JYVASKYLAN YLIOPISTO
H UNIVERSITY OF JYVASKYLA

This is a self-archived version of an original article. This version
may differ from the original in pagination and typographic details.

Author(s): Turtiainen, Hannu; Costin, Andrei; Khandker, Syed; Hdmalainen, Timo

Title: GDL90fuzz : Fuzzing “GDL-90 Data Interface Specification” Within Aviation Software and
" Avionics Devices : A Cybersecurity Pentesting Perspective

Year: 2022

Version: pyblished version

Copyright: © 2022 the Authors

Rights: ccya.0
Rights url: https://creativecommons.org/licenses/by/4.0/

Please cite the original version:

Turtiainen, H., Costin, A., Khandker, S., & Hamalainen, T. (2022). GDL90fuzz : Fuzzing “GDL-90
Data Interface Specification” Within Aviation Software and Avionics Devices : A Cybersecurity
Pentesting Perspective. IEEE Access, 10, 21554-21562.
https://doi.org/10.1109/ACCESS.2022.3150840

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2022.3150840, IEEE Access l E E E ACCGSS

Multidisciplinary * Rapid Review * Open Access Joumal

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2022.DOI

GDL90fuzz: Fuzzing “GDL-90 Data
Interface Specification” Within Aviation
Software and Avionics Devices — A
Cybersecurity Pentesting Perspective

HANNU TURTIAINEN, ANDREI COSTIN, SYED KHANDKER, AND TIMO HAMALAINEN

University of Jyviskyld
Jyviskyld, Finland

Corresponding author: Hannu Turtiainen (e-mail: hannu.ht.turtiainen @jyu.fi).
This work was supported in part by the Finnish Grid and Cloud Infrastructure (FGCI) persistent identifier

urn:nbn:fi:research-infras-2016072533, in part by the decision of the research dean on research funding within the Faculty of Information
Technology of the University of Jyviskyld (07.04.2021), and in part by the Finnish Cultural Foundation, grant decision no.00211119.

ABSTRACT As the core part of next-generation air transportation systems, the Automatic Dependent
Surveillance-Broadcast (ADS-B) is becoming very popular. However, many (if not most) ADS-B devices
and implementations support and rely on Garmin’s GDL-90 protocol for data exchange and encapsulation.
In this paper, we research GDL-90 protocol fuzzing options and demonstrate practical Denial-of-Service
(DoS) attacks on popular Electronic Flight Bag (EFB) software operating on mobile devices. For this
purpose, we specifically configured our own avionics pentesting platform. and targeted the popular Garmin’s
GDL-90 protocol as the industry-leading devices operate on it. We captured legitimate traffic from ADS-B
avionics devices. We ran our samples through a state-of-the-art fuzzing platform (AFL), and fed the AFL’s
output to the EFB apps and GDL-90 decoding software via the network in the same manner as legitimate
GDL-90 traffic is sent from ADS-B and other avionics devices. The result shows a worrying anc critical lack
of security in many EFB applications where the security is directly related to aircraft’s safety navigation.
Out of 16 tested configurations, our avionics pentesting platform managed to crash or otherwise impact 9
(or 56%) of those. The observed problems manifested as crashes, hangs, and abnormal behaviours of the
EFB apps and GDL-90 decoders during the fuzzing test. Attacks on core sub-system availability (such as
DoS) pose high risks to safety-critical and mission-critical systems such as avionics and aerospace. Our
work aims at developing and proposing a systematic pentesting methodology for such devices, protocols,
and software, and discovering and reporting as early as possible such vulnerabilities.

INDEX TERMS GDL-90, ADS-B, attacks, cybersecurity, pentesting, resiliency, DoS, aviation, avionics,
airtraffic.

l. INTRODUCTION and ATCs in the vicinity in a fully automatic manner, in-
creasing system efficiency by eliminating interrogation pro-
cesses, and cost-effective implementation. Moreover, FAA
and its stakeholders are actively experimenting with ADS-
B for commercial space transportation applications [3]]. Due
to its efficiency, lightweight, and cost-efficient features, it is
gaining popularity among all sorts of users. Using portable
ADS-B transceiver (e.g., SkyEcho2, Sentry, echoUAT) mo-
bile cockpit solution is very trendy nowadays, especially in
the general aviation sector. Such portable ADS-B devices
provide service through EFB application hosted on a mobile

In the United States aviation, the Federal Aviation Adminis-
tration (FAA) is pushing a shift from Secondary Surveillance
Radar (SSR) interrogations to the more modern Automatic
Dependent Surveillance-Broadcast (ADS-B) technology in
air traffic control. As of January 2020, aircraft operating
under the continental United States are required to use ADS-
B [I]l. European aviation is following suit as the gradual
shift to mandatory ADS-B broadcasting has started in June
of 2020 [2]]. ADS-B offers many benefits over the SSR,
such as enhanced situational awareness to all the aircraft

VOLUME XXX, 2016 1

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

IEEE Access

Turtiainen et al.: GDL90fuzz: Fuzzing “GDL-90 Data Interface Specification” — FOR IEEE ACCESS REVIEW ONLY. CONFIDENTIAL DRAFT.

10.1109/ACCESS.2022.3150840, IEEE Access

tablet or smartphone. Garmin’s GDL-90 is one of the de-
facto standards leading the avionics industry, and is one of
the main and most used protocol to exchange data between
ADS-B devices (e.g., SkyEcho2, Sentry, echoUAT) and EFB
applications. GDL-90 is also used in many Integrated Flight
Deck (IFD) and Electronic Flight Instrumentation Systems
(EFIS) (such as Garmin’s G1000 and Avidyne’s IFD440/540,
EX5000) as well as in many mobile cockpit devices and
EFB applications (such as AvPlan, Naviator, Airmate). Any
potential vulnerability in GDL-90 poses elevated cyberse-
curity risks to the avionics systems as well as safety risks
to the passengers and crew lives. Researchers have reported
several types of security threats regarding ADS-B, such as
ghost aircraft, aircraft disappearance, denial of service [4],
[5]. However, protocol fuzzing in mobile cockpit systems has
not been thoroughly investigated yet, which has motivated
us to conduct this study. Our present work is important as it
systematically approaches discovering potential bugs and cy-
bersecurity vulnerabilities within GDL-90 implementations.
Our main contributions with this work are:

1) To the best of our knowledge, we are the first to
propose, implement and execute a systematic fuzzing
platform and experiments aiming specifically at GDL-
90 protocol (while our method is easily extensible to
more avionics and aerospace data-link protocols).

2) We are the first to discover and report safety-critical
Denial of Service (DoS) vulnerabilities found in a
handful of most popular aviation apps and mobile
EFBs resulting from fuzzing the GDL-90 inputs.

The rest of this article is organized as follows. We have
discussed different fuzzing aspects in Section [[Il Then, in
Section [III| we introduce our attacking strategy. We present
our results in Section [Vl We discuss related works in
Section [V] Finally, with Section we discuss possible
workarounds, future work and conclude this paper.

Il. BACKGROUND
In this section we briefly present background technologies
and techniques that are involved in our experiments.

A. FUZZING

Fuzzing (or fuzz testing) is an automated software testing
method for finding implementation and input sanitization
bugs by using intentionally malformed or randomized inputs.
It was originally developed by Professor Barton Miller and
his team of students in the University of Wisconsin Madison
in 1989 [6]. With fuzzing, a generator of sort is used to
create random and semi-random (known to be dangerous)
data usually sampled from real inputs and it is input to the
software, which behaviour is observed. Fuzzing relies on
the premise that bugs exists in every program and therefore,
consistent and systematic approach will eventually discover
them [7]. Fuzzing is a blind testing technique with it’s
caveats, such as the possibility of missed program paths
due to the random nature of the input mutations [3]. In our
experiments, we target the GDL-90 protocol, which means

2

that we are employing protocol fuzzing by forging packets
with real protocol like format, but with some parts malformed
(more on the topic at Section [[II-DJ.

As the core fuzzing toolset, in our work we have employed
the American Fuzzy Lop (AFL) which is a security-oriented
greybox fuzzer originally developed by Michal Zalewski [9].
It is a proven, easy-to-use, stable, and effective fuzzer that
utilizes performance optimizations to decrease unnecessary
runtime [10]. AFL uses an instrumentation-guided genetic
algorithm to fuzz the software-in-test with a brute-force ap-
proach. In essence, AFL takes the sample test cases supplied
by the user one by one, it trims them and mutates the trimmed
versions with traditional fuzzing strategies. The behaviour
of the software-in-test is recorded and interesting test cases
are recorded for further use and for runtime modifications of
the fuzzer [8|]. AFL is currently maintained by Google Open
Source and it is licensed with Apache License 2.0 [§]], [11].

B. GDL-90 PROTOCOL

Garmin DataLink 90 (GDL-90) format is supported by many
aviation hardware and software (see Tables [3). Its features
is described in RTCA DO-267A as asynchronous High-
Level Data Link Control (HDLC)-based messaging struc-
ture with some modifications to better suit avionics data
interfaces [12]], [[13]]. The basic GDL-90 message format is
presented in Figure[I]

Flag Message | Message CRC Flag
Byte ID Data Byte

FIGURE 1: GDL-90 message format.

The message starts with a Flag Byte (Ox7E) followed by
a one-byte Message 1D, which specifies the type of message
being transmitted. The message type sets the message data
content and length. All the message definitions have been
listed in Table[Il

TABLE 1: GDL-90 Message IDs.

MessageID	Message Name
0	Heartbeat
2	Initialization
7	Uplink Data
9	Height Above Terrain
10	Ownship Report
10	Ownship Geometric Altitude
20	Traffic Report
30	Basic Report
31	Long Report

A two-byte frame check sequence (16-bit CRC, LSB first)
is calculated for the data and appended to the message,

VOLUME XXX, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2022.3150840, IEEE Access
Turtiainen et al.: GDL90fuzz: Fuzzing “GDL-90 Data Interface Specification”— FOR IEEE ACCESS REVIEW ONLY. CONFIDENTIAL DRAFT.

IEEE Access

and the message ends with another Flag Byte. If a Flag
Byte (0Ox7E) or a Control-Escape Character (CEC, 0x7D) is
present in the original message, the message byte is XOR’d
with 0x20, and a CEC is prefixed to it. Thus the integrity
of the message is preserved. The receiving end checks the
incoming traffic for the Flag Bytes and captures the data
between them. The captured data is inspected for CECs.
If CEC is found, the CEC is discarded, and the byte after
it is XOR’d again to return its old form properly. CRC
for the message data part of the message is calculated and
verified. If deemed valid, the message is ready for use. In
operation, GDL-90 devices transmit a heartbeat message
once every second followed by an ownship report. In between
these “pulses”, other messages such as traffic reports can be
transmitted. In our experiments, we focused on three message
types

« Heartbeat

o Traffic report

o Ownship report

A heartbeat message is used for the devices to indicate
that they are operational and to submit information about
their status. Two status bytes in the message tell information
about the transmitter in a boolean fashion. This information
includes battery low, GPS fix, maintenance requirement, etc.,
flags. A timestamp is also present in the message after the
status bytes.

Traffic reports are in the output in each second for each
proximate target. GDL-90 expects at least 32 simultaneous
targets to be handled, but more can be processed depending
on the uplink configurations and the interface baud rate.
Traffic report data uses 27 bytes to represent every needed
attribute. Table 2] shows the fields of the traffic report data in
order.

An ownship report message follows the traffic report for-
mat, and it is always in output even without a proper GPS fix.
It broadcasts the transmitter information to the network.

C. GDL90 PROTOCOL EXTENSIONS

Some vendors have their own interpretation of the protocol
outside of the Garmin standard. For example, Uavionix’s
SkyEcho2 mainly uses the standard messaging types, but it
outputs its ownship message with a message type code 101.
On the other hand, ForeFlight’s Sentry extends the proto-
col and does not communicate with the standard message
types. Sentry transmits messages with IDs 37 and 38, which
are longer than the standard heartbeat, ownship, and traffic
messages. Most likely containing multiple message types in
a single packet. The ForeFlight EFB supports both devices.
It broadcasts messages to the network. When the app is
accepting traffic it sends “i-want-to-play-ffm-udp", and sends
“i-cannot-play-ffm-udp" when it goes to sleep. It also iden-
tifies itself to the network by broadcasting "App: ForeFlight,
GDL90: port :4000" messages. For our experiments, we did
not delve deeper into the ForeFlight protocol as it was not
necessary. We were able to capture, modify, resend, and

VOLUME XXX, 2016

receive Sentry packets just like with the other devices. Thus
the integration with AFL was quite straightforward. Figure 2]
shows Skyecho decoded heartbeat packet in Wireshark.

» Frame 11: 85 bytes on wire (680 bits), 85 bytes captured (680 bits) on interface wipdsd, id @
40 €2 30 11 9 3f 7c 9 bd e5 21 b5 08 00 45 08 @ E
00 47 09 20 08 00 ff 11 32 32 cO a8 04 01 cO a8
0620 B4 02 c0 01 Of ab 00 33 67 7a [T E
[TECINO0 00 ac 33 /e [Qa 00 44 44 22 00 09 09 00 Oofl- -3~ DD"
XMoo 02 78 00 £ £8 00 00 02 53 db 59 45 43 48 AF[M. -
(LMoo 00 ca 6o Tef 1

FIGURE 2: Heartbeat messages of “SkyEcho2” specific
GDL-90 extension as captured and decoded in Wireshark
software.

Figure [3] depicts the system diagram of Garmin G1000 —
a real-world EFIS / IFD / avionics system. It is important
to note that GDL-90 inputs go to the GIA 63/63W avionics
unit that is also directly controlling the auto-pilot systems
such as Bendix/King KAP-140 [14]. Therefore, any GDL-
90 vulnerabilities present within the avionics units could
potentially have a direct effect on the auto-pilot systems.
Therefore it is important to discover such GDL-90 (and other
data-link protocols) vulnerabilities as fast and as efficient as
possible, for example using our approach and results.

PFD MFD
GDU 1040 or GMA 1347 GDU 1040 or
GDU 10448* Audio Panel GDU 10448

Air Data
‘Computer
No. 1 GIA 63/63W oA No. 2 GIA 63/63W
Integrated Avicnics Unit i) Integrated Avionics Unit
Sy mraton Processos Verical Speed | Stem inegranan Procezzors
0 Procassars 10 Procassars
e ¥ o
VHE NAVLOE \HF NAVLOE
PSS GRS 77 GPsuiARS
GFC 700 Flight Director AHRS
1725, 182 8.208) e
aP8 Rate of Turn 0P8 oupur
SlipSkid
GMU 44
Magnetometer
Honeywell
n
KAP 140
Autopilot
GTX 33 i
GEAT1
i i GTS 800
Unit TAS
Data Link
ata Linl
il b ADSB Trathic Dutn.
L 2 8
GSA 81 GSA 81 GSA 81
Pitch Servo Piteh Trim Roll Serva
Ausopiet
| (17ESTD. 182 & 206)|

* The GDU 1040 is available in systems not using the GFC 700 Automatic Flight Control System.
The GDU 1044B is available in systems using the Garmin GFC 700 Automatic Flight Control System

FIGURE 3: System diagram of “Garmin G1000”
EFIS/IFD — the GDL-90 inputs going into ‘“No.2
GIA 63/63W” that in turn controls the auto-pilot “Honeywell
KAP 140 []El]

lll. FUZZING ATTACKS ON GDL-90

A. DIAGRAMS OF OUR APPROACH

In Figure {4 we present the high-level diagram E| of where
GDL-90 outputs and inputs are connected in real-world sys-

I'This setup is part of a larger pentesting platform for aviation/avionics and
maritime technologies [5].

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

IEEE Access

Turtiainen et al.: GDL90fuzz: Fuzzing “GDL-90 Data Interface Specification” — FOR IEEE ACCESS REVIEW ONLY. CONFIDENTIAL DRAFT.

10.1109/ACCESS.2022.3150840, IEEE Access

TABLE 2: GDL-90 Traffic/Ownship Report fields.

‘ Field ‘

Description

‘ Length (bits) ‘

‘ Traffic Alert Status ‘ 0: No alert, 1: Traffic alert for this target, 2-15: Reserved

| 4

‘ Target Identity (type)

‘ 0: ADS-B with ICAO address 1: ADS-B with Self-assigned address 2: TIS-B with ICAO address 3: TIS-B with track file ID. 4: Surface Vehicle 5: Ground Station Beacon 6-15: Reserved ‘ 4

‘ Participant Address ‘ Unique address

‘24

|
|
|
‘ Latitude and Longitude ‘ Encoded range -180 to 180 degrees, resolution of approximately 2.14577 x 103 ‘ 24 % 2 ‘
‘ Altitude ‘ Pressure altitude (referenced to 29.92 inches Hg), encoded using 25-foot resolution, offset by 1,000 feet. OXFFF is invalid/unavailable ‘ 12 ‘
‘ Miscellaneous Indicators | Bits 0 and 1: Additional information for the Track/Heading field, Bit 2: Report derived from ADS-B or extrapolated from previous report, Bit 4: Air/Ground State ‘ 4 ‘
‘ Integrity and Accuracy ‘ Integrity and accuracy of the traffic reported (in nautical mile thresholds) ‘ 4x2 ‘
‘ Horizontal Velocity ‘ Velocity in knots, above 4094 knots, the value will hold at OxFFE ‘ 12 ‘
‘ Vertical Velocity ‘ Velocity in 64 feet per minute, +/- 32,578 feet per minute ‘ 12 ‘
‘ Track/Heading ‘ Weighted heading value, resolution 360/256 (approx. 1.4 degrees) ‘ 8 ‘
‘ Emitter Category ‘ Type of the vehicle in use represented by an integer. Values 0-21 are in use and the rest are reserved ‘ 8 ‘
‘ Call Sign ‘ 8 ASCII characters (0-9, A-Z), space is only used for padding in the end ‘ 64 ‘
‘ Emergency/Priority Code ‘ 0: no emergency 1: general emergency 2: medical 3: minimum fuel 4: no ion 5: unlawful interference 6: downed aircraft 7-15: reserved ‘ 4 ‘
‘ Reserved ‘ Reserved for future use ‘ 4 ‘
e B. ADVANTAGES OF OUR APPROACH
| —| AHRS | Using the GDL-90 fuzzing approach that we developed and
o : — v : proposed in this paper has the following main advantages:
_ |) [.
(agsflg) sagetech | Unit * 1) Does not require aviation-spectrum wireless transmis-
1090/978 .] : - D I sion (e.g., ADS-B) — avoids any radio interference,
W‘J: | (display) : lowers the costs as SDR devices are not required (i.e.,
rTT—— " works directly at GDL-90 receiving point).

e 7 2) Is not limited to the capacity of radio channels —
thus can perform fuzzing/testing at considerable higher
speeds (e.g., WiFi/ethernet has higher throughput than

,L“E?‘"% S ADS-B RF link). . .

for GDL9O —_— device) 3) Works closer to the source of the possible GDL-90 im-
1_£ plementation problems — thus avoids the extra layer(s)
w1

FIGURE 4: Overview of the GDL-90 test-bench and the
positioning of our fuzzing platform (for GDL-90 and similar
avionics data-link protocols).

tems and where our platform can be connected during the
execution of GDL-90 fuzzing. It is important to note that
discovering or triggering such protocol implementation vul-
nerabilities does not necessarily require physical or adjacent
proximity. In our another research, we have demonstrated
that carefully crafted wireless ADS-B communications can
be used to achieve the same goals, i.e., crash EFB/ADS-B
apps or ADS-B avionics devices which can be due to GDL-90
or ADS-B vulnerabilities, or a handful of other reasons [5].
This is possible because many ADS-B devices with ADS-B
IN function provide processed data using GDL-90 protocol
encoding.

introduced by higher protocols processing chains (such
as ADS-B) which could be sources of possible bot-
tlenecks, false negatives/positives, and air-transmission
regulatory challenges.

C. OVERALL HARDWARE-SOFTWARE SETUP

Our attacks were made simple by the fact that the common
GDL-90 enabled WiFi ADS-B devices (such as SkyEcho2,
echoUAT, Sentry) use connectionless UDP packets to send
data. Therefore, we can easily capture, manipulate, and re-
send the packets to the applications without issues. First,
we observed the packets transmitted in the WiFi networks
created by the Sentry and SkyEcho2 with a network packet
inspection tool called Wireshark [16]. We applied GDL-
90 dissector [17] lua-script to Wireshark to identify and
analyze the packets. We transmitted ADS-B traffic messages
via HackRFOne to the receivers as well. We copied the
required messages from the packet captures and saved them
as samples for the fuzzer. Depending on the device and its
configuration, we either left the different message types as
separate samples or left them as one in the case of the Sentry.
In addition to the samples we gathered from real device

VOLUME XXX, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3150840, IEEE Access
Turtiainen et al.: GDL90fuzz: Fuzzing “GDL-90 Data Interface Specification”— FOR IEEE ACCESS REVIEW ONLY. CONFIDENTIAL DRAFT.

IEEE Access

networks, we also utilized Eric Dey’s GDL-90 code [18]] to
simulate Stratus [19] and SkyRadar [20] ADS-B receivers
and created samples for those. In total, we tried four dif-
ferent samples with the applications. Some applications only
worked with one sample-specific sample set. The simulated
SkyRadar sample set was deemed the best generalizing of the
four, and it was the most widely used in our tests.

We were inspired by Eric Dey’s GDL-90 code [18] and
made our own GDL-90 sender script for fuzzing purposes.
We chose AFL as our fuzzer of choice since we were adamant
that the input coverage with AFL would be sufficient. We
set up our environment as a Docker container with AFL and
our sender/fuzzing script. With our sender script, the target
IP address and the target port must be set at the beginning.
When the parameters are set, we can start fuzzing. As we are
using UDP packets over WiFi, the applications in the mobile
phone end are not aware that the device at the other end is
not legitimate; therefore, the testing is realistic. However, as
we have no feedback from the mobile device through the
network to the fuzzer, we cannot have AFL recording the
exact input that made an app crash. We can only observe
the applications. Running the fuzzer over the network with
a packet sending delay made the fuzzing quite slow for AFL
standards. However, the applications that were affected the
most did crash within the first 60 minutes of the test. For
the initial test, the target and the attacking PC were both
connected to the same home network via a WiFi access point
running OpenWRT 17.01.0 [21]] or with ethernet to the router.

Overall, our test setup works on the one-click-test princi-
ple. After the Docker container is built, a test can be started
by running a script with four arguments; IP-address of the
attacked device, UDP-port (4000 or 43211 in our tests),
sample folder (one of our four offerings), and output folder
(arbitrary, useful for resuming long fuzzing sessions). Logs
are saved to the specified output folder. With the inclusion
of Docker, the setup is easy as every component is installed
automatically. Figure[5|shows a status display during the test.

FIGURE 5: Example of an AFL run status.

VOLUME XXX, 2016

D. AFL SETUP

We used AFL’s Python implementation (python-afl v.0.7.3)
and the latest AFL as of date (afl-fuzz v.2.57b) in our tests.
As our test setup is quite slow, we specified “quick and dirty**-
mode (-d option), which skips deterministic steps and usually
yields faster results. This limits the depth that we could
achieve with the tests, but we discovered that this mode was
perfectly adequate for many applications to falter. With the
non-deterministic mode on and with the sample variety being
low, our most prolonged 1-hour fuzzing sessions reached
at least 50 cycles. A cycle in AFL means that the fuzzer
went through all the interesting test cases [22f]. Therefore,
we would argue that the tests were quite thorough within the
limitations of the samples we acquired. We observed that the
crashes occurred at several stages of the fuzzing cycles. Even
if the test applications did not crash, the usability of the data it
presented was greatly hindered due to malformed input data
(details in the result Section [[V)).

E. GDL-90 FUZZING TARGETS

In Table [3] we present a comprehensive list of the targeted
software. Most of our efforts were put to targeting mobile
EFB apps, but some open-source tools were also tested. For
Eric Dey’s GDL-90 code [18], we targeted the decoding
script only.

TABLE 3: List of software exposed to fuzzing attack (Soft-
ware Under Test).

Name ‘ Price ‘ VerAsionA InsAtallsA
(Android / i0S) (Android /i10S)
OzRunways	Free	v456/v.10.19	50k+/ —
iFlightPlanner	Free	—/v4.5.6	—/-
Airmate	Free	v.1.6.1/v.2.3	50k+ / —
AvPlan	$76.16/year	v.13.28/v.8.12	Sk+/—
Levil Aviation	Free	-/v.13	-/-
FLYQ EFB	Free	—/v5.0	iy -
EasyVFR4	Free	v4.0.870/v.4.0.899	100+ / -
Horizon	Free	v3.0/v.3.0	10k+ / -
ForeFlight	Free	—/v.13.4	-/ -
Pilots Atlas	$89.99/year	—-/v.5.13.0	-/ -
Xavion	Free	—-/v.2.81	-/-
SkyDemon	$162/year	v.3.15.0/v3.153	100k+ /-
Stratus Insight	$99.99/year	-/v.5.17.3	—/-
Naviator	$34.99/year	v4.22/-	100k+ /-
‘ ;lg;fgf)ntrol—J) affic Free ‘ v.0.0.2.4/ - ‘ 104/ - ‘
‘ Eric Dey’s ‘ Free ‘ github repo ‘ B ‘

GDL-90 gdl90etdey commit d7e5936

F. HIGH-LEVEL GDL-90 ATTACK DESCRIPTION
For example, a possible cybersecurity attack involving vul-
nerable GDL-90 implementations could look as follows:
1) Atresearch time: An exploitable GDL-90 vulnerability
is first discovered (e.g., using our implementation-
independent GDL-90 protocols fuzzing approach).

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

IEEE Access

Turtiainen et al.: GDL90fuzz: Fuzzing “GDL-90 Data Interface Specification” — FOR IEEE ACCESS REVIEW ONLY. CONFIDENTIAL DRAFT.

10.1109/ACCESS.2022.3150840, IEEE Access

2) At design/manufacturing time: An adversary designs
and puts to market an ADS-B-capable and GDL-
90-compatible “backdoored” device that contains the
GDL-90 exploitation payloads and attack vectors. The
“backdoor” could be implemented at the hardware or at
the firmware level in such a way to avoid the detection
at (re-)certification time (similar to the Volkswagen’s
emission ECU manipulation scandal [23])).

3) At usage time: The “backdoored” ADS-B-capable de-
vice sends or activates the GDL-90 exploitation pay-
load. Such exploitation payloads could be activated
conditionally: at certain altitudes, within certain geo-
fence areas, upon receiving a “secret knock” ADS-B
message, etc.

4) At usage time: Alternatively, the discovered GDL-90
vulnerability can be reconstructed back to a specially-
crafted triggering ADS-B payload/message. Therefore
it may be even possible to trigger the GDL-90 vulner-
ability without “backdoored” hardware, just by simply
sending a specially-crafted ADS-B payload/message.

5) Ultimately, backdoors have been shown to be im-
planted even in military-grade chips [24], therefore it
is more than reasonable to believe backdoor implanting
is also feasible for ADS-B devices destined for avion-
ics/EFIS/IFD/EFB setups within commercial/general
aviation and amateurs airplanes.

IV. RESULTS

The fuzzing result are presented in Table [d Out of 15 tested
mobile EFB applications under test, 6 apps crashed (4 i0S-
only, 2 iOS+Android) and 2 apps became unresponsive (1
i0S-only, 1 Android-only). In addition to mobile EFB apps,
Eric Dey’s open-source GDL-90 [18] decoder experienced
several dozen of unique crashes during a day long fuzzing
session on a normal PC (Linux). We focused only on fuzzing
Eric Dey’s GDL-90 decoder leaving its network component
out of the equation. The unique errors and crashes that we
recorded were related to different inputs generating Python
assertion statement failures that in turn were due to the faulty
lengths of the messages (i.e., exactly the aim of fuzzing tests
in general to find such issues). These results allow us to
assume that Eric Dey’s open-source GDL-90 [18]] could pose
stability, availability, and DoS-resiliency issues if deployed
or operated “as-is” in real-world systems and devices.

In one of our recent work [5]], we tested almost the same
set of mobile apps and devices for DoS attacks via the ADS-
B layer, and found 6 of the mobile apps from Table [4] to be
impacted by ADS-B IN DoS, possibly affecting over 200,000
mobile application installs worldwide. In [5]] altogether we
have tested 68 different ADS-B configurations (mobile and
non-mobile) for ADS-B IN DoS attack. We managed to
crash 25% of them mostly within 2 minutes, while overall
the DoS attack impacted 51.47% of tested configurations. In
comparison, the fuzzing results presented in this paper have
similarly worrying results in terms of aviation safety and lack
of resiliency to cybersecurity attacks such as DoS. Attacks on

6

core sub-system availability (such as DoS) pose high risks to
safety-critical and mission-critical systems such as avionics
and aerospace.

TABLE 4: Details of mobile applications (apps) considered
for “Attacked software”.

Comparison with our

App Name GDL-90: Android ‘ GDL-90: i0S ‘ ADS-B-level Do$ attacks {5
OzRunways	CRA (once)	CRA	CRA
Stratus Insight	NA-P	CRA	CRA
iFlightPlanner	NA-P	CRA	DNW
AirMate \ DNW	CrA	CRA	
AvPlan	CRA/UNR	CRA	CRA \
Levil Aviation	NA-P	CRA	DNT
FlyQ EFB \ NA-P	UNR	DNC	
EasyVFR4 \ DNC	DNC	DNC	
Horizon	DNC	DNC	DNT
ForeFlight	NA-P	DNC	CRA
Pilots Atlas	NA-P	DNC	DNC
Xavion	NA-P	DNC	DNT \
Traffic (by Control-J)	DNC	NA-P	DNT
Naviator	UNR	NA-D	DNW
SkyDemon	DNC	DNC	DNW

Android = Samsung Galaxy A21s, Android v 11

iOS = Apple iPhone SE, iOS v 13.3

Acronyms: CRA=Crash; UNR=Unresponsive/Hang; DNC=Did Not
Crash; DNT=Did Not Test; DNW=Did Not Work (e.g., did not connect
to hardware, did not receive data); NA-G=Not Available for this Geogra-
phy/Country/Region; NA-P=Not Available for this Platform; NA-D=Not
Available for this Device.

A. VISUAL OBSERVATIONS

All of the mobile application crashes were observed by vi-
sually inspecting the device/software under test. The crashes
happened either themselves or while trying to operate soft-
ware (e.g., any touch input, move the map, zoom in/out)
while the test was running. For each tested configuration that
was impacted, the crashes were observed and confirmed at
least three times (unless noted otherwise) before registering
the result.

Although FlyQ did not crash, it went unresponsive and
had to be closed by the user. OzRunways on Android did
crash, but the result was not consistently repeated. Naviator
on Android phone did not crash during the test. However,
it consistently closed the GDL-90 ADS-B input on an error
state in each of our attempts and only recovered after a restart.
Otherwise, the application remained functional. Most of the
test applications showed some abnormal behaviour, e.g.,
irrationally flinching map screen, fluctuating GPS data (due
to GPS positioning taken from the GDL-90 messages), alerts
(due to plane proximity or altitude readings), and other non-
standard or device operator alerting behaviour. Therefore,
DNCs in Table @ should not be interpreted as conclusive evi-
dence of the stability of the application [25]]. The application
that did not crash (DNC) during our present tests may crash
on some other sample data or testing methods.

V. RELATED WORK

VOLUME XXX, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2022.3150840, IEEE Access
Turtiainen et al.: GDL90fuzz: Fuzzing “GDL-90 Data Interface Specification” — FOR IEEE ACCESS REVIEW ONLY. CONFIDENTIAL DRAFT.

IEEE Access

A. SOFTWARE FUZZING

Reliable and efficient aerial communication is at the heart
of aerospace safety. Any defects in this safety-critical tech-
nology may cost human life and property. However, modern
protocols and the accompanied software is not always up
to the task. Several studies have shown numerous viable
attacks on these protocols and software [4], [26]. Developers,
researchers, and hackers are using many tools to find out
the security vulnerabilities of this kind of mission-critical
system. Here we discuss a few of them.

The success stories and the open-source nature of AFL
have encouraged researchers to customize this fuzzer for dif-
ferent tasks [10]. Numerous studies have added many func-
tionalities to the AFL (e.g., pathfinding, sample creation, and
coverage) to improve its performance and effectiveness [27]—-
[35]]. The support for AFL has been added for Commercial
Off-The-Shelf (COTS) binaries [|36]—[38]]. AFL has also re-
ceived modifications for its parallel run capabilities [39].

B. ATTACKS AND FUZZING ON AVIONICS DATA-LINK
Micro Air Vehicle Communication (MAVLink) Protocol is a
bidirectional communication protocol which used in drones
and ground control stations. It offers a variety of mes-
sage types that can be transmitted reliably in an efficient
package [40]. However, Domin et al. reported a crash of
MAVLink capable software in their protocol fuzzing tests
in 2016 [41]. They were able to crash a virtual drone with
a random payload by incrementally increasing the payload
bytes from 1 to 255, thus increasing the length of the whole
message. An open-source MAVLink fuzzing software is
available [42].

PX4 is a widely avaible and extremely popular flight con-
troller that also supports MAVLink protocol as well as data
from ADS-B IN capable devices (such as Aerobits AERO,
uAvionix pingRX). Alias Robotics [43] perform a general cy-
bersecurity overview of PX4 from threat modelling and static
analysis perspectives, as well as introduce in this context the
Robot Vulnerability Database (RVD). Subsequently, Jang et
al. [44] performed a thorough static analysis for various PX4
firmware codebases.

Other communication protocols are also used for drones
in particular. Rudo and Zeng [45] showed fuzzing results on
File Transfer Protocol/Session Initiation Protocol (FTP/SIP)
and Session Description Protocol (SDP) embedded within
consumer-grade drones. They raised concerns about the state
of security with commercial drone software. They demon-
strated Global Positioning System (GPS) navigation and
other subsystem failures (e.g., video feed and motor issues).
Internet-of-Things (IoT) and embedded devices have been
shown to be quite vulnerable by multiple studies [46], [47].

In regards to the drone security issues, Kim et al. pub-
lished their Robotic Vehicle (RV) fuzzing tool called RV-
Fuzzer [48]]. This tool intended to highlight missing or faulty
validation checks for control inputs. These bugs and missing
features may cause physical disruptions, such as mission
failures or crashes, on RV’s, such as drones, if exploited. The

VOLUME XXX, 2016

authors constructed the RVFuzzer to employ three distinct
strategies for searching input validation bugs, e.g., control
parameter mutation, one-dimensional mutation, and multi-
dimensional mutation. Throughout their evaluation, they dis-
covered 89 input validation bugs from two control programs.
Since the attacks do not require any code injection or other
invasive procedures, they cannot be detected by security
solutions [48]]. Hence more specific code improvements and
internal security audits for source code during development
are required.

C. ATTACKS ON AVIONICS SYSTEMS AND PROTOCOLS
There has been adamant scrutiny towards ADS-B communi-
cation security from the research community over the years.
In 2004, Korzel et al. [49]] demonstrated issues in the proto-
col with it’s data integrity due to erroneous input and data
dropouts. Concerns over the authenticity, security, confiden-
tiality, and integrity of the protocol have been periodically
raised since [50]-[52].

Attacks against the ADS-B protocol have been demon-
strated frequently by several researchers. Costin and Francil-
lon [4]] showcased the first practical ADS-B message injec-
tion and spoofing attacks. Schifer et al. [26]] exposed several
attacks such as ghost aircraft attacks and virtual trajectory
modification with budget devices. Sjodin and Gruneau [53]]
used HackRF SDR to demonstrate data injection and flooding
attacks on Sentry ADS-B transceiver. They concluded that
the device does not validate the messages from the ADS-B
protocol. McCallie et al. [54] classified attacks and explored
the consequences of the them resulting in worrying results.

Portable ADS-B transceivers (e.g., SkyEcho2, Sentry,
echoUAT), which are operated with iPads and other tablets
are favored by many general aviation pilots due to the ease of
setup, ease of use, and affordable pricing. As these devices
are not per-se part of the onboard avionics, Lundberg et
al. [55], [56] pointed out that these devices do not, nor
do they need to, meet the standards of traditional avionics
(e.g., RTCA, ARINC, EUROCAE). The authors also found
vulnerabilities on all of their test samples and recommended
further product development steps to the device and software
designers.

VI. CONCLUSION

In this paper, we have have studied the impact of GDL-90
protocol fuzzing on a range of popular mobile EFBs and
some standard PC software. Our results show a worrying lack
of security in many EFB applications where the security is di-
rectly related to aircraft’s safety navigation. Out of 16 tested
configurations, our avionics pentesting platform managed to
crash or otherwise impact 9 (or 56%) of those. The observed
problems manifested as crashes, hangs, and abnormal be-
haviours of the EFB apps and GDL-90 decoders during the
fuzzing test. The consistency of our test results on a heteroge-
neous and representative set of different EFBs (Android, iOS,
Linux platforms) support the reliability of our approach and
results. DoS attacks can be devastating for mission-critical

7

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

IEEE Access

Turtiainen et al.: GDL90fuzz: Fuzzing “GDL-90 Data Interface Specification” — FOR IEEE ACCESS REVIEW ONLY. CONFIDENTIAL DRAFT.

10.1109/ACCESS.2022.3150840, IEEE Access

systems such as avionics and aerospace, where availability
and reliability of the system is crucial. However, we hope
that our results and presented methodology can motivate the
standardization and regulatory bodies, as well as industry
and air-traffic organizations, to improve the requirements
and implementation checks of avionics devices and apps in
connection to resiliency to cybersecurity attacks, and in par-
ticular resiliency to DoS attacks. To ensure adequate safety
in such type of mission critical system, multidimensional
security measures need to be taken. For avionics devices and
the related software/firmware, defence against cyberattacks
should be considered a continuous process where research
and development need to be run along with the operation.

ACKNOWLEDGMENT

The authors acknowledge the grants of computer capacity
from the Finnish Grid and Cloud Infrastructure (persistent
identifier urn:nbn:fi:research-infras-2016072533).

Major parts of this research supported by cascade funding
from the Engage consortium’s Knowledge Transfer Network
(KTN) project "Engage - 204 - Proof-of-concept: practical,
flexible, affordable pentesting platform for ATM/avionics cy-
bersecurity" (SESAR Joint Undertaking under the European
Union’s Horizon 2020 research and innovation programme
under grant agreement No 783287). All and any results,
views, and opinions presented herein are only those of the
authors and do not reflect the official position of the European
Union (and its organizations and projects, including Horizon
2020 program and Engage KTN).

Part of this research was supported by a grant from the
Decision of the Research Dean on research funding within
the Faculty (07.04.2021) of the Faculty of Information Tech-
nology of University of Jyvéskyld (The authors thank Dr.
Andrei Costin for facilitating and managing the grant).

Hannu Turtiainen also thanks the Finnish Cultural Foun-
dation / Suomen Kulttuurirahasto (https://skr.fi/fen) for sup-
porting his Ph.D. dissertation work and research (under grant
decision n0.00211119) and the Faculty of Information Tech-
nology of the University of Jyvaskyla (JYU), in particular,
Prof. Timo Haméldinen, for partly supporting and supervis-
ing his Ph.D. work at JYU in 2021-2022.

REFERENCES

[1] “No Kidding: ADS-B Deadline of Jan. 1, 2020, is Firm,” https://www.faa.
gov/news/updates/?newsId=90008, accessed: 2021-06-11.

[2] EASA, “Easa seasonal technical commission,” https://www.easa.europa.
eu/sites/default/files/dfu/EASA_STC_NEWS_JUNE_2018.pdf, 2018, ac-
cessed: 2021-03-02.

[3] N.Demidovich, “Federal Aviation Administration Incremental Flight Test-
ing of Automatic Dependent Surveillance-Broadcast (ADS-B) Prototype
for Commercial Space Transportation Applications,” 2015.

[4] A. Costin and A. Francillon, “Ghost in the Air (Traffic): On insecurity of
ADS-B protocol and practical attacks on ADS-B devices,” Black Hat USA,
2012.

[5] S.Khandker, H. Turtiainen, and A. Costin, “Practical denial-of-service and
combined high-level attacks on real-world ADS-B, ATC, ATM hardware
and software,” 2021, (Preprint).

[6] B. Miller, “Fuzz testing of application reliability.” [Online]. Available:
http://pages.cs.wisc.edu/~bart/fuzz/

[12]

[13]
[14]

[15

[16]
[17]

[18]

X

[20]

[21
[22]

[23

[27]

[28

[33]

[34]

[35]

OWASP, “Fuzzing.” Available:
www-community/Fuzzing

G. O. Source, “Github.com: Afl.” [Online]. Available: https://github.com/
google/AFL

M. Zalewski, “American Fuzzy Lop.” [Online]. Available: https:
//lcamtuf.coredump.cx/afl/

——, “American Fuzzy Lop - The bug-o-rama trophy case.” [Online].
Available: https://lcamtuf.coredump.cx/afl/#bugs

A. S. Foundation, “Apache license, version 2.0.” [Online]. Available:
https://www.apache.org/licenses/LICENSE-2.0

RTCA DO-267: Minimum Aviation System Performance Standards
(MASPS) for Flight Information Services-Broadcast (FIS-B) Data Link,
RTCA, 2014.

GDL 90 Data Interface Specification, Garmin, 2007.

Bendix/King, “KAP 140 Autopilot System,” 2021.
[Online]. Available: https://www.bendixking.com/content/dam/
bendixking/en/documents/document-lists/downloads-and-manuals/

006- 18034-0000- KAP- 140- Pilots-Guide.pdf:

Garmin, “G1000 System,” 2021. [Online]. Available: https://buy.garmin.
com/en-US/US/p/6420

“Wireshark homepage.” [Online]. Available: https://www.wireshark.org/
B. Kyser, “Github.com: gdl90dissector.” [Online]. Available: https:
/lgithub.com/BrantKyser/gd190Dissector

E. Dey, “Github.com: gdl90.” [Online]. Available: https://github.com/

[Online]. https://owasp.org/

etdey/gd190

“Stratus ADS-B Receiver,” Stratus. [Online]. Available: https:
/[stratusbyappareo.com/products/stratus-ads-b-receivers/

“SkyRadar ADS-B Receiver,” SkyRadar Radenna LLC. [Online].

Available: https://www.skyradar.net/skyscope-receiver/receiveroverview.
html

“OpenWrt Project,” OpenWrt. [Online]. Available: https://openwrt.org/
“AFL User Guide,” Google. [Online]. Available: https://afl- I.readthedocs.
io/en/latest/user_guide.html

M. Contag, G. Li, A. Pawlowski, F. Domke, K. Levchenko, T. Holz, and
S. Savage, “How they did it: An analysis of emission defeat devices in
modern automobiles,” in IEEE Symposium on Security and Privacy (SP).
IEEE, 2017.

S. Skorobogatov and C. Woods, “Breakthrough silicon scanning discovers
backdoor in military chip,” in International Workshop on Cryptographic
Hardware and Embedded Systems. Springer, 2012.

M. Muench, J. Stijohann, F. Kargl, A. Francillon, and D. Balzarotti, “What
You Corrupt Is Not What You Crash: Challenges in Fuzzing Embedded
Devices,” in NDSS, 2018.

M. Schifer, V. Lenders, and I. Martinovic, “Experimental analysis of
attacks on next generation air traffic communication,” in Applied Cryp-
tography and Network Security, M. Jacobson, M. Locasto, P. Mohassel,
and R. Safavi-Naini, Eds. ~Springer Berlin Heidelberg, 2013.

C. Lemieux and K. Sen, “Fairfuzz: A targeted mutation strategy for in-
creasing greybox fuzz testing coverage,” in 33rd ACM/IEEE International
Conference on Automated Software Engineering, 2018.

N. Nichols, M. Raugas, R. Jasper, and N. Hilliard, “Faster fuzzing: Reini-
tialization with deep neural models,” arXiv preprint arXiv:1711.02807,
2017.

K. Patil and A. Kanade, “Greybox fuzzing as a contextual bandits prob-
lem,” arXiv preprint arXiv:1806.03806, 2018.

R. K. Prakash, I. Vasudevan, I. Indhuja, T. Thangarasan, and C. Krishnan,
“Hardiness sensing for susceptibility using american fuzzy lop,” in ITM
Web of Conferences, vol. 37. EDP Sciences, 2021.

M. Rajpal, W. Blum, and R. Singh, “Not all bytes are equal: Neural byte
sieve for fuzzing,” arXiv preprint arXiv:1711.04596, 2017.

L. Sun, X. Li, H. Qu, and X. Zhang, “AFLTurbo: Speed up Path Discovery
for Greybox Fuzzing,” in IEEE 31st International Symposium on Software
Reliability Engineering (ISSRE), 2020.

J. Wang, B. Chen, L. Wei, and Y. Liu, “Superion: Grammar-aware grey-
box fuzzing,” in IEEE/ACM 41st International Conference on Software
Engineering (ICSE). IEEE, 2019.

X. Yuan, L. Pan, and S. Luo, “Binary fuzz testing method based on Istm,”
in IOP Conference Series: Materials Science and Engineering, vol. 612.
IOP Publishing, 2019.

G. Zhang and X. Zhou, “AFL extended with test case prioritization
techniques,” International Journal of Modeling and Optimization, vol. 8,
2018.

VOLUME XXX, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://www.faa.gov/news/updates/?newsId=90008
https://www.faa.gov/news/updates/?newsId=90008
https://www.easa.europa.eu/sites/default/files/dfu/EASA_STC_NEWS _JUNE_2018.pdf
https://www.easa.europa.eu/sites/default/files/dfu/EASA_STC_NEWS _JUNE_2018.pdf
http://pages.cs.wisc.edu/~bart/fuzz/
https://owasp.org/www-community/Fuzzing
https://owasp.org/www-community/Fuzzing
https://github.com/google/AFL
https://github.com/google/AFL
https://lcamtuf.coredump.cx/afl/
https://lcamtuf.coredump.cx/afl/
https://lcamtuf.coredump.cx/afl/#bugs
https://www.apache.org/licenses/LICENSE-2.0
https://www.bendixking.com/content/dam/bendixking/en/documents/document-lists/downloads-and-manuals/006-18034-0000-KAP-140-Pilots-Guide.pdf
https://www.bendixking.com/content/dam/bendixking/en/documents/document-lists/downloads-and-manuals/006-18034-0000-KAP-140-Pilots-Guide.pdf
https://www.bendixking.com/content/dam/bendixking/en/documents/document-lists/downloads-and-manuals/006-18034-0000-KAP-140-Pilots-Guide.pdf
https://buy.garmin.com/en-US/US/p/6420
https://buy.garmin.com/en-US/US/p/6420
https://www.wireshark.org/
https://github.com/BrantKyser/gdl90Dissector
https://github.com/BrantKyser/gdl90Dissector
https://github.com/etdey/gdl90
https://github.com/etdey/gdl90
https://stratusbyappareo.com/products/stratus-ads-b-receivers/
https://stratusbyappareo.com/products/stratus-ads-b-receivers/
https://www.skyradar.net/skyscope-receiver/receiveroverview.html
https://www.skyradar.net/skyscope-receiver/receiveroverview.html
https://openwrt.org/
https://afl-1.readthedocs.io/en/latest/user_guide.html
https://afl-1.readthedocs.io/en/latest/user_guide.html

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2022.3150840, IEEE Access
Turtiainen et al.: GDL90fuzz: Fuzzing “GDL-90 Data Interface Specification”— FOR IEEE ACCESS REVIEW ONLY. CONFIDENTIAL DRAFT.

IEEE Access

[36] Y. Chen, D. Mu, J. Xu, Z. Sun, W. Shen, X. Xing, L. Lu, and B. Mao,
“Ptrix: Efficient hardware-assisted fuzzing for cots binary,” in ACM Asia
Conference on Computer and Communications Security, 2019.

[37] S. Dinesh, N. Burow, D. Xu, and M. Payer, “Retrowrite: Statically instru-
menting cots binaries for fuzzing and sanitization,” in IEEE Symposium
on Security and Privacy (SP). IEEE, 2020.

[38] Y.Zheng, A. Davanian, H. Yin, C. Song, H. Zhu, and L. Sun, “FIRM-AFL:
high-throughput greybox fuzzing of iot firmware via augmented process
emulation,” in 28th {USENIX} Security Symposium, 2019.

[39] J. Ye, B. Zhang, R. Li, C. Feng, and C. Tang, “Program state sensitive
parallel fuzzing for real world software,” IEEE Access, 2019.

[40] MAVLink.io, “Mavlink developer guide,” 2021. [Online]. Available:
https://mavlink.io/en/

[41] K. Domin, I. Symeonidis, and E. Marin, “Security analysis of the drone
communication protocol: Fuzzing the MAVLink protocol,” ORBIlu, 2016.

[42] Auterion, “Github.com: MAVLink Fuzz Testing,” 2019. [Online].
Available: https://github.com/Auterion/mavlink-fuzz- testing

[43] Alias Robotics, “The Cybersecurity Status of PX4.” [Online]. Available:
https://aliasrobotics.com/files/cybersecurity_status_PX4.pdf

[44] J.-h. Jang, Y.-s. Kang, and J.-h. Lee, “Static Analysis and Improvement
Opportunities for Open Source of UAV Flight Control Software,” Journal
of the Korean Society for Aeronautical & Space Sciences, vol. 49, 2021.

[45] D. Rudo and D. Zeng, “Consumer UAV Cybersecurity Vulnerability
Assessment Using Fuzzing Tests,” arXiv preprint arXiv:2008.03621, 2020.

[46] A. Costin, J. Zaddach, A. Francillon, and D. Balzarotti, “A large-scale
analysis of the security of embedded firmwares,” in 23rd USENIX Security
Symposium, 2014.

[47] A. Costin, A. Zarras, and A. Francillon, “Automated dynamic firmware
analysis at scale: a case study on embedded web interfaces,” in 11th ACM
on Asia Conference on Computer and Communications Security, 2016.

[48] T. Kim, C. H. Kim, J. Rhee, F. Fei, Z. Tu, G. Walkup, X. Zhang, X. Deng,
and D. Xu, “RVFuzzer: Finding input validation bugs in robotic vehicles
through control-guided testing,” in 28th {USENIX} Security Symposium,
2019.

[49] J. Krozel, D. Andrisani, M. Ayoubi, T. Hoshizaki, and C. Schwalm,
“Aircraft ADS-B data integrity check,” in AIAA 4th Aviation Technology,
Integration and Operations (ATIO) Forum, 2004.

[50] K. Samuelson, E. Valovage, and D. Hall, “Enhanced ADS-B Research,” in
IEEE Aerospace Conference. IEEE, 2006.

[511 R. G. Wood, “A security risk analysis of the data
communications network proposed in the NextGen air traffic
control system,” Ph.D. dissertation, Oklahoma State University, 2009.
[Online]. Available: https://search.proquest.com/dissertations-theses/
security-risk-analysis-data-communications/docview/305083310/se-2?
accountid=11774

[52] L. Purton, H. Abbass, and S. Alam, “Identification of ADS-B System
Vulnerabilities and Threats,” 33rd Australasian Transport Research Forum
(ATRF), 2010.

[53] A. Sjodin and M. Gruneau, “The ADS-B protocol and its’ weaknesses:
Exploring potential attack vectors,” 2020.

[54] D. McCallie, J. Butts, and R. Mills, “Security analysis of the ADS-B
implementation in the next generation air transportation system,” Inter-
national Journal of Critical Infrastructure Protection, vol. 4, 2011.

[55] D.Lundberg, B. Farinholt, E. Sullivan, R. Mast, S. Checkoway, S. Savage,
A. C. Snoeren, and K. Levchenko, “On the security of mobile cockpit
information systems,” in ACM SIGSAC Conference on Computer and
Communications Security, 2014.

[56] D. A. Lundberg, “Security of ADS-B Receivers,” Ph.D. dissertation, UC
San Diego, 2014.

VOLUME XXX, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://mavlink.io/en/
https://github.com/Auterion/mavlink-fuzz-testing
https://aliasrobotics.com/files/cybersecurity_status_PX4.pdf
https://search.proquest.com/dissertations-theses/security-risk-analysis-data-communications/docview/305083310/se-2?accountid=11774
https://search.proquest.com/dissertations-theses/security-risk-analysis-data-communications/docview/305083310/se-2?accountid=11774
https://search.proquest.com/dissertations-theses/security-risk-analysis-data-communications/docview/305083310/se-2?accountid=11774

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

. 10.1109/ACCESS.2022.3150840, IEEE Access
IEEE Access

Turtiainen et al.: GDL90fuzz: Fuzzing “GDL-90 Data Interface Specification” — FOR IEEE ACCESS REVIEW ONLY. CONFIDENTIAL DRAFT.

HANNU TURTIAINEN received his M.Sc. in Cy-

bersecurity in 2020 and he is currently working

towards his Ph.D. in Software and Communica-

tion Technology at the University of Jyvéskyld,

Finland. His research topic is Machine Learning

& and Artificial Intelligence in the Cybersecurity and

i Digital Privacy field. He holds a B.Sc. in Electron-

\! ics Engineering from the University of Applied

) Sciences, Jyviskyld Finland. Hannu Turtiainen is

also working in the IoT field as a Cybersecurity

and Software Engineer in Binare.io, a deep-tech cybersecurity spin-off from
the University of Jyvaskyla.

DR. ANDREI COSTIN is currently a Senior
Lecturer/Assistant Professor in Cybersecurity at
University of Jyvéskyld (Central Finland), with
a particular focus on IoT/firmware cybersecurity
and Digital Privacy. He received his PhD in 2015
from EURECOM/Telecom ParisTech under co-
supervision of Prof. Francilon and Prof. Balzarotti.
Dr. Costin has been publishing and presenting
at more than 45 top international cybersecurity
venues, both academic (Usenix Security, ACM
ASIACCS, etc.) and industrial (BalckHat, CCC, HackInTheBox, etc.). He
is the author of the first practical ADS-B attacks (BlackHat 2012) and has
literally established the large-scale automated firmware analysis research
areas (Usenix Security 2014) - these two works are considered seminal in
their respective areas, being also most cited at the same time. Dr. Costin
is also the CEO/co-founder of Binare.io, a deep-tech cybersecurity spin-
off from University of Jyviskyld, focused on innovation and tech-transfer
related to IoT cybersecurity.

SYED KHANDKER received his M.Sc. degrees
in Web Intelligence and Service Engineering from
the University of Jyviskyld, Finland, in 2016.
Since his childhood, he has been a radio enthusiast
and holds an amateur radio operator license. He
is currently pursuing his doctoral degree from the
Faculty of Information Technology, University of
Jyviskyld, Finland. His research area spans the
field of RF Fingerprint positioning, Automatic De-

& a pendent Surveillance-Broadcast, Automatic Iden-
tification System, Wireless Communications, and Artificial Intelligence. He
has authored 4 Journal and conference publications.

PROF. TIMO HAMALAINEN has over 25 years
of research and teaching experience related to
computer networks. He has lead tens of external
funded network management related projects. He
has launched and leads Master Programs in the
University of Jyviskyld (currently SW and Comm.
Eng,) and teaches network management related
courses. He has more than 200 internationally peer
reviewed publications and he has supervised 36
Ph.D theses. His current research interests include
wireless/wired network resource management (IoT, SDN, NFV) and net-
work security.

10 VOLUME XXX, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

