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Abstract
This note concerns Loomis–Whitney inequalities in Heisenberg groups Hn :

|K | �
2n∏

j=1

|π j (K )| n+1
n(2n+1) , K ⊂ H

n .

Here π j , j = 1, . . . , 2n, are the vertical Heisenberg projections to the hyperplanes {x j = 0},
respectively, and | · | refers to a natural Haar measure on eitherHn , or one of the hyperplanes.
The Loomis–Whitney inequality in the first Heisenberg group H

1 is a direct consequence
of known L p improving properties of the standard Radon transform in R

2. In this note, we
show how the Loomis–Whitney inequalities in higher dimensional Heisenberg groups can be
deduced by an elementary inductive argument from the inequality inH1. The same approach,
combined with multilinear interpolation, also yields the following strong type bound:

∫

Hn

2n∏

j=1

f j (π j (p)) dp �
2n∏

j=1

‖ f j‖ n(2n+1)
n+1

for all nonnegative measurable functions f1, . . . , f2n on R
2n . These inequalities and their

geometric corollaries are thus ultimately based on planar geometry. Among the applications
of Loomis–Whitney inequalities in H

n , we mention the following sharper version of the
classical geometric Sobolev inequality in H

n :

‖u‖ 2n+2
2n+1

�
2n∏

j=1

‖X j u‖ 1
2n , u ∈ BV (Hn),
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where X j , j = 1, . . . , 2n, are the standard horizontal vector fields in H
n . Finally, we also

establish an extension of theLoomis–Whitney inequality inHn , where theHeisenberg vertical
coordinate projections π1, . . . , π2n are replaced by more general families of mappings that
allow us to apply the same inductive approach based on the L3/2-L3 boundedness of an
operator in the plane.

Keywords Radon transform · Loomis–Whitney inequality · Heisenberg group · Sobolev
inequality · Isoperimetric inequality

Mathematics Subject Classification 28A75 primary; 52C99 · 46E35 · 35R03 secondary

1 Introduction

The Loomis–Whitney inequality in R
d bounds the volume of a set K ⊂ R

d by the areas of
its coordinate projections:

|K | ≤
d∏

j=1

|π̃ j (K )| 1
d−1 , (1.1)

where π̃ j (x1, . . . , xd) = (x1, . . . , x j−1, x j+1, . . . , xd). Here |A| refers to k-dimensional
Lebesgue outer measure in Rk whenever A ⊂ R

k . The inequality (1.1) is due to Loomis and
Whitney [37] from 1949. It is trivial for d = 2 and follows by induction, using Hölder’s
inequalities, for d > 2. The Loomis–Whitney inequality is one of the fundamental inequali-
ties in geometry and has been studied intensively; we refer to [6,8,12,25,33] and references
therein for a historical account and some applications of the Loomis–Whitney inequality.

The present note discusses analogues of (1.1) in Heisenberg groups H
n . It arose as a

complement to manuscript [23] with Tuomas Orponen, in which we reduced the proof of
the Loomis–Whitney inequality for H1 to an incidence geometric problem in the plane that
we resolved using the method of polynomial partitioning. Later we learned that the Loomis–
Whitney inequality in the first Heisenberg group—and inequalities of similar type—had
already been obtained earlier [18,19,32,38] by a Fourier-analytic approach or the so-called
method of refinements, albeit not phrased in terms of Heisenberg projections. In addition
to acknowledging previous work, the aim of the present note is to show how the Loomis–
Whitney inequality in H

n for n > 1 can be proven by induction, similarly as the original
inequality [37], but now using the version in H

1 as a base case. Alternatively, one could
apply the method of refinements also for n > 1, see the related comment in [42, Sect. 4]. The
inductive approach in the present note has the advantage of easily yielding certain strong-type
endpoint inequalities, see Theorem 1.8, which are not covered by [42] or other literature we
are aware of. For applications to geometric Sobolev and isoperimetric inequalities inHn , the
weak-type inequalities would however be sufficient.

1.1 Heisenberg groups

The nth Heisenberg group H
n is the group (R2n+1, ·) with

(x, t) · (x ′, t ′) :=
⎛

⎝x + x ′, t + t ′ + 1
2

n∑

j=1

x j x ′
n+ j − xn+ j x ′

j

⎞

⎠ , (1.2)
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Loomis–Whitney inequalities in Heisenberg. . .

which makes it a nilpotent Lie group of step 2. Here, (x, t) denotes a point in R
2n+1 with

x = (x1, . . . , x2n) ∈ R
2n and t ∈ R. For x ∈ R

2n and k ∈ {1, . . . , 2n}, we will use the
symbol x̂k to denote either the point in R2n that is obtained by replacing the k-th coordinate
of x with 0, or the point in R

2n−1 that is obtained by simply deleting the k-th coordinate of
x . The meaning should always be clear from the context.

In geometric measure theory of the sub-Riemannian Heisenberg group [41], an important
role is played by Heisenberg projections that are adapted to the group and dilation structure
of Hn and that map onto homogeneous subgroups of Hn . We only consider projections
associated to the "coordinate" hyperplanes containing the t-axis, so we limit our discussion
to those. Let W j ⊂ H

n , j = 1, . . . , 2n, be the (1-codimensional) vertical subgroups of Hn

given by the hyperplanes {(x, t) ∈ R
2n+1 : x j = 0}, respectively. Write

L j := {(0, . . . , 0, x j , 0, . . . , 0) : x j ∈ R}

for the span of the j-th standard basis vector. So L j is a complementary (1-dimensional)
horizontal subgroup of W j . This means, for example, that every point p ∈ H

n has a unique
decomposition p = w j · l j , where w j ∈ W j and l j ∈ L j . These decompositions give rise to
the vertical coordinate projections

p �→ w j =: π j (p) ∈ W j , j = 1, . . . , 2n.

Using the group product in (1.2), it is easy to write down explicit expressions for π j :

π j (x, t) = (x̂ j , t + x j xn+ j
2 ) and πn+ j (x, t) = (x̂n+ j , t − x j xn+ j

2 ), j = 1, . . . , n.

(1.3)

Readers who are not comfortable with the Heisenberg group can simply identify W j with
R
2n , and consider the maps

(x, t) �→ (x1, . . . , x j−1, x j+1, . . . , x2n, t + x j xn+ j
2 ), for j = 1, . . . , n,

and their analogs for j = n + 1, . . . , 2n, without paying attention to their origin. It is clear
that the projections π1, . . . , π2n are smooth, and hence locally Lipschitz with respect to the
Euclidean metric in R

2n+1, and they satisfy

det
(
Dπ j (p)Dπ j (p)t ) ≥ 1, j = 1, . . . , 2n, p ∈ R

2n+1. (1.4)

Vertical projections are, in fact, not Lipschitz with respect to the Korányi distance d(p, q) =
‖q−1 · p‖ on H

n . Nonetheless they play a significant role in the geometric measure theory
of Heisenberg groups—as do orthogonal projections in R

d—so they have been actively
investigated in recent years, see [2,3,15,22,34,35]. The vertical projections are non-linear
maps, but their fibres π−1

j {w} are nevertheless lines. In fact, the fibres of π j are precisely the

left translates of the line L j , that is, π
−1
j {w} = w · L j for w ∈ W j .

For subsets of Hn ∼= R
2n+1, the notation | · | will refer to Lebesgue (outer) measure on

R
2n+1, and for subsets of a vertical plane R2n ∼= W j ⊂ H

n , the notation | · | will refer to
Lebesgue (outer) measure in R2n . Up to multiplicative constants, they could also be defined
as the (2n + 2)- and (2n + 1)-dimensional Hausdorff measures, respectively, relative to the
Korányi metric on H

n . So, our measures coincide with canonical "intrinsic" objects in H
n .

All integrations on Hn orW j will be performed with respect to Lebesgue measures.
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1.2 Loomis–Whitney inequalities inHn and their generalizations

We can now state a variant of the Loomis–Whitney inequality (1.1) for subsets ofHn in terms
of the vertical coordinate projections π j . In R

d , the inequality makes a reference to the d
orthogonal coordinate projections π̃1, . . . , π̃d . These are, now, best viewed as the projections
whose fibres are translates of lines parallel to the coordinate axes. InHn , we consider instead
the vertical projections π j whose fibres are left translates of L j , j = 1, . . . , 2n; the precise
formulaewere stated in (1.3).With this notation, the followingvariant of theLoomis–Whitney
inequality holds:

Theorem 1.5 (Loomis–Whitney inequality in H
n) Fix n ∈ N. Let K ⊂ R

2n+1 (or K ⊂ H
n)

be an arbitrary set. Then

|K | �
2n∏

j=1

|π j (K )| n+1
n(2n+1) . (1.6)

Here and in the following, the symbol � indicates that the inequality holds up to a positive
and finite multiplicative constant on the right-hand side. We only have to prove the inequality
for Lebesgue measurable sets K ⊂ R

2n+1. In the general case, we simply pick Gδ-sets
K j ⊂ R

2n with K j ⊇ π j (K ) and |K j | = |π j (K )| for j = 1, . . . , 2n, assuming that the
right-hand side of (1.6) is finite. Then K ′ := ⋂2n

j=1 π−1
j (K j ) is a Lebesgue measurable

subset of R2n+1 that contains K and it suffices to apply the Loomis–Whitney inequality to
K ′.

So we consider only Lebesgue measurable sets K in the following. By the inner regularity
of the Lebesgue measure, Theorem 1.5 is then equivalent to the validity of (1.6) for all
compact sets K ⊂ R

2n+1. Since every such set satisfies χK (p) ≤ ∏2n
j=1 χπ j (K )(π j (p)),

for all p ∈ R
2n+1, and on the other hand,

⋂2n
j=1 π−1

j (K j ) is compact in R
2n+1 whenever

K1, . . . , K2n are compact subsets of R2n , Theorem 1.5 is equivalent to the statement that

∫

R2n+1

2n∏

j=1

χK j (π j (p)) dp �
2n∏

j=1

|K j |
n+1

n(2n+1) (1.7)

holds for all compact sets K1, . . . , K2n ⊂ R
2n . Here we have identified, for j = 1, . . . , 2n,

the {x j = 0}-plane in R
2n+1 with R

2n , so that π1, . . . , π2n are now mappings from R
2n+1

to R
2n . Using this expression, it is evident that Theorem 1.5 follows from the next result:

Theorem 1.8 Fix n ∈ N. Then
∫

R2n+1

2n∏

j=1

f j (π j (p)) dp �
2n∏

j=1

‖ f j‖ n(2n+1)
n+1

, (1.9)

for all nonnegative Lebesgue measurable functions f1, . . . , f2n on R
2n.

The coarea formula coupled with (1.4) shows that the preimages of Lebesgue null sets inR2n

under π j are Lebesgue null sets in R
2n+1, and so f j ◦ π j : R2n+1 → [0,+∞] is Lebesgue

measurable under the assumptions of the theorem, and the integral on the left-hand side of
(1.9) makes sense.

The bilinear case (n = 1) of Theorem 1.8 follows directly from the L3/2−L3 boundedness
of the standardRadon transform inR2, and as suchwas known—byaFourier-analytic proof—
at least since the work of Oberlin and Stein [38]; see Sect. 2. Theorem 1.8 for n = 1 is also
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an instance of [18, Theorem 1.1] (with b = (2, 2) in [18, (1.6)] and (p1, p2) = (3/2, 3/2) in
[18, (1.8)]). The corresponding weak-type bound (Theorem 1.5 for n = 1) was also obtained
by Gressman as a special case of the endpoint restricted weak-type estimates in [32, Theorem
2]. Due to the nilpotent group structure of the Heisenberg group and the invariance of the
problem under Heisenberg dilations, it is a particularly simple instance of Gressman’s more
general theorem. The proofs in [18,32] used an adaptation of themethod of refinements, which
was initiated by Christ [16] in order to prove L p − Lq bounds for certain convolution-type
operators.

To the best of our knowledge, Theorem 1.8 for n > 1 has not appeared in the literature
before. Stovall proved in [42] similar inequalities for multilinear Radon-like transforms, but
(1.9) for n > 1 constitutes a strong-type endpoint case that is not covered by her work. In
her notation, our setting corresponds to b(p) = ((n + 1)/n, . . . , (n + 1)/n), which is a point
on the boundary of the polytope P mentioned in [42, Theorem 3].

Our approach to Theorem 1.8 can be applied to prove something a bit more general, see
Theorem 5.16 for the precise statement. The idea is to apply the same inductive procedure
and reduce the claim to an L3/2-L3 boundedness statement for a certain operator in the plane.
In the case of Theorem 1.8, this operator happens to be the standard Radon transform, but
other choices are possible as well, for instance convolution by a fixed parabola in R2, cf. the
use of (5.7) in connection with Example 5.4.

It is easy to see that the exponents in the Heisenberg Loomis–Whitney inequality (1.6)
are sharp by considering boxes of the form [−r , r ]2n × [−r2, r2]. Besides the difference in
the definition of the projections π̃ j and π j , there is another obvious difference between (the
case d = 2n + 1 of) the standard Loomis–Whitney inequality (1.1), and (1.6): the former
bounds the volume of K in terms of 2n + 1 projections, and the latter in terms of only 2n
projections. One might therefore ask: is there a version of (1.1) for 2n orthogonal projections
R
2n+1 → R

2n—and does it look like (1.6)? The answer is negative. This is a very special
case of [5, Theorem 1.13] (cf. also [20,42,43]), but perhaps it is illustrative to see an explicit
computation for n = 1:

Example 1.10 Consider the two standard orthogonal coordinate projections π̃1, π̃2 inR3 to the
x2t- and x1t-planes. If K = [0, 1]2 ×[0, δ], then |K | = δ, and also |π̃1(K )| = δ = |π̃2(K )|.
So, for δ > 0 small, an inequality of the form

|K | � |π̃1(K )|λ · |π̃2(K )|λ (1.11)

can only hold for λ ≤ 1
2 . On the other hand, if K R = [0, R]3, with R � 1, then |K R | = R3

and |π̃1(K R)| = R2 = |π̃2(K R)|, so (1.11) can only hold for λ ≥ 3
4 . The latter example

naturally does not contradict (1.6): note that |π j (K R)| ∼ R3 for R � 1.

1.3 Gagliardo–Nirenberg–Sobolev inequalities inHn

In R
d , it is well-known that the Loomis–Whitney inequality implies the Gagliardo–

Nirenberg–Sobolev inequality

‖ f ‖d/(d−1) ≤
d∏

j=1

‖∂ j f ‖1/d
1 , f ∈ C1

c (Rd). (1.12)

Similarly, an Hn-analogue of (1.12) can be obtained as a corollary of Theorem 1.5:
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Theorem 1.13 Let f ∈ BV (H). Then,

‖ f ‖ 2n+2
2n+1

�
2n∏

j=1

‖X j f ‖ 1
2n . (1.14)

Here

X j = ∂x j − xn+ j
2 ∂t and Xn+ j = ∂xn+ j + x j

2 ∂t , ( j = 1, . . . , n), (1.15)

are the standard left-invariant "horizontal" vector fields inHn , and BV (Hn) refers to functions
f ∈ L1(Hn) whose distributional X j derivatives are signed Radon measures with finite total
variation, denoted ‖ · ‖.

Theorem 1.13 presents a sharper version of the well-known "geometric" Sobolev inequal-
ity

‖ f ‖ 2n+2
2n+1

� ‖∇H f ‖, f ∈ BV (Hn), (1.16)

proven by Pansu [40] for n = 1 as a corollary of the isoperimetric inequality in H
1. Here

∇H f = (X1 f , . . . , X2n f ). Versions of geometric Sobolev inequalities and isoperimetric
inequalities were obtained in H

n and even more general frameworks by several authors,
for instance in [14,30]. A proof of (1.16) for n = 1, using the fundamental solution of the
sub-Laplace operator �H, is discussed in [13, Sect. 5.3], following the approach of [14]. On
the other hand, Theorem 1.13 can be derived from Theorem 1.5. This deduction follows a
standard argument, but we present it here to highlight the fact that the geometric Sobolev and
isoperimetric inequalities in all Heisenberg groups are ultimately based on planar geometry
and they can be deduced from boundedness properties of the Radon transform in R2.

Theorem 1.8 is related to Brascamp-Lieb inequalities. We direct the reader to e.g. [4,5,10]
and the references therein. Euclidean Loomis–Whitney and Brascamp-Lieb inequalities can
be proven by the technique of heat flow monotonicity, see [5]. The same approach has been
attempted in Carnot groups by Bramati [9], but there seems to be a gap in the argument,
which has been confirmed with the author. More precisely, the exponents appearing in the
proof of [9, Theorem 3.2.3] have not been chosen consistently. It remains an open problem to
see whether the Loomis–Whitney inequalities in Carnot groups can be obtained by the heat
flow approach.

Structure of the paper. In Sect. 2, we explain how Theorems 1.5 and 1.8 for n = 1 follow
from known L p improving properties of the Radon transform in R

2. In Sect. 3, we deduce
Theorems 1.5 and 1.8 for arbitrary n > 1 by induction from the corresponding inequalities in
H

1. In Sect. 4, we show how to derive theGagliardo–Nirenberg–Sobolev inequality, Theorem
1.13, as an application of the Loomis–Whitney inequality inHn . Finally, in Sect. 5 we explain
how to adapt the approach from Sect. 3 to prove the generalized Loomis–Whitney-type
inequality stated in Theorem 5.16.

2 Inequalities in the first Heisenberg group

In this section, we review the proof for the Loomis–Whitney inequality in the first Heisenberg
group. For this purpose it is more convenient to use slightly different notation. In particular,
points in R3 will be denoted by (x, y, t) (instead of (x, t) = (x1, x2, t)). The group product
of H1 then reads in coordinates as follows:

(x, y, t) · (x ′, y′, t ′) := (x + x ′, y + y′, t + t ′ + 1
2 (xy′ − yx ′)). (2.1)
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The vertical Heisenberg projections to the yt- and the xt-plane, respectively, are explicitly
given by

π1(x, y, t) = (0, y, t + xy
2 ) and π2(x, y, t) = (x, 0, t − xy

2 ).

We recall the statement of Theorems 1.5 and 1.8 for n = 1:

Theorem 2.2 (Loomis–Whitney inequality in H1) Let K ⊂ H
1 be arbitrary. Then,

|K | � |π1(K )|2/3 · |π2(K )|2/3. (2.3)

Theorem 2.4 For all nonnegative Lebesgue measurable functions f1 and f2 on R
2 it holds

that
∫

R3
f1(π1(p)) f2(π2(p)) dp � ‖ f1‖ 3

2
‖ f2‖ 3

2
. (2.5)

On the left-hand side of (2.3), the notation "| · |" refers to Lebesgue outer measure on R3.
Similarly, on the right-hand side of (2.3), the notation "| · |" refers to Lebesgue outer measure
on R

2. Clearly, Theorem 2.4 implies Theorem 2.2. We now explain how Theorem 2.4 itself
follows directly from known L p-improving properties of the standard Radon transform in
the plane R2.

Let S1 be the unit sphere inR2. For a smooth, compactly supported function f onR2, the
Radon transform (or X -ray transform) R f is defined by

R f (σ, s) :=
∫

〈z,σ 〉=s
f (z) dz, (σ, s) ∈ S1 × R. (2.6)

Here dz is the 1-dimensional Lebesgue measure on the line {z ∈ R
2 : 〈z, σ 〉 = s}. Using

Fourier analysis (notably Plancherel’s theorem) and complex interpolation, Oberlin and Stein
[38] proved that R extends to a bounded operator from L3/2(R2) to L3(S1 ×R). Their result
is more general, but this is the only information one needs to deduce Theorem 2.4.

The connection between inequality (2.5) and the Radon transform is illustrated by the
formula

∫

R3
f1(π1(p)) f2(π2(p)) dp =

∫

R2
R ( f1) (σ (x), sx,t ) f2(x, t)

d(x, t)√
1 + x2

(2.7)

with sx,t = t/
√
1 + x2 and σ(x) := 1√

1+x2
(−x, 1) for smooth compactly supported func-

tions f1 and f2 on R
2. The proof of inequality (2.5) using the result in [38] is an instance

of a more general phenomenon that relates L p-improving properties of averaging operators
along curves to inequalities of the form (2.5) with two factors in the integral. The general
framework is explained in detail in [20, 9.5. Double fibration formulation] and [43, Sect. 1].
For our purpose it is convenient to work with a linear operator T that yields functions on
R
2, rather than S1 ×R as in the case of the Radon transform, so instead of applying directly

(2.7), we will pass via an identity of the form
∫

R3
f1(π1(p)) f2(π2(p)) dp =

∫

R2
T f1(x, t) f2(x, t) d(x, t);

see the proof of Theorem 2.4. For smooth, compactly supported functions f onR2, we define

T f (x, t) :=
∫

R

f (y, t + xy) dy, (x, t) ∈ R
2. (2.8)

The next statement follows immediately from [38] by relating the operator T to the Radon
transform R, and we do not claim any novelty for it, see also [17, Sect. 2].
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Theorem 2.9 There exists a constant C such that the operator T defined in (2.8) satisfies

‖T f ‖3 ≤ C‖ f ‖ 3
2

for all smooth, compactly supported functions f .

Proof We reduce Theorem 2.9 to a statement about the Radon transform that was proven in
[38]. We fix a smooth compactly supported function f and start by writing

‖T f ‖3 =
[∫

R2

∣∣∣∣
∫

R

f (y, t + xy) dy

∣∣∣∣
3

d(x, t)

] 1
3

(2.10)

=
[∫

R2

∣∣∣∣
∫

R

f (y, t + xy)
√
1 + x2 dy

∣∣∣∣
3 d(x, t)

(1 + x2)3/2

] 1
3

=
⎡

⎣
∫

R2

∣∣∣∣∣

∫

�x,t

f dλ�x,t

∣∣∣∣∣

3
d(x, t)

(1 + x2)3/2

⎤

⎦

1
3

. (2.11)

Here dλ�x,t denotes the 1-dimensional Lebesgue measure on the line

�x,t :=
{

z ∈ R
2 : 〈z, σ (x)〉 = t√

1 + x2

}

= {(y, t + xy) : y ∈ R} with σ(x) := 1√
1 + x2

(−x
1

)
.

Thus, recalling the definition of the Radon transform in (2.6), we obtain from (2.11) that

‖T f ‖3 =
[∫

R2
|R f (σ (x), sx,t )|3 d(x, t)

(1 + x2)3/2

] 1
3

=
[∫

R

(∫

R

|R f (σ (x), sx,t )|3 dt√
1 + x2

)
dx

1 + x2

] 1
3

with sx,t = t/
√
1 + x2. Changing variables in the inner integral, and observing that x �→

σ(x) parameterizes an arc in S1, we then deduce that

‖T f ‖3 =
[∫

R

(∫

R

|R f (σ (x), s)|3 ds

)
|σ ′(x)| dx

] 1
3

≤
[∫

S1

(∫

R

|R f (σ, s)|3 ds

)
dσ

] 1
3 = ‖R f ‖3,

where σ denotes the usual Lebesgue (arc-length) measure on S1. Now the theorem follows
from the inequality ‖R f ‖3 ≤ C‖ f ‖ 3

2
for the Radon transform, which was established as a

special case of [38, Theorem 1]. ��
Theorem 2.4 is an immediate corollary of Theorem 2.9.

Proof of Theorem 2.4 It suffices to prove the theorem for nonnegative smooth, compactly
supported functions on R

2. Indeed, if f1 is an arbitrary nonnegative Lebesgue measurable
function onR2,we take a sequence ( f1,k)k∈N of nonnegativeC∞

c functionswhich converges to
f1 with respect to ‖·‖3/2 and pointwise almost everywhere. In the sameway,we approximate a
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given nonnegative Lebesgue measurable function f2 by a sequence ( f2,k)k∈N of nonnegative
C∞

c functions. Then, assuming that the theorem holds for nonnegative C∞
c functions, we

apply it to the pair f1,k, f2,k for every k ∈ N. The desired inequality (2.5) for the functions
f1, f2 follows by Fatou’s lemma, observing that for j ∈ {1, 2}, the sequence ( f j,k ◦ π j )k∈N
converges pointwise almost everywhere to ( f j ◦ π j ) j∈N since the preimage of a Lebesgue
null set in R2 is a Lebesgue null set in R

3, according to the remark below Theorem 1.8.
We now prove the theorem for nonnegative C∞

c functions on R
2. Let f1 and f2 be such

functions and let us prove that they satisfy the inequality (2.5). To this end, we rewrite the
left-hand side using the volume-preserving diffeomorphism

	 : R3 → R
3, 	(x, y, t) = (x, 0, t) · (0, y, 0) = (

x, y, t + 1
2 xy

)
.

With this definition,

π1(	(x, y, t)) = (y, t + xy) and π2(	(x, y, t)) = (x, t)

for all (x, y, t) ∈ R
3. Hence the left-hand side of (2.7) can be expressed as follows:

∫

R3
f1(π1(p)) f2(π2(p)) dp =

∫

R2

∫

R

f1(π1(	(x, y, t)) f2(π2(	(x, y, t))) dy d(x, t)

=
∫

R2

(∫

R

f1(y, t + xy) dy

)
f2(x, t) d(x, t)

=
∫

R2
T f1(x, t) f2(x, t) d(x, t),

using the linear operator T defined in (2.8). Thus, it follows from Hölder’s inequality with
exponents p = 3 and p′ = 3/2, and the mapping property of T stated in Theorem 2.9, that

∫

R3
f1(π1(p)) f2(π2(p)) dp ≤ ‖T f1‖3‖ f2‖ 3

2
≤ C‖ f1‖ 3

2
‖ f2‖ 3

2
,

as desired. ��

3 Inequalities in higher-dimensional Heisenberg groups

In this section we prove Theorem 1.8 for arbitrary n > 1 by induction, using Theorem 2.4 as
a base case. To be precise, instead of directly aiming at inequality (1.9) in Theorem 1.8, we
will prove Theorem 3.1 first. Its statement reflects the algebraic structure of the Heisenberg
group. In brief, for a fixed k ∈ {1, . . . , n}, the different Lebesgue exponents on the right-hand
side of (3.2) appear by applying once the commutator relation [Xk, Xn+k] = ∂t , where Xk

and Xn+k are defined as in (1.15). This is done by employing the strong-type bound for
H

1 given by Theorem 2.4. After this initial step, the remaining steps of the induction use
only standard properties of integrals and elementary estimates by Hölder’s and Minkowski’s
integral inequalities.

Theorem 3.1 Fix n ∈ N. Then, for all nonnegative Lebesgue measurable functions
f1, . . . , f2n on R

2n, we have

∫

R2n+1

2n∏

j=1

f j (π j (p)) dp � ‖ fk‖ 2n+1
2

‖ fn+k‖ 2n+1
2

n∏

j=1
j �=k

(‖ f j‖2n+1 ‖ fn+ j‖2n+1
)
,

k ∈ {1, . . . , n}, (3.2)
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with an implicit constant that may depend on n. For n = 1, the right-hand side of (3.2) equals
‖ f1‖ 3

2
‖ f2‖ 3

2
.

The Lebesgue exponents in Theorem 3.1 correspond to vertex points on the boundary of the
Newton polytope in [42, Sect. 3] and as such are not covered by [42, Theorem3]. For instance,
the exponents in (3.2) for k = 1 < n corresponds to b(p) = (2, 1, . . . , 1, 2, 1, . . . , 1) in the
notation of [42, (2.5)].

For n = 1, the statements of Theorem 3.1 and Theorem 1.8 are equivalent. For n > 1,
Theorem 3.1, (3.2), consists of n separate inequalities. Knowing that they all hold for all
nonnegative measurable functions, one can deduce the inequality

∫

R2n+1

2n∏

j=1

f j (π j (p)) dp �
2n∏

j=1

‖ f j‖ n(2n+1)
n+1

(3.3)

postulated in Theorem 1.8 by multilinear interpolation, as we will explain below the next
remark.

Remark 3.4 If one is only interested in the Loomis–Whitney inequality inHn (Theorem 1.5),
and not in the strong-type bound stated in Theorem 1.8, then one can finish the proof without
using multilinear interpolation. In particular all the geometric consequences that we list in
Sect. 4 can be obtained by this simpler argument. Indeed, let K ⊂ R

2n+1 be a compact set.
Then Theorem 3.1 implies that

|K | � |πk(K )| 2
2n+1 |πn+k(K )| 2

2n+1

n∏

j=1
j �=k

(
|π j (K )| 1

2n+1 |πn+ j (K )| 1
2n+1

)
.

for all k ∈ {1, . . . , n}. Multiplying these n inequalities together, we obtain

|K |n �
2n∏

j=1

|π j (K )| n+1
2n+1 ,

from where the Loomis–Whitney inequality in H
n follows by taking the n-th root.

To prove Theorem 1.8, we will rephrase Theorem 3.1 by duality as bounds of the type

‖T ( f1, . . . , f2n−1)‖qk �
2n−1∏

j=1

‖ f j‖p j,k , for k = 1, . . . , n, (3.5)

for a certain multilinear operator T . Then multilinear interpolation will allow us to deduce
the bound

‖T ( f1, . . . , f2n−1)‖q �
2n−1∏

j=1

‖ f j‖p j (3.6)

with

1

q
= 1

n

n∑

k=1

1

qk
, and

1

p j
= 1

n

n∑

k=1

1

p j,k
, j = 1, . . . , 2n − 1. (3.7)

Finally, (3.6) will yield (3.3). Before turning to the details, we state the multilinear interpo-
lation theorem which will be applied repeatedly to infer (3.6) from (3.5). It can be proven by
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the method of complex interpolation [7,11] and we simply state here a version that is useful
for our purposes. The theorem is formulated for finitely simple functions on a measure space.
These are functions of the form

∑N
i=1 ciχEi with the requirement that Ei is a measurable set

of finite mass. In our application, the relevant measure spaces will all be equal to R
2n with

the Lebesgue measure.

Theorem 3.8 (Corollary 7.2.11 in [31]) Assume that T is an m-linear operator on the m-
fold product of spaces of finitely simple functions of σ -finite measure spaces (Y j , μ j ), and
suppose that T takes values in the set of measurable functions of a σ -finite measure space
(Z , ν). Let 1 ≤ p1, j , p2, j , q1, q2 ≤ ∞ for all 1 ≤ j ≤ m, 0 < θ < 1. Suppose that for all
finitely simple f j on Y j one has

‖T ( f1, . . . , fm)‖q1 ≤ M1

m∏

j=1

‖ f j‖p1, j and ‖T ( f1, . . . , fm)‖q2 ≤ M2

m∏

j=1

‖ f j‖p2, j .

Then for all finitely simple functions f j on Y j it holds that

‖T ( f1, . . . , fm)‖q ≤ M1−θ
1 Mθ

2

m∏

j=1

‖ f j‖p j ,

where

1

q
= 1 − θ

q1
+ θ

q2
and

1

p j
= 1 − θ

p1, j
+ θ

p2, j
for j = 1, . . . , m.

Recalling Theorem 2.4, it suffices to prove Theorem 1.8 for n > 1.

Proof of Theorem 1.8 for n > 1 using Theorem 3.1
Assume that the statement of Theorem 3.1 holds for a fixed natural number n > 1. Our aim
is to verify (3.3) for all nonnegative measurable functions f1, . . . , f2n on R

2n . The desired
inequality can be spelled out as follows:

∫

R2n+1

n∏

j=1

(
f j (x̂ j , t + 1

2 x j xn+ j ) fn+ j (x̂n+ j , t − 1
2 x j xn+ j )

)
d(x, t)

�
2n∏

j=1

‖ f j‖ n(2n+1)
n+1

. (3.9)

Here we have used the same notational convention as at the beginning of Sect. 1.1. The
coordinate expressions appearing in (3.9) help us to define a multilinear operator T for
which a bound of the type (3.6) will yield (3.9). The idea is, essentially, to express the left-
hand side of (3.9) as the pairing of T ( f1, . . . , f2n−1) with f2n , similarly as we did in the
proof of Theorem 2.4. To bring the integral into this form, we first apply the Fubini-Tonelli
theorem and then the change of variables τ = t − 1

2 xn x2n in the t-coordinate so that the
left-hand side of (3.3) equals
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∫

R2n+1

2n∏

j=1

f j (π j (p)) dp (3.10)

=
∫

R2n

⎡

⎢⎢⎣

∫

R

fn(x̂n, τ + xn x2n)

2n−1∏

j=1
j �=n

f j (π j (x, τ + 1
2 xn x2n)) dx2n

⎤

⎥⎥⎦ f2n(x̂2n, τ ) d(x̂2n, τ ).

This identity motivates the following definition of the operator T . For all finitely simple
functions g1, . . . , g2n−1 on R

2n , we define

T (g1, . . . , g2n−1)(x̂2n, τ ) :=
∫

R

gn(x̂n, τ + xn x2n)

2n−1∏

j=1
j �=n

g j (π j (x, , τ + 1
2 xn x2n)) dx2n .

Using (3.10), and applying Hölder’s inequality with exponents n(2n + 1)/(n + 1) and its
dual exponent

q := n(2n + 1)

2n2 − 1
, (3.11)

we find for all nonnegative finitely simple functions f1, . . . , f2n−1 and all nonnegative mea-
surable functions f2n that

∫

R2n+1

2n∏

j=1

f j (π j (p)) dp =
∫

R2n
T ( f1, . . . , f2n−1)(w) f2n(w) dw

≤ ‖T ( f1, . . . , f2n−1)‖q ‖ f2n‖ n(2n+1)
n+1

.

Hence, to prove (3.3) for such functions f1, . . . , f2n−1, we aim to show

‖T ( f1, . . . , f2n−1)‖q �
2n−1∏

j=1

‖ f j‖p j , for p1 = . . . = p2n−1 = n(2n + 1)

n + 1
(3.12)

and q as in (3.11). Having established (3.3) for nonnegative finitely simple functions, it
is straightforward to obtain the inequality also for all nonnegative measurable functions
f1, . . . , f2n . Indeed, given nonnegative measurable functions f1, . . . , f2n , we may assume
that the right-hand side of (3.3) is finite, and then each f j is the pointwise almost everywhere
limit of an increasing sequence of nonnegative finitely simple functions that converge to f j

also in ‖ · ‖p j -norm, and Theorem 1.8 follows, by an analogous argument as described at the
beginning of the proof of Theorem 2.4.

Thus it remains to prove the claim (3.12) for nonnegative finitely simple functions. It may
be illustrative to compare this with the bound for the linear operator T in Theorem 2.9, which
is essentially the case n = 1 of what we aim to prove, albeit stated for smooth and compactly
supported functions.

For n > 1, we will deduce (3.12) from Theorem 3.1. Recall that the left-hand sides of the
inequalities in (3.2) can be expressed as pairings of T ( f1, . . . , f2n−1) with f2n , according
to the formula (3.10) and the definition of T if f1, . . . , f2n−1 are nonnegative finitely simple
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functions and f2n is an arbitrary nonnegative measurable function. Then the inequalities
stated in (3.2) for k = 1, . . . , n imply by duality that

‖T ( f1, . . . , f2n−1)‖qk �
2n−1∏

j=1

‖ f j‖p j,k , for k = 1, . . . , n, (3.13)

for all nonnegative finitely simple functions f1, . . . , f2n−1 on R
2n , and exponents

qk =
{

(2n + 1)/(2n), k = 1, . . . , n − 1,
(2n + 1)/(2n − 1), k = n,

and

p j,k =
{
2n + 1, k /∈ { j, j + n, j − n},
(2n + 1)/2, k ∈ { j, j + n, j − n} , j = 1, . . . , 2n − 1, k = 1, . . . , n.

Here, for every k = 1, . . . , n, we take the Lebesgue exponent associated to the f2n-term
on the right-hand side of the corresponding inequality in (3.2), and we let qk be the dual
of that exponent. This explains why the formula for qn is different from q1 = . . . = qn−1.
The exponent p j,k is simply the Lebesgue exponent of the f j -term that appears in the k-th
inequality of (3.2).

The key property of the exponents in (3.12) and (3.13) is that they are related by convex
combinations as indicated in (3.7). Indeed, we compute that

1

q
= 2n2 − 1

n(2n + 1)
= 1

n

2n − 1

2n + 1
+

n−1∑

k=1

1

n

2n

2n + 1
=

n∑

k=1

1

n

1

qk
,

and similarly,

1

p j
= n + 1

n(2n + 1)
= 1

n

2

2n + 1
+

n∑

k=1
k /∈{ j,n− j}

1

n

1

2n + 1
=

n∑

k=1

1

n

1

p j,k
, j = 1, . . . , 2n − 1.

To conclude the proof, we apply multilinear interpolation. Theorem 3.8 allows us to
interpolate between two operator bounds. In order to deduce (3.12) from the family of n
operator bounds stated in (3.13), we apply Theorem 3.8 for m = 2n − 1 iteratively (n − 1)-
times, noting that (3.13) also holds for finitely simple functions, as required by Theorem 3.8.
The specific form of the exponents is not used in this argument, we only need to know that
we are dealing with convex combinations as in (3.7), and observe the identity

1
k [a1 + · · · + ak] = (

1 − 1
k

) ( 1
k−1 [a1 + · · · + ak−1]

)
+ 1

k ak,

for k > 1, which allows to obtain (3.12) by successive interpolation. More precisely, we
apply first Theorem 3.8 for θ = 1

2 to the two operator bounds given by (3.13) for k = 1 and
k = 2. Then we apply Theorem 3.8 with θ = 1

3 to interpolate between this newly obtained
bound and the operator bound stated in (3.13) for k = 3. We continue until, in the last step,
we apply the theorem with θ = 1

n to interpolate between the previously obtained bound
and the bound for k = n. This yields (3.12) for all nonnegative finitely simple functions
f1, . . . , f2n−1, and thus concludes the proof of the theorem. ��
Proof of Theorem 3.1 First, by the same reasoning as at the beginning of the proof of Theorem
2.4, it suffices to verify the claim for nonnegative, smooth, and compactly supported functions.
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We fix n ∈ N, n > 1, and assume that the statement of Theorem 3.1 has already been
proven for all natural numbers from 1 to n − 1. Recall that the base case of this induction
is the content of Theorem 2.4. Given nonnegative C∞

c functions f1, . . . , f2n , we now aim to
show the n inequalities stated in (3.2). We will explain the details only for k = 1, as the other
inequalities can be proven in exactly the same manner.

Throughout the following computation, points in R
2n+1 will be denoted in coordinates

by (x, t) with x ∈ R
2n and t ∈ R. For 1 ≤ i < 2n, we also write x̂ j1,..., ji to denote the point

in R
2n−i that is obtained by deleting the j1, . . . , ji -th coordinates of x .

First, we apply the Fubini-Tonelli theorem and then the transformation t �→ t − 1
2 xn x2n =

τ in the inner integral:

I :=
∫

R2n

∫

R

2n∏

j=1

f j (π j (x, t)) dt dx =
∫

R2n

∫

R

2n∏

j=1

f j (π j (x, τ + 1
2 xn x2n)) dτdx

=
∫

R2n

∫

R

fn(x̂n, τ + xn x2n) f2n(x̂2n, τ )

2n∏

j=1
j �=n,2n

f j (π j (x, τ + 1
2 xn x2n)) dτ dx

=
∫

R2n
f2n(x̂2n, τ )

⎡

⎢⎢⎣

∫

R

fn(x̂n, τ + xn x2n)

2n∏

j=1
j �=n,2n

f j (π j (x, τ + 1
2 xn x2n)) dx2n

⎤

⎥⎥⎦

d(x̂2n, t).

Here, dx̂2n = dx1 . . . dx2n−1, and similar notation will be used also below. The change of
variables was motivated by the observation that

π2n
(
x, τ + 1

2 xn x2n
) = (x̂2n, τ ),

so that the f2n-term becomes independent of the 2n-th coordinate of x . Applying Hölder’s
inequality with exponents p = 2n + 1 and p′ = (2n + 1)/2n, we can split this factor off to
obtain I ≤ ‖ f2n‖2n+1 J with

J :=

⎡

⎢⎢⎢⎣

∫

R2n

⎛

⎜⎜⎝

∫

R

fn(x̂n, τ + xn x2n)

2n∏

j=1
j �=n,2n

f j (π j (x, τ + 1
2 xn x2n)) dx2n

⎞

⎟⎟⎠

2n+1
2n

d(x̂2n, t)

⎤

⎥⎥⎥⎦

2n
2n+1

.

The remaining task is to show that

J � ‖ f1‖ 2n+1
2

‖ fn+1‖ 2n+1
2

‖ fn‖2n+1

n−1∏

j=2

(‖ f j‖2n+1‖ fn+ j‖2n+1
)
. (3.14)

We will next extract the fn-term from the expression J . First, by Minkowski’s integral
inequality, Fubini’s theorem, and the transformation τ �→ t = τ + xn x2n , we obtain the
bound

J ≤
∫

R

⎡

⎢⎢⎣

∫

R2n−1

∫

R

fn(x̂n, t)
2n+1
2n

2n∏

j=1
j �=n,2n

f j (π j (x, t − 1
2 xn x2n))

2n+1
2n dt d x̂2n

⎤

⎥⎥⎦

2n
2n+1

dx2n .
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After this transformation, the fn-term is independent of the n-th coordinate of x . We can
separate it from the other factors by applying Hölder’s inequality with exponents p = 2n
and p′ = 2n/(2n − 1) to the expression inside the square brackets. This yields

J ≤
∫

R

Fn F dx2n (3.15)

where

Fn :=
[∫

R2n−1
fn(x̂n, t)2n+1 d(x̂n,2n, t)

] 1
2n+1

and

F :=

⎡

⎢⎢⎢⎣

∫

R2n−1

⎛

⎜⎜⎝

∫

R

2n∏

j=1
j �=n,2n

f j (π j (x, t − 1
2 xn x2n))

2n+1
2n dxn

⎞

⎟⎟⎠

2n
2n−1

d(x̂n,2n, t)

⎤

⎥⎥⎥⎦

2n−1
2n+1

.

Applying once more Hölder’s inequality, but now to the x2n-integral in (3.15), and with
exponents p = 2n + 1 and p′ = (2n + 1)/2n, yields

J ≤
(∫

R

F2n+1
n dx2n

) 1
2n+1

(∫

R

F
2n+1
2n

 dx2n

) 2n
2n+1 = Jn · J.

Here

Jn :=
(∫

R

F2n+1
n dx2n

) 1
2n+1 =

(∫

R2n
fn(x̂n, t)2n+1 d(x̂n, t)

) 1
2n+1 = ‖ fn‖2n+1

is one of the factors in the desired upper bound for J , recall (3.14). Hence, in order to prove
(3.14), it suffices to show that

J :=
(∫

R

F
2n+1
2n

 dx2n

) 2n
2n+1

� ‖ f1‖ 2n+1
2

‖ fn+1‖ 2n+1
2

n−1∏

j=2

(‖ f j‖2n+1 ‖ fn+ j‖2n+1
)
. (3.16)

To do so, we will finally use our induction hypothesis. We start by expanding

J =

⎛

⎜⎜⎜⎜⎜⎜⎝

∫

R

⎡

⎢⎢⎢⎢⎣

∫

R2n−1

⎛

⎜⎜⎜⎝

∫

R

2n∏

j=1
j �=n,2n

f j (π j (x, t − 1
2 xn x2n))

2n+1
2n dxn

⎞

⎟⎟⎟⎠

2n
2n−1

d(x̂n,2n , t)

⎤

⎥⎥⎥⎥⎦

2n−1
2n

dx2n

⎞

⎟⎟⎟⎟⎟⎟⎠

2n
2n+1

.

Applying Minkowski’s integral inequality inside the square brackets, then Fubini’s theorem
and the transformation t �→ τ = t − 1

2 xn x2n yields

J ≤

⎛

⎜⎜⎜⎝

∫

R2

⎡

⎢⎢⎣

∫

R2n−1

2n∏

j=1
j �=n,2n

f j (π j (x, τ ))
2n+1
2n−1 d(x̂n,2n, τ )

⎤

⎥⎥⎦

2n−1
2n

d(xn, x2n)

⎞

⎟⎟⎟⎠

2n
2n+1

. (3.17)

We recall that
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f j (π j (x, τ )) =
{

f j (x̂ j , τ + 1
2 x j xn+ j ), if j = 1, . . . , n − 1,

f j (x̂ j , τ − 1
2 x j−n x j ), if j = n + 1, . . . , 2n − 1.

(3.18)

We will continue the upper bound for J by applying the induction hypothesis to the expres-
sion inside the square brackets. To do so, we temporarily denote points inHn−1 in coordinates
by (u, t) = (u1, . . . , u2n−2, τ ). Here, u is a point inR2n−2, and similarly as before, ûk denotes
the point in R2n−3 that is obtained from u by deleting the k-th coordinate.

To write the inner integral on the right-hand side of (3.17) in a form where the induc-
tion hypothesis is applicable, we fix xn, x2n ∈ R and define the functions gxn ,x2n , j ,
j ∈ {1, . . . , 2n − 2} on R2n−2:

gxn ,x2n , j (û j , t)

:=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

f1(u2, . . . , un−1, xn, un, . . . , u2n−2, x2n, t)
2n+1
2n−1 , j = 1,

f j (u1, . . . , u j−1, u j+1, . . . , un−1, xn, un, . . . , u2n−2, x2n, t )
2n+1
2n−1 ,

2 ≤ j ≤ n − 2

fn−1(u1, . . . , un−2, xn, un, . . . , u2n−2, x2n, t)
2n+1
2n−1 , j = n − 1,

(3.19)

and

gxn ,x2n , j (û j , t)

:=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

fn+1(u1, . . . , un−1, xn, un+1, . . . , u2n−2, x2n, t)
2n+1
2n−1 , j = n,

f j+1(u1, . . . , un−1, xn, un, . . . , u j−1, u j+1, . . . u2n−2, x2n, t)
2n+1
2n−1 ,

n + 1 ≤ j ≤ 2n − 3,

f2n−1(u1, . . . , un−1, xn, un, . . . , u2n−3, x2n, t)
2n+1
2n−1 , j = 2n − 2.

(3.20)

With this notation in place, and recalling (3.18), we can restate (3.17) equivalently as follows

J ≤
⎛

⎜⎝
∫

R2

⎡

⎣
∫

R2n−1

2n−2∏

j=1

gxn ,x2n , j (π j (u, t)) d(u, t)

⎤

⎦

2n−1
2n

d(xn, x2n)

⎞

⎟⎠

2n
2n+1

,

where π j now denotes the Heisenberg projection from H
n−1 to the vertical plane {u j = 0}

(identified with R
2n−2). The induction hypothesis applied to the inner integral yields

J �

⎛

⎜⎜⎜⎝

∫

R2

⎡

⎢⎢⎣‖gxn ,x2n ,1‖ 2n−1
2

‖gxn ,x2n ,n‖ 2n−1
2

2n−2∏

j=1
j /∈1,n

‖gxn ,x2n , j‖2n−1

⎤

⎥⎥⎦

2n−1
2n

d(xn, x2n)

⎞

⎟⎟⎟⎠

2n
2n+1

.

(3.21)

Next we apply the multilinear Hölder inequality with exponents

p1 = pn = n and p2 = . . . = pn−1 = pn+1 = . . . = p2n−2 = 2n.

Note that
2n−2∑

j=1

1

p j
= 2

n
+ 2n − 4

2n
= 1,

123



Loomis–Whitney inequalities in Heisenberg. . .

as desired. Hence we deduce from (3.21) that

J �
(∫

R2
‖gxn ,x2n ,1‖

2n−1
2

2n−1
2

d(xn, x2n)

) 2
2n+1

(∫

R2
‖gxn ,x2n ,n‖

2n−1
2

2n−1
2

d(xn, x2n)

) 2
2n+1

·
2n−2∏

j=1
j /∈1,n

(∫

R2
‖gxn ,x2n , j‖2n−1

2n−1d(xn, x2n)

) 1
2n+1

.

Recalling the definition of gxn ,x2n , j for j = 1, . . . , 2n − 2 as stated in (3.19) and (3.20), we
obtain immediately

J � ‖ f1‖ 2n+1
2

‖ fn+1‖ 2n+1
2

n−1∏

j=2

(‖ f j‖2n+1 ‖ fn+ j‖2n+1
)
.

as desired; recall (3.16). This proves (3.14) and thus establishes the statement about k = 1
in the induction claim (3.2) for n. The other values of k are treated analogously, and hence
we have established (3.2). ��

4 Applications of the Loomis–Whitney inequalities in Heisenberg
groups

In this section, we derive the Gagliardo–Nirenberg–Sobolev inequality inHn , and its variant
Theorem1.13, from theLoomis–Whitney inequality, Theorem1.5.As a corollary of Theorem
1.13, we obtain the isoperimetric inequality in Hn (with a non-optimal constant). At the end
of the section, we also show how the Loomis–Whitney inequality can be used, directly, to
infer a variant of the isoperimetric inequality, without passing through the Sobolev inequality.

The arguments presented here are very standard ( [1,29,37]), and we claim no originality.
A version of this section, in the context of the first Heisenberg group, was already contained
in our joint work [23] with Tuomas Orponen. In his thesis [9], Bramati also gave an argument
to deduce the Gagliardo–Nirenberg–Sobolev and isoperimetric inequalities in H

1 from the
strong version of the Loomis–Whitney inequality stated in Theorem 2.4.

We start by recalling the statement of Theorem 1.13:

Theorem 4.1 Let f ∈ BV (Hn). Then,

‖ f ‖ 2n+2
2n+1

�
2n∏

j=1

‖X j f ‖ 1
2n . (4.2)

Recall that f ∈ BV (Hn) if f ∈ L1(Hn), and the distributional derivatives X j f ,
j = 1, . . . , 2n, are finite signed Radon measures. Smooth compactly supported func-
tions are dense in BV (Hn) in the sense that if f ∈ BV (Hn), then there exists a sequence
{ϕk}k∈N ⊂ C∞

c (R2n+1) such that ϕk → f almost everywhere (and in L1(Hn) if desired),
and ‖Zϕk‖ → ‖Z f ‖ for Z ∈ {X1, . . . , X2n}. For a reference, see [27, Theorem 2.2.2]. With
this approximation in hand, it suffices to prove Theorem 4.1 for, say, f ∈ C1

c (R2n+1). The
following lemma contains most of the proof:

Lemma 4.3 Let f ∈ C1
c (R2n+1), and write

Fk := {p ∈ R
2n+1 : 2k−1 ≤ | f (p)| ≤ 2k}, k ∈ Z. (4.4)
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Then,

|π j (Fk)| ≤ 2−k+2
∫

Fk−1

|X j f |, j = 1, . . . 2n. (4.5)

Proof By symmetry, it suffices to prove the inequality in (4.5) for j = 1, . . . , n. Let w =
(x̂ j , t) ∈ π j (Fk), denote by e j the j-th unit vector, and fix p = w · x j e j ∈ Fk such that
π j (p) = w. In particular, | f (p)| ≥ 2k−1. Recall the notation L j = span(e j ) = {x j e j :
x j ∈ R} and the definition of x̂ j given below (1.2). Since f is compactly supported, we may
pick another point p′ ∈ w · L j such that f (p′) = 0. Since | f | is continuous, we infer that
there is a non-degenerate line segment I on the line w · L j such that 2k−2 ≤ | f (q)| ≤ 2k−1

for all q ∈ I (hence I ⊂ Fk−1), and | f | takes the values 2k−2 and 2k−1, respectively, at the
endpoints qi = w · x j,i e j of I , i ∈ {1, 2}. Define γ (x j ) := w · x j e j = (x, t − 1

2 x j xn+ j ).
With this notation,

2k−2 ≤ | f (q1) − f (q2)| ≤
∫ x j,2

x j,1

|( f ◦ γ )′(x j )| dx j

≤
∫

{x j :(x,t− 1
2 x j xn+ j )∈Fk−1}

|X j f (x, t − 1
2 x j xn+ j )| dy.

Writing 	(x, t) := (x̂ j , t) · x j e j = (x, t − 1
2 x j xn+ j ), and integrating over

(x1, . . . , x j−1, x j+1, . . . , x2n, t) = (x̂ j , t) ∈ π j (Fk) ⊂ W j ,

it follows that

2k−2|π j (Fk)| ≤
∫

π j (Fk )

[∫

{x j :	(x,t)∈Fk−1}
|X j f (	(x, t))| dx j

]
dx̂ j dt . (4.6)

Finally, we note that J	 = det D	 ≡ 1. Therefore, using Fubini’s theorem, and performing
a change of variables to the right-hand side of (4.6), we see that

2k−2|π j (Fk)| ≤
∫

{(x,t)∈R2n+1:	(x,t)∈Fk−1}
|X j f (	(x, t))| d(x, t)

=
∫

Fk−1

|X j f (x, t)| d(x, t).

This completes the proof. ��
We are then prepared to prove Theorem 4.1:

Proof of Theorem 4.1 Fix f ∈ C1
c (R2n+1), and define the sets Fk , k ∈ Z, as in (4.4). Using

first Theorem 1.5, then Lemma 4.3, then the generalized Hölder’s inequality with p1 = . . . =
p2n = 2n, and finally the embedding �1 ↪→ �(2n+2)/(2n+1), we estimate as follows:

∫
| f | 2n+2

2n+1 ∼
∑

k∈Z
2

(2n+2)k
2n+1 |Fk |

�
∑

k∈Z
2

(2n+2)k
2n+1

2n∏

j=1

|π j (Fk)|
n+1

n(2n+1)

�
∑

k∈Z

2n∏

j=1

( ∫

Fk−1

|X j f |
) n+1

n(2n+1)
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�
2n∏

j=1

[∑

k∈Z

( ∫

Fk−1

|X j f |
) 2n+2

2n+1
] 1
2n

�
2n∏

j=1

[∑

k∈Z

∫

Fk−1

|X j f |
] 2n+2
2n(2n+1) ∼

2n∏

j=1

‖X j f ‖
2n+2

2n(2n+1)
1 .

Raising both sides to the power (2n + 1)/(2n + 2) completes the proof. ��

We conclude the section by discussing isoperimetric inequalities. A measurable set E ⊂
H

n has finite horizontal perimeter if χE ∈ BV (Hn). Here χE is the characteristic function
of E . Note that our definition of BV (Hn) implies, in particular, that |E | < ∞. We follow
common practice, and write PH(E) := ‖∇HχE‖. For more information on sets of finite
horizontal perimeter, see [26]. Now, applying Theorem 4.1 to f = χE , we recover the
following isoperimetric inequality (with a non-optimal constant):

Theorem 4.7 There exists a constant C > 0 such that

|E | 2n+1
2n+2 ≤ C PH(E) (4.8)

for any measurable set E ⊂ H
n of finite horizontal perimeter.

For n = 1, this is Pansu’s isoperimetric inequality [40], which has later been generalized to
H

n and beyond [14,30]. We remark that the a priori assumption |E | < ∞ is critical here;
for example the theorem evidently fails for E = H

n , for which |E | = ∞ but ‖∇HχE‖ = 0.
We conclude the paper by deducing a weaker version of (4.8) (even) more directly from the
Loomis–Whitney inequality. Namely, we claim that

|E | 2n+1
2n+2 ≤ CH2n+1

d (∂ E) (4.9)

for any bounded measurable set E ⊂ H
n , where H2n+1

d denotes the 2n + 1-dimensional
Hausdorff measure onHn with respect to the Korányi distance (or the standard left-invariant
sub-Riemannian metric). This inequality is, in general, weaker than (4.8): at least for open
sets E ⊂ H

n , the property H2n+1
d (∂ E) < ∞ implies that PH(E) < ∞, and then PH(E) �

H2n+1
d (∂ E), see [28, Theorem 4.18]. However, if E is a bounded open set with C1 boundary,

then H2n+1
d (∂ E) ∼ PH(E), see [26, Corollary 7.7].

To prove (4.9), we need the following auxiliary result, see [15, Lemma 3.4] and [24,
Remark 4.7]:

Lemma 4.10 Let n ∈ N. There exists a constant Cn > 0 such that the following holds. Let
W ⊂ H

n be a vertical subgroup of codimension 1. Then,

|πW(A)| ≤ CH2n+1
d (A), A ⊂ H

n . (4.11)

Proof of (4.9) Let E ⊂ H be bounded and measurable. We first claim that

π j (E) ⊆ π j (∂ E), j = 1, . . . , 2n. (4.12)

Let w ∈ π j (E) and consider π−1
j {w} = w · L j where Ly = span(e j ). By definition there

exists x j,1 ∈ R such that w · x j,1e j ∈ E and since E is bounded there also exists x j,2 ∈ R

such that w · x j,2 ∈ H
n \ E . Since w · L j is connected, there finally exists x j,3 ∈ R such
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that w · x j,3e j ∈ ∂ E which immediately implies (4.12). Using Theorem 1.5 and (4.12), we
get

|E | �
2n∏

j=1

|π j (∂ E)| n+1
n(2n+1) .

Now the isoperimetric inequality (4.9) follows using Lemma 4.11. ��

5 Generalized Loomis–Whitney inequalities by induction

The approach described in Sect. 3 can be used to prove something a bit more general, namely
we can replace the vertical Heisenberg projections π1, . . . , π2n by projection-type mappings
of the form

ρ j : R2n+1 → R
2n, ρ j (x, t) = (x̂ j , t + h j (x)), j = 1, . . . , 2n, (5.1)

for suitable C1 maps h j : R2n → R. The precise condition is stated in Definition 5.2 and
it is tailored so that a Loomis–Whitney-type inequality for ρ1, . . . , ρ2n can be established
based on the L3/2-L3 boundedness of a linear operator in the plane, analogously as we did
for π1, . . . , π2n and the Radon transform in Sects. 2-3. By a simple change-of-variables, one
can generalize the setting even slightly further, see Remark 5.18.

For arbitrary C1 functions h j , the mappings ρ j defined in (5.1) satisfy a condition analo-
gous to (1.4) for π j , which ensures by the coarea formula that the preimage of a Lebesgue
null set in R2n under ρ j is a Lebesgue null set in R

2n+1. More precisely, we have

det(Dρ j Dρt
j ) = det

⎛

⎜⎜⎜⎝

1
. . . ∇x̂ j h

1
∇x̂ j h (1 + |∇h|2)

⎞

⎟⎟⎟⎠ = 1 + (∂x j h)2.

By the reasoning below Theorem 1.8 it follows that f ◦ρ j is Lebesgue measurable onR2n+1

if f is Lebesgue measurable on R2n .

Definition 5.2 (L3/2-L3 property) We say that a family {h1, . . . , h2n} of C1 functions h j on
R
2n has the L3/2-L3 property if there exists a constant C < ∞ such that the following holds

for all k = 1, . . . , n:

• If n > 1, then for every x̂k,n+k ∈ R
2n−2, the operator Tk,x̂k,n+k , defined by

Tk,x̂k,n+k f (xk, t) :=
∫

R

f (xn+k, t + hk(x) − hn+k(x)) dxn+k, f ∈ C∞
c (R2)

satisfies

‖Tk,x̂k,n+k f ‖3 ≤ C‖ f ‖ 3
2
, f ∈ C∞

c (R2).

Here, the coordinates of x̂k,n+k ∈ R
2n−2 are xi , i ∈ {1, . . . , 2n} \ {k, n + k}, and

x = (x1, . . . , xk, . . . , xn+k, . . . , x2n).
• If n = 1, then the operator T1 = T , defined by

T f (x1, t) :=
∫

R

f (x2, t + h1(x1, x2) − h2(x1, x2))dx2, f ∈ C∞
c (R2)
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satisfies

‖T f ‖3 ≤ C‖ f ‖ 3
2
, f ∈ C∞

c (R2).

We next give examples of functions {h1, . . . , h2n} with the properties stated in Definition
5.2. Essentially, for k = 1, . . . , n, we take hk and hn+k to be polynomials of second degree as
functions of xk and xn+k so that Theorem 5.5 is applicable. This class of examples includes
the functions

h j (x) =
{ 1

2 x j xn+ j , j = 1, . . . , n,

− 1
2 x j−n x j , j = n + 1, . . . , 2n.

(5.3)

associated to the standard Heisenberg vertical coordinate projections ρ j = π j , j =
1, . . . , 2n.

Example 5.4 Fix n > 1, b j ∈ R and c j,a ∈ C1(R2n−2) for j = 1, . . . , 2n and multi-indices
a ∈ A := {(0, 0), (1, 0), (0, 1), (2, 0), (0, 2)}. For k = 1, . . . , n, we define

hk(x) := bk xk xn+k +
∑

a=(a1,a2)∈A
ck,a(x̂k,n+k)xa1

k xa2
n+k

and

hn+k(x) := bn+k xk xn+k +
∑

a=(a1,a2)∈A
cn+k,a(x̂k,n+k)xa1

k xa2
n+k .

Then the operators appearing in Definition 5.2 are given by

Tk,x̂k,n+k f (xk, t) :=
∫

R

f
(
xn+k, t + Hk,n+k(x)

)
dxn+k, f ∈ C∞

c (R2),

where

Hk,n+k(x) := (bk − bn+k)xk xn+k +
∑

a=(a1,a2)∈A

[
ck,a(x̂k,n+k) − cn+k,a(x̂k,n+k)

]
xa1

k xa2
n+k .

If bk − bn+k �= 0 for k = 1, . . . , n, then {h1, . . . , h2n} has the L3/2-L3 property by Theorem
5.5 with constant C � (mink=1,...,n |bk − bn+k |)−1/3. This is the case in particular for
{h1, . . . , h2n} as in (5.3). Hence, Theorems 3.1 and 1.8 are special cases of Theorems 5.8
and 5.16 below.

We claim no originality for Theorem 5.5 that was applied in the previous example. It is an
instance of much more general results available in the literature. Wemerely explain here how
the statement follows from the L3/2-L3 improving property of (i) the Radon transform and
(ii) convolution with a measure on a parabola. Even though (i) involves integration over lines
with different slopes, and (ii) concerns convolution with a fixed parabola, both operators fit
in the same framework [43, p. 606].

Theorem 5.5 Let α, β, γ, δ, ε, κ ∈ R. If β �= 0, then the operator S, defined by

S f (x, t) =
∫

R

f (y, t + αy2 + βxy + γ x2 + δx + εy + κ) dy, f ∈ C∞
c (R2),

satisfies

‖S f ‖3 � |β|−1/3‖ f ‖ 3
2
, f ∈ C∞

c (R2). (5.6)
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Proof We divide the proof in two cases: α = 0 and α �= 0. In the first case, we apply the
L3/2-L3 improving property of the Radon transform [38] (in the form of Theorem 2.9). In
the second case, we reduce matters to the L3/2-L3 improving property of the convolution
operator with a measure on a parabola [21,36,39].

First, if α = 0, then, for f ∈ C∞
c (R2), we relate S f to the operator T from Theorem 2.9

as follows:

S f (x, t) =
∫

R

f (y, t + [βx + ε]y + [γ x2 + δx + κ])
dy = T f (βx + ε, t + γ x2 + δx + κ).

Thus

‖S f ‖3 =
(∫

R2
|T f (βx + ε, t + γ x2 + δx + κ)|3 d(x, t)

) 1
3

= |β|−1/3
(∫

R2
|T f (ξ, τ )|3 d(ξ, τ )

) 1
3

= |β|−1/3‖T f ‖3,
and hence Theorem 2.9 implies (5.6) in that case.

If α �= 0, we instead reduce matters to [36], or the more general [21, Theorem 1]. A
special case of that theorem says that

‖μα ∗ f ‖3 � ‖ f ‖ 3
2
, f ∈ L

3
2 (R2), (5.7)

with implicit constant independent of α, where

μα ∗ f (x, t) :=
∫

R

f ((x, t) − (y, αy2))|α|1/3 dy,

see also [39, Theorem 1]. To employ this result, we aim to relate S f for f ∈ C∞
c (R2) to

μα ∗ f . We apply elementary transformations to one of the expressions that appear in the
definition of S f , namely

t + αy2 + βxy + γ x2 + δx + εy + κ

= α
[

y + 1
2

(
β
α

x + ε
α

)]2 +
[
−α

4

(
β
α

x + ε
α

)2 + γ x2 + δx + κ + t

]
.

Hence, by the change-of-variables y �→ η = −[y + 1
2

(
β
α

x + ε
α

)
], we obtain

S f (x, t)

=
∫

R

f

(
y, α

[
y + 1

2

(
β
α

x + ε
α

)]2 +
[
−α

4

(
β
α

x + ε
α

)2 + γ x2 + δx + κ + t

])
dy

=
∫

R

f

(
− 1

2

(
β
α

x + ε
α

)
− η,

[
−α

4

(
β
α

x + ε
α

)2 + γ x2 + δx + κ + t

]
− (−α)η2

)
dη

= |α|−1/3μ−α ∗ f (	(x, t)) ,

with

	(x, t) :=
(

− 1
2

(
β
α

x + ε
α

)
,−α

4

(
β
α

x + ε
α

)2 + γ x2 + δx + κ + t

)
.
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Since

| det D	(x, t)| = |β| |2α|−1 ,

we find that

‖S f ‖3 = |α|−1/3‖ (μ−α ∗ f ) ◦ 	‖3 = |α|−1/3 |β|−1/3 |2α|1/3 ‖μ−α ∗ f ‖3.
Thus (5.6) in the case α �= 0 follows from (5.7). ��

We next prove a generalization of Theorem 3.1 that applies in particular to mappings
ρ1, . . . , ρ2n as in (5.1) for h1, . . . , h2n as in Example 5.4.

Theorem 5.8 Let n ∈ N. Assume that {h1, . . . , h2n} is a family of C1 functions on R
2n with

the L3/2-L3 property and define

ρ j : R2n+1 → R
2n, ρ j (x, t) = (

x̂ j , t + h j (x)
)
, j = 1, . . . , 2n.

Then, for all nonnegative Lebesgue measurable functions f1, . . . , f2n on R
2n, we have

∫

R2n+1

2n∏

j=1

f j (ρ j (p)) dp � ‖ fk‖ 2n+1
2

‖ fn+k‖ 2n+1
2

n∏

j=1
j �=k

(‖ f j‖2n+1 ‖ fn+ j‖2n+1
)
,

k ∈ {1, . . . , n}, (5.9)

with an implicit constant that may depend on n and the boundedness constant C associated
to the family {h1, . . . , h2n}. If n = 1, then (5.9) reads

∫

R3
f1(ρ1(p)) f2(ρ2(p)) dp � ‖ f1‖ 3

2
‖ f2‖ 3

2
.

The statement can be deduced by following the proof of Theorem 3.1 almost verbatim.
We decided to give the argument for Theorem 3.1 first in Sect. 3 since it is a bit easier to
read and helps motivate the more general discussion in the present section. Below we merely
explain how to adapt the proof of Theorem 3.1 to establish Theorem 5.8.

Proof It suffices to verify the claim for nonnegative, smooth, and compactly supported func-
tions f1, . . . , f2n . The case n = 1 follows directly from the L3/2-L3 property of {h1, h2} in
Definition 5.2, and a simple change-of-variables argument, observing that

∫

R3
f1(ρ1(p)) f2(ρ2(p))dp

=
∫

R3
f1(x2, t + h1(x1, x2)) f2(x1, t + h2(x1, x2)) d(x1, x2, t)

=
∫

R2
f2(x1, τ )

(∫

R

f1(x2, τ + h1(x1, x2) − h2(x1, x2)) dx2

)
d(x1, τ )

=
∫

R2
f2(x1, τ )T1 f1(x1, τ ) d(x1, τ )

≤ ‖T1 f1‖3‖ f2‖ 3
2

≤ C‖ f1‖ 3
2
‖ f2‖ 3

2
,

for nonnegative f1, f2 ∈ C∞
c (R2).

Suppose next that the statement of Theorem 5.8 has already been established for all natural
numbers up to n − 1. We will argue that it holds also for the integer n. To this end, we fix an
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arbitrary family {h1, . . . , h2n} of C1 functions R2n → R with the L3/2-L3 property. Given
nonnegative C∞

c functions f1, . . . , f2n , we aim to show the n inequalities stated in (5.9), and
by symmetry it suffices to discuss this for k = 1. By the same argument as in the proof of
Theorem 3.1, but now using the transformation t �→ t + h2n(x) = τ , we find that

I :=
∫

R2n

∫

R

2n∏

j=1

f j (ρ j (x, t)) dt dx (5.10)

=
∫

R2n
f2n(x̂2n, τ )

×

⎡

⎢⎢⎣

∫

R

fn(x̂n, τ + hn(x) − h2n(x))

2n∏

j=1
j �=n,2n

f j (ρ j (x, τ − h2n(x))) dx2n

⎤

⎥⎥⎦ d(x̂2n, t).

Applying Hölder’s inequality, we can split off the factor with f2n (which no longer depends
on x2n) and we obtain I ≤ ‖ f2n‖2n+1 J with

J :=

⎡

⎢⎢⎢⎣

∫

R2n

⎛

⎜⎜⎝

∫

R

fn(x̂n , τ + hn(x) − h2n(x))

2n∏

j=1
j �=n,2n

f j (ρ j (x, τ − h2n(x))) dx2n

⎞

⎟⎟⎠

2n+1
2n

d(x̂2n , t)

⎤

⎥⎥⎥⎦

2n
2n+1

.

The remaining task is to show that

J �n,C ‖ f1‖ 2n+1
2

‖ fn+1‖ 2n+1
2

‖ fn‖2n+1

n−1∏

j=2

(‖ f j‖2n+1‖ fn+ j‖2n+1
)
, (5.11)

and this is done as in the proof of Theorem 3.1, but using the transformation τ �→ t =
τ + hn(x) − h2n(x). Then, as in the proof of Theorem 3.1, we find that in order to prove
(5.11), it suffices to show that

J �n,C ‖ f1‖ 2n+1
2

‖ fn+1‖ 2n+1
2

n−1∏

j=2

(‖ f j‖2n+1 ‖ fn+ j‖2n+1
)
, (5.12)

where

J :=

⎛

⎜⎜⎜⎜⎝

∫

R

⎡

⎢⎢⎢⎣

∫

R2n−1

⎛

⎜⎜⎝

∫

R

2n∏

j=1
j �=n,2n

f j (ρ j (x, t − hn(x)))
2n+1
2n dxn

⎞

⎟⎟⎠

2n
2n−1

d(x̂n,2n , t)

⎤

⎥⎥⎥⎦

2n−1
2n

dx2n

⎞

⎟⎟⎟⎟⎠

2n
2n+1

.

Applying Minkowski’s integral inequality inside the square brackets, then Fubini’s theorem
and the transformation t �→ τ = t − hn(x) yields

J ≤

⎛

⎜⎜⎜⎝

∫

R2

⎡

⎢⎢⎣

∫

R2n−1

2n∏

j=1
j �=n,2n

f j (ρ j (x, τ ))
2n+1
2n−1 d(x̂n,2n, τ )

⎤

⎥⎥⎦

2n−1
2n

d(xn, x2n)

⎞

⎟⎟⎟⎠

2n
2n+1

. (5.13)

We recall that

f j (ρ j (x, τ )) = f j (x̂ j , τ + h j (x)). (5.14)
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Wewill continue the upper bound for J by applying the induction hypothesis to the expres-
sion inside the square brackets. To do so, we temporarily denote points inHn−1 in coordinates
by (u, t) = (u1, . . . , u2n−2, τ ). Here, u is a point inR2n−2, and similarly as before, ûk denotes
the point in R2n−3 that is obtained from u by deleting the k-th coordinate. With this notation
in place, and recalling (5.14), we can restate (5.13) equivalently as follows

J ≤
⎛

⎜⎝
∫

R2

⎡

⎣
∫

R2n−1

2n−2∏

j=1

gxn ,x2n , j (ρ̃ j,xn ,x2n (u, t)) d(u, t)

⎤

⎦

2n−1
2n

d(xn, x2n)

⎞

⎟⎠

2n
2n+1

,

where gxn ,x2n , j (û j , t) are defined exactly as in (3.19)–(3.20) and

ρ̃ j,xn ,x2n (u, t) =
{ (

û j , t + h j (u1, . . . , un−1, xn, un, . . . , u2n−2, x2n)
)
, 1 ≤ j ≤ n − 1,(

û j , t + h j+1(u1, . . . , un−1, xn, un, . . . u2n−2, x2n)
)
, n ≤ j ≤ 2n − 2.

Thus, the functions ρ̃ j,xn ,x2n are as in the statement of Theorem 5.8 for n − 1, with

h̃ j,xn ,x2n (u) :=
{

h j (u1, . . . , un−1, xn, un, . . . , u2n−2, x2n), 1 ≤ j ≤ n − 1,
h j+1(u1, . . . , un−1, xn, un, . . . , u2n−2, x2n), n ≤ j ≤ 2n − 2.

In particular, if {h1, . . . , h2n} has the L3/2-L3 property with constant C as assumed, then so
does {̃h1,xn ,x2n , . . . , h̃2n−2,xn ,x2n } for every (xn, x2n) ∈ R

2. The induction hypothesis applied
to the inner integral therefore yields

J �C

⎛

⎜⎜⎜⎝

∫

R2

⎡

⎢⎢⎣‖gxn ,x2n ,1‖ 2n−1
2

‖gxn ,x2n ,n‖ 2n−1
2

2n−2∏

j=1
j /∈1,n

‖gxn ,x2n , j‖2n−1

⎤

⎥⎥⎦

2n−1
2n

d(xn, x2n)

⎞

⎟⎟⎟⎠

2n
2n+1

.

(5.15)

At the point, the proof can be concluded as in the case of Theorem 3.1, recalling that the
functions gxn ,x2n , j have been defined exactly as in (3.19)–(3.20). ��

As in the case of the Heisenberg vertical coordinate projections, we can use multilin-
ear interpolation to deduce a Loomis–Whitney type inequality for generalized projections
{ρ1, . . . , ρ2n}.
Theorem 5.16 Fix n ∈ N, n > 1. Given a family {h1, . . . , h2n} of C1 functions on R

2n that
has the L3/2-L3 property with constant C, we define

ρ j : R2n+1 → R
2n, ρ j (x, t) = (

x̂ j , t + h j (x)
)
, j = 1, . . . , 2n.

Then
∫

R2n+1

2n∏

j=1

f j (ρ j (p)) dp �
2n∏

j=1

‖ f j‖ n(2n+1)
n+1

, (5.17)

for all nonnegative Lebesgue measurable functions f1, . . . , f2n on R
2n, where the implicit

constant may depend on n and C.

Remark 5.18 Astraightforward generalization ofTheorem5.16 can be obtained for the family
{	 j ◦ ρ j : j = 1, . . . , 2n}, where 	 j : R2n → R

2n are C1 diffeomorphisms with � :=
min j=1,...,2n | det D	 j | > 0 and ρ j are as in Theorem 5.16. Indeed, simply apply Theorem
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5.16 to the functions g j := f j ◦ 	 j , j = 1, . . . , 2n, and then perform changes-of-variables
in the integrals in ‖g j‖ n(2n+1)

n+1
to deduce that

∫

R2n+1

2n∏

j=1

f j (	 j ◦ ρ j (p)) dp �n,C,�

2n∏

j=1

‖ f j‖ n(2n+1)
n+1

for all nonnegative Lebesgue measurable functions f1, . . . , f2n on R
2n .

Proof of Theorem 5.16 using Theorem 5.8
By the comment made at the beginning of the proof of Theorem 5.8, we already know the
case n = 1 of Theorem 5.16. Suppose that the statement of Theorem 5.8 holds for a given
integer n > 1. Fix mappings h j and ρ j , j = 1, . . . , 2n, as in the statement of Theorems 5.8
and 5.16. Our aim is to verify (5.17) for all nonnegative measurable functions f1, . . . , f2n

on R
2n . The desired inequality can be spelled out as follows:

∫

R2n+1

2n∏

j=1

f j (x̂ j , t + h j (x)) d(x, t) �
2n∏

j=1

‖ f j‖ n(2n+1)
n+1

. (5.19)

Similarly as in the proof of Theorem 1.8, we introduce a suitable multilinear operator T .
Namely, for all finitely simple functions g1, . . . , g2n−1 on R

2n , we define

T (g1, . . . , g2n−1)(x̂2n, τ )

:=
∫

R

gn(x̂n, τ + hn(x) − h2n(x))

2n−1∏

j=1
j �=n

g j (ρ j (x, τ − h2n(x)))dx2n .

Hence, by the same computation that led to (5.10), we find for all finitely simple functions
f1, . . . , f2n−1 and nonnegative measurable function f2n that

∫

R2n+1

2n∏

j=1

f j (ρ j (p)) dp =
∫

R2n
T ( f1, . . . , f2n−1)(w) f2n(w) dw.

From this point on, the argument is entirely abstract and does no longer use the specific form
of the operator T . Analogously as in the proof of Theorem 1.8, the inequalities we obtained
in Theorem 5.8 yield bounds of the form (3.13) for the operator T . These bounds can be
combined using multilinear interpolation, as in Theorem 3.8, to yield a bound of the form
(3.12) for the operator T , which eventually gives (5.19). ��
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