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Density-Functional Theory on Graphs
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The principles of density-functional theory are studied for finite lattice systems represented by graphs. Surprisingly, the
fundamental Hohenberg–Kohn theorem is found void in general, while many insights into the topological structure of the
density-potential mapping can be won. We give precise conditions for a ground state to be uniquely v-representable and
are able to prove that this property holds for almost all densities. A set of examples illustrates the theory and demonstrates
the non-convexity of the pure-state constrained-search functional.
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I. INTRODUCTION

In the theoretical development of density-functional theory
(DFT) following the pioneering paper of Hohenberg and Kohn
[1], the works of Levy [2] and Lieb [3] marked cornerstones on
which practically all the following investigations built. DFT
has since been extended to many different settings, including
lattice systems [4–9] that in practice mostly appear in the form
of the Hubbard model [10–13]. The solidity of the theoreti-
cal investigations primarily established for continuum systems
has led many to believe that the same statements automatically
hold for fermionic lattice systems. First and foremost, this
concerns the Hohenberg–Kohn (HK) theorem [1] that states
the existence of a unique mapping from ground-state densi-
ties back to the external potentials included in the Hamiltonian
and that has only recently found a rigorous underpinning for
continuum systems [14]. This work is aimed at scrutinizing
the foundations of DFT by studying finite, discrete systems, in
their most general form represented by graphs. Such systems
also find their special relevance in that they are currently the
only ones that allow for an assuredly convergent formulation of
the Kohn–Sham method [15; 16]. In the course of this work,
we reveal some surprising and crucial differences to the con-
tinuum theory: While we find clear counterexamples to the HK
theorem, a tremendous amount of insight into the structure of
the (multi-valued) density-potential mapping can be gained. It
turns out that the finite-dimensional setting is all but trivial and
displays a pronounced mathematical richness.

Several misconceptions about the state of the HK theorem
for lattice systems can be found in the research literature, usu-
ally due to unjustified claims about non-vanishing components
of the ground-state wave function, simply assumed to hold “for
all practical purposes”, e.g., by Coe et al. [17]. That such van-
ishing components in the wave function are indeed possible
and do not have to be rare is demonstrated here by explicit ex-
amples. Other works simply assume or state the validity of
the lattice HK theorem [8; 18], where the system under study
is a one-dimensional Hubbard chain. Incidentally, the linear
chain is the only many-particle system for which we can actu-
ally prove a full HK theorem.

A central concept introduced and used in this work is that of
unique v-representability (uv) of ground-state densities, a no-
tion that merges v-representability with an assumed validity of
the HK theorem for the given density. While v-representability
alone was already thoroughly studied on lattices by Chayes
et al. [6] and received a positive answer for ensemble densities
that are neither 0 nor 1 on any vertex, the question if such a den-
sity also comes from a unique potential (modulo constants) was
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left unanswered: “The HK theorem for fermions at zero tem-
perature remains an open problem.” [6] We will here present
an adaption of their ensemble-v-representability proof for the
graph setting and a partial answer to the uniqueness problem.
Themain tool of our analysis is amatrix theorem byOdlyzko

[19] that allows us to define classes of eigenstates that are
uniquely v-representable. Now the question of uniqueness
is transformed into determining which systems have ground
states that fall into one of those classes. While for one-particle
graph systems and many particles on a linear chain uniqueness
can be guaranteed on the basis of the Perron–Frobenius the-
orem from linear algebra, just an “almost all” statement was
found to hold for more general systems. This means that the
set of problematic, non-uv densities is small when compared to
the set of all densities and that a random sampling should usu-
ally yield a uv density. Complementary to this result, Rellich’s
theorem about the analyticity of eigenvalues and eigenstates
under perturbations is used to give an argument that almost all
potentials lead to uv ground-state densities. Yet, no general
statement about the validity of the HK theorem could be found
for finite lattice systems.
If one moves beyond the requirement of “uniqueness”, a

great topological variety can still be analyzed. We will give a
detailed characterization of the density-potential mapping, the
(multi-valued)map from the set of possible ground-state densi-
ties to the space of external potentials. Now, v-representability
of all densities in the domain means that the mapping is “well-
defined”, i.e., a potential can be assigned to every density. If
we even have unique v-representability (uv) then there is only
a unique way how to define the mapping (modulo constants).
This then gives the density region where the Hohenberg–Kohn
theorem is indeed valid. Due to possible degeneracy of the
ground state the mapping might still be many-to-one.
The outline of the paper is as follows: Section II introduces

the Hilbert space structure for fermions on graphs, a setting
that is equivalent to finite lattice systems. Then in Section III
simple counterexamples show that the HK theoremwill in gen-
eral be violated for such systems, but we also give a detailed
analysis of the situation based on Odlyzko’s theorem and try
to save as much as possible from the HK statement that still
holds for almost all densities. This analysis is then continued
in Section IV by invoking Rellich’s theorem that allows us to
shed some light on the topology of the density-potential map-
ping and includes the rectification of a result by Kohn [20] on
the openness of the set of uv densities that come from non-
degenerate states. Another powerful theorem, this time the
Perron–Frobenius theorem from linear algebra employed in
Section V, shows that non-interacting systems will always have
purely positive ground-state densities and that the full HK the-
orem is valid for a linear chain. A large part on constrained-
search functionals, Section VI, reflects on this other important
ingredient of DFT that establishes an immensely valuable con-
nection to convex analysis. Three examples in this section help
to illustrate the results from the previous sections and also scru-
tinize and amend a proof by Lieb [3] about the non-convexity
of the pure-state constrained-search functional: For the trian-
gle graph we map out the complete density-potential mapping
and derive the explicit form of the (convex) constrained-search
functional, the complete graph demonstrates that Lieb’s argu-
ment cannot hold in general, while the beautiful example of
the cuboctahedron graph yields the desired counterexample to

pure-state v-representability and indeed shows that the pure-
state constrained-search functional is non-convex in general.
Despite the large amount of results it seems these investiga-
tions into DFT on graphs merely opened up a Pandora’s box
and we collect a number of open problems and further ideas in
the concluding Section VII.

II. FERMIONIC HILBERT SPACE STRUCTURES ON
GRAPHS

A. General definitions

We start by defining the general setting of our approach.
This consists of a quantum system defined on a finite-
dimensional Hilbert space H = CL with the standard Hermi-
tian inner product (linear in the second component like usually
in physics literature). For now, we make no assumptions on the
nature of the quantum system, neither on the number or statis-
tics of the particles involved, nor on the type of interactions
or external potentials. We only assume for now that there are
no time-dependent external fields present such that all proper-
ties of the system are fully described by the time-independent
Schrödinger equation

HΨ = EΨ, (1)

where H : H → H is a linear, self-adjoint operator represent-
ing the Hamiltonian and Ψ ∈ H is consequently the eigenvec-
tor to eigenvalue E. When we make a choice for an orthonor-
mal basis the Hamiltonian can be represented by a Hermitian
matrix with coefficients Hij = H∗ji ∈ C. For example, for a
fermionic Hubbard system we can choose the basis functions
to be the many-particle Slater determinants built out of any
preferred set of orthonormal one-particle states.

At this point, we introduce a central concept of our approach,
the finite graph G(H) associated with a Hamiltonian H . By
graph we here always mean the following:

Definition 1. A graph G consists of a vertex set X =
{1, . . . ,M} and an irreflexive, symmetric adjacency relation
∼ defined on X ×X .

This means that for any pair of vertices (i, j) ∈ X × X
we can say whether they are adjacent, written i ∼ j, or non-
adjacent, written i 6∼ j. Irreflexivity means that no vertex is
adjacent to itself, i.e., i 6∼ i, and symmetry means that if i ∼ j
then also j ∼ i. A graph can naturally be displayed graphi-
cally by drawing the elements of the vertex set on a plane and
connecting two vertices i and j with a line whenever i ∼ j.

Definition 2. A graph is called connected when for every two
vertices i and j there exists a sequence of adjacent vertices
starting with i and terminating with j. Otherwise the graph
is called disconnected.

In other words, a graph is connected when there exists a path
between any pair of vertices. In the next step we will associate
a graph to a given Hermitian matrix, which in our case will
always be the Hamiltonian matrix of our quantum system.

Definition 3. To any M ×M Hermitian matrix H , i.e., the
coefficients fulfil Hij = H∗ji ∈ C, i, j ∈ X = {1, . . . ,M},
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we associate a graphG(H) by takingX to be the vertex set and
by defining the adjacency relation i ∼ j wheneverHij 6= 0 for
i 6= j, and i 6∼ j otherwise.

If G(H) is disconnected then the Hamilton matrix blocks
into submatrices corresponding to connected subgraphs. Some
results in this work require the connectedness of the graph and
we will explicitly indicate when this is the case. Note that by
Definition 3 a Hubbard model with more than nearest neighbor
hopping is represented by a graph having additional edges. In
other words, hopping is only admitted along edges of the graph.
We use the following convention for enumerating indices

throughout this work: i, j ∈ X = {1, . . . ,M} for counting
one-particle states that correspond to vertices in the original
graphG(h), k, l ∈ {1, . . . , N} for counting particles, and I, J
are multi-indices like introduced in the next section. A sum
over any of those indices will always mean summation over
the full index set if not otherwise stated.

B. Fermionic Hilbert space

So far, our discussion was very general, as we made no as-
sumptions on the nature of the system. From now on our goal
is to describe a system ofN fermions. We start by considering
the Hamiltonian h of a single particle defined on a one-particle
Hilbert spaceH1 = CM of dimensionM . To this system cor-
responds a Hamiltonian graph G(h) given by Definition 3 in
which the vertices i label the one-particle states. In particular,
we can consider theM orthonormal vectors

ei = (0, . . . , 1, . . . , 0) ∈ CM = H1, (2)

where the vector contains a 1 on position i and zeroes else-
where. These vectors physically describe quantum states in
which the particle is located at vertex i with certainty. The
physical nature of the states ei themselves depends on the ini-
tial basis choice that defines our Hamiltonian matrix and will
be generally left completely open. However, for the purpose of
illustration, we can always take the vertices as representing po-
sitions in space, in which case the vector ei is a quantum state
that has the particle at position i with certainty. The graph
G(h) of the Hamiltonian then has a spatial representation in
which a particle can hop from position i to j if i ∼ j on the
graph.
In the next step, we put N spinless fermions (N ≤ M ) on

the graph G(h) and allow for interactions between them. The
Hilbert space of the many-particle system is then given by the
anti-symmetricN -fold tensor productHN = ΛNH1, which is
the linear span of the N -fold wedge products

eI = ei1 ∧ . . . ∧ eiN (3)

that furnish an orthonormal basis of HN . Here we use the or-
deredmulti-index I = (i1, . . . , iN ) ∈ XN with i1 < . . . < iN
to label the many-particle basis states of HN . There are L =(
M
N

)
basis states of the form (3) and the fermionic Hilbert space

HN is therefore L-dimensional. Since in the caseN = M the
resulting fermionic Hilbert space is one-dimensional and thus
trivial, we will generally assume N < M in what follows.
Physically, the eI are quantum states in which there is a parti-
cle with certainty at vertices i ∈ I and zero particles at all the

other vertices. For vectors vk ∈ H1 the wedge product itself is
defined as the anti-symmetrized tensor product

v1 ∧ . . . ∧ vN =
1√
N !

∑
σ

(−1)|σ|vσ(1) ⊗ . . .⊗ vσ(N), (4)

where the sum is over all permutations of N symbols and |σ|
is the sign of the permutation σ. The inner product in HN is
given by

〈v1 ∧ . . . ∧ vN , w1 ∧ . . . ∧ wN 〉 = det(〈vk, wl〉)kl, (5)

from which it follows that the basis vectors eI of HN are or-
thogonal and normalized to 1 again. Since in quantum me-
chanics a probability interpretation is assigned only to such
normalized states, we define the unit sphere inHN

IN = {Ψ ∈ HN | ‖Ψ‖ = 1} (6)

as the basic set of possible configurations. The corresponding
set of density matrices (the set of all positive, semi-definite,
Hermitian operators onHN of trace one that represent ensem-
ble states) is denoted as DN .

To a multi-particle HamiltonianH corresponds a new graph
G(H) which we will refer to as the fermionic graph. The la-
bels of the vertices in this graph will consequently be indexed
by the same multi-index I as the many-particle basis {eI}I .
The topology of G(H) is by Definition 3 determined by the
Hamiltonian H for the N fermions for which in general we
will take

H = h1 + . . .+ hN +W, (7)

where

hk = 1⊗ . . .⊗ 1⊗ h⊗ 1⊗ . . .⊗ 1 (8)

with h appearing on position k in the N -fold tensor product.
The termW is a general interaction that we do not further spec-
ify at the moment. Yet, its most important features must be
that it is self-adjoint and leaves the Hamiltonian invariant un-
der any permutation of theN particles to ensure the fermionic
nature of the particles. Often, it will be convenient to use sec-
ond quantization to represent the Hamiltonian and other oper-
ators, which among other things will guarantee that the sys-
tem has the right permutational symmetry. For this reason, for
v, wk ∈ H1 we define

â†v(w1 ∧ . . . ∧ wN ) = v ∧ w1 ∧ . . . ∧ wN and (9)

âv(w1 ∧ . . . ∧ wN ) =

N∑
k=1

(−1)k+1〈v, wk〉 (10)

w1 ∧ . . . ∧ wk−1 ∧ wk+1 ∧ . . . ∧ wN .

These creation and annihilation operators are, as the notation
suggests, each others adjoints and satisfy the following anti-
commutation relations

[âv, âw]+ = [â†v, â
†
w]+ = 0 and [âv, â

†
w]+ = 〈v, w〉. (11)

In the special case that v = ei we write âv = âi and â†v = â†i ,
thus [âi, â

†
j ]+ = δij . In terms of these operators, Hamiltonian

(7) is then written in a compact form as

H =
∑
i,j

hij â
†
i âj +W. (12)



4

The interaction termW was not specified, but a very relevant
case is that of a two-body interaction of the form

W =
1

2

∑
i,j

wij â
†
i â
†
j âj âi (13)

with wij = wji ∈ R which is diagonal in the {eI}I basis.
This interaction has a similar form as the familiar Coulomb in-
teraction in continuum systems, which is also diagonal in po-
sition basis. Form (12) without an external potential v will
later be denoted as the internal part H0 that typically contains
the kinetic energy and the interaction W (usually of the form
of a two-body interaction like above). An external potential
v : X → R (equivalent to v ∈ RM ) alone acting on the many-
particle wave function becomes

V =
∑
i

viâ
†
i âi. (14)

When particular attention is paid to the dependency of H on
the external potential v, we denote it as H = H(v) = H0 +
V . A lemma about the connectedness of the fermionic graph
concludes this section.

Lemma 4. Let H be like in (12), with W being diagonal in
the {eI}I basis and G(h) connected, then G(H) is connected
as well.

Proof. We start by taking multi-indices I = (i1, . . . , ik, . . . ,
iN ), I ′ = (i1, . . . , i

′
k, . . . , iN ) that just differ in one single en-

try. Then

〈eI , HeI′〉 =
∑
i,j

hij〈âieI , âjeI′〉 = hiki′k , (15)

so I ∼ I ′ on the fermionic graph if ik ∼ i′k. Proving that
G(H) is connected can then be equivalently reformulated as a
game-theoretical problem: Put N pawns on the vertices i ∈ I
of G(h), then each turn move one pawn along an edge where
no vertex can be doubly occupied. Is it possible to reach an
arbitrary, different configuration J = (j1, . . . , jN ) this way?
In showing this, we first reduce G(h) to a spanning tree [21,
Prop. 1.5.6] with less edges. Then we conduct the following
algorithm: By cutting a single edge, arbitrarily split the tree
graph into two subgraphs, G1, G2, that are also always trees.
If both subgraphs incidentally contain the correct number of
pawns in order to fill the desired positions within them, repeat
the algorithm for both of them. Else, letG1 be the one that con-
tains too many pawns that are instead missing in G2. If neces-
sary, make space in the treelike G2 by moving pawns towards
the leaves, which is always possible since this graph contains
too little pawns. Then move the desired number of pawns from
G1 to G2 along the cut edge in the original graph. Then again
repeat the algorithm for the treelike subgraphs that still need to
be adjusted. Since the considered subgraphs shrink continu-
ously, the correct configurationwill be eventually reached. The
collection of all turns involved in this procedure yields a path
between I and J and thus shows that G(H) is connected.

Note that this lemma cannot make any general statement
about a Hamiltonian with an interaction term that is not diago-
nal, since that might disconnect the fermionic graph by adding
a further term in (15).

C. Densities and N -representability

We now turn our attention to the particle density that is
the principal protagonist of DFT. We consider an N -particle
fermionic system and let Ψ ∈ IN , which we can expand in the
basis {eI}I with coefficients {ΨI}I as

Ψ =
∑
I

ΨI eI , (16)

in which we sum over all ordered multi-indices I =
(i1, . . . , iN ). Since the state Ψ was assumed to be normalized
we further have

1 =
∑
I

|ΨI |2. (17)

The particle density ρi at vertex i is now defined as

ρi =
∑
I3i
|ΨI |2, (18)

where we sum just over the multi-indices I that include the
given vertex i ∈ X . From this it immediately follows by com-
parison with (17) that 0 ≤ ρi ≤ 1. More generally, we will
denote by ρ the mapping ρ : X → [0, 1] that assigns ρi to
vertex i and refer to this quantity as “the density ρ”. The cre-
ation and annihilation operators can be used for the alternative
expression

ρi = ‖âiΨ‖2 = 〈âiΨ, âiΨ〉 = 〈Ψ, â†i âiΨ〉, (19)

or with an ensemble state Γ ∈ DN as ρi = Tr(Γâ†i âi). The
quantity ρi receives a physical interpretation as the probability
to find a particle at vertex i if we know the system to be in state
Ψ (Γ). Another property of the density that follows from our
definitions is that

N =
∑
i

ρi. (20)

The fact that the probabilities do not sum up to one is not a
contradiction, but is due to the fact that these probabilities are
non-exclusive, i.e., the fact that we find a particle at vertex i
does not exclude the possibility of finding another particle at j.
Indeed the state eI gives probability one for finding a particle
at any vertex i contained in I . Let the corresponding density
be denoted by EI , such that EI,i = 1 if i ∈ I (N times) and 0
otherwise (M −N times). An alternative definition using the
annihilation operators isEI = (‖âieI‖)i, because ‖âieI‖ = 1
if i ∈ I and 0 otherwise. We collect all densities satisfying the
above conditions in the set of physical densities,

PM,N =

{
ρ : X → R

∣∣∣∣∣ 0 ≤ ρi ≤ 1,

M∑
i=1

ρi = N

}
. (21)

Note that the set PM,N is a (M − 1)-simplex with normal-
ization N , cropped by the ρi ≤ 1 conditions, resulting in
an (M − 1)-dimensional convex polytope that is known as
(M,N)-hypersimplex [22; 23]. This means the border points
of PM,N have either at least one ρi = 0 and lie on the bor-
der of the simplex or have at least one ρi = 1. Conversely,



5

if for all i ∈ X a density has 0 < ρi < 1 it lies in the inte-
rior of PM,N , a set later denoted as P+

M,N . The extreme points
of PM,N are then those densities that saturate all conditions,
exactly the vectors {EI}I , which lie at the corners and gen-
erate the convex polytope PM,N [22, §2.4]. This insight will
allow us to show that all densities in PM,N are (pure-state)N -
representable, i.e., for any density in PM,N there is a state in
IN that yields exactly this density.

Proposition 5. PM,N is the maximal set of pure-state N -
representable densities.

Proof. Because of convexity any density in PM,N can be writ-
ten as ρi =

∑
I ρIEI,i =

∑
I ρI‖âieI‖ with ρI ∈ [0, 1] and∑

I ρI = 1. We rewrite ρI = |ΨI |2 with arbitrary phase
choice for ΨI and substitute ‖âieI‖ by ‖âieI‖2 which holds
since it has a (0, 1)-value anyway. Then

ρi =
∑
I

|ΨI |2‖âieI‖2 =
∑
I,I′

Ψ∗IΨI′〈âieI , âieI′〉

=

〈
âi
∑
I

ΨIeI , âi
∑
I′

ΨI′eI′

〉
= 〈âiΨ, âiΨ〉

(22)

with Ψ =
∑
I ΨIeI , where the extension to a double sum is

possible since 〈âieI , âieI′〉 = 0 if I 6= I ′. That the given set is
maximal is clear because no (physical) density can lie outside
of PM,N .

This demonstrates pure-stateN -representability for ρ and of
course automatically implies ensemble N -representability, al-
though a simpler construction is feasible in this case by just
forming the convex combination Γ =

∑
I ρIΓI where ΓI are

the projections onto the states eI . Because of the proposition
above it indeed makes sense to take PM,N as the set of all pos-
sible physical densities. In the continuum setting a comparable
construction is possible but way more complicated [24]. The
much subtler matter of v-representability will be discussed in
Section VIB.

D. Graph Laplacians

In the previous discussions we left the specific form of
h open, but here we want to make a brief connection to
the form of the Hamiltonian that appears, for example, in
finite-difference approaches for discretizing the continuum
Schrödinger operator. This requires the graph theoretical defi-
nition of the Laplace operator representing the kinetic energy.

Definition 6. For a graphG, let the degree d(i) of a vertex i be
the number of vertices adjacent to i. Then the graph Laplacian
∆ is defined here as

∆ij =

 −d(i) if i = j
1 if i ∼ j
0 otherwise.

(23)

For a cubic lattice this definition is readily seen to agree with
the standard three-point finite-differencing formula for the sec-
ond derivative. Note that in graph theory usually an oppo-
site sign convention is employed and the graph Laplacian is
L = −∆ [25; 26]. We used the definition given here such that

the negative graph Laplacian fulfills the same semi-positivity
condition as the continuum Laplacian,

−〈ψ,∆ψ〉 = −
∑
i,j

ψ∗i ∆ijψj =
∑
i

d(i)|ψi|2 −
∑
i∼j

ψ∗i ψj

=
1

2

∑
i∼j
|ψi − ψj |2 ≥ 0 (24)

for any ψ ∈ H1, which physically implies positivity of
the kinetic energy. With this ingredient we now define the
one-particle Hamiltonian on a graph in analogy to the usual
Schrödinger equation,

hij = −∆ij + viδij , (25)

where the first term represents the kinetic energy and the sec-
ond term represents the external one-body potential. More pre-
cisely, we define the potential v to be the mapping v : X → R
that assigns to every vertex i the real number vi. Note, how-
ever, that the results derived in the course of this paper do not
depend on any special form of h, just on the local character of
the external potential as in (25).

Contrary to the kinetic energy operator it is not possible to
straightforwardly define a momentum operator on a general
graph. Being the generator of translations such an operator
can only be specified on graphs with certain symmetries, such
as circular graphs.

E. Simple graph examples

Two very simple graphs will be used to illustrate the above
constructions, both of them also taking a role in providing
counterexamples to the standard Hohenberg–Kohn statement
formulated later in Section III C. The first is the situation of
two fermions of the triangle graph, soN = 2 andM = 3. The
corresponding graph Laplacian is

∆ =

−2 1 1
1 −2 1
1 1 −2

 . (26)

The simplest multi-particle Hamiltonian is thenH = −∆⊗1−
1⊗∆, not including any interactions or an external potential.
Its matrix representation in the resulting fermionic Hilbert-
space basis {eI}I = {e1 ∧ e2, e1 ∧ e3, e2 ∧ e3} with L = 3
elements is then

H =

 4 −1 1
−1 4 −1

1 −1 4

 , (27)

which can be calculated by applying H on the basis elements
as usual. For the first basis element this means

H(e1∧e2) = −∆e1 ∧ e2 − e1 ∧∆e2

= −(−2e1 + e2 + e3) ∧ e2 − e1 ∧ (e1 − 2e2 + e3)

= 2e1 ∧ e2 − e3 ∧ e2 + 2e1 ∧ e2 − e1 ∧ e3

= 4e1 ∧ e2 − e1 ∧ e3 + e2 ∧ e3 etc., (28)

where ei ∧ ej = −ej ∧ ei and ei ∧ ei = 0 have been used.
This means the fermionic graph G(H) is a complete graph as
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1

2

3

(a) Triangle graph
e1 ∧ e2

e1 ∧ e3

e2 ∧ e3

(b) Two-particle fermionic triangle graph

Figure 1: Triangle graph example.

well, i.e., with edges between all vertices. The graphs G(∆)
and G(H) are illustrated in Figure 1.
The second example is two fermions on a square graph, so

N = 2 andM = 4 with

∆ =

−2 1 0 1
1 −2 1 0
0 1 −2 1
1 0 1 −2

 , (29)

so no diagonal edges are included. The basis set for the
fermionic Hilbert space then is {eI}I = {e1∧e2, e1∧e3, e1∧
e4, e2 ∧ e3, e2 ∧ e4, e3 ∧ e4} and the same Hamiltonian H =
−∆⊗ 1− 1⊗∆ as before in this basis comes out as

H =


4 −1 0 0 1 0
−1 4 −1 −1 0 1

0 −1 4 0 −1 0
0 −1 0 4 −1 0
1 0 −1 −1 4 −1
0 1 0 0 −1 4

 . (30)

Here, the fermionic graph, such as the square graph itself, is
not complete and some edges are missing, as illustrated in Fig-
ure 2. The same example was used in ten Haaf et al. [27] to
illustrate a method employing simplified, effective Hamiltoni-
ans in Green-function Monte Carlo calculations, where certain
edges in the fermionic graph get cut, thus avoiding the “sign
problem”.

III. VIOLATIONS OF THE HOHENBERG–KOHN THEO-
REM

A. Unique v-representability

The Hohenberg-Kohn (HK) theorem for continuum systems
[1] states that if two Hamiltonians H(v) and H(v′) corre-
sponding to two different external potentials v and v′ share
the same ground-state density then v and v′ can only differ by
a constant. This statement holds independently whether the
ground state is degenerate or not. Following the proof in Pino
et al. [28] the theorem can be split into two parts, where the
first one is very general and holds in all settings where the ex-
ternal potential couples only to the density, so in particular in
the usual continuum case and the graph setting discussed here.

Theorem 7 (HK part 1). Assume that two HamiltoniansH =
H0 + V,H ′ = H0 + V ′ that differ only in their external po-
tentials v, v′ share a common ground-state density ρ. Then an
(ensemble) ground state Ψ (Γ) of H with density ρ is also an
(ensemble) ground state of H ′ and vice versa.

Proof. Let Ψ,Ψ′ be ground states of H and H ′ with ground-
state energies E,E′, respectively, having the same density ρ.
Then by the Rayleigh–Ritz variational principle

E = 〈Ψ, HΨ〉 ≤ 〈Ψ′, HΨ′〉 = 〈Ψ′, H ′Ψ′〉+
∑
i

(vi − v′i)ρi

=⇒ 〈Ψ, HΨ〉 −
∑
i

(vi − v′i)ρi ≤ 〈Ψ′, H ′Ψ′〉 (31)

and thus

E′ = 〈Ψ′, H ′Ψ′〉 ≤ 〈Ψ, H ′Ψ〉

= 〈Ψ, HΨ〉 −
∑
i

(vi − v′i)ρi ≤ E′. (32)

Hence 〈Ψ, H ′Ψ〉 = E′ and thus Ψ is also a ground state ofH ′.
The other direction and the proof for ensemble ground states
works analogously.

Since by this first part of the HK theorem it followsH ′Ψ =
E′Ψ, this together with HΨ = EΨ leads to

(H −H ′)Ψ = (V − V ′)Ψ = (E − E′)Ψ. (33)

The second part of the HK theorem for continuum systems
then relies on the assumption that Ψ 6= 0 almost everywhere
to be able to conclude v − v′ = const. Recently this issue,
and thereby the validity of the HK theorem for continuum sys-
tems, has been settled in the work of Garrigue [14] who used
the proof structure of Pino et al. [28] and proved the neces-
sary unique continuation property (UCP) for the many-particle
Hamiltonians under consideration. In essence, the UCP as-
sures that if a wave function Ψ vanishes sufficiently quickly
at one point and solves the Schrödinger equation then Ψ = 0
almost everywhere. This then implies that an eigenfunction
cannot vanish on a set of positive measure or else it would be
identically zero [29; 30], a property that is crucially used in the
proof of the HK theorem.

The UCP or a comparable property does not hold on finite
graphs [31; 32], since graph Hamiltonian eigenstates can van-
ish at many adjacent vertices (see (110) for an example). This
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1 2

34

(a) Square graph

e1 ∧ e2

e1 ∧ e3

e1 ∧ e4e2 ∧ e3

e2 ∧ e4

e3 ∧ e4

(b) Two-particle fermionic square graph

Figure 2: Square graph example.

also implies that, although the HK theorem is settled in the
continuum case, it is not so in the discrete case. This can lead
to situations where systems with different potentials (modulo
constants) have the same ground state and consequently also
the same ground-state density. On the other hand, because
of the first part of the HK theorem, if two different poten-
tials produce the same ground-state density, they must also
share the same ground state. Hence, the property of “unique
v-representability” (or its negation) is always shared by states
and their densities. For future use it is therefore possible and
useful to introduce the following terminology:
Definition 8. If Ψ (Γ) is the (ensemble) ground state of a
HamiltonianH0 +V with external potential v and if there is no
other potential v′ differing more than a constant from v such
that Ψ (Γ) is also the (ensemble) ground state ofH0 + V ′, we
say that Ψ (Γ) and its corresponding ground-state density ρ are
uniquely v-representable (uv).
The validity of the complete HK theorem is then equivalent

to the statement that all densities of interest are uv-ground-state
densities. In the next section we will establish sufficient con-
ditions for unique v-representability, even for general eigen-
states, which is in line with the continuum case in which the
UCP applies to any eigenstate [14].
It is readily seen that violations of unique v-representability

and thus of the HK theorem occur in at least two cases, namely
when the density ρi on a vertex is either zero or one, i.e., the
density lies on the boundary ofPM,N . In the case that the den-
sity is zero on vertex i we can add an arbitrary repulsive po-
tential vi at vertex i without any effect on the potential energy∑
i viρi and thus without changing the state Ψ and its designa-

tion as a ground state. On the other hand, in the case ρi = 1 the
density is fully saturated at that vertex and by applying an addi-
tional attractive potential on vertex i we can make sure that the
state Ψ is unchanged and still remains the ground state. These
two situations can be ruled out if the ground-state wave func-
tion has enough non-zero coefficients in its expansion of the
form (16). To show this we first define

m =

(
M − 1

N − 1

)
, n =

(
M − 1

N

)
, n+m =

(
M

N

)
, (34)

where n + m = L is the dimension of the Hilbert space HN .
If ρi = 0 then according to (18) at most n coefficients, namely

all possible ones not containing i in a multi-index, can be non-
zero. On the other hand when ρi = 1 then all non-zero coeffi-
cients must contain i in a multi-index and there are at mostm
of such coefficients. If M > 2N then n > m which means
that, in this case, expansion (16)must containmore thann non-
zero coefficients to avoid both zero or full occupancy on some
vertex. On the other hand, if M < 2N then m > n and the
expansion must contain more than m non-zero coefficients to
avoid the same situation. For the remaining case M = 2N
we have m = n =

(
2N−1
N

)
and we need more than this num-

ber of coefficients to avoid either zero or full occupancies. It
is clearly conceivable that the HK theorem may also be vio-
lated in other cases than zero or full occupancy, i.e., inside the
interior of PM,N , and we will see that this is indeed the case
by explicit example. In the next section we derive precisely
how many coefficients in expansion (16) need to be non-zero
to guarantee the validity of the HK theorem.

B. Condition for unique v-representability from
Odlyzko’s theorem

In this section we give a sufficient condition for a state to
be uniquely v-representable on graphs. In the HK theorem
the focus is on the ground state but our reasoning applies to
any eigenstate and so we will derive a condition to ensure that
any eigenstate is produced by a unique potential (modulo con-
stants). Let us assume that two potentials V and V ′ lead to the
same eigenstate Ψ, then

(H0 + V )Ψ = EΨ and (35)
(H0 + V ′)Ψ = E′Ψ. (36)

Then if we define U = (V − E)− (V ′ − E′) it follows from
above that UΨ = 0. Written out more explicitly this gives for
every coefficient from the expansion (16) that

(ui1 + . . .+ uiN ) ΨI = 0 (37)

with ui = vi − v′i − 1
N (E − E′) for all i ∈ I = (i1, . . . , iN )

with i1 < . . . < iN , which represents a selection of N dis-
tinct integers from the set of vertices X = {1, . . . ,M}. We
would like to conclude that ui = 0 for all i ∈ X which leads
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to the usual HK result that v = v′ + 1
N (E − E′). To en-

sure this conclusion we need enough multi-indices I for which
the wave-function coefficient ΨI does not vanish. Let us de-
note the collection of all such multi-indices for Ψ by C[Ψ], so
ΨI 6= 0 for I ∈ C[Ψ]. Note that there is a finite number of
possibilities for such collections because every single one can-
not include more than L =

(
M
N

)
elements. Furthermore, every

state Ψ ∈ IN can be allocated to one of those classes, namely
C[Ψ], so they offer a finite classification of all states in terms
of which coefficient are non-zero. We then have from (37) the
set of equations∑

i∈I
ui = 0 for all I ∈ C[Ψ]. (38)

The key question is now how large the collection C[Ψ] must
be in order to guarantee that ui = 0 for all i ∈ X is the only
solution, which would give us the full HK theorem for states in
this class. This can be translated into a question about the rank
of certain types of matrices and can be best illustrated with an
example that we will meet again in (48) below. IfM = 4 and
N = 2 and the wave-function coefficient ΨI is non-vanishing
for I ∈ C[Ψ] = {(1, 3), (1, 4), (2, 3), (2, 4)} then the system
of equations (38) is equivalent to the matrix equation

Υ[Ψ] · u =

1 0 1 0
1 0 0 1
0 1 1 0
0 1 0 1

 ·
u1

u2

u3

u4

 = 0. (39)

The rows of the coefficient matrix Υ[Ψ] are thus formed by
the non-zero coefficients ΨI of Ψ. In each row just the entries
that correspond to the two indices in I are one, while all other
entries remain zero. Equivalently, the rows of Υ[Ψ] are the
extreme densities EI with I ∈ C[Ψ]. The rank of Υ[Ψ] in this
example is 3 which is less than the number of unknowns and
consequently there is an infinite number of solutions, which in
this case are of the form u = (t, t,−t,−t) with t ∈ R. If we
would now take ΨI also to be non-zero for I = (3, 4), we can
add the row (0, 0, 1, 1) to the matrix above and we find that the
rank of the matrix becomes 4 in which case u = 0 is the only
solution.

In the general case of (38), the matrix Υ[Ψ] that we need to
consider always contains only the elements 0 and 1, a so-called
(0, 1)-matrix, hasM columns, and its row sum is alwaysN . To
guarantee uniqueness, we can therefore ask howmany different
rows a (0, 1)-matrix with M columns and row sum N needs
to have in order to guarantee that its rank isM . This problem
was addressed by Longstaff [33] and Odlyzko [19] in which
the latter gave the complete answer that we repeat here as a
theorem.
Theorem 9 (Odlyzko). The number g(M,N), 1 ≤ N < M ,
defined by

g(M,N) =



(
M−1
N

)
ifM > 2N

2
(
M−2
N−1

)
ifM = 2N(

M−1
N−1

)
ifM < 2N

(40)

is the smallest integer so that every (0, 1)-matrix with M
columns, row sumN , and strictly more than g(M,N) different
rows has rankM .

In our example we have g(4, 2) = 4 such that we need
at least g(4, 2) + 1 = 5 distinct rows, and therefore 5 non-
vanishing coefficients ΨI to guarantee the unique solution u =
0. Note that Odlyzko’s theorem still allows for the existence of
rankM matrices with a number of rows smaller or equal than
g(M,N), it just asserts that not every matrix with that num-
ber of different rows will have rank M . For example, we can
check forM = 4, N = 2 that a wave function with non-zero
coefficients ΨI with I ∈ C[Ψ] = {(1, 2), (1, 3), (1, 4), (3, 4)}
corresponds to a (0, 1)-matrix Υ[Ψ] of rank 4 even if this ma-
trix has only 4 different rows.

If we now apply the theorem of Odlyzko to the system of
equations (38) we conclude that u = 0 is the only possible
solution in case the number of coefficients |C[Ψ]| for whichΨI

does not vanish is strictly larger than g(M,N). We formulate
this as the following corollary.

Corollary 10. Let Ψ be an N -particle eigenstate of H0 + V
on a graph with M vertices. If the number of distinct multi-
indices I for which ΨI in expansion (16) does not vanish is
strictly larger than theOdlyzko number g(M,N) given by (40),
then Ψ is not an eigenvector of any other HamiltonianH0 +V ′

where V ′ differs from V by more than a constant.

Let us now give a discussion of these results. Referring back
to (34) we see that for M > 2N we have g(M,N) = n and
forM < 2N we indeed have g(M,N) = m such that the con-
ditions in Corollary 10 for the case M 6= 2N are equivalent
to the conditions that exclude the ρi = 0 and ρi = 1 occupa-
tion cases that were discussed in the previous section. For the
case M = 2N we have m = n and g(M,N) > m as can
be checked by explicit calculation. In this case the Odlyzko
condition is more strict than the one obtained from the reason-
ing in the previous section, which indicates the possibility of
a violation of HK without zero or full occupancy as we will
indeed find by explicit example in the next section. We stress,
however, that this does not necessarily imply HK violation for
states where the number of non-zero coefficients is smaller or
equal than g(M,N).

C. Examples for non-unique v-representability

Here we present two explicit examples for non-unique v-
representability by studying two systems of non-interacting
fermions on graphs that are already familiar to us from Sec-
tion II E. As a first example we again take two fermions on a tri-
angle graph, i.e., we have the caseN = 2 andM = 3 for which
we get g(3, 2) = 2 and therefore we need at least three non-
zero coefficients (which means all of them sinceL =

(
M
N

)
= 3

too) to guarantee unique v-representability by Corollary 10.
For later reference we give the Hamiltonian for a general ex-
ternal potential v, although for our example it suffices to put
the potential to zero on all but one vertex. The one-particle
Hamiltonian h is then given by

h(v) = 2I +

 v1 −1 −1
−1 v2 −1
−1 −1 v3

 , (41)
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where I denotes the identitymatrix here, while the two-particle
Hamiltonian is given by

H(v) = 4I +

v1 + v2 −1 1
−1 v1 + v3 −1

1 −1 v2 + v3

 (42)

with respect to the basis {eI}I = {e1∧e2, e1∧e3, e2∧e3}. For
the case v1 = v2 = v3 = 0 the ground state is degenerate and
the ground-state subspace is spanned by the two orthonormal
states

ΨA =
1√
2

(1, 0,−1) and ΨB =
1√
6

(1, 2, 1) (43)

with eigenvalue EA = EB = 3 and corresponding densities
calculated from (18),

ρA = 1
2 (1, 2, 1) and ρB = 1

6 (5, 2, 5). (44)

We note that ΨA has one zero coefficient which is responsi-
ble for the full occupancy on vertex 2 in the density ρA that
consequently can be found at the boundary of P3,2. Through
applying an attractive potential (0,−t, 0) with t > 0 the state
ΨA thus remains unchanged while the state ΨB is modified.
The degeneracy is lifted withEA = 3− t andEB = 1

2 (9− t−√
9− 2t+ t2) such thatΨA becomes a non-degenerate ground

state which is insensitive to the value of t as long as t > 0.
This is a clear counterexample to the HK theorem which finds
its origin in a full occupation of one of the vertices. It is also
a refutation of the statement of Chayes et al. [6] that “no po-
tential which is finite at a particular site can attract particles
so strongly to that site that it always contains the maximum
number of particles.”
As a second example we take N = 2 fermions on a square

graph with M = 4 vertices for which g(4, 2) = 4 while
m = n = 3. We therefore need at least 4 non-zero coefficients
to avoid zero or full occupancy, while the Odlyzko condition
implies that we need at least 5 non-zero coefficients to guaran-
tee unique v-representability. We shall see that for this exam-
ple we can find a ground state with only 4 non-zero coefficients
and that HK is violated in the absence of full or zero occupancy.
For the square graph we take the one-particle Hamiltonian

h = 2I +

s+ t −1 0 −1
−1 −s+ t −1 0

0 −1 −s− t −1
−1 0 −1 s− t

 (45)

in which we chose the external potential in a particular form
with s, t ∈ R. The system can be viewed as one in which we
apply a combination of two potentials: a potential of the form
(s,−s,−s, s) with opposite values on the left-hand and right-
hand side of the square and a 90° rotated one (t, t,−t,−t)with
opposite values on the top and bottom of the square. The two-
particle Hamiltonian for this system is given by

H = 4I +


2t −1 0 0 1 0
−1 0 −1 −1 0 1

0 −1 2s 0 −1 0
0 −1 0 −2s −1 0
1 0 −1 −1 0 −1
0 1 0 0 −1 −2t

 (46)

with respect to the basis

{eI}I = {e1 ∧ e2, e1 ∧ e3, e1 ∧ e4, e2 ∧ e3, e2 ∧ e4, e3 ∧ e4}.
(47)

For all values s, t ∈ R the two normalized eigenstates and
eigenvalues ofH corresponding to the two lowest energies are
given by

ΨA =
1

1 + α2(s)
(0, α(s), α2(s), 1, α(s), 0) (48)

with EA = 4− 2
√

1 + s2 and

ΨB =
1

1 + α2(t)
(α2(t), α(t), 0, 0,−α(t),−1) (49)

with EB = 4− 2
√

1 + t2,

where we definedα(t) = −t+
√

1 + t2, and the corresponding
densities are

ρA =
1

1 + α2(s)
(α2(s), 1, 1, α2(s)) and (50)

ρB =
1

1 + α2(t)
(α2(t), α2(t), 1, 1). (51)

The densities can be rewritten as

ρA = β(s)(0, 1, 1, 0) + (1− β(s))(1, 0, 0, 1) and (52)
ρB = β(t)(0, 0, 1, 1) + (1− β(t))(1, 1, 0, 0), (53)

where we defined β(t) = 1/(1 + α2(t)) ∈ (0, 1). In this case
they do not lie on the boundary of the density domain because
α(t) does not become zero but approaches four extreme points
in the density domain P4,2 (an octahedron) arbitrarily close.
The densities, parameterized by s and t, form the diagonals
in the middle plane of the octahedron, a situation displayed
in Figure 3. We further see that the densities ρA, ρB clearly
reflect the symmetry of the applied potentials. For example,
for very large positive s the function β(s) approaches one and
two particles localize on vertices 2 and 3 where the potential
becomes large and negative, while for large negative s the co-
efficient β(s) approaches zero and the two particles localize on
the opposite sites of the square. The states ΨA and ΨB have
both 4 non-zero coefficients so that we cannot have a zero or
full occupancy on any vertex for both of them. However, the
Odlyzko condition for these states is not satisfied, which opens
up the possibility for a HK violation. Indeed, if |s| > |t| then
ΨA is a non-degenerate ground state which is insensitive to the
value of t as long as |t| is smaller than |s|. For |s| = |t| the two
states become degenerate and if |s| < |t| then ΨB becomes
the ground state which is independent of s as long as |s| re-
mains smaller than |t|. This again clearly demonstrates the ab-
sence of unique v-representability. Interestingly, this happens
for a non-degenerate ground state and for a density that has nei-
ther zero nor full occupancy anywhere. It therefore presents
a counterexample to a basic assumption in the work of Kohn
[20] who stated that any non-constant perturbation of a non-
degenerate state on a lattice will always change that state. It
also constitutes a counterexample to the statement by Ullrich
and Kohn [34] that “the density of a non-degenerate ground
state uniquely determines [the potential].”

Note that there is a qualitative difference in the range of po-
tentials that allow for HK violation. The collection of poten-
tials in the triangle graph that keep the ground state unchanged
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(1, 0, 1, 0)

(0, 1, 1, 0)

(1, 0, 0, 1)

(0, 0, 1, 1)

(1, 1, 0, 0)

(0, 1, 0, 1)

Figure 3: Density domain P4,2 of the square-graph example
with the non-uv densities ρA, ρB from (52)-(53) in red.

corresponds to an unbounded domain in potential space since
t ∈ [0,∞) in our example. On the other hand, in the square
graph the corresponding domain in potential space is bounded,
t ∈ [−|s|, |s| ] for a given s in the example. As we will see, this
is a general feature that we will prove as Corollary 20 later: If
0 < ρi < 1 then HK violation can only occur on a bounded
domain in potential space. The potentials that lead to HK vi-
olations are also ‘rare’, as we will argue in Section IVB. But
first we will establish that also in the density domain, non-uv
examples are rare.

D. Still almost all densities are uniquely v-representable

In Section VIB we will prove that all densities with 0 <
ρi < 1 are ensemble v-representable. The question remains
whether they are uniquely v-representable. This is partially
answered by the following theorem.

Theorem 11. The set of non-uv densities is a subset of a fi-
nite union of linear subspaces of dimension < M in RM and
thus has measure zero on the affine set of all physical densities
PM,N with

∑
i ρi = N .

Proof. First, let us recall the definition of the matrixΥ[Ψ] from
Section III B.We haveΥ[Ψ]I,i = 1 if i ∈ I and zero otherwise,
where the row index I ∈ C[Ψ], the set of multi-indices of all
non-zero coefficients of Ψ in expansion (16).
Now, the density ρ for a given (ensemble) state is a finite convex
combination of pure states Ψn with densities ρn of the form

ρ =
∑
n

λnρn. (54)

The pure-state density ρn is given by

ρn,i =
∑
I3i
|Ψn,I |2 =

∑
I

T [Ψn]i,I |Ψn,I |2, (55)

which we rewrote as the multiplication with matrices T [Ψn]
where T [Ψn]i,I = 1 if i ∈ I ∈ C[Ψn] and zero otherwise.

However, this means that T [Ψn] is exactly the transpose of
Υ[Ψn], an observation that will become crucial in the course
of this proof. If the given density ρ is assumed non-uv then two
different potentials v and v′ differing by more than a constant
not only give rise to the same density ρ but also share the same
(ensemble) ground state by the first part of the HK theorem
(Theorem 7). This means that all Ψn in the ensemble are non-
uv ground states of both H(v) and H(v′) and fulfil (37) with
the same non-zero u = v−v′− 1

N (E−E′), which implies that
the intersectionW =

⋂
n ker Υ[Ψn] is non-zero and is a linear

subspace of the kernel of each of the Υ[Ψn]. Since the image
of the transpose of a matrix is the orthogonal complement of
its kernel (for a proof for general non-square matrices see Pros-
alov [35]), it follows that the image of T [Ψn] is orthogonal to
W ⊆ ker Υ[Ψn] and hence ρn ∈ W⊥ for all n by (55). It
therefore follows that also ρ =

∑
n λnρn ∈ W⊥ where W⊥

has dimension of at mostM − 1 sinceW has dimension of at
least one. Every non-uv density matrix belongs to a class char-
acterized by a finite collection of Υ[Ψn] matrices specified by
the non-uv states in the ensemble and as there is only a finite
number of such collections there exists only a finite number of
subspaces of the typeW⊥ that we just discussed. Finally, we
arrive at our conclusion by noticing that the intersection of all
those linear subspaces of dimension < M that include non-uv
densities ρ with the affine subspace {ρ ∈ RM |

∑
i ρi = N}

that containsPM,N will always lead to a measure-zero set.

We will illustrate this result with the examples from the pre-
vious section. For the triangle graph the non-uv state ΨA has

Υ[ΨA] =

(
1 1 0
0 1 1

)
(56)

with rank 2 and we saw in the proof above that the non-uv den-
sity that can result from this state must be included in the image
of the transpose of Υ[ΨA], 1 0

1 1
0 1

 · ( |Ψ(1,2)|2
|Ψ(2,3)|2

)
=

 ρ1

1
1− ρ1

 , (57)

where we used the normalization |Ψ(1,2)|2 + |Ψ(2,3)|2 = 1 for
states that have Ψ(1,3) = 0. The resulting density in (57) has
full occupancy ρ2 = 1 and is thus on the border of P3,2, a set
of measure zero.

This makes it interesting to check the second example of the
square graph as well, where the non-uv density did not contain
any zero or full occupancy. There,

Υ[ΨA] =

 1 0 1 0
1 0 0 1
0 1 1 0
0 1 0 1

 (58)

with rank 3 and thus for the image, using the normalization
|Ψ(1,3)|2 + |Ψ(1,4)|2 + |Ψ(2,3)|2 + |Ψ(2,4)|2 = 1, we find

 1 1 0 0
0 0 1 1
1 0 1 0
0 1 0 1

 ·

|Ψ(1,3)|2
|Ψ(1,4)|2
|Ψ(2,3)|2
|Ψ(2,4)|2

 =

 ρ1

1− ρ1

ρ3

1− ρ3

 , (59)
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which represents a 2-dimensional subset of the 3-dimensional
affine space {ρ ∈ R4 | ρ1 +ρ2 +ρ3 +ρ4 = 2} that does not lie
on the border ofP4,2, except when ρ1 or ρ3 ∈ {0, 1}. The case
ρ1 = 1 − ρ3 with ρ3 = β(s) is just the one that corresponds
to the known non-uv density ρA in (52).

IV. POSITIVE RESULTS FROM THE RELLICH THEOREM

A. Openness of the set of non-degenerate, uniquely v-
representable ground-state densities

Rellich’s theorem [36] for the analytic dependency of eigen-
values and eigenvectors on small perturbations is the following
(see also the book of Rellich [37, Ch. 1, §1] and other textbooks
[38; 39]).

Theorem 12 (Rellich). Let Amn(λ), λ ∈ R, be a Hermi-
tian matrix whose components Amn(λ) are analytic in λ in
a neighborhood of λ = 0. Then there exists a neighborhood of
λ = 0 in which the eigenvalues are analytic functions of λ and
in which we can furthermore choose an orthonormal basis of
eigenvectors that are analytic in λ as well.

The indicated “choice” refers to a few circumstances which
are related to degeneracy and non-uniqueness. In the case that
the eigenvectors at λ = 0 are degenerate, we cannot freely
choose them at λ = 0, but the requirement of analyticity picks
out specific vectors from the unperturbed degenerate manifold
(see Rellich [37, Ch. 1, §1] for an insightful discussion). The
correct choice is obtained from the eigenvectors at finite λ by
letting λ → 0. If the eigenvalue is non-degenerate, the choice
of the eigenvector is unique up to a phase factor, which we
can choose to be any analytic function. Moreover, if we insist
on ordering the states by their eigenvalues then due to possi-
ble eigenvalue crossings the eigenvalues as functions of λmay
display a non-differentiable kink and the eigenstates may jump
discontinuously. The latter is illustrated by states (48) and (49)
in our square-graph example, which suddenly switch their role
as ground states at |s| = |t| where we take the parameter in
Rellich’s theorem to be λ = t for a fixed value of s. However,
since these crossings happen at points with a finite value of
λ, an order-preserving analytic choice of eigenvalues is always
possible for sufficiently small λ.
Let us give an application of Rellich’s theorem that serves

the topological study of the density-potential mapping. We
will establish that the set of uv-ground-state densities coming
from a non-degenerate ground state forms an open set. The
proof corrects and simplifies a proof by Kohn [20], who in-
correctly assumed that any non-degenerate ground state must
be uniquely v-representable, a claim refuted in Section III C
above by explicit example.

Theorem 13. The setUM,N ⊆ PM,N of uv densities from non-
degenerate ground states is an open set, i.e., if ρ ∈ UM,N then
there is an ε > 0 such that ρ′ ∈ UM,N whenever ‖ρ′−ρ‖ < ε.

Proof. As always, we consider a graph withM vertices. Since
all potentials are only fixed up to an additive constant, we can
always choose vM = 0, leaving vi for i = 1, . . . ,M−1 as free
variables. Furthermore, since ρM = N −

∑
i<M ρi, we only

need to consider ρi for i = 1, . . . ,M − 1 as well. We choose

a density ρ which belongs to a non-degenerate uv-ground state
with eigenvalueE0 ofH(v) and apply a small perturbation λu
for a given non-zero potential u with uM = 0 again, i.e., we
consider the external potential v + λu. According to Rellich’s
theorem (Theorem 12) we can choose the eigenstate Ψ(λ) of
the perturbed system in an analytic fashion such that it connects
smoothly to a ground state of the unperturbed system at λ = 0
(see the remarks after Theorem 12). Since the ground state
was presumed to be non-degenerate, this state is unique up to a
phase factor and will yield the prescribed density ρ. Moreover,
for small enough λ there will be no eigenvalue crossing such
that Ψ(λ) remains a non-degenerate ground state itself. Our
Hamiltonian is then given by

(H0 + V + λU)Ψ(λ) = E(λ)Ψ(λ) (60)

and we set Ψ0 = Ψ(0) and E0 = E(0). The matrix U (and
similarly V ) is diagonal in the {eI}I basis with diagonal ele-
ments UI =

∑
i∈I ui. Now since Ψ0 is a uv-state we cannot

have UΨ0 = 0 since that would imply that v and v + u rep-
resent this state. Consequently, UΨ0 6= 0 and by continuity
from Rellich’s theorem we also have

UΨ(λ) 6= 0 (61)

for λ small enough. For later reference we further define

〈U〉(λ) = 〈Ψ(λ), UΨ(λ)〉 =

M−1∑
i=1

uiρi(v + λu), (62)

where ρ(v + λu) is the density corresponding to Ψ(λ). From
(60) it follows by differentiation that

[H−E0]
dΨ

dλ

∣∣∣
λ=0

=

[
dE

dλ

∣∣∣∣
λ=0

− U
]

Ψ0 = U ′Ψ0 6= 0, (63)

where we defined H = H(v) = H0 + V and furthermore
U ′ = c I − U or equivalently u′i = c/N − ui with constant
c = dE/dλ|λ=0. The last inequality in (63) follows sinceΨ0 is
an uv-state and the only way for U ′Ψ0 to vanish is by the same
argument as above that u′i = 0, which implies that ui = c/N
is a constant. However, since we put uM = 0 this can only be
the case of u = 0 which contradicts our choice of a non-zero
u.
Since the right hand side of (63) does not vanish, it follows
that dΨ/dλ|λ=0 cannot be a ground state of H . We now take
the inner product with dΨ/dλ|λ=0 on the first equation of (63)
and then add the complex conjugate of the equation obtained.
This yields

0 < 2

〈
dΨ

dλ

∣∣∣
λ=0

, [H − E0]
dΨ

dλ

∣∣∣
λ=0

〉
= −

〈
dΨ

dλ

∣∣∣
λ=0

, UΨ0

〉
−
〈

Ψ0, U
dΨ

dλ

∣∣∣
λ=0

〉
+

dE

dλ

∣∣∣
λ=0
· d

dλ
‖Ψ(λ)‖2

∣∣∣
λ=0

,

(64)

where for the inequality we used the Rayleigh–Ritz princi-
ple and the fact that dΨ/dλ|λ=0 is not a ground state of H .
Moreover, the last term on the right hand side vanishes since
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‖Ψ(λ)‖ = 1 and we therefore find, using the definition (62),
that

d〈U〉
dλ

∣∣∣
λ=0

=

〈
dΨ

dλ

∣∣∣
λ=0

, UΨ0

〉
+

〈
Ψ0, U

dΨ

dλ

∣∣∣
λ=0

〉
< 0.

(65)
On the other hand

d〈U〉
dλ

∣∣∣
λ=0

=

M−1∑
i=1

ui
dρi
dλ

(v + λu)
∣∣∣
λ=0

=

M−1∑
i,j=1

ui
∂ρi
∂vj

(v)uj =

M−1∑
i,j=1

uiJijuj ,

(66)

where we defined Jij = ∂ρi/∂vj(v) to be the Jacobian ma-
trix of partial derivatives of ρi with respect to vj evaluated at
v. Since (65) establishes that this matrix is negative definite it
follows that det(J) 6= 0. The inverse function theorem then
guarantees that in a small enough neighbourhood of ρ the in-
verse one-to-one mapping from densities to potentials exists.
This means that each density in this neighbourhood is uniquely
v-representable and belongs to a non-degenerate ground state,
which proves the theorem.

The given examples suggest that the statement of openness
could be extended to all uv densities, not only those coming
from non-degenerate states. Since we have no strict proof for
this at the moment, it should be left standing as a conjecture.

B. Degeneracy generates non-unique v-representability

In this section we examine (non-)unique v-representability
from the side of the potentials. The questions put forward are
if potentials that lead to non-uv densities (non-uv potentials)
are rare as well and how those potentials are located within the
space of all potentials. In this sense this section is complemen-
tary to Section III D, where almost all densities were proven to
be uv. Contrary to the other results in this work, the statements
in this section will not have the character of hard theorems, but
be more in the style of an explorative outlook.
For this, we start from any potential v0 that results in a uv

ground state without any degeneracy, a situation that seems to
be by far the most prevalent one, judging from the examples
given in Section III C. Since the ground state for v0 is uv, it
has just the right coefficients in the usual expansion (16) non-
zero to allow for a unique zero solution for (38). Now, if we
follow an arbitrary path v(λ) ∈ RM parameterized by λ start-
ing from v(0) = v0, we know by invoking Rellich’s theorem
(Theorem 12) that the coefficients of the ground state can be
chosen analytic in λ—as long as no level crossings occur, de-
generacy arises, and a previously excited state takes over the
role as the new ground state. However, analyticity in λ means
that the coefficients cannot be zero over any λ-interval if they
have been non-zero before, so the ground state for v(λ) will
be uv almost everywhere along the path as long as we do not
hit any degeneracy region. However, if we do, a new ground
state that is not uv can arise where the number of non-zero
coefficients is below the Odlyzko condition. Then, along a
different path in potential space, these coefficients can (ana-
lytically) stay equal to zero—until we hit another degeneracy

region. Therefore, sets in potential space that lead to degenera-
cies form the boundaries of sets of possible non-uv potentials.
Now, the work of Ullrich and Kohn [34] includes the inter-
esting observation that any potential manifold that leads to a
g-fold degeneracy of the ground state must be of dimensional-
ity Dg = M − 1 − 1

2 (g − 1)(g + 2) (where the free additive
constant for the potential has already been fixed). Now clearly
the lowest possible degeneracy is g = 2 and gives the highest
possible dimension D2 = M − 3. If the boundary of a set of
non-uv potentials has dimension M − 3 or less then this set
itself can only have maximal dimension D2 + 1 = M − 2.
This tells us that in the space of all possible potentials with a
fixed additive constant, which has dimensionM − 1 itself, the
set of non-uv potentials actually has measure zero.

This picture of regions of non-uv potentials emanating from
potentials that have degenerate ground states will be illustrated
with the examples from Section III C. In the triangle case we
found the single potential v = 0 to create a two-fold degener-
acy of the ground state. Since g = 2 and M = 3, we have
Dg = 0, the dimensionality of a point. Then the potential set
{(0,−t, 0) | t > 0} of dimension Dg + 1 = 1 was noted
to lead to non-uv densities, by symmetry the same is true for
{(−t, 0, 0) | t > 0} and {(0, 0,−t) | t > 0}. Hence, in poten-
tial space, we have three rays all originating in v = 0, the point
of degeneracy, as non-uv potentials. The corresponding three
densities all lie on the border of the density domain P3,2 since
they have full occupancy on one vertex. The situation will be
discussed in much more detail in Section VIC.

The other example was the square graph where we found
the condition |s| = |t| for the potential in (45) that leads to
degeneracy, again with multiplicity g = 2. Since nowM = 4
we have Dg = 1, the dimension of the two lines s = t and
s = −t in potential space. For a fixed s the range of poten-
tials connecting two degeneracy points t = ±s, parameter-
ized by t ∈ [−|s|, |s|], is then non-uv, while the same holds
conversely for a fixed t. This situation is shown in Figure 4.
Hence, the non-uv region in potential space indeed has dimen-
sionDg+1 = 2 and is spanned by both parameters s, t, just the
resulting non-uv density is not always the same and switches
between ρA for |s| > |t| and ρB for |s| < |t| while both den-
sities (and many more) are possible ground-state densities in
the degeneracy case at |s| = |t|. Note that here the ρA still
depends on s while being insensitive to t, and ρB reacts the
other way around. For s → ∞, ρA → (0, 1, 1, 0), and for
s → −∞, ρA → (1, 0, 0, 1). On the other hand, for t → ∞,
ρB → (0, 0, 1, 1), and for t→ −∞, ρB → (1, 1, 0, 0). There-
fore, with a large potential on the square graph, one approaches
extreme points instead of instantly hitting the border of the den-
sity domain like in the triangle case. This situation already
found a graphical representation in Figure 3, where the (s, t)-
plane in potential space gets mapped to the middle plane of the
octahedron.

Following the statement of Ullrich and Kohn [34] that po-
tentials which create degeneracies are rare, we have argued in
this section that also those that lead to non-uv ground states
are uncommon. By consistently adapting their argument to the
graph setting one should be able to make this statement more
rigorous and give a full picture of the topology of the density-
potential mapping.
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s

t s = t

s = −t

|s| > |t|
ΨA(s)

|s| < |t| ΨB(t)

{ΨA(s),ΨB(s)}

{ΨA(s),ΨB(−s)}

Figure 4: The potential space for the square graph exam-
ple from (45) in the (s, t)-parameter space. Along the
diagonals 2-fold degeneracy arises, while the hatched
regions do not have degeneracy but are non-uv. A non-
uv potential set that gives a fixed density ρA(s) is dis-
played as a blue line that links two degeneracy regions.

V. SPECIAL RESULTS FROM THE PERRON–
FROBENIUS THEOREM

A. Positivity of the non-interacting ground-state density

In Section III A we noted that one cause of HK violation
is the possibility of having zero density ρi = 0 on a vertex.
In this section we will show that this situation is excluded for
the non-interacting case and small perturbations. These results
are based on the Perron–Frobenius (PF) and Rellich theorems.
Nevertheless, having a strictly positive density does not neces-
sarily help with the HK theorem, as it does in the continuum
case [40], because still a critical number of wave-function com-
ponents above the Odlyzko condition might be zero.

We start by explaining the basic setting for the PF theorem.
Therein one considers a real symmetric matrixAij = Aji ∈ R
with Aij ≥ 0. To this matrix we can assign a graph G(A) by
the adjacency relation i ∼ j whenever Aij 6= 0 for i 6= j and
i 6∼ j otherwise. If the graph is connected then for any choice
of two vertices i and j there is a positive integer n such that

(An)ij > 0, (67)

which graphically means that there is a path of length n, i.e.,
having n edges, connecting the vertices i and j. A matrix
with this property is called irreducible. For such matrices we
have the following theorem about the eigenvector with maxi-
mal eigenvalue [35; 41; 42] that has already been employed by
Englisch and Englisch [43] and Chayes et al. [6] for the case
of bosonic lattice systems.

Theorem 14 (Perron–Frobenius). Let a real, non-negative
M × M matrix A be symmetric and irreducible. Then the
following statements hold:

1. A has a non-degenerate, maximal eigenvalue λmax ∈ R
such that all other eigenvalues are strictly smaller.

2. The eigenspace belonging to λmax is one-dimensional
and the corresponding eigenvector x = (x1, . . . , xM )
can be chosen in such a way that all its components are
strictly positive, i.e., xj > 0 for j = 1, . . . ,M .

3. There are no other non-negative eigenvectors corre-
sponding to the lower eigenvalues, i.e., all other eigen-
vectors must have at least one negative or complex com-
ponent.

This theorem has an immediate application to graph Hamil-
tonians. We start by considering a real, one-particle Hamil-
tonian hij = hji ∈ R corresponding to a connected graph
G(h). If hij ≤ 0 for i 6= j (as it is the case for the neg-
ative graph Laplacian) then by a suitable shift of the diag-
onal of h by adding −c I with c > 0 we can assure that
Aij = −hij + c δij ≥ 0 and A thus satisfies the requirements
of the PF theorem. The eigenvector with maximal eigenvalue
of A then exactly corresponds to the ground-state eigenvec-
tor of h that has minimal energy. If we normalize this vector
and call it φ0, we can guarantee φ0,i > 0 and thus have of
course also a positive density for the one-particle ground state.
The theorem can, however, not in general be applied to theN -
particle Hamiltonians such as in the examples of Section II E,
because the corresponding Hamiltonians also include +1 in
the off-diagonal entries. Yet, in the case of non-interacting
fermions on the graph G(h) any N -particle ground state is of
the form

Ψ = φ0 ∧ φ1 ∧ . . . ∧ φN−1, (68)

where φj for j = 1, . . . , N − 1 are other orthonormal eigen-
states of h chosen according to the aufbau principle. If the
highest excited state φN−1 in Ψ above belongs to a degener-
ate multiplet then the choice according to the aufbau princi-
ple is not unique and we also get degeneracy in theN -particle
ground state. However, every such choice always contains the
non-degenerate, strictly positive state φ0 and therefore for any
pure-state ground-state density ρ we surely have

ρi = φ2
0,i + |φ1,i|2 + . . .+ |φN−1,i|2 > 0. (69)

We therefore conclude that any (ensemble) ground-state den-
sity for N non-interacting electrons cannot vanish on any of
the vertices as a consequence of the Perron–Frobenius theo-
rem applied on the one-particle Hamiltonian. We collect our
results in the following corollary.
Corollary 15. If h is a real, symmetric one-particle Hamilto-
nian corresponding to a connected graph G(h) and hij ≤ 0
for i 6= j then the ground state φ0 of h is non-degenerate and
can be chosen to be strictly positive on every vertex of G(h),
i.e., φ0,i > 0 for all i ∈ X . Moreover, for any ground-state
density ρ ofN non-interacting fermions on the graphG(h) we
have ρi > 0 for all i ∈ X .

Now, Rellich’s theorem (Theorem 12) can be used to slightly
extend the result of Corollary 15 to small perturbations of the
non-interacting Hamiltonian, or to perturbations of any other
Hamiltonian that has a non-zero ground-state density.
Corollary 16. LetH be anN -particle Hamiltonian that has a
non-zero density coming from a non-degenerate ground state.
Then for any Hermitian matrixW the perturbed Hamiltonian
H + λW will also have a non-zero ground-state density for
small enough λ.
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B. Unique v-representability for a linear chain with inter-
acting fermions

As explained in Section III B, the validity of the HK theo-
rem can be assured if the ground-state expansion in terms of
the states {eI}I contains a sufficient number of non-zero coef-
ficients determined by the Odlyzko condition. In general it is
a difficult task to ensure that the ground state has the required
number of non-zero coefficients. However, if we restrict our-
selves to a certain graph topology then more detailed results
can be obtained. We will do precisely this for the case of a
linear chain with a real Hamiltonian.

For a linear chain we can label the vertices 1, . . . ,M from
left to right along the chain. The chain is then represented by
a one-particle Hamiltonian hij that for i 6= j is only non-zero
when j = i ± 1 (except at the start and the end of the chain
where the connection is only in one direction) and we will as-
sume that hij < 0 in that case (like it would be for the negative
graph Laplacian). We can further allow for any external po-
tential already included in h and an arbitrary interaction W ,
as long as it is diagonal in the {eI}I basis, so the Hamiltonian
that we consider is

H =
∑
j

∑
i=j±1

hij â
†
i âj +W. (70)

Theorem 17. Let the graph G(h) of a real, one-particle
Hamiltonian h with hij ≤ 0 for i 6= j be a linear chain
and thus consider the Hamiltonian (70) where W is any in-
teraction diagonal in the {eI}I basis. Then the ground state
Ψ =

∑
I ΨIeI is non-degenerate and can be chosen such that

ΨI > 0 for all I . In particular it follows that Ψ is uniquely
v-representable.

Proof. We first demonstrate that the off-diagonal elements
HIJ ofH in the {eI}I basis are non-positive, i.e.,HIJ ≤ 0 if
I 6= J . SinceW by our choice only has diagonal elements we
only need to consider the one-particle part of the Hamiltonian.
We therefore act with hij â†i âj on a basis vector eI . If j does
not occur in the multi-index I or when i 6= j ± 1 then clearly
hij â

†
i âjeI = 0, so let us assume j ∈ I and i = j ± 1. We

can then write I = (. . . , i′, j, i′′, . . .) with i′ < j < i′′ and
we find hij â†i âjeI = hijeJ where J = (. . . , i′, j ± 1, i′′, . . .).
Now either i′′ = j + 1 or i′ = j − 1, in which case eJ = 0, or
i′ < j ± 1 < i′′, in which case eJ is one of the ordered basis
vectors and gets a negative prefactor hij < 0 for i = j ± 1.
This proves our assertion.
Since we have established that HIJ ≤ 0 for I 6= J and
furthermore the corresponding fermionic graph is connected
(Lemma 4), the PF theorem (Theorem 14) applies. We can
thus conclude that the many-particle ground state Ψ expanded
in the {eI}I basis is non-degenerate and can be chosen such
that all coefficients have ΨI > 0. By Corollary 10 this state is
then uniquely v-representable.

VI. CONSTRAINED-SEARCH FUNCTIONALS AND v-
REPRESENTABILITY

A. General notions

The notion of v-representability is clearly a central concept
to DFT: Determine the set of all densities for which a potential
exists, such that the respective ground state yields just this den-
sity. It is therefore the precondition for a well-defined density-
potential mapping. This can be generalized into allowing not
only pure ground states but also a ground-state ensemble and
thus a mixture of degenerate ground states, which yields the re-
spective density. This describes “ensemble v-representability”
in comparison to “pure-state v-representability”. A necessary
condition for densities to be ensemble v-representable on an
even infinitely large lattice was given by Chayes et al. [6]. In
Theorem 19 below we give a simplified proof for the graph
case. The sets of densities under consideration are the most
general ones: First, the physical densities PM,N already de-
fined in (21) where only 0 ≤ ρi ≤ 1 and the proper nor-
malization are taken into account and which are also all N -
representable, as demonstrated in Section II C, and second, the
open set P+

M,N with strict inequalities.

PM,N =

{
ρ : X → R

∣∣∣∣∣ 0 ≤ ρi ≤ 1,

M∑
i=1

ρi = N

}
(71)

P+
M,N =

{
ρ : X → R

∣∣∣∣∣ 0 < ρi < 1,

M∑
i=1

ρi = N

}
(72)

Note that both sets are convex and that the set of physical den-
sities PM,N is the closure of the open set P+

M,N .
In the following we fixH0 as the internal part of the Hamil-

tonian including possible interactions, while the external po-
tential v ∈ RM couples as usual to the density and acts as an
operator V onHN . From the Rayleigh–Ritz variational princi-
ple we get the ground state or ground-state ensemble for a given
potential v as the minimizers of the respective variational en-
ergy expressions

E(v) = inf
Ψ∈IN

{〈Ψ, (H0 + V )Ψ〉} (73)

= inf
Ψ∈IN

{
〈Ψ, H0Ψ〉+

∑
i

viρ[Ψ]i

}
and

E(v) = inf
Γ∈DN

{Tr(Γ(H0 + V ))} (74)

= inf
Γ∈DN

{
Tr(ΓH0) +

∑
i

viρ[Γ]i

}
,

where the variation goes over all normalized wave functions
or density matrices. The variation can be split into two parts:
First vary over all states yielding a fixed density ρ, denoted by
Ψ 7→ ρ andΓ 7→ ρ, and then over all possible physical densities
in PM,N . We then have

E(v) = inf
ρ∈PM,N

{
inf

Ψ∈IN
{〈Ψ, H0Ψ〉 | Ψ 7→ ρ}+

∑
i

viρi

}
(75)
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and

E(v) = inf
ρ∈PM,N

{
inf

Γ∈DN

{Tr(ΓH0) | Γ 7→ ρ}+
∑
i

viρi

}
.

(76)
This variational form of the ground-state energy allows for an
alternative and very direct proof of the first part of the HK the-
orem, stating that two Hamiltonians that differ only in their
external potentials and share a common ground-state density ρ
also share a ground state with this density.

Proof. (Alternative proof for Theorem 7 [44]) Let the common
ground-state density be fixed as ρ, then the outer infimum in
(75) is void and we have

E(v) = inf
Ψ∈IN

{〈Ψ, H0Ψ〉 | Ψ 7→ ρ}+
∑
i

viρi. (77)

However, the remaining infimum is entirely independent of v
and will have the same value for all potentials. Consequently,
the given density alone determines the ground state. Obvi-
ously, the proof is the same considering ensemble states.

Realizing in the proof above that the universal, v-
independent part in the expression for E(v) fulfills an im-
portant function, the following definitions of the so-called
constrained-search density functionals [2; 3] on an extended
domain that is the full vector space RM arise.

F̃ (ρ) =

{
infΨ∈IN {〈Ψ, H0Ψ〉 | Ψ 7→ ρ} ρ ∈ PM,N

+∞ ρ ∈ RM \ PM,N

(78)

F (ρ) =

{
infΓ∈DN

{Tr(ΓH0) | Γ 7→ ρ} ρ ∈ PM,N

+∞ ρ ∈ RM \ PM,N

(79)

From the definition it is evident that F̃ (ρ) ≥ F (ρ) for all ρ
because of the larger search space of the second. Next, ob-
serve that the ground-state energy functional E(v) in (76) (or
(75)) is then given as the Legendre–Fenchel transform or con-
vex conjugate [45, §12] of F (ρ) (or equally of F̃ (ρ)), where
we use a slightly different convention than usual that is specif-
ically adapted to DFT [46],

E(v) = inf
ρ∈RM

{
F (ρ) +

∑
i

viρi

}
. (80)

With another Legendre–Fenchel transformation we can trans-
form E(v) back to F (ρ),

F (ρ) = sup
v∈RM

{
E(v)−

∑
i

viρi

}
, ρ ∈ RM . (81)

For this to be possible, the functional F has to fulfil several
properties [45, Cor. 12.2.1] that do in fact hold: F is proper
because it is bounded below, closed because it is lower semi-
continuous, and convex from the linearity of the trace in (79)
(see Lieb [3] for the last two properties). Since F̃ in general
fails to be convex, as we will explicitly demonstrate later in
Section VI E, it is only F that we get back from the described
double Legendre–Fenchel transformation starting from either
F̃ or F .

F̃

E F

F

LF

LF

LF (82)

However, this means that F is the convex hull of F̃ .

Proposition 18. F = ch F̃ .

Proof. Any density matrix Γ 7→ ρ can be written as a convex
combination Γ =

∑
n λnΓn, where the Γn correspond to pure

states. Thus from the definition,

F (ρ) = min
Γ∈DN

{∑
n

λn Tr(ΓnH0)

∣∣∣∣∣ ∑
n

λnΓn 7→ ρ, λn ∈ [0, 1],
∑
n

λn = 1,Γn pure

}

= min
ρ∈PM,N

{∑
n

λn min
Γn∈DN

{Tr(ΓnH0) | Γn 7→ ρn,Γn pure}

∣∣∣∣∣ ∑
n

λnρn 7→ ρ, λn ∈ [0, 1],
∑
n

λn = 1

}

= min
ρ∈PM,N

{∑
n

λnF̃ (ρn)

∣∣∣∣∣ ∑
n

λnρn 7→ ρ, λn ∈ [0, 1],
∑
n

λn = 1

}
.

(83)

This is exactly the convex hull of F̃ .

The convexity of F restricted to PM,N has a notable conse-
quence, since such functionals are automatically differentiable
almost everywhere [45, Th. 25.5]. Furthermore, differentiabil-
ity ofF at a density point ρ ∈ P+

M,N means thatF has a unique
subgradient there [45, Th. 25.1], v = −∇F (ρ) (modulo a con-

stant), which exactly gives the (unique) minimum in (80), so
ρ is found to be uv. Consequently, almost all densities are uv,
exactly the result we derived in Theorem 11. The possible non-
differentiability of F in continuum DFT has been previously
discussed by Lammert [47]. The proof of v-representability in
Englisch and Englisch [5] for finite-dimensional state spaces
rests on finding continuous tangent functionals to F , a notion
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closely related to the subgradient, but we will instead present
the approach of Chayes et al. [6] in the next section that avoids
any reference to differentiability.

B. Results on v-representability

E(v) in the supremum of (81) is continuous in v as a con-
sequence of Rellich’s theorem (Theorem 12) or simply be-
cause every finite concave function is continuous. However,
the search space RM is not compact, so at this point we cannot
be sure that the supremum is always attained for ρ ∈ PM,N .
However, if we are able to show that the search space can
equivalently be replaced by a compact set then any choice of ρ
leads to a corresponding potential v and we just need to make
sure that this ρ also comes from a ground state of H0 + V
to have v-representability. This is the content of the follow-
ing theorem adapted from Chayes et al. [6] that guarantees v-
representability by ensembles for all ρ ∈ P+

M,N , yet not for the
whole PM,N .

Theorem 19 (ensemble v-representability). For all ρ ∈ P+
M,N

there is a v ∈ RM such that the Hamiltonian H0 + V has a
ground-state ensemble Γ 7→ ρ.

Proof. In order to prove ensemble v-representability we will
show that for all ρ ∈ P+

M,N the supremum in (81) is actu-
ally a maximum. This means that there is v ∈ RM such
that F (ρ) = E(v) −

∑
i viρi. However, rearranging this to

E(v) = F (ρ) +
∑
i viρi it identically means that ρ is a min-

imizer in (80) for the determined v. However, since in (79)
a continuous function is varied over a compact set, for every
ρ ∈ PM,N there is a Γ ∈ DN that minimizes (79) and this
density matrix is then the required ground-state ensemble.
To start with, we note that by adding a constant shift to a po-
tential v, the associated ground-state density does not change
while E(v) is shifted. Therefore, without loss of generality,
we always limit the v under consideration to those that give
E(v) = 0.
Considering now an arbitrary ρ ∈ P+

M,N , the supremum in
(81) means that for every ε > 0 we can find a v ∈ RM with
E(v) = 0 such that

F (ρ)− ε ≤ −
∑
i

viρi. (84)

This estimate leads to∑
i

viρi =
∑
i

vi>0

viρi −
∑
i

vi<0

|vi|ρi

= D+ −D− ≤ −F (ρ) + ε ≤ ‖H0‖+ ε,

(85)

where we separated the positive and negative contributions
from the energy of the external potential,D+ andD−, and use
the operator norm of H0 to bound |F (ρ)| from above. On the
other hand, from (80) and (79) we then have for all ρ̃ ∈ PM,N

and v ∈ RM with E(v) = 0 that

−
∑
i

viρ̃i ≤ F (ρ̃) ≤ ‖H0‖. (86)

We now choose a density ρ̃ that has the value pρi for all i ∈ X
where vi ≥ 0 and qρi otherwise. Here p, q are chosen with

0 < p < 1 < q such that ρ̃ is still normalized toN as required.
This is clearly possible since ρi < 1 everywhere and so there
is room to raise the density by a factor q > 1 where vi < 0
while lowering it with p < 1 where vi > 0 and still having
qρi ≤ 1 and keeping it normalized. The extreme cases where
the potential is purely positive or negative will be considered
afterwards. Now (86) is

− pD+ + qD− ≤ F (ρ̃) ≤ ‖H0‖ (87)

and the combination of (85) and (87) gives

(q − p)D+ ≤ (1 + q)‖H0‖+ qε, (88)
(q − p)D− ≤ (1 + p)‖H0‖+ pε, and finally (89)

D+ +D− =
∑
i

|vi|ρi ≤
p+ q + 2

q − p
‖H0‖+

p+ q

q − p
ε. (90)

In the case vi ≥ 0 everywhere we simply have D− = 0 and
thus the stronger estimateD+ +D− = D+−D− ≤ ‖H0‖+ε
from (85) holds. If vi < 0 everywhere then D+ = 0 and we
get D+ + D− = −D+ + D− ≤ ‖H0‖ directly from (86) by
just setting ρ̃ = ρ. This means that in any case we can rely
on the estimate (90) when looking for potentials that yield a
ground-state density ρ. Since we know mini ρi > 0 we even
have the 1-norm bound

‖v‖1 =
∑
i

|vi| ≤ (min
i
ρi)
−1

(
p+ q + 2

q − p
‖H0‖+

p+ q

q − p
ε

)
= Rρ (91)

for the potential, where the r.h.s. just depends on the chosen
ρ since this also determines the parameters q and p. Overall,
we have concluded that in order to find the supremum in (81)
we can limit the search to potentials inside the closed 1-norm
ball with finite radius Rρ, which is clearly compact. Since E
is known to be continuous, the extreme value theorem yields a
definitive maximum for (81) inside this ball.

Such ensemble v-representability was also demonstrated for
a coarse-grained version of continuum DFT [48; 49]. On the
other hand, it has been stated recently by Rössler et al. [50] that
there are densities in P+

M,N on simple lattice systems that are
not ensemble v-representable, which would be in opposition
to the theorem above. However, the claim rests on a numerical
reverse-engineering procedure for finding a suitable potential
v where uniqueness may have been assumed. Since their plot
for the deviation from the reference density shows a kink at
its minimum, this rather points to non-uniqueness than non-v-
representability, such as in our HK-violation examples (Sec-
tion III C).

The proof above suggests a simple corollary that limits the
set of possible potentials yielding a given density.

Corollary 20. The set of potentials (modulo a constant) that
leads to any given ρ ∈ P+

M,N as the ground-state density is a
bounded set, as can be directly seen from estimate (91).

The above result tells us that ensemble representability in
P+
M,N is not only possible but even realized within bounded

potential sets determined by the given density. This leaves
open the question of pure-state v-representability. The follow-
ing proposition connects this problemwith the value of the two
constrained-search functionals.
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Proposition 21. A density ρ ∈ P+
M,N is pure-state v-

representable if and only if F (ρ) = F̃ (ρ).

Proof. We first show that from pure-state v-representability it
follows F (ρ) = F̃ (ρ). The overall estimate F ≤ F̃ is clear
from the larger search space for the infimum in F . Hence,
we just need to show F̃ (ρ) ≤ F (ρ) if ρ is pure-state v-
representable. In such a case there is a Ψ ∈ HN that is a
ground state ofH0 + V and has Ψ 7→ ρ. Now take any Γ 7→ ρ
to be Γ =

∑
n λnΓn with

∑
n λn = 1, λn ∈ [0, 1], and Γn

corresponding to a pure state Ψn. We also have from (78) that
F̃ (ρ) = 〈Ψ, H0Ψ〉 and so with the Rayleigh–Ritz variation
principle

E(v) = F̃ (ρ) +
∑
i

viρi =
∑
n

λn〈Ψ, (H0 + V )Ψ〉

≤
∑
n

λn〈Ψn, (H0 + V )Ψn〉 (92)

=
∑
n

λn Tr(Γn(H0 + V )) = Tr(ΓH0) +
∑
i

viρi.

This means we derived F̃ (ρ) ≤ Tr(ΓH0) for arbitrary den-
sity matrices that have density ρ. Taking the infimum over all
these will result in F̃ (ρ) ≤ F (ρ) and finishes the first part of
the proof.
For the other implication, assume F (ρ) = F̃ (ρ). How-
ever, this just means that instead of a density matrix one can
choose a pure state to achieve the same minimum, thus ρ is
v-representable by this pure state.

By finding a single counterexample for pure-state v-
representability in P+

M,N we would thus know that F̃ 6= F

and consequently, since F is the convex hull of F̃ , the pure-
state constrained-search function F̃ cannot be convex. The
argument for non-pure-state v-representability of Levy [51,
Sec. V] depends on at least 3-fold degeneracy and finding arbi-
trarilymany equations that must be simultaneously fulfilled (by
checking different positions in the continuum) and thus does
not work on a graph. Lieb [3, Th. 3.4(i)], on the other hand,
gave a group theoretical argument that also relies on at least 3-
fold degeneracy but is invalid in the discrete setting discussed
here as we will show in Section VID. To reconcile the results
of non-pure-state v-representability with the graph setting, we
give an explicit counterexample in Section VI E. However, be-
fore that we discuss an example where actually every density
is pure-state v-representable and thus F̃ = F .

C. Triangle graph: Full v-representability and explicit
constrained-search functional

The two-particle Hamiltonian for the triangle graph with a
general potential v was already given in (42) together with the
2-fold degenerate ground-state space for v = 0 spanned by the
two orthonormal states

ΨA =
1√
2

(1, 0,−1) and ΨB =
1√
6

(1, 2, 1). (93)

in the H2-basis {e1 ∧ e2, e1 ∧ e3, e2 ∧ e3} with densities
ρA = 1

2 (1, 2, 1) and ρB = 1
6 (5, 2, 5). This multiplicity disap-

pears as soon as a non-constant potential is applied, symmetry

is broken, and the degeneracy is lifted. That the Hamiltonian
with a non-constant v actually has no multiple eigenvalues can
be checked by showing that the discriminant of the character-
istic polynomial of H(v) is non-zero for all v, which can be
done explicitly in this case with some effort. This means that
the only densities that can come from ensemble states are the
ground-state densities for v = 0, collected in the set C, all com-
ing from the states ΨA,ΨB above. Hence, in order to test the
possibility of full pure-state v-representability, just the mix-
tures of ΨA and ΨB have to be scrutinized. However, any con-
vex combination λAρA+λBρB ∈ C is also simply the density
of the linear combination

√
λAΨA + i

√
λBΨB with the real

ΨA,ΨB , so the two real dimensions of the complex plane that
correspond to the double degeneracy save the day. It is thus
straightforwardly shown that any density in P+

3,2 is also pure-
state v-representable and consequently F̃ = F on the triangle
graph by Proposition 21.

Since any convex combination of two densities from the set
C of ensemble ground-state densities for v = 0 is again in C,
this set is convex. Furthermore, it is closed, because it is the
image of a compact set {cAΨA + cBΨB | |cA|2 + |cB |2 = 1}
under the continuous mapping Ψ 7→ ρ. To get a graphical rep-
resentation of the density-potential map we observe that the set
P3,2 forms a triangle itself: The extreme points are the densi-
ties (1, 1, 0), (1, 0, 1), and (0, 1, 1), and all other elements of
P3,2 are convex combinations of these three points and so it is
natural to use barycentric coordinates for their representation
in Figure 5. The uniform density ρ̄ = 2

3 (1, 1, 1) = 1
2ρA+ 1

2ρB
coming from 1/

√
2ΨA + i/

√
2ΨB , which is clearly a ground-

state solution to v = 0 already due to symmetry, forms the cen-
ter. The possible linear combinationsΨ = cAΨA+cBΨB with
|cA|2 + |cB |2 = 1 that form the degenerate ground-state mani-
fold for v = 0 all fulfil a certain density constraint: Take with-
out loss of generality cA = α and cB = βeiϕ with α, β, ϕ ∈ R
and α2 + β2 = 1, then the density of Ψ is

ρ =
1

6
(3α2 + 5β2 + 2

√
3αβ cosϕ,

6α2 + 2β2,

3α2 + 5β2 − 2
√

3αβ cosϕ).

(94)

We form the Euclidean distance to the center ρ̄ and use α2 +
β2 = 1 to get

‖ρ− ρ̄‖ =

(∑
i

(ρi − ρ̄i)2

) 1
2

=

(
1

6
(1− 2α2 + 2α4 + 2α2(1− α2) cos(2ϕ))

) 1
2

≤ 1√
6

(95)

if the cosine is estimated by 1. Independent of α, β the choice
of ϕ that maximizes the above expression will always yield
1/
√

6. This means all the possible ρ ∈ C from the degen-
erate ground states for v = 0 form a closed circular region
of radius 1/

√
6 around the center ρ̄. However, 1/

√
6 is pre-

cisely the incircle radius of an equilateral triangle of side length
‖(1, 1, 0)−(1, 0, 1)‖ =

√
2, so the set C will be the incircle re-

gion ofP3,2, touching the border of the triangle at three points.
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All this is displayed in Figure 5 correspondingly, together with
some details on the mapping back to potentials that will be dis-
cussed next.
When plotting the associated potentials we will choose the

gauge condition
∑
i vi = 0 which can always be achieved by

subtracting the constant 1
M

∑
i vi from a given potential. Al-

ready in Sections III C we noted that by applying an attrac-
tive potential from {(0,−t, 0) | t > 0}, or equivalently from
{(t,−2t, t) | t > 0}, the ground state ΨA remains unchanged
(because it has full density ρA,2 = 1 at vertex 2) while degener-
acy is lifted and thus all those potentials yield the same excep-
tional ground-state density ρA = ( 1

2 , 1,
1
2 ) that formed the first

counterexample to the HK theorem. By symmetry, the same is
also true for the potentials (−2t, t, t) and (t, t,−2t), just with
permuted exceptional densities (1, 1

2 ,
1
2 ) and ( 1

2 ,
1
2 , 1). They

occur exactly at those three points where the incircle touches
the border of the equilateral density triangle, consequently they
are in P3,2 but not in P+

3,2 (still they are v-representable, even
by an infinite number of different potentials). These consider-
ations display the topological richness of the density-potential
mapping for this simplest, non-trivial example of a fermionic
graph: While the whole incircle region C including its bound-
arywith the exception of the three exceptional points is mapped
many-to-one to the unique potential v = 0 (as always modulo
an additive constant) the three exceptional points are mapped
one-to-many to three rays extending straight into infinity and
dividing the whole two-dimensional potential space (after re-

moving the additive constant) into three separate regions. The
three remaining open regions in the spikes of the density tri-
angle S1,S2, and S3 were already shown to come from non-
degenerate states that arise from non-constant potentials, and
also the density inside the spikes (not on the boundary) does
not have zero or full occupancy at any vertex. One can thus
argue in the triangle case that none of the coefficients of the
corresponding wave function is zero, so by the Odlyzko condi-
tion (Corollary 10) they are all uv-densities and therefore be-
long to a unique potential. Those densities are consequently
mapped one-to-one to the potential space and form the open
set U3,2 = S1 ∪ S2 ∪ S3 of non-degenerate, uniquely v-
representable ground-state densities from Theorem 13. The
remaining border of the density triangle, with the exception of
the exceptional points, cannot be reached by any potential but
only be approximated by very large potentials. The whole sit-
uation is summarized in Figure 5.

However, we can go much further in this simplest, yet ex-
tremely vivid example. It is even possible to give a closed,
analytical expression for the functional F̃ (ρ) by choosing a
parameterization for the trial wave function and minimizing
(78). Using the already introduced division of P+

3,2 including
the three exceptional points into the closed circular region C
and the three open spike regions S1,S2,S3 (bottom left, bot-
tom right, and top), we get after a quite tedious calculation that
is given in Appendix A that

F̃ (ρ) =



3 ρ ∈ C

4 + 2
(√

(1− ρ1)(1− ρ3)−
√

(1− ρ1)(1− ρ2)−
√

(1− ρ2)(1− ρ3)
)

ρ ∈ S1

4 + 2
(
−
√

(1− ρ1)(1− ρ3)−
√

(1− ρ1)(1− ρ2) +
√

(1− ρ2)(1− ρ3)
)

ρ ∈ S2

4 + 2
(
−
√

(1− ρ1)(1− ρ3) +
√

(1− ρ1)(1− ρ2)−
√

(1− ρ2)(1− ρ3)
)

ρ ∈ S3.

(96)

The plot of the functional is displayed in Figure 6. It would
be possible now to check that F̃ is convex directly and thus
F = F̃ , a result already obtained by arguing that any density
in P+

3,2 is pure-state v-representable. The only other example
for an explicit form of a functional F̃ in the literature that we
are aware of is by Schönhammer andGunnarsson [52], but only
for a 2-site model.
Since we have obtained F = F̃ analytically, we can actu-

ally find the ground-state energy and density by direct mini-
mization of the energy functional such as in (80) without any
reference to the wave function. We have

E(v) = inf
ρ

{
F̃ (ρ) + ρ1v1 + ρ2v2 + ρ3v3

}
(97)

where the minimization is over all densities 0 ≤ ρi ≤ 1 and
ρ1+ρ2+ρ3 = 2. Since we can always put v3 = 0 by a constant
shift of the potential we can write this as

E(v) = inf
ρ1,ρ2

{
F̃ (ρ1, ρ2, 2− ρ1 − ρ2) + ρ1v1 + ρ2v2

}
,

(98)
where v1, v2 are specified. The minimizing equations from the
differentiation of the functional as alreadymentioned at the end

of Section VIA are

vj = −∂F̃ (ρ1, ρ2, 2− ρ1 − ρ2)

∂ρj
(j = 1, 2) (99)

which determines the density if we specify the potential. If the
potential v is such that ρ ∈ S2 we need to employ

F̃ (ρ1, ρ2, 2− ρ1 − ρ2) = 4 + 2
(√

(1− ρ2)(ρ1 + ρ2 − 1)

−
√

(1− ρ1)(ρ1 + ρ2 − 1)

−
√

(1− ρ1)(1− ρ2)
)

(100)
for which (99) gives the following equations,

v1 =− ∂F̃ (ρ1, ρ2, 2− ρ1 − ρ2)

∂ρ1

=−
√

1− ρ2

ρ1 + ρ2 − 1
−
√
ρ1 + ρ2 − 1

1− ρ1
(101)

+

√
1− ρ1

ρ1 + ρ2 − 1
−
√

1− ρ2

1− ρ1
,
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(1, 1, 0)

(1, 0, 1) (0, 1, 1)

ρA

ρ̄
ρB

S1 S2

S3

C

v ∈ {(t, t,−2t) | t > 0}

v ∈ {(−2t, t, t) | t > 0} v ∈ {(t,−2t, t) | t > 0}

= ρ−1(ρA)

0

Figure 5: Here the topological features of the (multivalued) density–potential mapping in the triangle graph ex-
ample are displayed. We look upon the density domain P3,2 from the (1, 1, 1) direction in R3 space, where it ap-
pears as an equilateral triangle. The red circle C corresponds to the origin v = (0, 0, 0) in the plane of gauged
potentials with

∑
i vi = 0. Furthermore, the three exceptional densities, where the incircle touches the tri-

angle, are mapped to the three displayed rays in the potential plane. Lastly, the three colored spikes of the trian-
gle S1,S2,S3 are mapped to the three corresponding areas in the potential plane that are separated by the rays.

Figure 6: Plot of the functional F (ρ) = F̃ (ρ) on the density
domain P3,2 for the triangle graph example. The central, cir-
cular region that attains the minimum F (ρ) = 3 comes from
the two degenerate ground states as Ψ = cAΨA+cBΨB 7→ ρ.

and

v2 =− ∂F̃ (ρ1, ρ2, 2− ρ1 − ρ2)

∂ρ2

=−
√

1− ρ2

ρ1 + ρ2 − 1
+

√
ρ1 + ρ2 − 1

1− ρ2
(102)

+

√
1− ρ1

ρ1 + ρ2 − 1
−
√

1− ρ1

1− ρ2
.

Take, for example, (v1, v2, v3) = (2, 1, 0), then we find that
these equations have the solution (ρ1, ρ2, ρ3) = (0.2121,
0.8176, 0.9704) which indeed lies inside the green density
area S2 in Figure 5 and gives F̃ (ρ) = 3.0832 and E(v) =

F̃ (ρ)+2ρ1 +ρ2 = 4.3249, which can be checked by direct di-
agonalization ofH(v) to be the ground-state eigenvalue of the
Hamiltonian (42) for our choice of potential. We have there-
fore shown by explicit example that it is possible to find the
ground-state energy without diagonalizing the Hamiltonian if
the analytic form of F (ρ) is known and the functional is found
to be differentiable (which it always is almost everywhere, as
we remarked earlier).

D. Complete graph: Counterexample to Lieb’s non-
convexity proof

A complete graph consists ofM vertices in which every ver-
tex is connected to all other vertices. This is in a sense the
opposite situation to the linear chain discussed in Section VB
because it is maximally connected, whereas the linear chain is
minimally connected. For example, the complete graph with
M = 3 is the triangle graph that we already studied in detail
in the previous section. Taking the one-particle Hamiltonian h
from (25), for a complete graph we have

hii = (M − 1) + vi, hij = −1 (i 6= j). (103)

By Corollary 15 we can find a non-degenerate one-particle
ground state

φ0 = (φ0,1, . . . , φ0,M ) ∈ H1 with all φ0,i > 0. (104)

If φk ∈ H1 for k = 1, . . . , N − 1 are the lowest, orthonormal,
excited one-particle eigenstates of h then the non-interacting
N -particle ground state (or one out of the ground state multi-
plet, in case of degeneracy) is given by

Ψ0 = φ0 ∧ φ1 ∧ . . . ∧ φN−1 ∈ HN . (105)

The density ρ of theN -particle ground-state is the sum of one-
particle densities evaluated at vertex i such as in (69), and we
get

ρi =

N−1∑
k=0

|φk,i|2 ≥ φ2
0,i > 0 (106)

since φ0,i was found to be strictly positive. This is not spe-
cial to the complete graph but valid for all non-interacting N -
particle states on a graph described by a graph Laplacian (or
more generally when we can apply the Perron–Frobenius the-
orem to the one-particle Hamiltonian, as demonstrated in Sec-
tion VA).
For v = 0 we define the uniform one-particle wave function

φ0 =
1√
M

(1, 1, . . . , 1) (107)
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for which we get hφ0 = 0 and this will turn out to be precisely
the ground state. The excited states φk for k = 1, . . . ,M − 1
must be orthonormal to the eigenstate φ0, so they must be of
the form

φ = (c1, c2, . . . , cM ),

〈φ0, φ〉 =
1

M
(c1 + c2 + . . .+ cM ) = 0.

(108)

This in turn already means that any such vector is an eigenvec-
tor of h with eigenvalueM , since

(hφ)i =
∑
j

hijcj

= hiici +
∑
j 6=i

hijcj

= (M − 1)ci −
∑
j 6=i

cj

= Mci −
∑
j

cj = Mci.

(109)

Hence, the excited states are (M − 1)-fold degenerate with
eigenvalue M . One possible choice for such an excited state
would be the maximally localized

φ =
1√
2

(1,−1, 0, . . . , 0) (110)

that immediately shows that a unique continuation property
(UCP) for eigenstates of graph Hamiltonians is not achievable,
since most coefficients are zero here.
We can give an alternative construction for the excited states

using the following basic relations for theM -th roots of unity:
Let ω = exp(2πi/M) and define theM vectors φk with com-
ponents

φk =
1√
M

(ωk, ω2k, . . . , ωMk), k ∈ {0, . . . ,M−1}. (111)

These vectors correspond to plane waves in the discrete setting
and are therefore the basis for the discrete Fourier space. Then,
from a well-known relation for the roots of unity, we have

〈φk, φl〉 =
1

M

M∑
j=1

ω(l−k)j = δk,l, (112)

which establishes the fact that the orbitals φk define an or-
thonormal basis for H1 and are indeed the sought-after eigen-
states of h. Interestingly, the density of all these orbitals is the
same,

|φk|2 =
1

M
(1, 1, . . . , 1), (113)

andwe have therefore found an orthonormal basis of equal den-
sity, which is also an eigenbasis. Finally, it should be noted
that this equidensity eigenbasis forms a clear contradiction to
the suggested proof of non-convexity of F̃ in Lieb [3, Theo-
rem 3.4]1. In Lieb’s proof it is stated that for a Hamiltonian

1 Note that the original reference also contains a typo in the formulation of
the theorem, where it says F , which is always convex as noted here in
Section VIA, but actually the pure-state constrained-search functional F̃
is meant.

with a certain rotational symmetry, as we have here with full
permutational symmetry in the complete graph when v = 0,
the density of a uniformly mixed state including all orthonor-
mal, degenerate ground-state orbitals will also have the full
symmetry. In our case we just take two particles, N = 2,
and the ground states Φk = φ0 ∧ φk, k = 1, . . . ,M − 1. Fur-
thermore, it says that if Φ is any pure ground state, and hence
a linear combination of the Φk, then its density will not have
the same symmetry. However, in our example all Φk have ex-
actly the same fully symmetric density. This means that the
described procedure to find a non-pure-state v-representable
density cannot work in general. However, we will rescue the
argument right away in the next section with a more complex
pure-state v-representability counterexample.

E. Cuboctahedron graph: Pure-state v-representability
counterexample

Here we give an example of a density ρ ∈ P+
M,N which

is not pure-state v-representable. This issue was already ad-
dressed by Levy [51] and Lieb [3] who pointed out that any
such example needs a system with at least three-fold degen-
eracy. Here, we only have to show that the chosen ground-
state ensemble density cannot come from a pure ground state
of the same Hamiltonian, which obviously saves us a lot of
work. This is because the first part of the HK theorem (Theo-
rem 7) states that if H = H0 + V has a ground state Ψ with
a given density then Ψ will also be the ground state for any
other H ′ = H0 + V ′ that allows the same ground-state den-
sity. Hence, it is always enough to check for just one potential.
The system under consideration is a graph withM = 12 and
the symmetry of a 3D structure that is known as the cuboctahe-
dron, see Figure 7. Ullrich and Kohn [34] used a very similar
system in order to demonstrate that in general just very few
potentials lead to degeneracy while there are many densities
coming from degenerate states, a result that we already used
in Section IVB and that was also observed in the example of
Section VIC.

1

2 3

4

5

6 7

8

9

10

11

12

Figure 7: Cuboctahedron graph. The graph is reg-
ular since every vertex has 4 adjacent neighbours.
Its shape as an Archimedean solid is also displayed.

Taking the corresponding graph Laplacian (23) without any
further potentials as the one-particle Hamiltonian h = −∆,
we arrive at the energy eigenvalues E0 = 0 (non-degenerate),
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E1 = 2 (3-fold degenerate), E2 = 4 (3-fold degenerate), and
E3 = 6 (5-fold degenerate). The ground state in the basis
ordering displayed in Figure 7 is given by

φ0 =
1√
12

(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1), (114)

and the first three degenerate excited states are given by

φ1 =
1√
8

(−1,−1,−1,−1, 1, 1, 1, 1, 0, 0, 0, 0), (115)

φ2 =
1

4
(1,−1,−1, 1, 1,−1,−1, 1, 0,−2, 0, 2), (116)

and

φ3 =
1

4
(−1,−1, 1, 1,−1,−1, 1, 1,−2, 0, 2, 0). (117)

The densities corresponding to these eigenvectors are given by

ρ0 =
1

12
(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1), (118)

ρ1 =
1

8
(1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0), (119)

ρ2 =
1

16
(1, 1, 1, 1, 1, 1, 1, 1, 0, 4, 0, 4), (120)

ρ3 =
1

16
(1, 1, 1, 1, 1, 1, 1, 1, 4, 0, 4, 0). (121)

If now N = 2 non-interacting particles are considered on this
graph with 2-particle Hamiltonian H , their ground state is

Ψ =

3∑
n=1

cnφ0∧φn = φ0∧

(
3∑

n=1

cnφn

)
with

3∑
n=1

|cn|2 = 1

(122)
or anymixture of such states. From the abovewe see that in this
case any pure ground state can be written as a single Slater de-
terminant, unlike in the example of Englisch and Englisch [5],
where they showed using an explicit system with 3 particles
with 6-fold degeneracy that even in a non-interacting system
not every pure ground state can be written as a single Slater
determinant. We take the equally distributed ensemble made
from the three φ0 ∧ φn as our counterexample, leading to to
the uniform density

ρ̄ = ρ0 +
1

3
(ρ1 + ρ2 + ρ3) =

1

6
(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1).

(123)
We will now demonstrate that this density cannot come from
any pure state of the form (122), which is, as we argued before,
themost general form of a pure ground state of the Hamiltonian
H . The density of (122) is

ρi = ρ0,i +

∣∣∣∣∣
3∑

n=1

cnφn,i

∣∣∣∣∣
2

, (124)

so in order for this density to be equal to ρ̄ we need to find
coefficients cn that give∣∣∣∣∣

3∑
n=1

cnφn,i

∣∣∣∣∣
2

=
1

12
for all i ∈ {1, . . . , 12}. (125)

From those 12 equations some can be eliminated as duplicates
and the following 6 remain,

|
√

2c1 + c2 + c3|2 = |
√

2c1 + c2 − c3|2

= |
√

2c1 − c2 + c3|2

= |
√

2c1 − c2 − c3|2 = 4
3 , (126)

|c2|2 = |c3|2 = 1
3 .

By adding the first two equations we get

|
√

2c1 + c2 + c3|2 + |
√

2c1 + c2 − c3|2

= 2
(
|
√

2c1 + c2|2 + |c3|2
)

= 8
3 (127)

⇒ |
√

2c1 + c2|2 = 1

and similarly |
√

2c1−c2|2 = |
√

2c1+c3|2 = |
√

2c1−c3|2 = 1.
Using the same trick again we arrive at

|
√

2c1 + c2|2 + |
√

2c1 − c2|2 = 4|c1|2 + 2|c2|2 = 2

⇒ |c1|2 = |c2|2 = |c3|2 = 1
3 .

(128)

However, the equations above also mean that
√

2c1 has equal
distance to ±c2 and to ±c3, so in the complex plane it must
lie on a line orthogonal to the lines connecting c2 and −c2 as
well as c3 and −c3. This can only be fulfilled if c1 = isc2 =
itc3 with s, t ∈ R, found to be |s| = |t| = 1 from |c1|2 =
|c2|2 = |c3|2. This means c2 = ±c3 which is in contradiction
to (126) where then c2 and c3 would always cancel in two of
the equations and thus would not lead to the necessary result
4
3 . This shows that ρ̄ cannot come from a pure ground state
and thus is not pure-state v-representable. This in turn implies
by Proposition 21 that F̃ 6= F , so since F is known to be the
convex hull of F̃ the pure-state constrained-search functional
F̃ cannot be convex in general.

VII. CONCLUSIONS AND OPEN QUESTIONS

The main objective of this work was to point towards the
problem of possible HK violations in a lattice setting and to
seek possible remedies. One big relief is of course the result
that almost all densities are uniquely v-representable (Theo-
rem 11). However, this and the many other albeit positive re-
sults point to a much larger theoretical complex that promises
interesting paths for future investigations, some of which are
collected in the following listing:

• The considerations in Section IVB point towards the
intriguing possibility of a full geometrization of the
density-potential mapping. Therein, the potentials that
lead to non-uv states are bounded by potentials that lead
to degeneracy, while the corresponding degeneracy re-
gions eventually touch the border of the density set or
each other at the non-uv density points. The whole sit-
uation is therefore reduced to spheres (in different di-
mensionality) and lines (planes etc.), the basic elements
of Euclidean geometry. A first demonstration has been
givenwith the triangle example in Figure 5, a speculative
depiction of how this might look in a more complex situ-
ation is given in Figure 8. A corollary from this could be
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C1

C2 C3

ρ−1(C1)

ρ−1(C2) ρ−1(C3)

Figure 8: Symbolic depiction of a the possible topological structure of the density–potential mapping. The three red regions
of densities from degenerate ground states C1, C2, C3 correspond to the three potential points in red. The single, marked

density points are non-uv and get mapped to lines of potentials that extend to infinity when the density lies on the border of
the density set. The graphs have to be understood as a 2D cut through the (M − 1)-dimensional density and potential spaces.

that almost all potentials lead to uv densities, a statement
already put forward in Section IVB.

• By presenting simple examples of graphs on which the
HK theorem is violated (Section III C) and where it still
holds (Section VB) the following task appears naturally:
Give a maximal classification of graph topologies, in-
cluding the allowed interactions, such that the HK theo-
rem indeed holds for all ground states or even all eigen-
states by fulfilling the Odlyzko condition from Corol-
lary 10. From the examples it seems that it is beneficial
if, for many-particle systems, they are not too connected.
This could be checked by studying regular graphs (where
every vertex has equal degree, i.e., the same number of
connections; in this aspect they are closer to the con-
tinuum setting with a flat geometry), trees (which do not
contain any loops), or graphs with a certain degree limit.

• We noted that by Odlyzko’s theorem the number of ze-
roes in the wave function is directly related to unique v-
representability. A closely connected issue is how these
zeroes are distributed on a fermionic graph. A similar
question has been the focus of considerable research in
connection with the Courant–Hilbert nodal domain the-
orem for graph Laplacians [26]. A natural question to
ask in our context is whether a similar theorem holds
for fermionic Hamiltonians. A significant open problem
related to this situation is the so-called nodal-domain
conjecture [53–55] which states that interacting spin- 1

2
fermions can be described by a spatial wave function
with two connected domains, one on which the wave
function is positive and one on which it is negative, sep-
arated by a nodal boundary. The resolution of this issue
has important applications with regard to the so-called
sign problem in Quantum Monte Carlo methodology.

• At the core of practical DFT lie, of course, the vari-
ous approximations to the exchange-correlation poten-
tial and it would be interesting to see what can be learned
about them and about possible exact conditions within
the theory presented here.

• The omission of spin in this work comes as no restric-
tion per se, since a spin degree of freedom can always

be taken into account by adding more vertices. Yet,
there will be usually no separate external potential act-
ing on this internal coordinate and the graph will be dis-
connected into separate spin components. This leads to
non-uniqueness of potentials that was already noted and
discussed in both the continuous [56] and lattice set-
ting [57]. Take for example N = 2 spin- 1

2 particles
on the triangle graph then the one-particle Hamiltonian
simply duplicates for the spin up and spin down sec-
tors, represented by two disconnected graphs. The re-
sulting fermionic graph displayed in Figure 9 has three
connected components of equal total spin polarization.
In the general case of N spin-s particles we get

(
N+2s
N

)
connected components in the fermionic graph. This im-
mediately gives non-uv states due to disconnectedness,
while the possibility of additional non-uniqueness of the
type discussed in this paper can still appear in each sep-
arate component. If one now adds general magnetic
fields they will appear as non-diagonal terms in the one-
particle Hamiltonian and couple the different spin com-
ponents.

• In Section IV we put forward the conjecture that the set
of all uv densities in PM,N is always open and the given
examples seem to support this claim. Conversely, this
would mean that the non-uv densities, which are known
to have measure zero (Theorem 11), also form a closed
set.

• The field of graph theory has barely been touched in this
work, so it is possible that some known results might
prove useful for DFT of graphs. For example there is a
theory about the spectra of signed graphs [58; 59] that
have a close connection to the fermionic Hamiltonians
with ±1 entries in the off-diagonal appearing here.

• One further remaining question would be on how to
achieve an appropriate continuum limit that also restores
the full HK theorem. In accordance with Lammert [49]
and contrary to Ullrich and Kohn [34] we do not believe
that “[t]he transition from a dense discrete lattice to a
continuous variable does not appear to offer difficulties.”
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u1

u2

u3

d1

d2

d3

(a) Triangle graph for a spin- 1
2
particle

u1 ∧ u2

u1 ∧ u3 u2 ∧ u3

d1 ∧ d2

d1 ∧ d3 d2 ∧ d3

u1 ∧ d1

u1 ∧ d2 u1 ∧ d3

u2 ∧ d1

u2 ∧ d2 u2 ∧ d3

u3 ∧ d1

u3 ∧ d2 u3 ∧ d3

Sz = +1

Sz = −1

Sz = 0

(b) Fermionic triangle graph for two spin- 1
2
particles where

the spin-compensated part turns out to be a discrete torus

Figure 9: Example for considering spin.

• Going beyond the ground-state situation there is the
question whether some of the insights gained here can be
used to study the time-dependent Schrödinger equation
for fermions on graphs. The discrete setting has been
useful to study fundamental issues in time-dependent
density functional theory [60–62], and has important im-
plications for quantum transport applications [63–65] or
quantum dynamics of many-particle systems on lattices
as in the Hubbard model [66] or in atomic traps [67]. In
the mathematics literature there further exist many re-
sults on diffusion on graphs [25]. A significant advan-
tage of the discrete setting is that path integrals become
well-defined objects.
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Appendix A: Expression for the constrained-search func-
tional in the triangle example

Here we give the full derivation of the closed, analytical ex-
pression for the constrained-search density functional F̃ for a
non-interacting, two-particle system on the triangle graph with
Hamiltonian (42) that is referenced in Section VIC. A general
trial wave function Ψ given in the {eI}I basis ofH2 is

Ψ = c1 e1 ∧ e2 + c2 e1 ∧ e3 + c3 e2 ∧ e3 (A1)

and we want to minimize (78) under the constraint |c1|2 +
|c2|2 + |c3|2 = 1. Now since

ρ1 = |c1|2+|c2|2, ρ2 = |c1|2+|c3|2, ρ3 = |c2|2+|c3|2, (A2)

and ρ1 + ρ2 + ρ3 = 2, we can parameterize

c1 =
√

1− ρ3 eiϕ1 , c2 =
√

1− ρ2 eiϕ2 , c3 =
√

1− ρ1,
(A3)

where a global phase factor has been split off. Because ρ is
fixed, the search space is just (ϕ1, ϕ2) ∈ [0, 2π)2. In the next
step we calculate the expectation value with respect to H(0)
from (42) and get

〈Ψ, H(0)Ψ〉 (A4)
= 4 + 2 (α1 cosϕ1 − α2 cosϕ2 − α3 cos(ϕ1 − ϕ2)) ,

https://mage.uber.space/dokuwiki/material/fermion-graph
https://mage.uber.space/dokuwiki/material/fermion-graph
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where we defined

α1 =
√

(1− ρ1)(1− ρ3),

α2 =
√

(1− ρ1)(1− ρ2),

α3 =
√

(1− ρ2)(1− ρ3).

(A5)

Since we limit ourselves to P+
3,2 all αi > 0, while at the border

of the triangular density domain an explicit solution is easily
possible. This is because then always one ρi = 1 and conse-
quently two αi are zero. At the edge where ρA is located this
leads to F̃ (ρ) = 4 − 2α1 and similarly to an expression with
α2, α3 at the other edges. In order to find the minimum of (A4)
for the interior of PM,N over all ϕ1, ϕ2 that gives the value of
F̃ (ρ) we consider the expression

T (ϕ1, ϕ2) = α1 cosϕ1−α2 cosϕ2−α3 cos(ϕ1−ϕ2) (A6)

for fixed values of αi and solve

0 =
∂T

∂ϕ1
= −α1 sinϕ1 + α3 sin(ϕ1 − ϕ2), (A7)

0 =
∂T

∂ϕ2
= α2 sinϕ2 − α3 sin(ϕ1 − ϕ2) (A8)

in order to find a minimum for T (ϕ1, ϕ2). Adding both equa-
tions gives

−α1 sinϕ1 +α2 sinϕ2 = 0 ⇒ sinϕ2 =
α1

α2
sinϕ1. (A9)

Rewriting (A7) as

0 = −α1 sinϕ1 + α3(sinϕ1 cosϕ2 − cosϕ1 sinϕ2) (A10)

and using the result (A9) from before then gives

sinϕ1

(
−α1 + α3

(
cosϕ2 −

α1

α2
cosϕ1

))
= 0. (A11)

One option that immediately follows is that sinϕ1 = 0 which
then immediately yields sinϕ2 = 0, which gives ϕ1, ϕ2 ∈
{0, π}. We obtain

(ϕ1, ϕ2) = (0, π) 7→ T (0, π) = α1 + α2 + α3, (A12)
(ϕ1, ϕ2) = (0, 0) 7→ T (0, 0) = α1 − α2 − α3, (A13)
(ϕ1, ϕ2) = (π, 0) 7→ T (π, 0) = −α1 − α2 + α3, (A14)
(ϕ1, ϕ2) = (π, π) 7→ T (π, π) = −α1 + α2 − α3. (A15)

The case (ϕ1, ϕ2) = (0, π) giving α1 +α2 +α3 > 0 is always
larger than the other ones and can thus be disregarded. In order
to make T minimal by choosing a density in P3,2 we have to,
let us say for (A13), minimize α1 and maximize the other two,
which is clearly achieved by ρ2 = 1 and ρ1 = ρ3 = 1

2 , exactly
the exceptional point ρA again. The lower bound for (A13)-
(A15) is thus − 1

2 which means F̃ = 4 + 2T ≥ 3, the correct
ground-state eigenvalue ofH(0). The remaining case of (A11)
is when

− α1 + α3

(
cosϕ2 −

α1

α2
cosϕ1

)
= 0

⇒ cosϕ2 =
α1

α2

(
cosϕ1 +

α2

α3

)
.

(A16)

We then find that

1 = sin2 ϕ2 + cos2 ϕ2

=

(
α1

α2

)2

sin2 ϕ1 +

(
α1

α2

)2(
cosϕ1 +

α2

α3

)2

,
(A17)

which gives(
α2

α1

)2

= sin2 ϕ1 +

(
cosϕ1 +

α2

α3

)2

= 1 + 2
α2

α3
cosϕ1 +

(
α2

α3

)2

,

(A18)

from which we deduce

cosϕ1 =
α2α3

2α2
1

− α2

2α3
− α3

2α2
and

cosϕ2 =
α3

2α1
+

α1

2α3
− α1α3

2α2
2

,
(A19)

where for the second equation we used (A16). We have there-
fore found an explicit expression for the angles of the stationary
point

(ϕ1, ϕ2) =

(
arccos

(
α2α3

2α2
1

− α2

2α3
− α3

2α2

)
,

arccos

(
α3

2α1
+

α1

2α3
− α1α3

2α2
2

))
.

(A20)

It now remains to evaluate T in this optimal point. From (A19)
we find

α1 cosϕ1 − α2 cosϕ2 = −α1α2

α3
(A21)

and we proceed to evaluate the term

cos(ϕ1 − ϕ2) = cosϕ1 cosϕ2 + sinϕ1 sinϕ2

= cosϕ1 cosϕ2 +
α1

α2
sin2 ϕ1

= cosϕ1 cosϕ2 +
α1

α2

(
1− cos2 ϕ1

)
=
α1

α2
− 1

α2
(α1 cosϕ1 − α2 cosϕ2) cosϕ1

=
α1

2α2
+

α2

2α1
− α1α2

2α2
3

,

(A22)
where we used (A9), (A19), and (A21). Therefore we obtain
the expression

α3 cos(ϕ1 − ϕ2) =
α1α3

2α2
+
α2α3

2α1
− α1α2

2α3
(A23)

and together with (A21) this gives

T = α1 cosϕ1 − α2 cosϕ2 − α3 cos(ϕ1 − ϕ2)

= −α1α3

2α2
− α2α3

2α1
− α1α2

2α3

(A24)

at the stationary point. Now since

α1α2

α3
= 1− ρ1,

α2α3

α1
= 1− ρ2,

α1α3

α2
= 1− ρ3 (A25)
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this gives a value at the minimum of

T = −1

2
(3− ρ1 − ρ2 − ρ3) = −1

2
⇒ F̃ = 4 + 2T = 3.

(A26)
This is also the lower bound for (A13)-(A15) as already
demonstrated, so we have definitely found a minimum here,
but it remains to find out for which densities the derivation we
performed was even valid. After all, we need to check that

−1 ≤ cosϕ1 ≤ 1 and thus −1 ≤ α2α3

2α2
1

− α2

2α3
− α3

2α2
≤ 1,

(A27)
which equivalently gives

− α1 ≤
α2α3

2α1
− α2α1

2α3
− α1α3

2α2
≤ α1. (A28)

From (A25) we then have that

α2α3

2α1
− α2α1

2α3
− α1α3

2α2
=

1

2
(1− ρ2 − (1− ρ1)− (1− ρ3))

=
1

2
(ρ1 + ρ3 − ρ2 − 1) =

1

2
(1− 2ρ2) (A29)

and therefore−2α1 ≤ 1− 2ρ2 ≤ 2α1. Squaring this equation
gives the condition

(1−2ρ2)2 ≤ 4α2
1 = 4(1−ρ1)(1−ρ3) = 4(1−ρ1)(ρ1+ρ2−1),

(A30)
which can be checked to be equivalent to(∑

i

(
ρi −

2

3

)2)1
2

≤ 1√
6
, (A31)

precisely the condition for the incircle region C already derived
in (95). This means the result F̃ = 3 is valid inside C while
the three other results from (A13)-(A15) are for the spike re-
gions S1,S2,S3. This allows us to collect all results in the full
expression for F̃ already given in (96),

F̃ (ρ) =


3 ρ ∈ C
4 + 2 (α1 − α2 − α3) ρ ∈ S1

4 + 2 (−α1 − α2 + α3) ρ ∈ S2

4 + 2 (−α1 + α2 − α3) ρ ∈ S3.

(A32)

Finally, let us remark that an equivalent approach to retrieve an
expression for the constrained-search density functional would
be to use the Lagrange multiplier method for finding the min-
imum of the Hermitian form 〈Ψ, H0Ψ〉 under the constraints
(A2).
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