetization. In particular, concentrating on the magnetic hysteresis and the
ferromagnetic resonance response, we show how the spin supercurrent affects the nonequilibrium
dynamics of magnetization which depends on a competition between spin supercurrent mediated
static exchange contribution and a dynamic spin pumping contribution. Depending on the outcome
of this competition, a mode crossing in the system can either be an avoided crossing or mode locking.

Superconductivity is characterized by a U(1) symme-
try breaking complex order parameter and the dissipa-
tionless supercurrent proportional to its phase gradient.
In the context of spin transport, analogous spin super-
fluidity has been discussed in various scenarios [1]. Re-
cent work on coherent spin transport in multilayers con-
taining ferromagnetic (F) and superconducting (SC) el-
ements has opened the question of dissipationless spin
transport in superconductors [2–4]. While there are no-
tions of dissipationless or conserved spin currents in such
systems [5, 6], it has remained unclear in which sense
such spin currents can be observed in experiments on
dynamical magnetization. Here we clarify the situation
by showing how spin supercurrents (SS) naturally arise
in ferromagnetic resonance (FMR) experiments involving
two or more magnets, how it is linked to the gradient of
the direction of the triplet order parameter, and how it
mediates magnetic interactions.

What distinguishes the superconducting currents from
normal persistent ones [7–9] is their robustness against
disorder and interactions and the large length scales on
which they occur. In F/SC systems SS depends on the
magnetic proximity effect and its range is set by the co-
herence length of the SC.

Here we study SS in possibly the simplest supercon-
ducting system in which it can exist, namely a SC sand-
wiched between two ferromagnetic insulators (FI) with
noncollinear magnetizations (Fig. 1). This system was
considered already in the 1960s by de Gennes who showed
that the SC mediates an antiferromagnetic interaction
between the magnetic moments of the two FIs [10]. We
demonstrate that this interaction can also be interpreted
as an equilibrium spin current, and generalize it for a

FIG. 1. a) Spin supercurrent through a superconductor with
thickness d. m1(t) and m2(t) are the instantaneous magne-
tization directions of the FIs, and the direction and radius
of the ‘clocks‘ illustrate the spin direction and magnitude
of the SC triplet condensate ft. b) Sketch of an FMR ex-
periment. The sample is mounted on a coplanar waveguide
(CPW). The static field H is applied in the film plane. The
additional heavy metal (HM) layer can be used to tune the
Gilbert damping of the other FI.

SC with a finite length and finite spin scattering. We
consider the magnetization dynamics of two FIs coupled
by spin pumping and SS, and show that spin supercur-
rents can lead to decreased or increased damping of the
FMR modes of the trilayer, as compared to unhybridized
modes in the normal (N) state.

We first illustrate the concept of SS with a scheme
based on the linearized Usadel equation. Consider a SC
of length d coupled with two non-collinear FIs, with mag-
netizations on y-z plane pointing in directions m1 and
m2 forming an angle φ. The effective exchange field at
the SC/FI interface leads to a partial conversion of the
conventional singlet superconducting condensate into a
triplet component [11, 12]. Thus, near Tc, the Matsub-
ara Green’s function (GF) for frequency ωm > 0 has the
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FIG. 2. a) Spin supercurrent as a function of
SC thickness with fixed hn � Δ0 normalized by
j0 = h1h2 sinφ limd→0 [χ(x1, x2)d] ξ0. b) Spin current–
magnetization angle relation for d = ξ0 with no spin scat-
tering. Dashed lines indicate SC/N state hysteresis.

general form

ĝ = τ3 + (fs + ft · σ)τ1, (1)

where fs and ft are the singlet and triplet condensate
functions, respectively.[13] We assume translational in-
variance on the y-z plane. The spin supercurrent in x-
direction can then be expressed as [14]

jeqx = πT
∑

ωm>0

N0Dft × ∂xft

= πT
∑

ωm>0

N0D|ft|2∂xϕ x̂,
(2)

where ϕ is the angle of ft relative to the z-axis and N0

is the density of states at the Fermi level in the normal
state. The SS arises from the coherent rotation of the
triplet Cooper pairs. The vector structure of jx indicates
its spin direction, and the subscript refers to the spatial
direction.

The triplet condensate is determined by the Usadel
equation and its boundary condition (BC)

D∇2ft = 2ωmft, (3a)

Dn · ∇ft|x=xn
= 2iGnmnfs, (3b)

where D is the diffusion constant, n is the interface
normal from FI to SC, and x1,2 = ∓d/2. The inter-
face parameters Gn, which are related to the imaginary
spin mixing conductances of the interfaces by ImG↑↓

n =
GnN0, determine the coupling between the singlet and
triplet Cooper pairs [15, 16]. To first order in Gn, the
singlet retains its bulk value fs = Δ/ωm. The triplet
condensate leads to a spin density [17, 18]

S(x) = 2iN0πT
∑

ωm>0

fsft(x)

=
∑
n=1,2

χ(x, xn)Gnmn.
(4)

On the second line, we define the nonlocal spin suscepti-
bility χ(x, x′).
Substituting Eq. (3b) into Eq. (2), we find the SS

jeqxx = G1G2χ(x1, x2) sinφ. (5)

In analogy to SNS-junction, the FSF trilayer can be con-
sidered a spin Josephson junction [19, 20]. The middle
layer is weak in the sense that it cannot support multiple
phase windings, since there is no energy penalty for the
vanishing condensate function. In order to have strong
SS with a total phase winding larger than π would re-
quire the condensate to be restricted to U(1) symmetry,
as happens e.g. in easy-plane ferromagnets[1, 21]. Figure
2b shows the current-angle relation, which deviates from
sine function at high T and at strong coupling.

As an equilibrium current, jeqx is conserved through
the SC.[22] Figure 2a shows its magnitude as a function
of d. In the thin-film limit d � ξ0, where ξ0 is the SC
coherence length, each interface induces a homogeneous
exchange field with amplitude hn = Gn/d. [23] The to-
tal exchange field is h = h1m1 + h2m2 is limited by
the Chandrasekhar-Clogston critical value hc = Δ0/

√
2.

With fixed hn the SS is proportional to d. When d → ∞,
the supercurrent vanishes as exp(−d/ξ0). This exponen-
tial factor measures the overlap between the two proxim-
ity fields. Maximal SS is obtained when the maximum
volume of SC is proximitized by both FIs at d ≈ ξ0.

At arbitrary temperatures and with finite spin-
orbital/spin-flip scattering times τso/sf , we determine the
SC spin accumulation in the dirty limit from the full Us-
adel equation [24], using the spin-mixing BC [15, 25]

Dn · ǧ ◦ ∇ǧ|x=xn
= iGn[mn · στ3 ,◦ ǧ] , (6)

where ǧ are the 8 × 8 quasiclassical Green’s functions
in Keldysh-Nambu-Spin space and ◦-products are time-
convolutions. The above BC gives Eq. (3b) as a special
case. In the BC we take into account only the effective
exchange field, [15] and neglect terms associated with
interfacial spin relaxation and decoherence. [26–28]

By taking the trace over spin of (6), and integrating
over the energy, the spin current through the nth inter-
face is [29]

jx,n(t) = Gn [S(t, xn)×mn(t)−N0ṁn(t)] , (7)

where S contains both the equilibrium spin density cf.
Eq. (4) and the non-equilibrium spin accumulation. We
assume that d 
 λF , where λF is Fermi wavelength, and
neglect the short range Pauli paramagnetic contribution.
The ṁn term is the spin pumping contribution, and S×
mn gives the equilibrium SS and the back-action due
to non-equilibrium spin accumulation induced by spin
pumping. [30] According to Eq. (7) there is a finite SS
if the equilibrium S and the magnetization of the FI are
not collinear.
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FIG. 3. Hysteresis loops for two coupled ferromagnets. a)
Weak SC exchange interaction dN0Δ

2
0/K

n
A = 1. For T = 0

the system is always in the SC state. b) Strong exchange
interaction dN0Δ

2
0/K

n
A = 15. For T/Tc = 0.6 the system

is in the N state in P configuration, but in the SC state for
AP configuration. For both panels, M1 = 2M2, hn = 0.3Δ0,
τ−1
so/sf = 0. External field is at 2° angle to the anisotropy axis.

We introduce a Stoner-Wohlfarth [31] type free energy
(per interface area) to describe the effect of SS on the
magnetic configuration of the FI/SC/FI trilayer

F (m1,m2) =
∑
n=1,2

[
− μ0Mn·H −Kn

A(mn · z)2

+Kn
B(mn · x)2

]
+ Fsc(m1 ·m2, Δ), (8)

where |Mn| = Mn is the FI magnetic moment per inter-
face area. The free energy includes the Zeeman energy
from external magnetic field H, the SC free energy Fsc,
and the in-plane easy axis/out-of-plane anisotropy ener-
gies Kn

A/B . In the thin-film limit, at T = 0 and without

any spin scattering Fsc(h) = dN0(|h|2 − Δ2/2). In the
general case we use the SC energy functional of Ref. 32.

In a static setting, the coupling between the magnets
can be described as an effective magnetic field μ0H

sc
eff,1 =

−Jφm2/M1, which can be identified with SS via the spin-
transfer torque

jeqx,1 = −M1 × μ0H
sc
eff,1

= Jφ m1 ×m2,
(9)

with exchange constant Jφ = dFsc/dcosφ ≥ 0. At weak
coupling Eq. (9) coincides with Eq. (5).

When the SC exchange energy is small compared to
the anisotropy energies, SS modifies the coercive fields
[33] (Fig. 3a). In the SC state, the coercive fields for AP-
to-P switching increase by Jπ/Mn, and the coercive fields
for P-to-AP switching decrease by J0/Mn relative to the
N state. With a strong SS (Fig. 3b) the anisotropies can-
not force the magnets into a binary parallel/antiparallel
configuration space and the exchange interaction may in-
duce a spin-flop transition, in which the two magnets
collectively rotate from AP to P configuration [34].

At low temperatures the SC transition is of the
first order as a function of φ and exhibits hysteresis
(Fig. 2b).[35–38] If there is a strong uniaxial anisotropy in
the FIs, it is possible to study the N-to-SC hysteresis[37,

38], as opposed to the ordinary magnetic hysteresis re-
sulting from anisotropies. By applying the external mag-
netic field perpendicular to the easy axis direction, the
exchange field changes continuously. If the SC transi-
tion is continuous, there is also no magnetic hysteresis.
If the transition is of the first order, the N-to-SC and
magnetic hysteresis become entangled. We show in the
supplementary how the two can be disentangled in the
magnetization curve.[24]

We now consider the dynamical effects due to SS.
In contrast to most studies of F/SC hybrid structures
[39, 40], we take both magnets as dynamical. We study
the small-angle dynamics around the equilibrium config-
uration with the ansatz

mn(t) = mn(0) + Re[mn(ω) exp(−iωt)], (10)

where mn(ω) is a small perturbation perpendicular to
mn(0). The dynamical magnetization induces a time-
dependent exchange field at the SC interfaces, which in
turn induces a time-dependent spin density in the SC.

The dynamics of the FI magnetizations are described
by the classical Landau-Lifshitz-Gilbert (LLG) equation,
supplemented by a spin current term [41]

Ṁn = −γMn×μ0H
(0)
eff,n+

αn

Mn
(Mn×Ṁn)+γjx,n, (11)

where H
(0)
eff,n is the effective magnetic field in the N

state including the external magnetic field and anisotropy
fields, γ is the gyromagnetic ratio, and αn is the Gilbert
damping coefficient, which can be controlled with an ad-
ditional heavy metal layer next to the FI (Fig. 1b). The
spin current is given by Eq. (7).

In a FMR experiment, the external field has a static
component and a small transverse dynamic part Hrf .
The linear response to Hrf given by LLG Eq. (11) is

χ̂−1
n (ω)Mn(ω) = μ0Hrf(ω)−mn(0)× jx,n(ω)

Mn
, (12)

where χ̂−1
n are the 2 × 2 magnetic susceptibilities of the

uncoupled magnets. [24] Since the magnets are insulating,
there are no eddy currents inside the FIs and we can
neglect the direct coupling between the SC and the rf
field.[42, 43]

In the parallel configuration, the coupled dynamics of
the two magnets is described by a matrix susceptibility

χ̂−1
tot(ω) =

⎛
⎝χ̂−1

1 (ω) + J0−δĴ11(ω)
M2

1
−J0+δĴ12(ω)

M1M2

−J0+δĴ21(ω)
M1M2

χ̂−1
2 (ω) + J0−δĴ22(ω)

M2
2

⎞
⎠ ,

(13)
where J0 = −G1G2χ(x1, x2) is the static exchange con-
stant, and

δĴij(ω) = −GiGj [χ̂(ω, xi, xj)−χ(xi, xj)]

−N0Giωδij σ̂3,
(14)
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are the dynamic corrections related to spin pumping and
other finite-frequency processes. Here, χ̂ is the dynamic
spin susceptibility, [24, 44] related to the static spin sus-
ceptibility by χ̂(0, xi, xj) = χ(xi, xj)1̂.
To illustrate the effect of SS on the FMR properties,

we first consider a fully symmetric trilayer. In the P con-
figuration, the eigenmodes are the acoustic and optical
modes for which m1(t) = ±m2(t), respectively. [34] In
the acoustic mode, the magnetizations are always paral-
lel to each other and there is no SS [34]. The magnets
are only coupled by the residual part of the susceptibil-
ity, χ(ω) − χ(0) ≈ ωχ′(0). The imaginary part Imχ′(0)
contributes directly to dissipation and can be included
in the Gilbert damping coefficient. It describes the re-
laxation of quasiparticles, and vanishes at low T where
quasiparticles cannot be excited due to SC gap [45]. This
leads to the usual decrease of the FMR linewidth in the
SC state (Fig. 4a). The real part Reχ′(0) shifts the res-
onance frequency.

In the optical mode the magnetizations precess out-of-
phase and are strongly coupled by the SS. In this case,
the effective magnetic field is shifted by 2J0/Mn. The
resonance field difference between acoustic and optical
modes at fixed frequency gives a direct measure of SS.
However, measuring the optical mode can be difficult as
a symmetrically applied rf field excites only the acoustic
mode. Optical mode can be excited by longitudinal FMR
pumping [46, 47], or by breaking the symmetry. For the
optical mode the non-equilibrium spin currents pumped
by the two magnets partially cancel in the SC spacer.
In the thin-film limit this cancellation is exact and the
dissipation in the spacer does not affect the linewidth.

In an asymmetric trilayer, SS can have a drastic effect
on the linewidths of the FMR modes. For illustration, let
us neglect the spin pumping and consider only the effect
of SS together with the intrinsic damping of the mag-
nets. In the N state the magnets are uncoupled, and the
eigenmodes are the Kittel modes of the individual mag-
nets with linewidths ΔH0

n proportional to Gilbert damp-
ing constants αn. In the SC state, the SS hybridizes the
modes so that their linewidths become weighted averages
ΔHn = (ΔH0

1 + pnΔH0
2 )/(1 + pn), where p1 = 0 and

p2 = ∞ in the uncoupled system, and p1 → M1/M2 and
p2 → M2/M1 in the strongly coupled system.[48] The
top panel of Fig. 4b shows a numerical evaluation for the
linewidth of such a system, including the spin pumping
contribution. In particular, if one magnet has a lower
intrinsic damping than the other magnet, the linewidth
of the related mode increases below the SC transition.

The SS-mediated exchange interaction and spin pump-
ing depend on temperature in opposite ways; spin pump-
ing vanishes at zero temperature, whereas SS vanishes
in the normal state. The competition between these two
processes can be studied at a mode crossing between two
FMR modes (Fig. 5), which can be engineered e.g. by
having FI films with different thicknesses. In general,

FIG. 4. Temperature dependence of linewidth (top) and
resonance frequency (bottom) for a) symmetric system with
αn = 0.005, b) asymmetric system with α1 = 0.005 and α2 =
0.05. Parameters: Kn

A = 0, dN0Δ
2
0 = 0.1, Δ0Mn/γ = 100,

γμ0MnH = 1, in units of Kn
B ; hn = 0.3Δ0, τ

−1
so = 0.2Δ0

thinner films will have stronger anisotropy fields. A mode
crossing may then be seen by rotating the applied in-
plane magnetic field relative to the anisotropy axis. [49]
In the N state (Fig. 5a) the magnets are only coupled

by spin pumping. The dissipative component of spin
pumping generated by spin relaxation in the SC layer
gives rise to mode attraction. Its signature is the sudden
change of the mode linewidths at the mode crossing (in-
set of Fig 5a) [30, 50]. In the SC state (Fig. 5b), the SS
mediated exchange coupling dominates over spin pump-
ing, creating a regular avoided crossing.

So far the dynamical properties of SS have been ex-
perimentally studied only in systems with ferromagnetic
metals (FM) [2–4], and an increase in FMR linewidth be-
low Tc has been observed in systems which include mul-
tiple FM or heavy metal layers with strong spin-orbit
coupling. In some of these experiments[2], there is nom-
inally only a single magnet, but the heavy metal layers
close to the ferromagnetic instability can be magnetized
by the SS-mediated magnetic proximity effect.[51]

With minor changes, our theory can describe SS-
mediated coupling in FM/SC/FM trilayer. The form of
the magnetic susceptibility (13) is otherwise unchanged
from the insulating case, but the susceptibilities for the
spin density at the interfaces are replaced by the suscep-
tibilities for the total spin density of the FM conduction
electrons, and the spin mixing conductance is replaced by
the s-d coupling inside the FM. In contrast to an FI, in
FM the spin current is not absorbed in a layer of atomic
thickness, but penetrates into the FM at the range of
ξF =

√
DF /2T , where DF is the diffusion coefficient of

the FM. [12] The long-range triplet component[12] pene-
trating deep into the FM is exactly the component non-
collinear to its exchange field, and the one related to SS.
Because FMs support eddy currents, there is also an elec-
tromagnetic coupling between the layers.[42, 43]. Finding
the magnitude of spin currents in a metallic system will
be left for further work.

Despite these differences, our framework suggests that
the experimentally observed enhancement below Tc is
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FIG. 5. Absorbed rf power as a function of external field
angle θ and amplitude μ0H (in units of K1

B/M1). Dashed
lines indicate the resonance fields and the insets show the
linewidths. a) Mode locking in the N state is the most evident
from the linewidth broadening/narrowing near the crossing.
b) Avoided crossing in the SC state. The linewidths do not
depend strongly on the proximity to the crossing. Parameters
are as in Fig. 4a except for ωM1/γ = 1.75, K1

A = 0.1, K2
B =

1.1, Δ0Mn/γ = 10, given in units of K1
B .

likely to be a result of SS-mediated hybridization be-
tween the FMR modes. In interpreting the FMR data
in systems with superconducting interlayers and multiple
magnets, one should not rely on the spin pumping pic-
ture with a single dynamical magnet, but instead model
the magnetization dynamics of the whole structure.

Conclusions. We have studied the properties of SS
in FI/SC/FI systems and shown how they can me-
diate damping between ferromagnetic insulators even
though they, as equilibrium currents, are themselves non-
dissipative. In an analogy to Josephson junctions, the SS
can be characterized via the spin current - magnetization
angle relation. This can be accessed by studying temper-
ature dependent modifications to the FMR frequencies
in FI/SC/FI setups.

The phenomena described here can be studied in var-
ious different FI/SC combinations, provided they can be
suitably stacked or placed next to each other. The FI can
be for example GdN, EuS/EuO, or ferrimagnetic YIG,
which have been recently studied in combination with
superconductors such as Nb, NbN or Al. [33, 52–57] Our
results can be used to design magnetic resonator struc-
tures where the SS mediates a tunable coupling between
the resonators.
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Supplementary material

The FI/SC/FI trilayer is described by the Hamiltonian

H = HSC +Himp +
∑
n=1,2

(
H

(n)
FI +H(n)

ex

)
, (S1)

where HSC is the BCS Hamiltonian for an s-wave super-
conductor, assumed infinite in y and z directions, but
with a finite thickness d in the x direction. Himp is the
random impurity potential in the SC, containing both
non-magnetic and magnetic impurities, which gives the
spin-orbit and spin-flip self-energies, respectively. We as-
sume that the elastic mean-free path is short so that the
SC can be described with the quasiclassical Usadel equa-
tion.

The Hamiltonians describing the FIs and the SC/FI
interfaces are[23]

H
(n)
FI = −

∑
i,j

JijSi · Sj +Han, (S2)

H(n)
ex = −Jex,n

∑
i∈In

Ψ †(ri)Si · σΨ(ri), (S3)

where Jij is the exchange coupling between the localized
spins Si at FI lattice sites ri. Han includes the possible
anisotropy fields. In is the set of spins at the interface
between nth FI and the SC, and the spin-mixing con-
ductances are related to the interfacial exchange coupling
Jex,n by Gn = Jex,nSna, where Sn is the local spin at the
interface and a is the FI lattice constant.[23]The Nambu
field operator

Ψ †(r) =
(
ψ†
↑(r) ψ†

↓(r) −ψ↓(r) ψ↑(r)
)

(S4)

is chosen so that the s-wave SC order parameter is pro-
portional to unit matrix in spin space.

Quasiclassical theory

When the elastic mean-free path is short, the SC spec-
ified by the above Hamiltonian can be described at the
quasiclassical limit by using the Keldysh-Usadel equa-
tion [23, 29, 59]

− {τ3∂t ,◦ ǧ}+ ∂x(Dǧ ◦ ∂xǧ) = [Δτ1 + Σ̌ ,◦ ǧ ] (S5)

with the boundary conditions given by Eq. (6) of the
main text. Above, ǧ is the quasiclassical Green’s func-
tion (GF) in 8×8 space consisting of Keldysh, Nambu
and spin indices. It obeys normalization condition
ǧ ◦ ǧ = δ(t, t′). The elastic spin relaxation is deter-
mined by spin-orbit and spin-flip scattering self-energies
Σ̌ = σ̂ · ǧσ̂/6τso + τ3σ̂ · ǧσ̂τ3/6τsf , where τso/sf are the

scattering rates. The order parameter Δ is solved from
the self-consistency equation

Δ(ω) =
λ

16i

∫ ΩD

−ΩD

dεTr
[
τ̂1ĝ

K(ε, ε− ω)
]
, (S6)

where the coupling constant λ and the cutoff ΩD can be
eliminated in favor of SC order parameter Δ0 at T = 0
in the absence of pair-breaking effects. [23].

The spin current density in x-direction and the spin
density are defined as

jx(ω, x) =
N0

16

∫ ∞

−∞
dεTr[σD(ǧ ◦ ∂xǧ)(ε, ε−ω)]

K
, (S7)

S(ω, x) = −N0

8

∫ ∞

−∞
dεTr

[
στ3ĝ

K(ε, ε−ω;x)
]
. (S8)

For the SC we use the free energy functional [32, 58]

Fsc[ĝ, Δ] = N0

∫
dx

(Δ2

λ
(S9)

− πT

2

∑
ω

tr{(ωn + ih · σ)τ̂3ĝ +Δτ1ĝ − D

4
(∇̂ĝ)2

+
1

12τso
(σĝ) · (σĝ) + 1

12τsf
(στ̂3ĝ) · (στ̂3ĝ)}

)
,

which is regularized by subtracting the normal state en-
ergy with ĝ = sgn(ωn)τ̂3 and Δ = 0.

Spin susceptibility at the thin-film limit

In equilibrium, spatially averaging over Eq. (S5) and
using the BC of Eq. (6), we find an effective position-
independent Usadel equation

[i(ε− h · σ)τ3 +Δτ1 + Σ̂, ĝ ] = 0. (S10)

This equation is valid at the thin-film limit d � ξ0, lsd,
where lsd = [D/(τ−1

so + τ−1
sf )]n is the normal state spin

diffusion length. Equations (S6) and (S10) together with
the normalization condition constitute a nonlinear group
of equations which we solve numerically. In the thin-film
limit we drop the spatial indices and define the static
susceptibility as S = χ̂(0)h. It is related to the nonlocal
susceptibility by χ̂(0) = limd→0 χ(0, xi, xj)d.
Let us denote by χhomog(ω) the usual spin suscepti-

bility to an external in-plane magnetic field [61]. It is
related to the nonlocal thin-film spin susceptibility by a
simple shift: χ(ω) = χhomog(ω)−N0. These susceptibil-
ities vanish at different limits; χhomog(0) = 0 at T = 0 in
the absence of spin scattering [62], whereas the nonlocal
susceptibility vanishes in the normal state. Figure S1a
shows the static spin susceptibility for τ−1

so = τ−1
sf = 0.

The dynamic spin susceptibility χ̂(ω) is defined as a
spin response to a dynamic perturbation of the exchange
field

S(ω, xi) =
∑
j=1,2

χ̂(ω, xi, xj)Gjmj(ω). (S11)
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FIG. S1. a) Thin-film static spin susceptibility in the SC state without spin scattering. Overlaid lines show the phase diagram.
Blue solid (dashed) line indicates a second-order (thermodynamic first order) phase transition[35]. Within the area delimited by
red and white curves, both SC and normal state are (meta)stable. b) Dynamic correction for the transverse spin susceptibility.
Solid and dashed lines denote the real and imaginary part, respectively. Real and imaginary parts are normalized by their
normal state values given by Eq. (S22).

Generally, χ̂ is a 3 × 3 matrix. In the thin-film limit, it
is diagonal in the standard circular basis

e± = ∓(x± iy)/
√
2, ez = z, (S12)

where the z-axis is chosen along the static component
h(0). The components of χ̂ are extracted as χμν =
e†μχ̂eν . In the parallel case, or in the thin-film limit,
the susceptibilities χ̂(ω, xi, xj) can be simultaneously di-
agonalized, and we drop the second index: χ+ ≡ χ++.
We call χz the longitudinal susceptibility and χ+(−)

left(right)-handed transverse susceptibility. The longi-
tudinal component is only induced if m1(0) and m2(0)
are non-collinear, since only then m1(ω) ·m2(0) 
= 0.

In the thin-film limit finite frequency transverse spin
susceptibility can be obtained by solving the perturbed
Usadel equation

[Λ̂(1) + Σ̂(1)]ĝ(12)− ĝ(12)[Λ̂(2) + Σ̂(2)]

+ Σ̂(12)ĝ0(2)− ĝ0(1)Σ̂(12)

= i[ĝ0(1)(h(ω) · σ)τ3 − (h(ω) · σ)τ3ĝ0(2)],
(S13)

where ĝ0(1) is the static GF at Matsubara frequency ε1 =
iωn and ĝ(12) is the perturbation induced by the left
polarized driving field h(ω) = h+(ω)e+, and

Λ̂(ε) = −i(ε− hσ3)τ3 +Δτ1, (S14)

ŝ(ε) =

√
[Λ̂(ε) + Σ̂0(ε)]2, (S15)

ĝ0(ε) = ŝ(ε)−1[Λ̂(ε) + Σ̂0(ε)]. (S16)

Using the normalization condition

ĝ0(1)
2 = 1, ĝ0(1)ĝ(12) + ĝ(12)ĝ0(2) = 0, (S17)

and the relation

τ3ĝ0(1)ĝ(12)ĝ0(2)τ3 + ĝ0(1)τ3ĝ(12)τ3ĝ0(2)

= −2[g↑1(1)g↓1(2)− g↑3(1)g↓3(2)]ĝ(12),
(S18)

the solution for the Matsubara GF is found as

ĝ(12) =
i[τ3 − ĝ↑(1)τ3ĝ↓(2)]h(ω) · σ

s↑(1) + s↓(2) + 1
3τso

+
g↑1(1)g↓1(2)−g↑3(1)g↓3(2)

3τsf

.

(S19)
The energy-resolved spin susceptibility is obtained by
taking the trace

χ(1, 2) = −N0

8
Tr

[
(e+ · σ)†τ3 ĝ(12)

hω

]
(S20)

The solution for real frequencies is obtained with ana-
lytical continuation

χ+(ω) =

∫ ∞

−∞
dε

[
χ(1R, 2R)f2 − f1χ(1

A, 2A)

+(f1 − f2)χ(1
R, 2A)

]
,

(S21)

where 1R/A and 2R/A stand for the replacements iωn →
ε ± iΓ , iωm → ε − ω ± iΓ , f1 = tanh(ε/(2T )), f2 =
tanh((ε− ω)/(2T )), and Γ is an infinitesimally small
quantity denoting the correct solution branch. In the nu-
merical solution, we use a finite Γ < 10−2Δ0 to broaden
the BCS divergence in the density of states, which makes
the numerical solution converge faster.

The solution Eq. (S19) depends on the numerically de-
termined equilibrium GFs and thus the integral (S21) is
evaluated numerically. The low-frequency corrections to
the static spin susceptibility are shown in Fig. S1b. In
the normal state, there are no spectral changes, and only
the last term in Eq. (S21) contributes:

χ+
n (ω) =

2N0ω

ω − 2h+ iτ−1
sn

, (S22)

with τ−1
sn = 4(τ−1

so + τ−1
sf )/3 + 2Γ . We see that Γ acts as

an additional mechanism for spin relaxation. In general,
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FIG. S2. FMR dispersion (bottom) and magnetic hysteresis (top) in a symmetric bilayer a) in the N state and b) in the SC
state at T = 0.01Tc0. In the N state the magnets are only weakly coupled by pumped quasiparticle spin currents. In the
SC state the magnets are also coupled by SS. SC is evaluated in the thin-film limit. Parameters: dN0Δ

2
0 = 0.5, Kn

A = 0.01,
Δ0M1/γ = 103, in units of Kn

B ; hn = 0.3Δ0, αn = 0.01, τso/sf = 0. External field is at 1° angle to the anisotropy axis.

our results depend on Γ only if the dissipation from it is
comparable to dissipation from other sources (τso/sf and
αn).

For longitudinal susceptibility, there is no simple an-
alytical solution, but the Usadel equation can be writ-
ten as a 4-component matrix equation, which is solved
numerically [29]. For small frequencies, the longitudinal
and transverse susceptibility differ near Tc, where a small
change in the modulus of h can have a large effect on Δ.
Since both h(t) and S(t) are real, the left- and right-

handed susceptibilities are related by χ−(ω) = χ+(−ω)∗.
Also, the transverse spin susceptibility at zero frequency
and the static nonlinear spin accumulation can be related
to each other by considering an adiabatic rotation of the
total exchange field, so that when χ̂(0, xi, xj) for i, j ∈
{1, 2} can be simultaneously diagonalized, we have

Seq(0, xi) =
∑
j=1,2

χ±(0, xi, xj)Gjmj(0). (S23)

This relation is needed to show the exact cancellation of
spin supercurrents for the acoustic mode in P configura-
tion.

Magnetic susceptibility of FI/SC/FI trilayer

In this section, we derive the non-collinear matrix sus-
ceptibility for a coupled magnetic system. To find the
susceptibility, one first solves the equilibrium problem
by finding a local minimum of the free energy, Eq. (8).

This determines the static magnetization directions

m1/2(0) �� H(0)
eff,1/2 −

Jφm2/1(0)

M1/2
. (S24)

In LLG equation the modulus of the magnetization
is fixed and there are only two degrees of freedom for
each magnet. To remove the third dimension, we rotate
Eq. (11) to each magnet’s individual eigenbasis in which
mn(0) points in the z-direction and project on the x-y
plane.

Identifying in Eq. (12) the parts which are proportional
to M1(ω) and M2(ω), and doing the thin-film approx-
imation χ̂(ω, xi, xj)Gj ≈ χ̂(ω)hj , we find the magnetic
susceptibility for a non-collinear static configuration

χ̂−1
tot(ω) =

⎛
⎝χ̂−1

1 (ω) + L̂11(ω)
M2

1

L̂12(ω)
M1M2

L̂21(ω)
M1M2

χ̂−1
2 (ω) + L̂22(ω)

M2
2

⎞
⎠ ,

(S25a)

χ−1
i (ω)++ =

ω − γμ0Heff,i − iαiω

γMi
, (S25b)

χ−1
i (ω)+− = −Ki

B/M
2
i (S25c)

μ0Heff,i = μ0H cos(θ − φi)

+ [2Ki
A cos(φi)

2 −Ki
B ]/Mi (S25d)

+ dχ(0)h1h2 cos(φ1 − φ2)/Mi,

where φi (θ) is the angle between the anisotropy axis ẑ
and mi(0) (H). We assume that the static magnetiza-
tion is always in-plane. The spin currents not included
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into the effective magnetic field are

L̂ij(ω) = −dhihj

[
D̂iχ̂(ω)D̂

†
j −χ(0)1̂12δij

]
− dN0hiωδij σ̂3,

(S25e)

where χ̂ = diag(χ−, χz, χ+) is the spin susceptibility
in the SC eigenbasis, and the 2 × 3 matrices D̂n =
P̂ D̂1(0, φn − φsc, 0) are a product of a projection P̂ to
the x-y plane, and of spin-1 Wigner matrices D̂1. φsc is
the direction of h(0).

The eigenmodes are found by diagonalizing χ̂−1
tot(ω) and

finding the values of ω for which the real part of an eigen-
value vanishes. A typical dispersion for a symmetric sys-
tem is shown in Fig. S2.

In parallel configuration the magnetic susceptibility
can be written as Eqs. (13-14) with

χ−1
i (ω)++ =

ω − γμ0H
(0)
eff,i − iαiω

γMi
, (S26a)

χ−1
i (ω)+− = −Ki

B/M
2
i (S26b)

μ0H
(0)
eff,i = μ0H + 2Ki

A/Mi −Ki
B/Mi, (S26c)

and with spin susceptibility χ̂ = diag(χ++, χ−−) which
includes only the transverse components. Here we have
separated the N and SC state contributions to the effec-

tive fields into H
(0)
eff,i and −J/Mi, respectively, and did

not assume the thin-film limit.
Since Mn(t) and Hrf(t) are real, the −+ and −− com-

ponents can be obtained by χ−1(ω)μν = [χ−1(−ω)νμ]∗.
The spin current jμxi(ω) = ξμij(ω)m

μ
j (ω), where ξ is a re-

sponse function, also obeys the same reality condition
ξ−ij(ω) = [ξ+ij(−ω)]∗.

FMR linewidth

Here we give the definition of the FMR linewidth used
in the main text. Typically in FMR experiment, rf fre-
quency is held fixed while sweeping the external field
strength H. The power of the rf drive is given by [30]

P/A =
∑
n=1,2

〈Hrf(t) · ∂tMn(t)〉

=
∑

λ∈eigs

ω Imχλ(ω)|Hλ|2,
(S27)

where χλ are the eigenvalues of the matrix susceptibility
χ̂, and Hλ are the projections of the rf field along the
corresponding eigenvector.

The linewidth is defined as the difference ΔH =
(2/

√
3)(Hmin − Hmax) between the minimum and the

maximum of the field derivative dP/dH. Near reso-
nance, dP/dH is dominated by the resonant eigenmode
λ and other modes can be neglected. To determine

the linewidth, we linearize the susceptibility of the reso-
nant eigenmode, expressing it in terms of resonance field
μ0Hres, weight factor W and linewidth μ0ΔH,

χλ(H)−1 ≈ μ0(H −Hres)− iμ0ΔH

W
. (S28)

The above parameters are defined by the equations

0 = Re[χλ(Hres)
−1], (S29a)

1

W
=

dRe[χλ(ω)
−1]

dμ0H

∣∣∣∣
H=Hres

, (S29b)

μ0ΔH = −W Im[χλ(Hres)
−1]. (S29c)

In bulk ferromagnets, the field linewidth can be identified
with Gilbert damping α = γμ0ΔH/ω.

Effect of the first order SC transition on the
magnetic hysteresis

At low temperatures, the transition between SC and
the N state as a function of the exchange field is of the
first order.[35, 36] In the phase diagram, the first or-
der transition is accompanied by a region in which both
phases are possible as metastable states, albeit only one
of them is thermodynamically stable away from the phase
boundary (Fig. S3a). Experimentally, the metastability
shows as hysteresis or state memory when the induced
exchange field is swept over the phase boundary.[37, 38]
The FI/SC/FI trilayer provides a way of probing the

transition and the SC-N hysteresis via magnetization
measurements. The requirement for such measurement is
that it must be possible to vary the total exchange field
induced into the SC continuously as a function of the
external field. This requirement is met if the FIs have
an in-plane easy-axis and the magnetic field is applied
perpendicular to it.

The FIs individually induce the exchange fields
h1, h2 > 0 into the SC. In the AP and P configurations,
the total fields are |h1−h2| and h1+h2, respectively. By
changing the magnetization configuration, we thus sweep
a horizontal segment of the phase diagram as shown in
Fig. S3 for three different temperatures (blue, orange and
red lines). If h1 and h2 are chosen properly, we cross the
first order phase boundary at a low temperature (blue).
Let us denote the thermodynamic transition point by hth.
If there is a measurable SC-N hysteresis, the N-to-SC
and SC-to-N transitions occur at fields hc1 < hth and
hc2 > hth, respectively.
Let us then consider the magnetization in a symmet-

ric trilayer as the external field is varied. In the normal
state the magnets are uncoupled. At zero field the mag-
netizations lie along the anisotropy axis. Increasing the
field twists the magnetizations until they point towards
the external field (red dashed line in Fig. S3). The P and
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FIG. S3. Effect of the first order SC transition on the magnetic hysteresis. a) Phase diagram as a function of temperature and
exchange field. Red, orange and blue lines show the range of total exchange fields, when the individual magnets induce a field
of strength h1 and h2. Blue shading indicated the region of metastability where both SC and N state are possible. Dashed
black line indicates the thermodynamic phase transition. b) Magnetization along the external field (Mx) as a function of the
field strength H. Red dashed line and the solid orange and blue lines correspond to the temperatures indicated in panel (a).
Red dashed line is the high temperature (normal state) behavior. Orange line is the behavior at intermediate temperatures
when the SC transition is continuous. Blue line shows the behavior at low temperatures in which the SC transition is of the
first order.

AP configurations are degenerate and when the field is
reduced to zero, the system may end up in either one.

The SC state on the other hand favors the AP con-
figuration, and the slope of the magnetization curve (or-
ange and blue lines) is lower. The first order transition
(blue line) shows in the magnetization curve as hysteresis.
However, the magnetic hysteresis itself is not necessarily
evidence of SC-N hysteresis, but only indicates a first-
order transition between SC and N states. The shaded

region in Fig. S3 is the magnetic hysteresis obtained by
assuming that the SC transition always occurs when h
crosses the thermodynamic field hth, with no hysteresis.
With this assumption, the P-to-AP and AP-to-P transi-
tions occur in Fig. S3b at the same total magnetization,
but the field strength depends on the direction of transi-
tion.

The evidence for SC-N hysteresis is the difference in the
magnetization M at which the transitions occur, since
there is a one-to-one correspondence between M and h.
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We show that the Higgs mode of superconductors can couple with spin dynamics in the presence
of a static spin-splitting field and Rashba spin-orbit coupling. The Higgs-spin coupling dramatically
modifies the spin susceptibility near the superconducting critical temperature and consequently
enhances the spin pumping effect in a ferromagnetic insulator/superconductor bilayer system. We
show that this effect can be detected by measuring the magnon transmission rate and the magnon-
induced voltage generated by the inverse spin Hall effect.

Superconductors (SC) with broken U(1) symmetry
host two kinds of collective modes associated with the
order parameter fluctuations: the phase mode and the
amplitude mode. Coupled to a dynamical gauge field,
the phase mode is lifted up to the plasma frequency [1]
due to the Anderson–Higgs mechanism [2, 3]. The other
collective mode in SC is the amplitude mode [4, 5] with
an energy gap of 2Δ, called the Higgs mode by anal-
ogy with the Higgs boson [3] in particle physics. It was
commonly believed that unlike the phase mode the Higgs
mode usually does not couple linearly to any experimen-
tal probe. That is why in earlier experiments, the Higgs
mode was only observed in charge-density-wave (CDW)
coexisting systems [6–11]. With the advance of terahertz
spectroscopy technique [12] it became possible to inves-
tigate the Higgs mode through the nonlinear light–Higgs
coupling [13–17]. In these experiments, the perturba-
tion of the order parameter is proportional to the square
of the external electromagnetic field δΔ ∝ E2, so very
strong laser pulses are required.

Recently, it has been shown that in the presence of a
supercurrent the Higgs resonance can actually contribute
to the total admittance YΩ due to the linear coupling of
the Higgs mode and the external electromagnetic field
[18–22]. This can be understood from a symmetry ar-
gument. Suppose the external electric field is linearly
polarized in the x direction E = x̂Exe

iΩt. The linear
coupling of the Higgs mode and the external field is rep-

resented by the susceptibility χΔE = − ∂2S
∂Δ∂E obtained

from the action S describing the electron system con-
taining the pair potential field Δ. Without a supercur-
rent, the system preserves the inversion symmetry (Î)
and the mirror symmetry in the x direction (M̂x). On
the other hand χΔE is odd under both these operations
because E changes sign under Î and M̂x whereas Δ re-
mains the same. Therefore χΔE has to vanish. In the
presence of a supercurrent, the inversion symmetry and
the mirror symmetry are both broken and there is no re-
striction for χΔEx from these symmetries, so χΔE can be

FIG. 1. System under consideration. A superconductor thin
film is placed on the top of a FI with in-plane magnetization.
The SC and FI are coupled via spin exchange interaction. The
magnon in FI can be injected into SC in a process known as
the spin pumping effect. For magnon frequency Ω = 2Δ0 the
SC Higgs mode greatly increases the spin pumping.

nonzero. This symmetry argument also explains why the
Higgs mode does not couple with an external field in the
direction perpendicular to the supercurrent.

Now a natural question arises: without a supercurrent
does the Higgs mode couple linearly with other exter-
nal probes, such as spin exchange fields? As we show in
this Letter it does. The above discussion indicates that
the decoupling of the Higgs mode is protected by cer-
tain symmetries. In order to couple the Higgs mode to
an external field one needs to break these symmetries.
Here we show how it happens in a ferromagnetic insu-
lator (FI)/superconductor (SC) bilayer system (Fig. 1).
Magnons with momentum q and frequency Ω in the FI
can be injected into the SC in a process known as spin
pumping [23–29]. We predict that the Higgs mode in
the SC couples linearly with the magnon mode in the
FI in the presence of Rashba spin-orbit coupling and the
magnetic proximity effect into the SC. In this system
the symmetries protecting Higgs-spin decoupling are bro-
ken: in particular, the (spin) rotation symmetry and the
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time-reversal symmetry. Near the critical temperature,
superconductivity is suppressed and Δ0 becomes compa-
rable with the magnon frequency Ω. When the magnon
frequency matches the Higgs frequency ΩM = 2Δ0, the
Higgs mode is activated and the magnon absorption is
hugely enhanced which can be detected through the in-
verse spin Hall effect (iSHE) [30–32]. This effect can pos-
sibly explain the voltage peak observed in the experiment
[33].

We consider a SC/FI bilayer in which the FI and the
SC are coupled via the exchange interaction as shown in
Fig. 1. For simplicity, we assume that the thickness d
of the SC film is much smaller than the spin relaxation
length and the coherence length so that we consider it as
a 2D system. The magnetization of the FI can be written
as m = m0 +mΩ, where m0 is the static manetization
polarized in the z direction and mΩ is the dynamical
component perpendicular to m0. When magnons (spin
waves) are excited in the FI, they can be injected into
the SC in a process known as the spin pumping effect.
The DC interface spin current flowing from the FI into
the SC is polarized in the z direction and given by [34]

Iz =
∑
Ω,q

−2JsdIm[χ̃ss(Ω, q)]m
2
Ω,q, (1)

where Jsd is the exchange coupling strength and
mΩ is the Fourier amplitude of mΩ. χ̃ss(Ω, q) is
the total dynamical spin susceptibility χ̃ss(Ω, q) =
S+(Ω, q)/h+(Ω, q), where S is the dynamical spin of
the SC, h is the proximity induced exchange field h =
Jsdm/d [35] and for a vector A = (Ax, Ay, Az) the ±
component is defined as A± = Ax ± iAy. One can see
that for a fixed Jsd, the efficiency of the magnon injection
is soley determined by χ̃ss(Ω, q). The spin susceptibility
of superconductors has been extensively studied [29, 36].
However the previous theories, based on the static mean-
field description, failed to explain the peak of the iSHE
signal observed in the spin Seebeck experiment [33]. In
this work, we start with the general partition function of
the SC, Z =

∫
D[Ψ̄,Ψ, Δ̄,Δ]e−S obtained by performing

the Hubbard-Stratonovich transformation. The action S
is given by

S = β
∑
K,Q

Ψ̄K (−iω + εk − h · σ)ΨK +ΔQΨK+QΨ−K

+Δ̄−QΨ̄KΨ̄−K−Q +
Δ̄−QΔQ

U
,(2)

Here K = (ω,k) and Q = (Ω, q) are the four-momenta
of the electrons and magnons, respectively. ω = (2n +
1)πT and Ω = 2nπT are the Matsubara frequencies with
n ∈ Z and β = 1/T . εk is the energy dispersion of the
electron in the normal state, h is the proximity induced
exchange field, and U is the BCS interaction. In the
mean-field theory, one can ignore the path integral over

Δ and replace it by its saddle point value Δ0 which is
determined by the minimization of the action ∂S

∂Δ |Δ=Δ0 =
0 after integrating out the fermion fields.

To include the Higgs mode, we go beyond the mean-
field theory and write the order parameter as Δ = Δ0+η,
where η is the deviation of Δ from its saddle point value
Δ0. Here we only consider the amplitude fluctuation of
Δ, so η is real. Expanding the action to the second order
in η and the strength of the external Zeeman field h±
gives S = S0 − S2 with [37]

S2 = β
∑
Q

[
η(−Q) h−(−Q)

] [ −χ−1
ΔΔ χΔs

χsΔ χss

] [
η(Q)
h+(Q)

]
.

(3)
Here, all the susceptibilities are functions of Q. S0 is the
mean-field action without the external field. In usual su-
perconductors the off-diagonal susceptibilities χΔs and
χsΔ vanish as required by the time-reversal symmetry
and the (spin) rotation symmetry because these oper-
ations change the sign of h+ but have no effect on η
[38, 39]. In the system under consideration, the proxim-
ity induced static exchange field breaks the time-reversal
symmetry and RSOC breaks the (spin) rotation symme-
try. Thus the pair-spin susceptibility does not have to
vanish, allowing for a nonzero Higgs–spin coupling.

Then it is straightforward to calculate the total spin
susceptibility χ̃ss by integrating out the η field

χ̃ss = χss − χsΔχΔΔχΔs. (4)

The imaginary part of χΔΔ is sharply peak at the Higgs
frequency Ω = 2Δ dramatically modifying the total spin
susceptibility.

Phenomenological theory. Before we go to the detailed
calculations, we use a simple phenomenological theory
to illustrate the effect of RSOC. It has been shown that
RSOC can induce a Dzyaloshinskii-Moriya (DM) interac-
tion in superconductors described by the DM free energy
[40]

FDM =
∑
i

∫
dr|Δ|2dα,i · (h×∇ih), (5)

where both Δ = Δ(r) and h = h(r) are position depen-
dent. dα,i is the DM vector proportional to the strength
of spin-orbit coupling α. For RSOC dα ∝ α[σx,−σz],
where α is the spin-orbit coupling strength and σ is
the Pauli matrix acting on the spin space. To find
the pair spin susceptibility we write Δ = Δ0 + η(t),
h = h0ẑ + h+(t)(x̂ + iŷ), where n̂ is the unit vector
in the n direction with n = x, y, z, and generalize the
DM free energy to the time dependent DM action. Here
we consider the case where the spin wave is propagating
in the z direction h+(t, r) =

∑
Ω,qz

h+(x̂+ iŷ)ei(Ωt−qzz).
Focusing on the first order terms in η(t) and h+(t) and
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Fourier transforming them to momentum and frequency
space, the DM action can be written as

SDM1 = β
∑
Ω,qz

iqzΔ0h0h+(Ω, qz)η(Ω, qz)d̃α,z(Ω, qz)

· (ix̂− ŷ) ,(6)

where d̃α,i is the dynamical DM vector, which has the
same finiteness and spin structure as dα,i from symmetry
analysis. From the above expression, one can see that
the Higgs mode couples linearly with the spin degree of
freedom in the presence of RSOC.

Spin susceptibility. We adopt the quasiclassical ap-
proximation to systematically evaluate the susceptibili-
ties. In the diffusive limit, this system can be described
by the Usadel equation [18, 36, 41–45]

FIG. 2. Imaginary part of the pair susceptibility. This can
be interpreted as the spectral weight of the Higgs mode. A
significant peak emerges when the driving frequency matches
the Higgs frequency Ω = 2Δ0. The inset shows the height
of the Higgs peak PH as a function of the inverse of the mo-
mentum q. Parameters: Δ0 = 0.8ΔT0, h0 = 0.5ΔT0 with
ΔT0 ≡ Δ0(T = 0).

−i {τ3∂t, ĝ} = D∇̃
(
ĝ∇̃ĝ

)
− i [H0, ĝ] +

[
Xei(Ωt−qzz), ĝ

]
.

(7)
Here ĝ is the quasiclassical Green function, D = vF τ

2/3
is the diffusion constant and τ is the disorder scat-
tering time. H0 = −ih0σ3 + Δ0τ1, where h0 is the
proximity induced effective static exchange field and τi
is the Pauli matrix acting on the particle-hole space.
∇̃ = (∇̃z, ∇̃x) is the covariant derivative defined by
∇̃z· = ∇z + iα[σx, ·], ∇̃x· = ∇x − iα[σz, ·]. The Usadel
equation is supplemented by the normalization condition
ĝ2 = 1. In the quasiclassical approximation the approxi-
mate PH symmetry of the full Hamiltonian becomes ex-

act. In the linear response theory, the external oscillat-
ing field X is small and can be treated as a perturbation.
Thus we can write the quasiclassical Green function as
ĝ = ĝ0e

iω(t1−t2) + ĝXei(ω+Ω)t1−iωt2−iqzz, where ĝ0 is the
static Green function and ĝX is the perturbation of the
Green function describing the response to the external
field. Solving the Usadel equation we obtain the quasi-
classical Green function, the anomalous Green function
F = NeTr [τ1ĝ] /4i and the σ+ component of spin in the
SC 〈s〉 = NeTr [σ−τ3ĝ] /4i, where Ne is the electron den-
sity of states at the Fermi surface and Tr is the trace.
The susceptibilities can be evaluated as

χ̂ =

[
χ−1
ΔΔ χΔs

χsΔ χss

]
=

[
∂F
∂η + 1

U
∂F
∂h+

∂〈s〉
∂η

∂〈s〉
∂h+

]
. (8)

Let us first set X = Δ′τ1 and consider the pair suscep-
tibility. We assume the RSOC is weak and treat α as a
perturbation. At q = 0 and 0th order in α, we have

χΔΔ(iΩ) =

[
NeT

2

∑
ω,σ

4Δ2 +Ω2

sσ(ω)(4ω2 − Ω2)

]−1

, (9)

where sσ(ω) =
√
(ω + iσh)2 +Δ2, with σ = ±1. To get

the pair susceptibility as a function of real frequency, we
need to perform an analytical continuation [38]. Thus
iΩ is replaced by Ω + i0+. One can see that the χΔΔ is
peaked at the Higgs frequency Ω = 2Δ.

We numerically calculate χΔΔ with finite momentum
and show the results in Fig. 2 [38, 46]. One can see that
the imaginary part of the inverse of the pair suscepti-
bility exhibits a sharp peak when the driving frequency
equals 2Δ0. With a finite momentum, the Higgs mode is
damped in the sense that the peak in the Higgs spectrum
has a finite height and width.

FIG. 3. Real part (a) and imaginary part (b) of pair-spin
susceptibility. The solid line is the approximate result calcu-
lated from Eq. (12) and the circles show the numerical solu-
tion from Eq. (7). Parameters used here are: Ω = 0.8ΔT0

for the blue lines, Ω = ΔT0 for the red lines, h0 = 0.5ΔT0,
Dq2z = Dα2 = 0.01ΔT0.

To study the response of this system to the external
exchange field we set X = h+σ+τ3. Again we treat α as
a perturbation and write the Green function as

ĝ = ĝ0e
iω(t1−t2) + (ĝh0 + ĝhα)e

i(ω+Ω)t1−iωt2−iqzz, (10)
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where ĝh0 is 0th order in α and ĝhα is first order in α.
The 0th order solution in α is given by [38]

ĝh0 = ĝh00 ⊗ σ+ =
i[τ3 − ĝ↑(1)τ3ĝ↓(2)]hΩσ+

s↑(1) + s↓(2)
, (11)

where ĝ↑/↓ = (ω±ih0)τ3+Δτ1
s↑/↓

and s↑/↓ =√
(ω ± ih0)2 +Δ2. ĝh00 is a 2 × 2 matrix in the

particle-hole space. Without doing detailed calculations,
one can immediately see that χΔs has to vanish without
RSOC because ĝh has no σ0 component. In this case
the external exchange field cannot activate the Higgs
mode. To get a finite pair-spin susceptibility we need to
consider the first order terms in α which break the spin
rotation symmetry. The first order solution in α yields
ĝhα = diag(ĝhα↑, ĝhα↓) with

ĝhα↑/↓ = 2iDα
ĝ0↑/↓

[
ĝh00, ĝ0↑/↓

]
s↑/↓(ω1) + s↑/↓(ω2)

. (12)

FIG. 4. (a) Total spin susceptibility as a function of tem-
perature with a fixed frequency. (b) Total spin susceptibility
as a function of frequency with a fixed temperature. The
two temperatures have been chosen so that Δ(T1) = 0.2ΔT0

and Δ(T2) = 0.1ΔT0. The Higgs peak thus shows up when
Ω = 2Δ(T ). The parameters used here are: h0 = 0.5ΔT0,
Dq2z = Dα2 = 0.01ΔT0.

Since the 0th order term does not contribute to the
pair-spin susceptibility, we have χΔs = Tr[τ1ĝhα]/4ih+.
We compare this analytical result with the non-
perturbative numerical solution of the Usadel equation
in Fig. 3. It shows that the perturbative approach is ac-
curate at high temperatures when Dα2 � Δ0, T , and
captures the qualitative behavior of χΔs also at the low
temperatures. Another feature of this pair spin suscepti-
bility is that at a lower frequency (Ω = 0.8ΔT0), χΔs is

suppressed at low temperatures because the spin excita-
tion is frozen by the pair gap at low temperatures. On
the other hand, at higher frequency (Ω = ΔT0), χΔs is
slightly enhanced at low temperatures.

We can also get the bare spin susceptibility from ĝh0,
χss = Tr[σ−τ3ĝh0]/4ih+. Then it is straightforward
to calculate the total spin susceptibility according to
Eq. (4). The results are shown in Fig. 4. The total
spin susceptibility exhibits a significant peak near criti-
cal temperature. This is a signature of the Higgs mode
with the frequency Ω = 2Δ0. The dependence of the to-
tal susceptibility on the strength of RSOC is studied in
the supplementary information [38]. The details depend
sensitively on the amount of disorder, as in the disordered
case increasing RSOC leads to a stronger spin relaxation.
We note that even though the pair-spin susceptibility is
linear in momentum qz, the magnon momentum need
not be large for the detection of the Higgs mode. This is
because the spectral weight of the Higgs mode is propor-
tional to 1/q2z at the Higgs frequency, so that the height
of the peak in the total spin susceptibility is independent
of the magnon momentum.

Experimental detection. We propose that the Higgs
mode in Rashba superconductors can be detected in the
spin pumping experiment as shown in Fig. 1. Magnons
in the FI with momentum q and frequency Ω are injected
from one side of FI and propagate in the z direction to-
wards the other end. Due to the spin pumping effect,
part of the magnons can be absorbed by the SC on top
of it and converted to quasiparticles. This spin injection
causes a spin current Is flowing in the out-of-plane di-
rection. In the presence of RSOC, Is is converted into a
charge current Ie via the iSHE Ie = θzxzIs, where θ is the
spin Hall angle [47]. When the width of the SC is smaller
than the charge imbalance length the non-equilibrium
charge accumulation cannot be totally relaxed resulting
into a finite resistance ρ of the SC. Therefore a voltage
can be measured across the SC, given by

V = θzxzρ
∑
Ω,q

−2JsdIm[χ̃ss(Ω, q)]m
2
Ω. (13)

Thus by tuning the temperature or the frequency of
magnon, one can observe a peak in the voltage [33].
Meanwhile we can also obtain the magnon absorption
rate defined as the energy of the absorbed magnons di-
vided by time

W = 2Ω
∑
Ω,q

−2JsdIm[χ̃ss(Ω, q)]m
2
Ω. (14)

This magnon absorption rate results in a dip in the
magnon transmission rate which is experimentally mea-
surable.

Conclusion. In this Letter, we consider a FI/SC bi-
layer with RSOC in the bulk of the SC. Using symme-
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try arguments and microscopic theory, we show that the
Higgs mode in the SC couples linearly with an exter-
nal exchange field. This Higgs–spin coupling hugely en-
hances the total spin susceptibility near a critical phase
transition point, which can be detected using iSHE or
via strong frequency dependent changes in the magnon
transmission. Note that in this work, we consider the dif-
fusive limit where the disorder strength is stronger than
the RSOC and exchange field. However, our conclusion
on Higgs–spin coupling should still be valid in the case
of strong RSOC. In fact, we expect that the coupling is
much stronger with strong SOC in the clean limit. In
the diffusive limit, the RSOC together with disorder ef-
fectively generate spin relaxation which reduces the prox-
imity induced exchange field suppressing the Higgs–spin
coupling. On the other hand, in the clean case without
disorder this effect is absent and hence the Higgs–spin
coupling can be stronger. We also compare the Higgs
mode in the diffusive limit and ballistic limit in the sup-
plemental material [38].
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[8] M.-A. Méasson, Y. Gallais, M. Cazayous, B. Clair,

P. Rodiere, L. Cario, and A. Sacuto, Phys. Rev. B 89,
060503(R) (2014).

[9] R. Grasset, Y. Gallais, A. Sacuto, M. Cazayous,
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[23] I. Žutić, J. Fabian, and S. Das Sarma, Rev. Mod. Phys.
76, 323 (2004).

[24] J. Linder and J. W. Robinson, Nat. Phys. 11, 307 (2015).
[25] Y. Tserkovnyak, A. Brataas, and G. E. W. Bauer, Phys.

Rev. Lett. 88, 117601 (2002).
[26] E. Saitoh, M. Ueda, H. Miyajima, and G. Tatara, Appl.

Phys. Lett. 88, 182509 (2006).
[27] K. Ando, S. Takahashi, J. Ieda, Y. Kajiwara,

H. Nakayama, T. Yoshino, K. Harii, Y. Fujikawa,
M. Matsuo, S. Maekawa, et al., J. Appl. Phys. 109,
103913 (2011).

[28] Y. Tserkovnyak, A. Brataas, and G. E. W. Bauer, Phys.
Rev. B 66, 224403 (2002).

[29] T. Kato, Y. Ohnuma, M. Matsuo, J. Rech, T. Jonck-
heere, and T. Martin, Phys. Rev. B 99, 144411 (2019).

[30] S. Takahashi and S. Maekawa, Phys. Rev. Lett. 88,
116601 (2002).

[31] S. Takahashi and S. Maekawa, Sci. Technol. Adv. Mater.
9, 014105 (2008).

[32] T. Wakamura, H. Akaike, Y. Omori, Y. Niimi, S. Taka-
hashi, A. Fujimaki, S. Maekawa, and Y. Otani, Nat.
Mater. 14, 675 (2015).

[33] K.-R. Jeon, J.-C. Jeon, X. Zhou, A. Migliorini, J. Yoon,
and S. S. Parkin, ACS Nano 14, 15874 (2020).

[34] R. Ojajärvi, T. T. Heikkilä, P. Virtanen, and M. A.
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DETAILS OF SYMMETRY OPERATORS

Here we are most interested in the time-reversal sym-
metry T̂ , spin rotation around the z axis by 180 degrees
R̂sz(π), rotation (rotation in both spin and coordinate
space) around the z axis by 180 degrees R̂z(π). The
symmetry operators and their effects on the Hamiltonian
H(k) are

T̂ = iσyK

T̂H(k)T̂−1 = H∗(−k)

R̂sz(π) = σz

R̂sz(π)H(k)R̂−1
sz (π) = H(k)

R̂z(π) = σz

R̂z(π)H(kx, ky, kz)R̂
−1
z (π) = H(−kx,−ky, kz)

where K is the complex conjugate operator and σ is the
Pauli matrix acting on the spin space. These symmetry
operators acting on the Zeeman and pairing terms in the
Hamiltonian gives

ÔhσÔ−1 = −hσ

Ôητ1Ô
−1 = ητ1, (S1)

where η is the deviation of Δ from its saddle point value
Δ0. Here Ô = T̂ , R̂sz, R̂z. In the main text we use
these results to show that Higgs-spin coupling requires
breaking all these symmetries.

CALCULATION OF PAIR SUSCEPTIBILITY

To calculate the pair susceptibility, we solve the fol-
lowing Usadel equation [1–7].

− i {τ3∂t, ĝ} = D∇̃ (ĝ∇ĝ)− i [H0, ĝ] +
[
Xei(Ωt−qzz), ĝ

]
,

(S2)
Here H0 = ih0σ3 + Δ0τ1, where h0 is the proximity

induced effective static exchange field and τi is the Pauli
matrix acting on particle-hole space. ∇̃ = (∇̃z, ∇̃x) is
the covariant derivative defined by ∇̃z· = ∇z + iα[σx, ·],
∇̃x· = ∇x − iα[σz, ·]. The Usadel equation is supple-
mented by the normalization condition ĝ2 = 1. Here

X = Δ′τ1. It is small compared to other energy scales
and can be treated as a perturbation. Then we write the
quasi-classical Green function as

ĝ(ω1, ω2) = ĝ0(ω)e
iω(t1−t2) + ĝΔ(ω1, ω2)e

iω1t1−iω2t2−iqzz,
(S3)

where ω1 = ω + Ω and ω2 = ω. ĝ0 is the static Green
function which is 0th order in Δ′ and ĝΔ is first order in
Δ′. The normalization condition ĝ2 = 1 indicates

{ĝ0, ĝΔ}t = 0 (S4)

The anti-commutator {, }t is defined by {A,B}t = A ◦
B +B ◦A, where ◦ is the convolution product given by

(A ◦B)(t1, t2) =

∫
dtA(t1, t)B(t, t2) (S5)

in time domain and

(A ◦B) (ω1, ω2) =
∑
ω

A (ω1, ω)B(ω, ω2) (S6)

in frequency domain. Here we only consider the 0th order
terms in α. The 0th order terms in Δ′ give the equation
for static Green function ĝ0

[(ω − ih0σz) τ3 +Δ0τ1, ĝ0] = 0. (S7)

Solving this equation we have

ĝ0 =

[
ĝ0(ω↑) 0

0 ĝ0(ω↓)

]
, (S8)

with

ĝ0σ =
ωστ3 +Δ0τ1

s(ωσ)
(S9)

where ω↑/↓ = ω ± h0 and s(ω) is given by

s(ω) =
√

ω2 +Δ2
0. (S10)

Next we consider the first order terms in Δ′
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(
ω1στ3 +Δ0τ1 +Dq2z

)
ĝΔ(ω1σ, ω2σ)− ĝΔ(ω1σ, ω2σ)

(
ω2,↑/↓τ3 +Δ0τ1

)
= Δ′ĝ0(ωσ)τ1 −Δ′τ1ĝ0(ωσ). (S11)

Noting that

ωστ3 +Δ0τ1 = s(ωσ)ĝ0(ωσ) (S12)

and making use of the normalization condition Eq. (S4)
we obtain ĝΔ given by

ĝΔ(ωσ) = Δ′ ĝ0(ωσ)τ1 − τ1ĝ0(ωσ)

s(ω1σ) + s(ω2σ) +Dq2z
(S13)

The pair susceptibility is then given by

χ−1
ΔΔ = NeT

∑
ω

Tr [τ1ĝΔ] /4iΔ′ +
1

U
. (S14)

where Ne is the electron density of states at the Fermi
energy in the normal state and U is the BCS interaction
strength. Making use of the self-consistency equation
1
U = NeT

∑
ω,σ

1
s(ωσ)

, we obtain

χ−1
ΔΔ = NeT

∑
ω.σ=↑/↓

Δ2
0 − ω1,σω2,σ − s(ω1,σ)s(ω2,σ)

s(ω1,σ)s(ω2,σ) [s(ω1,σ) + s(ω2,σ) +Dq2z ]
+

1

s(ω1,σ)
+

1

s(ω2,σ)
. (S15)

In above expressions all the frequencies are Matsubara
frequencies. In order to get the pair susceptibility with
real frequencies, we need to perform analytical continua-
tion according to

χR(Ω) =

∫ ∞

−∞
dε
[
χ(ωR

1 , ω
R
2 )f2 − f1χ(ω

A
1 , ω

A
2 )

+(f1 − f2)χ(ω
R
1 , ω

A
2 )

]
,

(S16)

where ωR/A = ω ± i0+ and f(ω) = tanh(ω/2T ).

CALCULATION OF PAIR-SPIN
SUSCEPTIBILITY AND THE BARE SPIN

SUSCEPTIBILITY

In order to get the pair-spin susceptibility, we consider
the following Usadel equation with a driven Zeeman field

−i {τ3∂t, ĝ} = D∇̃ (ĝ∇ĝ)−i [τ3H, ĝ]+
[
h+σ+τ3e

iΩt−iqzz, g
]
.

(S17)
Here we assume h+ � Dα2 � Dq2z , T,Δ0, h0 and treat
both hΩ and α as perturbations and write the quasiclas-
sical Green function as

ĝ = ĝ0e
iω(t1−t2) + (ĝh0 + ĝhα)e

iω1t1−iω2t2−iqzz, (S18)

where ĝh0 is 0th order in α and ĝhα is first order in α.
The normalization condition ĝ2 = 1 implies

ĝ0(ω1)ĝh0(ω1, ω2)− ĝh0(ω1, ω2)ĝ0(ω2) = 0

ĝ0(ω1)ĝhα(ω1, ω2)− ĝhα(ω1, ω2)ĝ0(ω2) = 0, (S19)

ĝ0 is given by Eq. (S9). Using the same method in the
calculation of pair susceptibility, we get ĝh0

ĝh0 = ĝh00 ⊗ σ+ =
i[τ3 − ĝ↑(1)τ3ĝ↓(2)]hΩσ+

s↑(1) + s↓(2),
. (S20)

Expanding the Usadel Eq. (S2) up to the first order in
α we have

iD [[qxĝh0, σ1] , ĝ0] = K(ω1)ĝhα(ω1, ω2)−ĝhα(ω1, ω2)K(ω2),
(S21)

whereK(ω) = (ω+ih0σ3)τ3+Δ0τ1. Solving this equation
yields

ĝhα =

[
ĝhα↑ 0
0 ĝhα↓

]
(S22)

with

ĝhα↑/↓ = 2iDα
ĝ0↑/↓

[
ĝh00, ĝ0↑/↓

]
s↑/↓(ω1) + s↑/↓(ω2)

. (S23)

The pair-spin susceptibility is then given by

χΔs = Ne

∑
ω

Tr[τ1ĝhα]/4ih+. (S24)

We can also get the bare spin susceptibility χss from
ĝh0
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FIG. 1: The imaginary part of the total spin susceptibility
as a function of temperature for different spin-orbit coupling
strengths. The parameters used here are: h0 = 0.5ΔT0, Ω =
0.4ΔT0, where ΔT0 ≡ Δ(T = 0).

χss = NeT
∑
ω

Tr[σ−τ3ĝh0]/4ih+. (S25)

Then it is straightforward to calculate the total spin sus-
ceptibility.

EFFECT OF SPIN-ORBIT COUPLING ON THE
TOTAL SPIN SUSCEPTIBILITY

We numerically calculate the total spin susceptibility
with different spin-orbit coupling strengths. The results
are shown in Fig. 1

HIGGS MODE IN THE CLEAN LIMIT

Within the qusiclassical framework, we can also re-
produce the results of Littlewood and Varma [8], but
since their approach considered a clean superconductor,
we need to consider the Eilenberger equation instead of
the Usadel equation as in the main paper. It reads

−vF ·∇ĝ = [ωτ3 +Δ0τ1, ĝ] +
[
Δ′τ1eiΩt−iqzz, ĝ

]
, (S26)

where vF is the Fermi velocity. Again we write the Green
function as

ĝ(t1, t2) = ĝ0e
iω(t1−t2) + ĝΔei(ω+Ω)t1−ωt2 . (S27)

Solving the Eilenberger equation in Fourier space with
momentum q we have

ĝ0(ω) =
ωτ3 +Δ0τ1

s(ω)

ĝΔ(ω1, ω2) = Δ′ ĝ(ω1)τ1ĝ(ω2)− τ1

[s(ω1) + s(ω2)]
2
+ (vF · q)2 [s(ω1) + s(ω2)] , (S28)

where s(ω) =
√
ω2 +Δ2. The pair susceptibility is then

given by

χ−1
ΔΔ = NeT

∑
ω

Tr
〈ĝΔ〉
4iΔ′ +

1

s(ω)
, (S29)

where 〈·〉 denotes the direction average of vF . We evalu-
ate the pair susceptibility by performing analytical con-

tinuation from imaginary time to real time, in which case
the frequency sum becomes an integral over energy. At
q = 0, the result is Eq. (9) of the main text, which is
the same both in the ballistic and diffusive limits. For
non-zero momentum the total expression is cumbersome.
However, we can find the Higgs mode dispersion by con-
sidering just the real part that is given by

Re(χ−1
ΔΔ) = Ne(Ω

2 − 4Δ2
0 −

1

3
v2F q

2)

∫
dε

1√
ε2 +Δ2(Ω2 − 4Δ2 − 4ε2)

, (S30)

where q = |q|. This expression is equivalent to Eqs. (2.28) and (2.29) in [8]. We can obtain the dispersion of the
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FIG. 2: Real (red) and imaginary (blue) parts of the pair
susceptibility at q = 0.

Higgs mode from the condition Re(χ−1
ΔΔ) = 0. It yields

Ω2
H = 4Δ2 +

1

3
v2F q

2. (S31)

Such a dispersion is possible to find only in the ballistic
limit, whereas in the diffusive limit the Higgs peak resides
at Ω2

H = 4Δ2 also for finite momentum q.
To get the damping of the Higgs mode, one can follow

Littlewood and Varma’s method and arrive at Eq. (2.38)
in their paper. Here we also show a simpler way to see
the momentum dependence of the damping. In princi-
ple finite momentum may change both the damping and
the frequency of the Higgs mode. However, in the clean
limit the previous effect is negligible which is why the
main effect of a non-zero momentum is to shift the Higgs

frequency to above 2Δ according to Eq. (S31). How-
ever, for such frequencies the damping α represented by
the imaginary part of the pair susceptibility is nonzero
and proportional to

√
Ω − 2Δ even at q = 0 as indicated

in Eq. (9) of the main paper. Inserting the dispersion
Ω = ΩH(q) we hence get

α ∝ q. (S32)

This result is consistent with that of Littlewood and
Varma. We plot the real part and the imaginary part
of χ−1

ΔΔ at qz = 0 using Eq. 9 in the main text and the
result is shown in Fig. 2.

In the diffusive case the damping of the Higgs mode
behaves differently as a function of momentum. In par-
ticular, disorder leads to momentum relaxation which is
why the finite momentum directly leads to damping even
at Ω = 2Δ. In this case the damping is quadratic in the
momentum as seen in Fig. 2 of the main paper.
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