

JYV ASKYLA STUDIES IN COMPUTING 7

Minna Koskinen

Process Metamodelling

Conceptual Foundations and Application

Esitetiiiin Jyviiskyliin yliopiston informaatioteknologian tiedekunnan suostumuksellajulkisesti tarkastettavaksi yliopiston Agora rakennuksessa (Auditorio 2) marraskuun 25. piiiviinii 2000 kello 12.
Academic dissertation to be publicly discussed, by permission of the Faculty of Information Technology of the University of Jyviiskylii,in Agora (Auditorium 2), on November 25, 2000 at 12 o'clock noon.

UNIVERSITY OF � JYV ASKYLA
JYV ASKYLA 2000

Process Metamodelling

Conceptual Foundations and Application

JYV ASKYLA STUDIES IN COMPUTING 7

Minna Koskinen

Process Metamodelling

Conceptual Foundations and Application

UNIVERSITY OF � JYV ASKYLA

JYV ASKYLA 2000

Editors
Seppa Puuronen
Department of Computer Science and Information Systems, University of Jyvaskyla
Pekka Olsbo and Marja-Leena Tynkkynen
Publishing Unit, University Library of Jyvaskyla

URN:ISBN:978-951-39-9046-6
ISBN 978-951-39-9046-6 (PDF)
ISSN 1456-5390

Jyväskylän yliopisto, 2022

ISBN 951-39-0823-2
ISSN 1456-5390

Copyright© 2000, by University of Jyvaskyla

Jyvaskyla University Printing House, Jyvaskyla and
ER-Paino Ky, Lievestuore 2000

ABSTRACT

Minna Koskinen
Process Metamodelling: Conceptual Foundations and Application
Jyvaskyla: University of Jyvaskyla, 2000, 213 p.
Qyvaskyla Studies in Computing,
ISSN 1456-5390; 7)
ISBN 951-39-0823-2
Finnish summary
Diss.

This study deals with customisation of process modelling languages in method
support technology. Technology plays an important role in process
improvement since its capabilities limit the choices available for an
organisation. The aim is to strive for technology that enables purposeful
change, while avoiding technology that forces change to no purpose. The
objective of this study is to develop a theory and mechanisms for support
technology that enables language change. Process metamodelling is chosen as a
means by which process modelling languages can be specified and
implemented in a process support environment. The study forms part of a
larger research effort on customisable method support environments.

The thesis studies the conceptual basis of process metamodelling and its
application in metaCASE technology. The specific objectives are 1) to develop a
system architecture for language specification and a generic process engine, 2)
to investigate alternatives and principles for language specification, along with
the use of these in process enactment, 3) to design and implement the constructs
needed for language customisation in a generic modelling system, and 4) to
design and implement the mechanism needed to enact process models in a
generic process enactment system.

The research methodology takes a constructive approach. It proceeds
through an incremental and iterative cycle of observation, theory building,
system development, and experimentation. Prototyping forces the theory
builder to experiment with the consequences of the theoretical assumptions
present in experimental system designs. Each iteration increases the formality
of the design, gradually improving and validating the theory. The research is
finally synthesised in a set of criteria for assessing customisable method
support environments.

Keywords: metaCASE, process support, method engineering, process
engineering, process modelling languages, PML engineering

ACM Computing Review Categories

D.2.1. Software Engineering: Requirements/Specifications:
Languages, Methodologies, Tools

D.2.2 Software Engineering: Design Tools and Techniques:
Computer-aided software engineering (CASE)

D.2.10 Software Engineering: Management:
Software process models

D.2.11 Software Engineering: Software Architectures:
Data abstraction, Languages

Author's address Minna Koskinen

Supervisors

Reviewers

Opponent

Dept. of Computer Science and Information Systems
University of Jyvaskyla
P.O.Box 35, SF-40350 Jyvaskyla
Finland
e-mail: mkoskinen@acm.org
fax: +35814 260 30311

Pentti Marttiin
Nokia Research Center, Helsinki
Finland

Kalle L yytinen
Department of Computer Science and Information Systems
University of Jyvaskyla
Finland

Klaus Pohl
Fachschaft Mathematik und Informatik
Universitat GH Essen
Germany

Ilkka Tervonen
Department of Information Processing
University of Oulu
Finland

Carlo Ghezzi
Dipartimento di Elettronica e Informazione
Politecnico di Milano
Italy

ACKNOWLEDGEMENTS

I am indebted to many people and organisations for accomplishing this thesis.
The thesis work was carried out at the Department of Computer Science and
Information Systems, at University of Jyvaskyla. I want to thank the many
people that have helped me, in one way or another, to reach my goal. The
funding for this study was provided by COMAS Graduate School, University
of Jyvaskyla, and Academy of Finland.

Prof. Klaus Pohl from Universitat GH Essen in Germany and prof. Ilkka
Tervonen from University of Oulu in Finland have acted as external reviewers
of the dissertation. Their constructive comments and suggestions have helped
me to improve the work in major ways.

I highly appreciate my head supervisor, Pentti Marttiin, for continued
support and guidance. During the last six years, he has become a person whom
I have learnt to trust and respect in many ways. He has allowed me great
independence and responsibility, but he has also shared the research and co
authored four papers in the thesis. None of my problems has been too small or
too much 'out of order' for him to discuss and to try to sort it out. As employed
at Nokia Research Center, he has also given me a valuable empirical connection
to the industry. It is my wish, and trust, that the co-operation will continue far
into the future.

Prof. Lyytinen has kindly acted as my supervisor at the Department of
Computer Science and Information Systems. I thank him for the possibility to
work in MetaPHOR research group, and the many useful comments on my
work. As one of the leading researchers in the field, with contacts to other
leading researchers and research groups, he has been of great help merely by
being there.

The MetaPHOR group has provided most favourable conditions for the
study. I want to thank Steven Kelly, Matti Rossi and Juha-Pekka Tolvanen, who
have given me valuable advice on conducting my work. I also recall the many
interesting discussions with Janne Kaipala, Risto Pohjonen, Jouni Huotari and
Zheying Zhang. Other members of the research group have included (in the
order of appearance) Veli-Pekka Tahvanainen, Hui Liu, Juha Pirhonen, Harri
Oinas-Kukkonen, Janne Luoma, Marko Somppi, Kalle Korhonen, and Matti
Aijanen. Each of them has - undoubtedly - contributed to a stimulating and
supportive atmosphere.

Furthermore, I want to thank Simo Rossi, Tero Sillander, and Mikko
Kumpulainen at Nokia Mobile Phones/PMR in Jyvaskyla. Observing their
empirical research on PML engineering, process modelling and process support
has given me valuable information and insight.

Finally, I want to thank my parents for encouraging me in my studies. It
strikes me that the most useful skill I have needed in my work was taught by
my father when I was little. When I asked him questions, the way little children
do, he never gave me an easy answer. Instead, he returned the question and
asked 'What do you think?'. Then, he paused his work and patiently waited

6

until I found a proper answer, guiding me with further questions when
necessary. Thereby, I learnt how to study things carefully and how to use
creative thought efficiently. Above all else, I learnt to share my father's deep
passion and interest in 'studying all things', and to face intellectual challenges
confident in my abilities to deal with them. In the doctoral study, I confronted
the most interesting and the most puzzling challenge so far, and perhaps that is
the reason why I haven't - quite unlike my habits - moved on a long time ago.

I also thank my sister Heli, especially for the well focused summer in
Helsinki when I was finalising my licentiate thesis. Furthermore, I thank Merja
for her unconditional support and friendship during these years.

Jyvaskyla
October 2000

CONTENTS

1 IN"TRODUCTION ... 13
1.1 Background and Motivation ... 13
1.2 Research Background ... 16
1.3 Research Objectives and Questions .. 17
1.4 Research Methodology and Research Process .. 18

1.4.1 Research methodology .. 18
1.4.2 Research process ... 19
1.4.3 Validation in the Research Approach .. 19

1.5 Introduction to the Paper Chapters .. 22
1.6 Overview of the Work .. 24
1.7 Conclusion ... 25
References .. 27

PART I: BACKGROUND ... 29

2 COMPARING TWO TRADITIONS: TOWARDS AN INTEGRATED
VIEW OF METHOD ENGIN"EERING AND PROCESS ENGINEERING 31
1 Introduction ... 33

1.1 Two traditions ... 34
1.2 Towards the merge of traditions .. 35

2 Two Views of Method .. 36
3 Method Engineering and Process Engineering .. 38
4 Method Modelling .. 40

4.1 Product-Centred Method Modelling ... 40
4.2 Process-Centred Method Modelling .. 41

5 Technology for Method Use and Customisation 43
5.1 Method Support .. 44
5.2 Product-Centred Method Support.. ... 44
5.3 Process-Centred Method Support.. .. 46

6 Strategic Integration Points of a Customisable Design Environment 47
7 Conclusions .. 49
References .. 50

PART II: THEORY ... 55

3 TOWARDS CUSTOMISATION OF PROCESS MODELLING
LANGUAGES IN" COMPUTER AIDED PROCESS ENGIN"EERING 57
1 Introduction ... 59
2 State of Art in Linguistic Adaptation ... 60
3 PML Customisation .. 63
4 Towards PML Engineering .. 66
5 Conclusions .. 67
References .. 68

8

4 CONCEPTUAL FOUNDATIONS OF PROCESS METAMODELLING 71
1 Introduction ... 73
2 Language and Techniques ... 76

2.1 The Structure of Process Modelling Languages 77
2.2 The Structure of Modelling Techniques .. 79
2.3 A Contrast to Process Programming Languages 80

3 Metamodelling Approaches .. 81
3.1 Base Domains of Modelling .. 82
3.2 Modelling Dimensions ... 83

4 A Conceptual Model of Process Metamodels ... 84
4.1 A Model of Conceptual Process Metamodels 85
4.2 A Model of Notational Process Metamodels 90
4.3 A Model of Semantic Process Metamodels 99

5 Towards a Model of Technique-based Process Metamodels 106
5.1 Model and Tool Operations .. 106
5.2 Support extensions ... 108

6 Conclusions .. 108
References .. 109

PART Ill: THE CPME PROTOTYPE .. 115

5 DEVELOPING A CUSTOMISABLE PROCESS MODELLING
ENVIRONMENT: LESSONS LEARNT AND FUTURE PROSPECTS 117
Foreword ... 117
1 Introduction ... 119
2 Organisational Support and Evolution .. 121

2.1 Adaptation to local practices and problems 121
2.2 Gradual improvement ... 122
2.3 Low time and cost risk in adoption ... 123

3 Customisable Process Modelling Environment (CPME) 123
3.1 Process Metamodelling .. 124
3.2 Process Modelling .. 125
3.3 Process Enactment .. 125
3.4 Process Performance .. 126
3.5 Integration of CPME to a metaCASE environment 126

4 Example Scenario .. 127
5 Lessons Learnt from Developing CPME ... 130
6 Conclusions and Future Prospects ... 131

6 PROCESS SUPPORT IN METACASE: IMPLEMENTING THE
CONCEPTUAL BASIS FOR ENACTABLE PROCESS MODELS IN
METAEDIT+ ... 135
Foreword ... 135
1 Introduction ... 137

2 On the Requirements of Flexible Automation for Process Model

9

Enaction in Meta CASE ... 138
2.1 Architecture for Customisable Process Support 138
2.2 User Process vs. Environment Process .. 140

3 Conceptual Basis for Enactable Process Models in MetaEdit+ 141
3.1 GOPRR-p Metatypes .. 141
3.2 Process Element vs. Action ... 142
3.3 Features of Metatypes -A Way to Define the Common

Structure ... 143
4 Tools for Defining Process Modelling Languages with GOPRR-p 143
5 Discussions and Future Work ... 145
Acknowledgements .. 145
References .. 145
Appendix 1. BNF Definition of GOPRR-p .. 147
Appendix 2. Example Definitions .. 148
Figures in the Paper ... 150

PART IV: ASSESSMENT ... 155

7 A GENERIC PROCESS MODELLING AND ENACTMENT SYSTEM:
IMPLEMENTATION AND ASSESSMENT .. 157
1 Introduction ... 159
2 A Generic Process Modelling and Enactment System for a

MetaCASE Environment .. 162
2.1 Overview of MetaEdit+ ... 162
2.2 CPME: Process Support System ... 164
2.3 GOPRR-p: The Process Meta-Metamodel.. 166
2.4 Process Modelling and Enactment System 174

3 A Domain Framework for Customisable Method Support
Environments .. 183
3.1 Background to the Domain Framework ... 185
3.2 Method Definition Domain ... 187
3.3 Method Enactment Domain .. 191
3.4 Performance Domain ... 196

4 Assessment of the MetaEdit+/CPME Implementation 197
4.1 Systems for System Modelling Techniques 197
4.2 Systems for Process Modelling Techniques 200
4.3 Systems for Processes ... 201
4.4 Systems for Agents ... 204

5 Discussion .. 206
References .. 207

YHTEENVETO (FINNISH SUMMARY) ... 213

Caelum, non animum mutant,
qui trans mare currunt.

-Horace

(Those who cross a sea change
the sky, not themselves.)

1 INTRODUCTION

1.1 Background and Motivation

Today, almost any research effort concerning systems development seems to be
motivated by a desire for improving it. There is nothing peculiar in this,
granted that the Puzzle of Systems Development - as the philosopher of science
Thomas Kuhn would call it - has resisted all practical and academic attacks for
the last four decades and, unfortunately, seems set to resist them well into the
future. Research has brought forth countless innovations and improvements,
but evidently not at the pace the requirements of systems development have
evolved. Annoyingly enough, the innovations and improvements themselves
seem to constitute a key motivator for new requirements.

It is characteristic of the last decades that they have trumpeted technical
rationality as the management ideal of systems development, while confronted
with overwhelming socio-cultural problems in practice. A major challenge that
organisations face today is to create and maintain a balance between the
instrumental-economic requirements of systems production and the socio
cultural requirements of human motivation. This is reflected in an increased
interest in establishing connections to such fields as sociology and psychology.

The interest in improving systems development is, of course, an interest in
quality. Through quality, a software organisation attempts to improve the
satisfaction of its customers and thereby to maintain its competitiveness or
simply to survive in the market. Yet, quality is a complex, multi-dimensional
notion.

An interest in quality usually emphasises some specific motivation to
quality. Firstly, an interest in quality is instrumental when it deals with the
productive capabilities of an organisation. Thereby, systems development is
viewed as an instrument for producing systems. Improvements in systems
development aim to correct flaws in this instrument and make it more efficient
and economical. Secondly, an interest in quality as a social concern deals with

14

the motivational capabilities of an organisation. Social quality can be seen as
meaning that people in a software organisation are motivated and interested in
their work - that they find their work socially rewarding. Thirdly, an interest in
quality may also deal with quality improvement. It is manifested in the ability
to adjust instrumental and social quality to suit the organisational context. Of
primary importance in improvement therefore is that a software organisation
can strike a balance between these different interests in quality.

An interest in quality often focuses on a specific sphere. The sphere of
interest shows what aspects the motivation emphasises. Firstly, an interest in
quality may concern technical issues. In systems development, technical
consideration is usually given to software products and processes. Secondly, an
interest in linguistic quality concerns the quality of communication. It may
address the means and forms of interaction as well as the quality of languages
themselves. Thirdly, an interest in quality is organisational when it concerns the
interplay of organisational agents. Variation in the motivation and sphere of
interest is reflected in which qualities are generally approved as indicators of
quality. Examples of potential quality indicators are shown in table 1. The
history of computer science and information systems research has demonstrated
a slow but irrevocable transformation from a narrow, instrumental and
technical concern towards a pluralist, more balanced view of quality.

TABLE 1 Some indicators of quality.

Instrumental Social Improvement

Technical reliability usability changeability
- product accuracy feasibility adaptability

efficiency satisfaction

Technical predictability supportiveness flexibility
- process controllability convenience adaptability

measurability satisfaction
effectiveness ethicality

Linguistic formality comprehensibility reflection
exGiressiveness equity self-reflection
ef iciency self-expressiveness conciliation

Organisational control autonomy learning
struchue responsibility enforcement
clarity equality empowerment

justice emancipation

The goal of computer support in systems development is to improve quality by
making methodical development more feasible. Attempts on this goal have
followed two relevant research traditions. The method tradition has introduced
systems development methods and CASE tools. Thereby, it has demonstrated a
technical interest in system products. In contrast, the process tradition has
focused on process improvement through process modelling and automate
support tools. Its emphasis is thus on the technical part of the development

15

process. The early studies in both traditions were based on a narrow
instrumental motivation. When the results were investigated empirically,
researchers found persistent social opposition to their attempt to impose
instrumental ideals. Finally this opposition led to research that recognised
requirements and preferences that go beyond a purely instrumental motivation.
This further motivated the emergence of research on customisation of method
support technologies, and on customisable architectures.

The study presented in this thesis can be located at the intersection of the
two traditions. It has grown up in the method tradition and reaches out to the
territory of the process tradition. What it shares with both traditions is an
interest in quality improvement. Where it moves into new territory is in its
interest in linguistic quality. The study searches for a means to balance the
instrumental motivation that almost invariably overpowers social concerns on
the role of language in method support technologies.

The basis of this thesis is the recognition that - whatever else it may be
and do - a computerised tool always implements a particular mode of thought.
Technology, as it is introduced in an organisation, tends to change the way
people comprehend their work. There are executives and managers that are
concerned about this. They argue that current detail-intensive technologies
have shattered employees' earlier holistic view of work that accounted in part
for the success of the organisation. Technology providers have not recognised
how strong an influence technology has on users' ways and modes of thinking.

The thesis focuses on process approaches implemented by process
technologies. Any process approach imposes a specific model for process
thinking. Process thinking articulates itself in the process modelling language
and in the way that process support is implemented. An effort aimed at
improving software development processes needs, to be successful, to
recognise the cultural context and to make explicit the software practices as
they are actually understood and applied by software developers (Sharp et al.,
1999). A process approach should support the way in which people naturally
conceptualise systems development and themselves as part of a systems
development project. However, this social motivation should not be taken as
implying that process approaches should not be designed, tailored and
improved carefully and systematically. On the contrary, the clarity engendered
by such an effort usually contributes positively to work motivation.

The positivistic ideals that have dominated Western thinking over the late
century have appreciated and promoted a narrow instrumental interest,
especially in technological research. As a consequence, support technologies
tend to be implemented in conformity to some idealistic practice. Since there is
no perceivable reason to change something that is ideal, no mechanisms for the
adaptation and evolution are normally provided. Those who advocate this line
of thought propose - explicitly or implicitly - that there exists one uniform and
ideal way of thinking for different systems development efforts and
organisations. As a result, the methods and processes supported constitute
ideals that are difficult to obtain or faithfully follow in practice. This kind of
thinking is strongly opposed in this thesis.

16

The study purports to increase the quality of customisable method
support environments by increasing their capabilities for language change. The
main contribution in this thesis is to introduce an approach to support language
change in process support technologies. This approach is called process
metamodelling. Process metamodelling is a means for the specification and
profound adaptation of process approaches into a customisable process
modelling and enactment system.

1.2 Research Background

The MetaPHOR group is a research group at the Department of Computer
Science and Information Systems at the University of Jyvaskyla in Finland
(Lyytinen et al., 1994). The main goal of the group is to develop architectures,
models and technical solutions for user-tailorable metaCASE environments,
and principles for their effective use through method engineering. Since it was
formed in 1989 it has conducted several projects in the field of method
engineering. It has also developed two metaCASE environments, MetaEdit and
MetaEdit+ (Kelly et al., 1996), both later commercialised.

Research on method customisation through process engineering began in
1994. The research on process engineering currently takes place in two
locations. Firstly, research at the University of Jyvaskyla includes theoretical
and constructive studies on process engineering for requirements engineering
and systems design in metaCASE. The emphasis of this research is on
developing theories and architectures for constructing a generic process
modelling and enactment system (Marttiin, 1998a; Koskinen, 1999). Secondly,
research at Nokia Networks/PMR comprises empirical and constructive
studies on process engineering for software design and implementation. The
studies investigate various aspects of contextual adaptation and evolution for
process modelling and process support in a software engineering project (Rossi
& Sillander, 1998a). One of the main interests of this research is PML (process
modelling language) engineering (Rossi & Sillander, 1998b).

The study presented in this thesis is carried out at the former location. The
work at this location is conducted under the generic title "Process Engineering
in metaCASE". The research has concentrated on the following four topics.
• Architectural study concerns integration of metaCASE and process support

architectures to provide a more comprehensive architecture for
customisable method support environments.

• Process metamodelling study investigates the specification and evolution of
process modelling languages in a generic process modelling and enactment
system.

• Process modelling study addresses the specification and evolution of process
models in a generic process modelling system.

• Process enactment study investigates the design of generic enactment
mechanisms to be implemented in a generic process enactment system.

17

The goal of the research position is to develop a generic process modelling and
enactment architecture for user-tailorable process modelling and human
oriented process enactment. The objectives of the system are to support
understanding, provide guidance for users, and co-ordinate modelling tasks.

The main difficulty faced in our earlier studies (Marttiin, 1994b) is the
customisation of process modelling languages: how to increase the tailorability
of process modelling languages in order to supply different projects with
suitable process support. Such a capability is relevant when a process support
tool is customised for many projects, or when a process approach will evolve
within one project. Evolution of process modelling languages within a project is
not widely studied and the available evidence of PML engineering does not
consider tool support. However, a process support tool might be customised
for projects in several organisations or for several projects within one
organisation. In the former case, a PML engineer is an outside consultant who
tailors process modelling languages for different companies, thereby lowering
the threshold of adopting advanced technology. In the latter case, process
modelling languages are customised to suit different project contingencies
within an organisation.

1.3 Research Objectives and Questions

The main objective in this thesis is to develop a theory for applying
metamodelling in the specification of process modelling languages. Along with
this objective it also studies the mechanisms for using such specifications in a
generic process modelling and enactment system. The aim of the system is to
support rapid prototyping of process modelling languages. Changes should
also be allowed during process enactment. The study develops a conceptual
model and a related tool set for process metamodelling, along with enactment
mechanisms that can cope with arbitrary process modelling languages.

The specific objectives of this thesis are: 1) to develop a system
architecture for PML specification and a generic process engine; 2) to
investigate alternatives and principles for PML specification and for the use of
language specifications in process enactment; 3) to design and implement the
language constructs needed for PML customisation in a generic modelling
system; and 4) to design and implement the enactment mechanism needed to
enact process models in a generic process enactment system. These objectives
yield the research questions listed in table 2.

TABLE 2 The research questions addressed in this thesis.

Question 1 Architech1ral principles
• What kinds of architechiral principle are there for PML specification?
• What kinds of architectural principle are there for a generic

enactment mechanism?

18

(continues)
TABLE 2 (continues)

Question 2 Alternatives and principles
• What alternatives and principles are there for PML specification?
• What alternatives and principles are there for the use of PML

specifications in process enactment?

Question 3 Language constructs
• What kinds of language construct are needed in PML customisation?
• How are these language constructs implemented in a generic

modelling system?

Question 4 Enactment mechanisms
• What kinds of enactment mechanism are needed to enact process

models in a generic process enactment system?
• How can the enactment mechanisms be implemented in a generic

enactment system?

1.4 Research Methodology and Research Process

The significance of the contextual nature of language and other cultural issues
is currently not acknowledged when building automated support for systems
development. This has a two-fold implication on this study. On one hand, we
should study how such factors affect the design of a support system before we
design one. On the other hand, we do not have the necessary platform to study
those effects unless we implement one. Therefore, we have chosen to use
prototyping as part of the research. Through an incremental research approach,
we attempt to develop a consistent theory for process metamodelling and an
architecture for a generic process modelling and enactment system.

1.4.1 Research methodology

The research methodology consists of a constructive approach, in which
research proceeds through an incremental and iterative cycle of observation,
theory building, system development, and experimentation (Nunamaker et al.,
1991). Firstly, observation in this study is based on a case study conducted at
Nokia Mobile Phones/PMR. This opportunity was offered us while we were
conducting the later cycles of the study. Hence observation has mainly taken a
guiding role in the study. Secondly, theory building is based on prior
metaCASE research and process studies in the MetaPHOR group, extended
with extensive literature reviews. During the later cycles, observation, the
prototyping experiment, and several design experiments have also contributed
to theory building. Thirdly, system development in the form of prototyping has
played an important role. Prototype development serves both as feedback and
proof-of-concept, and provides a baseline for further research. Fourthly,
experimentation has been carried out both with the prototype and a design
environment.

19

Experimentation with the prototype has been three-fold. Firstly, we
performed experiments to ensure that customised process metamodels can be
used to configure the generic process editor and to model processes. Secondly,
we performed experiments to ensure that customised process metamodels can
be used to configure the generic process engine and to enact process models.
Thirdly, we performed experiments with PML design to test the metamodelling
capability. Thereafter, we performed some experiments to improve the
metamodelling capability. We implemented the GOPRR-p model as a
modelling technique in MetaEdit+ and used this technique to design the
conceptual framework of several process modelling languages. This allowed us
to improve the GOPRR-p model and test the changes immediately. This in turn
made possible a rapid prototyping approach for design and validation of the
improvements made in the GOPRR-p model.

1.4.2 Research process

The general outline of the resulted research process is illustrated in figure 1.
The research started with an initial theory building phase that involved a
literature review of process modelling languages. It was followed by prototype
development that was conducted in two phases of design, implementation, and
testing (Chapter 5 and 6). Each testing stage contributed to further theory
building, and some initial design experiments were carried out. The
development was iterated until the prototype was considered adequate for
more comprehensive design experiments.

Phases of the study during 1994 - 2000

Theory building Prototype development Observation Theory Assessment
initial (1995-1998) case study building (2000)

(1994-97) - Phase I Design/ (/997-) -� Language -

�
language Implementation framework

+
Design spec.

-

I experiments (/998-)
-

rriteria
j- (]997-)

-Phase I v-
-

-
A

� Testing �
_Prototype

i
-

'' Theory Literature � Literature -
Pho.so II Design/� building_ reviews
Implementation reviews system system "'riteria

\ + process architect.,. architect.
modelling Domain

Phase II �
-

(}096-99)
languages framework

- Testing (/997-) -
(1994-97)

-

-

FIGURE 1 The research process in this study.

20

Simultaneously with these experiments, we had an opportunity to follow a
related case study conducted in a software development organisation. The
design experiments and observations contributed to further theory building
(Chapter 3). The theory building phase focused on process metamodelling and
resulted in a generic language model (Chapter 4).

Meanwhile, the experience gained from developing the prototype led to
theory building concerning relevant system architectures. Literature reviews
were conducted that contributed to theory building and the development of a
general architecture for a customisable design environment (Chapter 2).

The language model and the general architecture formed the basis for a
domain framework. This framework contains a set of assessment criteria for
customisable method support systems. The prototype was assessed against
these criteria to reveal areas for further development (Chapter 7).

1.4.3 Validation in the Research Approach

The research approach uses prototyping as part of the research method. In such
an approach, the question of validity necessarily becomes a target of special
inspection. There are two common approaches for ensuring the validity of
constructive research. Firstly, prototyping may be used to demonstrate the
feasibility of a proposed implementation approach for a theory validated
earlier. An important part of validation is formalisation. Secondly, prototyping
may be used as a means for theory validation. The study involves the use of the
prototype in laboratory or field experiments to test its usability. Claims for the
validity of the theory are based on the results of the experiment. In this study,
we use prototyping in neither of these ways. We do not have a validated theory
as a basis for the prototype, do not formalise it, and do not use it in laboratory
or field experiments to test its usability. The subject of the study is such an
abstract one that comprehensive theory building and its valid
operationalisation for meaningful laboratory and field experiments in a
prototypical tool takes enormous amount of time. Thus, we have to place more
emphasis on the method of theory building and operationalisation and thereby
attain a certain degree of validation in the method.

The research approach could be called self-validating constructive
research: although prototyping plays a central role in the process, there is no
claim for its validity in any phase of the research. Instead, prototyping is a
method that forces the theory builder informally yet in a very detailed manner
to experiment with the consequences of certain theoretical assumptions present
in experimental system designs. Such a research process can not be a straight
forward process that begins from theory building and ends with prototype
implementation.

Prototyping requires a prior, extensive theory building phase that uses
different qualitative methods. In this study, a literature review was used in
which about 200 relevant research articles or other publications were examined.

Prototyping was divided into two iterative phases, each of which
consisted of system design, implementation, and testing. Each phase tested the

21

experimental system design and the results of the tests provided feedback to
theory building. An important part of theory building was the analytical and
systematic examination of the proposed experimental system designs. An
experimental system design must meet certain generic design principles and
criteria, such as conceptual clarity, comprehensiveness, and no conceptual
redundancy. A design decision requires conceptual justification for all
conceptual discriminations and integration. Prototyping is divided into phases
to limit the complexity and scope of the experimental designs and thus to make
conceptual examination more efficient and less error-prone. Towards the end of
prototype development, we introduced experimental language designs in the
method. Language designs iterated through the same conceptual analysis as
system designs.

It is necessary that theory building and prototyping proceed cyclically.
The validity of the study increases gradually as the study passes through
several cycles of conceptual analysis and system design experimentation. The
cycles are iterated as long as conceptual weaknesses are detected. Although the
cyclical process improves the validity of the theory that is built alongside
prototyping, the validation process should not end with it. Despite systematic
conceptual analysis, a prototype easily makes its developer blind to its faults.

Therefore, one must introduce a means to experiment with the design
apart from the prototype. As discussed above, we implemented the GOPRR-p
model as a modelling technique in MetaEdit+ and used this technique to design
the conceptual frameworks of several process modelling languages. These
experimental designs too passed through iterative conceptual analysis. As a
customisable design system, MetaEdit+ allowed us to improve the GOPRR-p
model and test the changes immediately. We found this rapid prototyping
approach valuable in designing and validating the improvements made in the
GOPRR-p model.

This research approach presents a self-validating process in which each
design and implementation iteration increases the formality of the design.
Although the approach does not use formalisation as a part of the method, it
systematically forces the researcher's thinking towards increasing formality.
The iterations force the researcher to think and rethink the theory and designs
in detail. In the process, the researcher may become so familiar with the details
of the design that he or she can "debug" the design just by thinking about it.

After finishing prototype development, we initiated another process of
validation. In contrast with the first, analytical, method, the second method is
based on creating syntheses. The conceptual analysis in this phase emphasises
conceptual discrimination, rearrangement, and integration. The phase requires
extensive use of qualitative methods. We used literature reviews and a case
study. The advantage of qualitative methods is that they provide new insights
and necessitate the use of interpretation: prerequisites for conceptual synthesis.
Qualitative methods make synthesis easier. An important point is that synthesis
should be formed on the base of prior analysis, since this makes synthesis more
robust and thus increases its validity.

The third phase of validation consists of creating a set of assessment
criteria for assessing constructions of which the prototype is an example. The

22

criteria are based on an improved understanding of the target of research and
the research area. This phase yields the most important scientific contribution.
The assessment criteria are explicit and can be examined by the research
community. They can also be reused in other similar assessments. Thus they
enable future generalisation from the results of the study.

1.5 Introduction to the Paper Chapters

This thesis includes an introduction and six research papers, each of which
constitutes one chapter. The papers are grouped into four parts:

I

II

III

IV

Background
Theory
The CPME Prototype
Assessment

(Chapter 2);
(Chapter 3 and 4);
(Chapter 5 and 6); and
(Chapter 7).

The research presented in this thesis has been carried out in a research group
where several researchers study largely overlapping issues. The greatest
benefits of such a research environment are that it supports collective evolution
of ideas and accumulation of findings and knowledge of the research field. It
also aids in the research work in many practical ways. While it is perhaps an
ideal setting for conducting research, it also entails problems for compiling and
defending a thesis. Firstly, it is not possible to isolate one's work for
presentation, and secondly it is difficult to demonstrate one's contribution to
the study.

Nevertheless, I have attempted to reduce this problem by collecting a set
of papers in which my contribution is most substantial. First, the core
contribution in each paper concerns my personal research work. Secondly, in
all the papers I am either the only author or the lead author responsible for
compiling and editing the paper. In the three joint papers (Chapters 2, 5 and 7) I
have been responsible for the greatest part of both research and writing.

The following summaries briefly outline the core contribution of each
paper, and illustrate how they contribute to the research questions in Section
1.3. They also identify my personal contribution to the joint papers and
acknowledge co-authors and other main contributors.

Part I: Background

Chapter 2 presents a paper entitled "Comparing Two Traditions: Towards an
Integrated View of Method Engineering and Process Engineering." The paper
presents a detailed review and comparison of method engineering and process
engineering research. It provides definitions for the core terms used in this
thesis. It also shows how the relevant research areas are related. The paper
contributes to Question 1 on the architectural principles.

23

The paper is a joint article with Pentti Marttiin. My contribution to the
paper is the analysis of existing research and the compilation of the proposed
architecture. The paper will be submitted to ACM Transactions on Software
Engineering and Methodology.

Part II: Theory

Chapter 3 presents a paper entitled "Towards Customisation of Process
Modelling Languages in Computer Aided Process Engineering." The paper
illustrates different forms of linguistic adaptation in process support
environments and develops the concepts of language adaptation and PML
customisation. It also discusses PML engineering and its relation to process
engineering. The paper contributes to Question 2 on the alternatives and
principles for language specification and the use of such specifications in
process enactment.

The paper has been submitted to the 23rd International Conference on
Software Engineering (to be held in Canada, June 2001).

Chapter 4 presents a paper entitled "Conceptual Foundations of Process
Metamodelling." The paper develops a theory of process metamodelling and
illustrates a design of a comprehensive model of process modelling languages.
It also discusses a future extension of the design to process modelling
techniques with an operational model. The paper contributes to Question 2 on
the principles and Question 3 on the language constructs needed in language
specification.

This paper has been submitted to the ACM Transactions on Software
Engineering and Methodology.

Part III: The CPME Prototype

Chapter 5 presents a paper entitled "Developing a Customisable Process
Modelling Environment: Lessons Learnt and Future Prospects." The paper
presents the architecture and components of CPME, and discusses its objectives
in organisational support and evolution. The paper contributes to Question 1
on architectural principles.

The paper is a joint article with Pentti Marttiin. My contribution to the
paper is the elaboration of CPME's role as organisational technology by
pointing out some important issues in initial phase process improvement. The
paper is published in the proceedings of the 6th European Workshop on
Software Process Technology, EWSPT'98 (Koskinen & Marttiin, 1998).

Chapter 6 presents a paper entitled "Process Support in MetaCASE:
Implementing the Conceptual Basis for Enactable Process Models in
MetaEdit+." The paper presents the design and implementation of the GOPRR
p model and metamodelling tools in the CPME prototype. The paper
contributes to Question 3 on the language constructs and their implementation.

24

This paper is a joint article with Pentti Marttiin. My contribution to the
paper is the detailed design and implementation of GOPRR-p and the process
metamodelling tools. The paper is published in the proceedings of the 8th

Conference on Software Engineering Environments (Koskinen & Marttiin,
1997).

Part IV: Assessment

Chapter 7 presents a paper entitled "A Generic Process Modelling and
Enactment System: Implementation and Assessment." The paper describes the
CPME prototype in detail, and assesses CPME/MetaEdit+ against a set of
criteria developed for customisable method support environments. The paper
contributes to all the research questions, especially Question 1 on architectural
principles, and Question 4 on enactment mechanisms and their
implementation.

The paper is a joint article with Pentti Marttiin. My contribution to this
paper is the design and implementation of the GOPRR-p model and the generic
process engine. I have also developed the domain framework and the
assessment criteria and used them to assess CPME/MetaEdit+ A shorter
version of the paper will be submitted to the IEEE Transactions on Software
Engineering.

A word of warning is also appropriate, since the papers have been written at
different times. The ideas presented and the terminology used in the earlier
papers have somewhat changed to reflect the improved conceptualisation and
understanding of the subject. Unfortunately, copyright restrictions for
published papers prevent the author from updating the ideas and terminology,
and improving the clarity of writing. There are also differences in connotation
and emphasis that sometimes act as a reason to use different terms.

1.6 Overview of the Work

In a thesis compiled of a collection of distinct papers, the presentation of the
work tends to be scattered. Thus, it may be hard for the reader to build up the
overall picture merely by reading the paper chapters. I therefore attempt to
synthesise an overview of the work with references to distinct chapters.

Context. The subject of this thesis is located in the cross-section of method
engineering and process engineering (see Chapter 2). A general framework for
customisable design environments is presented (page 52). In terms of the
framework, the area targeted in this thesis is customisable CAPE and its reflection
on CAPE and PCSE. In Chapter 7, another framework is presented that gives a

25

more detailed view of customisable method support environments
1

(page 198).
In terms of this framework, the area can be defined as technique specification (for
process modelling techniques) and its reflection on process modelling and enactment.
Chapter 3 is an introduction to this area with discussion on PML customisation
and PML engineering.

Theory. The core theoretical work is discussed in Chapter 4. It identifies
process modelling languages as parts of process modelling techniques, and
process metamodelling as a means of their customisation. It develops the
theory into a conceptual model of process metamodels, a "conceptual process
meta-metamodel". The model distinguishes between conceptual, notational,
and semantic information in a language specification, and operational
information in a technique specification. These types of information are
reflected in process modelling and process enactment.

Application. The application of the process metamodelling approach in

the CPME prototype
2

is discussed in Chapters 5, 6 and 7. Chapter 7, in Section
2, gives the most comprehensive view of the prototype. The prototype
implements a process meta-metamodel and process metamodelling tools
(Chapter 6) for the specification of process modelling languages in process
metamodels (see also page 185 in Chapter 7). The process metamodels are
further used as PML specifications for a generic process engine. This process
engine combines the functionality of a metaengine and an ordinary process
engine. Conceptual and notational information is used in process modelling,
and semantic information in process enactment.

1.7 Conclusion

The study aims to increase the quality of customisable method support
environments by increasing their capabilities for language change. Specifically,
it introduces a metamodelling approach concerned with linguistic change in
process support technologies. Process metamodelling is a means for the
specification and profound adaptation of process approaches in a customisable
process modelling and enactment system.

The contributions of this thesis can be divided into two groups. First, a
large part of the theory-related contribution is formed of several classifications,
and philosophical and conceptual clarification of the studied phenomenon and
its context. Such work forms an important part of any scientific effort, but
especially when new or marginal issues are studied. In this thesis, I have
extensively explored the context and the background of my specific subject. I
have clarified the relation between method engineering and process

1

The term "customisable design environment" in Chapter 2 is used as a general term that also
covers "customisable method support environments". The use of the latter term reflects a

2
narrower emphasis on customisaoility.
The reader should, however, take into account that the prototype reflects an earlier stage in
theory development than the one discussed in Chapter 4. As earlier publications, the contents
of Chapters 5 and 6 are therefore not fully compatible with the theory presented in Chapter 4.

26

engineering by comparisons and definitions. This contributes to further
integration of the traditions. The insights regarding the architecture of
customisable method support environments, and the criteria for assessing
them, are especially useful.

Second, a great emphasis in this thesis is laid on understanding and
clarifying the nature of modelling languages and techniques, and different
forms of metamodelling. This has been a necessity, since current studies do not
give a proper foundation to apply in process metamodelling. Hence, I have
been compelled to substantially extend previous studies in these areas. My
special interest, nevertheless, has been to develop a means for PML
customisation in a method support environment: "process metamodelling". I
have extended the theoretical work on modelling languages and
metamodelling to suit the needs of process modelling and enactment. As a
result, a conceptual model of process metamodels has been developed, together
with considerations on its application. The process metamodelling theory
enhances metaCASE research with an approach to process support, and
enhances PCSE research with an approach to PML customisation.

Third, this thesis addresses the architecture and design of a process
metamodelling system and a generic process enactment system. Part of the
contribution is the design and implementation of the GOPRR-p model, Process
Metamodelling Tools, and a generic Process Engine in the CPME prototype.
However, a more significant contribution is made by further theory building
and critical assessment of the prototype. To this end, I have developed a
domain framework with various criteria for the assessment of customisable
method support environments. This provides a baseline for further research
and development of such architectures.

There are several recommendations that can be made based on this study.
Firstly, we recommend that researchers in method engineering and process
engineering areas change their perspective from a technical one to a systemic
one. There is a vast amount of research on information systems, the results of
which could benefit these two areas. Furthermore, we recommend that
researchers in each area become more concerned with research conducted in
the other area. The present work has given some directions for possible
contribution. Secondly, more research on the local adaptation and
customisation of process modelling languages and techniques should be
conducted. Especially, researchers should study the detailed architecture and
design of customisable CAPE environments that would allow linguistic change
as a natural part of process improvement. The domain framework and the
assessment criteria constitute some guidelines for customisable system
architectures. We also find that the development and comparison of process
modelling languages should be made more systematic. In this regard, the
theoretical considerations on process modelling languages presented in this
thesis will be useful.

27

References

Kelly, S., Lyytinen, K. & Rossi, M. 1996. METAEDIT+ - A Fully Configurable
Multi-User and Multi-Tool CASE and CAME Environment. In P.
Constantopoulos, J. Mylopoulos & Y. Vassiliou (Eds.) Advanced
Information Systems Engineering, LNCS 1080. Berlin: Springer-Verlag,
1-21.

Koskinen, M. 1999. A Metamodelling Approach to Process Concept
Customisation and Enactability in MetaCASE. University of Jyvaskyla.
Computer Science and Information Systems Reports, Technical Reports
TR-20. Jyvaskyla. Licentiate thesis.

Koskinen, M. & Marttiin, P. 1997. Process Support in MetaCASE: Implementing
the Conceptual Basis for Enactable Process Models in MetaEdit+. In J.
Ebert & C. Lewerentz (Eds.) Software Engineering Environments. Los
Alamitos: IEEE Computer Society Press, 110-123.

Koskinen, M. & Marttiin, P. 1998. Developing a Customisable Process
Modelling Environment: Lessons Learnt and Future Prospects. In V.
Gruhn (Ed.) Proceedings on the 6th European Workshop on Software
Process Technology, EWSPT'98, LNCS 1487. Berlin: Springer-Verlag, 13-
27.

Lyytinen, K., Kerola, P., Kaipala, J., Kelly, S., Lehto, J., Liu, H., Marttiin, P.,
Oinas-Kukkonen, H., Pirhonen, J., Rossi, M., Smolander, K.,
Tahvanainen, V.-P. & Tolvanen, J.-P. 1994. MetaPHOR: Metamodeling,
Principles, Hypertext, Objects and Repositories. University of Jyvaskyla.
Computer Science and Information Systems Reports, Technical Report
TR-7. Jyvaskyla.

Marttiin, P. 1994. Towards Flexible Process Support with a CASE Shell. In G.
Wijers, S. Brinkkemper, T. Wasserman (Eds.) Advanced Information
Systems Engineering, LNCS 811. Berlin: Springer-Verlag, 14-27.

Marttiin, P. 1998. Customisable Process Modelling Support and Tools for
Design Environment. University of Jyvaskyla. Jyvaskyla Studies in
Computer Science, Economics and Statistics 43. Jyvaskyla. PhD Thesis.

Nunamaker, J.F. jr., Chen, M. & Purdin, T.D.M. 1991. Systems development in
Information Systems Research. Journal of Management Information
Systems, 7, 3, 89-106.

Rossi, S. & Sillander, T. 1998a. A Software Process Modelling Quest for
Fundamental Principles. In R. Walter & J. Baets (Eds.) Proceedings of the
6th European Conference on Information Systems (ECIS). Spain: Euro
Arab Management School, 557-570.

Rossi, S. & Sillander, T. 1998b. A Practical Approach to Software Process
Modelling Language Engineering. In V. Gruhn (Ed.) Proceedings on the
6th European Workshop on Software Process Technology, EWSPT'98,
LNCS 1487. Berlin: Springer-Verlag, 28-42.

28

Sharp, H., Woodman, M., Hovenden, F. & Robinson, H. 1999. The Role of
'Culture' in Successful Software Process Improvement. In: G. Chroust
(Ed.) Proceedings of the 25th Euromicro Conference (EUROMICRO '99),
Milan, Italy, September 8-10.

PART I: BACKGROUND

2 COMP ARING TWO TRADITIONS: TOWARDS

AN INTJ;:GRATED VIEW OF METHOD

ENGINEERING AND PROCESS ENGINEERING

Koskinen, M. & Marttiin, P. "Comparing Two Traditions: Towards an
Integrated View of Method Engineering and Process Engineering".

This paper has been submitted for publication. Copyright may be transferred
without further notice and the accepted version may be posted by the
publisher.

Comparing Two Traditions: Towards an Integrated View
of Method Engineering and Process Engineering

Minna Koskinen

University of Jyvaskyla

Abstract

Pentti Marttiin

Nokia Research Center

The question of how to develop systems and software in a more
disciplined way has exercised the minds of researchers for several
decades. A number of exact methods and processes have been
introduced. Studies on the benefits of such disciplined approaches
recurrently present conflicting results, except the conclusion that no
universal approach suits all situations. In consequence, two higher level
engineering traditions have arisen but grown separately. Method
engineering and process engineering are overlapping and
complementary, yet there is little research on their relationships. We
find that the traditions can help each other to reshape and better
understand themselves. Consequently, this study aims at a more
comprehensive and balanced view of methods and method research.
Thereby it contributes to the further integration of the traditions. This
article provides an integrated view of method and process engineering.
We discuss the approaches and present them in a manner in which
similarities and differences are easy to recognise. The study is aimed at
researchers and tool providers in the new millennium. We expect
method engineering and process engineering to become closer, thereby
providing new flexible ways of working and new platforms for tools.

1 Introduction

Research on systems development methods was initiated to improve quality in
systems development. The aim was to extract and codify successful practices
and thereby to systematise the conduct of systems development. The earliest
approaches to method development introduced common techniques for
systems specification (Dijkstra, 1969; Yourdon and Constantine, 1979; Yourdon,
1989). Many computer tools were developed for the support of these methods
(Waters, 1974; Teichroew and Hershey, 1977). Also, more comprehensive
methods were introduced (Auramaki et al., 1992). Some research was also
dedicated to systems development processes and the co-ordination of process
actors (Royce, 1970; Baker, 1972). The early process models aimed at supporting
communication between actors and contributed to a deeper understanding and
learning of the process.

34

1.1 Two traditions

In the late 1980's, two traditions emerged that shortly took separate courses.
Within the "method tradition", research on method support technology was
conducted to develop an architectural framework that would integrate different
techniques and tools within one environment. Techniques as notations and
metadata became the core of method implementations.

Individual methods were found to be applicable only for certain purposes
and more or less adapted to local practices (Pyburn, 1983; Wijers and van Dort,
1990; Aaen et al., 1992). This shifted the interest towards contingency and
customisation approaches. The first method providers had offered standard
solutions in text-books and methodically "fixed" tools. Therefore it was
necessary to try to identify those development contingencies that would predict
the suitability of available methods and that could be used in local method
selection.

Method engineering and customisable tools emerged to provide further
flexibility: to enable the design and construction of local methods (Bubenko,
1988; Heym and Osterle, 1993). Later, the finding that method requirements
change as users' understanding accumulates through methods' use, directed
research towards incremental method engineering {Tolvanen, 1998).

Elsewhere, a significant milestone showed way for the "process tradition".
This was Osterweil's (1987) proposition that the software development process
could be automated. The 'process' became a means of method integration, with
which to manage the use of individual techniques and tools. Thereby, it played
a core role in method implementation.

Also process research confronted the need to locally adapt and evolve
processes and tools. The text-book approach to processes was largely rejected
after some attempts to develop standard processes (Royce, 1970). Contingency
approaches to select among possible process alternatives did not gain much
interest. Instead, process modelling was introduced as a means to specify local
processes (Curtis et al., 1992), thereby leading research to process engineering
approaches. The interest in process improvement models also increased (Paulk
et al., 1993; Darling, 1993; Haase et al., 1994). Process support technology was
developed to enhance the efficiency of using process models. Towards the mid
1990's, studies on process evolution introduced new mechanisms for
customising process technology (Madhavji, 1991; Bandinelli and Fuggetta, 1993;
Kaiser and Ben-Shaul, 1993).

It can be said that the 1980's was the 'golden decade' of methods, while
processes took over the next one (DeMarco, 1996). The "method jungle" of late
1980's (Avison and Fitzgerald, 1988) grew up an abundance of methods, some
of which have merged or diversified, developed and survived better than
others. The 'process jungle' is similarly a phenomenon of today. Neither
tradition has yet established itself in the industry. However, an increasing
interest in method customisation and technology is evident. Practitioners
manifest interest also in process improvement, whereas process technology has
so far shown little success (Conradi et al., 1998).

1.2 Towards the merge of traditions

35

One of the greatest shortcomings of the last decade has perhaps been the two
traditions drifting apart. Contacts between the traditions have been weak or
non-existing. This is shown by the fact that some major research questions of
one tradition today are essentially the same as those of the other right after the
traditions took separate courses. Yet this is hardly noticed.

The reason for that the traditions have not interacted properly during
their history may be that the traditions have long focused on different phases of
systems development. Method tradition has mostly concentrated on the early
phases of systems development, such as systems analysis and design, with the
need to manage complex and sensitive system requirements. In contrast,
process tradition has concentrated on the later phases, such as software design,
implementation, and testing, with the need to control and automate routine
tasks (Curtis et al., 1992; Armenise et al., 1993; McChesney, 1995). Interest in the
early processes has recently increased (Wijers, 1991; Harmsen et al., 1994a; Jarke
et al., 1994; Rolland et al., 1995; Pohl, 1996). The focus is on user centred
approaches: guidance and control mechanisms, learning support through
process models and process traces, and process improvement through
accumulated knowledge.

The traditions' interest in each other's findings seems mostly superficial,
and the lack of interaction manifests itself in the research conducted to date. On
one hand, some frameworks consider products only and focus on notations and
metadata (Bergheim et al., 1989; ISO/IEC, 1990). Until recently, this has been
characteristic to the method tradition. Some frameworks, on the other hand,
consider processes only (McChesney, 1995; Lonchamp, 1993). Although they
include the notion of product or alike, the properties of products are
determined solely from the role of the products in a process (e.g., owner, size,
creation-date). This is characteristic to the process tradition.

There are also frameworks, in which both the product and the process
viewpoint are considered. These have mostly emerged within the method
tradition as researchers have found a limited product viewpoint insufficient.
However, these integrated approaches still have shortcomings. First, some
frameworks have a weak notion of product. One potential shortcoming is that
tools determine the metadata. Although the metadata model of a repository is
customisable, tools are not. Instead, the metadata model is customised
according to selected tools (Pohl and Jarke, 1992). When the operations
provided by tools are customisable, the metadata is not (Pohl et al., 2000).
Another potential shortcoming is the low internal integrity of metadata (Heym
and Osterle, 1993). Techniques are seen as manipulating loosely related
conceptual and notational components. The metadata integrity is too low for
building products methodically without continuous process support. Second,
some frameworks have a weak notion of process (Harmsen et al., 1994a). The
view of process is narrow and only limited forms of support can be provided.

Little research is conducted to understand the relationship between
method engineering and process engineering. Frameworks are developed for
one tradition and often explicitly oppose the other. It has remained unnoticed -

36

not only that these traditions could and should be integrated - but also that the
two traditions can help each other to reshape and better understand
themselves.

This study aims to get the traditions somewhat closer. We have used the
following review method. First, we constructed a profile of both traditions. The
profiles concentrate on issues that have interested respective researchers.
Thereafter, we compared these profiles and matched similar issues in both
traditions. The issues that remained in one tradition, showed potential gaps in
the research carried out within the other. We considered how these 'missing'
issues appear within the tradition and developed thereby a series of important
insights. Through comparing different perspectives we were able to reshape
both views and to reveal their close relationship. We regard this study as a
necessary step to enable a more detailed inquiry into the integration of method
engineering and process engineering.

In the following, we illustrate the two views with several definitions based
on the comparisons. These definitions form a framework that serves as a basis
for further research. A guiding notion throughout this study is two views of
method promoted by the methodical traditions. (Section 2.2). We discuss
method engineering and process engineering (Section 2.3), method modelling
(Section 2.4), and technology for method use and customisation (Section 2.5).
As a result of this study we outline a comprehensive design environment
architecture and discuss five strategic integration points. Thereafter, we discuss
its strategic integration points (Section 2.6). Finally, we summarise the main
findings of this study (Section 2.7).

2 Two Views of Method

Systems development is an approach to produce information systems, in which
a development group pursues to achieve some objectives using a systems
development method. A method is a collection of guidelines, procedures,
techniques and tools for developing information systems, based on a particular
philosophy of systems development and of a particular system domain
(Wynekoop and Russo, 1993). Methods serve as a means to better understand
and produce the target system, to manage the overall development effort, and
to aid communication and organisational learning. They are expected to lead to
more acceptable and successful solutions, and to a better-managed
development process (Tolvanen, 1998). The approaches to methods differ in
regard to the focus of methods, how they are integrated, and the form of
method rules.

To best characterise the method tradition is to say that it is product
centred. The tradition emphasises the structure and organisation of the
products of systems development. Methods and techniques make explicit the
required characteristics of a product. They use declarative rules to specify what
kind of model is desirable or required, and they do not (usually) constrain the

37

actual steps taken to construct one. Method integration clarifies the structural
dependencies that may combine models created with different techniques. The
aim of method integration is to increase coherence and accessibility of model
components while at the same time to reduce their overlap and redundancy.

Definition 1 A product-centred method is a method that concentrates on the
structure and organisation of products and uses product-centred
metrics and techniques to improve their quality.

Definition 2 A product-centred modelling technique is a set of declarative rules that
specify the consistent and correct structure of models.

Definition 3 Product-centred method integration is the organisation of modelling
techniques into a collection within which structural dependencies
between different techniques are specified as a set of declarative
rules.

The process tradition, in tum, can be called process-centred. It emphasises the
structure and organisation of processes with which the products are produced.
Methods and techniques introduce explicit methodical procedures that
implement the desired or required characteristics of a systems/ software
development process. They use procedural rules to specify how a correct model
should be derived. Methods and techniques do not explicitly specify what kind
of model would be correct, but a correct model is what results when the
required steps are taken. Method integration combines usage of different
techniques aimed at a common goal. In contrast to product-centred methods,
process-centred methods combine not only modelling techniques but also other
fine-grained tasks. The aim of method integration is to increase the coherence of
a systems development process.

The target process of process-centred methods is often called course
grained process, whereas the target of modelling techniques is called fine
grained process. The process can also be called process pattern if the described
process can be applied to several methods or techniques.

Definition 4 A process-centred method is a method that concentrates on the
procedures used in systems development and uses process-centred
metrics and techniques to measure and improve their quality.

Definition 5 A process-centred modelling technique is a set of modelling steps with
which a consistent and correct model is derived.

Definition 6 Process-centred method integration is the procedural organisation of
the use of modelling techniques and other fine-grained tasks, which
specifies how and in which order the techniques are used and tasks
performed.

38

3 Method Engineering and Process Engineering

Method engineering and process engineering are partially overlapping and
complementary approaches to method development. The goal of method
development is to build up collective experience of systems development and
utilise it to craft systematic development practices. Method engineering and
process engineering adapt and improve methods for local needs. They aim at
increasing accuracy and fitness, and thereby enhancing the feasibility and
usefulness of the methods. Their relationship is briefly illustrated in figure 2.
Method engineering develops product-centred methods focusing on modelling
techniques, whereas process engineering develops process-centred methods
focusing on development processes. These techniques and processes are then
used in systems development to produce system products.

Method

engineering

\

codifie,

Product

centred

Systems development

system

product

Process

engineering

codifies

I

FIGURE 2 Method engineering and process engineering are two approaches to develop
methods for systems development.

Method engineering has emerged in the method tradition. This is why its
practical view of methods is overwhelmingly product-centred. Method
engineering aims to improve accuracy of methods in that techniques would aid
to produce consistent and correct models, and fitness in that the techniques
would be effective for a particular modelling purpose. It can play two roles in
method development: method adaptation and method improvement. Method
adaptation focuses on creating and adapting methods for local needs, whereas
method improvement concentrates on assessing and calibrating local methods.

It is likely due to the general novelty of method engineering, that it has
been considered merely as a means of method adaptation. For long, it was
thought that once a method is adapted to an organisation, there is no need for
further modifications. Today, the emergence of incremental method
engineering is altering this oldish thinking by stressing the role of gradual
method evolution (Tolvanen, 1998). However, it is not well known how method

39

improvement should be facilitated besides providing explicit customisation
mechanisms in method support tools. Rossi and Brinkkemper (1996) are the
first to propose a systematic approach for measuring properties of methods, but
they intend the metrics to support method selection, not improvement.

Definition 7 Method engineering is a discipline dedicated to the study, design,
construction and adaptation of methods for a specific organisation.

Definition 8 Method adaptation is the process of creating and adjusting methods
for the needs of a specific organisation.

Definition 9 Method improvement is the systematic enhancement of an
organisation's methods through local assessment and calibration.

Definition 10 Method evolution is the gradual alteration of methods used in a
specific organisation.

Process engineering has emerged in the process tradition. It maintains a
process-centred view and prefers the term 'process' for denoting a method.
Process engineering aims to improve accuracy of processes in that the product
produced would match the intended result, and fitness in that people involved
would be able to faithfully follow specified actions. It may play two roles in
process specification: process adaptation and process improvement. Process
adaptation focuses on specifying and adjusting processes according to local
needs, whereas process improvement concentrates on assessing process
performance and establishing methodical procedures.

Process engineering has been less interested in process adaptation that in
process improvement. This is supposedly due to a narrow emphasis on
economical efficiency and productivity, which tends to exclude sociological and
organisational concerns (Sommerville and Rodden, 1995). Process adaptation is
considered solely as a means to adjust technology to process evolution
(Madhavji, 1991; Bandinelli and Fuggetta, 1993; Heineman et al., 1994), whereas
process improvement has long been a major focus of research. The most salient
outcomes of this research are process improvement models such as CMM
(Paulk et al., 1993), SPICE (Dorling, 1993), and Bootstrap (Haase et al., 1994).

Definition 11

Definition 12

Definition 13

Definition 14

Process engineering is a discipline dedicated to the study, design,
implementation and improvement of systems development
processes in a specific organisation.

Process adaptation is the process of specifying and adjusting
development procedures according to the needs of an organisation.

Process improvement is the systematic enhancement of an
organisation's development processes through local assessment and
establishment of metnodical procedures.

Process evolution is the gradual change in a conducted process in
contrast to one

1
rescribea, caused by changes in the requirements or

contingencies o the local organisation.

40

4 Method Modelling

A core function of both method engineering and process engineering is method
modelling. Both disciplines largely agree on what aspects a comprehensive
method specification should address (Marttiin et al., 1995; Conradi et al., 1992).
Method models are also used for similar purposes. Descriptive method models
aid in method evaluation, communication and learning, and they should be
understandable and easily comparable. Prescriptive method models specify
and articulate methods to be used. For automated support, they need to be
strict and may involve technology-specific components. Despite these
similarities, method modelling yet most reflects the differences between the
two engineering approaches.

4.1 Product-Centred Method Modelling

Method engineering has promoted a product-centred view of method
modelling. The method model is an integrated collection of metamodels, each
of which captures specific information about one type of system models in that
method. Examples are class diagrams, use case diagrams, and state chart
diagrams in UML (Booch et al., 1999). This information mostly concerns
notations and metadata. The type of method modelling used in method
engineering is called metamodelling. Metamodelling is carried out using a
metamodelling language.

In figure 3, two modelling domains are shown, across which the
specification and use of metamodels are organised. These domains are at
different abstraction levels (systems development and method engineering) but
both are centred on a modelling activity (Brinkkemper, 1990; Tolvanen et al.,
1996). First, system modelling is a modelling activity that appears on the lower
abstraction level. System modelling perceives a system and develops system
models using a method. The method incorporates a set of modelling techniques
and it is codified into a set of metamodels. Second, metamodelling is a
modelling activity one level higher to system modelling. Metamodelling
perceives a method and develops a set of respective metamodels using a
metamethod. The metamethod incorporates a metamodelling language and it is
codified into a meta-metamodel.

Definition 15

Definition 16

Definition 17

A metamodel is a model that specifies a product-centred modelling
technique by capturing information about one type of models in a
declarative form.

A metamodelling language is a modelling language used for
reJJresenting the declarative rules of a product-centred modelling
technique.

Metamodelling is the process of specifying a metamodel using a
metamodelling language.

Meta

metamodel

codifies

Metamethod

determine

Metamodel

codifies

Method

determine

System model

use

System

modelling

perceives

System

41

FIGURE 3 Metamodelling is a modelling activity one abstraction level higher to system
modelling.

4.2 Process-Centred Method Modelling

Process engineering has promoted a process-centred view of method
modelling. The method model used is a process model that captures
information about a development process. This information concerns different
elements present in a development process. Examples are workers, activities,
artefacts, and workflows in RUP (Kruchten, 1998). A process model shows how
to produce system products, and how to manage associated development and
managerial activities. We can distinguish between generic process templates
and project-specific process models. The former is complemented with project
specific information to produce the latter. The type of method modelling used
in process engineering is called process modelling and it is carried out using a
process modelling language.

In figure 4, two process domains are shown, across which the specification
and use of process models are organised. Also these domains are at different
abstraction levels (systems development and process engineering) but they are
centred on a specific process. First, a production process locates on the lower
abstraction level. It develops an information system following a specific
method. The method is codified into a process model and it organises the use of
modelling techniques. These techniques are used for specification of system
models to represent the system under development. Second, a metaprocess

42

locates one level higher to a production process. It incorporates process
elicitation, adaptation, assessment, and improvement. Part of process elicitation
is process modelling that specifies the production process in a process model.
Metaprocess follows a metamethod codified in a metaprocess model.

Definition 18

Definition 19

Definition 20

Definition 21

A process model is a model that specifies a process-centred method by
capturing information about a development process.

A process template is a generic :process model that can be instantiated
and supplemented with proJect-specific data to form a process
model for a particular system project.

A process modelling language is a modelling language used for
representing the procedural rules of a process-centred method.

Process modelling is the process of specifying a process model or
process template using a process modelling language.

Metaprocess
model

codifies

Process model

codifies

Method

System model

perceives

process

develops

System

FIGURE 4 Metaprocess is a process one abstraction level higher to a production process.

5 Technology for Method Use and Customisation

43

When a development group follows the rules and guidelines of a method in
systems development, the method use is called method enactment. In product
centred method enactment, a development group uses a set of modelling
techniques, whereas in process-centred method enactment it follows a process
model. In the latter case, the commonly used term is process enactment.

Definition 22 Method enactment is the actual use and conformance to a method in
systems development.

Definition 23 Product-centred method enactment is the enactment of a product
centred method in systems development by obeying the declarative
rules of a metamodel.

Definition 24 Process enactment is the enactment of a process-centred method in
systems development by following the procedural rules of a process
model.

Method enactment can be performed manually or using automated support
(McChesney, 1995). First, manual enactment is facilitated through some
organisational requirement or contractual obligation to conform to a specific
method. A development group refers to method specifications, standards and
manuals (e.g., method text-books or process manuals) to use the method
correctly. The emphasis of manual enactment is on the actors to conform to the
recommended techniques and procedures. Second, automated enactment is
facilitated through some degree of automation. The method model used in a
method support tool may remain implicit or explicit, depending on whether the
method is built into the tool or some automated mechanism is used to enact a
method model.

Automated method support is concerned with the level of tool
involvement in the development process, that is, how strictly the method rules
are implemented. A product-centred approach determines how strictly a tool
preserves the consistency and correctness of a product (cf. Vessey et al., 1992).
In contrast, a process-centred approach determines how strictly a tool enforces
the correctness of the design process (cf. McChesney, 1995). For example, a
product-centred ERA (entity-relationship-attribute) technique cannot enforce
the user to create entities and attributes in a specific order but instead ensures
that the entities and attributes are ultimately connected to each other. In
contrast, a process-centred ERA technique could enforce that an attribute is
created only when it can (and will) be directly connected to an existing entity.

The importance of automated support is acknowledged in both traditions.
Smolander et al. (1990) observe that increased quality in method use seems to
flow almost exclusively from the use of tools. Similarly, Stenning (1987) finds
that the practicality of a process model may be critically dependent on how
much there is automated support for its use. However, tool design is found to
highly influence the actual benefits gained from method use. Not only the

44

method has to suit the development situation, but also the tool has to suit for
supporting the method. These are equally important for successful method use.

The way to adapt support tools is customisation. Customisable tools are
useful for organisations that are not experienced with methods, since they
allow an organisation to assess and evaluate different methods to select the
suitable ones. They also suit an organisation when the future method
requirements are fuzzy or evolving. Method customisation technology also
gives an organisation a possibility to use a method of its own and to create tool
support for it. Such technology is especially useful when an organisation is
using several methods or local variations of textbook methods (Bubenko, 1988;
Brinkkemper, 1990).

5.1 Method Support

Computer Aided Systems/Software Engineering (CASE) is an approach to
systems development that involves the use of computer aided tools. It aims to
enhance the applicability of methods through standardisation, normalisation
and automation. CASE technology comprises mainly production technology
focusing on the creation, analysis and transformation of system models
(Henderson and Cooprider, 1994). The technology implements automated
support for the use of methods in systems development. A CASE tool
implements automated support for a specific task, whereas a CASE
environment integrates a set of CASE tools that cover several parts of the
systems development life-cycle.

Definition 25

Definition 26

Definition 27

Computer Aided Systems/Software Engineering is a disciplined
approach to systems development, in which computers are used to
provide some automated support for the use of methods in systems
aevelopment.

A CASE tool is a design aid tool that implements automated support
for one prominent task of systems devefopment.

A CASE environment is a collection of CASE tools that cover several
parts of the systems development life-cycle.

5.2 Product-Centred Method Support

The method tradition has brought forth two areas of study on product-centred
method support technology and its use in systems development. First, the
tradition has provided automated tools for the use of product-centred methods
and modelling techniques in requirements engineering. A product-centred
CASE environment automates product-centred method integration. The core of
such a CASE environment architecture is a structured framework that
composes and integrates different parts of the environment (ECMA, 1993). A
product-centred CASE tool implements the declarative rules of a product
centred modelling technique.

45

Definition 28 A product-centred CASE environment is a CASE environment that
supports product-centred method integration.

Definition 29 A product-centred CASE tool is a CASE tool that implements and
supports the use of a product-centred modelling technique.

Second, the method tradition has introduced method adaptation in CASE. This
new area, metaCASE, involves customisation of method support to enhance its
applicability and fitness in CASE. A metaCASE environment combines a set of
metaCASE tools in the same way as a CASE environment combines CASE
tools. They differ in that methods are not fixed into metaCASE tools but the
tools are generated or customised for the specific use (Alderson, 1991).

A metaCASE tool is based either on an implicit or explicit metamodel. In
the former case, the tool is generated from a metamodel and inserted into a
metaCASE environment. In the latter case, a metaCASE tool has a generic
architecture that makes it able to adapt to a given metamodel. The metaCASE
environment architecture is based on a metaengine that performs all
metamodel enactment and handles all access to a common repository (Kelly et
al., 1996).

Definition 30 MetaCASE is an area of CASE, in which product-centred method
support is generated from metamodels.

Definition 31 A metaCASE tool is a CASE tool that is generated or customised to
support a specific modelling technique.

Definition 32 A metaCASE environment is a CASE environment that collects a set of
metaCASE tools and includes mechanisms either for metamodel
enactment or for inserting generated metaCASE tools into the
environment.

Definition 33 A metaengine is an automated mechanism that enacts a metamodel to
provide tool support for the use of a product-centred modelling
technique.

Furthermore, the method tradition has brought forth an area called Computer
Aided Method Engineering (CAME). This area studies computer-aided
construction and adaptation of methods. It goes to say that CAME is the
"CASE" of method engineering. It develops CAME technology - CAME tools
and CAME environments - in the same broadness as CASE develops CASE
technology.

Definition 34

Definition 35

Computer Aided Method Engineering is a disciplined approach to
method development, in which computers are used to support or
automate some of the tasks.

A CAME tool is a design aid tool that implements automated
support for one prominent task of method engineering.

Definition 36 A CAME environment is a collection of CAME tools that covers
several parts of the method engineering life-cycle.

46

5.3 Process-Centred Method Support

The process tradition has focused on process-centred technologies. First, a
process-centred CASE environment automates process-centred method
integration by supporting co-ordination of coarse-grained development
processes. For example, they may support tool invocation at appropriate times
and control resource sharing between system developers. A process-centred
CASE tool implements the procedural rules of a process-centred modelling
technique and thus supports the fine-grained process of model construction.

Definition 37 A process-centred CASE environment is a CASE environment that
supports process-centred method integration.

Definition 38 A process-centred CASE tool is a CASE tool that implements the
procedural rules of a process-centred modelling technique.

Second, the process tradition has brought forth Process Centred
Systems/Software Engineering (PCSE) that studies the customisation and use
of process-centred methods. It attempts to enhance the applicability of process
models through formalisation and automation. A PCSE environment combines
a set of CASE tools and integrates their use according to a process model. The
core of a PCSE environment architecture is a process engine, which is a
mechanism that enacts a process model and evokes guidance and support for
the users accordingly.

Definition 39

Definition 40

Definition 41

Process Centred Systems/Software Engineering is an area of CASE, in
which process-centred method support is generated from process
models.

A PCSE environment is a CASE environment that supports process
centred method integration according to a process model.

A process engine is an automated mechanism that enacts a process
model to provide support for system developers accordingly.

Process customisation technology has been studied under the broad umbrella
of PCSE. However, it is useful to distinguish between customisable process
support technology and process customisation technology the same way as
between metaCASE and CAME. We consider PCSE as a counterpart of
metaCASE and call the other Computer Aided Process Engineering (CAPE).
CAPE is the "CASE" of process engineering, providing it with process
engineering method support. Unlike PCSE technology, CAPE technology does
not include process support but functions as design aid for process engineers. A
CAPE environment may be customisable in the same way as a metaCASE
environment.

Definition 42 Computer Aided Process Engineering is a disciplined approach to
process development, in which computers are used to support or
automate some of the tasks.

47

Definition 43 A CAPE tool is a design aid tool used that implements automated
support for one prominent task of process engineering.

Definition 44 A CAPE environment is a collection of CAPE tools that cover several
parts of the process engineering life-cycle.

6 Strategic Integration Points of a Customisable Design
Environment

As a result of the study, we outlined a design environment architecture that
would address and integrate different aspects discussed above. To develop
such an architecture it is first necessary to specify the dependencies and
integration mechanisms between its sub-domains. This cannot be done one
domain at a time but we need to consider the environment architecture a
whole. Without a standard that defines this integration, we cannot safely
specify the independent sub-domains.

There are three main sub-domains in this architecture: CASE, CAME and
CAPE domains. The two latter should be based on a similar design as the
former to enable extensive customisation. Between these domains, we find five
strategic points of integration (figure 5).

5. Customisable CAPE

4. CAME/CAPE

CAME +-\j--+ CAPE

environment /\ environment

3. MetaCASE/PCSE

environment

FIGURE 5 Five strategic integration points of a customisable design environment.

1. MetaCASE: Integration of CAME and CASE. First, we have to decide how
CASE tools use the products of CAME. An appropriate solution is found in
(Kelly, 1996). MetaCASE tools are based on a generic tool architecture that a
metaengine complements according to a metamodel. The design allows
runtime changes in the metamodel. Such a design could be extended to support
adaptable process patterns (Si-Said et al., 1996; Pohl et al., 2000; Lyytinen et al.,
1998).

48

2. PCSE: Integration of CAPE and CASE. Second, we have to decide how
CASE tools use the products of CAPE. A PCSE architecture uses a process
engine that is able to "read" process models structured according to a specific
process metamodel. Some environments also include a mechanism that allows
the propagation of run time changes on process models (Bandinelli and
Fuggetta, 1993; Jaccheri and Conradi, 1993; Kaiser and Ben-Shaul, 1993).
Compared to metaCASE, method evolution is more difficult since a PCSE
environment has to maintain also the consistency of process enactment state.

3. Integration of metaCASE and PCSE. Third, we have to decide how
metaCASE tools are managed by a PCSE environment. A generic approach to
build CASE tools is required to enable communication between coarse-grained
and fine-grained processes (Barghouti and Feiler, 1993; Pohl and Jarke, 1992).
MetaCASE tools can be designed to allow multiple operational versions of
themselves, each of which is added as an entry in its process programming
interface. A specification of such a version would determine what operations
are available or required while the particular tool version is used. It also
specifies the necessary feedback and intervention points for structured
communication. While a metaengine is responsible for enacting the operational
tool version, a process engine only needs to react on the structured messages it
receives from the metaengine. Recursive tool invocations should be avoided by
forwarding all further invocations back to the process engine. In this way, the
process engine maintains control over the process without disrupting the
performance of the metaengine.

4. Integration of CAME and CAPE. Fourthly, we have to decide how
CAPE uses the products of CAME. For coarse-grained process support, the
interface between metamodels and process models have to be specified. Those
metatypes in CAME, the instances of which (i.e., metamodel entities) are
directly referenced in tool invocation specifications, should be integrated with
process metamodel entities in CAPE, the instances of which (i.e., process model
entities) specify tool invocation. For fine-grained process support, the
integrated entities should be similarly chosen but at the level of model
manipulation. In customisable CAPE, the integration has to be founded at a
higher level: between the meta-metatypes in CAME and the process metatypes
in CAPE. The interface should be made simple to ease the manageability of
method specifications. Moreover, we need mechanisms to track any changes in
CAME products that might affect the products of CAPE.

5. Integration of customisable CAPE. Lastly, we have to decide how
CAME can be utilised to customise process modelling techniques used in
CAPE. In case we want to maintain a possibility for runtime customisation
during process engineering, the architecture has to resemble the one in
metaCASE. It should contain a metaengine that is able to use customised
process metamodels. Further, in case we need runtime customisation during
systems development, we need a generic process engine that is able to "read" a
process metamodel and to adjust its operation according to it. This entails that
we must differentiate between (1) the generic, built-in operational semantics of

49

a process engine, and (2) the language-specific, not built-in semantics used to
guide the process engine.

Clearly, the more customisation is allowed during runtime, the more
complex it will be to maintain consistency in a method support environment.
Therefore it is necessary to study in each situation to which extent runtime
customisation should be allowed. The degree of customisation can be restricted
so that the customised environment functions, e.g., as a CASE environment, a
metaCASE environment, or a CASE/PCSE environment.

7 Con cl us ions

In this paper we have proposed definitions for method and process
engineering. These areas have grown separately mainly because of different
emphasis. Method tradition has focused on systems analysis and design, while
process tradition concentrated on software design and implementation. The
dominant difference is the view of methods: product-centred vs. process
centred. This difference is a guiding notion to understand other major
differences between method engineering and process engineering, in method
modelling, and in the technology for method use and customisation.

Yet, the most striking finding in this study is perhaps a substantial failure
to consider systems development to comprise an information system of its own.
Consequently, the methodical traditions lack insight in how methods relate and
contribute to the structure and formation of these 'meta-information systems'
and vice versa. 'Metasystems' are regarded as software with which methods are
specified and implemented (Osterweil, 1987; Boloix et al., 1991; Chen, 1988;
Karrer and Scacchi, 1993). We find that the diversity and variability of meta
information systems are not recognised well enough. A more profound
understanding of the nature of methods and the context in which they operate
is required.

This study aims at a more comprehensive and balanced view of methods
and method research, and thereby contribute to the further integration of the
methodical traditions. We have compared the traditions and illustrated their
views with numerous definitions. Based on these definitions, we have also
suggested five integration points that are strategic for future tool development.
We are convinced that a better understanding of the methodical traditions,
especially the need for adaptability in methods and technologies, is required to
provide better solutions and tools for this new millennium.

50

References

Aaen, I., Siltanen, A., S0rensen, C. & Tahvanainen, V.-P. 1992. A Tale of Two
Countries - CASE Experiences and Expectations. In K.E. Kendall, K.
Lyytinen & J.I. DeGross (Eds.) The Impact of Computer Supported
Technologies on Information Systems Development. Amsterdam:
Elsevier Science Publishers, 61-93.

Alderson, A. 1991. Meta-CASE Technology. In A. Endre & H. Weber (Eds.)
Software Development Environments and CASE Technology, LNCS
509. Berlin: Springer-Verlag, 81-91.

Armenise, P., Bandinelli, S., Ghezzi, C. & Morzenti, A. 1993. A survey and
assessment of software process representation formalisms. International
Journal of Software Engineering And Knowledge Engineering, 3, 3, 410-
426.

Auramaki, E., Hirschheim, R. & Lyytinen, K. 1992. Modelling Offices Through
Discourse Analysis: A Comparison and Evaluation of SAMPO with
OSSAD and ICN. The Computer Journal, 35, 5, pp. 492-500.

Avison, D.E. & Fitzgerald G. 1988. Information Systems Development:
Methodologies, Techniques and Tools. Oxford: Blackwell.

Baker, F.T. 1972. Chief Programmer Team Management of Production
Programming. IBM Systems Journal, 11, 1, 56-73.

Bandinelli, S. & Fuggetta, A. 1993. Computational Reflection in Software
Process Modeling: the SLANG Approach. In Proceedings of the 15th
International Conference on Software Engineering. Los Alamitos: IEEE
Computer Society Press, 114-154.

Barghouti, N.S. & Feiler, P.H. 1993. Demonstration Experience Report Session
summary. In W. Schafer (Ed.), Proceedings of the 8th International
Software Process Workshop: State of the Practice in Process Technology.
IEEE Computer Society Press, 2-5.

Bergheim, G., Sandersen, E. & Solvberg, A. 1989. A taxonomy of concepts for
the science of information systems. In E.D. Falkenberg & P. Lindgreen
(Eds.) Information System Concepts: an In-Depth Analysis. Amsterdam:
Elsevier Science Publishers, 269-321.

Boloix, G., Sorenson, P.G. & Tremblay, J.P. 1991. On Transformations Using A
Metasystem Approach To Software Development. The University of
Alberta, Edmonton. Technical report.

Booch, G, Rumbaugh, J. & Jacobson, I. 1999 The Unified Modeling Language:
User Guide. Reading, MA: Addison-Wesley.

Brinkkemper, S. 1990. Formalization of Information Systems Modelling.
University of Nijmegen. Nijmegen: Thesis Publishers, Ph.D. Thesis.

Bubenko, J.A. jr. 1988. Selecting a strategy for computer-aided software
engineering (CASE). University of Stockholm, SYSLAB Report No 59.

51

Chen, M. 1988. The Integration of Organization and Information Systems
Modeling: A Metasystem Approach to the Generation of Group Decision
Support Systems and Computer-Aided Software Engineering.
University of Arizona, unpublished Ph.D. Thesis.

Conradi, R., Fernstrom, C., Fuggetta, A. & Snowdon, R. 1992. Towards a
Reference Framework for Process Concepts. In J.-C. Derniame (Ed.)
Software Process Technology, EWSPT'92, LNCS 635. Berlin: Springer
Verlag, 3-17.

Conradi, R., Fuggetta, A. & Jaccheri, M.L. 1998. Six Theses on Software Process
Research. Software Process Technology, EWSPT'98, LNCS 1487. Berlin:
Springer-Verlag, 100-104.

Curtis, B., Kellner, M.I. & Over, J. 1992. Process modeling. Communications of
the ACM, 35, 9, 75-90.

Davis, G.B. & Olson, M.H. 1985. Management Information Systems, Conceptual
Foundations, Structure and Development. New York: McGraw-Hill.

DeMarco, T. 1996. The Role of Software Development Methodologies: Past,
Present, and Future. Proceedings of the 18th International Conference on
Software Engineering. Los Alamitos: IEEE Computer Society Press, 2-4.

Dijkstra E. W. 1969. Structured Programming. In J.N. Buxton & B. Randell (Eds)
Software Engineering Techniques. Brussels, Belgium: NATO Science
Committee.

Darling, A. 1993. SPICE: Software process improvement and capacity
determination. Information and Software Technology, 35, 6/7, 404-406.

Osterweil, L.J. 1987. Software processes are software too. In Proceedings of the
9th International Conference on Software Engineering. Washington D.C.:
Computer Society of the IEEE, 12-13.

European Computer Manufactures Association (ECMA). 1993. Reference Model
for Frameworks of Software Engineering Environments, ECMA TR/55,
NIST Special Publication 500-211.

Haase, V., Messnarz, R., Koch, G., Kugler, H.J. & Decrinis, P. 1994. Bootstrap:
Fine-Tuning Process Assessment. IEEE Software, July 1994, 25-35.

Harmsen, F., Brinkkemper, S. & Oei, H. 1994a. Situational Method Engineering
for Information System Projects. In T.W. Olle & A.A. Verrijn-Stuart
(Eds.) Proceedings of the IFIP WG8.l Working Conference CRIS'94.
Amsterdam: North-Holland Publishers, 169-194.

Heineman, G.T., Botsford, J.E., Caldiera, G., Kaiser, G.E., Kellner, M.I. &
Madhavji, N.H. 1994·. Emerging technologies that support a software
process life cycle. IBM Systems Journal, 33, 3, 501-529.

Henderson, J.C. & Cooprider, J.G. 1994. Dimensions of IS Planning and Design
Aids: A Functional Model of CASE Technology. In T. Allen & M. Scott
Morton (Eds.) IT and the Corporation of the 1990's: Research studies.
New York: Oxford University Studies Press, 221-248.

Heym, M. & 6sterle, H. 1993. Computer-aided methodology engineering.
Information and Software Technology, 35, 6/7, 345-354.

Hirschheim, R., Klein, H. & Lyytinen, K. 1995. Information Systems
Development: Conceptual and Philosophical Foundations. Cambridge:
Cambridge University Press.

52

ISO/IEC. 1990. ISO/IEC 10027 Information Technology - Information Resource
Dictionary System (IRDS) - Framework. ISO /IEC International
Standard.

Jaccheri, M.L. & Conradi, R. 1993. Techniques for Process Model Evolution in
EPOS. IEEE Transactions on Software Engineering, 19, 12, 1145-1156.

Jarke, M., Pohl, K., Rolland, C. & Schmitt, J.-R. 1994. Experience-Based Method
Evaluation and Improvement: A process modeling approach. In T.W.
Olle & A.A. Verrijn-Stuart (Eds.) Proceedings of the IFIP WG8.l Working
Conference CRIS'94. Amsterdam: North-Holland, 1-27.

Kaiser, G.E. & Ben-Shaul, I.Z. 1993. Process Evolution in the Marvel
Environment. In W. Schaefer (Ed.) Proceedings of the 8th International
Software Process Workshop. Los Alamitos: IEEE Computer Society
Press, 104-106.

Karrer, A.S. & Scacchi, W. 1993. Meta-environments for software production.
International Journal of Software Engineering and Knowledge
Engineering, 3, 1, 139-162.

Kelly, S., Lyytinen, K. & Rossi, M. 1996. METAEDIT+ - A Fully Configurable
Multi-User and Multi-Tool CASE and CAME Environment. In P.
Constantopoulos, J. Mylopoulos & Y. Vassiliou (Eds.) Advanced
Information Systems Engineering, LNCS 1080. Berlin: Springer-Verlag,
1-21.

Koskinen, M. & Marttiin, P. 1998. Developing a Customisable Process
Modelling Environment: Lessons Learnt and Future Prospects. In V.
Gruhn (Ed.) Proceedings on the 6th European Workshop on Software
Process Technology, EWSPT'98, LNCS 1487. Springer-Verlag, 13-27.

Kruchten, P. 1998. The Rational Unified Process: An Introduction. 2nd edition.
Reading, MA: Addison-Wesley.

Lonchamp, J. 1993. A structured conceptual and terminological framework for
software process engineering. In L. Osterweil (Ed.) Proceedings of the
2nd International Conference on the Software Process. Los Alamitos:
IEEE Computer Society Press, 41-53.

Lyytinen, K., Marttiin, P., Tolvanen, J.-P., Jarke, M., Pohl, K. & Weidenhaupt, K.
1998. Bridging the Islands of Automation. In: S.T. March & J. Bubenko Jr.
(eds) Proceedings of the Eight Annual Workshop on Information
Technologies and Systems (WITS'98). University of Jyvaskyla. Computer
Science and Information System Reports, Technical Reports TR-19.

Madhavji, N.H. 1991. The process cycle. Software Engineering Journal, 6, 5, 234-
242.

Marttiin, P. 1998. Customisable Process Modelling Support and Tools for
Design Environment. University of Jyvaskyla. Jyvaskyla Studies in
Computer Science, Economics and Statistics 43. PhD Thesis.

Marttiin, P., Lyytinen, K., Rossi M., Tahvanainen V.-P., Smolander K. &
Tolvanen, J.-P. 1995. Modeling Requirements for Future CASE: modeling
issues and architectural considerations. Information Resource
Management Journal, 8, 1, 15-25.

53

McChesney, I.R. 1995. Toward a classification scheme for software process
modeling approaches. Information and Software Technology, 37, 7, 363-
374.

Olle, T.W., Hagelstein, J., MacDonald, LG., Rolland, C., Sol, H.G., Van Assche,
F.J.M. & Verrijn-Stuart, A.A. 1991. Information Systems Methodologies
-A framework for understanding. Wokingham: Addison-Wesley.

Osterweil, L.J. 1987. Software processes are software too. In Proceedings of the
9th International Conference on Software Engineering. Washington D.C.:
Computer Society of the IEEE, 12-13.

Paulk, M.C., Curtis, B., Chrissis, M.B. & Weber, C.V. 1993. The Capability
Maturity Model: Version 1.1. IEEE Software, July, 18-27.

Pohl, K. 1996. Process-Centered Requirements Engineering. New York: Wiley.
Pohl, K. & Jarke, M. 1992. Quality Information Systems: Repository Support for

Evolving Process Models. Aachener Informatik-Berichte 92-37, RWTH
Aachen, Germany.

Pohl, K., Weidenhaupt, K. Domges, R., Haumer, P., Jarke, M., & Klamma, R.

2000. PRIME - Toward Process Integrated Modeling Environments.
ACM Transactions on Software Engineering and Methodology, 8, 4, 343-
410.

Purper, C.B. 2000. Transcribing Process Model Standards into Meta-Processes.
In: R. Conradi (ed.) Software Process Technology, EWSPT 2000. LNCS
1780. Berlin: Springer-Verlag, pp. 55-68.

Pyburn, P. 1983. Linking the MIS Plan with Corporate Strategy: An Exploratory
Study. MIS Quarterly, June, 1-14.

Rolland, C., Souveyet, C. & Moreno, M. 1995. An approach of defining ways-of
working. Information Systems, 20, 4, 337-359.

Rossi, M. & Brinkkemper, S. 1996. Complexity Metrics for Systems
Development Methods and Techniques. Information Systems, 21, 2, 209-
227.

Royce, W.W. 1970. Managing the Development of Large Software Systems. In
Proceedings Wescon, New York: IEEE Computer Society Press, 1-9.
(Reprinted in Proceedings of the 9th International Conference on
Software Engineering. IEEE Computer Society Press, 1987, 328-338.)

Si-Said, S., Rolland, C. & Grosz, G. 1996. MENTOR: A Computer Aided
Requirements Engineering Environment. In P. Constantopoulos, J.
Mylopoulos & Y. Vassiliou (Eds.) Advanced Information Systems
Engineering, LNCS 1080. Berlin: Springer-Verlag, 22-43.

Smolander, K., Tahvanainen, V.-P. & Lyytinen, K. 1990. How to Combine Tools
and Methods in Practice - a Field Study. In B. Steinholtz, A. S0lvberg &

L. Bergman (Eds.) Advanced Information Systems Engineering LNCS
436. Berlin: Springer-Verlag, 195-211.

Sommerville, I. & Rodden, T. 1995. Human, Social and Organisational
Influences on the Software Process. Technical Report GSEG/2/1995,
Computing Department, Lancaster University, UK.

54

Stenning, V. 1987. On the Role of an Environment. In Proceedings of the 9th
International Conference on Software Engineering. Los Alamitos: IEEE
Computer Society Press, 30-34.

Teichroew, D. & Hershey Ill, E.A. 1977. PSL/PSA: A Computer-Aided
Technique for Structured Documentation and Analysis of Information
Processing Systems. IEEE Transactions on Software Engineering, 3, 1, 41-
48.

Tolvanen, J.-P. 1998. Incremental Method Engineering with Modeling Tools:
Theoretical Principles and Empirical Evidence. University of Jyvaskyla.
Jyvaskyla Studies in Computer Science, Economics and Statistics 47.
Ph.D. Thesis

Tolvanen, J.-P., Rossi, M. & Liu, H. 1996. Method Engineering: Current research
directions and implications for future research. In S. Brinkkemper, K.
Lyytinen & R.J. Welke (Eds.) Method Engineering: Principles of method
construction and tool support. London: Chapman & Hall, 296-317.

Vessey, I., Jarvenpaa, S. & Tractinsky, N. 1992. Evaluation of Vendor Products:
CASE Tools as Methodology Companions. Communications of the
ACM, 35, 4, 90-105.

Waters, S.J. 1974. Computer-aided Methodology of Computer Systems Design.
The Computer Journal, 17, 3, 211-215.

Wijers, G. 1991. Modeling Support in Information Systems Development.
Amsterdam: Thesis publishers, Ph.D. Thesis.

Wijers, G. & van Dort, H. 1990. Experiences with the use of CASE tools in the
Netherlands. In B. Steinholz, A. S0lvberg & B. Bergman (Eds.) Advanced
Information Systems Engineering, LNCS 436. Berlin: Springer-Verlag, 5-
20.

Wynekoop, J.D. & Russo, N.L. 1993. System development methodologies:
unanswered questions and the research-practice gap. In J.I DeGross, RP
Bostrom & D. Robey (Eds.) Proceedings of the 14th International
Conference on Information Systems. ACM Society Press, 181-190.

Yourdon, E. 1989. Modern Structured Analysis. London: Prentice-Hall.
Yourdon, E. & Constantine, L. 1979. Structured Design. Englewood Cliffs, NJ:

Prentice Hall.

PART II: THEORY

3 TOWARDS CUSTOMISATION OF PROCESS

MODELLING LANGUAGES IN COMPUTER

AIDED PROCESS ENGINEERING

Koskinen, M. "Towards Customisation of Process Modelling Languages in
Computer Aided Process Engineering".

The paper has been submitted to the 23rd International Conference on Software
Engineering, Toronto, Canada, May 2001.

© 2000 IEEE. Printed with permission.

Towards Customisation of Process Modelling Languages
in Computer Aided Process Engineering

Abstract

Minna Koskinen

University of Jyvaskyla

Computer Aided Process Engineering (CAPE) technology is used for
supporting methodical process engineering. PML customisation for
CAPE technology is an emerging area of research that focuses on the
specification of process modelling languages and the use of such
specifications in process modelling and process enactment. This study
investigates PML customisation and outlines its direction in process
engineering and related technological support. We find that PML
customisation is almost ignored in current research on process
engineering. However, there are some empirical studies that consider
such customisation essential in local process improvement efforts, since
it allows process modelling languages be adapted and evolved
according to the local conditions and requirements. Beyond mere
linguistic adaptation, PML customisation is almost ignored also in
technological research. Instead, we find that current technologies are a
major obstacle in the application of PML customisation. In the future,
we expect customisable PCSE and CAPE environments to emerge that
give organisations more flexibility in process engineering and process
improvement.

1 Introduction

Process engineering is a disciplined approach to improve systems
development, in which process modelling or process programming is used to
articulate how systems development should be carried out. Process research
has brought forth a range of process technologies for (mainly software)
development processes and process engineering. First, process support
technology accounts for the support of conducting methodical systems and
software engineering processes. Second, Process-Centred Software Engineering
(PCSE) technology is customisable process support technology that
incorporates some support for process modelling or process programming.
Third, Computer Aided Process Engineering (CAPE) technology is dedicated to
methodical process engineering. CAPE technology does not (necessarily)
include mechanisms for process support but it provides a set of design aid tools
for process engineers.

60

The change and evolution of processes is recognised as an important issue
in process research (Madhavji, 1991; Dowson and Fernstrom, 1994). For
example, Madhavji (1992) presents a general framework for changes that is
used as an infrastructure support, within which changes can be carried out by
following one or more change methods. The need for customisation is a core
reason for the emergence of PCSE and CAPE environments (Bandinelli et al.,
1993; Conradi and Jaccheri, 1993; Finkelstein et al., 1994; Kaiser and Ben-Shaul,
1993). First, process evolution refers to changes in the structure of enacting
processes. It is extensively discussed in current research literature (Madhavji,
1991; Conradi et al., 1994; Heineman et al., 1994; Lonchamp, 1995). Second,
linguistic adaptation refers to changes made to the way in which processes are
conceived, represented, or enacted. There are currently few approaches for
linguistic adaptation (Balzer and Narayanaswamy, 1993; Kaiser et al., 1996).

Research on the customisation of CAPE technology has emerged only
recently. First, metaprocess customisation refers to changes made in process
engineering processes. Broadly speaking, the same mechanisms that are used
for production process support can be applied also for metaprocess support
(Lonchamp, 1995). Second, operational customisation requires mechanisms to
change the way in which process model components are created, managed and
manipulated. Operational customisation adjusts process modelling tools to
different methods of specification, component reuse, and tracing, as examples.
Third, language customisation denotes that a process modelling language is
adapted in some way (Koskinen, 1999). The changes may concern the
conceptual framework, notation or semantics of the language. While the effects
of metaprocess and operational customisation are restricted to the use of a
CAPE environment, language customisation is instead reflected also as
linguistic adaptation in PCSE.

This study investigates PML customisation and outlines its direction in
process engineering and related technological support. We shortly review the
current state of art in linguistic adaptation and the approaches developed for
such adaptation in current PCSE/CAPE technology (in Section 2). Thereafter,
we discuss different approaches to process modelling language design and
explicate the concept of PML customisation. In addition, we consider some
aspects of a next-generation language design required in PML customisation (in
Section 3). We also discuss PML customisation in the context of PML
engineering and process engineering, and consider the state of art in current
process technology (in Section 4). The conclusions are finally briefed (in Section
5).

2 State of Art in Linguistic Adaptation

Linguistic adaptation denotes that some changes can be made to a PCSE
environment that affect the way of representing, conceiving, or enacting

61

processes. Linguistic adaptation may be achieved by several means. We find
five general mechanisms of linguistic adaptation in PCSE/CAPE environments.

First, specialisation is a mechanism that allows ontological refinement. A
PCSE environment that supports specialisation provides a generic process
metamodel that contains a set of generic process types or classes. These can be
further specialised into process-specific types or classes that possess some
additional or more specific properties. The environment thus allows the
specification of new process types or classes within a particular process
ontology. Specialisation seems to be the most commonly used mechanism of
linguistic adaptation in current PCSE/CAPE environments.

As examples, we discuss two environments that use specialisation as the
prime mechanism of adaptation. First, Malone et al. (1995) introduce Oval that
is a tailorable tool for creating co-operative applications. It provides four
primitive "building blocks" (objects, views, agents, and links). Environment
specific building blocks are created from these primitive blocks through
specialisation. Rule-based agents can perform simple tasks triggered by events,
e.g., arrival of mail. The tasks are constructed from a set of system-defined
generic actions that can operate on different building blocks. Second,
Lonchamp (1995) presents CPCE that is an environment kernel for managing
asynchronous collaborative applications. A process model is a network of
classes that are specialised from the generic classes provided by the kernel.
Generic classes embody the enactment mechanisms and their generic
behaviours are inherited by specialised classes. Class variables describe model
properties in a declarative way. Class methods of the generic classes can cope
with the anticipated values of these variables, whereas unanticipated resolution
methods need a new piece of code included within the kernel.

Second, metamodelling collects information common to a class of objects.
Through metamodelling, a metamodel is specified that is used as the basis of
the integration of a PCSE environment. The concepts specified in a meta
metamodel are instantiated and composed into a metamodel. This metamodel
is further instantiated into a specific process model. Specialisation may be used
in the construction of type hierarchies.

ConceptBase is a deductive object manager for specification management
applications based on a Telos knowledge base Geusfeld et al., 1993; Jarke et al.,

1993). Jarke and Rose (1992) present the CAD
0

model that is specified using the
O-Telos metamodelling language. The model is used as a metamodel in the
further modelling of a software engineering environment. The environment is
specified by enumerating the allowed tools, their operations, and the object
types processed by the operations.

Third, generation takes a process model developed in a CAPE environment
and translates it into a process language for which there is a process engine
available. The process metamodel of the CAPE environment is first mapped to
the target language. This mapping specifies how the translation is carried out.
The approach then requires a generator mechanism that implements the
mapping.

62

Again, we consider two examples. First, Articulator is a knowledge-based
CAPE environment for modelling, analysing, and simulating software
processes (Mi and Scacchi, 1990; Mi and Scacchi, 1996). Articulator uses
specialisation for the specification of process ontologies and translation for
mapping the process models into a process modelling language for which there
already exists a process engine. Articulator is implemented on a knowledge
based metamodel with a resource-centred ontology. Each resource model
specialises this generic resource model. A special-purpose application generator
must be built for the mapping between a specialised class of resource models
and a process programming notation. Process models are then automatically
transformed into process programs using this generator. Second, MetaView is a
metaCASE environment for software engineering (Sorenson et al., 1988;
Froelich, 1994). Meta View allows the use of different process modelling
languages. The system provides an Execution Engine and an intermediary
language that is based upon a nested transaction model. Each process
modelling language is mapped to this language. At the user level, a particular
process modelling language is chosen and a process model or process program
is produced with it. The process model is then transformed into an execution
model that is interpreted by the Execution Engine.

Fourthly, delegation forwards part of the enactment task to external
enactment mechanisms. The delegator may be a process engine or other
mechanism that manages the core enactment process. There is a mediating
exchange interface between the core mechanism and the external mechanism,
which makes it possible to co-ordinate their functioning.

PRIME is a framework for constructing process-integrated tools (Pohl et
al., 2000). It contains a generic process engine framework that allows the
specification of process fragments ("contexts") with different process modelling
languages (e.g., SLANG) or programming languages (e.g., C++). The
corresponding enactment mechanism has to be embedded in the generic
process engine framework. The design of the framework requires that the
enactment mechanism provides appropriate interface for message exchange.
Also, the suitable process modelling languages are necessarily constrained to
those that are compatible with PRIME's context-based process metamodel.

Fifthly, parameterisation uses a generic process engine architecture that
enables the use of parameters in order to accept extensions and changes to its
default enactment semantics. The additions and changes are reflected as
notational extensions in the process language. A generic process engine
architecture is first proposed by Balzer and Narayanaswamy (1993).

Amber is an extensible rule-based process server (Kaiser et al. 1996). The
process assembly language comprises an object-oriented data definition
language for the specification of process state and product artefact classes, and
a rule language for the specification of actions to be taken by a user or the
environment. Notational extensions are made by means of rule annotations.
These are strings that can be attached to different sections of the textual rule
definitions. Rule annotations affect the default behaviour before, during, or
after the execution of rule-sections and the default chaining behaviour into or

63

from a rule. Semantic extensions are made at specific entry points between rule
phases in the interpreter. Variation is permitted both in the interpretation of the
rule notation and the semantics of chaining among rules.

The mechanisms of linguistic adaptation supported by current PCSE and
CAPE technologies account for up to three forms of adaptation. First,
specialisation is the primary means of conceptual adaptation. Specialisation of
generic process types introduces new concepts within the conceptual limits of
the generic model. This approach is used in most customisable PCSE/CAPE
environments. Another approach to conceptual adaptation is metamodelling.
Second, notational adaptation is achieved as a "side effect" in parameterisation,
in which new keywords are added as notational annotations to reflect linguistic
extensions in the process engine. Also the alternative notations brought in by
alternative languages in delegation could be seen as some kind of notational
adaptation. Third, semantic adaptation is achieved through parameterisation,
delegation and generation. Parameterisation allows one to extend the process
engine, whereas delegation is based on the use of a mediating interface, and
generation on a mapping between the modelling system and a language.

Mechanisms that enable linguistic adaptation are usually not specifically
designed with linguistic adaptation in mind but they are more a side-effect of
an attempt to achieve other objectives. Specialisation of process types is needed
to define process fragments that can be enacted using one generic process
interpreter. Metamodelling is used for creating a specific process metamodel
that enables a support environment to be consistently integrated. Generation
allows the use of a comprehensive CAPE environment for process modelling,
analysis, and simulation. Delegation allows the use of different, existing process
modelling languages for the specification of process fragments.
Parameterisation is the only approach that is genuinely and specifically
intended for linguistic adaptation. It makes extensions to the enactment
mechanism and changes its default behaviours.

We find that language customisation is hardly considered in current
research on process engineering. However, customisable CAPE demands an
approach that reaches beyond linguistic adaptation. In the following, we
highlight the integral and indispensable role of language customisation in
process engineering and thereby also in the application of PCSE and CAPE
technologies.

3 PML Customisation

Research on process modelling languages and approaches has been intensive,
including both theoretical work on definitions and classifications and
experimental work on language design and implementation.

In current classifications, the most frequently addressed aspect of process
modelling languages is the "language type", "paradigm" or "style" (Curtis,
Kellner and Over 1992; Conradi, Liu and Jaccheri 1991; Madhavji 1991;

64

Armenise et al. 1993; McChesney 1995). It is considered as the main
determinant of the constructs available in a process modelling language.
Heterogeneous approaches constitute the first generation of process modelling
languages, in which the language characteristics are closely related to the
underlying implementation approach - the "base language" (Curtis, Kellner
and Over 1992).

Several general language designs have been developed that allow
linguistic variation in process modelling. These include a single, semantically
broad language, a set of independent and special-purpose languages, and a
common core language that can be extended (Sutton, Tarr and Osterweil 1995;
Conradi and Liu 1995). The first design, a broad language, provides a broad
range of alternative language constructs, from which a process modeller can
choose the appropriate ones. The second design, a set of independent
languages, provides different languages for expressing different situations or
aspects of processes. The third design, an extendible core language, provides a
language for expressing the core aspects of processes and allows the extension
of modelling system with whatever other language constructs needed.

It is found that a next-generation process modelling language should
enable modelling of processes by composing elements from different language
paradigms, or representing different semantic aspects (Sutton and Osterweil
1997). This would introduce additional flexibility and incrementality into
process modelling. We find that this proposal has two important consequences
for language design. First, any particularities of process modelling languages
must be abstracted away from language architectures. It has to view language
as an artefact with a specific structure, but with no specific content. Second, a
further consequence of the first is that the language architecture must prevent
the characteristics of a "base language" from reflecting on specific process
modelling languages. The generic language architecture must be
implementation independent.

PML customisation is the adaptation and evolution of process modelling
languages. A process modelling language covers a conceptual framework for
the composition, a notation for the representation, and semantics for the
interpretation of process models (Koskinen 1999; cf. Lonchamp 1993). Process
modelling languages vary in these three aspects. A conceptual framework
accounts for a certain perspective of a process and different notations are useful
for specific purposes. Semantics determines the rules of interpretation. In full
fledged customisation, both the conceptual framework, notation and semantics
of a process modelling language can be specified and adapted.

A PML specification has therefore to distinguish between the conceptual,
notational and semantic aspects of a process modelling language. This
distinction is beneficial also at the level of process models, since it allows one to
maintain several representations of a model and to reuse model components
across different process models or process perspectives. Without this
representation independence, it would be very difficult to integrate different
representations and perspectives (Curtis, Kellner and Over 1992; Sommerville
et al. 1995) and especially to maintain the enactment state of process models
throughout process changes.

65

Consequently, we distinguish three classes of language constructs. In the
following, we illustrate these classes with an example. The Visual Process
Language (VPL) proposed by Shepard, Sibbald and Wortley (1992) is chosen
since the article illustrates the language adequately from all three aspects. First,
conceptual constructs specify process ontologies. VPL provides nine types of
concepts: Start, Finish, Procedure, Task, Decompose, Recompose, Split, Merge,
and Branch. A VPL model combines a group of different process elements
through Paths. A Path refers to a dependency between two concepts. There are
also several constraints that specify how different process elements can and
must be conceptually interrelated (e.g., all concepts in a model must be
connected by Paths). In addition, Object is a concept referring to a software
artefact.

Second, notational constructs are used to implement different
representations. A VPL model is a directed Graph of Nodes and Edges. Nodes
represent various concepts while Edges represent Paths. There are also several
notational rules that must apply. Some of these rules are related to the
corresponding conceptual specification (e.g., a rule that all the nine types of
concept must be represented). Other rules are purely notational (e.g., Edges are
directed from left to right so that the arrow head points to the node on the right
hand side). Some concepts, such as Object, have no representation in Graphs.

Third, semantic constructs specify the rules of model interpretation and
enactment. Each semantic construct collects a set of generic enactment features
and generic operations. Note that, due to a lack of conceptual differentiation
between different construct types, constructs are often labelled with the same
name. We use" (S)" to distinguish a semantic construct. The enaction of a VPL
program is the Flow of Objects(S) through it. This reflects a Petri-net based
implementation. A semantic construct determines how this Flow proceeds and
what happens when certain Node(S) is encountered during enactment. The
enactment of a VPL program begins at Start(S) and ends at Finish(S).
Objects(S) are created at Start(S) and deactivated and archived at Finish(S). At
Task(S), an Action is performed on the Object(S), whereas at Procedure(S), the
thread of execution is channelled to a Sub-Graph(S). A Family of objects is
created at Decompose(S) and cumulated and synthesised at Recompose(S).
Split(S) creates copies of an Object(S) and emits one along each output Flow,
whereas Merge(S) is a rendezvous point for the concurrent Flows created at
Split(S). At Branch(S), one output Flow is chosen and an Object(S) is emitted
along it.

In a PML specification, the different types of language constructs are
specified and integrated. The role of PML customisation in process engineering
is to create and adapt such specifications.

66

4 Towards PML Engineering

Process modelling language (PML) engineering is a disciplined approach to the
study, design, construction and adaptation of process modelling languages.
(Rossi and Sillander 1998). PML customisation is a core function of PML
engineering in customisable CAPE.

Many researchers and practitioners have found that the most difficult
practical problems of process engineering are not technical. Systematic
enhancement of an organisation's processes requires the support of human
process actors. Truly successful improvement cannot happen unless the process
improvement effort enables the improvement of human awareness,
articulation, discussion and negotiation, and above all a change of behaviour.
Automation through technology is useful and necessary to the degree it can
feasibly support this.

Step-wise improvement is a fundamental notion in process maturity
models (Paulk et al. 1993). CMM describes five maturity levels from initial to
optimising through which an organisation should mature. However, we find it
too strong to presume that an organisation can really be located at a particular
maturity level. We often find it more useful to think that an organisation has a
maturity profile with different weaknesses and strengths. Concerning one aspect
an organisation's maturity may be quite low, while regarding another it may be
rather high. The first task in process engineering should be to find out this
profile and then to adjust the process improvement effort accordingly. A
feasible starting point for improvement is to account for the local practices and
problems. After that, processes and the respective support should be improved
gradually at a speed an organisation is able and prepared to mature. PML
engineering should be an organic part of this effort. Process modelling
languages should be adapted and evolved according to the given local
conditions and requirements.

Rossi and Sillander (1998) report a process engineering effort that
included PML engineering as part of it. The effort constituted a four-step
process modelling life-cycle conducted by two quality engineers. The life-cycle
started with a process context study using data collection. The quality·
engineers used multiple data sources including semi-formal interviews,
questionnaires, observation and participative sessions, local manuals and other
documents, and research literature. They also participated in actual software
engineering to get an "inside view" of the target process. The second step
included PML selection and adaptation with an objective to achieve a process
modelling language that would be appropriate for the present modelling
situation. The quality engineers surveyed and evaluated existing PMLs based
on their understanding of the process context and the forthcoming modelling
task. Thereafter, they selected one language that appeared most suitable and
further modified it to properly fit their objectives. In the third step, the quality
engineers used the adapted PML to create a preliminary process model. This
"pilot model" represented the process as the quality engineers understood it.

67

The PML was further modified where necessary. Lastly, the quality engineers
arranged a participative modelling session. During this session, the pilot model
was made into a large wall chart that the process actors collectively commented
and revised according to their specific needs. Also the PML was slightly
modified.

With PML engineering, the usefulness of a process modelling language in
a local context is optimised. Therewith, the language fits the context, given
purpose and the unique composition of objectives. The constructs it provides
for representing and reasoning about various aspects is chosen accordingly.
The features of the process modelling language thus become such that are
needed and used in real. Moreover, when extensive and participant-intensive
data analysis and modelling are used, language features become well
understood both among process engineers and process actors.

Unfortunately, the current state-of-art in process technology is a major
obstacle in the application of PML engineering. An organisation can obtain
process support only by adopting a process support environment together with
a particular process modelling language(s) or by developing a process support
environment of its own. The latter choice is often out of question due to the
high cost of local development. Therefore, an organisation is forced to select a
certain technology and approach too early. The organisation is forced to choose
process modelling methods and languages and to make decisions on the
process support paradigm and tools before an opportunity to properly
experience in their use and possible side-effects. In addition, further adaptation
and improvement is obstructed unless the invested technology is replaced with
another.

PML customisation for CAPE technology is an emerging area of research
that focuses on the specification of process modelling languages and the use of
such specifications in process modelling and process enactment. It requires a
customisable PCSE/CAPE environment that uses explicit PML specifications
with a generic process engine, and provides some facilities for PML
engineering. An example towards this kind of approach is an environment
called CPME that is still in a prototypical stage (Koskinen and Marttiin 1998). In
CPME, Process modelling languages are specified through process
metamodelling that allows the customisation of process modelling languages
(Koskinen and Marttiin 1997). In the future, we expect this type of customisable
PCSE and CAPE environments to emerge and to give organisations more
flexibility in process engineering and process improvement with lower risks in
process modelling and technology adoption.

5 Conclusions

We have studied PML customisation in the context of PML engineering and
process engineering. We find that PML customisation is almost ignored in
current research on process engineering, despite the few empirical studies that

68

further consider it essential in local application of process engineering. We find
that PML engineering is an integral and often indispensable part of process
engineering. Therewith, process modelling languages can be adapted and
evolved according to the given local conditions and requirements.

Current PCSE and CAPE technologies provide some means for linguistic
adaptation but full-fledged PML customisation is not supported. Furthermore,
instead of supporting PML customisation, current technology is a major
obstacle in its application. In the future, we expect customisable PCSE/CAPE
environments to emerge that give organisations more flexibility in process
engineering and process improvement.

References

Armenise, P., Bandinelli, S., Ghezzi, C. & Morzenti, A. 1993. A survey and
assessment of software process representation formalisms. International
Journal of Software Engineering And Knowledge Engineering, 3, 3, 410-
426.

Balzer, R. & Narayanaswamy, K. 1993. Mechanisms for generic process
support. In D. Notkin (Ed.) Proceedings of the 1st ACM SIGSOFT
Symposium on the Foundations of Software Engineering. Special Issue
of Software Engineering Notes, 18, 5, 21-32.

Bandinelli, S., Fuggetta, A. & Ghezzi, C. 1993. Software Process Model
Evolution in the SPADE Environment. IEEE Transactions on Software
Engineering, 19, 12, 1128-1144.

Conradi, R., Fernstrom, C. & Fuggetta, A. 1994. Concepts for Evolving Software
Processes. In A. Finkelstein, J. Kramer & B. Nuseibeh (Eds.) Software
Process Modelling and Technology. New York: Wiley.

Conradi, R. & Jacclieri, M.L. 1993. Customization and Evolution of Process
Models in EPOS. In N. Prakash, C. Rolland & B. Pernici (Eds.)
Information System Development Process. Amsterdam: Elsevier Science
Publishers, 23-39.

Conradi, R. & Liu, Ch. 1995. Process Modelling Languages: One or Many? In
W. Schafer (Ed.) Software Process Technology, EWSPT'95, LNCS 913.
Berlin: Springer-Verlag, 98-118.

Conradi, R., Liu, C. & Jaccheri, M.L. 1992. Process modelling paradigms: an
evaluation. In M. I. Thomas (Ed.) Proceedings of the 7th International
Software Process Workshop. Los Alamitos: IEEE Computer Society
Press, 51-53.

Curtis, B., Kellner, M.I. & Over, J. 1992. Process modeling. Communications of
the ACM, 35, 9, 75-90.

Deiters, W. & Gruhn, V. 1994. The Funsoft Net Approach to Software Process
Management. International Journal of Software Engineering and
Knowledge Engineering, 4, 2, 229-256.

69

Dowson, M. & Fernstrom, C. 1994. Towards Requirements for Enactment
Mechanisms. In B. Warboys (Ed.) Software Process Technology,
EWSPT'94, LNCS 772. Berlin: Springer-Verlag, 90-106.

Finkelstein, A., Kramer, J. & Nuseibeh, B. 1994. Software Process Modelling and
Technology. New York: Wiley.

Froehlich, G. 1994. Process Modeling Support in Metaview. Department of
Computational Science, University of Saskatchewan, Saskatchewan,
Canada. Master's Thesis.

Heineman, G.T., Botsford, J.E., Caldiera, G., Kaiser, G.E., Kellner, M.I. &
Madhavji, N.H. 1994. Emerging technologies that support a software
process life cycle. IBM Systems Journal, 33, 3, 501-529.

Jarke, M., Jeusfeld, M. & Rose, T. 1993. Process Services in ConceptBase. In M.
Jarke (Ed.) Database Application Engineering with DAIDA. Berlin:
Springer-Verlag, 389-412.

Jarke, M. & Rose, T. 1992. Specification Management with CAD0

• In P.
Loucopoulos & R. Zicari (Eds.) Conceptual Modeling, Databases, and
CASE. New York: Wiley, 489-505.

Jeusfeld, M., Rose, T. & Jarke, M. 1993. ConceptBase: A Telos-Based Software
Information System. In M. Jarke (Ed.) Database Application Engineering
with DAIDA. Berlin: Springer-Verlag, 367-388.

Kaiser, G.E. & Ben-Shaul, I.Z. 1993. Process Evolution in the Marvel
Environment. In W. Schaefer (Ed.) Proceedings of the 8th International
Software Process Workshop. Los Alamitos: IEEE Computer Society
Press, 104-106.

Kaiser, G.E., Ben-Shaul, I.Z., Popovich, S.S. & Dossick, S.E. 1996. A
Metalinguistic Approach to Process Enactment Extensibility. In W.

Schaefer (Ed.) Proceedings of the 4th International Conference on the
Software Process. Los Alamitos: IEEE Computer Society Press, 90-101.

Koskinen, M. 1999. A Metamodelling Approach to Process Concept
Customisation and Enactability in MetaCASE. University of Jyvaskyla.
Computer Science and Information Systems Reports, Technical Reports
TR-20. Licentiate thesis.

Koskinen, M. & Marttiin, P. 1997. Process Support in MetaCASE: Implementing
the Conceptual Basis for Enactable Process Models in MetaEdit+. In J.
Ebert & C. Lewerentz (Eds.) Software Engineering Environments. Los
Alamitos: IEEE Computer Society Press, 110-123.

Koskinen, M. & Marttiin, P. 1998. Developing a Customisable Process
Modelling Environment: Lessons Learnt and Future Prospects. In V.
Gruhn (Ed.) Proceedings on the 6th European Workshop on Software
Process Technology, EWSPT'98, LNCS 1487. Springer-Verlag, 13-27.

Lonchamp, J. 1995. CPCE: A Kernel for Building Flexible Collaborative Process
Centered Environments. In M.S. Verrall (Ed.) Software Enginee�ing
Environments. Los Alamitos: IEEE Computer Society Press, 28-41.

Madhavji, N.H. 1991. The process cycle. Software Engineering Journal, 6, 5, 234-
242.

Madhavji, N.H. 1992. Environment Evolution: The Prism Model of Changes.
IEEE Transactions on Software Engineering, 18, 5, 380-392.

70

Malone, T.W., Lai, K.-Y. & Fry, C. 1995. Experiments with Oval: A Radically
Tailorable Tool for Cooperative Work. ACM Transactions on
Information Systems, 13, 2, 177-205.

McChesney, I.R. 1995. Toward a classification scheme for software process
modeling approaches. Information and Software Technology, 37, 7, 363-
374.

Mi, P. & Scacchi, W. 1990. A Knowledge-Based Environment for Modeling and
Simulating Software Engineering Processes. IEEE Transactions on
Knowledge and Data Engineering, 2, 3, 283-294.

Mi, P. & Scacchi, W. 1996. A Meta-Model for Formulating Knowledge-Based
Models of Software Development. Decision Support Systems, 17, 3, 313-
330.

Paulk, M.C., Curtis, B., Chrissis, M.B. & Weber, C.V. 1993. The Capability
Maturity Model: Version 1.1. IEEE Software, July, 18-27.

Pohl, K., Weidenhaupt, K. Domges, R., Haumer, P., Jarke, M., & Klamma, R.
2000. PRIME - Toward Process Integrated Modeling Environments.
ACM Transactions on Software Engineering and Methodology, 8, 4, 343-
410

Rossi, S. & Sillander, T. 1998b. A Practical Approach to Software Process
Modelling Language Engineering. In V. Gruhn (Ed.) Proceedings on the
6th European Workshop on Software Process Technology, EWSPT'98,
LNCS 1487. Springer-Verlag, 28-42.

Shepard, T., Sibbald, S. & Wortley, C. 1992. A Visual Software Process
Language. Communications of the ACM, 35, 4, 37-44.

Sommerville, I., Kotonya, G., Viller, S. & Sawyer, P. 1995. Process Viewpoints.
In W. Schafer (Ed.) Software Process Technology, EWSPT'95, LNCS 913.
Berlin: Springer-Verlag, 2-8.

Sorenson, P.G., Tremblay, J-P. & McAllister, A.J. 1988. The Metaview system for
many specification environments. IEEE Software, 30, 3, 30-38.

Sutton, S. & Osterweil, L. 1997. The Design of a Next Generation Process
Language. In M. Jazayeri, H. Schauer (Eds.) Software Engineering -
ESEC-FSE'97, LNCS 1031. Berlin: Springer-Verlag, 142-158.

Sutton, S.M., Tarr, P.L. & Osterweil, L.J. 1995. An Analysis of Process
Languages. University of Massachusetts, Department of Computer
Science. CMPSCI Technical Report 95-78.

4 CONCEPTUAL FOUNDATIONS OF PROCESS

MET AMO DELLING

Koskinen, M. "Conceptual Foundations of Process Metamodelling".

This paper has been submitted for publication. Copyright may be transferred
without further notice and the accepted version may be posted by the
publisher.

Conceptual Foundations of Process Metamodelling

Abstract

Minna Koskinen

University of Jyvaskyla

Process modelling languages should be carefully selected and adapted
to make them suit various needs present in local process contexts.
Language standards are mostly inappropriate in such contexts, yet
conceptual systematisation is necessary. Process metamodelling is
proposed as a means for the specification of process modelling
languages in customisable environments. Under a comprehensive
process meta-metamodel, different process modelling languages can be
consistently specified and process metamodels constructed. The
contribution of this study is to develop the conceptual foundations of
such an approach. We begin with a discussion of relevant theoretical
and linguistic issues, and then continue to developing an integrated
model of process metamodels. The proposal is based on a continuum of
constructive and experimental work conducted since mid 1990's.
Although the work is targeted at metaCASE area, it may benefit anyone
who is interested in the conceptual design of process modelling
languages.

1 Introduction

Process modelling languages should be carefully selected and adapted to make
them suit various needs present in local process contexts: a particular
development effort in a particular development organisation. Support for this
type of adaptation is necessary in technologies that are customised for a wide
range of ISD methods and organisations.

The adaptation of process modelling languages to a specific process
context has not attracted much academic interest so far. A more characteristic
approach has been a quest for a conceptual standard (Feiler and Humphrey,
1993; Lonchamp, 1993; Conradi et al., 1992; Conradi et al., 1993). Current
process support environments offer specific built-in languages with varying
designs (Sutton et al., 1995; Conradi and Liu, 1995). Instead, research on
evolution and change is targeted almost exclusively at process models
(Madhavji, 1992; Bandinelli et al., 1993; Conradi and Jaccheri, 1993; Finkelstein
et al., 1994; Kaiser and Ben-Shaul, 1993; Dowson and Fernstrom, 1994). In
metaCASE area, the situation is even worse, since the majority of current
metaCASE environments lack process support (Marttiin et al., 1993; Verhoef
and ter Hofstede, 1995).

74

Research on process modelling languages has been technology-intensive,
and this may be the greatest reason for the lack of appropriate studies on
language adaptation. Yet, there are some case studies that stress the importance
of language adaptation in process modelling efforts (Phalp and Shepperd, 1994;
Rossi and Sillander, 1998). The first few approaches towards linguistic
adaptation of process support (Balzer et al., 1993; Kaiser et al., 1996; Sutton and
Osterweil, 1997) are technology-driven and lack adequate theoretical
foundations. Sutton and Osterweil (1997) find that a next-generation process
modelling language should be able to model processes by composing elements
from different language paradigms or representing different semantic aspects.

The justification for language adaptation can be mostly derived from
organisational and social considerations, on the role of technology and process
improvement in larger contexts. On one hand, it is a question of the impact of a
language and its 'universe of discourse' on process thinking. A process
modelling language enables the systematic articulation and study of processes,
but it also reduces perception of processes and the way in which we
comprehend and attack process problems. On the other hand, we are concerned
of the impact of process thinking on the personal and collective image of
identity, and further on the meaningfulness and sensibility of the social
collective within which work is carried out. Incapability to cope with the
myriad of ideals and values involved in a given piece of systems development
is an inexhaustible source of 'irrational' opposition and conflicts that obstruct
process improvement efforts.

Further, it is important to take into account not only the particular forms
of process thinking but also their tendency of gradual change. Initiated either
by systematic improvement efforts or as an ad hoe response to the necessities at
hand, process thinking evolves throughout the development effort in response
to individual and organisational learning. As there exists no ideal process
thinking that would be appropriate for all organisations, there neither exists
one for an organisation throughout all times. Consequently, we are concerned
of not only the question of what kind of approach best fits a process context at a
given time but also how learning, evolution and improvement are best
encouraged and supported.

Due to the general absence of interest in language adaptation, the
information systems field lacks a theoretical foundation for language change.
Such foundation would enable systematic and rigorous consideration of
process modelling languages not only within the technical context but in
association with wider social impacts. However, before such a theoretical
foundation can be established, we have a more modest goal to achieve: to form
a more profound understanding of process modelling languages and
mechanisms with which they can be adapted. On one hand, a need to
understand the linguistic underpinnings of process modelling has lead us to
study the structure of language and techniques. This is necessary to make
sufficient abstractions on which further conceptual development can be based.
On the other hand, a need to articulate and codify languages and techniques
has lead us to study different forms of metamodelling.

75

Language standards are mostly inappropriate in this context, yet
conceptual systematisation is necessary. The need for systematisation should be
answered by introducing a generic language framework within which process
modelling languages could be designed and constructed in a consistent and
integrated manner. We find process metamodelling as a means for context
sensitive specification and evolution of process modelling languages within a
given process context. Here, the core of the generic language framework is a
generic model of process metamodels.

The idea of process metamodels is not at all new. Already a decade ago
researchers argued about the domain (technical vs. organisational), the primary
focus (objects, activities vs. decisions) and the dynamics of process models
under the title 'process metamodel' (Dowson, 1987). Since then, many attempts
have been made to specify a comprehensive set of concepts that could be
applied to different development efforts.

Process metamodels have been developed to increase the methodical
rigour and applicability of process modelling. Examples of this line of work are
NATURE metamodel for requirements engineering Garke et al., 1994; Rolland
et al., 1995), and Articulator metamodel for software process modelling (Mi and
Scacchi, 1990; Mi and Scacchi, 1991) and business process modelling (Mi and
Scacchi, 1996). Process metamodels have also been used for environment
integration purposes, e.g., to integrate software process and tools (Pohl and
Weidenhaupt, 1997), software process and configuration management Goeris,
1997), a complete specification management environment through processes
Garke and Rose, 1992), and independently developed tools within generated
process-driven environments (Karrer and Scacchi, 1993). In some approaches,
process metamodels also codify policies for process model changes (Conradi
and Jaccheri, 1993). The strength of explicit process metamodels is their
applicability in consistently specifying, composing, and integrating different
aspects and parts of a process support environment.

Although process metamodels have been used for establishing better
articulated, more rigorous and consistent process approaches, the conduct of
process metamodelling itself has not become a well-articulated and rigorous
activity. As we will indicate, this is due to two major factors. On one hand,
there is a concealed lack of common understanding on metamodelling. On the
other hand, current forms of metamodelling are inadequate for properly
addressing the specific contingencies that come with process modelling
languages.

The core aim of our study is two-fold: first, to enable the contextual
specification of process modelling languages and; second, to increase the
rigour, contextual sensitivity, and comparability of process modelling
approaches by increasing the rigour of process metamodelling. To our
knowledge, comparable work is not carried out elsewhere. The objective of this
work is to establish a conceptual foundation for process metamodelling. We
begin with theoretical and linguistic issues. First, we discuss the structure of
language and techniques (Section 2), and study different metamodelling
approaches to clarify the perspective we adopt (Section 3). Thereafter, we
continue to develop an integrated conceptual model of process metamodels

76

(Section 4) and consider some issues related to modelling techniques (Section
5). Finally, we draw some preliminary conclusions (Section 6).

2 Language and Techniques

A language is a systematic means of communicating ideas or feelings by means
of conventionalised signs, sounds, gestures, or marks that have understood
meanings. Language is, for us, a basis for communication on matters as much
as for comprehending them. As a means of communication, language is a
heritage of a collective. It is a convention for sharing information. The arena on
which language is shared and endured, is an arena of public. As such, language
confines to expression (representing something in a medium) and interpretation
(grasping what someone intends with an expression). As a means of
comprehension, again, language is a private enterprise. It is learnt, adopted and
assimilated into an individual mind. Language is a device of (re)constructing
concepts abstractly and explicitly, thereby giving an individual a way to grasp
the world. As such, it contributes to perception (recognising and noting facts and
occurrences), and conception (the mental capacity of forming and understanding
ideas, abstractions, and their symbols).

Our focus of interest, of course, is not on natural language but a certain
form of artificially constructed language. Yet, a process modelling language has
no relevancy out of the context of natural language. A process modelling
language is - or should be - as much influenced by natural language as it itself
influences natural language. It is not a mere artificial aid but is interwoven into
one's everyday jargon and local linguistic heritage. This is in contrast to process
programming languages that are intended only for instructing a mechanical
interpreter.

In our quest for a useful conception of language, we first have to look for a
suitable linguistic model, on which we can base further conceptual work. We
choose to start with Ullman's triangle (see, e.g., Baldinger, 1980). This 'semiotic
triangle' has been applied in several earlier studies in IS field (e.g., Bergheim et
al., 1989). This model comprises three interrelated entities: names that symbolise
concepts that refer to things in the world. Even though Ullman's triangle was not
originally intended as such, it can be conceived of as "a methodological model
on the level of the second metalanguage (level of linguistic methodology)"
(Baldinger, 1980). As such, it suits our goal to outline a unified view of the

world of concepts, signs and meanings
1

•

I

A discussion of the evolution of the 'semiotic triangle' can be found, e.g., in (Baldinger, 1980).
Within general linguistics, also more elaborate models (e.g., the trapezoidal model) have been
developed but the enhancements are made mostly with regard to speech. (See an account for
semantic theories in (Baldinger, 1980)). In the present scope we find them unnecessarily
complex. The 'semiotic tetrahedron' (Falkenberg et al., 1998) is developed for the specific
needs of IS field on the basis of the 'semiotic triangle'. It distinguishes between a domam (i.e.,
referent), a conception, a representation, and an actor (or observer in (Braun et al., 1999)). As
such, the model contributes not so much to a structured conception of language, but to a
pragmatic conception of how we comprehend and use signs.

77

There is a considerable diversity of opinion among linguists about what
the terms 'sign', 'concept' and 'meaning' precisely denote and how they relate
to each other. Especially, the very nature of 'meaning' is elusive and the
principal question examined by semanticists has been that of how we are to
conceptualise meanings. Not having generally agreed denotations in
linguistics, we describe the terms here for our limited purposes. The following
characterisations may thus be theoretically disputable in linguistics but
hopefully yet illuminating and useful for IS researchers.

(1) A concept is something conceived in the mind. It is formed through
discrimination, by finding there "something else" in the world that
one can not comprehend as something he or she already knows and
understands. Thus, a concept is constructed in comparison to other
concepts: by determining how it is distinguished from them. The
concept is then made expressible by giving it a name and showing
how the name is used.

(2) A sign is a fundamental linguistic unit that symbolises a concept or
has a purely syntactic function. As a designator, it is the name of a
concept.

(3) A meaning of a concept is the result of the concept being actualised in
the world. Thereby this result - a "thing", widely understood as any
phenomenon or complex of phenomena - becomes the referent of all
signs that are perceived to stand for that particular "thing".

Respectively, a language consists of three intertwined systems: a
conceptual framework that is a system of concepts, a notation that is a system of
signs, and a semantics that is a system of meanings. In the following, we discuss
the structure of process modelling languages based on this view (Section 2.1).
Thereafter, we extend our discussion to techniques as composites of a language
and an operational semantics (Section 2.2). Furthermore, we show a contrast to
process programming languages.

2.1 The Structure of Process Modelling Languages

A process modelling language composes a conceptual framework for the
composition, a notation for the representation, and a semantics for the
interpretation of process models (cf. Lonchamp, 1993). It is arguable whether
any distinction can be drawn between a system of concepts and a system of
meanings (Fodor, 1977; Baldinger, 1980). However, process modelling
languages are unique in the sense that they are intended for dual interpretation:
human and automated. Therefore, it should count for a conceptual framework
for human comprehension and a semantics (at least) for automated enactment.

Conceptual framework. A conceptual framework is a mental structure that
gives us a means to focus, structure and organise our perceptions of the world.
Thereby it determines which phenomena and signs are meaningful to us. Since
our conceptions form a basis for our comprehension and thereby our
knowledge of the world, a conceptual framework is also a major force affecting
the formation of our knowledge. A conceptual framework establishes a

78

conceptual system that consists of a set of concepts and their interdependencies.
This system underlies the representation, interpretation and reasoning of any
model. The conceptual framework of a process modelling language determines
in which terms and ways we abstract, discuss and reason about processes.

Notation. A notation is a system of signs or symbols related to a conceptual
framework, and it contains rules for the arrangement of the signs into
meaningful wholes (e.g., sentences). A process modelling notation follows a
representation style that determines what kinds of notational construct are
available and how they can be related to each other. Examples of representation
styles are structured text, diagrams, forms, calendars, matrices, tables and
hypertext. Examples of notational constructs are graphical characters and

symbols, fields, rows, columns, and links
2

• A specific notation forms a style
specific representation scheme according to which processes are represented. A
representation scheme determines how style-dependent notational constructs
are explicitly represented and how they relate to the conceptual framework.
Examples of these issues include: on what grounds different concepts can be
represented as notational constructs; how the concepts are represented; and
which notational rules apply to such representations.

Semantics. Semantics concerns the meaning of signs. In AI research, the
term 'semantics' denotes "some form of correspondence specified between a
surrogate and its intended referent in the world" (Davis et al., 1993). As we
understand semantics as a form of subjective knowledge, we refine (and
redefine) this view. The correspondence between a surrogate and its intended
or actualised referent in the world is established through subjective knowledge
of meaning. Even in case of a machine interpreter, the semantics of a language
are rules codified in the interpretation mechanisms of the interpreter. The
interpreter is the agent that actualises meanings for representations. Thus, the
term 'semantics' denotes either human knowledge (in human oriented
interpretation) or computational rules (in machine oriented interpretation),
according to which the meaning of a representation is established.

This three-fold view of language should be familiar to those who study
language design. Yet, its implications on the structure of languages are not
adequately accounted for in current research. A process modelling language
can be viewed as a complex system of interdependent language constructs.
Firstly, conceptual constructs consist of those that specify the conceptual
framework of a language. They give the language a specific 'ontology'.
Secondly, notational constructs consist of those that specify the notation of a
language. They give the language a capability to represent. Thirdly, semantic
constructs consist of those that specify the semantics of a language. They make
the language enactable. Through these three kinds of constructs, a process
modelling language becomes a means to compose, represent, and enact process
models.

Current theoretical developments on language constructs lack this
structure. Hence, the view of process modelling languages taken in individual

2

Note that representation styles and notational constructs are understood here abstractly, not as
implementations. The same style or construct may be implemented in different ways.

79

studies may vary greatly. The practical outcomes of different classifications are
not easy to compare, since the most fundamental distinctions they make
between language constructs are often contradictory. In the data modelling
area, a similar distinction between representation and conceptual type-level
constructs has been made (Tolvanen & Lyytinen, 1993), but without
considering the further practical refinements and implications of the notion.

2.2 The Structure of Modelling Techniques

A modelling technique complements a modelling language with a mechanism
that produces and manipulates the models. The rules of this mechanism are
known as an operational semantics.

This should not be confused with an operational semantics of a
programming language (see, e.g., Meyer, 1990), although they share a common
origin. The idea of operational semantics originates from a linguistic school
called operationalism (see, e.g., Hardy, 1978). To reduce the ambiguity of
definitions, operationalism describes them in terms of operations that can be
unequivocally performed. The operational meaning of a concept is the set of
operations that are performed to bring about a phenomenon. If the operations
(actual or possible) vary, also the meaning varies. Congruently, an operational
semantics defines a system of operations according to which a certain kind of
phenomenon is produced. Although one rarely encounters the term
'operational meaning' in the current literature, the term 'operational semantics'
has firmly rooted its usage in computer science - specifically in relation to
programming languages.

The operational semantics of a technique consists of a set of rules for
model creation and evolution. In a sense, it adds a modelling technique with its
necessary "process view" by determining operations applicable on a model
(e.g., add, modify, delete). Besides mere model construction, an operational
semantics may also concern such issues as modelling rationale, guidance and
traces, component reuse, model configuration and versioning, and modelling
transactions. That is, the operational semantics of a modelling technique covers
everything that intimately relates to modelling with the technique and should
be performed when the technique is used.

A major aim of such a comprehensive operational semantics is to maintain
consistency during model creation and evolution. Thereby it is a prominent
vehicle of comprehensive change management, independent of the origin or
purpose of change. In this respect, it is of utmost importance that change
management is not restricted to configurations, versioning and transactions.
The above areas are, however, usually managed separately in different
domains. An operational semantics should instead integrate all the areas from
rationale to transactions so that any operation that is carried out has a
consistent outcome.

80

2.3 A Contrast to Process Programming Languages

It useful to clarify the contrast between process programming languages and
enactable process modelling languages. A programming language is a notation
for giving instructions for an execution mechanism. A programming language
is understood to comprise syntax and semantics, where syntax forms the
foundation on which various semantic constructions are built. It does not
distinguish conceptual frameworks (although there could be certain advantages
of doing this).

There are different approaches to semantics that complement each other

in the process of specifying and implementing a programming language
3

• The
one we are specifically interested in is operational semantics. The idea of
operational semantics is to express the semantics of a language by giving a
mechanism that makes it possible to determine the effect of any program in the
language. An operational semantics is a set of transition rules specifying how
the state of this mechanical interpreter changes while executing a program. The
operational meaning of a program is the consequent sequence of interpreter
states.

A process engine is a mechanical interpreter that uses a process model or
process program as its input. Usually, though, process models are first

translated into a process program to make them enactable. Language semantics
4

is interwoven into the operational semantics that is encoded into a process
engine. There are currently only few approaches for configuring a process
engine to change the way of enactment without making changes to process
models (Balzer & Narayanaswamy; Kaiser et al., 1996). However, these
approaches are based on extending an existing language, not embedding a new
one.

There are two consequences of customisable process metamodels on a
generic process engine. First, the language semantics needs to be specified apart
from a process engine. Second, the process engine needs to be capable of using
an explicit process metamodel as its input data. It would interpret process
models while using an explicit language specification to guide this
interpretation. By distinguishing a conceptual framework from notation and
semantics, we achieve an explicit, integrating medium between the latter two.
Furthermore, we can adopt the conceptual framework as the foundation of

language construction
5

, which results both in notational and semantic
flexibility.

Such a generic process engine needs to distinguish between a language
semantics, an enactment mechanism, and a reflection mechanism, each of which
determines only a part of its functionality. A language semantics provides rules
according to which a process engine interprets process models, but it does not

'

� An introduction to the theory of programming lansuages can be found in (Meyer, 1990).
'Language semantics' refers here to semantics as discussed in Section 4.2.1. We use the term in

, this section in order to avoid terminological confusion.
· Consequently, it is not a representation that has a meaning, but a concept that has both a

representation and a meaning. In this way, a concept may aiso have multiple representations
and multiple meanings within explicitly specified (and formal) constraints.

81

specify how the interpretation mechanism works. An enactment mechanism
determines how the matching of the language semantics with a particular
process model is carried out and how it is enacted. The language semantics is
separately embedded in the enactment mechanism. The mechanism
implements an enactment pattern, i.e., a set of generic enactment operations
capable of handling the combined data from a process model and a process
metamodel. Furthermore, the functionality of a process engine encompasses
more than interpretation and enactment. A reflection mechanism determines
how a process engine changes or allows the change of a process model
according to the operational semantics of a modelling technique (discussed
earlier in Section 2.2).

3 Metamodelling Approaches

Metamodelling is a form of specification, in which information of a class of
models is collected and codified into a metamodel. Since metamodelling is a
domain independent mechanism, it can be applied in a multiple ways. Indeed,
that is what has happened in the past. The usefulness of metamodelling is
widely recognised (Mili et al., 1995; Jarke et al., 1998). It is extensively used in
data modelling frameworks, e.g., for a higher degree of data integration in
CASE environment frameworks (Chen and Norman, 1992) and for the
specification and customisation of metadata in metaCASE environments
(Marttiin et al., 1993; Marttiin et al., 1995; Verhoef and ter Hofstedte, 1995).
Currently, the interest in metamodelling is increasing both in academia and
industry.

Process metamodelling can be used as a means for language adaptation,
by which the process metamodel underlying a process modelling and support
architecture can be changed. Well-articulated, rigorous and consistent process
approaches can be established with explicit process metamodels. Process
metamodelling itself, however, lacks a foundation and has not yet evolved into
the state of a well-articulated and rigorous activity. We find reasons for this to
be twofold. On one hand, the conception of metamodelling varies largely
between different research efforts but this variation is difficult to notice without
a detailed study. Therefore it is difficult to compare differences and to create
common understanding necessary for more comprehensive developments. On
the other hand, process metamodelling has not established its place as an
independent form of metamodelling. Yet, the domain-specific contingencies
that arise with process modelling languages are not accounted for by 'ordinary'
forms of metamodelling and hence not properly addressed.

There is a general agreement among researchers on what metamodelling
is. When examined more closely, however, the term appears to have many
uses. A representative set of examples can be found in the workshop summary
of Metamodelling in 00 (Mili et al., 1995). Sometimes the difference between
two uses can be detected only in an in-depth study and comparison. Two

82

research groups may promote different notions of metamodelling and yet
debate without noticing the fact. Therefore, we find it compulsory to examine
and clarify different senses of metamodelling and locate ourselves in this maze.

In the following we take two aspects of metamodelling into scrutiny: the
base domain of modelling and the modelling dimension.

3.1 Base Domains of Modelling

Every form of modelling has a specific target domain that we call a modelling
domain. A modelling domain can be, for example, information systems for
systems modelling, a system model for (systems) metamodelling, a method for
method modelling, or a systems development process for process modelling. A
base domain of modelling is any modelling domain the purpose of which is not to
represent information of models. For example, information systems form a
basis for systems modelling and metamodelling, and development processes
for process modelling and process metamodelling. A base domain is thus the
root of a modelling level hierarchy (i.e., model, metamodel, meta-metamodel,
etc.).

Process

Metamodel
captures

information of

Method model ,

Metamodel
_ inteR,ration _ Process

-

Model

captures captures

information pf informatior, pf

System produces
ISD Process -

Model
captures

Process Domain
informatio, IJf

Information

Svstem

Aoolication Domain

FIGURE 1 There are two interrelated base domains related to systems development:
application domain and process domain.

The base domain of IS modelling and (ISD) method engineering is information
systems ('application domain'). Method engineering develops techniques for
systems modelling and uses metamodelling for their specification. Similarly,

83

the base domain of (ISD) process engineering and PML engineering
6

is the
systems development process ('process domain'). The relationship between the
two domains is shown in figure 1. Models of an information system in the
application domain are produced through a development process in the
process domain. Metamodels (i.e., models of system models) and process
models (i.e., models of development process) are specified and integrated into
method models. Process metamodels (i.e., models of process models) are
specified as part of meta-methods.

3.2 Modelling Dimensions

Most metamodelling approaches to date have their origin in the application
domain but differ in regard to the dimensions they consider. The modelling
dimension determines what kind of information metamodelling is supposed to
capture. There are major differences between metamodelling approaches in this
regard. These differences mostly reflect the emphasis of a given subject of
study, e.g., concepts in data base and specification management research,
notations in the research on model representation, or techniques in tool
construction.

Broadly speaking, any kind of model related information can be chosen as
a modelling dimension. The only constraint is that this information is created
through the abstraction of features common to a class of models. That is, the
characteristics should replicate across all possible models of that kind,
independent of what the model represents. In other words, metamodelling
codifies some type of information incorporated in modelling languages and
techniques. In the following we refer to this information as 'meta-information'.

In accordance to our earlier discussion of language and techniques, we
distinguish four parts that can serve as a modelling dimension individually or
in combination: notation, ontology (i.e., conceptual framework), semantics, and
operational semantics. The common approaches to date cover notations and
conceptual frameworks.

The major metamodelling approaches can be currently classified
according to their dimension as ontology-based, language-based, or technique
based. First, an ontology-based metamodelling approach is used for multi-level
ontological abstraction of real-world phenomena (see, e.g., Nissen et al., 1996).
Here, metamodelling is seen as the multiple instantiation levels of application
knowledge with a focus on conceptual frameworks. Second, language-based
metamodelling approach is used for the specification of modelling languages.
Such approaches most often codify a notation together with some degree of
conceptual meta-information (see, e.g., Kelly et al., 1996). In contrast to
ontology-based metamodelling, ontological abstraction is represented as
ancestor type hierarchies (subtype - supertype) instead of metatype hierarchies
(type - metatype). Third, a technique-based metamodelling approach is used for
the specification of modelling techniques, where operational semantics is

6

PML engineering concentrates on the design of languages and techniques for process
modelling (Rossi and Sillander, 1998).

84

considered together with the modelling language (see, e.g., Sorenson et al.,
1988). Metamodelling is thus not limited to the information of models but it
also codifies information of the process through which a model can be
constructed. However, it differs from fine-grained process modelling in that the
codification abides more to a declarative than a procedural format.

The difference between ontology-based and language or technique-based
approaches is important. Both use similar vocabulary at the lowest metalevels,
but with different denotations. The use of metalevels is also most often
restricted to the first, fixed metamodel, or second, fixed meta-metamodel. An
approach is easily misclassified unless it is carefully analysed. Common with

the approaches is that a metamodelling language is used to specify any Mn

modei
7

. However, in ontology-based metamodelling any Mn-model defines
what information systems are, and a metamodelling language defines how
information system ontologies are represented. In language or technique-based
metamodelling a metamodel defines what system models consist of, and a
metamodelling language defines how languages or techniques are represented.

The highest metalevel model is implemented in a support environment. In
ontology-based approaches, this model is known as an 'omega-level' model
(Nissen et al., 1996), whereas in language and technique based approaches it is
known as a meta-metamodel. On the other hand, in ontology-based approaches
a 'meta-metamodel' denotes an M2-level model. Thus, it is the 'omega level'
and not the 'meta-metalevel' of an ontology-based approach that is comparable
to the 'meta-metalevel' of a language or technique-based approach.

In the following, we focus on language-based process metamodelling
while still keeping the approach open to later extension into a technique-based
one. It is important to note, however, that ontology-based approaches
introduce more efficient mechanisms to represent domain ontologies. An
ontology-based omega-level model and the related metamodelling mechanisms
can provide substantially more support for ontological constraints (see, e.g.,
Jarke et al., 1998) than a generic language or technique-based approach. To be
as powerful, the latter should incorporate similar mechanisms for the
specification of ontological type hierarchies. Enhancing current language and
technique-based approaches with such mechanisms forms a relevant and
interesting research topic.

4 A Conceptual Model of Process Metamodels

Process metamodelling collects meta-information of process models and
represents it in a process metamodel. That is, process metamodelling captures
information incorporated in a process modelling language or a technique. A
process meta-metamodel is a model that captures meta-information of process

7

Figure n denotes the order of metalevel. For example, Ml model is a metamodel and M2
model is a meta-metamodel (see Nissen et al., 1996).

85

metamodels and, thereby represents information incorporated in a process
metamodelling language.

The first step in designing support for process metamodelling is to
develop a comprehensive set of metaconcepts with which different process
modelling languages can be designed. Thereafter, metaconcepts need to be
integrated with an explicit notation and semantics to construct a process
metamodelling language. This language is then specified as a process meta
metamodel and implemented into a process modelling environment. The goal
of the present work is to specify a set of metaconcepts needed to specify and
integrate different combinations of conceptual frameworks, notations and
semantics. We want to avoid an excessively generic approach that would make
process metamodels too complex and difficult to maintain and evolve. One
main objective is to make process metamodelling as easy as possible without
compromising its expressive power.

We specify the structure of process metamodels according to our
discussion of the structure of language and techniques. First, we redefine the
term 'process metamodel' from its ontology-based counterpart (Lonchamp,
1993). A process metamodel is a model of meta-information about a class of
process models. To follow a language-based approach, we have to be able to
represent both conceptual frameworks, notations and semantics. For this
purpose, a language-based process metamodel integrates three sub-parts. A
conceptual process metamodel represents the conceptual framework, a notational
process metamodel the notation, and a semantic process metamodel the semantics of
a process modelling language.

In the following sections we develop an integrated conceptual model of
process metamodels, which includes a model of conceptual process
metamodels (Section 4.1), a model of notational process metamodels (Section
4.2), and a model of semantic process metamodels (Section 4.3).

4.1 A Model of Conceptual Process Metamodels

Although, in minimalist terms, the term 'process' simply denotes the progress
of something, it cannot be understood without saying something about the
context within which the progress is brought about. A conception of a process
is always arbitrarily formed. Progress, and the context within which the
progress occurs are determined by the conceptual framework underlying the
observers' thinking. A conception of a process includes those aspects that
people regard meaningful for understanding, analysing and conducting
progress.

A process interacts with its context and makes changes to the context in
order to reach its goals. Again, what constitutes a process and what its context
is arbitrary and depends on one's conception. Feiler and Humphrey (1993)
define a process as "a set of partially ordered steps intended to reach a goal".
As well, we could say that a process is "a set of interdependently emerging
situations to be acted upon by an agent to meet the requirements set upon
them". Although the latter phrase evokes a different conception from the one

86

evoked by the former, they indisputably refer to the same real-life
phenomenon. The context of a process may be comprehended as any set of
organisational, linguistic and technological structures, and constraints such as
goals, policies, languages, data, roles and resources (cf. Lonchamp, 1993). On
the other hand, any of those may as well be understood as part of the process.

Either way, a process model that codifies this conception is only a partial
representation of the total complexity. It has a focus only on limited aspects of
the whole and as such its effectiveness depends on the practical situation within
which it is used. To be able to account for a wide range of conceptual
frameworks, we need to distinguish a set of generic concept categories and
their interdependencies. The following discussion intends to aid in this.

Process elements are entities that refer to atomic actions, or compose a set
of other process elements (Feiler and Humphrey, 1993). The substructure of
atomic actions is not made explicit in process models. Process elements have
interdependencies, most of which relate to co-ordination and progress. It is
often difficult to determine a clear boundary for a composite process element,
since any composition is arbitrary in relation to practice. Therefore, we can not
expect a decomposition hierarchy necessarily to form a clearly bounded whole.
Process components (clearly there are more to a process than process elements)
share a context from which they obtain properties. These properties may be
immediately attributed (such as 'name' to 'task'), but also appear as a reference
to a conceptual entity (such as 'data file').

The above concerns a conception of human processes ('user process').
Within the context of automated enactment, we also have to construct a
conception of the automated process ('environment process') that supports the
human process. Such a process is a series of automated operations - a true
"partially ordered set of steps" - that are ensued (directly or indirectly) from
human actions, e.g., taking menu options. This process comprises all actions
that manipulate electronic data: calculate values, propagate constraints, and so
forth. Another concept, one that is necessary for keeping track on progress, is
the state model. It comprises a conception of the life-cycle of individual process
elements. A conception of an environment process is only necessary to the
degree it is used for human comprehension. Otherwise, it is sufficient to
address it in language semantics.

In the following we discuss the classification of conceptual constructs and
dependencies incorporated into a conceptual model of conceptual metamodels.
The model is shown in figure 6. There are two things that must be noted. First,
it is somewhat misleading to label the categories with meaningful names since
it makes one think that the semantics of a category or what it collects is
somehow bound with the meaning of its name. The model could be easily
mistaken as a generic process metamodel. However, conceptual constructs are
not concepts but constructs representing concepts.

The difference between a process metamodel and a process meta
metamodel is the way how their categories are constructed. A process
metamodel is based on factual categories that are established according to
specific characteristics of the items categorised. Due to their empirical nature,
they are more or less contingent and incomplete. In contrast, a process meta-

Conceptual lefend: Category·
i=J abstract

Entity

Simple Entity ompositio

Internal Internal ComP9sition

Internal Concep

User Concept

Property

Process Graph

Reference

Prooert

ecompositio

FIGURE 6 A conceptual model of conceptual process metamodels.

Production

Evaluation

Complex

Prooert

'r" Specialisation
---+ Dependenl)' II II construct

External

Concept

State Model

External

1+---------+------,--------ttribution

88

metamodel has to conform to logical categories that are derived by a systematic
use of dichotomy. In dichotomy one abstract category is divided into two
exhaustive and exclusionary categories. Creation of a category tree begins with
one all-encompassing root category, and ends with a set of finer leaf categories.
Consequently, it applies that every concept that can be placed in the root
category, can be placed in one and only one leaf category. To be all
encompassing, it has also to apply that no concept can be placed outside the
root category. This ensures that the Universe of Discourses (everything that
ever can be stated) can be covered by the leaf categories.

4.1.1 Conceptual Construct Categories

We distinguish two generic categories of conceptual constructs, which
discriminate between a process and its context. First, a concept of process is
constructed of internal concepts that form the core of a process model. These are
further divided into two categories that discriminate between a user process
and an environment process: user concepts and environment concepts. The former
category distinguishes between entities that are conceptually autonomous (such
as 'task'), and properties that are attributed to entities (such as 'duration').
Second, the concept of the context of process (to the degree it is necessary to
interact with it) is constructed of external concepts. Note that external concepts
may designate both technical and non-technical "things".

Entities are divided into two categories regarding whether they are
atomically conceived, or not: simple entities and complex entities. Note that being
"atomically conceived" does not imply that an entity really is atomic. For
example, a 'procedure' may be atomically conceived, yet non-atomic in the
sense that it is associated to a non-atomic concept of its decomposition, a
'sequence of steps'.

Like simple entities, we discriminate between the substance of a process
component and a dependency that can be conceived as an entity on its own
between such substances: process elements and objectified dependencies. We
distinguish between two categories of complex entities regarding whether an
entity is autonomously applicable as a concept of a process, or dependent on
being embedded into a more general concept: process graphs and complex
elements. Process graphs are entities with clearly conceivable boundaries.
Whatever dependencies a process graph has, they all are established at the level
of the whole (cf. "interface"). Thus, it is applicable as a concept of a process as a
whole. Complex elements, on the other hand, are concepts with less clear
boundaries. A complex element has dependencies both at the level of the whole
(which justifies it being a concept on its own) and at the level of its parts (which
makes its boundaries somewhat artificial).

Also properties are divided into two categories based on whether they are
atomically conceived or not: simple properties and complex properties. Simple
properties are further discriminated on the basis whether they qualify as
immediate or referencing properties: basic properties and reference properties.

89

Although being atomically conceived, a reference property may associate to a
non-atomic concept. Complex properties are concepts of property composition.

Since environment concepts are needed only to the degree users need
information of the environment process, we distinguish only two such
categories. First, an action is a concept of an automated operation. Second, a
state model is a concept of the enactment life-cycle of a process element. We do
not consider here the components of state models (although it is obvious that
they are composites), since there are different, equally applicable ways to
distinguish them. The role of a state model, however, is to associate different
types of event to the different phases of an enactment life-cycle.

4.1.2 Conceptual Dependency Categories

Conceptual dependencies can be classified according to the scheme shown in
table 1. First, we distinguish between formal and informal dependencies.
Formal dependencies have specific semantics, whereas informal dependencies
are based on a free association. Secondly, formal dependencies are divided into
structural dependencies that appear between user concepts, and executive
dependencies that appear between user concepts and environment or external
concepts. The latter form an executive link between user processes and
environment processes.

TABLE 1 A classification of conce ptual de pendencies.

Fo r ma l

Structural Executive

Lateral internal external

Hierarchical composition refinement
decomposition

Contextual attribution evaluation
production

state

In f o r ma l

association

On the other hand, conceptual dependencies can be classified in regard to their
structural loci. Lateral dependencies appear on the plane of a unified
abstraction level, on which we can establish such concepts as 'sequence' and
'concurrency'. Hierarchical dependencies appear in terms of reducing or
increasing abstraction between lateral planes. Contextual dependencies appear
when contrasting and specialising a concept against its context by a specific
information content.

We distinguish among four categories of structural dependencies. First,
internal dependencies build up the lateral structure. They relate objectified
dependencies to process elements or to other objectified dependencies.
Secondly, the hierarchical structure is created through decomposition dependencies
that integrate process elements with a finer-grained decomposition structure in

90

process graphs, and of composition dependencies that produce the composite
structure of process graphs and complex elements. Both process graphs and
complex elements are composed of process elements, objectified dependencies,
and other complex elements. Thirdly, attribution dependencies build up the
contextual structure by associating a set of properties to an entity or a complex
property. A reference property can be further associated to an entity or an
external concept.

We also distinguish five categories of executive dependencies. Firstly, the
lateral structure is augmented through external dependencies that create a
connection between a process and its context. They locate between process
elements and external concepts. Secondly, the hierarchical structure is
supplemented through refinement dependencies that create a supporting link
between a user process and an environment process. They appear between
process elements and actions. Thirdly, the contextual structure is amplified
through three types of dependency. Evaluation dependencies relate a property
with a calculation or an inference. They appear between properties and actions.
Production dependencies create a link between an operation and a consumed or
produced object. They appear between actions and any kind of conceptual
construct. Note that when a reference property is referenced as an object, it is
indeed the property not its referenced value that is referenced. That is, the link
is reflective. State dependencies associate a process element with its life-cycle
state. They appear between process elements and state models.

Lastly, we distinguish only one category of informal dependencies, since
there is no generic difference between lateral, hierarchical, ad contextual
associations. Association dependencies create informal and possibly ad hoe
conceptual relationships between arbitrary concepts, e.g., to add links,
comments, questions, or rationale.

4.2 A Model of Notational Process Metamodels

Notational constructs differ from conceptual ones in that the constructs can be
classified from two points of view. First, they can be classified according to their
role in a representation system. Second, they can be classified according to their
representation style(s). For conceptual constructs, there are no "conceptual
styles" to consider.

The systemic classification yields a set of generic notational constructs for
process modelling languages, which are replicated across representation styles.
Traditional representation styles include structured text and diagrams, but
there is not reason to exclude such common styles as forms, calendars, matrices,
tables and hypertext, either. The emergence of Internet and multimedia further
enriches the set of potential alternatives. A representation style instantiates the
generic notational constructs and dependencies, thereby determining what
kinds of notational constructs are available and how they can, or must, be
related in that style.

Some shortcomings in the traditional thinking about representation styles
need to be pointed out. First, representation styles are often misconceived to be
clear-bound; that diagram representations are composed of symbols and lines,

91

and textual representations of text. Today, different representation styles share
more and more notational constructs, and are increasingly integrated as
complementary forms of representation. Hypertext and multimedia are fine
examples of this tendency. Secondly, it is often assumed that one could find and
enumerate a finite set of notational constructs to use within a representation
style. Yet, new means of representing emerge, especially along technological
advances. It would certainly be an advantage to be able to deploy them also in
process modelling. Thirdly, it is also assumed that notations account only for a
part of a visualisation system. For example, it seems obvious that there is some
notation underlying a diagram representation of a process, but not that there is
one also for a form, or a dialog that prompts for some specific information of
the process, or for a hyperlink between a diagram and a form. Instead, all parts
of a visualisation system are necessarily accounted for by a notation, if they are
to make sense at all.

Due to this inevitable lack of clear bounds and stability, it is not possible to
outline an exhaustive set of notational construct categories. New notational
construct categories also require new mechanisms for the generation of tool
support. If a metamodelling system is based on a set of notational construct
categories, the style gallery would be difficult to extend safely. Hence, we find it
better to determine a set of generic categories of notational constructs, based on
representation styles that can be specified and extended. This way, extensions
will not jeopardise the consistency and integrity of the metamodelling system.

4.2.1 A Generic Model of Representation Styles

In figure 2, a model of generic notational construct categories is shown. Firstly,
views are constructs that compose an independent representation that is usually
shown separately, whereas visual fragments are composed into a view and
shown together. Secondly, visual fragments are distinguished into view
fragments, interface fragments and visual dependencies. View fragments are
visual entities fully determined within the notational system. In contrast,
interface fragments are visual entities that connect the representation system to
an external system, and hence their structure is externally determined. Visual
dependencies are fragments that combine visual fragments. Thirdly, visual
attributes are different qualities of views and view fragments. A visual attribute
does not extend a representation, but gives it a specific form of appearance.

There are also five categories of generic notational dependencies shown in
figure 2. Firstly, inclusion dependencies make visual fragments appear within a
larger context, i.e., a view, or a visual dependency. The appearance of an
included fragment is dependent on the appearance of its context. The context is
not similarly affected by changes of its included fragments. For example, a
change in the position of a view would entail a similar change in the position of
included fragments, but not vice versa. Secondly, attachment dependencies 'glue'
visual constructs together. In contrast to inclusion, the dependency is mutual.
The position of attached fragments could not be changed independently of the
other fragment nor vice versa. Thirdly, connection dependencies make connected
fragments affect the appearance of each other. For example, a change in the

92

position of one connected fragment might change the appearance of the other.
Fourthly, characteristic dependencies relate views and visual entities with visual
attributes to give them a special outlook, such as colour. Fifthly, linkage
dependencies appear as guided changes of focus between visual entities. We give
some examples of specialised categories in Section 4.2.3.

Notational
Construct

Lernd:
'r Specialisation
_., Dependency

Visual Construct

Category
� abstract
lc:::l] construct

Characteristi,...,..._ __________ --1

View

Characteris,ni·....-----------1

Interface
Fra ment

Visual Entity lnclusio

View FraQment

FIGURE 2 A generic model of representation styles.

Visual
De endenc

A representation style allows a variety of potential notations. A notation relates
the constructs of a representation style with a conceptual framework. All
conceptual categories are usually not visualised within a single notation. For
example, many diagram representations concentrate on a subset of process
elements, objectified dependencies and decomposition, whereas table
representations might focus on process elements and their properties. A
notation specifies how process models are visualised (e.g., the actual symbols)
and which notational rules apply to them (e.g., how different symbols may
appear in relation to each other, and within which conditions they may appear).

Representation styles are formed by applying the generic categories in a
representation context, such as diagrams or forms. An example of a combined
diagram and form-based representation style is given in figure 3. In the
following sections, we discuss the categories of notational constructs and

Interface Layout

Le1!{nd:
'r Specialisation
__. Dependency
4 lnstallliation

[:J Abstract categ.
II II Concrete categ,

List

Interface

Interface Field

Text Object

ttachme

Field Label

View View Fraqment

Form Diaqram

Attachment Inclusion

i. Attachme,n+----------1

Visual Attribute

Line

111111 Attachment

Attachment

Visual

Symbol

FIGURE 3 A model of an integrated diagram and form-based representation style (example). Linkages are possible among all construct excluding
visual attributes (not shown).

94

dependencies shown in this model. First, we enumerate notational constructs
that may appear within this representation style (Section 4.2.2), and then study
the dependencies that may prevail between these notational constructs (Section
4.2.3). Thereafter, we integrate them to the conceptual ones (Section 4.2.4).

4.2.2 Notational Construct Categories: Examples

In our example, we use two view categories. Firstly, diagrams are views that
show an arrangement of, and relations between, drawing objects. Drawing
objects are graphical view fragments, and they include symbols, lines, and
groups. Symbols are independent graphical 'nodes' that can be connected with
lines. Lines are the 'edges' between symbols. Groups collect drawing objects
together in a way that they can be manipulated as a single unit. Secondly, forms
are views that are used for the manual input of data. Forms are composed of
textual objects. Textual objects are textual view fragments, and they include
fields, labels and lists. Fields enable the insertion and change of data values in a
textual format. Labels show constant textual values.
There are also two interface fragment categories. Constructs in both categories
are determined by constructs in the external system. Their difference is that
interface layouts appear in the form of views whereas interface fields appear in the
form of embedded fields. Both allow access to external data and media.

Two visual attribute categories, font and colour, are included. To be exact, a
font combines several visual attributes: font type (e.g., Times, Courier), font
size, and possibly font effects (e.g., bold, italic, underline). Colour could also be
included in fonts, but since constructs with font (i.e., textual objects) are not the
only constructs with colour, we regard it as an independent view attribute.

4.2.3 Notational Dependency Categories: Examples

The example employs all four main notational dependency categories. Firstly,
linkage dependencies may appear between all notational constructs excluding
visual attributes. Linkages visualise a guided change of focus. Putting a view on
top of others, and centring a view on a certain view fragment, are perhaps the
most common appearances of linkages.

Secondly, the example shows that attachment dependencies fix text objects
and interface fields to forms, text objects and symbols to drawing objects, and
drawing objects to groups. All operations (e.g., scaling) performed on a
construct will affect all constructs involved in the attachment in some
predefined manner.

Thirdly, the example uses connection dependencies between symbols and
lines. Lines are regarded as drawing objects that have at least two end points,
and one middle point. When a line is connected to a symbol, one of the ends is
fixed to the symbol. Thereafter, all changes in the symbol's location on a
diagram will change the location of this end whereas the other ends are not
affected. Whether the middle point changes and how, is dependent on the line.

95

Fourthly, we use characteristic dependencies to give simple fields and labels
their font and colour. Symbols and lines have only colour.

4.2.4 Integration to the Conceptual Categories: Examples

Before we continue our discussion of the integration of representation styles to
conceptual categories, we point out two issues. Firstly, different families of
notations may appear within one representation style. These families are
formed when a representation style is related to conceptual categories. Let us
consider the above-mentioned representation style discussed as an example.
Some diagram-based notations could use symbols for process elements and
lines for dependencies, whereas others could use lines for process elements and
symbols for dependencies. Note that there might be no visual difference
between these families except of what could be grasped of textual labels and
fields, or specific pictures.

Secondly, the representation of complex information may benefit from
simultaneous use of various notations. Representation independence should
hence be supported so that one concept can be represented from different
perspectives using different notations and even different representation styles
without jeopardising the integrity of models. Representation independence
distinguishes between a conceptualisation system (for composing a process
model) and a representation system (for visualising it). Since these two systems
are integrated, but autonomous, several different representations can be built
for one conceptual process model, and yet be easily managed.

Integration is achieved by mappings between conceptual and notational
constructs. A mapping specifies the rules that govern the use of a notational
construct in relation with a conceptual one. At simplest, one might specify that
when a certain type of process graph is represented as a certain type of
diagram, all process elements of a certain type in that process graph will appear
in the form of a certain kind of symbol.

In the following we illustrate an example of a conceptual model of
notational process metamodels. This example is based on the representation
style we specified above. We discuss this model in two parts. In the first part we
concentrate on the diagram-based view of the model shown in figure 4. This
view represents a family of diagram-based notations in which process elements
are shown as symbols and internal dependencies as lines. In the second part we
focus on the form-based view shown in figure 5. It represents a family of form
based notations in which entities are visualised as separate forms and their
properties as the fields of these forms. In the figures, a mapping category is
shown as a tuple of a notational category (above line) and a conceptual category
(below line). Note that the 'direction' of a notational dependency is not
necessarily the same as for the related conceptual dependency.

In diagram-based notations, process graphs are represented as diagrams,
while process elements as symbols, and objectified dependencies as lines.
Complex elements are represented as groups that combine a subset of symbols
and lines by means of inclusion dependencies. Inclusion is related to

Sta e

�

�Attach

Attacb
Attribu

Characteristic

Cbaracteri<>lic 11 ...,y,,.u�, II Transition

JncJusion
CQmpo

::_a:a

sition
Field

Attac Po ert

Attribution

:Attachment

Cbaracteristir. LiSt
Attributio

,
1Attribu!ion Complex Property I

Connection
loternal

Le1e11d:
y Substitution
---+ Dependency

Category

� abstract

u n construct

FIGURE 4 A conceptual model of notational process metamodels for diagram-based notations (example). Linkages can be created to represent
association (not shown).

II
Legend:

9 Substitution
--+ Dependency

CJ Abstract cat.
!I H Concrete cat.

Font

Characteristi 1 Characteristic

Attachment

Field

.Liokane
Attr.ibution

Reference

haracteris� Font

Characterist

1
ic

.
Colour

L!::::::=====::!.I

.LinkaQe
id

I iokane
id

h

Attribution

ment

Attachment
Production

.Linkane
External

FIGURE 5 A conceptual model of notational process metamodels for form-based notations (example). Linkages can be created to represent
association (not shown).

98

composition dependencies. Groups may attach symbols, such as boundaries.
This is determined by concept identity. That is, both the group and the symbol
are directly used as representations of the same complex element. They engage,
however, in different kinds of dependencies. On one hand, a group has
inclusion dependencies with symbols, lines and other groups, representing the
composition of complex elements. Also, it has a linkage dependency to a form
based on the concept identity (figure 5). On the other hand, the symbol has
connection dependencies with lines representing the element's internal
dependencies with objectified dependencies.

Internal dependencies are shown as connection dependencies. All symbols
and lines may attach other, arbitrary symbols and labels, and have arbitrary
colours. Furthermore, symbols representing process elements may have colour
that represents state model transitions. In other words, the colours of symbols
will change along with the change of process element states during model
enactment. In case enactment should affect representation, such as changing
colours, a notation must be connected to a semantics via the conceptual
framework.

The properties of entities shown in diagrams may be represented both
textually and symbolically. Textual representation is achieved by means of
fields and lists attached to symbols and lines. Fields may represent any type of
properties, whereas lists represent complex properties. Symbolical
representation is achieved by special symbols and labels attached to symbols
and lines, or by means of value-specific colours on symbols, lines, and attached
labels. Only basic properties may be represented symbolically. Attribution is
shown as attachment in case of fields, lists, symbols and labels, and as
characteristic dependencies in case of colours. When arbitrary labels are related
with colours specific to property values, labels and colours are related to
properties and the characteristic dependency is based on concept identity.

In form-based notations, different entities are represented as separate
forms. The forms provide an alternative view for diagrams and entities
represented therein. All diagrams, groups, symbols, lines representing entities
engage in a linkage dependency with a corresponding form.

The properties of the entities are represented as the fields of the forms.
Basic properties are represented as fields with font and colour. Font and colour
may also be value-specific in which case the characteristic is based on concept
identity. Both complex properties and reference properties may be represented
as the fields of forms. Such a field shown an arbitrarily constructed 'title', which
is concatenated from the attributed concept according to specified rules. The
attributed concept can be viewed separately. Entities are shown in forms,
whereas external concepts are shown as interface layouts. Fields showing
references have a linkage to forms representing entities or to interface layouts
representing external concepts based on attribution. Complex properties may
also be represented as lists attached to forms. Lists visualise complex properties
as a collection of fields, each of which represents one of the attributed sub
properties. Besides fields, all forms may attach arbitrary labels with arbitrary
font and colour.Actions are viewed as forms that contain interface fields for the
representation of conceptual constructs. The attachment dependencies between

99

these forms and interface fields are related to production dependencies.
Symbols that represent process elements engage in linkage dependencies (based
on refinement dependencies) with forms. These symbols engage also in linkage
dependencies with interface layouts. The linkage dependencies relate to
external dependencies and the interface layouts relate to external concepts.

4.3 A Model of Semantic Process Metamodels

Since our objective is to design enactable process modelling languages, we focus
here on the computational aspects of language semantics. This cannot be done
without first discussing some technical matters of modelling and enactment.

A process support approach with customisable language semantics
requires a generic process engine such as discussed in Section 2.3. The process
engine needs to distinguish between the semantics of a language (according to
which it interprets), the enactment mechanism (according to which it enacts),
and the reflection mechanism (according to which it changes or allows the
change of a process model). However, this does not entail that semantics and
the generic enactment mechanism can be specified independently. The generic
enactment mechanism determines a practical framework within which different
semantics can be specified. Thereby it also determines the scope and generality
of a process metamodelling approach. Such a framework is necessary before we
can discuss a model of semantic process metamodels.

We outline six functional areas that encompass factors of managing
automated enactment. These areas are shown in figure 6. Firstly, management of
progress is the core area of enactment since it considers the enactment structure
of process fragments. Enactment of process fragments can be approached from
two points of view: lateral and hierarchical. Lateral management is targeted at
the progress of individual execution threads and the relations between
different, simultaneous execution threads. Hierarchical management is targeted
at decomposition and refinement: choosing alternative process fragments and
managing execution between hierarchical levels. Note that execution threads
are not necessarily bound to the limits of one process fragment. They may also
advance across sub-fragments within different fragments even at different
abstraction levels.

Secondly, process fragments may have a set of generic properties with
variable values. These include descriptive values such as those of a name,
calculated values such as those of duration, constricting values such as those of
resource availability, etc. Management of variable values concerns the
management of generic properties both regarding their value changes and the
effects of these changes on process enactment.

Thirdly, management of execution is the area of controlling the operations
executed on some artefacts. The level of control may vary according to whether
it concerns 'white-box' (high control) or 'black-box' (low control) operations.
The operations can be either internal, in which case they operate on some aspect
of the process model itself, or external, in which case they operate with some
external tools. Internal operations are always 'white-box' operations.

100

Management of _
external events ----------1

Management of
execution

Management of
variable values

Management of
progress

FIGURE 6 Areas of managing automated enactment.

_ Management of
J-------

Management of
enactment state

data exchange

Fourthly, an enacted process fragment has an enactment state that changes
according to enactment. Management of enactment state concerns the evolution of
these states: detecting advancements (or regression) in enactment, evaluating
the corresponding state changes, and triggering new advancements (or
regression).

Fifthly, process enactment is not narrowly concerned with behaviour and
events within the enactment system but also with events external to it.
Therefore, there has to be some means to integrate the enactment system with
the external systems within which these events arise. Management of external
events provides enactment control for detecting and informing such events.

Fifthly, process enactment is not narrowly concerned with behaviour and
events within the enactment system but also with events external to it.
Therefore, there has to be some means to integrate the enactment system with
the external systems within which these events arise. Management of external
events provides enactment control for detecting and informing such events.

Sixthly, process enactment references, uses and modifies also data that is
stored external to the enactment system. It would benefit from mechanisms that
can access external data and transform it between different formats (both from
and to external ones) so that it can be directly used and manipulated in the
enactment system. Management of data exchange provides enactment control for
such import and export operations.

The above areas form a framework within which we develop a conceptual
model of semantic metamodels. Such a model classifies different kinds of
semantic constructs and dependencies that appear in semantic process
metamodels. These semantic categories are then integrated with conceptual
categories. The categories are shown in figure 7. In the following, we discuss
these categories (in Sections 4.3.1 and 4.3.2) and integrate them with the
conceptual ones (in Section 4.3.3).

Enactment
Construct

Coordination
Feature

Guideline

Manai::ier
Pattern

Channel

Mediation

Pattern

Trigs::ier

Trigs::ier

Trigs::ier

11---------Tris::is::ier

FIGURE 7 A model of semantic construct and dependency categories.

Passive Value
Pattern

Internal
Function

Lernd:
't Specialisation
_,. Dependency

Category
� abstract
c::::::ll construct

Execution
Pattern

Active Value
Trigs::ier

Enveloped
Function

External
Function

102

4.3.1 Semantic construct categories

Each semantic category addresses a single semantic aspect of enactable process
modelling languages. Firstly, semantic issues that relate to enactment progress are
specified with enactment patterns. Progress patterns are constructs that specify the
advancement (and regression) of execution threads along a series of lateral and
hierarchical execution channels. Manager patterns are constructs that control the
interplay of several successive or simultaneous progress patterns. Enactment
patterns compose a set of features that act as their enactment guidelines. Each
feature determines a single generic aspect of enactment: either of advancement or
co-ordination of concurrent execution threads. Features are classified accordingly
as advancement features and co-ordination features. Enactment patterns also act as
junction points for handling control signals from other areas of enactment.

Secondly, for the management of variable values, value patterns are used to
specify the formation and the role of property values in process enactment. Some
values are merely descriptive ones and they are entered into the system manually,
whereas calculated or inferred ones are automatically computed. The former are
handled by passive value patterns, whereas the latter are by active value patterns.
Constricting values may be manually entered or automatically computed. Passive
value patterns may be constricting only based on value, whereas active value
patterns may be constricting also based on the success of producing or using the
value in an operation.

Thirdly, in the area of execution control, execution patterns are used to
manage functional and logical operations. Firstly, function patterns specify the type
of operation invocation and the mode of control during its execution. Controlled
function patterns specify control for white-box operations. These include internal
function patterns for reflective operations and external function patterns for non
reflective ones. Reflection may address both the structure of process fragments
and the values of their properties. The latter is used, e.g., for token manipulation
during the execution of Petri-net based process models. Also, reflection can be
used for initiating exceptional state changes. Enveloped function patterns specify
control for externally executed 'black-box' operations. The true controllability of
such operations is very low, which means that some manual input may be
required to track their progress. Secondly, logic patterns specify compound logical
operations.

Fourthly, for the management of enactment state changes, state patterns
specify how the enactment state is changed in response to internal events. They
specify rules according to which the enactment state changes. Such language
constructs are explicit in Petri-net based languages, but similar mechanisms are
also found implicit in the use of log files, or some other external medium. A
support environment uses such mechanisms at least to check whether some step
has been performed or not. External medium is needed when a language lacks
constructs to represent state information. It is here important to understand the
difference between a language and a language implementation. The semantics of
enactment state evolution is part of language, whereas the actual mechanisms of

103

evolution concern language implementation. A language can be implemented in
different ways.

Two construct categories concern information exchange between the
enactment system and an external system. Firstly, semantics related to external
event detection is specified with detection patterns. Detection patterns specify how
events are raised and detected in an external system. Secondly, semantics related
to data exchange is specified with exchange patterns. Exchange patterns specify a
transformation schema for a mapping between the data format used in the
enactment system and the data format used in an external system.

4.3.2 Semantic dependency categories

Two semantic dependency categories relate to progress management. First, channel
dependencies specify the advancement of execution threads between enactment
patterns. Channel dependencies can be lateral or hierarchical. Second, guideline
dependencies appear between enactment patterns and features. The guidelines of
progress patterns consist of advancement features, whereas manager patterns
compose co-ordination features.

A category relating to the management of variable values is the category of
access dependencies. They are contextual and govern the effect of variable values on
enactment. Access dependencies usually appear between enactment patterns and
value patterns, but they may also be used to compose value patterns into larger
compounds.

The largest category of semantic dependencies is not specific to any
particular area of enactment, but relates to interactions between different areas.
Trigger dependencies specify executive relationships, i.e., triggering of execution.
They appear between progress patterns and execution patterns, between detection
patterns and progress patterns, between progress patterns and state patterns (and
vice versa), between active value patterns and exchange patterns, as well as
between active value patterns and controlled function patterns, or logic patterns.

4.3.3 Integration to the Conceptual Categories

When semantic categories are related with conceptual ones, a model of semantic
process metamodels is attained. The conceptual model of semantic process
metamodels shown in figure 8 relates semantic categories to the model of
conceptual process metamodels developed in Section 4.1. The mapping categories
are shown similarly as for notational categories. The name of a semantic category
is shown above the name of the conceptual one. More than one semantic category
can be related to a conceptual category.

The · semantics of conceptual constructs are specified with semantic
constructs. Firstly, the semantics of entities is determined by enactment patterns.
Process elements and objectified dependencies are simple constructs and thus we
specify their semantics using progress patterns. Since complex elements have
partially similar type of semantics as process elements, they are also related to

Advancement
Feature

�

, ,nan□e1

Internal
Acti2n

Lelend:
Y S11bstillltio11
---+ Dependency

Categ01)'
� abstract
lc:JI construct

Attribution

I
1

•-::,•v..,;,wo liillll l �han I
Compo�ition

I ···-· ·-::i�· I Guideli

Controlled

External
Action

External

Active Value
Basic Prooert

Decomposition

Beferene_e_ Reference

FIGURE 8 A conceptual model of semantic process metamodels.

Coordination
Feature

Acc.e.s.s__
Attribution

TrigQer

105

progress patterns. However, since they are also compounds of other entities,
their semantics is extended using manager patterns. Thus, complex elements
have simultaneously two kinds of semantic pattern. The semantics of process
graphs is specified with manager patterns. Features have no counterpart in
conceptual categories.

Secondly, semantics of properties is determined by value patterns. Basic
properties 'hold' an immediate value, whereas for reference properties they
'hold' a reference to an autonomous object. A complex property composes a set
of other properties and its 'value' is the set of values composed from those
properties. The value of a complex property can not be calculated (even though
its representation could be). Calculated values are determined through action
execution and 'stored' in a property. Any kind of property can act as a
constricting property. The success of producing or using a value is determined
from action execution. Also complex properties may be related with active
value patterns to make them constricting, but they use logic patterns to
evaluate the constraint.

Thirdly, the semantics of actions is defined through function patterns.
While an action type specifies the conceptual schema of a class of operations,
the related execution pattern determines its formal semantics. Logic patterns do
not have a conceptual counterpart.

Fourthly, the semantics of state models is determined by state patterns.
While a state model specifies an enactment life-cycle, a state pattern specifies
how this life-cycle is enacted.

Fifthly, the semantics of external concepts is specified with detection
patterns or exchange patterns depending on the role they have in enactment.
External concepts are related with the former when they refer to external
events, and with the latter when they refer to external data.

Conceptual dependencies are related to semantic dependencies. Firstly,
the semantics of dependencies between entities is determined by channel
dependencies. Thus, channels between progress patterns relate to internal
dependencies. Channel dependencies between manager patterns and progress
patterns relate to composition dependencies, and channel dependencies
between progress patterns and manager patterns relate to decomposition
dependencies. Since complex elements have both a process pattern and a
manager pattern, the dependency between patterns is based on the identity of
the complex element. Guidelines do not have conceptual counterparts.

Secondly, the semantics of attribution dependencies is determined by
access dependencies. Access dependencies collect the values of properties to a
compound construct (i.e., an entity or a complex property).

Thirdly, trigger dependencies can be related to different conceptual
dependency categories. With refinement and evaluation dependencies, they
evoke operation execution. With attribution and production dependencies, they
transfer external data into the enactment system and internal data into an
external system. With external dependencies, they mediate information of
external events into the enactment system, whereas with transition
dependencies they transfer information of internal events into the state engine
and vice versa.

106

5 Towards a Model of Technique-based Process Metamodels

Finally, we outline a further extension of the approach towards technique
based process metamodelling. A technique-based process metamodel includes a
component equivalent to a language-based process metamodel, but extends it
with another component, an operational model. An operational model captures
the operational semantics of a process modelling technique. The model codifies
procedures of manipulating different components of process models. In a tool
environment, an operational model can be used to specify and control
operations available for a tool user (e.g., as menu options).

Operations create or abide to dependencies between components and thus
operation categories are related to these dependencies. We choose to construct
operations from a set of generic operations. Each of the generic operations is
potentially available in a particular generic model context. The context of an
operation is formed of the component at which it is applicable. In operational
modelling, the generic operations are merged into atomically performed
composites that are provided as operations available for users.

In the following we discuss two types of operations. Firstly, model and
tool operations (Section 5.1) relate to model and tool components. They
comprise the core operations of process modelling. Secondly, support
extensions (Section 5.2) provide operations that combine modelling with other
support areas. For the latter, we do not consider operation categories in detail
but merely outline some directions. Anyhow, we expect that many of the
operation categories are common to the modelling area, although some new
operation categories are also introduced.

5.1 Model and Tool Operations

Model and tool operations relate to dependencies between model components
or model and tool components. Model components include conceptual,
representation, and interpretation components, which are instantiated from
conceptual, notational, and semantic metamodels, respectively. Tool components
refer to components, the manipulation of which relates only to model
presentation, such as viewing or printing.

Sample categories of modelling operations are shown in table 2. Examples
are added where necessary. Firstly, existence and containment operations apply
to model components. Existence operations (create, delete) are available where
components could be created or deleted. Note that creation may use a
'template', as in copy operations. Containment operations (add, remove) are
available where a component could have sub-components. Containment
operations add or remove existing sub-components to or from a given
component.

TABLE 2 Sample categories of model and tool operations.

Operation category Model Tool Examples

C R I

Existence (create, delete) * * *

Containment (add, remove) * * *

Progression (start, finish) *

Intervention (suppress, *

resume)

Selection (select, deselect) * * * *

107

Variable change (edit) * * * * edit string, align, move, scale, set
state, zoom, set grid

Transformation (encode, *

decode)
* * * import, export, print, report

Reversion (undo, redo) * * * *

Interface (open, close) *

Appearance (show, hide) * show/hide symbol, show/hide
grid

Legend: C = Conceptual componentR = Representation component I= Interpretation component

Secondly, progression and intervention operations apply to semantic
components. Progression operations (start, finish) are available where the
execution of a given component could be started or finished. Intervention
operations (suppress, resume) are available where execution could be
suppressed or resumed. Most progression operations are automatically
performed by the process engine.

Thirdly, operations for selection, variable change, transformation and
reversion may apply to model or tool components. Selection operations (select,
deselect) are available when a user could change the current context of
operation (i.e., select or deselect a component). Variable change operations (edit)
are available where it is more feasible to manipulate the sub-components of a
component within a single operation, than to use existence and containment
operations (e.g., edit string, align, move, scale, set state, zoom, set grid).
Transformation operations (encode, decode) are available where model
information in one format could be transformed into another. Examples include
operations for importing, exporting, printing and reporting. Reversion operations
(undo, redo) are available where a certain series of operations could be undone
(cancelled), or redone atomically.

Fifthly, interface and appearance operations apply to tool components.
Interface operations (open, close) are available where the contents of sub
components could be shown in another view or this view could be closed.
Appearance operations (show, hide) are available where sub-components could
be visible or invisible within the current view.

108

5.2 Support Extensions

Model and tool operations constitute the core of modelling-related operations,
but they are still only some of several available. There are other relevant areas
such as access management, change management, version and configuration
management, and component management. Each area has a viewpoint that
differs from the one used in modelling. They introduce additional concepts and
dependencies that are not used to represent systems development processes but
different operational aspects of process modelling itself. Therefore, we do not
regard them as process modelling constructs but, instead, as operational
modelling constructs.

We distinguish among three operational levels. Firstly, modelling support
operations are provided on the technique-level. This level includes, e.g., change
management, traceability (cf. Pohl & Weidenhaupt, 1997) and decision support
(cf. Si-Said et al., 1996) for process modelling. Modelling support operations
automate some technique-specific operation sequences to support the use of the
technique. Secondly, component management and reuse operations are
interfaced to process modelling on the component-level. This support may be
customisable beyond the mere ordering of operations since component
management and reuse involves a consideration of human processes. However,
the customisation should be performed separately to reduce the complexity of
operational modelling. Thirdly, such areas as access, version and configuration
management operate on the technical base-level. The nature of these areas is
overwhelmingly technical and thus we do not expect substantial benefit from
their customisability. However, it is necessary to make operations also at this
level available in operational modelling.

The above areas are the most obvious extensions to modelling, but also
others may be introduced.

6 Con cl us ions

This article is an off-spring of a study conducted over the last five years
(Koskinen and Marttiin, 1997; Koskinen, 1999). The study has gone through
several iterated cycles of theory building, prototype development, and
experimentation, during which the proposed approach has gradually evolved
into the presented form.

We have considered conceptual foundations of process metamodelling,
and developed a structural view of process metamodels based on a discussion
of the linguistic base of process modelling languages and techniques.
Thereafter, we have used this structure to construct a model of process
metamodels that includes three aspects for the specification of process
modelling languages: conceptual, notational and semantic process metamodels.
This model can be further supplemented with a model of operational models to
extend the approach for the specification of process modelling techniques. The

109

model of process metamodels is also a conceptual model of a process meta
metamodel that can be used as a basis of a customisable process support
architecture.

A major limitation in this article is the lack of a discussion of abstraction
mechanisms in process modelling and process metamodelling languages. Our
experiments on process metamodelling have shown that different forms of
abstraction, such as metamodel patterns, are indispensable in practice.

We conclude that conceptual systematisation is necessary both for process
modelling research and practice, but it should not be conducted as
standardisation of languages per se. In theoretical and practical development of
language design, this is especially important. Moreover, the lack of common,
integrated model makes it impossible to compare and evaluate languages
systematically.

This work forms a cornerstone for the research on process modelling
language design and process support customisation, particularly in metaCASE.
A comprehensive process meta-metamodel is necessary as a basis of a
metaCASE process support architecture, where extensive customisability of
methods and process approaches is expected. Besides metaCASE research, we
expect this work to benefit anyone who is interested in the conceptual design,
or comparison of process modelling languages.

References

Baldinger, K. 1980. Semantic Theory. Towards a Modern Semantics. Oxford:
Basil Blackwell.

Balzer, R. & Narayanaswamy, K. 1993. Mechanisms for generic process
support. In D. Notkin (Ed.) Proceedings of the 1st ACM SIGSOFT
Symposium on the Foundations of Software Engineering. Special Issue
of Software Engineering Notes, 18, 5, 21-32.

Bandinelli, S., Fuggetta, A. & Ghezzi, C. 1993. Software Process Model
Evolution in the SPADE Environment. IEEE Transactions on Software
Engineering, 19, 12, 1128-1144.

Bergheim, G., Sandersen, E. & Solvberg, A. 1989. A taxonomy of concepts for
the science of information systems. In E.D. Falkenberg & P. Lindgreen
(Eds.) Information System Concepts: an In-Depth Analysis. Amsterdam:
Elsevier Science Publishers, 269-321.

Braun, H., Hesse, W., Andelfinder, U., Kittlaus, H.-B. And Scheschonk, G. 1999.
Conceptions are social constructs - Towards a solid foundation of the
FRISCO approach. In: Information Systems Concepts: An Integrated
Discipline Emerging. Proceedings of the IFIP WG8.l International
Conference ISCO-4. The Netherlands, 20-22 September 1999.

Chen, M. & Norman, R.J. 1992. A Framework for Integrated CASE. IEEE
Software, March, 18-22.

110

Conradi, R., Fernstrom, C., Fuggetta, A. & Snowdon, R. 1992. Towards a
Reference Framework for Process Concepts. In J.-C. Derniame (Ed.)
Software Process Technology, EWSPT'92, LNCS 635. Berlin: Springer
Verlag, 3-17.

Conradi, R., Fernstrom, C. & Fuggetta, A. 1993. A Conceptual Framework for
Evolving Software Processes. ACM SIGSOFT Software Engineering
Notes, 18, 4, 26-35.

Conradi, R. & Jaccheri, M.L. 1993. Customization and Evolution of Process
Models in EPOS. In N. Prakash, C. Rolland & B. Pernici (Eds.)
Information System Development Process. Amsterdam: Elsevier Science
Publishers, 23-39.

Conradi, R. & Liu, Ch. 1995. Process Modelling Languages: One or Many? In
W. Schafer (Ed.) Software Process Technology, EWSPT'95, LNCS 913.
Berlin: Springer-Verlag, 98-118.

Davis, R., Shrobe, H. & Szolovits, P. 1993. What Is a Knowledge
Representation? AI Magazine, Spring 1993.

Dowson, M. 1987b. Iteration in the software process. In Proceedings of the 9th
International Conference on Software Engineering. Washington D.C.:
Computer Society of the IEEE, 36-39.

Dowson, M. & Fernstrom, C. 1994. Towards Requirements for Enactment
Mechanisms. In B. Warboys (Ed.) Software Process Technology,
EWSPT'94, LNCS 772. Berlin: Springer-Verlag, 90-106.

Falkenberg, E., Hesse, W., Lindgreen, P., Nilsson, B.E., Oei., J.L.H., Rolland, C.,
Stamper, R.K., van Assche, F.J.M, Verrijn-Stuart, A.A. and Voss, K. 1998.
FRISCO - A Framework of Information System Concepts - The FRISCO
Report. IFIP WG 8.1 Task Group FRISCO.

Feiler, P.H. & Humphrey, W.S. 1993. Software Process Development and
Enactment: Concepts and Definitions. In L. Osterweil (Ed.) Proceedings
of the 2nd International Conference on the Software Process. Los
Alamitos: IEEE Computer Society Press, 28-39.

Finkelstein, A., Kramer, J. & Nuseibeh, B. 1994. Software Process Modelling and
Technology. New York: Wiley.

Fodor, J. D. 1977. Semantics: Theories of Meaning in Generative Grammar. The
Language & Thought Series. Sussex: The Harvester Press.

Hardy, W.G. 1978. Language, Thought, and Experience. A Tapestry of the
Dimensions of Meaning. Baltimore: University Park Press.

Jarke, M. & Rose, T. 1992. Specification Management with CAD0

• In P.
Loucopoulos & R. Zicari (Eds.) Conceptual Modeling, Databases, and
CASE. New York: Wiley, 489-505.

Jarke, M., Pohl, K., Rolland, C. & Schmitt, J.-R. 1994. Experience-Based Method
Evaluation and Improvement: A process modeling approach. In T.W.
Olle & A.A. Verrijn-Stuart (Eds.) Proceedings of the IFIP WG8.l Working
Conference CRIS'94. Amsterdam: North-Holland, 1-27.

111

Jarke, M., Pohl, K., Weidenhaupt, K., Lyytinen, K., Marttiin, P., Tolvanen, J.-P.
& Papazoglou, M. 1998. Meta Modeling: A Formal Basis for
Interoperability and Adaptability. In B. Kramer & M. Papazoglou (Eds.),
Information Systems Interoperability, John Wiley Research Science
Press, 229-263.

Joeris, G. 1997. Change Management Needs Integrated Process and
Configuration Management. In M. Jazayeri & H. Schauer (Eds.) Software
Engineering - ESEC-FSE '97, LNCS 1301. Berlin: Springer-Verlag, 125-
141.

Kaiser, G.E. & Ben-Shaul, I.Z. 1993. Process Evolution in the Marvel
Environment. In W. Schaefer (Ed.) Proceedings of the 8th International
Software Process Workshop. Los Alamitos: IEEE Computer Society
Press, 104-106.

Kaiser, G.E., Ben-Shaul, I.Z., Popovich, S.S. & Dossick, S.E. 1996. A
Metalinguistic Approach to Process Enactment Extensibility. In W.
Schaefer (Ed.) Proceedings of the 4th International Conference on the
Software Process. Los Alamitos: IEEE Computer Society Press, 90-101.

Karrer, A.S. & Scacchi, W. 1993. Meta-environments for software production.
International Journal of Software Engineering and Knowledge
Engineering, 3, 1, 139-162.

Kelly, S., Lyytinen, K. & Rossi, M. 1996. METAEDIT+ - A Fully Configurable
Multi-User and Multi-Tool CASE and CAME Environment. In P.
Constantopoulos, J. Mylopoulos & Y. Vassiliou (Eds.) Advanced
Information Systems Engineering, LNCS 1080. Berlin: Springer-Verlag,
1-21.

Koskinen, M. 1999. A Metamodelling Approach to Process Concept
Customisation and Enactability in MetaCASE. University of Jyvaskyla.
Computer Science and Information Systems Reports, Technical Reports
TR-20. Licentiate thesis. University of Jyvaskyla, Finland.

Koskinen, M. & Marttiin, P. 1997. Process Support in MetaCASE: Implementing
the Conceptual Basis for Enactable Process Models in MetaEdit+. In J.
Ebert & C. Lewerentz (Eds.) Software Engineering Environments. Los
Alamitos: IEEE Computer Society Press, 110-123.

Lehman, M.M. 1987. Process Models, Process Programs, Programming Support.
In Proceedings of the 9th International Conference on Software
Engineering. Washington D.C.: Computer Society of the IEEE, 14-16.

Lonchamp, J. 1993. A structured conceptual and terminological framework for
software process engineering. In L. Osterweil (Ed.) Proceedings of the
2nd International Conference on the Software Process. Los Alamitos:
IEEE Computer Society Press, 41-53.

Madhavji, N.H. 1992. Environment Evolution: The Prism Model of Changes.
IEEE Transactions on Software Engineering, 18, 5, 380-392.

Marttiin, P., Lyytinen, K., Rossi M., Tahvanainen V.-P., Smolander K. &
Tolvanen, J.-P. 1995. Modeling Requirements for Future CASE: modeling
issues and architectural considerations. Information Resource
Management Journal, 8, 1, 15-25.

112

Marttiin, P., Rossi, M., Tahvanainen, V.-P. & Lyytinen, K. 1993. A comparative
review of CASE Shells: a preliminary framework and research outcomes.
Information and Management, 25, 11-31.

Meyer, B. 1990. Introduction to the Theory of Programming Languages. New
York: Prentice Hall.

Mi, P. & Scacchi, W. 1990. A Knowledge-Based Environment for Modeling and
Simulating Software Engineering Processes. IEEE Transactions on
Knowledge and Data Engineering, 2, 3, 283-294.

Mi, P. & Scacchi, W. 1991. Modeling Articulation Work in Software Engineering
Processes. In M. Dowson (Ed.) Proceedings of the 1st International
Conference on the Software Process. Los Alamitos: IEEE Computer
Society Press, 188-201.

Mi, P. & Scacchi, W. 1996. A Meta-Model for Formulating Knowledge-Based
Models of Software Development. Decision Support Systems, 17, 3, 313-
330.

Mili, H., Pachet, F., Benyahia, I. & Eddy, F. 1995. Metamodelling in 00:
OOPSLA'95 Workshop Summary. In Proceedings of the 10th Annual
Conference on Object-Oriented Programming Systems, Languages and
Applications. ACM SIGPLAN Notices 30, 10, 105-110.

Nissen, H., Jeusfeld, M., Jarke, M., Zemanek, G. & Huber, H. 1996. Managing
multiple requirements perspectives with metamodels. IEEE Software,
March, 37-48

Phalp, K. & Shepperd, M. 1994. A Pragmatic Approach to Process Modelling, In
B. Warboys (Ed.) Software Process Technology, EWSPT'94, LNCS 772.
Springer-Verlag, 65-68.

Pohl, K. & Weidenhaupt, K. 1997. A Contextual Approach for Process
Integrated Tools. In M. Jazayeri & H. Schauer (Eds.) Software
Engineering - ESEC-FSE '97, LNCS 1301. Berlin: Springer-Verlag, 176-
192.

Rolland, C., Souveyet, C. & Moreno, M. 1995. An approach of defining ways-of
working. Information Systems, 20, 4, 337-359.

Rossi, S. & Sillander, T. 1998a. A Software Process Modelling Quest for
Fundamental Principles. In R. Walter & J. Baets (Eds.) Proceedings of the
6th European Conference on Information Systems (ECIS). Euro-Arab
Management School, Spain, 557-570.

Si-Said, S., Rolland, C. & Grosz, G. 1996. MENTOR: A Computer Aided
Requirements Engineering Environment. In P. Constantopoulos, J.
Mylopoulos & Y. Vassiliou (Eds.) Advanced Information Systems
Engineering, LNCS 1080. Berlin: Springer-Verlag, 22-43.

Sorenson, P.G., Tremblay, J-P. & McAllister, A.J. 1988. The Metaview system for
many specification environments. IEEE Software, 30, 3, 30-38.

Sutton, S.M., Tarr, P.L. & Osterweil, L.J. 1995. An Analysis of Process
Languages. University of Massachusetts, Department of Computer
Science. CMPSCI Technical Report 95-78. University of Massachusetts.

Sutton, S. & Osterweil, L. 1997. The Design of a Next Generation Process
Language. In M. Jazayeri, H. Schauer (Eds.) Software Engineering -
ESEC-FSE'97, LNCS 1031. Berlin: Springer-Verlag, 142-158.

113

Taivalsaari, A. 1993. A Critical View of Inheritance and Reusability in Object
oriented Programming. University of Jyvaskyla. Jyvaskyla Studies in
Computer Science, Economics and Statistics 23. Ph.D. Thesis.

Tolvanen, J.-P. & Lyytinen, K. 1993. Flexible method adaptation in CASE - the
metamodeling approach. Scandinavian Journal of Information Systems,
5, 51-77.

Verhoef, T.F. & ter Hofstedte, A.H.M. 1995. Feasibility of Flexible Information
Modelling Support. In J. Iivari, K. Lyytinen & M. Rossi (Eds.) Advanced
Information Systems Engineering, LNCS 932. Berlin: Springer-Verlag, 5-
20.

PART III: THE CPME PROTOTYPE

5 DEVELOPING A CUSTOMISABLE PROCESS

MODELLING ENVIRONMENT: LESSONS

LEARNT AND FUTURE PROSPECTS

Foreword

This paper has been published in 1998, and thus does not reflect any later
changes. Hence, there is a difference between the domain classification used in
this paper and the classification made later in Chapter 7.

In this paper, the process metamodelling and process modelling domains
are considered as different domains, whereas in Chapter 7 they will appear in
the same domain, "method definition domain", but as different subsystems.
Process metamodelling will be placed in "technique specification system" (for
process modelling techniques), and process modelling will be placed in process
modelling system. Further, process enactment will appear in the "process
enactment system" in the "method enactment domain", and process
performance will be distributed in the "IS/Software specification system" and
the "development system", both in the "performance domain".

Koskinen M. & Marttiin P. "Developing a Customizable Process Modelling
Environment: Lessons Learnt and Future Prospects", in V. Gruhn (ed.) Software
Process Technology (EWSPT '98), LNCS #1487, Springer-Verlag, Berlin, 1998,
pp. 13-27.

© 1998 Springer-Verlag. Reprinted, with permission, from Software Process
Technology, Springer-Verlag.

https://doi.org/10.1007/3-540-64956-5_2

https://doi.org/10.1007/3-540-64956-5_2

6 PROCESS SUPPORT IN METACASE:

IMPLEMENTING THE CONCEPTUAL BASIS

FOR ENACTABLE PROCESS MODELS IN

METAEDIT+

Foreword

This paper has been published in 1997, and is thus the earliest one in the
collection of papers. There are two issues that I consider to need further
clarification in regard to the other papers.

First, the architecture illustrated on page 139 can be mapped to the
architecture presented in Chapter 7 in the following way. The method level
corresponds with the performance domain. IS models are created in the
IS/Software specification system (7), and the process is carried out in the
development system (8). Definition of metadata models on the method
definition level is related to the technique specification system for system
modelling techniques (lb), and definition of process models to the process
modelling system. PML definition on the method definition schema level
relates to the technique specification system for system modelling techniques.

Second, the metatypes illustrated on pages 141-142 precede the version
discussed in Chapter 3. The metatypes are Process Element, Action,
Relationship, Role, Graph, and Property. The first two appear as such also in
Chapter 3, and Graph renamed as Process Graph to distinguish it from the
GOPRR metatype Graph. Property is later divided into Basic Property,
Reference Property, and Complex Property. Relationship and Role have been
merged into Objectified Dependency. Complex Element, State Model, and
External Concept do not yet appear as independent metatypes. Other changes
will be discussed in Chapter 7.

136

Unfortunately, reproduction of the paper in a shrunk in-press format
makes small-size figures blurred. For the convenience of the reader, the figures
are reprinted in a greater size on pages 150-154.

Koskinen, M. & Marttiin, P. "Process Support in Meta CASE: Implementing the
Conceptual Basis for Enactable Process Models in MetaEdit+", in J. Ebert, C.
Lewerentz (eds.) Proceedings of the 8t1' Software Engineering Environments, IEEE
Computer Society Press, 1997, pp. 110-123.

© 1997 IEEE. Reprinted, with permission, from Proceedings of the 8th

Conference on Software Engineering Environments; Cottbus, Germany, April
8-9; pp. 110-123.

https://doi.org/10.1109/SEE.1997.591823

https://doi.org/10.1109/SEE.1997.591823

PART IV: ASSESSMENT

7 A GENERIC PROCESS MODELLING AND

ENACTMENT SYSTEM: IMPLEMENTATION

AND ASSESSMENT

Koskinen, M. & Marttiin, P. "A Generic Process Modelling and Enactment
System: Implementation and Assessment".

A shorter version of this paper will be submitted to IEEE Transactions on
Software Engineering for possible publication.

© 2000 IEEE. Printed with permission.

A Generic Process Modelling and Enactment System:
Implementation and Assessment

Minna Koskinen

University of Jyvaskyla

Abstract

Pentti Marttiin

Nokia Research Center

An increasing awareness of the benefits of process support in
metaCASE environments has taken place in recent years. Most of the
issues of interest are directly derived from existing software process
research. Customisation of languages and techniques for process
modelling, in contrast, is quite a unique theme to metaCASE research. It
is part of a larger research effort aiming at developing comprehensive
customisable method support environments. Today, research on
metaCASE process support is diverse and scattered. There are no
general architectures that would show direction for a unified body of
relevant research. This article contributes to this end. We have
developed an assessment framework for customisable method support
environments. The framework contains an extensive set of criteria
against which to evaluate an architecture of a method support
environment. We present a prototypical, generic process modelling and
enactment system implemented for a metaCASE environment. We
assess the prototype against the developed criteria, and identify themes
for future research on customisable method support environments. This
study should benefit those who are concerned with development and
adaptation of method support technologies.

1 Introduction

An increasing awareness of the benefits of process support in metaCASE
environments has taken place in recent years. MetaCASE environments are
systems for method specification and support, but until recently their view of
methods has been overwhelmingly product-centred (Koskinen and Marttiin,
2000). The emerged studies cover a wide range of scattered, miscellaneous
issues of interest. These include fine-grained processes (Froelich et al., 1995),
modelling guidance (Rolland et al., 1995; Si-Said et al., 1996; Pohl, 1996; Pohl et
al., 2000), traceability Uarke et al., 1994), metrics (Laamanen, 1995), reusability
(Rolland and Prakash, 1993; Rolland et al., 1998), task-level design processes
(Wijers, 1991; Marttiin, 1994), process maturity (Skelton, 1995; Kumar, 1995),
metamodelling (Mi and Scacchi, 1996; Koskinen and Marttiin, 1997), method
assembly (Harmsen et al., 1994; McLeod, 1995; Brinkkemper et al., 1999),

160

environment integration Garke and Rose, 1992), and simulation and enactment
(Scacchi, 1996).

Most of these issues and perspectives are directly derived from existing
software process research. This is of course an obvious choice, but tends to
obscure some metaCASE specific concerns. The key concern in metaCASE is
adaptability of methods alongside the natural evolution of local development
approaches and practices. The need for customisation and evolution of process
models is widely recognised in process research. It is a central theme in many
process support environments (Bandinelli et al., 1993; Conradi and Jaccheri,
1993; Finkelstein et al., 1994; Kaiser and Ben-Shaul, 1993). Some concerns relate
also to the customisation of metaprocesses, i.e., the processes of process
engineering itself (Lonchamp, 1995). However, this is not the case with
customisation of languages and techniques for process modelling. Varying
modelling needs are expected to be met either by introducing a set of divergent
process modelling languages from which to choose. There are also some
general language designs that contribute to linguistic coverage (Sutton et al.,
1995; Conradi and Liu, 1995).

In a series of empirical studies, Jaccheri et al. (2000) find that software
development organisations have defined processes, and they use local
languages and sometimes tools to represent their processes. However, the
organisations are not using software process technology to support their
process, although their potential benefits are admitted. In another empirical
study, Phalp and Shepperd (1994) find it beneficial to take into account the
characteristics and needs of the organisation when choosing a process
modelling approach. This allows one to identify appropriate notations and
modelling strategies. Rossi and Sillander (1998b) find it necessary to engineer a
process modelling language in accordance to the process context. This abides to
the conclusion by Sharp et al. (1999) that an effort aimed at improving software
development processes needs, to be successful, to recognise the cultural context
and to make explicit the software practices as they are actually understood and
applied by software developers. Comparable empirical findings have been
made of the use of method support in metaCASE (Smolander et al., 1990).

Lack of input from general IS research and from sociological and
psychological research manifests itself in current process research. Process
quality is reduced into an instrumental consideration of the productive
capabilities of an organisation, regardless whether it is viewed from a technical
(products and processes), linguistic (communication), or organisational
(interplay of organisational agents) viewpoint. Social quality that deals with the
motivational capabilities of an organisation is widely ignored in quality
improvement. Human issues have become a serious concern in process
engineering only recently (Sharp et al., 1999; Derniame & Kaba, 1999).
Consequently, the diversity and variability of 'meta-information systems', and
their impact on the feasibility of process approaches, are not recognised well
enough.

The justification for language adaptation is derived from organisational
and social considerations, that is, on the role of technology and process
improvement in larger contexts. Current process technologies tend to be rigid

161

in the process thinking they promote, and hence to become an obstacle in
organisational improvement and evolution. Thus, extensive customisability
should be emphasised especially in metaCASE. In this article we discuss a
generic process modelling and enactment system. Fully operational, such
system would increase the ability to respond to local adaptation needs even if
the required modifications concerned the process modelling approach itself.

The purpose of this article is to present a prototypical generic process
modelling and enactment system designed for a metaCASE environment, and
to assess the prototype against a domain framework for customisable method
support environments. The domain framework collects a set of criteria to assess
such method support environments.

This study takes a constructive research approach. The research process is
illustrated in figure 1. The research started with an initial theory building phase
that involved literature reviews of process modelling languages (Marttiin,
1994b; Koskinen, 1996a, 1996b). It was followed by prototype development that
was conducted in two phases of design, implementation, and testing (Koskinen
and Marttiin, 1997; Marttiin, 1998b). Each testing stage contributed to further
theory building, and some design experiments were made.

Theory building
initial

Literature
review
process
modelling
languages

Phases of the study

Prototype development

- Phase I Design/ �
Implementation \

Observation Theory
case study--+--+-t�►uilding

language

Assessment

Language
framework

i I Design
experiments

spec. --+-�-►

Phase I
Testing

I -
riteria

,

_Prototype
--+-----------►

Theory Literature
building_ reviews

◄---
Phase II Design/
Implementation

) system system

Phase
: _}I-t--t---1a►

rchitec
�-+-1

a
-►
rchitect.

Testing

h

riteria

Domain
framework

FIGURE 1 The research process of the study

When the prototype had reached an adequate level of robustness it was used
for more comprehensive design experiments. Simultaneously, we followed a
related case study conducted in a software development organisation (Rossi
and Sillander, 1998a; Rossi and Sillander, 1998b). The design experiments and
observations contributed to further theory building on language specification
(Koskinen, 200Gb). The theory building phase resulted in a generic language
model (Koskinen, 2000a).

162

Meanwhile, the experience gained from developing the prototype led to
theory building concerning relevant system architectures (Marttiin, 1997;
Koskinen and Marttiin, 1998). Three literature reviews were conducted that
contributed to theory building and the development of a general architecture
for a customisable design environment (Marttiin, 1997; Koskinen, 1999;
Koskinen and Marttiin, 2000c). The language model and the general
architecture formed the basis for a domain framework. This framework
contains a set of assessment criteria for customisable method support
environments. Finally, the prototype was assessed against these criteria to
reveal areas for further development.
This paper reports the latest phase of the research process. First, we discuss the
metaCASE environment, MetaEdit+, and the prototypical process modelling
and enactment system, CPME (Section 2). Thereafter, we introduce a domain
framework that collects criteria for assessing customisable method support
environments (Section 3). Thereafter, we assess CPME and MetaEdit+ against
the domain framework (Section 4). Finally, we examine the results to identify a
body of central themes for future research in the area (Section 5).

2 A Generic Process Modelling and Enactment System for a
MetaCASE Environment

In this section we illustrate a generic process modelling and enactment system
called Customisable Process Modelling Environment (CPME). It is a
prototypical process support system designed for a metaCASE environment,
MetaEdit+. First, we shortly describe MetaEdit+ to give an overview of the
system, with which CPME is intended to operate (Section 2.1). Thereafter, we
briefly illustrate the core parts of the CPME system (Section 2.2). We begin our
detailed discussion with the process meta-metamodel of CPME: the GOPRR-p
model (Section 2.3). We describe GOPRR-p metatypes, discuss the reasons that
lead us to reuse the design of the GOPRR model, and some drawbacks entailed.
We also make some suggestions for further improvement of the GOPRR-p
model. Thereafter, we illustrate the process modelling and enactment system in
detail (Section 2.4). We describe the use of notational constructs in process
modelling, and the use of semantic constructs in process enactment. We then
make some suggestions for their further improvement.

2.1 Overview of MetaEdit+

MetaEdit+ (Kelly et al., 1996) is a commercial multi-user metaCASE

environment
1

that contains support for method engineering (CAME) and
systems modelling (CASE). It is based on a client-server architecture. Each
client contains a set of tools and a MetaEngine. MetaEdit+ tools handle

1

MetaEdit+ is a registered trademark of MetaCase Consulting Ltd.

163

representational data but request all operations on conceptual data from the
MetaEngine. Clients do not communicate with each other directly but through
the shared design information. The repository in MetaEdit+ is implemented as
an object-oriented database running at a server (Kelly, 1998). Both design
models (instances) and design methods (types) are stored in a repository.
Modification of any design information in one MetaEdit+ client is automatically
reflected to other clients on the commitment of a transaction. Repository
maintenance is supported by a set of tools that provide the necessary
operations for browsing models and their components, deleting models and
representations, and executing repository transactions.

CAME Functionality. The meta-metamodel underlying MetaEdit+ is the
GOPRR model. It is based on a simple conceptual foundation of a few
metatypes for defining methods. The model includes five metatypes: Graph,

Object, Property, Role, and Relationship
2

• A graph type is a collective primitive
that specifies a technique. Object, role, and relationship types specify method
elements in a technique and property types are used to describe these elements.

Methods in MetaEdit+ are integrated collections of modelling techniques.
The method elements are collected in a graph type and rules are given for their
combination in graphs. Hierarchies of models (decomposition) and connections
between models (explosion) are specified by creating link types from object
types into graph types, and by attributing property types to object types. The
GOPRR-p makes a distinction between conceptual and representational method
knowledge. Each method component can involve several representation styles:
graphical, matrix, and tabular (Marttiin et al., 1995).

The CAME tool set in MetaEdit+ includes form-based tools for creating
and managing method components and composing them into method
specifications (Rossi, 1998; Zhang, 2000). The tools are based on the GOPRR
model and methods are defined using the GOPRR metamodelling language
(Kelly, 1998). The heart of the metaCASE architecture is MetaEngine that
embodies a GOPRR implementation. The MetaEngine provides interface
services for the tools, e.g., selection dialogs and warnings according to the
method specification.

CASE Functionality. Basic CASE tools in MetaEdit+ include editors for
system modelling (Diagram Editor for graphics, Matrix Editor for matrices, and
Table Editor for tables), and tools for browsing (Repository Browser), reporting
(Report Editor), and querying (Query Editor) repository data. In addition,
MetaEdit+ contains a hypertext subsystem for model linking and annotation
(Oinas-Kukkonen, 1997; Kaipala, 2000).

Production support in MetaEdit+ includes representation, analysis and
transformation functions. First, the representation function consists of
operations that focus on constructing system models. It covers both model level
(graphs) and model element level (objects, roles, relationships, and properties)
operations. The operations deal both with conceptual and representational
data. MetaEdit+ maintains several representational versions of a conceptual

2

In the following, instances of types are in lowercase, e.g. object, types are appended with 'type',
e.g. object n;pe, and metatypes are initially capitalised, e.g. Object.

164

model, where each diagram, matrix and table may contain a subset of the
model concepts. Versioning of conceptual models is not yet supported.

Secondly, analysis function consists of operations that concern ensuring
the correctness of system models. Analysis is either automated or manual.
MetaEngine manages automated support by enforcing GOPRR rules (meta
metamodel) and method rules (metamodels). Manual analysis is carried out
using reporting functionality. The GOPRR model determines the general rules
of how metatypes are mapped together. Method specific rules ensure that
system models will be created consistently. The consistency rules are checked
when creating and updating model elements. MetaEngine provides modelling
guidance such as selection dialogs and warnings and prevents the user from
performing illegal operations.

Thirdly, the transformation function deals with operations that aid in
generating textual specifications based the system models, such as code and
document generation. Report templates are specified with the Report Editor
that uses a GOPRR based reporting language.

Agent System. The agent system in MetaEdit+ is specified using agent
models. Agent models are currently simple ones describing actors and their
responsibilities in a project. They are based on the agent types user, user right,
and project (Marttiin, 1994b; Marttiin, 1998b).

Basic operations on users (creation, removal, permissions) and projects are
managed by the MetaEdit+ repository. A project is a root pointing to a set of
graphs stored in a repository area (system models and/ or process models
created in a project). The only restriction for opening a project is that the user
must be assigned to it. Users may have several projects open at the same time
and they can move freely between the projects. Users are identified when they
log into the system. A session consists of subsequent transactions each of which
ends with committing or abandoning all changes made during that transaction.

MetaEdit+ supports asynchronous co-ordination. Its concurrency control
is based on automatic locking strategies that use write locks. These are
implemented at the model element level and are divided into conceptual and
representational locks. Automatic locking, transactions and sessions are
discussed in Luoma and Somppi (1996) and Kelly (1997).

2.2 CPME: Process Support System

The aim of CPME is to provide process-based guidance and support for
production and co-ordination tasks in MetaEdit+. Its purpose is to facilitate
understanding, guide users and support production activities and their
dependencies (co-ordination) within a multi-user environment. It uses explicit
(visible) process models and process metamodels, supports large-grained co
ordination activities, and enables incremental run-time customisation of
process models and process modelling languages. We describe five core aspects
of the CPME prototype.

Process metamodelling. Process metamodelling is the means to specify
process modelling languages in CPME. The GOPRR-p model is the underlying

165

process meta-metamodel that constitutes the foundation for all process
metamodels. Process metamodelling is facilitated by a set of form-based
process metamodelling tools that are based on the GOPRR-p model They use a
GOPRR-p based process metamodelling language. The tools are an extension to
the Metamodelling Tools in MetaEdit+. This is a natural continuum entailed
from a choice to reuse the GOPRR model in the design of a process meta
metamodel. The basis for this choice is discussed in Section 2.3.2.

Process modelling editor and enactment interface. CPME provides a
generic process editor to facilitate flexible, incremental process modelling. It

can be used both for process modelling and process enactment. A process
metamodel specifies rules for both process modelling and process enactment.
This has lead to the current decision to design and enact process models
through the same interface. However, the design of GOPRR-p does not
constrain the type of enactment interface. The actual interaction with the
process engine is carried out through menus that could be attached to any tool
in MetaEdit+ with minor effort.

Process engine and process enactment. The Process Engine in CPME
implements the GOPRR-p model. It is generic in that it uses an explicit and
separate process metamodel as a language definition. This is analogous to a
generic interpreter that would use an explicit programming language definition
to execute a piece of code written in that language. A process engine instance
encapsulates process model components so that the engine is constructed and
customised through constructing and customising a process model. In this way,
no transformation is needed to make the process model enactable. Also the
effort needed in specifying the process engine instance is reduced.

Process programming interface. MetaEdit+ tools are evoked by the
Process Engine through the process programming interface of a tool. This
interface specifies all operations that a tool can provide for process support.
The tools include all CASE and CAME tools as well as CPME tools. When tools
are integrated to CPME, appropriate operational interfaces must be coded into
the tools. However, the process programming interface is intended to be
customisable but the customisation mechanisms are not yet implemented.

Enhanced agent system. CPME enhances the basic user model of
MetaEdit+ with user roles. Users may participate in a project in several roles. A
user role describes a position and function in a project and is used in
controlling participation in a process by assigning tasks to user roles. The
project model is extended with two lists: one for mapping users to their roles,
and another for mapping user roles to assignments. Agent models are managed
through form-based tools: User Role Tool, Task Assignment Tool, and Project Tool.

Agent types could be extended with additional properties for project
management's needs (e.g., users' experience histories, costs of work hours).
However, in their current form they provide the control needed in process
models, i.e., assigning tasks to specific user roles.

166

2.3 GOPRR-p: The Process Meta-Metamodel

CPME uses a process metamodelling approach for the customisation of process
modelling languages. Earlier, metamodelling approaches have been used for
the customisation of conceptual frameworks and notations for data modelling
(Sorenson et al., 1988; Kelly et al., 1996; Nissen et al., 1996). In CPME, process
metamodels cover the conceptual framework, the notation and the semantics of
a process modelling language (Koskinen, 2000a). A conceptual process
metamodel captures the representation independent rules of model
composition. A notational process metamodel captures the modelling notation
in a specific process modelling technique. A semantic process metamodel
captures the rules of model interpretation and enactment. Thus it can be seen as
an aid or a mediator that assists a generic process engine with the interpretation
of process models.

The GOPRR-p model distinguishes between user related and environment
related concepts in a conceptual process metamodel (Koskinen and Marttiin,
1997). User-related processes are performed by a human and environment
related processes are performed by an automated environment. Despite the
differences between the requirements of human and machine interpretation, a
process model should fully support both processes during model enactment.
CPME distinguishes user-focused and environment-focused process models
and languages. The former are used to define human processes and the latter to
define automated processes. Since these models and languages are conceptually
overlapping, we have decided to specify the overlapping parts within the scope
of the former to avoid redundancy.

TABLE 1 User-focused and environment-focused languages are covered by different
components of the GOPRR-p model.

Notational
(user)

Diagram

Symbol

,_ Colour

Symbol

Symbol + Line

Label

Conceptual
(user)

Conceptual
(environment)

Process Graph

Process Element
--------------Action
- State Model

Relationship

Role

Property r-------------
Action

Semantic
(environment)

Manager Pattern
Progress Pattern

Feature
--------------Function Pattern
,... State Pattern -

Progress Pattern
Feature

Progress Pattern
Feature

Value Pattern
- Function Pattern -

Table 1 shows how the two types of processes are covered in the GOPPR-p
model. A user-focused language is covered by notational and conceptual
process metamodels, whereas an environment-focused language is covered by
conceptual and semantic process metamodels. A conceptual process metamodel

167

thus integrates a user-focused language and an environment-focused language.
It also constitutes the core to which notational and semantic process
metamodels are attached. All process metamodels constructed in CPME are
based on the GOPRR-p model.

2.3.1 GOPRR-p Metatypes

The process meta-metamodel GOPRR-p incorporates conceptual, notational,
and semantic metatypes. Each class of metatypes concerns specific information
of process models: their composition, visual appearance, or interpretation and
enactment. First, the conceptual metatypes are the core of the GOPRR-p model
to which notational and semantic metatypes are attached. The current version
of the GOPRR-p model supports six conceptual metatypes: Process Graph,
Process Element, Action, State Model, Relationship, Role, and Property. Second,
CPME provides three representation styles: diagram, matrix, and table.
Notational constructs in each style are generically classified as views, view
fragments, and visual attributes. The core style is diagram and it is used in the
Process Editor. The notational metatypes in diagram style are Diagram (view),
Symbol, Line and Label (view fragments), and Colour (visual attribute). Many of
the notational rules governing the dependencies between notational constructs
are given in the GOPRR-p implementation. Third, semantic construct types are
patterns of interpretation and thus the semantic metatypes in the GOPRR-p
model are a set of pattern types: Manager Pattern, Progress Pattern, Function
Pattern, State Pattern, and Value Pattern. Together, semantic construct types
specify a unique enactment paradigm that comprises the rules and constraints
governing model interpretation and enactment.

In the following, we discuss each conceptual metatype together with the
related notational and semantic metatypes.

Process Graph. A process graph is a model of some restricted part of a
process: a process model is composed of a set of graphs. A graph type
integrates the components of a process metamodel. The graph structure (i.e.,
dependencies between process elements) is accomplished by a binding
mechanism: every relationship involves a set of roles, which further are
participated in a set of process elements. The notational metatype related to
Process Graph is Diagram. Diagrams are views that show the arrangement and
relations of different symbols, lines, and labels. The semantic metatype related
to Process Graph is Manager Pattern. A manager pattern is a construct that
controls the interplay of several successive or simultaneous progress patterns.
The enactment of a process graph is thus determined by its manager pattern
and the progress patterns of its components.

Process Element. A process element specifies any component of a user
process, such as a task or a deliverable. The notational metatype related to
Process Element is Symbol. Symbols are independent graphical 'nodes' in a
diagram. The semantic metatype that is attached to Process Element is Progress
Pattern. A progress pattern is a construct that specifies the advancement of an
execution thread at a specific point along an execution channel. In CPME,

168

progress patterns compose a set of features. Each feature specifies a small
generic aspect of enactment: either of advancement or co-ordination of
concurrent execution threads. The progress pattern for process elements
combines a set of advancement and co-ordination features.

Action. Actions are attached to a process element to specify how an
automated environment is intended to support the process element. A process
element type specifies an integration constraint that determines, to which kind
of actions it can be related. It enables flexible integration that need not be
wholly determined on the level of language. Actions are used to evoke different
kinds of tools to operate on some products. Actions are represented in separate
form views. The semantic metatype that is attached to Action is Function
Pattern. It specifies how a tool operation is evoked on a certain set of products.
A function pattern specifies the type of operation invocation and the mode of
control during operation execution. In the current implementation, all function
patterns are envelopes for black-box operations and hence only low level of
control can be provided.

State Model. A process element type specifies a state model that
determines the possible states and state transitions during a process element's
enactment life-cycle. The notational metatype related to State Model is Colour.
The colour of a process element symbol is determined according to the
enactment state of the corresponding process element. The semantic metatype
that is attached to State Model is State Pattern. A state pattern specifies how the
enactment state of a process element of certain type is changed in response to
internal events.

Relationship. A dependency between concepts within a conceptual
framework specifies how concepts relate and affect each other. The GOPRR-p
model manages dependencies through bindings as mentioned above. A
relationship represents a dependency between a set of process elements. It is
represented using a symbol. The notational metatype related to Relationship is
Symbol, whereas the semantic metatype is Progress Pattern. A progress pattern
for a relationship type combines a set of advancement features. These features
are unique for the execution of relationships.

Role. A role connects a process element to a relationship and defines how
the process element plays part in the relationship. The notational metatypes
related to Role are Symbol and Line. Lines are 'edges' between symbols. The
semantic metatype that concerns Role is Progress Pattern. A progress pattern
for a role type combines a set of advancement features unique for the execution
of roles.

Property. Properties form a means to store process specific data, to refer to
different kinds of data and objects, or to store collections of data and objects.
Properties may appear graphically as textual labels such as names, text fields or
numbers. The notational metatype related to Property is Label. The semantic
metatype that is attached to Property is Value Pattern. A value pattern specifies
the formation and the role of property values in process enactment. Action
types can be attached to property types to specify property constraints and

169

value calculation. In contrast to actions with process elements, the integration is
fully specified at type level.

A detailed discussion of process metatypes is found in Koskinen (2000).

2.3.2 Why GOPRR?

The design of the GOPRR-p model is based on the GOPRR model. There are
several reasons for this. Firstly, an examination of different views of processes
and process modelling languages gave some directions for the representation
capability of the required model. Much of the fixedness in existing languages
was found to result from the use of binary dependencies that are capable to
create a binding only between two process elements. Therefore, information
about n-ary dependencies (such as needed for branch and merge), and thus also
about the binary dependencies of which the n-ary dependencies are built, have
to be specified as part of process elements. GOPRR' s view on dependencies is
very elaborate and it allows any n-ary dependency to be specified
independently of objects. Furthermore, it distinguishes between relationships
and roles and specifies all relationships and roles as autonomous entities.
Therefore, the binding structure in GOPRR is highly flexible. Most available
models were weak in this regard.

Second, process metamodelling has to be capable of addressing the
notation, conceptual framework, and semantics of languages. It should also
enable flexible reuse and combination of process metamodel components.
Moreover, representation independence has to be supported. GOPRR
differentiates between the notation (for representations) and the conceptual
framework (for conceptual models). Even though the implementation of
GOPRR does not fully support this capability, it is considered and taken into
account in the design of GOPRR. Other available models did not support the
distinction between representations and conceptual models, nor did they allow
representation independence.

Third, a process meta-metamodel should neither be too generic nor too
strictly bound to a specific ontology. A generic model (such as 0-Telos in
Jeusfeld, 1993) can be used to define very elaborate metamodels, but it also
makes metamodels very complex to understand, manage and evolve. An
ontologically bound model, on the other hand, restricts its applicability to a
narrow perspective of processes (such as viewing a process as a network of
activities). The GOPRR model was an appropriate alternative since it is neither
as generic as in 0-Telos, nor as ontology-bound as the generic models used in
existing process support systems.

Fourth, the actual application of models was considered. Many metaCASE
developers have had problems in transferring their technology into real use.
Also, the metamodelling process appears to be quite time-consuming. In
contrast, MetaEdit+ is a commercial metaCASE environment that has currently
several hundred users in more than 30 countries around the world. Therein,
GOPRR has shown its strength as implementing over 30 methods, each
including one or more modelling techniques. GOPRR's ancestor, OPRR

170

(Smolander, 1992), has been used to implement even more modelling
techniques. The time needed for metamodelling is very short in MetaEdit+ in
comparison to other metamodelling tools. For example, even complex methods,
such as Unified Modelling Language (Booch et al., 1999) can be developed by a
skilled method engineer within a few days. Therefore, GOPRR's capability to
represent a wide variety of modelling techniques and to support rapid method
engineering is ensured.

Fifth, the design of the GOPRR model was found to follow such principles
that changes and extensions are fairly easy to make both in system design and
implementation. This ensured that future improvement of the model is
possible. A process meta-metamodel could be based on the GOPRR model
without unnecessarily restricting later improvements. That was a core concern
in the iterative and cyclical prototype development. Also, reuse of design and
implementation components gave benefits (such as compatibility and
consistency) when the approach was implemented. However, this is considered
only as an additional advantage - not a reason - for choosing GOPRR as the
basis for a process meta-metamodel.

2.3.3 Drawbacks of the Choice to Reuse the GOPRR model

Nevertheless, the choice of reuse has been not only an advantage. There are
always some design decisions that are not the best for prototyping. It is not
easy to get approval for changes that would benefit prototype development,
but that would require rework on a commercial system. The changes needed by
the prototype must therefore be made in a research version of the system.
Consequently, when the commercial system is updated and the changes
propagated to the research system, there is always extra rework in ensuring
that the changes do not override changes made for the prototype. To reduce
this rework to the minimum, compromises are necessary.

Also, the choice of reuse restricts the feasible starting point for prototype
development. Some such issues are discussed by Marttiin (1998a). Firstly, the
model chosen determines the level of support that an approach provides.
Increasing the level of support requires a richer and more complex process
metamodelling language and a more detailed and laborious metamodelling
process. Therefore, it is necessary to examine what is the level of support that a
GOPRR based model can provide for process support and whether there is
need for further modification.

Secondly, it necessary to distinguish between the restrictions imposed by
GOPRR's design and GOPRR's implementation in MetaEdit+. The current
design of GOPRR is much more elaborate than its implementation. This
concerns support for notational customisation and conceptual rules. The
problems faced due to the reuse of GOPRR concern more GOPRR's
implementation in MetaEdit+ than GOPRR's actual design. For example,
GOPRR's bindings in the implementation are structures that keep objects
together but do not allow direct communication between objects. Also,
GOPRR's graph as implemented is a collection of objects that do not directly

171

know in which graph(s) they appear. These implementation decisions have
been made to allow more flexible reuse, but they also inevitably hamper fluent
enactment. However, the design of GOPRR does not impose these restrictions.

When we assess the amount of time and effort needed for adapting
GOPRR in comparison to some other model, we conclude that the required
modifications are less laborious in the case of GOPRR. As the main objective
has been to find a starting point for several cycles of elaboration and evolution,
instead of a ready-made model, we regard the decision to reuse GOPRR well
founded.

2.3.4 Suggestions for Further Improvement of the GOPRR-p Model

We find several ways in which the GOPRR-p model should be improved or
extended regarding its current implementation in CPME prototype. In the
following, the suggestions for improvement in the current version of the model
are discussed for each metatype class individually.

Conceptual metatypes. The suggestions for improving the conceptual part of
the GOPRR-p model concern mainly the coverage of possible concepts and the
level of customisability. Firstly, the GOPRR-p model does not cover a
distinction between a process and its context. It should distinguish between
concepts that form the core of a process model, and concepts that enable a
"connection" to the context that is not expressed in the model. Due to the lack
of "external concepts", certain external dependencies (such as detecting events
in the external system) cannot be adequately specified.

Secondly, we find that in certain cases a complex element would be a
more suitable construct than a pair of a process element and a process graph.
Partly, this is a notational problem: a symbol representing a process element
cannot embed symbols of process elements in its decomposition in a process
graph. However, there are cases in which the use of a process graph as the
decomposition of a process element is not fully justified. The separation of a
process element and a process graph should always be based on a conceptual
distinction between a process element and its decomposition (as in the case of
an interface and its possible implementation). If a concept is "produced" by its
decomposition, separation is not conceptually justified.

Thirdly, state models should be more elaborate. In the current
implementation there is a fixed base-model that can be modified only by
replacing the names for states. For example, if we are familiar with the state
model presented by Mi and Scacchi (1992), we can rename Available (in the
base-model) to Ready, Finished to be Done and Exception to contain two state
types Stopped and Broken. However, the transitions specified by the base-model
cannot be changed. In the future, the system should support specification of
various state-transition models for process elements.

Fourthly, GOPRR-p supports the specification of property types for
properties that compose a list or collection of properties of certain type, but not
property types for properties that compose different types of properties. In

172

other words, it is not possible to define a property type that would combine, for
example, start date, end date, and duration calculated from the first two, to be
reused between different process element types.

Notational metatypes. Up to date, the notational part of the GOPRR-p model
has fully relied on the design of GOPRR, while we have concentrated on more
critical aspects of modelling: composition and semantics. Therefore the
following suggestions are not as detailed as those concerning conceptual and
semantic metatypes. However, we have encountered several inconveniences
during our experiments on process metamodelling and process modelling.

Firstly, the notational process metamodel should be separated from the
conceptual one. Currently, there are fixed mappings between notational and
conceptual metatypes. For example, the GOPRR-p model enforces that all
process elements are represented as symbols and all bindings basically as lines.
This is a problem since there are many notations that represent process
elements as lines, not symbols.

Secondly, in many aspects we have needed to adapt notational rules when
they are implemented in a process metamodel. This is due to notational rules
that are currently fixed in the GOPRR-p implementation. Customisability of
those notational rules should be enabled. Also, we have found several
notational rules that currently cannot be specified. There is a need for new
types of rules, such as those governing the location of view fragments in
relation to others. Especially, customisability of notational rules concerning
dependencies between notational constructs should be improved.

Thirdly, there is a need for visual dependencies, especially a group
mechanism that would enable the creation of composite notational constructs
within a diagram.

Fourthly, we suggest that the customisation system for notations is
generally made more flexible. Different types of view fragments could be
combined in customisable representation styles. The system could also have
mechanisms that enable the definition of new types of views and view
fragments. This would allow more flexible representation styles.

Semantic metatypes. The suggestions for improving the semantic part of the
GOPRR-p model, mostly concern inadequate refinements.

First, we have found some misjudgements that are due to handling
features originally as a single class. Co-ordination features, such as the one
specifying initiating process element types, at first sight seem to concern type
specific information. However, the feature concerns a specific process element
type only in the context of a certain process graph type. When co-ordination
features are related to process elements instead of process graphs, the reuse of
process element types is difficult. A process element type that is otherwise
perfectly reusable cannot be reused in another process graph type, if it is fixed
as initiating while the reused one should not be, and vice versa. Co-ordination
features should be attached only to manager patterns and advancement
features to progress patterns.

173

Second, the feature sets for each conceptual metatype are currently fixed.
The GOPRR-p model could address a wider range of languages if
customisation of the feature sets were allowed. Also, the system could benefit
from allowing new features to be specified.

Third, there is a lack of semantic metatypes for mediating information
across environment borders. The system would benefit if the GOPRR-p model
allowed one to specify patterns for event detection and data exchange. Function
patterns can currently evoke only MetaEdit+/CPME tools and handle products
produced by those tools.

Fourth, the improvement of state models requires also respective
improvement of state patterns.

Fifth, different types of function patterns should be introduced in the
GOPRR-p model. There should be enveloped functions for 'black-box'
execution of tools and controlled functions for 'white-box' execution. It would
also be beneficial to introduce controlled functions specifically designed for
reflexive operations. The current implementation supports only controlled
functions. The functions can evoke reflexive operations only through invoking
the Process Editor, not referencing the process model (in which the action
instance locates) directly.

Sixth, the addition of complex properties requires a suitable pattern for
managing complex values. Currently, we have to use products (GOPRR objects)
to specify complex structures without redundant enactment mechanisms. This
is not a sound solution practically, nor theoretically. Furthermore, we have
found that it would be feasible to have specific logic functions for performing
logical operations on complex values.

Last, value patterns might be distinguished into active and passive value
patterns. Currently, all value patterns are basically active. If there is no function
defined for the value pattern, the function mechanism is simply not used.
However, we find this conceptually not justified. Although we are not fully
convinced of its necessity, a weakness in conceptual distinction is always an
open invitation for problems during later extension and improvement.

2.3.5 Process Metamodel Abstractions

A major hindrance in process metamodelling in the current CPME prototype is
narrow support for metamodel abstractions. Basically, all that is supported is
sub-typing. We have found that this is not adequate for some process
modelling languages. Our experiments have shown that there is a need at least
for fragment patterns, "context inheritance", and type grouping. First, a
fragment pattern specifies a metamodel for a specific type of graph fragment.
The rules of a fragment pattern apply only to such fragments and they overrule
all metamodel rules generally specified in the process metamodel. Secondly,
context inheritance denotes that a specific type "inherits" its dependency
context (the dependency types in which it may engage) from one context to
another, but not necessarily to all contexts in which the type appears. In other
words, there is a set of dependency types in which the type may engage in all

174

dependency contexts, but also an individual set of dependency types for each
possible sub-context. Thirdly, type grouping denotes that a set of different
types have a common dependency context. All these would reduce redundancy
in process metamodels. Sometimes, a fragment pattern is also useful to avoid
recursion in metamodels.

We also find it could be useful to introduce metamodel patterns to specify
a set of generic metamodel rules for a common set of process metamodels. This
would enhance metamodel reusability.

2.4 Process Modelling and Enactment System

The core of the generic process modelling and enactment system in CPME
consists of the Process Editor and the Process Engine. The process editor is a
combined editor and enactment interface. The Process Engine is a combination
of a metaengine and a generic process interpreter. The relation between a
metamodelling system and a process modelling and enactment system is
shown in figure 2.

Process

metamodelling

system

Generic process

modelling and

enactment system

Process

modelling

Process meta-
metamodel

Process

metamodelling

tools

Process
metamodel

Generic

cess En

'i'
I

v
� Process

t----,�• model
Process

enactment

FIGURE 2 The relation between a process metamodelling system and a generic process
modelling and enactment system.

A process metamodelling system supplies the generic process modelling and
enactment system with a process metamodel. The process metamodel specifies
both rules for process modelling and for process enactment. The process

175

metamodel configures the generic process engine that guides both process
modelling and process enactment accordingly. As a metaengine, the Process
Engine controls the creation and modification of process models, and as a
process interpreter it controls the execution of process models.

A process engine instance encapsulates the components of a process
model. The process engine instance is constructed and customised through
constructing and customising the process model. This design choice entails that
no transformation is needed to make process models enactable. It also reduces
the amount of effort needed in customising a process engine. This integrated
design has also lead to our decision to support the design and enactment of
process models through the same interface, the Process Editor. However, the
design of GOPRR-p does not restrict the kind of enactment interface to use.
Interaction with the process engine is carried out through menus that could be
attached to any tool in MetaEdit+ with minor effort.

2.4.1 Use of Notational Constructs in Process Modelling

The Process Editor is a customisable tool for process modelling. It implements a
generic tool architecture that is configured by supplying it with a process
metamodel. The core of the tool architecture is an interface layer that
implements the generic process pattern of the GOPRR-p model. As a process
representation is opened in the Process Editor, it is "hooked" to the
components of the interface layer. Opening a process model in the editor
involves that the corresponding process metamodel is automatically loaded
into the editor. The Process Editor is literally generic: it cannot function without
a process model and a process metamodel.

A process model may have several representations that give either a full
or a partial view to it. A representation consists of a view and several view
fragments. View fragments can be characterised by visual attributes. We
discuss here the diagram representation style that is used in the Process Editor.

Diagram. A diagram is a collection of symbols, lines, and labels that are
partially connected through various notational dependencies.

Symbol. A symbol may store a location point. The location of a symbol
can change in a diagram. A process element symbol always stores a location
point and thus it can be moved only manually. The location point of a
relationship symbol is automatically optimised unless the location is chosen
manually by moving the symbol in a diagram. The location point of a role
symbol is automatically calculated according to metamodel rules. The symbol is
automatically rotated relative to the angle in which it connects to the process
element symbol. All symbols may store a set of connection points that
determine where an incoming line can be connected. In case no connection
points are set, all lines are connected to the middle of the symbol.

Line. A line is specified as a series of touch points. The location of a touch
point may be set manually. Otherwise, the location changes automatically
when the symbols that it connects are moved. The end points of lines are not

176

stored since they can be automatically calculated based on the location and the
connection points of the symbols they connect.

Label. A label is a textual symbol. The content of a label is either fixed in
the metamodel, or it reflects the value of a certain property.

Colour. Colour is a visual attribute that can be attached to any symbol.
However, in case it is attributed to a process element symbol, it can be
automatically changed according to the enactment state stored in the
corresponding element node.

All notational constructs are accessed and modified through the interface
layer of the Process Editor.

2.4.2 Suggestions for Further Improvement of the Representation System

Most of the weaknesses of the representation system are entailed from
weaknesses in the notational and conceptual parts of the GOPRR-p model, and
are mostly due to a lack of emphasis in our research. Therefore it is also
difficult to make detailed suggestions for their improvement.

The notational part of the GOPRR-p model and the mechanisms of the
representation system should be designed more systematically in the future.
This should be done according to the same design principles that we have used
in designing other aspects of the system. Firstly, the design should introduce a
set of generic and specialised mechanisms. Secondly, the design should
characterise conceptual clarity and comprehensiveness, avoid redundancy, and
look for conceptual justification for all discrimination and integration
introduced in the design. Thirdly, all design iterations should increase the
formality of the design. The research process should be conducted in a way that
before starting a new iteration a throughout study is conducted to evaluate and
collect criteria for further improvement of the design.

2.4.3 Use of Semantic Constructs in Process Enactment

All execution in CPME is based on messaging: different process engine
components receive and forward signals that transmit information on the
execution of the process model. For each type of semantic construct there is a
corresponding enactment mechanism that is specially designed for the use of
such constructs.

Manager mechanism. The manager mechanism encapsulates a process
graph and uses a manager pattern to determine how to control the interplay of
several successive and simultaneous process elements in the graph. The
manager mechanism is illustrated in figure 3. Mechanism components are
shown as boxes, while signals passing between the components are illustrated
as arrows.

The core of the manager mechanism is an execution manager that co
ordinates the execution of a component hander, value handler, and a state
evaluator. There are two kinds of input signals that an execution manager may
receive: signals that request information on the enactment state, and signals

177

that request execution. Requests for state information are forwarded to a state
evaluator. The graph state is deducted from the states of the component
elements. Requests for execution are forwarded to a component handler. In
case the request initiates the execution of the graph, a feature handler checks up
what types of process elements are initialising in the graph type. The
component handler then executes or enables the execution of all appropriate
process elements. In case execution is already started, the component handler
checks which components are currently enabled, and provides them as a
collection to the requester. Also the collection of all elements in exception state
can be requested. At all events, a value handler is invoked to check whether the
event involves calculating some property value or checking some property
constraint.

Manager mechanism (graph)

input

signal

Feature

handler

Feature

spec.

CS = control signal

CS

Execution manager

CS ES

CS
Component

handler
ES

CS ES

Element node

FS = feedback signal

CS FS

State

evaluator

output

signal

ES = event signal

FIGURE 3 Manager mechanism component of the Process Engine

Element node mechanism. Each process element in a process graph is
encapsulated into an element node that stores current state information of the
process element. An element node can allow the initiation of several parallel
execution threads. It collects all execution threads as they are initiated, and
integrates them directly to the process model that is enacted. An element node
stores its parallel sub-execution threads together with their individual
enactment states. The use of sets for collecting parallel element nodes provides
dynamism in process enactment. All parallel execution threads remain
connected for later examination as process traces. The enactment node
mechanism is illustrated in figure 4.

The execution manager of the element node mechanism co-ordinates the
execution of a progress mechanism, an execution handler, a state mechanism,
and a parallel handler. The progress mechanism and the state mechanism are

178

discussed later. The execution handler takes care of downward hierarchical
execution channels. It aids in choosing alternative actions or decomposition
graphs, and forwards execution thread to a function mechanism or a manager
mechanism respectively. In case execution fails, the execution handler notifies
the execution manager about it. The execution manager orders the state
mechanism to change into exception state and suspends the enactment of the
element node. The parallel handler is responsible for co-ordinating the
execution and states of the parallel sub-nodes.

�
input
signal

Element node mechanism

I Progress mech. (ele.)
'

signal ES si_gnal
,, r

Execution manager
·�

CS ES CS ES
..

Execution handler
·� ..

CS ES CS ES
" "

Manager Function
mech. mech.

CS = control signal

CS ES
Parallel
handler

l

" CS ES
State ..

...

mech. Element
node

ES = event signal

FIGURE 4 Element node component of the Process Engine

output
signal

Enactment-time component reuse is supported by means of sharing and
cloning. Process models can share element nodes with process elements or
process elements only. In enactment sharing element nodes are shared. Thus all
bindings and state information of a model component are shared between
models. This allows co-ordination between different projects, processes, and
perspectives. In element sharing process elements are shared by alternative
models. In this case, enactment of the component in one model does not entail
its enactment in another model, since it does not have the same bindings in
each model. This allows specification of alternative process scenarios.
Component cloning is used in the initiation of parallel execution threads. All
the threads maintain their state information and the state of the modelled
process element is composed from the states of the cloned ones.

Progress mechanism. A progress mechanism encapsulates either a
process element, a relationship, or a role. It uses a progress pattern to
determine how to advance an execution thread along a binding between
process elements. A binding is created by connecting a set of process elements

179

to a set of roles and the roles to a relationship. This allows the use of n-ary
bindings. The progress mechanism is illustrated in figure 5.

The execution manager of the progress mechanism co-ordinates the
execution of a set of feature handlers and a value handler. A feature handler
uses a feature specification to define how the signal is handled or modified as it
passes through a specific feature point. The passing signal consists of
information on the type of the thread (simple, parallel) and information for
identifying which execution thread it concerns. The value handler functions in
the same way as in the manager mechanism.

Progress mechanism

(element/relationship/role)
1 rs

�I Value mech.n Value handler I.

lEs
ES

CS

Execution manager � �
input -� output
signal CS ES CS ES CS ES signal

,. ,. , .
Feature Feature Feature
handler handler handler

I I

... ..

Feature Feature Feature
spec. spec. spec.

CS = control signal ES = event signal

FIGURE 5 Progress mechanism component of the Process Engine

Function mechanism. The function mechanism manages invocation of tools. It
uses a function pattern to determine the tool and the operation to invoke and
the products that are passed to the operation as parameters. The function
mechanism reconstructs the correct PPI call based on this information. The
function mechanism is illustrated in figure 6.

The execution manager of the function mechanism manages a consistency
controller and an execution controller. The consistency controller ensures that
the tool specified in the function pattern is currently present in the system. If
that is so, it negotiates with the tool to ensure that it still provides the requested
operation and that the products are of correct type for the operation. The
execution controller invokes the tool operation with the products, transmits
information on the success of the operation, and receives the output products
from the tool. The product handler takes care of all data transformations
between the function mechanism and the tool.

180

Function mechanism (action) output
signal�

� Execution manager
.

input
signal ' • ' ES

CS ES CS FS ES
, ,

Consistency � Product � Execution
controller handler -----+ controller

·�
FS 1 ♦ FS

• , .
csi !Es

CS ES CS FS ES Value
mech.

�,
r · · · · · ------- --------- ------- . - . - - ..

Tool

CS= control signal FS = feedback signal ES = event signal

FIGURE 6 Function mechanism component of the Process Engine

Product sharing by identity is enabled by using a property as a product holder.
An "empty" product holder denotes that some operation will concern a specific
product but it does not yet exist or is not yet chosen. If the product exists and is
known, a product holder can also be filled in advance. Process models can thus
capture detailed information of the products. This facilitates customisation of
enacting process models and manual state updates.

State mechanism. The state mechanism manages the transition of an
element node's enactment state in response to internal events. It also handles all
requests for information of an element node's state.

State mechanism (state model)

� Execution manager � .
input

·� •
output

signal CS ES CS FS signal
,, ,.

Transformation rs � State ----:;:II Current .

manager � handler � state

I
FS

+

State
pattern

CS = control signal FS = feedback signal ES = event signal

FIGURE 7 State mechanism component of the Process Engine

The state of an element node restricts what can be done with the process
element at each time. Mainly, it concerns whether the process element can be

181

executed but it also describes the reason for its availability or unavailability:
idle, available, active, finished, or exception. The current implementation of
CPME uses a fixed transition model with refinable state names. The state
mechanism is illustrated in figure 7.

The execution manager of the state mechanism manages a transformation
manager and a state handler. The transformation manager takes care of the
enactment of the state model. It evaluates each transformation based on the
current state and the event that raised the transformation. The state handler
takes care of all access and updates to the variable that stores the enactment
state. All requests for current state information managed by the state handler.

Value mechanism. The value mechanism controls the handling of a
property value according to a value pattern. It can store simple data values,
references to data objects, and collections of data values or objects. Most values
are entered into the system manually and the role of the value mechanism is to
ensure the correctness of these values. Some values are automatically calculated
or evaluated. The value mechanism supervises any automatic calculation of
data values and evaluation of value-based constraints. The value mechanism is
illustrated in figure 8.

The execution manager of the value mechanism controls an evaluation
manager and a value handler. The evaluation manager creates a runtime
instance of an action with the property value as its product and orders the
function mechanism to execute the action. As the operation is finished and the
result of the operation is stored, it exterminates the instance. The value handler
is responsible for all access and updates to the variable that stores the property
value. All requests for the value are managed by the value handler.

Value mechanism (property)

. Execution manager . .

input
-� ·�

output
signal CS ES CS FS signal

, ,

Evaluation ri.:
Value --;;. Current

manager . handler � value
-� a FS

cs
,,

FS ES

Function
mech.

CS = control signal FS = feedback signal ES = event signal

FIGURE 8 Value mechanism component of the Process Engine

182

2.4.4 Suggestions for Further Improvement of the Enactment Mechanisms

There are several suggestions for improving the enactment mechanisms of the
Process Engine.

Firstly, we should study how the distinction between advancement and
co-ordination features affects the structure of the feature handler. In the current
version, a feature handler specifies - for each feature - a set of keywords and
the corresponding signal processing methods. When executed, the handler
checks which keyword is currently given in the specification and then executes
the correct method. The current co-ordination features can be executed in the
same way. However, co-ordination features might need a more sophisticated
handler, since the feature handler should manage the co-ordination of several
execution threads. Hence it might need a suitable checking mechanism.

Secondly, new mechanisms are needed for the detection of external events
and for exchange of data across system borders. The detection mechanism
should be able to detect when something specific happens in the external
system, and then send an event signal to the internal system. The data exchange
mechanism should be able to interpret a transformation schema for a mapping
between data formats, and to execute the transformation. Version management
will be an important theme.

Thirdly, we need to improve the state mechanism to make it suitable for
evaluating customisable state models. This requires at least a more elaborate
state manager. The execution manager is also likely to need enhancement to
cope with the changed event handling system. The state handler will instead
need simplification since it will no more need to handle renamed states.

Fourthly, new function mechanisms should be implemented. An envelope
mechanism should control externally executed 'black-box' operations. The true
controllability of such operations is very low, and therefore some manual input
may be needed to track their progress. Thus the envelope mechanism requires
suitable handlers for prompting and processing such manual input. Controlled
function mechanisms are required for reflexive and non-reflexive 'white-box'
execution. The reflexive function mechanism should be able to directly
reference the process model in which it locates. It should be able to "find" its
product relative to its own location in the model. This is necessary, for example,
for 'token manipulation' during the execution of Petri-net based process
models. The currently existing function mechanism should be enhanced to
make it more suitable for non-reflexive controlled functions. This requires an
improved execution controller for negotiating with tools. Further, a logic
function mechanism is needed for compound logical operations on complex
property values. It should enable, at least, the composition of the most basic
logical operations such as negation, conjunction, and disjunction. These are
needed for evaluating complex constraints.

Fifthly, the value mechanism needs to be adapted to the handling of
complex values. Currently the value handler is able to manage only one value,
but it should be enhanced so that it can handle any number of values. The value
handler should also be modified so that it can calculate the value of the
complex property from the values of sub-properties. Furthermore, the

183

evaluation manager should be able to use the logic function mechanism. The
evaluation manager can already handle both the produced value and
information of the success of the operation. Thus it will not be difficult to
extend the manager to deal with feedback from the logic function mechanism.
The feedback constitutes of a similar signal but only logically modified.

3 A Domain Framework for Customisable Method Support
Environments

A customisable method support environment is a design aid environment. The
issues addressed by a framework therefore concern various design aid
functions that the environment specifies and implements. Henderson and
Cooprider (1994) classify different aspects and functions of a design aid
environment. They distinguish among production, co-ordination, and
organisational technology. We enhance this classification in the way shown in
figure 9. We reclassify production and co-ordination functionality according to
whether it addresses single or multiple tasks, and single or multiple users. The
resulted classification can be illustrated as follows.

Single
user

multi
user

Single task Multi-task

"Taskware" "Processware"
- production - co-ordination
- versioning - configuration
- repository - resources

"Groupware" "Agentware"
- user interaction - co-operation
- transactions - assignment
- access control - user control

"Helpware"
- guidance - on-line material
- learning - supportive
- trace making qualities

FIGURE 9 Different types of functionality in a design aid environment

"Taskware". Taskware is support technology for single tasks with a single user,
and it consists of production, versioning, and repository functions. Production
technology consists of support for representation, analysis, and transformation.
Representation functions focus on abstraction and conceptualisation of
phenomena, analysis functions reflect problem solving and decision making
aspects, and transformation functions call for rules and mechanisms to

184

transform models. Version management introduces functions for managing
design changes. Repository functions enable appropriate storage of the designs.

"Groupware". Groupware is support technology for single tasks with
multiple users. It enhances taskware with functions for user interaction,
transactions, and access control. User interaction concerns synchronous,
concurrent use of tools, and information exchange through design information,
such as attaching a note to a diagram. Transactions and access control are
closely related to multi-user repository technology and its mechanisms.

"Processware". Processware is support technology for multiple single
user tasks. Although it (usually) supports multiple users, the tasks it co
ordinates engage only single users. Processware functions support task co
ordination, design configuration, and resource management. Task co
ordination allows the proper ordering and timely execution of different tasks.
Configuration management aids to maintain different versions of complex
system designs. Resource management enables managers to utilise project
resources consistently with project goals.

"Agentware". Agentware is support technology for multiple multi-user
tasks. It enhances groupware or processware by providing the users with
functions for co-operation, management of assignments, and user control. Co
operation uses technology, such as electronic brainstorming and voting, to
facilitate group interactions. Assignment management allows managers to
allocate tasks to, and to control the work load of individual users. User control
includes functionality to manage the access rights of users and user groups that
participate in the system development.

"Helpware". "Helpware" aids system users in using the system and the
method. It implements organisational technology. First, helpware functions
help users understand and to use the design aid effectively. The functions
consist of guidance (guidance support, on-line helps), learning aid, and trace
making (recording project data). The system may also help enhance users'
awareness of, e.g., product states, goals, peer actions, and user dependencies.
Second, helpware functions establish the infrastructure on-line by providing
electronic material on organisational guidelines, standard operating
procedures, and quality standards. Besides, helpware introduces technology
with different supportive qualities such as user friendliness and easiness.

We apply this classification on two levels in the same way as Marttiin et
al. (1996). On one hand, a customisable method support environment is a
design aid environment, and hence the design aid functionality is the target of
customisation in the environment. On the other hand, the customisation system
itself forms a design aid system (for method design) and hence the
customisation system can be assessed similarly to a design aid environment.

In the following sections we introduce the domain framework and classify
several criteria for the assessment of customisable method support
environments.

3.1 Background to the Domain Framework

185

A domain framework for software process is presented by Dowson and
Fernstrom (1994). They distinguish among three process domains. First, the
process definition domain produces characterisations of software processes or
process fragments using some notation. Second, the process enactment domain
is concerned of enacting a process model either by humans or some automated
mechanism. It uses the characterisations created in the process defi�ition
domain as input and evokes process performance as output. Third, the process
performance domain encompasses the actual project activities or actions
conducted by humans, and different types of supporting tools during a project.
The framework does not supply criteria for system evaluation.

Koskinen and Marttiin (1998) extend this framework for customisable
process modelling and support systems by introducing a fourth domain: the
process metamodelling domain. In this domain, process modelling languages
are created and adapted for the process modelling (cf., process definition)
domain. Still, no criteria are available for system evaluation.

Elsewhere, Marttiin et al. (1996) present an evaluation framework for
method engineering environments. The framework consists of two domains:
customisable CASE, and CAME. The CASE domain addresses and serves
multiple design aid functions (Henderson and Cooprider, 1994), whereas the
CAME domain allows these functions be customised. The two-level
architecture applies the same general structure in both domains, and they are
thus compared and evaluated against equal criteria. Therefore, the criteria can
be applied more systematically than in frameworks that have a unique view of
each inspected domain. However, the weakness of the framework is that is
does not consider coarse-grained process modelling and performance support.

A more comprehensive framework for customisable design environments
is introduced by integrating a method engineering system and a customisable
process support system (Koskinen and Marttiin, 2000). However, the
framework still lacks consideration of customisable agent systems as part of the
method support. Discussion of integrated meta-data models, activity models,
and agent models can be found in Marttiin et al. (1995). Agent models are
understood as defining the access to and use of IS models during the
development tasks. They encapsulate the operations (such as querying), control
(access rights, access control), and co-ordination of tasks available for the users
in different roles.

We choose the framework presented by Dowson and Fernstrom (1994) as
a baseline for our domain framework, and apply it to the framework for
customisable design environments (Koskinen and Marttiin, 2000). This is
further extended with aspects related to agents. The framework distinguishes
among three domains in a similar way as Dowson and Fernstrom: a method
definition domain, a method enactment domain, and a performance domain.
Each domain further consists of three systems that address the three aspects of
method specification and support (Marttiin et al., 1995): techniques, processes,
and agents.

186

The domains and systems together with their interdependencies are
shown in figure 10. Technique specifications, process models, and agent
specifications are created in the method definition domain. They are further
instrumented in the method enactment domain for to support method use in
performance domain.

Method

definition 1. Technique 2. Process 3. Agent

domain specification reference modelling reference specification
♦-----

�----+ system system system
a) Process tools modelling ,-

'
- � techniques

b) System
techniques, modelling enacts techniques process enacts

9 � tools model
I

I

Method

enactment 4. Technique

domain enactment 'I/

system 5. Process
technique a) for process � � enactment agent spec modellina - system

.
spec

� b) for system - -

'-: informatior modellina exchange

enacts + support requesti enacts
tools 6. Agent enactment

models
.;'

system -

Performance " enacts ' I I
I

domain 7. IS/Software 8. I
I

specification �--- - Development I
I

system usage system I usage 1
I I I usage 1 usage 1 I
' " ' I

9. Agent system !•------------�

FIGURE 10 The domains of a customisable method support environment

In regard to figure 9, the IS/software specification system covers taskware, and
the development systems covers processware. The agent system covers
groupware and agentware. Helpware can be implemented by any of the
systems. We discuss each domain and system individually in the following

187

sections. Several criteria are identified and collected to assess the scope, depth,
and flexibility of method customisation and support functionality.

The. criteria concern the coverage of the method customisation and
support functions from different perspectives. Firstly, it is naturally a greater
shortcoming to not have some function at all than to not have that function
customisable. Therefore, many of the proposed criteria look simply for the
functions that are covered in a method support system. Secondly, some criteria
concern the customisation capabilities in specification and change. We are
interested in what can be specified, and how much variation is allowed therein,
as well as in what can be changed afterwards, and how fine the changes can be.
Moreover, integration between systems is considered in that how much effort it
involves to make changes in one system effective in another system. Thirdly,
we consider the flexibility of method support for humans. These criteria study
what kind of support is available for human performance, and how extensively
it can be adapted to special needs and preferences. The forms and degree of
human involvement enabled in method enactment are also addressed. Thirdly,
we consider the making and adoption of changes from a human perspective.
Issues in making changes include how easily and quickly changes can be made,
and what kind of support there is for making the changes. Issues in adoption
concern how changes interfere human performance, how people are made
aware of changes, and what kind of support there is for their adoption.

3.2 Method Definition Domain

The method definition domain constitutes the method design and
customisation facilities in a method support environment. It includes three
systems (see figure 10): a technique specification system (1), a process
modelling system (2), and an agent specification system (3). The technique
specification system has two subsystems: for process modelling techniques (la)
and system modelling techniques (lb). General criteria for assessing these
systems are the following:

TARGET OF REPRESENTATION
1. Architectural components
2. Representation components: structural, operational
3. Operational scopes: functions addressed in representation
4. Component characteristics

a) Generality of underlying customisation architecture
b) Granularity of storage and locking
c) Forms of abstraction and reusability
d) Component alternatives

TOOL SUPPORT
1. Tool characteristics for representation

a) Representation style
b) Complementary views
c) Guidance

•

188

2. Other support functions
a) Taskware: production, versioning, change, repository
b) Processware: co-ordination, configuration, resources
c) Groupware: user interaction, transactions, access control
d) Agentware: co-operation, assignment, user control
e) Helpware: guidance, learning, trace making, awareness

The criteria are divided in three main groups: the target of representation, the
representation support, and other support functions. First, the criteria for the
target of representation concern the scope of components that can be
represented, and the terms and notations in which a method can be
represented. Also the support functions that can be addressed are considered,
as well as several other characteristics that improve the definition mechanisms
and the adaptability of methods.

Second, the criteria for tool support are concerned with the characteristics
of method customisation tools. The representation style specifies in which
forms method definitions can be represented and modified (e.g., textual,
graphical), and the complementary views allow alternative modes or
perspectives to represent the methods. Since method definition is often a
complex task, also guidance for method definition is considered.

Third, other support functions may address any of the design aid
functions shown in figure 9.

The general criteria are applied in the same manner in each definition
system. The differences can be found regarding the target of representation. We
discuss the application of the general criteria in each definition system.

3.2.1 Technique Specification System

A technique specification system defines different representation, analysis, and
transformation techniques either for system modelling or process modelling. In
the latter case, the system corresponds to the "process metamodelling domain"
in the framework by Koskinen and Marttiin (1998). The specific criteria for
technique specification systems are the following:

ARCHITECTURAL COMPONENTS
1. Model of representation styles
2. (Process) meta-metamodel: metatypes and dependencies

REPRESENTATION COMPONENTS
1. Representation styles (views, visual fragments, visual attributes)
2. Conceptual framework: conceptual construct and dependency types
3. Notation: notational construct and dependency types
4. Execution semantics: semantic construct and dependency types
5. Operational semantics: operational construct and dependency types

189

OPERATIONAL SCOPES
1. Taskware: representation, analysis, transformation, versioning, change
2. Helpware: guidance, learning, trace making, awareness

COMPONENT CHARACTERISTICS
1. Generality of the (process) meta-metamodel and the model of styles
2. Granularity of storage and locking for representation components
3. Forms of abstraction and reusability in specification
4. Alternative representation styles, notations, and semantics

TOOL SUPPORT

The specific criteria are divided into four groups: architectural components,
representation components, operational scopes, and component characteristics.
First, the architectural components addressed are the model of representation
styles that determines the range of possible notations, and the (process) meta
metamodel that determines what can be specified. Second, the target of
representation is refined to cover different parts of a technique: the language
(conceptual framework, notation, execution semantics) and the operational
semantics of the technique. Third, the operational scope is refined to functions
that a technique may address in taskware and helpware. Fourth, component
characteristics are refined to concern specific representation components. Tool
support, however, is assessed according to the same general criteria.

3.2.2 Process Modelling System

A process modelling system defines and adapts process models. In the
framework by Dowson et al. (1994) this corresponds to the process definition
domain. The system uses the process modelling techniques and tools supplied
by the technique specification system and uses them to produce process
models. The specific criteria for process modelling systems are the following:

ARCHITECTURAL COMPONENTS
1. Process metamodel: process types and dependencies
2. Representation framework: representation types and dependencies
3. Use of a customisable process modelling technique

REPRESENTATION COMPONENTS
1. Conceptual process model: process concepts and dependencies
2. Process representation: perspectives, representations and dependencies

OPERATIONAL SCOPES
1. Processware: co-ordination, configuration, resources
2. Helpware: guidance, learning, on-line material, trace making, awareness

190

COMPONENT CHARACTERISTICS
1. Generality of the process metamodel and the representation framework
2. Granularity of storage and locking for process models and perspectives
3. Forms of abstraction and reusability in process models
4. Alternative process structures, perspectives, and representations

TOOL SUPPORT

The specific criteria are divided into four groups: architectural components,
representation components, operational scopes, and component characteristics.
First, the architectural components addressed are the process metamodel that
determines what can be specified, and the representation framework that
determines the representation types and dependencies. In case the system uses
a customisable process modelling technique, the architectural components are
not as restricting. Second, the target of representation is refined to cover the
conceptual process model and process representations and perspectives. Third,
the operational scope is refined to functions that a process model may address
in processware and helpware. Fourth, component characteristics are refined to
concern the specific representation components. Further, tool support is
assessed according to the general criteria.

3.2.3 Agent Specification System

The agent specification system defines agent interactions, transactions, and
control. The system addresses co-ordination functions both in the process
modelling system and the development system. The specific criteria for agent
specification systems are the following:

ARCHITECTURAL COMPONENTS
1. Generic agent profile architecture: generic profile types and dependencies
2. Agent metamodel: agent types and dependencies
3. Representation framework: representation types and dependencies

REPRESENTATION COMPONENTS
1. Agent profile types
2. Conceptual agent model: agent concepts and dependencies
3. Agent representation: perspectives, representations
4. Operation architecture: operational constructs and dependencies

OPERATIONAL SCOPES
1. Groupware: user interaction, transactions, access control
2. Agentware: co-operation, assignment, user control
3. Helpware: guidance, learning, on-line material, trace making, awareness

COMPONENT CHARACTERISTICS
1. Generality of the profile architecture, the agent metamodel and the

representation framework
2. Granularity of storage and locking for profiles, agent concepts, and agent

perspectives
3. Forms of abstraction and reusability in agent specification
4. Alternative agent structures and perspectives

TOOL SUPPORT

191

The specific criteria are divided into four groups: architectural components,
representation components, operational scopes, and component characteristics.
First, the generic agent profile architecture determines the degree to which
there can be variation in agent profile structures. The agent metamodel
determines what can be specified of agents, and the representation framework
determines the types of agent representation. Second, the target of
representation is refined to cover the agent profile types, conceptual agent
models, and agent perspectives, and representation. Third, the operational
scope is refined to the functions that an agent specification may address in
groupware, agentware, and helpware. Fourth, component characteristics are
refined to concern the specific representation components. Further, tool
support is again assessed according to the general criteria.

3.3 Method Enactment Domain

The method enactment domain constitutes the method instrumentation
facilities in a method support environment. The systems included are (see
figure 10): the technique enactment system (4), the process enactment system
(5), and the agent enactment system (6). General criteria for method enactment
systems are the following:

TRANSFORMATION FROM DEFINITION TO ENACTMENT
1. Integration to the definition system

a) Means of system integration and the mappings needed
b) Means of mapping: transformation / interpretation / execution
c) Time of mapping: pre-execution / runtime
d) Granularity of mappings

2. Runtime method changes
a) Support for testing: runtime simulation, prototyping
b) Support for automation: reflection
c) Support for management: change propagation, state rebuilding

ENACTMENT ARCHITECTURE
1. Multi-user architecture

a) Multi-user components
b) Component interaction

192

2. Enactment mechanism
a) Components of the mechanism
b) Component characteristics: generality, granularity

3. Enactment tasks

INTEGRATION TO THE PERFORMANCE SYSTEM
1. Generating method support
2. Interaction with the performance system

The criteria are divided into three main groups: transformation from definition
to enactment, enactment architecture, and integration to the performance
system. First, the criteria for transformation from definition to enactment
concern the integration of the enactment system to the definition system, and
runtime method changes. Integration to the definition system addresses the
means of integration and the mappings needed. The mappings are based either
on transformation, interpretation, or execution. The mapping may be created
before execution, or at runtime. There is also variation in the granularity of
mappings: fine-grained mappings allow more flexibility than coarse-grained
mappings in method change. Fine-grained runtime mappings are required for
incremental modification of methods. The support for runtime method changes
is also considered: the forms of support for testing, propagating, and managing
changes.

Second, the enactment architecture is addressed from three aspects. The
distribution of enactment mechanisms in a multi-user architecture and
interaction between the components are studied. The components of the
components are considered, and their generality and granularity. The
generality of components contributes directly to the range of method variation,
while the granularity contributes to the flexibility of method change. The
variety of tasks that the enactment mechanism may cover is dependent on the
specific enactment system and will be discussed in connection to the specific
systems.

Third, the way in which the enactment system is integrated to the
performance system is considered from the viewpoint of how method support
is generated, and how the enactment mechanism interacts with the
performance system.

3.3.1 Technique Enactment System

A technique enactment system instruments techniques for their use in the
IS/software specification system (or the process modelling system). The specific
criteria for technique enactment systems are the following:

TRANSFORMATION FROM DEFINITION TO ENACTMENT
1. Integration to the definition system
2. Runtime technique changes

193

ENACTMENT ARCHITECTURE
1. Multi-user architecture
2. Enactment mechanism

-Mechanisms for operation on the specification components

ENACTMENT TASKS
1. Construction of specifications

a) construction of conceptual specification components
b) construction of representations

2. Coverage of other taskware functions
a) Executing analyses of specifications
b) Executing transformations on specifications
c) Creating and managing specification versions
d) Controlling specification changes

3. Coverage of help functions

INTEGRATION TO THE PERFORMANCE SYSTEM
1. Building tool support: assembly, mediation, generic tool architecture
2. Co-ordination with fixed tool operations

The criteria are divided into four groups: transformation from definition to
enactment, enactment architecture, enactment tasks, and integration to the
performance system. The first two groups of aspects are assessed according to
the general criteria, except that the components of the enactment mechanisms
are refined to the mechanisms for operating on the specification components.
The enactment tasks consist of construction of specification, and coverage of
other taskware and help functions. First, the construction of specification is
concerned with the construction of conceptual specification components, and
representations. Second, the taskware functions may include executing analyses
and transformations, creating and managing specification versions, and
controlling specification changes. Different helpware functions may also be
covered.

Furthermore, system integration is considered from the viewpoint of
building tool support, and co-ordinating with fixed tool operations. First, tool
building may be based on assembly, mediation, or generic tool architecture.
These allow different forms and levels of customisability. Second, there are
always some "fixed" operations in customisable tools. The integration should
be based on a mapping between the fixed "interface layer" and the metatypes
of the (process) meta-metamodel. The "thinner" the interface layer is, the more
extensive adaptation it allows.

3.3.2 Process Enactment System

A process enactment system manages the automated enactment of process
models supplied by the process modelling system. In the framework by
Dowson et al. (1994) this corresponds to the process enactment domain. The
specific criteria for process enactment systems are the following:

194

TRANSFORMATION FROM DEFINITION TO ENACTMENT
1. Integration to the definition system
2. Runtime process model and process metamodel changes

MULTI-USER ARCHITECTURE

PROCESS ENGINE
1. Components of the process engine

a) Mechanisms for interpreting a process metamodel
b) Mechanisms for interpreting process model components
c) Mechanisms for executing process components

2. Component characteristics

ENACTMENT TASKS
1. Progress along lateral and hierarchical channels
2. Tool invocation and execution control
3. Controlling changes in process data and their effects on enactment
4. Controlling the evolution of enactment states
5. Detecting and informing about external events
6. Controlling automated data exchange, import and export

GENERATING METHOD SUPPORT
1. Types of support: passive, guiding, restricting
2. Variation in the type of support

INTERACTION WITH THE PERFORMANCE SYSTEM
1. Information exchange with tools
2. Controlling interaction between tools

The criteria are divided into six groups: transformation from definition to
enactment, multi-user architecture, process engine, enactment tasks, generating
method support, and interaction with the performance system. The first two
groups of aspects are assessed according to the general criteria. However,
runtime changes concern both process models and process metamodels.
Second, the components of the process engine may include mechanisms for
interpreting a process metamodel, for interpreting process model components,
and for executing process components. The component characteristics are
assessed according to the general criteria.

Third, the tasks of a process engine consist of interpreting a process model
and managing its execution. These tasks may include 1) to manage progress
along lateral and hierarchical execution threads in the process model, 2) to
manage tool invocation, 3) to control changes in variable values (data
properties and constraints) and the effects of these changes on enactment, 4) to
control the evolution of enactment states, 5) to detect and inform about external
events, and 6) to control data exchange, import and export (Koskinen, 2000a).

Fourth, we consider the types of support. Passive support must be
requested by the user. In guiding mode, the system attempts to detect

195

situations in which it should offer help automatically, whereas in restricting
mode, the system controls performance either by disabling or enforcing
operations. The variation in support is also considered.

Fifth, the form of information exchange between the process engine and
the tools are considered. There may be a separate tool broker, or the tools
themselves may be capable of negotiating with the enactment mechanism.
There is also variation in whether the enactment system has control on the
interaction between tools.

3.3.3 Agent Enactment System

An agent enactment system manages the co-ordination of agents specified by
the agent specification system. The specific criteria for agent enactment systems
are the following:

TRANSFORMATION FROM DEFINITION TO ENACTMENT
1. Integration to the definition system
2. Runtime agent and profile changes

MULTI-USER ARCHITECTURE

AGENT ENGINE
1. Components of the mechanism

-Mechanisms for executing agent components
2. Component characteristics

ENACTMENT TASKS
1. Managing fine-grained user interactions between tools
2. Managing user transactions and task transactions
3. Requesting different types of access control
4. Managing coarse-grained information exchange
5. Evaluating agent profiles
6. Managing assignments and enforcing user rights

GENERA TING AGENT SUPPORT
1. Building tool support
2. Forms of tool support

INTERACTION WITH THE PERFORMANCE SYSTEM
1. Monitoring agent behaviour
2. Restricting agent behaviour
3. Information exchange with agents

The criteria are divided into six groups: transformation from definition to
enactment, multi-user architecture, agent engine, enactment tasks, generating
agent support, and interaction with the performance system. The first two
groups of aspects are assessed according to the general criteria. Runtime
changes, however, concern agent and profile changes. Second, the components

196

of the agent engine include mechanisms for executing agent components. The
component characteristics are assessed according to the general criteria.

Third, the tasks of an agent engine may include 1) to manage fine grained
user interactions between tools, 2) to manage user transactions and task
transactions, 3) to request different types of access control, 4) to manage coarse
grained information exchange, 5) to evaluate agent profiles, and 6) to manage
assignments and enforcing user rights.

Fourth, generating agent support is concerned with building tool support,
and the forms of the tool support. Tool support incorporates various interfaces
for interaction with other agents, and agent-specific views of, e.g., work,
products, and resources. Interaction with the performance system includes
monitoring and restricting agent behaviour, and information exchange with
agents.

3.4 Performance Domain

The performance domain constitutes the method support facilities in a method
support environment. It includes three systems (see figure 10): the IS/software
specification system (7), the development system (8), and the agent system. The
general criteria for performance systems are the following:

FLEXIBILITY OF SUPPORT
1. Variation of support
2. Variation of perspectives

SUPPORT FOR HUMAN ENACTMENT
1. Degree of human enactment
2. Providing enactment information

INTRODUCING METHOD CHANGES
1. Level of interference

a) Restricted change propagation
b) Granularity of exception locks

2. Support for awareness
a) Notification
b) "Notice board"

3. Support for adopting changes
a) Guidance
b) Leaming aid
c) Tracing

The criteria are divided into three main groups: flexibility of support, support
for human enactment, and introducing method changes. First, flexibility of
method support can be introduced by variation of support and perspectives.
Second, support for human enactment as the degree of human involvement in
enactment, and the level of provided enactment information.

197

There are several concerns related to the introduction of method changes.
First, the level of interference on performance caused by method changes can
be diminished by restricted change propagation that allows users to choose the
time when changes are introduced. The granularity of exception locks is a
significant contributor to the level of interference. The smaller the size of the
lock is, the less the change is likely to interrupt the users. Second, there are
different ways to support awareness of changes. These include automatic
notifications and the use of an electronic "notice board". Third, support for
adopting changes may include guidance, learning aid, and support for tracing
changes.

There are no significant differences between the performance systems
regarding these criteria.

4 Assessment of the MetaEdit+/CPME Implementation

We assess how the current MetaEdit+/CPME implementation addresses
different aspects of the domain framework using the developed criteria. To
allow a more consistent presentation, we organise the discussion of each system
by discussing it in connection to the relevant set of systems (definition,
enactment, performance). We discuss systems for system modelling techniques
(Section 4.1), systems for process modelling techniques (Section 4.2), systems
for processes (Section 4.3), and systems for agents (Section 4.4).

4.1 Systems for System Modelling Techniques

4.1.1 Technique Specification System

Target of representation. The meta-metamodel of MetaEdit+ is GOPRR (Kelly,
1998). The five conceptual metatypes (Graph, Object, Property, Role,
Relationship) are used to specify different types of conceptual language
constructs, and there are several generic dependencies possible between them
(inclusion, decomposition, explosion, attribution, object link, binding). The
GOPRR metatypes are instantiated to form conceptual metamodels. The
conceptual construct types can be fully customised, but dependency types only
partially.

MetaEdit+ does not support the modification of representation styles, but
it maintains three built-in representation styles: diagrams (that consist of
symbols, lines, and labels), matrices, and tables. Notations are currently
specified only to a degree that is necessary to give different concepts a specific
representation. The specification of conceptual frameworks and notations is
equally acknowledged in the GOPRR model, but conceptual frameworks are
emphasised over notations in its current implementation.

Semantics for simulation or semantics cannot be specified. However, joint
research on the former is currently initiated. Also, operational specification is

198

not supported. The system implements a generic GOPRR specific process
pattern that applies to any technique in the system. The pattern is extended by
the style-specific process patterns implemented by the generic modelling tools.
The style-specific process pattern applies to any technique using the specific
style. A joint research effort on integrating metamodelling and guidance
modelling has yielded some theoretical results (Lyytinen et al. 1998). The
guidance system in concern is presented by Pohl et al. (2000).

The GOPRR model does not enforce a specific system ontology. The
modelling technique components (each instance of the metatypes) are
individually stored in a repository. Different notations within a representation
style are not possible, but simultaneous use of the three representation styles
for a specific technique is not restricted. From the perspective of reuse, the lack
of alternative notations of the same style is awkward since it restricts the
reusability of concept types. MetaEdit+ supports specialisation and component
reuse for technique specification (Rossi, 1998; Zhang, 2000).

Tool support. The CAME tool set includes form based tools for creating
and managing metamodel components and composing them into technique
specifications. Other representation styles or complementary views to
techniques are not supported. Apart from informing when the user attempts to
violate the GOPRR rules, no specific guidance for metamodelling is provided.

MetaEdit+ provides basic tools for the representation of modelling
techniques. No support for analysis and transformation of techniques is
currently available. Versioning of technique components is not supported. All
changes to techniques are not automatically propagated on the models, and
hence there is some protection against unmanaged changes. In case a
modification would cause irreversible changes (such as deletion of properties),
the metamodeller is warned.

Co-ordination of coarse-grained technique specification processes can be
supported by CPME. The agent system controls metamodelling rights.
Currently it allows only one metamodeller modify technique specifications at a
time.

4.1.2 Technique Enactment System

Transformation from definition to enactment. The technique enactment
system is integrated to the specification system by incrementally compiling the
technique specification components into executable MetaEngine components.
The integration allows runtime mapping by automatically updating the
MetaEngine when any of the components is changed. The granularity of
mappings is fine-grained: property types are compiled independent of the
object types to which they are attributed, and vice versa. Consequently,
MetaEdit+ also supports prototyping of techniques. As discussed above,
change propagation is only partial.

Enactment architecture. MetaEdit+ is implemented on a client-server
architecture. Clients do not communicate with each other directly, but through
the shared design information. Technique enactment in MetaEdit+ is managed

199

by the MetaEngine (Kelly et al., 1996). The MetaEngine embodies the
implementation of the underlying conceptual data model, GOPRR, and its
operation signature. This operation signature covers the generic process pattern
used by all techniques. Each client in the multi-user architecture has a copy of
the MetaEngine. MetaEdit+ distinguishes between operations on model
representations managed in tools and operations. The MetaEngine manages all
operations on the underlying conceptual data through its service protocol. The
generality of the MetaEngine components is high, since they implement the
generic GOPRR model. For the same reason, they have are fine-grained.

The construction of conceptual specification components is managed by
the MetaEngine, whereas the construction of representational data is managed
by the generic modelling tools. Manipulation of the conceptual data is always
requested from the MetaEngine. User-customisable analyses of system models,
and transformations into textual documents can be made by means of
reporting. MetaEdit does not support versioning of system models. Support for
specification changes is rudimentary. Additional help is not included.

Integration to the performance system. MetaEdit+ contains several
generic tools for system modelling that are configured simply by supplying
them with a metamodel. As noted above, the modelling tools implement a
generic process pattern that is used by any modelling technique. Different
operational versions of the tools are therefore not possible. Since operational
variation is not possible, the level of enforcement is restricted to a flexible one.
The system does not allow the creation of illegal constructs and combinations,
but compliance to some rules, especially after changes, is difficult to ensure
without adequate, automated checking functions.

4.1.3 IS/Software Specification System

Flexibility of support. The variation of support provided by MetaEdit+
concerns the conceptual and representational modifiability of the
representation system and the related reporting and query functionality.
Operational modifications cannot be done. Variation of perspectives is
provided by introducing three representation styles: graphical, matrix, and
tabular. Representation independence is also supported, and hence one
conceptual model may have several complementary and overlapping
representations.

Support for human enactment. The modelling tools are based on human
enactment. No enactment information is automatically collected or provided.

Introducing method changes. MetaEdit+ supports restricted change
propagation. No exception locks are used. Tools that are being used while a
change in the current technique is introduced, do not automatically respond to
the change. The changes are updated either by refreshing the tool window
(changes in the notation), or closing and reopening it (conceptual changes
reflected in the toolbars and menus). Automatic notification is not supported,
nor there is a "notice board" for changes. MetaEdit+ does not provide help for
adopting changes in techniques.

200

4.2 Systems for Process Modelling Techniques

4.2.1 Technique Specification System

Target of representation. The process meta-metamodel of CPME is GOPRR-p.
The GOPRR-p model is discussed in detail in Section 2.3. CPME does not
support the modification of representation styles. Similarly to GOPRR,
conceptual frameworks are currently more emphasised than notations.
Diagrams are the core representation style used for process modelling, but
process models can be viewed and edited also in matrix and table forms.

The major difference between metamodelling in MetaEdit+ and process
metamodelling in CPME is that the latter extends the metamodelling system
with mechanisms for specifying enactment semantics. The semantics can be
applied also in simulation. A detailed study is conducted that distinguishes
among conceptual, notational and semantic process metamodels (Koskinen,
2000a). The presented design allows each aspect to be specified independently.

Operational specification is not supported. However, some theoretical
considerations on the subject have been presented (Koskinen, 2000a). The study
introduces operational modelling as a means for operational specification. It is
stated that operational modelling should address not only modelling
operations, guidance and tracing, but also reuse, configuration and versioning,
changes, and transactions. In brief, it should cover everything that intimately
relates to modelling with the technique and that should be performed when the
technique is used.

The GOPRR-p model does not enforce a specific process ontology. The
technique components (each instance of the metatypes) are individually stored
in a repository. Specialisation and reuse are supported. Similarly to GOPRR,
different notations within a representation style are not possible, but the use of
the three representation styles for a specific technique is not restricted.

Tool support. CPME includes a set of form based process metamodelling
tools that are used to create and change process metamodels (Koskinen and
Marttiin, 1997). The current implementation of process metamodelling tools
and the process metamodel architecture is largely based on the implementation
of metamodelling tools and a metamodel architecture in MetaEdit+.
Complementary views to techniques are not supported. No guidance for
process metamodelling is available apart from informing of attempted
violations against the GOPRR-p rules.

MetaEdit+ provides basic tools for the representation of process
modelling techniques. No support for analysis and transformation of
techniques is available. Versioning of method components is not supported.
Co-ordination of metaprocesses can be supported by CPME itself. The agent
system allows several process modellers work on process models
simultaneously. It also controls the process modelling rights.

CPME lacks mechanisms to track changes made to system modelling
techniques in the technique specification system. Thus it cannot provide

201

automated support for detecting metamodel changes that might affect the
development process and thus the process model.

4.2.2 Technique Enactment System

Transformation from definition to enactment. Integration of the specification
and enactment systems is realised in the same way as for system modelling
techniques. The core of the enactment system is the Process Engine that
implements the GOPRR-p model (Koskinen and Marttiin, 1997). Technique
specification components are incrementally compiled, and the Process Engine is
automatically updated when any of its components is changed. The granularity
of mappings is similarly fine-grained, and change propagation partial.

Enactment architecture. In process modelling, the Process Engine plays
the same role as the MetaEngine in system modelling. Hence the discussion of
the MetaEngine and the multi-user architecture applies also to the Process
Engine. However, the conceptual data model that the Process Engine
implements and its operation signature extends beyond the manipulation of
model components. The Process Engine shares the task of constructing process
model with the Process Editor. The Process Engine manages the construction of
conceptual specification components, and provides the Process Editor with
information of the notation. The Process Editor manages the construction of
process representations.

Integration to the performance system. The process modelling tools in
CPME are almost direct extensions to the system modelling tools in MetaEdit+.
Similarly, the tools are configured by supplying them with a process
metamodel. Different operational versions of the tools are not possible. Level of
enforcement in a supported process is restricted to a flexible one.

4.3 Systems for Processes

4.3.1 Process Modelling System

Target of representation. CPME supports three representation frameworks
simultaneously: graphical, matrix, and tabular. However, process models in
CPME are primarily graphical and concentrate on process elements on the
coarse-level of task co-ordination. CPME allows several conceptual
perspectives and several representations for a conceptual process model. The
operational scopes addressable in process models depend on the underlying
performance functionality: process support is based on the co-ordination of this
functionality. Since MetaEdit+ does not support configuration of system
specifications, nor handling of resources, they cannot be addressed in process
models, either.

As discussed above, process metamodels in CPME are customisable.
Therefore the generality of the process model components is high. The
granularity of storage and locking of process model and representation
components is also fine-grained. All GOPRR-p based components are stored

201

automated support for detecting metamodel changes that might affect the
development process and thus the process model.

4.2.2 Technique Enactment System

Transformation from definition to enactment. Integration of the specification
and enactment systems is realised in the same way as for system modelling
techniques. The core of the enactment system is the Process Engine that
implements the GOPRR-p model (Koskinen and Marttiin, 1997). Technique
specification components are incrementally compiled, and the Process Engine is
automatically updated when any of its components is changed. The granularity
of mappings is similarly fine-grained, and change propagation partial.

Enactment architecture. In process modelling, the Process Engine plays
the same role as the MetaEngine in system modelling. Hence the discussion of
the MetaEngine and the multi-user architecture applies also to the Process
Engine. However, the conceptual data model that the Process Engine
implements and its operation signature extends beyond the manipulation of
model components. The Process Engine shares the task of constructing process
model with the Process Editor. The Process Engine manages the construction of
conceptual specification components, and provides the Process Editor with
information of the notation. The Process Editor manages the construction of
process representations.

Integration to the performance system. The process modelling tools in
CPME are almost direct extensions to the system modelling tools in MetaEdit+.
Similarly, the tools are configured by supplying them with a process
metamodel. Different operational versions of the tools are not possible. Level of
enforcement in a supported process is restricted to a flexible one.

4.3 Systems for Processes

4.3.1 Process Modelling System

Target of representation. CPME supports three representation frameworks
simultaneously: graphical, matrix, and tabular. However, process models in
CPME are primarily graphical and concentrate on process elements on the
coarse-level of task co-ordination. CPME allows several conceptual
perspectives and several representations for a conceptual process model. The
operational scopes addressable in process models depend on the underlying
performance functionality: process support is based on the co-ordination of this
functionality. Since MetaEdit+ does not support configuration of system
specifications, nor handling of resources, they cannot be addressed in process
models, either.

As discussed above, process metamodels in CPME are customisable.
Therefore the generality of the process model components is high. The
granularity of storage and locking of process model and representation
components is also fine-grained. All GOPRR-p based components are stored

202

independently. Reuse mechanisms for component cloning and sharing
(component reuse) are supported. CPME allows the specification of alternative
process structures, perspectives (limited regarding notations), and
representations.

Tool support. The Process Editor in CPME is a generic, graphical process
modelling editor that is configured by supplying it with a process metamodel.
Thus it enables the use of different, adapted process modelling languages.
Complementary and overlapping representations of a conceptual process
model can be used. The Process Editor does not provide guidance for process
modelling.

A process model can be inspected through simulation. The Process Editor
aids this inspection by changing symbol colours according to the enactment
state. Manual consistency checking is possible by running reports using the
Report Editor. The reports are metamodel specific and they defined using the
Report Editor. The reporting functionality is based on model transformation
into a textual format. It can be used for ordinary reports but also document and
code generation (e.g., HTML, programming languages). Thus, CPME (or
MetaEdit+ alone, since it provides the same capability) could also be used as a
front-end design environment for generating formal process definitions for an
external process engine.

The functionality of CPME can be used also for metaprocess support.
Process modelling is allowed only for users having process modelling rights in
the project.

4.3.2 Process Enactment System

Transformation from definition to enactment. In CPME, no transformation
between the process modelling system and the process enactment system is
needed. Process models are built of generic components that are able to execute
themselves. The components can be organised into complex hierarchical and
network structures (or mixed).

Process model "templates" can be "instantiated" by cloning, and any
process model may act as a template. However, changes to the "templates" are
not propagated to the instantiations. Instead, the process metamodel can be
used for such changes.

Since the Process Editor is used both in process modelling and as an
interface between process enactment and process performance, the system
supports rapid prototyping. Simulation is carried out otherwise similarly to
enactment, but functions that would change the state of the performance
system are not executed. CPME also supports reflection.

Enactment architecture. Each of the clients on the multi-user architecture
has also a copy of the Process Engine. All process data are stored in the
repository, including the enactment states for each process element. The
components of the Process Engine are characteristically general and fine
grained. Process models are constructed of small customisable constructs that
have a common generic structure with low coupling. The Process Engine

203

encapsulates all model components in a specific enactment mechanism, which
results in a highly flexible, executable system. Execution of process models is
based on a simple message exchange system, in which messages are forwarded
and manipulated along the model structure (see Section 2.4.3).

The Process Engine manages progress along lateral and hierarchical
execution threads, and controls tool invocations, changes to property values
and their effects, and evolution of enactment states. Instead, interfaces to
external systems, including event detection, and data exchange, import and
export are not implemented.

Integration to the performance system. The Process Engine uses the
function mechanism (see Section 2.4.3) as an interface to the performance
system. The function mechanism invokes and controls the execution of tools in
the performance system. However, it cannot control the interaction between
modelling tools, since there is currently no proper interface in the tools. When a
tool in integrated to the process enactment system, an appropriate interface
must be coded into the tools. The process programming interface (PPI)
provides help on selecting tool operations and verifying the correctness of
product types both for definition of action types and at time of enactment. This
is unsatisfactory from the viewpoint of CPME. Consequently, a PPI is currently
implemented only in a few tools for the prototype purpose. Designing a tool
interfacing system is suggested as a future research task (Koskinen, 1999).

Since MetaEdit+ does not provide the necessary tool functionality for
active guidance and prompts, some additional tools are implemented to
augment process support with guidance and tracing. This functionality
includes different kinds of dialogs for viewing and prompting information for
and from users, recording process data (such as time stamps), and checking
conditions. The suite of these tools and operations can be extended according to
new process support needs.

4.3.3 Development System

Flexibility of support. The variation of support provided by CPME concerns
both process approaches (languages, thinking) and the conduct of a
development process. The former is enabled by customisation of process
metamodels, and the latter by the customisation of process models. The current
implementation of CPME allows passive and guiding process support. The
current design allows working without or around a process model and, if
necessary, the state and the structure of an enacting process model can be later
updated with results achieved apart from it. CPME does not transform a
metaCASE environment into a process-centred environment, and it does not
control activities carried out in MetaEdit+ tools. The metaCASE environment
remains an autonomously functioning environment. Process support is
provided when MetaEdit+ tools are used through CPME. Variation of
perspectives is provided by representing different conceptual perspectives to
the process.

204

Support for human enactment. Process support in CPME is coarse
grained and intended for guiding and co-ordinating modelling tasks. The
approach used in CPME can be characterised as computer aided human
enactment. It mainly provides users with different levels of guidance (active
and passive) and an interface for tool invocations. Process enforcement would
require a mechanism to control the MetaEdit+ tool launcher and tool menu
options that allow access to other tools. Currently, a process model can be
enacted only through the Process Editor (and partially through the Matrix
Editor and Table Editor). However, the actual interface to a process model is a
set of menus, and therefore the enactment interface could also be added as an
additional menu in system modelling tools. Information of enactment states is
visualised the in the Process Editor as changing colours. The state of the
selected process element is also shown textually in the information box of the
editor. Available tasks can be requested from the Process Engine, as well as
other information on enactment states.

Introducing method changes. The model components and the structure
are fine-grained to a degree that most changes could be made without any
exception lock. The underlying GOPRR-p model ensures that no model change
can unintentionally halt the execution of a process model. Nevertheless, the
process modeller may manually set an execution lock to ensure process
consistency during a change. Despite this, the consistency cannot be fully
ensured due to a lack of an appropriate state rebuilding mechanism. Such a
mechanism has been designed but yet not implemented. The rebuilding
mechanism is intended for managing "break up points", where a new
component is inserted into an already executed section of the model, and is
intended to affect the states of succeeding components.

There is currently no mechanism that would automatically inform the
users about changes made to the language or the process model. However,
such mechanism could be modelled in a metaprocess model. In this way, also
guidance, learning aid, and tracing could be introduced at a coarse level to
support the adoption of changes.

4.4 Systems for Agents

4.4.1 Agent Specification System

Target of representation. The agent specification system in MetaEdit+ and
CPME is very simple. The basic agent system allows the specification of
projects, users, and user rights. Several users are assigned to a project and one
user may participate in several projects simultaneously. Each user is specified
with a name and a unique login name. Administrator rights and metamodelling
rights are project-specific. CPME extends the basic system with user roles, and a
capability to assign tasks for user roles. User roles are specified as simple
names. Process modelling rights are project-specific.

Tool support. Since the agent system is rudimentary, MetaEdit+ and
CPME provide only very simple tools for agent specification.

205

4.4.2 Agent Enactment System

Transformation from definition to enactments. There is no explicit agent
enactment system in MetaEdit+ or CPME. Instead, the agent mechanisms are
encoded in the repository manager, and in the MetaEngine and the Process
Engine. User information is managed by the repository manager. There are
separate tools for specifying agent roles and assigning task to those roles. All
agent information can be changed at runtime.

Enactment architecture. User interaction is enabled through shared
design and process information stored in a common repository. Sessions and
transactions are managed by the repository manager. A session consists of
subsequent transactions each of which ends with committing or abandoning all
changes made during that transaction. There is some inconvenience from not
allowing concurrent task-specific transactions within one user transaction.
MetaEdit+ supports also long transactions that cover several sessions.

The repository manager enforces access rights to the design information.
Also updates to clients after commits are managed by the repository manager.
Task assignment is based on assigning users to user roles, to which process
elements in a process model are further assigned. Since there is no specific
agent engine in MetaEdit+ or CPME, user control for task rights is enforced by
the Process Engine.

Integration to the performance system. Integration is mostly achieved by
having the functions fixed in the system.

4.4.3 Agent System

Flexibility of support. Variation is not provided for support nor for agent
perspectives.

Support for human enactment. Access rights are fine-grained: write locks
can be set for individual components in a model. Furthermore, write locks are
set independently for representation components and conceptual components.
Therefore, several users may modify model components simultaneously. The
system does not provide enactment information on agents.

The Process Engine automatically checks whether the current user may
execute a process element or not. The menus of the Process Editor are modified
accordingly. All currently accessible process elements can be requested from
the Process Engine. The set of process elements is automatically displayed in
the pop-up menus of the Process Editor. The scope of the request is determined
based on the selected model component. If no individual component is selected,
all accessible process elements are provided.

Introducing method changes. The changes allowed in agents are so minor
that the changes do not interfere in agent enactment.

206

5 Discussion

Research on metaCASE process support today is diverse and scattered, and
there are no general architectures that would show direction for a unified body
of relevant research. This paper attempts to contribute to this end. We have
described and analysed the prototypical implementation of a generic process
modelling and enactment system, CPME. It is designed as a customisable
process support system for a meta CASE environment, MetaEdit+. The
integrated MetaEdit+ /CPME is a customisable method support environment.
Furthermore, we have developed a set of assessment criteria for such
customisable environments, and assessed MetaEdit+ /CPME against these
criteria. Through these criteria, we aim to achieve a more comprehensive view
of customisable method support environments. MetaEdit+ and the CPME
prototype are assessed to find ways for their further improvement.

We summarise the results of our assessment in several major themes of
improvement request for MetaEdit+ and the CPME prototype. These reflect
shortcomings in support functions. First, there are general improvement requests
that concern

1) more comprehensive support for method design tasks,
2) version and change management aspects,
3) improved forms of abstraction and reuse, together with enhanced

component management, and
4) improved tool support.

Second, there are requests that concern the improvement of technique-related
support. These include

1) improved facilities for the specification of notations and representation
styles,

2) support for operational specification,
3) support for the specification of simulation semantics for system

modelling, and
4) support for the specification of analysis and transformation techniques.

Third, there are requests that concern the improvement of process-related support.
These cover

1) improved multi-user support,
2) improved repository support,
3) mechanisms for event detection, data exchange, import and export,
4) improved process programming interfaces and interfacing system for

tools, and
5) support for configuration and resource management.

Fourth, an improved agent system with specification and enactment facilities is
needed.

There are also some issues in MetaEdit+/CPME design that we find
particularly interesting for developers of customisable method support
environments. These include

207

1) the MetaEngine and the integration between technique specification and
IS/ software specification system,

2) the specification of process modelling languages and techniques,
3) the Process Engine and the integrated process modelling and enactment

system.
These demonstrate that specialisation and high-level integration between
different systems is the key contributor to flexibility in customisable method
support environments.

For a wider audience, the assessment of MetaEdit+ and the CPME
prototype acts as an example of how to apply the criteria to a method support
environment. The criteria are not designed as a checklist where one could
simply check whether some feature is supported or not. We have experienced
that an assessment is more fruitful when it delivers a proper description of the
system under study. Thereby, the various individual and unique features of
different systems can be better accounted for in the assessment. The criteria
merely give a structure to a comprehensive report and make different
assessments comparable. Furthermore, one should not too hastily regard the
lack of a feature as a definite deficiency, since it may be compensated to a
degree by some design decision elsewhere in the system. A system has to be
assessed as a whole, not by its individual details.

Finally, the domain framework and the assessment criteria help increasing
general awareness of the various aspects of customisable method support
environments. Without doubt, there are currently no systems in the market nor
as academic prototypes that are comprehensive in terms of these criteria. The
results of this study thus have remarkable potential contribution to further
development of such systems.

References

Bandinelli, S., Fuggetta, A. & Ghezzi, C. 1993. Software Process Model
Evolution in the SPADE Environment. IEEE Transactions on Software
Engineering, 19, 12, 1128-1144.

Booch, G, Rumbaugh, J. & Jacobson, I. 1999 The Unified Modeling Language:
User Guide. Reading, MA: Addison-Wesley.

Brinkkemper, S., Saeki, M. & Harmsen, F. 1999. Meta-Modelling Based
Assembly Techniques for Situational Method Engineering. Information
Systems, 24, 3, 209-228.

Conradi, R. & Jaccheri, M.L. 1993. Customization and Evolution of Process
Models in EPOS. In: N. Prakash, C. Rolland and B. Pernici (Eds.)
Information System Development Process. Amsterdam: Elsevier Science
Publishers. 23-39.

208

Conradi, R. & Liu, Ch. 1995. Process Modelling Languages: One or Many? In
W. Schafer (Ed.) Software Process Technology, EWSPT'95, LNCS 913.
Berlin: Springer-Verlag, 98-118.

Derniame, J.-C. & Kaba, A.B. 1999. Software Process: Principles, Methodology,
and Technology. LNCS 1500. Berlin: Springer-Verlag.

Dowson, M. & Fernstrom, C. 1994. Towards Requirements for Enactment
Mechanisms. In: B. Warboys (Ed.) Software Process Technology,
EWSPT'94. LNCS 772. Berlin: Springer-Verlag.

Finkelstein, A., Kramer, J. & Nuseibeh, B. 1994. Software Process Modelling and
Technology. New York: Wiley.

Froelich, G., Tremblay, J. & Sorenson, P. 1995. Providing Support for Process
Model Enaction in the Meta View Metasystem. Proceedings of the th

International Workshop on Computer-Aided Software Engineering,
Toronto, Canada, July 10-14, 241- 249.

Harmsen, F., Brinkkemper, S. & Oei, H. 1994. A Language and Tool for the
Engineering of Situational Methods for Information Systems
Development. In J. Zupancic, S. Wrycza (Eds.) Proceedings of the ISD'94
Conference, Bled, Slovenia, 206-214.

Jaccheri, M.L., Baldi, M. & Divitini, M. 1999. Evaluating the requirements for
software process modeling languages and systems. Proceedings of the
International Workshop on Process support for Distributed Team-based
Software Development (PDTSD'99), Orlando, USA, July- August 1999.

Jarke, M. & Rose, T. 1992. Specification Management with CAD0

• In P.
Loucopoulos & R. Zicari (Eds.) Conceptual Modeling, Databases, and
CASE. New York: Wiley, 489-505.

Jarke, M., Pohl, K., Rolland, C. & Schmitt, J.-R. 1994. Experience-Based Method
Evaluation and Improvement: A process modeling approach. In: T.W.
Olle, A.A. Verrijn-Stuart (Eds.) Proceedings of the IFIP WG8.l Working
Conference CRIS'94, Amsterdam: North-Holland, 1-27.

Kaipala, J. 2000. Integrating MetaCASE Environments by Using Hypertext.
University of Jyvaskyla. Computer Science and Information Systems
Reports, Technical Reports TR-25. Licentiate thesis.

Kaiser, G.E. & Ben-Shaul, I.Z. 1993. Process Evolution in the Marvel
Environment. In: W. Schaefer (Ed.), Proceedings of the 8th International
Software Process Workshop. IEEE Computer Society Press, 104-106.

Kelly, S., 1998. Towards a Comprehensive MetaCASE and CAME Environment:
Conceptual, Architectural, Functional and Usability Advances in
MetaEdit+. University of Jyvaskyla. Jyvaskyla Studies in Computer
Science, Economics and Statistics 41. PhD. Thesis.

Kelly, S., Lyytinen, K. & Rossi, M. 1996. METAEDIT+ - A Fully Configurable
Multi-User and Multi-Tool CASE and CAME Environment. In P.
Constantopoulos, J. Mylopoulos & Y. Vassiliou (Eds.) Advanced
Information Systems Engineering, LNCS 1080. Berlin: Springer-Verlag,
1-21.

209

Koskinen, M. 1996a. Bringing Process Concepts Alive: on designing process
modelling languages in a metaCASE environment. University of
Jyvaskyla. Master's thesis in Computer Science and Information
Systems.

Koskinen, M. 1996b. Designing Multiple Process Modelling Languages for
Flexible, Enactable Process Models in a MetaCASE Environment. In A.
H. Seltheit & B.A. Farshchian (Eds.) Proceedings of the 7th Workshop on
the Next Generation of CASE Tools, Heraklion, Crete, Greece, May 1996.
Trondheim, Norway: Norwegian University of Science and Technology,
(no page numbers).

Koskinen, M. 1999. A Metamodelling Approach to Process Concept
Customisation and Enactability in MetaCASE. University of Jyvaskyla.
Computer Science and Information Systems Reports, Technical Reports
TR-20. Licentiate thesis.

Koskinen, M. 2000a. Conceptual Foundations of Process Metamodelling.
Submitted for publication.

Koskinen, M. 2000b. Toward Customisation of Process Modelling Languages in
Computer Aided Process Engineering. Submitted for publication.

Koskinen, M. & Marttiin, P. 1997. Process Support in MetaCASE: Implementing
the Conceptual Basis for Enactable Process Models in MetaEdit+. In: J.

Ebert, C. Lewerentz (Eds.) Software Engineering Environments. IEEE
Computer Society Press, 110-123.

Koskinen, M. & Marttiin, P. 1998. Developing a Customisable Process
Modelling Environment: Lessons Learnt and Future Prospects. In: V.
Gruhn (Ed.) Proceedings on the 6th European Workshop on Software
Process Technology, EWSPT'98. LNCS 1487. Springer-Verlag. 13-27.

Koskinen, M. & Marttiin, P. 2000. Comparing Two Traditions: Towards an
Integrated View of Method Engineering and Process Engineering. To be
submitted to European Journal of Information Systems.

Kumar, V.S. 1995. Personal Software Process in Meta-CASE. CMPT 856 -
Project. Url at http:/ /www.cs.usask.ca/grads/vsk719/academic/
856/ project/project.html. Accessed on 18.5.2000.

Laamanen, P. 1995. Automation of Software Product Metrics: A Proposal for a
Metamodel Based Metrics Engine. In: I. Mitchell, I. Ferguson & N.
Parrington (eds.) The First International Conference on MetaCASE, 5-6
January, Sunderland, UK. Sunderland, UK: The University of
Sunderland. (no page numbers).

Lonchamp, J. 1995. CPCE: A Kernel for Building Flexible Collaborative Process
Centered Environments. In: Software Engineering Environments. IEEE
Computer Society Press, 28-41.

Luoma J. & Somppi, M. 1996. Concurrency Control in Multi-User MetaEdit+,
(in Finnish Samanaikaisuuden hallinta monen kayttajan MetaEdit+:ssa).
University of Jyvaskyla. Master's thesis in Computer Science and
Information Systems.

210

Lyytinen, K., Marttiin, P., Tolvanen, J.-P., Jarke, M., Pohl, K. & Weidenhaupt, K.
1998. Bridging the Islands of Automation. In: S.T. March & J. Bubenko Jr.
(eds) Proceedings of the Eight Annual Workshop on Information
Technologies and Systems (WITS'98). University of Jyvaskyla. Computer
Science and Information System Reports, Technical Reports TR-19.

Marttiin, P. 1994. Towards Flexible Process Support with a CASE Shell. In G.
Wijers, S. Brinkkemper, T. Wasserman (Eds.) Advanced Information
Systems Engineering, LNCS 811. Berlin: Springer-Verlag, 14-27.

Marttiin, P., Harmsen, F. & Rossi, M. 1996. A Functional Framework for
Evaluating Method Engineering Environments: the case of Maestro II/
Decamerone and MetaEdit+. In S. Brinkkemper, K. Lyytinen & R.J.
Welke (Eds.) Method Engineering: Principles of method construction
and tool support, London: Chapman & Hall, 63-86.

Marttiin, P. 1997. Can process-centred environments provide customised
process support needed in metaCASE? A literature review. In G. Grosz
(Ed.) Proceedings of the 1st International Workshop on the Many Facets
of Process Engineering. Gammarth, Tunis, 165-180.

Marttiin, P. 1998a. Customisable Process Modelling Support and Tools for
Design Environment. University of Jyvaskyla. Jyvaskyla Studies in
Computer Science, Economics and Statistics 43. PhD Thesis.

Marttiin, P. 1998b. How to Support CASE Activities through Customisable
Process Models: Experiments of CPME/MetaEdit+ Using VPL
Formalism and ISPW-6 Example. In M. Khosrowpour (Ed.) Computer
Supported Organizational Work: Proceedings of the 5th International
Conference on Software Process. Hershey: Information Resources
Management Association.

Marttiin, P., Lyytinen, K., Rossi M., Tahvanainen V.-P., Smolander K. &
Tolvanen, J.-P. 1995. Modeling Requirements for Future CASE: modeling
issues and architectural considerations. Information Resource
Management Journal, 8, 1, 15-25.

McLeod, G. 1995. A Meta-CASE Tool Implementing a Generic Method Model
for Representation, Integration and Management of Methods. In: I.
Mitchell, I. Ferguson & N. Parrington (eds.) The First International
Conference on MetaCASE, 5-6 January, Sunderland, UK. Sunderland,
UK: The University of Sunderland. (no page numbers).

Mi, P. & Scacchi, W. 1992. Process Integration in CASE Environments. IEEE
Software, March, 45-53.

Mi, P. & Scacchi, W. 1996. A Meta-Model for Formulating Knowledge-Based
Models of Software Development. Decision Support Systems, 17, 3, 313-
330.

Nissen, H., Jeusfeld, M., Jarke, M., Zemanek, G. & Huber, H. 1996. Managing
multiple requirements perspectives with metamodels. IEEE Software,
March, 37-48.

Oinas-Kukkonen, 1997. Improving the functionality of software design
environment by using hypertext, Department of Information Processing
Science, Oulu University Press, Ph.D. Thesis.

211

Phalp, K. & Shepperd, M. 1994. A Pragmatic Approach to Process Modelling,
In: B. Warboys (Ed.) Software Process Technology, EWSPT'94. LNCS
772. Springer-Verlag. 65-68.

Pohl, K. 1996. Process-Centered Requirements Engineering. New York: Wiley.
Pohl, K., Weidenhaupt, K. Domges, R., Haumer, P., Jarke, M., & Klamma, R.

2000. PRIME - Toward Process Integrated Modeling Environments.
ACM Transactions on Software Engineering and Methodology, 8, 4, 343-
410.

Rolland, C., Plihon, V. & Ralyte, J. 1998. Specifying the Reuse Context of
Scenario Method Chunks. In: B. Pernici & C. Thanos (eds.) Advanced
Information Systems Engineering, CAiSE'98. LNCS 1413. Berlin:
Springer-Verlag, 191-218.

Rolland, C. & Prakash, N. 1993. Reusable Process Chunks. In: W. Marfk, J.
Lazansky & R. Wagner (eds.) Database and Expert Systems Applications,
DEXA'93. LNCS 720. Berlin: Springer-Verlag, pp. 655-666.

Rolland, C., Souveyet, C. & Moreno, M. 1995. An approach of defining ways-of
working. Information Systems, 20, 4, 337-359.

Rossi, M. 1998. Advanced Computer Support for Method Engineering:
Implementation of CAME Environment in MetaEdit+. University of
Jyvaskyla. Jyvaskyla Studies in Jyvaskyla Studies in Computer Science,
Economics and Statistics 42. Ph.D. Thesis.

Rossi, S. & Sillander, T. 1998a. A Software Process Modelling Quest for
Fundamental Principles. In R. Walter & J. Baets (Eds.) Proceedings of the
6th European Conference on Information Systems (ECIS). Euro-Arab
Management School, Spain, 557-570.

Rossi, S. & Sillander, T. 1998b. A Practical Approach to Software Process
Modelling Language Engineering. In V. Gruhn (Ed.) Proceedings on the
6th European Workshop on Software Process Technology, EWSPT'98,
LNCS 1487. Springer-Verlag, 28-42.

Scacchi, W. 1996. Modeling, Simulating, and Enacting Complex Organizational
Processes: A Life Cycle Approach. In K. Carley, L. Gasser & M. Prietula
(Eds.) Simulating Organizations: Computational Models of Institutions
and Groups. AAAI Press/MIT Press, 153-168.

Sharp, H., Woodman, M., Hovenden, F. & Robinson, H. 1999. The Role of
'Culture' in Successful Software Process Improvement. In: G. Chroust
(ed) Proceedings of the 25th Euromicro Conference (EUROMICRO '99),
Milan, Italy, September 8-10.

Si-Said, S., Rolland, C. & Grosz, G. 1996. MENTOR: A Computer Aided
Requirements Engineering Environment. In P. Constantopoulos, J.
Mylopoulos & Y. Vassiliou (Eds.) Advanced Information Systems
Engineering, LNCS 1080. Berlin: Springer-Verlag, 22-43.

Skelton, J. 1995. MetaCASE and Software Process Maturity. In: I. Mitchell, I.
Ferguson & N. Parrington (eds.) The First International Conference on
MetaCASE, 5-6 January, Sunderland, UK. Sunderland, UK: The
University of Sunderland. (no page numbers).

212

Smolander, K. 1992. OPRR - A Model for Methodology Modeling. In K.
Lyytinen & V.-P. Tahvanainen (Eds.) Next Generation of CASE Tools,
Studies in Computer and Communication Systems. Amsterdam: IOS
press, 224-239.

Smolander, K., Tahvanainen, V.-P. & Lyytinen, K. 1990. How to Combine Tools
and Methods in Practice - a Field Study. In B. Steinholtz, A. S0lvberg &
L. Bergman (Eds.) Advanced Information Systems Engineering LNCS
436. Berlin: Springer-Verlag, 195-211.

Sorenson, P.G., Tremblay, J-P. & McAllister, A.J. 1988. The Metaview system for
many specification environments. IEEE Software, 30, 3, 30-38.

Sutton, S.M., Tarr, P.L. & Osterweil, L.J. 1995. An Analysis of Process
Languages. University of Massachusetts, Department of Computer
Science. CMPSCI Technical Report 95-78.

Wijers, G. 1991. Modeling Support in Information Systems Development.
Amsterdam: Thesis publishers, Ph.D. Thesis.

Zhang, Z. 2000. Defining Components in a MetaCASE Environment. In: B.
Wangler & L. Bergman (eds.) Advanced Information Systems
Engineering, CAiSE 2000. Berlin: Springer-Verlag, pp. 341-354.

YHTEENVETO (FINNISH SUMMARY)

Menetelmäkehityksen tavoitteena on tuottaa tietojärjestelmiä ja ohjelmistoja
tuottaville organisaatioille yksilöllisesti sovitettuja menetelmiä. Tällaisessa
menetelmässä voidaan tarkastella niin haluttujen tuotosten sisällöllisiä ja raken
teellisia ominaisuuksia, tietojärjestelmien ja ohjelmistojen kehittämisprosessia,
kuin tähän prosessiin osallistuvien toimijoiden rooleja ja organisointiakin.

Tämän työn erityisala liittyy prosessien mallintamiseen. Tarkastelun koh
teena on prosessimallinnuskielten määrittely, sovittaminen ja toteutus tieto
konepohjaisessa systeemityön tukiympäristössä nk. prosessin metamallinnuk
sen keinoin. Työssä kehitetään tähän liittyvää teoriaa ja käsitteellistä perustaa
sekä selvitetään teorian soveltamiseen liittyviä seikkoja tietokoneavusteisessa
menetelmäkehityksessä.

Työssä käsitellyt aiheet jakautuvat neljään ryhmään: 1) prosessimallinnus
kielten muokkaamiseen ja näillä kielillä tuotettujen prosessimallien suorittami
seen soveltuva ohjelmistoarkkitehtuuri; 2) prosessimallinnuskielten muokkaa
misen tavat ja periaatteet sekä prosessimallien suorittamista tukevien mekanis
mien periaatteet; 3) prosessimallinnuskielten muokattavuuden edellyttämät
käsitteelliset rakenteet ja niiden toteuttaminen tietokonetukeen; 4) prosessi
mallien suorittamista tukevat mekanismit ja niiden toteuttaminen tietokone
tukeen.

Suuri osa työn teoriaosaan liittyvästä kontribuutiosta koostuu erilaisista
luokitteluista sekä tutkittavien aiheiden ja niiden taustan filosofisesta ja käsit
teellisestä selvittämisestä. Nämä tarkastelut kohdistuvat ohjelmistoarkkitehtuu
riin, mallinnuskielten ja -tekniikoiden luonteeseen sekä metamallintamiskäsi
tyksiin. Keskeisenä kiinnostuksen aiheena on kuitenkin kehittää prosessin
metamallinnuksen teoriaa ja sen kautta tietokoneavusteinen keino muokata
prosessimallinnuskieliä. Työn konstruktiiviseen osaan sisältyy prototyyppisen,
prosessin metamallintamista ja prosessien suoritusta tukevan ohjelmiston suun
nittelu ja toteutus. Lisäksi työn kontribuutiona on joukko kriteerejä joiden
avulla muokattavia menetelmätukiympäristöjä voidaan tarkastella ja arvioida.

Tutkimusmetodologiana on konstruktiivinen lähestymistapa, jossa tutki
mus etenee vähittäin ja iteratiivisesti. Sen iteratiivisina vaiheina ovat havain
nointi, teoriakehitys, järjestelmäkehitys, ja kokeilut. Tutkimuksen pääpaino on
teoriakehityksessä, jota muut vaiheet tukevat.

	ABSTRACT
	ACKNOWLEDGEMENTS
	CONTENTS
	1 INTRODUCTION
	1.1 Background and Motivation
	1.2 Research Background
	1.3 Research Objectives and Questions
	1.4 Research Methodology and Research Process
	1.5 Introduction to the Paper Chapters
	1.6 Overview of the Work
	1.7 Conclusion
	References

	PART I: BACKGROUND
	2 COMPARING TWO TRADITIONS: TOWARDS AN INTEGRATED VIEW OF METHOD ENGINEERING AND PROCESS ENGINEERING
	1 Introduction
	2 Two Views of Method
	3 Method Engineering and Process Engineering
	4 Method Modelling
	5 Technology for Method Use and Customisation
	6 Strategic Integration Points of a Customisable Design Environment
	7 Conclusions
	References

	PART II: THEORY
	3 TOWARDS CUSTOMISATION OF PROCESS MODELLING LANGUAGES IN COMPUTER AIDED PROCESS ENGINEERING
	1 Introduction
	2 State of Art in Linguistic Adaptation
	3 PML Customisation
	4 Towards PML Engineering
	5 Conclusions
	References

	4 CONCEPTUAL FOUNDATIONS OF PROCESS METAMODELLING
	1 Introduction
	2 Language and Techniques
	3 Metamodelling Approaches
	4 A Conceptual Model of Process Metamodels
	5 Towards a Model of Technique-based Process Metamodels
	6 Conclusions
	References

	PART III: THE CPME PROTOTYPE
	5 DEVELOPING A CUSTOMISABLE PROCESS MODELLING ENVIRONMENT: LESSONS LEARNT AND FUTURE PROSPECTS
	6 PROCESS SUPPORT IN METACASE: IMPLEMENTING THE CONCEPTUAL BASIS FOR ENACTABLE PROCESS MODELS IN METAEDIT+
	PART IV: ASSESSMENT
	7 A GENERIC PROCESS MODELLING AND ENACTMENT SYSTEM: IMPLEMENTATION AND ASSESSMENT
	1 Introduction
	2 A Generic Process Modelling and Enactment System for a MetaCASE Environment
	3 A Domain Framework for Customisable Method Support Environments
	4 Assessment of the MetaEdit+/CPME Implementation
	5 Discussion
	References

	YHTEENVETO

