
Dimension of projection: Marstrand’s theorem

Sofia Pesonen

A thesis submitted for the degree of Master of Philosophy in Mathematics

University of Jyväskylä
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Abstract Sofia Pesonen, Dimension of projection: Marstrand’s theorem, a thesis sub-
mitted for the degree of Master of Philosophy in Mathematics, 38 pages, University
of Jyväskylä, Department of Mathematics and Statistics, winter 2022.

Tässä tutkielmassa todistetaan Marstrandin projektiolause käyttäen apuna po-
tentiaaliteoriaa. Projektiolauseen mukaan 2-ulotteisen Borel joukon ortogonaalipro-
jektion Hausdorffin dimensio on luvun 1 ja kyseisen Borel joukon dimension minimi
melkein kaikkiin eri suuntiin. Intuitiivisesti lause kertoo, että joukon varjon dimensio
on suurin mahdollinen.

Marstrandin projektiolauseen todistamiseksi tutkielmassa rakennetaan teoria al-
kaen yleisen mittateorian perustuloksista. Mittateorian pohjalta määritellään Haus-
dorffin mitta, jonka avulla määritellään joukon Hausdorffin dimensio. Intuitiivisesti
Hausdorffin dimensio kuvaa joukon geometrista kokoa ja se on yksikäsitteinen jokai-
selle joukolle. Hausdorffin dimensio mahdollistaa monimutkaisten joukkojen, kuten
fraktaalien, geometrian tutkimisen. Lisäksi esitellään dimensioihin liittyviä merkin-
töjä ja tapoja arvioida joukon Hausdorffin dimension suuruutta. Tutkielman lopussa
esitellään algoritminen menetelmä, jonka avulla voidaan muodostaa esimerkkejä frak-
taaleista. Lopuksi sovelletaan Marstrandin projektiolausetta erilaisiin joukkoihin.

John Marstrand todisti projektiolauseen vuonna 1954. Robert Kaufman todsti tu-
loksen käyttäen potentiaaliteoriaa vuonna 1968. Myöhemmin Kenneth Falconer esit-
teli Kaufmania mukaillen potentiaaliteoriaan perustuvan todistuksen. Tässä tutkiel-
massa esitellään kyseinen todistus yksityiskohtaisemmin. Marstrandin projektiolause
tuli tunnetuksi, kun Mandelbrot popularisoi fraktaalin käsitteen 1970-luvulla. Lause
voidaan yleistää korkeampiin dimensioihin ja se on tärkeä työkalu fraktaalien geomet-
rian tarkastelussa. Vaikka lause on tunnettu pitkään, siihen liittyy edelleen avoimia
ongelmia.

In this thesis we prove Marstrand’s projection theorem using potential theoretical
methods. Projection theorem claims that the Hausdorff dimension of the orthogonal
projection of a Borel set in R2 is the minimum between 1 and the dimension of the
set for almost all angles. Intuitively, the theorem gives that the shadow of the set
has the highest possible dimension. This result was first proven by John Marstrand
in 1954 and it became well known after Mandelbrot popularized the notion of fractal
in the 1970s. Marstrand’s theorem has generalizations to higher dimensions and it is
an important tool to look into the geometry of fractals. Although the theorem has
been known for long time, there are still open problems related to it.
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Introduction

We all learn in primary school math that lines are 1-dimensional, squares and
disks are 2-dimensional and cubes and balls are 3-dimensional. These shapes are
often used by scientists to model the attributes of the natural world. However, as
Benoit Mandelbrot famously said ”Clouds are not spheres, mountains are not cones,
coastlines are not circles, and bark is not smooth, nor does lightning travel a straight
line.” Mandelbrot proposed that there are better shapes to model our surrounding
world. Usually we consider dimension as an extension of an object in a given direction.
For example a square has two directions of extension and therefore it is 2-dimensional.
The usual definition of dimension is not enough when dealing with more complicated
sets. The Koch Curve (see [2, Figure 0.2]) is an example that is made of straight lines.
Therefore, one could consider it as 1-dimensional. However, problem comes, when we
go down more levels in the construction of the curve. Going down an infinite number
of levels, the length of the Koch Curve becomes infinite. To look into the geometry
and dimension of these kind of complex sets and their shadows, we build a theory in
this thesis.

Hausdorff dimension was first defined by Felix Hausdorff in 1918. For smooth sets
the Hausdorff dimension is an integer and it coincides with the dimension in the usual
way described above. Hausdorff dimension is also defined for more complicated sets.
Particularly complicated sets with ’rough’ structure may have a non-integer Hausdorff
dimension. In 1975 Benoit Mandelbrot named these sets ”fractals”. The word fractal
comes from the Latin word frāctus, which means ’broken’ or ’shattered’ and refers
to Mandelbrot’s book The fractal geometry of nature [8] as ”forms that Euclid leaves
aside as being formless”. The concept of fractal was invented to explore complicated
geometry of nature. For example a fern leaf and a lightning has this kind of complex
shape.

Marstrand’s projection theorem was first proven by John Marstrand in his thesis
in 1954. Marstrand proof was based on definitions and basic properties of Haus-
dorff dimension. Pertti Mattila generalized the result later on in 1975 [12]. In 1968
Robert Kaufman applied potential theory to prove the projection theorem [6]. Ken-
neth Falconer introduce a recount of Kaufman’s proof in his book Fractal geome-
try: mathematical foundations and applications [2]. In this thesis Falconer’s proof is
demonstrated with more details.

The main source for this thesis is Kenneth Falconer’s book Fractal geometry:
mathematical foundations and applications [2]. Falconer’s other books The geometry
of fractal sets [4] and Techniques in fractal geometry [3] and Mattila’s book Geometry
of sets and measures in Euclidean spaces: fractals and rectifiability [11] are used to
complete and reformulate the theory and the proofs. Mattila’s book Fourier analysis
and Hausdorff dimension [10] and paper Hausdorff dimension, orthogonal projections
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INTRODUCTION 2

and intersections with planes and Kaufman’s paper On Hausdorff dimension of pro-
jections [6] were used to learn about the history of the projection theorem. The book
Classical Dynamics of Particles and Systems [9] was used to learn more about the
potential theoretical methods used in Chapter 4. The sources for measure theory
presented in this thesis are notes from my thesis supervisor Sebastiano Nicolussi Golo
[5] and from my teacher Tero Kilpeläinen [7].

The thesis begins with the basics of measure theory as foundation for the inexpe-
rienced reader to follow the thesis. In Chapter 2 we introduce Hausdorff measures.
From Hausdorff measures we end up defining Hausdorff dimension in Chapter 3. Some
sets that have non-integer Hausdorff dimension are introduced through self-similarity
in Chapter 7. Self-similarity gives us algorithmic way of constructing examples of
fractals. Another way of constructing examples is to take Cartesian product of two
sets. In Chapter 5 we prove results for the dimension of these Cartesian products. In
Chapter 6 we look into the projections onto the lines through the origin of R2 with
different angles with horizontal axis. Marstrand’s projection theorem claims that the
dimension of the orthogonal projection of a Borel set in R2 is the minimum between
1 and the dimension of the set for almost all angles. This result can be generalized to
higher dimensions. However there might exist exceptional angles for which the dimen-
sion drops through the projection. Chapter 8 introduces some examples of these sets
and directions. There are still open problems related to the number of exceptional
directions. In the University of Jyväskylä, Tuomas Orponen is working on these open
problems.

The process of writing this thesis has been an occasion of learning for me. My
earlier studies included only the basics of measure theory. Through this thesis I have
met general measure theory. The preparation of this thesis has also improved my skills
to write mathematical text and my language skills. I started studying the theory by
reading the books mentioned in the bibliography and by understanding the proofs.
I have been doing exercises from Falconer’s book Fractal geometry: mathematical
foundations and applications [2] to understand the theory more deeply. We have
been working on the exercises and proofs together with my supervisor Sebastiano. I
thank Sebastiano for this journey of learning and all the support he gave me on the
way.



CHAPTER 1

Measure theory

In this chapter we introduce the basics of measure theory. The set of all the
subsets of a set X is denoted by P(X) = {A : A ⊂ X}.

Definition 1.1. Let X be an arbitrary set and F ⊂P(X). The collection F is
a σ-algebra on X if:

(1) X ∈ F ,
(2) A ∈ F ⇒ Ac = X\A ∈ F ,
(3) {An}n∈N ⊂ F ⇒

⋃
n∈NAn ∈ F .

The pair (X,F) is called measurable space.

Lemma 1.2. If J is a set and {Fj}j∈J is a collection of σ-algebras on X, then⋂
j∈J Fj is a σ-algebra on X.

Proof. (1) X ∈ Fj for every j ∈ J ⇒ X ∈
⋂
j∈J Fj.

(2) A ∈
⋂
j∈J Fj ⇒ A ∈ Fj for every j ∈ J ⇒ X\A ∈ Fj for every j ∈ J ⇒

X\A ∈
⋂
j∈J Fj.

(3) {Ai}i∈N ⊂
⋂
j∈J Fj ⇒ Ai ∈ Fj for every i and for every j. Therefore

⋃
i∈NAi ∈

Fj for every j ⇒
⋃
i∈NAi ∈

⋂
j∈J Fj. �

Trivial examples of σ-algebras are {∅, X} and P(X). Let X = {a, b}: All the
σ-algebras of X are {∅, {a, b}} and {∅, {a}, {b}, {a, b}}.

Theorem 1.3. Any family A ⊂P(X) is contained in a unique smallest σ-algebra
on X, which we denote by F(A) and we call the σ-algebra generated by A.

Proof. By the trivial example P(X), there exists at least one σ-algebra on X
containing A. Let {Fi : i ∈ I} be the collection of all σ-algebras on X containing
A. Then A ⊂

⋂
i∈I Fi and by lemma 1.2 it is a σ-algebra. Moreover,

⋂
i∈I Fi is the

smallest σ-algebra containing A, since for any σ-algebra F containing A it holds that
F ∈ {Fi : i ∈ I}. Hence F ⊃

⋂
i=I Fi. �

If X is a topological space, the Borel σ-algebra, or the σ-algebra of Borel sets, is
the σ-algebra generated by the collection of all open subsets of X.

Our desire is to find a way to define ”the measure” of a set. In simple cases we
want that our measure matches with the geometric size of a set. For example in R1

we want that the measure gives us the length, in R2 the measure should give us the
area and in R3 the volume. The measure should depend on the dimension of the
set. If we have a curve in R2, its 2-dimensional measure should be 0, since curves do
not have any area. However its 1-dimensional measure should give us the length of
the curve. Similarly the 3-dimensional measure of a surface in R3 should be 0, since
surfaces do not have volume. However its 2-dimensional measure should give us the
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1. MEASURE THEORY 4

area of the surface. Our measure should be the same for transferred or rotated sets.
The last desired feature of a measure is called countable additivity: for countable
many disjoint sets A1, A2, . . . the measure of the union is the sum of the measures
of the sets Aj. Unfortunately this feature is something that can not be fulfilled for
arbitrary families {Aj}j. We define something weaker for all the sets.

Definition 1.4. Let X be an arbitrary set. A function µ : P(X) → [0,∞] is
called a measure on X if:

(1) µ(∅) = 0,
(2) A1 ⊂ A2 =⇒ µ(A1) ≤ µ(A2),
(3) {An}n∈N ⊂P(X) =⇒ µ(

⋃
n∈NAn) ≤

∑
n∈N µ(An).

Property (2) is called monotonicity and property (3) is called subadditivity. Sub-
additivity is something weaker than the desired property of countable additivity. For
countable additivity we need to restrict the family of sets and define measurable sets.

Definition 1.5. A set E ∈P(X) is µ-measurable if

µ(A) = µ(A ∩ E) + µ(A\E)

for every A ∈P(X).

Let M (µ) be the collection of all µ-measurable subsets of X. Notice that A is an
arbitrary set and that E\A = E ∩ Ac.

Remark 1.6. By the subadditivity, we have

µ(A) ≤ µ(A ∩ E) + µ(A\E)

for every A ∈P(X). Therefore

E ∈M (µ)⇐⇒ µ(A) ≥ µ(A ∩ E) + µ(A\E) ∀A ∈P(X).

Lemma 1.7. Let E ∈ P(X). E ∈ M (µ) if and only if ∀U ⊂ E and ∀V ⊂ Ec,
µ(U ∪ V ) = µ(U) + µ(V ).

Proof. (⇒) Let U ⊂ E and V ⊂ E: setting A = U ∪ V , we have

µ(U ∪ V ) = µ(E ∩ (U ∪ V )) + µ(Ec ∩ (U ∪ V ))

= µ(U) + µ(V ).

(⇐) Given A ∈P(X), set U = A ∩ E and V = A\E. Hence

µ(A) = µ(U ∪ V )

= µ(U) + µ(V )

= µ(A ∩ E) + µ(A\E).

Therefore, E ∈M (µ). �

We can easily construct more measurable sets from given ones.

Proposition 1.8. Let E ∈P(X). If E ∈M (µ) then Ec ∈M (µ).
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Proof. If A ∈P(X) and E ∈M (µ), then

µ(A) = µ(A ∩ E) + µ(A\E)

= µ(A ∩ (Ec)c) + µ(A ∩ Ec)

= µ(A\Ec) + µ(A ∩ Ec).

Therefore, Ec ∈M (µ). �

Proposition 1.9. Let E ∈P(X).

µ(E) = 0 =⇒ E ∈M (µ)

Proof. By the monotonicity of µ, if A ∈P(X), then

µ(A ∩ E) + µ(A\E) ≤ µ(E) + µ(A\E)

= µ(A\E)

≤ µ(A).

We conclude that E ∈M (µ) by Remark 1.6. �

Corollary 1.10.
∅, X ∈M (µ)

Proof. By the Definition 1.4, µ(∅) = 0. Therefore, by the Proposition 1.9,
∅ ∈M (µ). Since X = ∅c, by Proposition 1.8 we also have X ∈M (µ).

�

Lemma 1.11. Let E,F ∈P(X).

E,F ∈M (µ) =⇒ E ∪ F ∈M (µ)

Proof. Let A ∈P(X). It holds that

A ∩ (E ∪ F ) = (A ∩ E ∩ F ) ∪ (A ∩ E ∩ F c) ∪ (A ∩ Ec ∩ F )

and
A ∩ (E ∪ F )c = A ∩ Ec ∩ F c.

If E,F ∈M (µ), the by the subadditivity of µ

µ(A) = µ(A ∩ E) + µ(A ∩ Ec)

= µ(A ∩ E ∩ F ) + µ(A ∩ E ∩ F c) + µ(A ∩ Ec ∩ F ) + µ(A ∩ Ec ∩ F c)

≥ µ(A ∩ (E ∪ F )) + µ(A ∩ (E ∪ F )c).

Therefore, E ∪ F ∈M (µ). �

To accomplish the desired property of countable additivity for measurable sets,
we need to show that the family of measurable sets forms a σ-algebra.

Theorem 1.12. The collection M (µ) is a σ-algebra on X.

Proof. (1) Holds by Corollary 1.10.
(2) Holds by Proposition 1.8.
(3) Let {E ′i}∞i=1 ⊂ M (µ). Let Fn =

⋃n
i=1E

′
i and En+1 = E ′n+1\Fn. Let F =⋃∞

i=1Ei. Notice that Fn is a disjoint union of Ei, i = 1, . . . , n. For A ∈P(X)

µ(A ∩ Fn) = µ(A ∩ Fn ∩ En) + µ(A ∩ Fn ∩ Ec
n)

= µ(A ∩ En) + µ(A ∩ Fn−1).
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Repeating this gives

µ(A ∩ Fn) =
n∑
j=1

µ(A ∩ Ej).

By Lemma 1.11, Fn ∈M (µ). By subadditivity and monotonicity

µ(A) = µ(A ∩ Fn) + µ(A ∩ F c
n)

≥
n∑
j=1

µ(A ∩ Ej) + µ(A ∩ F c).

When n→∞, by subadditivity, we get

µ(A) ≥
∞∑
j=1

µ(A ∩ Ej) + µ(A ∩ F c)

≥ µ

(
∞⋃
j=1

(A ∩ Ej)

)
+ µ(A ∩ F c)

= µ(A ∩ F ) + µ(A ∩ F c).

Therefore, by Remark 1.6, F ∈M (µ). �

Lemma 1.13. If A ∈M (µ) and B ∈M (µ), then A\B ∈M (µ).

Proof. Since A\B = A ∩ Bc and M (µ) is a σ-algebra it follows that A\B ∈
M (µ). �

Remark 1.14. If {An}n∈N ⊂M (µ) and Ai ∩ Aj = ∅, i 6= j, then

µ

(⋃
n∈N

An

)
=
∑
n∈N

µ(An).

Proof. We can write

µ

(⋃
n∈N

An

)
= µ

(
A1 ∩

⋃
n∈N

An

)
+ µ

(⋃
n∈N

An\A1

)

= µ(A1) + µ

(
∞⋃
n=2

An

)
.

By iterating we get

µ

(⋃
n∈N

An

)
=

k∑
n=1

µ(An) + µ

(
∞⋃

n=k+1

An

)

≥
k∑

n=1

µ(An).

Since it holds for all k, we obtain

µ

(⋃
n∈N

An

)
≥

k∑
n=1

µ(An).
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Since the other inequality is given by subadditivity, we get the desired equality. �

This property is called the countable additivity of µ.

Proposition 1.15. If A and B are measurable sets so that A ⊃ B, then µ(A\B) =
µ(A)− µ(B).

Proof. Since A = B ∪ (A\B) is a disjoint union, Remark 1.14 implies that
µ(A\B) = µ(A)− µ(B). �

Proposition 1.16. Let E ∈M (µ) and En ∈M (µ) for all n ∈ N.

(1) If En ↗ E then µ(En)↗ µ(E).
(2) If En ↘ E and µ(E1) <∞ then µ(En)↘ µ(E).

Notations ↗ and ↘ denotes convergence of monotonic sequences of sets or numbers.

Proof. (1) We prove that if A1 ⊂ A2 ⊂ . . . is an increasing sequence of µ-
measurable sets then

lim
i→∞

µ(Ai) = µ

(
∞⋃
i=1

Ai

)
.

We write
⋃∞
i=1 Ai = A1 ∪ (A2\A1) ∪ (A3\A2) ∪ . . . as a disjoint union. Proposition

1.15 implies

µ

(
∞⋃
i=1

Ai

)
= µ(A1) +

∞∑
i=1

(µ(Ai+1)− µ(Ai))

= µ(A1) + lim
k→∞

k∑
i=1

(µ(Ai+1)− µ(Ai))

= lim
k→∞

µ(Ak).

Therefore, limi→∞ µ(Ai) = µ (
⋃∞
i=1 Ai).

(2) Let B1 = E1 and Bk = Ek\Ek−1 where E =
⋃
n∈NBn and En =

⋃n
k=1Bk.

Note that E1\En ↗ E1\E. Applying (1) and Proposition 1.15 we get

µ(E1)− µ(En) = µ(E1\En)↗ µ(E1\E) = µ(E1)− µ(E).

Therefore µ(En)↘ µ(E). �

Corollary 1.17. If for δ > 0, Aδ are µ-measurable sets such that Aδ′ ⊂ Aδ for
0 < δ < δ′, then

lim
δ→0

µ(Aδ) = µ

(⋃
δ>0

Aδ

)
.

Proof. The claim follows straight from Proposition 1.16. �

Remark 1.18. The properties of Remark 1.14 and Proposition 1.16 are together
called continuity of measures.

Definition 1.19. A measure µ on a topological space X is a Borel measure if
every open set is µ-measurable.
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By defining the measure of a set we are able to discuss about the size of the sets.
To discuss about the distance between the sets we definite the metric of a space.
Metric spaces are an important setting for geometry and analysis. We will see how
the metric geometry interacts with measure theory.

Definition 1.20. Let X 6= ∅. A function d : X×X → [0,∞[ is a metric on X if:

(1) d(x, y) = 0⇐⇒ x = y,
(2) d(x, y) = d(y, x) ∀x, y ∈ X,
(3) d(x, y) ≤ d(x, z) + d(z, y) ∀x, y, z ∈ X.

We call (X, d) a metric space.

The distance between two sets is not intuitively trivial. If two sets are not disjoint
then the distance between these two sets can be defined in many ways. Hausdorff
distance is defined using δ-neighbourhoods.

Definition 1.21. Let A ⊂ Rn and δ > 0. The δ-neighbourhood of A is

Aδ = {x : |x− a| ≤ δ for some a ∈ A}

Definition 1.22. Let S be the class of non-empty compact subsets of Rn and
A,B ∈ S. The Hausdorff distance between the sets A and B is

h(A,B) = inf{δ : A ⊂ Bδ and B ⊂ Aδ}.

Theorem 1.23. Let S be the class of non-empty compact subsets of Rn. The
Hausdorff distance h is a metric on S.

Proof. We need to check the three properties listed in Definition 1.20.
(1) If B ⊂ Aδ, for all δ > 0, then every point of B is a limit point of A. Therefore,

h(A,B) = 0 implies B ⊆ A = A. Likewise A ⊆ B = B.
(2) Clearly h(A,B) = h(B,A) for all A,B ∈ S.
(3) Let A,B,C ∈ S and δ > h(A,B) and ε > h(B,C). Since C ⊂ Bε and B ⊂ Aδ,

then C ⊂ Aε+δ. Likewise A ⊂ Cε+δ. Thus, h(A,C) ≤ h(A,B) + h(B,C). �

Later on we need another notion of distance between sets as defined next.

Definition 1.24. Let (X, d) be a metric space. A distance between two sets
A,B ⊂ X is

dist(A,B) = inf
a∈A,b∈B

d(a, b).

Notice that this distance dist is not a metric, since dist(A,B) = 0 does not imply
that A = B. However, if dist(A,B) = 0 the sets A and B intersect. If dist(A,B) > 0,
then the closure of A and B are disjoint. Next we define a completeness of a metric
space. First we need to define Cauchy sequences.

Definition 1.25. Let (X, d) be a metric space. A sequence x1, x2, · · · ∈ X is
called Cauchy sequence if for every positive r > 0 there is a positive integer N such
that for all m,n > N ,

d(xn, xm) < r.

Definition 1.26. Metric space (X, d) is a complete metric space if every Cauchy
sequence of points in X has a limit in X.
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Next theorem gives us a rather simple way of proving that a measure is a Borel
measure.

Theorem 1.27. If (X, d) is a metric space and µ is a measure on X, then µ is a
Borel measure if and only if

µ(A ∪B) = µ(A) + µ(B)

when dist(A,B) > 0.

Proof. (⇒) Let A,B ⊂ X such that dist(A,B) = α > 0. Let C =
⋃
a∈A{x ∈

X : d(x, a) < α
2
}. Then C is open and hence µ-measurable. Therefore

µ(A ∪B) = µ((A ∪B) ∩ C) + µ((A ∪B)\C) = µ(A) + µ(B).

(⇐) Let C be a closed set: we will show that C is measurable. Let A ⊂ X. By Remark
1.6, we can assume that µ(A) is finite. For each j let Cj = {x ∈ X : dist(x,C) ≤ 1

j
}.

Then
dist(A ∩ C,A\Cj) > 0

and thus
µ((A ∩ C) ∪ (A\Cj)) = µ(A ∩ C) + µ(A\Cj).

Now A\C = A ∩ Cc =
⋃
j A ∩ Cc

j and A ∩ Cc
j is an increasing sequence. Proposition

1.16 implies
µ(A\C) = lim

j→∞
µ(A ∩ Cc

j ).

Therefore
µ(A) ≥ µ(A ∩ C) + µ(A\C)

and hence every closed set C is µ-measurable. Therefore every open set is µ-measurable
by Proposition 1.8. Therefore µ is a Borel measure on X. �

De Morgan’s laws express intersections and unions in terms of each other via
negation.

Lemma 1.28. Let A be an arbitrary set. Let I be a set and {Ei}i∈I a family of
sets. Then

A\
⋃
i∈I

Ei =
⋂
i∈I

(A\Ei)

and
A\
⋂
i∈I

Ei =
⋃
i∈I

(A\Ei).

Proof. Let x ∈ A\
⋃
i∈I Ei. Then x ∈ A and x /∈ Ei ∀i ∈ I. Hence x ∈

A\Ei ∀i ∈ I. Therefore x ∈
⋂
i∈I(A\Ei) and A\

⋃
i∈I Ei ⊆

⋂
i∈I(A\Ei). Let x ∈⋂

i∈I(A\Ei). Then x ∈ A\Ei ∀i ∈ I and therefore x /∈ Ei ∀i ∈ I. Hence x ∈
A\
⋃
i∈I Ei and

⋂
i∈I(A\Ei) ⊆ A\

⋃
i∈I Ei. We conclude A\

⋃
i∈I Ei =

⋂
i∈I(A\Ei).

Let x ∈ A\
⋂
i∈I Ei. Therefore x /∈

⋂
i∈I Ei so then there exists i ∈ I so that

x /∈ Ei. Hence x ∈ A\Ei. Therefore x ∈
⋃
i∈I(A\Ei) and A\

⋂
i∈I Ei ⊆

⋃
i∈I(A\Ei).

Let x ∈
⋃
i∈I(A\Ei). We choose i0 ∈ I such that x ∈ A\Ei0 . Since x /∈ Ei0 ,

x /∈
⋂
i∈I Ei, and thus x ∈ A\

⋂
i∈I Ei. Hence

⋃
i∈I(A\Ei) ⊆ A\

⋂
i∈I Ei. We conclude

A\
⋂
i∈I Ei =

⋃
i∈I(A\Ei). �

Next we define the convergence of a sequence of functions.
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Definition 1.29. Let E ⊂ Rn. Sequence of functions fn : E → R converges
pointwise on E to f : E → R if for every x ∈ E

lim
n→∞

fn(x) = f(x).

Definition 1.30. Let E ⊂ Rn. The sequence fn : E → R converges uniformly
on E if for every ε > 0 there exists N ∈ N such that

|fn(x)− f(x)| < ε

for all n ≥ N and for all x ∈ E.

Notice that if the sequence converges uniformly then it converges pointwise. The
other direction is not necessarily true. Egorov’s theorem shows that pointwise con-
vergence is uniform on a large set.

Theorem 1.31. (Egorov’s theorem) Let µ e a measure on a set X with µ(X) <∞.
Let A ⊆M (µ) be a σ-algebra and fk : X → R a sequence of A-measurable functions
pointwise converging to a A-measurable f : X → R. Then, for every ε > 0 there is
A ∈ A such that µ(X\A) < ε and fk converge to f uniformly on A.

Proof. Let k ∈ N\{0}. When k → ∞, then 1
k
→ 0. The pointwise convergence

implies

X =
⋃
N∈N

⋂
n>N

En, 1
k
∀k ∈ N\{0},

where En, 1
k

= {x : |fn(x) − f(x)| < 1
k
}. Notice that En, 1

k
∈ A for all k and all n.

Since ⋂
n>1

En, 1
k
⊂
⋂
n>2

En, 1
k
⊂ . . .

Proposition 1.16 implies

µ(E) = lim
N→∞

µ

(⋂
n>N

En, 1
k

)
.

As µ(E) <∞, Proposition 1.15 and Definition 1.29 implies

µ

(
X\

⋂
n>N

En, 1
k

)
= µ(X)− µ

(⋂
n>N

En, 1
k

)
→ 0,

when N →∞. Therefore, for all k ∈ N\{0}, we can choose Nk ∈ N such that

µ

(
X\

⋂
n>Nk

En, 1
k

)
<

ε

2k
.

Let Ek =
⋂
n>Nk

En, 1
k
. Lemma 1.28 implies

E\
⋂
k≥1

Ek =
⋃
k≥1

E\Ek.

It follows that

µ

(
E\
⋂
k≥1

Ek

)
≤
∑
k≥1

(E\Ek) ≤
∑
k≥1

ε

2k
= ε.
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Let A =
⋂
k≥1Ek. The set A is measurable and µ(X\A) < ε. Given any m, we have

that A =
⋂
k≥1Ek ⊂ Em. Therefore, for all n > Nm and all x ∈ A we have

|fn(x)− f(x)| < 1

m
That is, fn → f uniformly on A, as in Definition 1.30. �



CHAPTER 2

Hausdorff measure

In this chapter we will define Hausdorff measure as a generalization for area and
volume. Later we define Hausdorff dimensions using Hausdorff measures.

Definition 2.1. Let U ⊂ Rn, U 6= ∅. The diameter of U is

|U | = sup{|x− y| : x, y ∈ U}.

Definition 2.2. A δ-cover for F is a countable collection {Ui}i∈N of sets so that
0 ≤ |Ui| ≤ δ for each i and

F ⊂
∞⋃
i=1

Ui.

Next we define Hausdorff measures using δ-covers.

Definition 2.3. For F ⊂ Rn, s ≥ 0 and δ > 0, let

H s
δ (F ) = inf

{ ∞∑
i=1

|Ui|s : {Ui}i∈N is a δ-cover of F
}
.

The s-dimensional Hausdorff measure of F is

H s(F ) = lim
δ→0

H s
δ (F ).

The limit limδ→0 H s
δ (F ) exists since, when δ → 0, the class of valid coverings is

decreasing and thus the infimum is increasing. Moreover H s is a Borel measure on
Rn as we will see.

Theorem 2.4. H s
δ is a measure on Rn for every δ > 0.

Proof. (1) Clearly H s
δ (∅) = 0.

(2) Let A ⊂ B ⊂ Rn. If {Ui}i∈N is a δ-cover of B, then {Ui}i∈N is a δ-cover of A.
Therefore

H s
δ (A) ≤H s

δ (B).

(3) Let E =
⋃∞
i=1Ei ⊂ Rn. Let ε > 0. For every Ei there is a δ-cover {Uij}j∈N

such that
∞∑
j=1

|Uij|s ≤H s
δ (Ei) +

ε

2i
.

12
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Therefore {Uij}i,∈N,j∈N is a δ-cover of E. Thus

H s
δ (E) ≤

∞∑
i=1

∞∑
j=1

|Uij|s

≤
∞∑
i=1

(
H s

δ (Ei) +
ε

2i

)
≤

∞∑
i=1

H s
δ (Ei) + ε.

As ε→ 0, then

H s
δ

(
∞⋃
i=1

Ei

)
≤

∞∑
i=1

H s
δ (Ei).

By Definition 1.4, H s
δ is a measure on Rn, for every δ > 0. �

Theorem 2.5. The s-dimensional Hausdorff measure H s is a Borel measure on
Rn.

Proof. First, we check that H s is a measure as in Definition 1.4.
(1) Clearly H s(∅) = limδ→0 H s

δ (∅) = limδ→0 0 = 0.
(2) By Theorem 2.4 (2) if A ⊂ B ⊂ Rn and when δ → 0, then

H s(A) ≤H s(B).

(3) If E ⊂
⋃∞
i=1 Ei by Theorem 2.4

H s
δ (E) ≤

∞∑
i=1

H s
δ (Ei).

Since H s
δ is monotone increasing when δ → 0, then H s(E) ≤

∑∞
i=1 H s(Ei). Hence

by Definition 1.4 H s is a measure on Rn.
Next, we show that H s is a Borel measure using Theorem 1.27. Let A1, A2 ⊂ Rn

such that dist(A1, A2) > 0. Since H s is a measure it holds that

H s(A1 ∪ A2) ≤H s(A1) + H s(A2).

Let δ < dist(A1, A2)/3. Let {Ei}i∈N be a δ-cover of A1 ∪ A2 such that

∞∑
i=1

|Ei|s ≤H s
δ (A1 ∪ A2) + ε.

Since δ < dist(A1, A2)/3 each Ei intersects at most one of A1 or A2. Those that
intersect Aj form a δ-cover of Aj. Thus, for j ∈ {1, 2}, we define

Ej
i =

{
Ei if Ei ∩ Aj 6= ∅
∅ if Ei ∩ Aj = ∅

,

so that

{Ei}i∈N =
2⊔
j=1

{Ej
i }i∈N, Aj ⊂

∞⋃
i=1

Ej
i ,
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Hence
2∑
j=1

H s
δ (Aj) ≤

2∑
j=1

∞∑
i=1

|Ej
i |s

=
∞∑
i=1

|Ei|s

≤H s
δ (A1 ∪ A2) + ε.

When ε→ 0 and δ → 0, then

H s(A1 ∪ A2) ≥H s(A1) + H s(A2).

Therefore H s(A1∪A2) = H s(A1) +H s(A2) and H s is a Borel measure on Rn. �

Hausdorff measure has a useful scaling property which we prove next.

Theorem 2.6. If F ⊂ Rn and λ > 0 then

H s(λF ) = λsH s(F ),

where λF = {λx : x ∈ F}.
Proof. If {Ui}i∈N is a δ-cover of F then {λUi}i∈N is a λδ-cover of λF . Hence

H s
λδ(λF ) ≤

∑
|λUi|s

= λs
∑
|Ui|s.

By taking the infimum of the δ-covers {Ui} of F we get H s
λδ(λF ) ≤ λsH s

δ (F ). When
δ → 0 then H s(λF ) ≤ λsH s(F ). We get the opposite inequality by replacing λ by
1
λ

and F by λF :

H s(λF ) ≤ λsH s(F ) = λsH s

(
1

λ
λF

)
≤ λs

1

λs
H s(λF ) = H s(λF ).

Therefore, H s(λF ) = λsH s(F ). �

The next results give similar estimates for more general transformations.

Definition 2.7. Let X ⊆ Rm and Y ⊆ Rn and α > 0. A function f : X → Y is
called α-Hölder if there is c ∈ R such that

|f(x)− f(y)| ≤ c|x− y|α

where x, y ∈ X. The function f is called a Lipschitz function if α = 1.

Definition 2.8. Let X ⊆ Rm and Y ⊆ Rn be metric spaces. A function f : X →
Y is called bi-Lipschitz function if there are 0 < c1 ≤ c2 <∞ such that

c1|x− y| ≤ |f(x)− f(y)| ≤ c2|x− y|
where x, y ∈ X.

Proposition 2.9. Let F ⊂ Rn and f : F → Rm be an α-Hölder function. Then,
for each s > 0,

H s/α(f(F )) ≤ cs/αH s(F ),

where c is the constant from Definition 2.7.
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Proof. Let {Ui}i∈N be a δ-cover of F. Since f is a α-Hölder function |f(F∩Ui)| ≤
c|Ui|α. It follows that {f(F ∩ Ui)}i∈N is an cδα-cover of f(F ). Moreover,∑

i

|f(F ∩ Ui)|s/α ≤
∑
i

(c|Ui|α)s/α

= cs/α
∑
i

|Ui|s.

By taking the infimum over δ-covers of F we get H s/α
cδα (f(F )) ≤ cs/αH s

δ (F ).
When δ → 0 then cδα → 0 and thus

H s/α(f(F )) ≤ cs/αH s(F ).

�

Remark 2.10. Notice that if f is a Lipschitz mapping (α = 1) then

H s(f(F )) ≤ csH s(F ).



CHAPTER 3

Hausdorff dimension

In this chapter we define Hausdorff dimension using Hausdorff measures.

Definition 3.1. The Hausdorff dimension of F ⊆ Rn is

dimH(F ) = inf{s : H s(F ) = 0} = sup{s : H s(F ) =∞}
so that

H s(F ) =

{∞ if s < dimHF

0 if s > dimHF.

If s = dimH(F ), then 0 ≤H s(F ) ≤ ∞.

Definition 3.2. A Borel set F with 0 < H s(F ) <∞ is called a s-set.

We obtain some estimates for Hausdorff dimension.

Proposition 3.3. Let F ⊂ Rn and f : F → Rm be a α-Hölder function. Then

dimH f(F ) ≤ 1

α
dimH F.

Proof. If s > dimHF then H s(F ) = 0 and by proposition 2.9

H s/α(f(F )) ≤ cs/αH s(F ) = 0.

Hence dimHf(F ) ≤ s/α for all s > dimHF , so then

dimHf(F ) ≤ (1/α)dimHF.

�

Proposition 3.4. Let F ⊂ Rn and f : F → Rm be a function.

(1) If f : F → Rm is a Lipschitz function then dimH f(F ) ≤ dimH F .
(2) If f : F → Rm is a bi-Lipschitz function then dimH f(F ) = dimH F .

Proof. (1) Proposition 3.3 with α = 1 implies that dimHf(F ) ≤ dimHF .
(2) Since f is bi-Lipschitz the function f−1 : f(F )→ F is Lipschitz. Applying (1)

to f−1, we get dimHf(F ) ≥ dimHF so then dimHf(F ) = dimHF . �

3.1. Alternative definitions of dimension

The Hausdorff dimension defined in the previous section is the main notion of
dimension we are considering in this thesis. However, in some proofs, alternative
definitions of dimension can be useful. Intuitively the Box-counting dimension can be
obtained by placing the set on an evenly spaced grid and then counting, how many
boxes it takes to cover the set, when the grid is getting finer and finer. Later we will
see that the boxes can actually be replaced with other shapes.

We will denote by lim and lim the upper (limsup) and the lower (liminf) limit,
respectively.

16
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Definition 3.5. Let F ⊂ Rn, F 6= ∅ and bounded. Let Nδ(F ) be the smallest
number of sets of diameter at most δ that can cover the set F. The lower and upper
box-counting dimensions of F are

dimBF = lim
δ→0+

logNδF

− log δ

and

dimBF = lim
δ→0+

logNδF

− log δ
.

If dimBF = dimBF , then the box-counting dimension of F is

dimBF = lim
δ→0

logNδF

− log δ
.

In Definition 3.5, we can take as Nδ(F ) any iof the following numbers:

(1) the smallest number of closed balls of radius δ that cover F;
(2) the smallest number of cubes of side δ that cover F;
(3) the number of δ-mesh cubes that intersect F;
(4) the smallest number of sets of diameter at most δ that cover F;
(5) the largest number of disjoint balls of radius δ with centres in F.

The resulting box-counting dimensions will be the same (see [2, Equivalent definitions
3.1] for details).

Remark 3.6. In the definition of lower and upper box-counting dimensions, it is
enough to consider limits as δ → 0 along certain decreasing sequences δk. For details
see [2, Equivalent definitions 3.1].



CHAPTER 4

Estimates for Hausdorff dimension using potential theoretical
methods

In this chapter we consider more estimates for Hausdorff measures and dimensions.
First we introduce an important covering lemma.

Lemma 4.1. Let C be a collection of balls with non-negative radius contained in
a bounded region of Rn. Then there is a finite or countable disjoint subcollection
{Bi}i∈N such that ⋃

B∈C

B ⊂
⋃
i

B̃i,

where B̃ is the closed ball with four times radius of B and the same center of B.

Proof. We define sequences {Sk}k and {Ck}k of subfamilies of C, and a sequence
{Rk}k of non-negative numbers by induction. So, for k = 0 we set S0 = ∅, C0 = C
and R0 = sup{r(B) : B ∈ C}. If Sk, Ck and Rk are given then we have two cases:

first, there exists B̂ ∈ Ck such that r(B̂) > Rk
2

. Hence we set Sk+1 = Sk ∪ {B̂},
Ck+1 = {B ∈ Ck, B ∩ B̂ = ∅} and Rk+1 = sup{r(B) : B ∈ Ck+1}; second there is

no such B̂, hence we set Sk+1 = Sk, Ck+1 = Ck, Rk+1 = Rk. Notice that
⋂
k Ck = ∅.

Next, we claim that S =
⋃
k Sk is the desired family of balls. First, notice that S

is finite or countable by construction. Second, notice that balls in Ck have empty
intersection with balls in Sk and that the ball B̂ for the next step is chosen from Ck:
hence, balls in S are pairwise disjoint. Third, we show that

⋃
B∈C B ⊂

⋃
i B̃i. Let

x ∈
⋃
B∈C B: then there is B′ ∈ C containing x. Let k′ = sup{k,B′ ∈ Ck}. Since⋂

k Ck = ∅, then k′ < ∞. Since B′ ∈ Ck′ , then Rk′ > 0 and there is B̂ ∈ Sk′+1\Sk.
Since B′ ∈ Ck′\Ck′+1, then B′ ∩ B̂ 6= ∅. Moreover,

Rk′
2
≤ r(B̂) and r(B′) ≤ Rk′ . So, if

z ∈ B′ ∩ B̂,

|x− x(B̂)| ≤ |x− z|+ |z − x(B̂)|

≤ r(B′) + r(B̂)

≤ 3r(B̂).

Therefore, x ∈ ˜̂
B. �

From this moment on we often use mass distributions instead of measures. In
physics and mechanics a mass distribution is the distribution of mass in a volume.
This is the intuitive way of understanding the concept. We define mass distributions
the following way.

Definition 4.2. The support of a measure µ on Rn, supp(µ), is the smallest
closed set X such that µ(Rn\X) = 0.

18
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Definition 4.3. A mass distribution on a set E is a measure µ with supp(µ) ⊂ E
and 0 < µ(E) <∞.

Next we find different estimates for Hausdorff dimensions.

Proposition 4.4. Let µ be a mass distribution on Rn. Let F ⊂ Rn be a Borel
set and 0 < c <∞.

(1) If limr→0
µ(Br(x))

rs
< c for all x ∈ F then H s(F ) ≥ µ(F )

c
.

(2) If limr→0
µ(Br(x))

rs
> c for all x ∈ F then H s(F ) ≤ 8sµ(Rn)

c
.

Proof. (1) For each δ > 0 let

Fδ = {x ∈ F : ∀r ∈ (0, δ], µ(Br(x)) < crs}.

Let {Ui}i∈N be a δ-cover of F. Then {Ui}i∈N is a δ-cover of Fδ. For each Ui such that
Ui ∩ Fδ 6= ∅ it holds that Ui ⊂ B|Ui|(x) for any x ∈ Ui ∩ Fδ. Since |Ui| < δ, the
definition of Fδ gives

µ(Ui) ≤ µ(B|Ui|(x)) < c|Ui|s.
Therefore

µ(Fδ) ≤
∑

Ui∩Fδ 6=∅

µ(Ui) ≤
∑

Ui∩Fδ 6=∅

c|Ui|s ≤ c
∞∑
i=1

|Ui|.

Since {Ui}i∈N is any δ-cover of F , taking infimum over all δ-covers implies

µ(Fδ) ≤ cH s
δ (F ) ≤ cH s(F ).

When δ → 0, Fδ increases to F and Corollary 1.17 implies µ(F ) ≤ cH s(F ). There-

fore, H s(F ) ≥ µ(F )
c

.
(2) Let F be bounded and δ > 0 fixed. Let C be the collection of balls

{Br(x) : x ∈ F, 0 < r ≤ δ and µ(Br(x)) > crs}.

Then F ⊂
⋃
B∈C B. Lemma 4.1 implies that there is a sequence of disjoint balls

Bi ∈ C such that
⋃
B∈C B ⊂

⋃
i B̃i, where B̃ is the closed ball with four times radius

of B and the same center of B. Hence {B̃i} is an 8δ-cover of F. Theorem 2.6 and the
definition of C implies

H s
8δ(F ) ≤

∑
i

|B̃i|s = 4s
∑
i

|Bi|s

≤ 8s

c

∑
i

µ(Bi) ≤
8s

c
µ(Rn).

Taking the infimum of δ-covers we get

H s(F ) ≤ 8s

c
µ(Rn).

�

Theorem 4.5. Let F ⊂ Rn be a Borel set with H s(F ) = ∞. Then there is a
compact set E ⊂ F so that 0 < H s(E) <∞.

Proof. Proof is omitted, see [2, Theorem 4.10]. �
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Proposition 4.6. Let F be a Borel set with 0 < H s(F ) ≤ ∞. Then there exists
a compact set E ⊂ F with 0 < H s(E) <∞ and b ∈ R so that

(4.1) H s(E ∩Br(x)) ≤ brs

for all x ∈ Rn and r ≥ 0.

Proof. If H s(F ) = ∞ then Theorem 4.5 implies that there is a compact set
G ⊂ F so that 0 < H s(G) <∞. Applying the following result on G, we can assume
0 < H s(F ) <∞. Let

F ′ = {x ∈ Rn : lim
r→0

H s(F ∩Br(x))

rs
> 8s+1}.

If H s(F ) <∞ then by Proposition 4.4 (2)

H s(F ′) ≤ 8s

8s+1
H s(F ) ≤ 1

8
H s(F ).

Thus

H s(F\F ′) ≥ 7

8
H s(F ) > 0.

Let E ′ = F\F ′. Then H s(E ′) > 0 and for all x ∈ E ′

f∞(x) = lim
r→0

H s(F ∩Br(x))

rs
≤ 8s+1.

Let

fn(x) = sup

{
H s(F ∩Br(x))

rs
, r ∈

(
0,

1

n

]}
.

For all x ∈ E ′, we have fn(x) ↘ f∞(x) ≤ 8s+1. Theorem 1.31 implies that there is
E ⊂ E ′ such that fn(x)↘ f∞(x) uniformly on E and H s(E) > 0. Thus there exists
N ∈ N such that for all n > N and x ∈ E

|fn(x)− f∞(x)| < 8s+1.

Thus

fn(x) ≤ f∞(x) + |fn(x)− f∞(x)| < 2 · 8s+1.

Therefore for all r ≤ 1
n
, we have H s(E ∩ Br(x)) ≤ 2 · 8s+1rs. By Theorem 1.31 it

follows that there is a compact set E ⊂ E ′ with H s(E) > 0 and a number r0 > 0
such that

H s(F ∩Br(x))

rs
≤ 2 · 8s+1

for all x ∈ E and all 0 < r ≤ r0. However, if r ≥ r0, we have

H s(F ∩Br(x))

rs
≤ H s(F )

rs0
.

Therefore, (4.1) holds for all r > 0. �

Using potential theoretical methods, we are able to obtain more estimates for
Hausdorff measures. Newton’s gravitational law states that each mass particle at-
tracts every other particle with force F such that

F = −GmM
r2

u,
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where G is a constant, r is a distance between masses m and M and u is a unit vector
pointing from the mass M to mass m. This law can be applied only to point particles.
However, if we replace the particle of mass M with a body ⊆ R3 with mass density ρ
and assume that the gravitational force field is a linear field, the force F applied to a
mass m at x can be written

F = Gm

∫
V

u(x− y)

|x− y|2
ρ(y)dy,

where u = v
|v| . Dividing F by the mass m we get the gravitational field vector g as

(4.2) g(x) = G

∫
V

u(x− y)

|x− y|2
ρ(y)dy.

The magnitude of g is better known as the gravitational acceleration constant (at the
surface of earth g ≈ 9, 81m/s2). The vector g can be represented as

g = −∇Φ

and Φ is the gravitational potential

Φ = G

∫
V

1

|x− y|
ρ(y)dy.

In our case we consider s-dimensional potentials and next we will define s-potentials.

Definition 4.7. Let s ≥ 0 and µ be a mass distribution on Rn. The s-potential
of µ at a point x ∈ Rn is

φµs (x) =

∫
dµ(y)

|x− y|s
.

Let dW ′ be the work per unit mass that has to be done by an outside force on a
body in a gravitational field to move the body a distance dr. The work done on the
body per unit mass is

dW ′ = −g · dr = (∇Φ) · dr = dΦ.

According to this we define s-energy as it follows.

Definition 4.8. Let s ≥ 0 and µ be a mass distribution on Rn. The s-energy of
µ is

Is(µ) =

∫
φµs (x)dµ(x) =

∫ ∫
dµ(x)dµ(y)

|x− y|s
.

Definition 4.9. Let (X,M ) and (Y,N ) be measurable spaces. A function f :
X → Y is measurable function if

f−1(N) ∈M

for every N ∈ N .

Lemma 4.10. Let µ be a measure on X. Let f : X → [0,∞] µ-measurable and
r > 0. Then ∫

X

f(x)dµ(x) =

∫ ∞
0

µ ({x : f(x) ≥ r}) dr.

Proof. The proof is omitted, see [7, Theorem 7.6]. �
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Theorem 4.11. Let F ⊂ Rn.

(1) If there exists a mass distribution µ on F with Is(µ) <∞ then H s(F ) =∞
and dimH(F ) ≥ s.

(2) If F is a Borel set with H s(F ) > 0 then there exists a mass distribution µ
on F with It(µ) <∞ for all t < s.

Proof. (1) Let

F ′ = {x ∈ F : lim
r→0

µ(Br(x))

rs
> 0}

and fix x ∈ F ′. Then, there is ε > 0 and a decreasing sequence ri → 0 such that

µ(Bri(x)) ≥ εrsi

for all i. Notice that, if µ({x}) > 0, then Is(µ) = ∞; therefore limr→∞ µ(Br(x)) =
µ({x}) = 0. In particular, for every i ∈ N there is 0 < qi < ri such that µ(Bqi(x)) <
εrsi
2

. Set Ai = Bri(x)\Bqi(x). Proposition 1.15 implies

µ(Ai) = µ(Bri(x))− µ(Bqi(x)) ≥ 1

2
εrsi ,

where i = 1, 2, . . . . Taking subsequence we have ri+1 < qi for all i so that the Ai are
disjoint and centered on x. Hence for x ∈ F ′

φµs (x) =

∫
dµ(y)

|x− y|s

≥
∞∑
i=1

∫
Ai

dµ(y)

|x− y|s

≥
∞∑
i=1

1

2
εrsi r

−s
i =∞,

since |x − y|−s ≥ r−si on Ai. Since, Is(µ) =
∫
φµs (x)dµ(x) < ∞, so φµs (x) < ∞ for

µ-almost every x. We conclude that µ(F ′) = 0. If x ∈ F\F ′, then limr→0
µ(Br(x))

rs
= 0.

Hence Proposition 4.4 (1) implies that, for all c > 0, we have

H s(F ) ≥H s(F\F ′) ≥ µ(F\F ′)
c

=
µ(F )− µ(F ′)

c
=
µ(F )

c
.

Hence H s(F ) =∞.
(2) Proposition 4.6 implies that there exist a compact set E ⊂ F with 0 <

H s(E) <∞ and r > 0 such that, for all r > 0 and all x ∈ Rn,

H s(E ∩Br(x)) ≤ brs.

Let µ be the restriction of H s to E: therefore, µ is a mass distribution on F . For a
fixed x ∈ Rn, let

m(r) = µ(Br(x)) = H s(E ∩Br(x)) ≤ brs.

Notice that |x − y|−t ≥ r implies |x − y| ≤ r−
1
t . Let f : R → {0, 1}, f(y) =

|x− y|−t1B(x,1)(y). Let α > 1. If 0 ≤ t < s, then Lemma 4.10 implies

φµt (x) =

∫
1

|x− y|t
dµ(y)
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=

∫ ∞
0

µ

({
y :

1

|x− y|t
≥ r

})
dr

=

∫ ∞
0

µ
({
y : |x− y|t ≤ r−1/t

})
dr

=

∫ ∞
0

µ
(
B(x, r−1/t

)
dr

=

∫ 1

0

µ
(
B(x, r−1/t

)
dr +

∫ ∞
1

µ
(
B(x, r−1/t

)
dr

≤ µ(Rn) +

∫ ∞
1

br−s/tdr

= µ(Rn) +
bt

s− t
,

where the last step is possible, because t < s. Thus φµt (x) < µ(Rn) + bt
s−t <∞ and

It(µ) =

∫
φµt (x)dµ(x) ≤

(
µ(Rn) +

bt

s− t

)
µ(Rn) <∞.

�



CHAPTER 5

Dimension of Cartesian products

One way of obtaining new sets from given ones is to take a Cartesian product. In
this chapter we introduce results on these Cartesian products and their dimensions.

Definition 5.1. Let E ⊂ Rn and F ⊂ Rm. The Cartesian product E × F is
defined as

E × F = {(x, y) ∈ Rn+m : x ∈ E, y ∈ F}.
To get more information about the mass spread along the set we need to define

densities.

Definition 5.2. The lower and upper s-densities of a set F at a point x ∈ Rn

are defined as

Ds(F, x) = lim
r→0

H s(F ∩B(x, r))

(2r)s

and

D
s
(F, x) = lim

r→0

H s(F ∩B(x, r))

(2r)s
.

IfDs(F, x) = D
s
(F, x) then the s-density of F at x exists and we denote it byDs(F, x).

Before we can have estimates for the dimension of Cartesian product we prove
some estimates for densities. For this purpose, we introduce a well known Vitali’s
covering theorem.

Definition 5.3. Let µ be a measure on X. The measure µ is Borel regular if it
is Borel measure and if for every A ⊂ X there is a Borel set B ⊂ X such that A ⊂ B
and µ(A) = µ(B).

Proposition 5.4. The Hausdorff measure H s is Borel regular.

Proof. By Theorem 2.5 H s is a Borel measure. If H s(A) = +∞ then we choose
B = Rn. We assume that H s(A) < ∞. Therefore, H s

δ (A) < ∞ for all δ > 0. For
every i ∈ N, let {Ei

j}j∈N be a covering of A by closed sets such that

H s
1/i(A) ≤

∞∑
j=1

|Ej|s ≤H s
1/i(A) +

1

i
.

Let Bi =
⋃∞
j=1Ej and B =

⋂∞
i=1Bi. Hence A ⊆ B and B is Borel. Moreover,

H s(A) ≤H s(B) = lim
i→∞

H s
i/1(B)

≤ lim
i→∞

H s
i/1(Bi)

≤ lim
i→∞

H s
1/i(A) +

1

i
= H s(A).

24
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Thus H s(B) = H s(A). �

Definition 5.5. Let µ be a measure on X and A ⊂ X. The measure µA is the
restriction of µ to A if µA = µ(A∩E) for every E ⊂ X. We denote the restriction of
µ to A as µxA.

Theorem 5.6. Let µ be a measure on X and A ⊂ X. Let µA be a restriction of
µ to A.

(1) Every µ-measurable set is µA-measurable.
(2) If µ is Borel regular and A is µ-measurable with µ(A) <∞, then µA is Borel

regular.

Proof. (1) Let M ∈M (X) and E ⊆ X. We have

µA(E) = µ(A ∩ E) = µ(A ∩ E ∩M) + µ((A ∩ E)\M)

= µA(E ∩M) + µ(A ∩ (E\M)) = µA(E ∩M) + µA(E\M).

Therefore, M is µA-measurable.
(2) By part (1), Borel sets are µA-measurable and so µA is Borel measurable. Let

C ⊆ X. Then there is a Borel set B with A ∩ C ⊆ B and µ(A ∩ C) = µ(B). Notice
that µ(A ∩ C) = µ(B) ≥ µ(A ∩ B) ≥ µ(A ∩ C), because A ∩ C ⊆ A ∩ B. Therefore,
µA(C) = µA(B). We conclude that µA is Borel regular. �

Theorem 5.7. Let µ be a Borel regular measure on X, A a µ-measurable set and
ε > 0.

(1) If µ(A) <∞, there is a closed set C ⊂ A such that µ(A\C) < ε.
(2) If there are open sets V1, V2, . . . such that A ⊂

⋃∞
i=1 Vi and µ(Vi) <∞ for all

i, then there exists open set V such that A ⊂ V and µ(V \A) < ε.

Proof. (1) The proof is omitted here, but it can be found in [5, Theorem 1.2.6].
(2) Applying (1) to sets Vi\A we find closed sets Ci ⊂ Vi\A so that µ(Vi\Ci)\A) <

ε
2i

for i = 1, 2, . . . . Then A ⊂ V =
⋃
i(Vi\Ci). Now V is an open set with µ(V \A) <

ε. �

Theorem 5.8 (Vitali’s covering theorem). Let µ be a Radon measure on Rn and
F ⊂ Rn. Let B be a family of closed balls such that each point of F is the centre of
arbitrarily small balls of B. Then there are disjoint balls Bi ∈ B such that

µ

(
F\
⋃
i

Bi

)
= 0

Proof. The proof is omitted, but it can be found in Mattila’s book [11, Theorem
2.8]. �

Next we will obtain the estimates for the densities mentioned earlier.

Proposition 5.9. Let F be a set so that 0 < H s(F ) <∞. Then

(1) Ds(F, x) = D
s
(F, x) = 0 for H s-almost all x /∈ F .

(2) 2−s ≤ D
s
(F, x) ≤ 1 for H s-almost all x ∈ F .
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Proof. (1) We show that for any t > 0 for the set

B = {x ∈ Rn\F : D
s
(F, x) > t}

it holds that H s(B) = 0. Let ε > 0. Since (H sxF )(B) = 0, Theorem 5.7 (2) implies
that there is open set U such that B ⊂ U and H s(A ∩ U) < ε. For every x ∈ B
there is rx > 0 so that B(x, rx) ⊂ U and

H s(F ∩B(x, rx)) > t(2rx)
s.

By Lemma 4.1 there are x1, x2, · · · ∈ B such that the balls Bi = B(xi, rxi) are disjoint

and the balls B̃i with four times a radius of Bi cover B. Then

tH s
∞(B) ≤ t

∑
i

|B̃i|s = 4st
∑
i

|Bi|s

< 4s
∑
i

H s(F ∩Bi) ≤ 4sH s(F ∩ U) < 4sε.

Letting ε→ 0 we get H s
∞(B) = 0. Therefore, it follows that H s(B) = 0.

(2) We first show the left-hand inequality. Let µ be a restriction of H s to F . If

Fc =
{
x ∈ F : D(F, x) = lim

r→0

H s(F ∩B(x, r))

(2r)s
<

c

2s

}
for some constant c, then Proposition 4.4 (1) implies

(5.1) H s(Fc) ≥
H s(Fc)

c
.

If 0 < c < 1 then (5.1) holds only if H s(Fc) = 0. Thus for H s-almost all x ∈ F we
have D(F, x) ≥ 2−s.

Now we show the right-hand inequality. We assume that the set F is a Borel set:
we can do this assumption because the measure H s is Borel regular by Proposition
5.4. Let c > 1 and

Fc = {x ∈ F : D(F, x) > c}.

We show H s(Fc) = 0. Let ε > 0 and δ > 0. Applying Theorem 5.7 to the measure
µ we find an open set U such that Fc ⊂ U and H s(F ∩ U) < H s(Fc) + ε. Let O be
the family of balls O = {B(x, r) ⊆ U : x ∈ Fc, r < δ/2,H s(F ∩B(x, r)) > c(2r)s}. If
x ∈ Fc, then there are arbitrarily small radius r such that B(x, r) ∈ O. Therefore, we
can apply Theorem 5.8 and obtain a countable family of balls B1, B2, . . . in O that

are pairwise disjoint such that H s
(
Fc\

⋃
j Bj

)
= 0. Thus

H s(Fc) + ε > H s(F ∩ U) ≥
∑

H s(F ∩Bi)

> c
∑
i

|Bi|s ≥ cH s
δ (Fc ∩

⋃
i

Bi)

= cH s
δ (Fc).
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If H s(A) = 0, then H s
δ (A) = 0 for all δ > 0. Therefore,

H s
δ (Fc) ≤H s

δ

(
Fc ∩

⋃
i

Bi

)
+ H s

δ

(
Fc\

⋃
i

Bi

)

= H s
δ

(
Fc ∩

⋃
i

Bi

)
≤H s

δ (Fc).

Hence H s
δ (Fc) = H s

δ (Fc ∩
⋃
iBi). So when ε → 0 and δ → 0 we get H s(Fc) ≥

cH s(Fc), which implies H s(Fc) = 0 for c > 1. Hence D(F, x) ≤ 1. �

Now we are able to obtain the desired results for the dimension of Cartesian
product.

Proposition 5.10. If E ⊂ Rn and F ⊂ Rm are Borel sets with H s(E),H t(F ) <
∞, then

(5.2) H s+t(E × F ) ≥ cH s(E)H t(F ),

where c > 0 depends only on s and t.

Proof. We prove the claim for n = m = 1. Let E,F ⊂ R. Then E ×F ⊂ R2. If
H s(E) = 0 or H t(F ) = 0 then (5.2) is trivial. We suppose that 0 < H s(E) < ∞
and 0 < H t(F ) <∞. We define a measure µ on R2 as follows: if I, J ⊂ R, we define
µ on I × J by

µ(I × J) = H s(E ∩ I)H t(F ∩ J).

It can be shown that this defines a mass distribution µ on E × F with µ(R2) =
H s(E)H t(F ). By the Proposition 5.9 we have that

(5.3) lim
r→0

H s(E ∩B(x, r))

(2r)s
≤ 1

for H s-almost all x ∈ E and

(5.4) lim
r→0

H t(F ∩B(y, r))

(2r)t
≤ 1

for H t-almost all y ∈ F . By the definition of µ, (5.3) and (5.4) hold for µ-almost all
(x, y) ∈ E × F . We have

µ(B((x, y), r)) ≤ µ(B(x, r)×B(y, r)) = H s(E ∩B(x, r))H t(F ∩B(y, r))

so
µ(B((x, y), r)

(2r)s+t
≤ H s(E ∩B(x, r))

(2r)s
H t(F ∩B(y, r))

(2s)t
.

Using (5.3) and (5.4) it follows that

lim
r→0

µ(B((x, y), r)

(2r)s+t
≤ 1

for µ-almost all (x, y) ∈ E × F . By Proposition 4.4 (1)

H s(E × F ) ≥ µ(E × F )

2s+t
=

H s(E)H t(F )

2s+t
.

Thus, we have proven (5.2) with c = 1
2s+t

. �
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Lemma 5.11. If E ⊂ Rn and F ⊂ Rm are Borel sets then

dimH(E × F ) ≥ dimH(E) + dimH(F ).

Proof. Let s < dimH(E) and t < dimH(F ). Then H s(E) = H s(F ) = ∞. By
Theorem 4.5 there exist Borel sets E0 ⊂ E and F0 ⊂ F with 0 < H s(E0) < ∞ and
0 < H s(F0) <∞. Proposition 5.10 implies that there is c > 0 so that

H s+t(E × F ) ≥H s+t(E0 × F0) ≥ cH s(E0)H t(F0).

Hence dimH(E × F ) ≥ s + t. Since we can choose s and t to be arbitrarily close to
dimH(E) and dimH(F ), we obtain dimH(E × F ) ≥ dimH(E) + dimH(F ). �

Lemma 5.12. For any sets E ⊂ Rn and F ⊂ Rm

(5.5) dimH(E × F ) ≤ dimH(E) + dimB(F ).

Proof. We prove the claim for n = m = 1. Let E ⊂ R and F ⊂ R. We choose
s > dimH(E) and t > dimB(F ). Then there is δ0 > 0 such that F can be covered by
Nδ(F ) ≤ δ−t intervals of length δ for all δ ≤ δ0. Fix 0 < δ ≤ δ0. Since H s(E) = 0,
there is a δ-cover {Ui} of E with

∑
i |Ui|s < 1. For each i, since |Ui| ≤ δ ≤ δ0, there

is a |Ui|-cover Ui,j of F by N|Ui|(F ) intervals. Then Ui × F is covered by N|Ui|(F )
squares {Ui × Ui,j} of side |Ui|. Therefore E × F ⊂

⋃
i

⋃
j(Ui × Ui,j) and

H s+t

δ
√

2
(E × F ) ≤

∑
i

∑
j

|Ui × Ui,j|s+t ≤
∑
i

N|Ui|(F )2(s+t)/2|Ui|s+t

≤ 2(s+t)/2
∑
i

|Ui|−t|Ui|s+t < 2(s+t)/2.

When δ → 0, we obtain H s+t(E×F ) <∞ whenever s > dimH(E) and t > dimB(F ).
Hence dimH(E × F ) ≤ s+ t and (5.5) follows. �

Corollary 5.13. Let E ⊂ Rn and F ⊂ Rm. If dimH(F ) = dimB(F ) then

dimH(E × F ) = dimH(E) + dimH(F ).

Proof. Using Lemma 5.11 and Lemma 5.12 we get

dimH(E) + dimH(F ) ≤ dimH(E × F ) ≤ dimH(E) + dimB(F ).

�



CHAPTER 6

Marstrand’s projection theorem

In this chapter we prove the main theorem of the thesis: Marstrand’s projection
theorem. We apply potentials discussed in Chapter 4. First we define the pushforward
of a measure and introduce projections.

Lemma 6.1. Let F ⊂ Rn. Let Π be any subspace and let projΠ be an othogonal
projection of F onto Π. Then

dimH (projΠ(F )) ≤ dimH(F ).

Proof. Since

|projΠ(x)− projΠ(y)| ≤ |x− y|
for all x, y ∈ Rn, projΠ is a Lipschitz function. Proposition 3.4 implies dimH(projΠ(F )) ≤
dimH(F ). �

Definition 6.2. Let (X,F1, µ) be a measure space. Let (Y,F2) be a measurable
space and f : X → Y a measurable map. Then the mapping

f#µ(B) = µ
(
f−1(B)

)
,

where B ⊆ Y , is called pushforward measure on Y .

Lemma 6.3. Let (X,F1, µ) be a measure space, (Y,F2) a measurable space and
f : X → Y a measurable map. The pushforward measure f#µ is a measure on Y .

Proof. We need to check the three properties listed in Defintion 1.4.
(1) f#µ(∅) = µ (f−1(∅)) = µ(∅) = 0.
(2) Let B1 ⊂ B2 ⊂ Y . Then f−1(B1) ⊂ f−1(B2). Thus f#µ(B1) = µ (f−1(B1)) ≤

µ (f−1(B2)) = f#µ(B2).
(3) Let {Bn}n∈N ⊂P(Y ).

f#µ

(⋃
n∈N

Bn

)
= µ

(
f−1(

⋃
n∈N

Bn)

)

= µ

(⋃
n∈N

f−1(Bn)

)

≤
∞∑
n=1

µ
(
f−1(Bn)

)
=
∞∑
n=1

f#µ(Bn).

�

29
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Let lθ be the line through the origin of R2 that makes an angle θ with the horizontal
axis. We denote orthogonal projection onto lθ by πθ. Therefore θ ∈ [0, π) and
πθ(x) ∈ lθ.

Theorem 6.4. (Marstrand’s projection theorem) Let F ⊂ R2 be a Borel set. Then
dimH(πθ(F )) = min{dimH(F ), 1} for almost all θ ∈ [0, π).

Proof. Proposition 3.4 and the fact that dimH(lθ) = 1, imply dimH(πθ(F )) ≤
min{dimH(F ), 1} for all θ ∈ [0, π). We need to show the opposite inequality. Let
0 < t < dimH(F ). Theorem 4.11 implies that there is a mass distribution µ on F
with 0 < µ(F ) <∞

It(µ) =

∫
F

∫
F

dµ(x)dµ(y)

|x− y|t
<∞.

For each θ we project µ onto the line lθ and we get a mass distribution µθ = πθ#µ on
πθ(F ). Then

It(µθ) =

∫
lθ

∫
lθ

dµθ(u)dµθ(v)

|u− v|t

=

∫
F

∫
F

dµ(x)dµ(y)

|x · θ − y · θ|t
=

∫
F

∫
F

dµ(x)dµ(y)

|(x− y) · θ|t
.

Applying Fubini’s Theorem to [0, π)× R2 × R2 we get∫ π

0

It(µθ)dθ =

∫ π

0

∫
F

∫
F

dµ(x)dµ(y)

|(x− y) · θ|t
dθ

=

∫
F

∫
F

[∫ π

0

1

|(x− y) · θ|t
dθ

]
dµ(x)dµ(y)

=

∫
F

∫
F

[∫ π

0

1

| (x−y)
|x−y| · θ|t

dθ

]
dµ(x)dµ(y)

|x− y|t

=

∫
F

∫
F

[∫ π

0

1

|τ · θ|t
dθ

]
· dµ(x)dµ(y)

|x− y|t

=

∫
F

∫
F

ct ·
dµ(x)dµ(y)

|x− y|t
= ctIt(µ),

where ct =
∫ π

0
1
|τ ·θ|tdθ is independent of the unit vector τ .

Now we will check when ct is finite. With τ = (0, 1) and (x, y) = (cos θ, sin θ).
Hence

ct =

∫ π

0

1

| sin θ|t
dθ

= 2

∫ π/2

0

1

(sin θ)t
dθ

= 2

∫ ε0

0

1

| sin θ|t
dθ + 2

∫ π/2

ε0

1

| sin θ|t
dθ,
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where
∫ π/2
ε0

1
| sin θ|tdθ < ∞ for all t. There exists ε0 such that 1

2
θ < sin θ < 2θ for

0 < θ < ε0. Hence ∫ ε0

0

1

2tθt
dθ ≤

∫ ε0

0

1

| sin θ|t
dθ ≤

∫ ε0

0

2t

θt
dθ

Therefore,
∫ ε0

0
1

| sin θ|tdθ <∞ if and only if
∫ ε0

0
1
θt
dθ <∞ and this holds if and only if

t < 1. In the other words ct <∞ if and only if t < 1.
Thus, when t < 1, It(µθ) < ∞ for almost all θ ∈ [0, π). Theroem 4.11 implies

dimH(πθ(F )) ≥ t. Finally, take tn = min{1, dimH(F )} − 1
n
. Then, for every n there

is En ⊆ [0, π) such that H 1(En) = 0 and dimH(πθ(F )) ≥ tn for all θ ∈ [0, π)\En.
Therefore, E =

⋃
nEn is so that H 1(E) = 0 and, for all θ ∈ [0, π)E, dimH(πθ(F )) ≥

tn for all n. We conclude dimH(πθ(F )) ≥ min{1, dimH(F )}. �

In this Theorem we can find a set F ⊂ R2 for which there are zero, one or two
directions θ so the dimension of the projection is less than dimH(F ). These examples
are discussed more in Chapter 8.



CHAPTER 7

Self-similar sets

In this chapter we find an algorithmic way of constructing examples of fractals.

Lemma 7.1. Let F be a set covered by nk sets of diameter at most δk with δk → 0
as k →∞. Then

dimH(F ) ≤ dimB(F ) ≤ limk→∞
log(nk)

− log(δk)
.

If nkδ
s
k remains bounded when k → ∞, then H s(F ) < ∞. If δk → 0 but δk+1 ≥ cδk

for some 0 < c < 1, then

dimB(F ) ≤ limk→∞
log(nk)

− log(δk)
.

Proof. Definition 3.5 implies dimB(F ) ≤ limk→∞
log(nk)
− log(δk)

. If nkδ
s
k remains bounded

when k → ∞ it holds that H s
δk

(F ) ≤ nkδ
s
k. Thus H s

δk
(F ) → H s(F ) when k → ∞

and H s(F ) is finite. If δk → 0 but δk+1 ≥ cδk for some 0 < c < 1, then Remark 3.6

implies dimB(F ) ≤ limk→∞
log(nk)
− log(δk)

. Since the set F can be covered by Nδ(F ) sets of

diameter δ then Definition 2.3 implies

H s
δ (F ) ≤ Nδ(F )δs.

If 1 < H s(F ) = limδ→0 H s
δ (F ) then log(Nδ(F )) + s log(δ) > 0, when δ is small

enough. Hence s < limδ→0
log(Nδ(F ))
− log(δ)

and therefore s ≤ limδ→0
log(Nδ(F ))
− log(δ)

. Therefore

s = dimH(F ) ≤ dimB(F )

for every F ⊂ Rn. �

Theorem 7.2. Let µ be a mass distribution on F . Suppose that for some s there
are numbers c > 0 and ε > 0 such that

µ(U) ≤ c|U |s

for all sets U with |U | < ε. Then H s(F ) ≥ µ(F )
c

and

s ≤ dimH(F ).

Proof. Let 0 < δ < ε and {Ui}i a δ-cover of F . Then we have

µ(F ) ≤ µ

(⋃
i

Ui

)
≤
∑
i

µ(Ui) ≤ c
∑
i

|Ui|s.

Taking the infimum over all the δ-covers, we get H s
δ (F ) ≥ µ(F )

c
. Hence H s(F ) ≥

µ(F )
c

. Since µ(F ) > 0, it follows that dimH(F ) ≥ s. �

32
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Definition 7.3. A mapping S : Rn → Rn is called contraction on Rn if there is
a number c with 0 < c < 1 such that

|S(x)− S(y)| ≤ c|x− y|
for all x, y ∈ Rn. If S satisfies |S(x) − S(y)| = c|x − y| for all x, y ∈ Rn, then S is
called similarity.

Definition 7.4. A finite family of contractions {S1, S2, . . . , Sm}, where m ≥ 2,
is called an iterated function system or IFS.

Definition 7.5. Let F ⊂ Rn be a non-empty and compact. The set F is called
an attractor for the IFS {S1, S2, . . . , Sm} if

F =
m⋃
i=1

Si(F ).

In Theorem 7.9 we prove that a IFS determines a unique attractor. This unique
attractor is usually a fractal.

Definition 7.6. Let S1, . . . , Sm : Rn → Rn be similarities such that

|Si(x)− Si(y)| = ci|x− y|
for all x, y ∈ Rn, where 0 < ci < 1 is called the ratio of Si. The attractor of such a
collection of similarities is called a self-similar set.

Definition 7.7. A collection of similarities {S1, S2, . . . , Sm} satisfies the open set
condition if there exists a non-empty bounded open set V such that

(1)
⋃m
i=1 Si(V ) ⊂ V

(2) Si(V ) ∩ Sj(V ) 6= ∅ for i 6= j.

Lemma 7.8. Let {Vi}i∈N be a collection of disjoint open subsets of Rn such that
each Vi contains a ball of radius a1r and is contained in a ball of radius a2r for some
0 < a1 < a2 and a fixed r > 0. Then any ball B of radius r intersects at most (1+2a2

a1
)n

of the closures V i.

Proof. If V i and the ball B intersect, then V i is contained in the ball concentric
with B of radius (1+2a2)r. We assume that q of the sets V i intersect B. By summing
the volumes of the interior balls it follows that q(a1r)

n ≤ (1 + 2a2)nrn. Therefore
q ≤ (1+2a2

a1
)n. �

Theorem 7.9. Consider the iterated function system given by the contractions
{S1, . . . , Sm} on Rn, so that

|Si(x)− Si(y)| ≤ ci|x− y|,
where x, y ∈ Rn with ci < 1 for each i. Then there is a unique attractor F for the
IFS {S1, S2, . . . , Sm}.

Moreover, the attractor F has the following description. Let S be the class of
non-empty compact subsets of Rn. We define a transformation S on S by

S(E) =
m⋃
i=1

Si(E)
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for E ∈ S. We write Sk for the kth iterate of S. Then

F =
∞⋂
k=0

Sk(E)

for every set E ∈ S such that Si(E) ⊂ E for all i.

Proof. Notice that the sets in S are transformed by S into other sets of S. Recall
the Hausdorff distance h (Definition 1.22). Theorem 1.23 implies that h is a metric
on S. Moreover, (S, h) is a complete metric space (see [13, Theorem 4.9]). For each
i,

h(Si(A), Si(B)) ≤ cih(A,B).

Therefore,

h(S(A), S(B)) ≤
(

max
i
ci

)
h(A,B),

where c = maxi ci < 1. Banach’s fixed point theorem (see [1, Theorem 1.171]) implies
that S has a unique fixed point, that is there is a unique set F ∈ S so that S(F ) = F ,
where

F =
m⋃
i=1

Si(F )

is an attractor of the IFS. Since h(F, S(A)) < ch(F,A), then limk→∞ S
k(E) = F for

every E ∈ S. In particular, if S(E) ⊆ E, then limk→∞ S
k(E) =

⋂∞
k=1 S

k(E). �

The next theorem gives us one way of finding the dimension of self-similar fractals.

Theorem 7.10. Let {Si : 1 ≤ i ≤ m} be similarities satisfying the open set
condition on Rn. Let 0 < ci < 1 be the ratio of Si. If F is the attractor of the IFS
{S1, . . . Sm}, then dimH(F ) = dimB(F ) = s, where s is given by

m∑
i=1

csi = 1.

Moreover, for this value of s, 0 < H s(F ) <∞.

Proof. Let s satisfy
∑m

i=1 c
s
i = 1. Let Ik be the set of all k-tuples (i1, . . . , ik)

with 1 ≤ ij ≤ m. For an arbitrary set A and (i1, . . . , ik) ∈ Ik we write Ai1,...,ik =
Si1 ◦ · · · ◦ Sik(A). Using iteratively the fact F =

⋃m
i=1 Si(F ), it follows that

F =
⋃

(i1,...,ik)∈Ik

Fi1,...,ik .

We will prove an upper and a lower estimates for the Hausdorff measure H s(F ).
Upper estimate for the Hausdorff measure: We claim that

(7.1) H s(F ) ≤ |F |s.
Notice that the mapping Si1 ◦ · · · ◦Sik is a similarity of ratio ci1 · · ·cik . Since s satisfies∑m

i=1 c
s
i = 1 it follows that∑

(i1,...,ik)∈Ik

|Fi1,...,ik |s =
∑

(i1,...,ik)∈Ik

(ci1 · · · cik)s|F |s =

(∑
i1

csi1

)
· · ·

(∑
ik

csik

)
|F |s = |F |s.



7. SELF-SIMILAR SETS 35

For every δ > 0 we can choose k such that

|Fi1,...ik | ≤
(

max
i
ci

)k
|F | ≤ δ,

for every (i1, . . . , ik) ∈ Ik. Therefore, H s
δ (F ) ≤ |F |s and hence we have (7.1).

Lower estimate for the Hausdorff measure: We claim that there exists q > 0 such
that

(7.2) H s(F ) >
1

q
.

Let I be the set of all infinite sequences, I = {(i1, i2, . . . ) : 1 ≤ ij ≤ m}. Let
Ii1,...,ik = {(i1, . . . , ik, qk+1, . . . ) : 1 ≤ qj ≤ m} be the ’cylinder’ consisting sequences
belonging to I that have initial terms i1, . . . ik. One can show that there exists a
measure µ on I such that µ(Ii1,...,ik) = (ci1 · · · cik)s for (i1, . . . , ik) ∈ Ik. Notice that
µ(I) = 1 and, since

(ci1 · · · cik)s =
m∑
i=1

(ci1 · · · cikci)s,

then

µ(Ii1,...,ik) =
m∑
i=1

µ(Ii1,...,ik,i).

We define φ : I → Rn, φ(i1, . . . , ij, . . . ) = limj→∞ Si1 ◦· · ·◦Sij(0), which can be shown
to be a measurable function. We define a mass distribution µ̃ on F as µ̃ = φ#µ, that
is, µ̃(A) = µ{(i1, i2, . . . ) : xi1,i2,... ∈ A} for A ⊂ Rn. In particular µ̃(F ) = 1.

Next we show that µ̃ satisfies the conditions of the Theorem 7.2. Let U be an open
set with diameter |U | < 1. Then U ⊆ B, where B is a ball of radius r = |U | < 1.
Let V be the open set of Definition 7.7. It holds that V ⊃ S(V ) =

⋃m
i=1 Si(V ).

The decreasing sequence of iterates Sk(V ) converges to F by Theorem 7.9. Moreover
V ⊃ F and V i1,...ik ⊃ Fi1,...ik for each finite sequence (i1, . . . , ik). We estimate µ̃(B)
by considering the sets Vi1,...,ik with diameters comparable with that of B and with
closures intersecting F ∩B.

We cut each infinite sequence (i1, i2, . . . ) ∈ I after the first term ik for which

(7.3)

(
min

1≤i≤m
ci

)
r ≤ ci1ci2 · · · cik ≤ r.

Let Q denote the finite set of all finite sequences obtained in this way. For every
infinite sequence (i1, i2, . . . ) ∈ I there is one value of k with (i1, . . . , ik) ∈ Q.

Notice that, if k ≤ c, then Vi1,...,ik∩Vj1,...jc 6= ∅ if and only if ia = ja for a = 1, . . . , k.
It follows that the collection of open sets {Vi1,...,ik : (i1, . . . , ik) ∈ Q} is disjoint.
Moreover,

F ⊂
⋃

(i1,...,ik)∈Q

Fi1,...,ik ⊂
⋃

(i1,...,ik)∈Q

V i1,...,ik .

We choose a1 and a2 so that V contains a ball of radius a1 and is contained in
a ball of radius a2. For all (i1, . . . , ik) ∈ Q the set Vi1,...,ik contains a ball of radius
ci1 · · · cika1. Therefore, it contains a ball of radius (mini ci)a1r by (7.3). Moreover,
Vi1,...,ik is contained in a ball of radius ci1 · · · cika2 and hence it is contained in a
ball of radius a2r, again by (7.3). We denote by Q1 the collection of sequences
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(i1, . . . , ik) such that B intersects V i1,...,ik . Lemma 7.8 implies that there are at most
q = ( 1+2a2

a1 mini ci
)n sequences in Q1. Notice that

φ−1(F ∩B) = {(j1, j2, . . . ) : φ(j1, j2, . . . ) ∈ F ∩B} ⊆
⋃

(i1,...,ik)∈Q1

Ii1,...,ik .

Thus

µ̃(B) = µ(φ−1(F ∩B)) ≤
∑

(i1,...,ik)∈Q1

µ(Ii1,...,ik)

=
∑

(i1,...,ik)∈Q1

(ci1 · · · cik)s ≤
∑

(i1,...,ik)∈Q1

rs ≤ rsq.

Going back to U , since U ⊆ B and |B| = 2r = 2|U |, we have

µ̃(U) ≤ µ̃(B) ≤ c|B|s ≤ c

2s
|U |s,

that is, µ̃(U) ≤ |U |sq. Theorem 7.2 gives

Hs(F ) ≥ 1

q
> 0.

The estimates (7.1) and (7.2) yeld dimH(F ) = s.
We now compute the box dimension of F . If Q is any set of finite sequences such

that for every (i1, i2, . . . ) ∈ I there is one integer k with (i1, . . . , ik) ∈ Q. It follows
inductively from

∑m
i=1 c

s
i = 1 that

∑
Q1

(ci1ci2 · · · cik)s = 1. If Q is chosen as above,

Q contains at most 1
(mini cir)s

sequences. For each sequence (i1, . . . , ik) ∈ Q we have

|V i1,...,ik | = ci1ci2 · · · cik |V | ≤ r|V |. Therefore F may be covered by 1
(mini cir)s

sets of

diameter r|V | for each r < 1. Definition 3.5 implies that dimB(F ) ≤ s. Noting that
s = dimH(F ) ≤ dimB(F ) ≤ dimB(F ) ≤ s, the proof is complete. �



CHAPTER 8

Examples

Let lθ be the line through the origin of R2 with angle θ with horizontal axis. We
denote orthogonal projection onto lθ by πθ. Therefore πθ(F ) denotes the projection
of F ⊂ R2 onto the line lθ.

Example 8.1. Let F be a unit square in R2. For all the lines lθ the set πθ(F ) is
a segment and dimH(πθ(F )) = 1.

Example 8.2. Let F be a segment in R2. Let the line lθ1 be orthogonal to the
segment F . Then dimH(πθ1(F )) = 0. Notice that there is only one possible θ1.
Otherwise dimH(πθ(F )) = 1.

Example 8.3. Let F be a middle third Cantor set. Let S1, S2 : [0, 1] → R be
given by S1(x) = 1

3
x and S2(x) = 1

3
x + 2

3
. Now F = S1(F ) ∪ S2(F ), where S1(F )

gives the left half and S2(F ) gives the right half of F . Hence F is an attractor of
IFS {S1, S2}. Let E = [0, 1]. First step of the middle third Cantor set is obtained by
S1(E) ∪ S2(E). Second step is obtained by

S1(S1(E)) =
1

9
x, S1(S2(E)) =

1

9
x+

2

9

S2(S1(E)) =
1

9
x+

2

3
, S2(S2(E)) =

1

9
x+

8

9

and so on. The sets Sk(E) =
⋃
i=1,2 Si1 ◦ · · · ◦ Sik(E) gives increasingly good ap-

proximations of the set F . Theorem 7.10 implies that dimH(F ) = s, where s is
given by (1

3
)s + (1

3
)s = 1. Hence s = log 2

log 3
. Let F × F be a product of two middle

third Cantor sets. By the Corollary 5.13 dimH(F × F ) = log 2
log 3

+ log 2
log 3

= log 4
log 3

. For

almost every θ dimθ(F × F ) = 1. There is two angles θ1 = 0 and θ2 = π for which
dim(πθi(F × F )) = dim(F ), where i = 1, 2. Hence there is two exceptional angles for
which the dimension drops.
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