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Abstract

ARM TrustZone offers a Trusted Execution Environment (TEE) embedded into the processor cores. Some vendors offer
ARM modules that do not fully comply with TrustZone specifications, which may lead to vulnerabilities in the system. In this
paper, we present a DMA attack tutorial from the insecure world onto the secure world, and the design and implementation

of this attack in a real insecure hardware.

Keywords TrustZone - Security

1 Introduction

The development of the Internet of Things (IoT) is hailed
as the third wave of world information development after
computers and the Internet [56], with embedded systems
as the driving force for technological development in many
domains in the emerging post-PC era. As an increasing num-
ber of computational devices integrate into our lives in a
pervasive and invisible way, security becomes critical for
the dependability of all intelligent systems built upon these
embedded systems [40].

Embedded IoT products are increasingly not connected
to the power grid. Therefore, such devices are constrained
in terms of computing power due to limited electric power
[29]. The constrained nature of such devices means we are
trying to “build a fortress from pebbles.” Therefore, we must
take the best security measures to prevent malicious activity
on those devices given the limited conditions, which often
means cutting corners compared with other resource-rich
areas of computing (personal computers, servers, etc.).
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ARM TrustZone [5] was introduced as part of the ARMv6
architecture and is widely used in smartphones, tablets, wear-
ables, and other devices. As TrustZone gains popularity in
hardware security architecture for mobile devices and IoT, it
is vital to ensure the security of TrustZone itself [57].

Though ARM TrustZone is a great way to implement
security mechanisms across IoT-embedded devices, it is still
prone to inadequate hardware and software implementa-
tions. Thus, the hardware of different companies like Google,
Samsung, Huawei, etc., might still be affected by severe
vulnerabilities that compromise the entire security suite
[11,21,33,43].

One of the key features of the AMBA (Advanced Micro-
controller Bus Architecture) AXI (Advanced Extensible
Interface) [3] is address space separation. Thus, lacking
them creates insecure memory separation between the nor-
mal world and the secure world. In this paper, we present
a Direct Memory Access (DMA) attack [26] on OP-TEE
(Open Portable Trusted Execution Environment) [18,39].
OP-TEE is one of the common operating systems that run
on TrustZone. OP-TEE is a popular, open-source, TrustZone
operating system. We used OP-TEE as a reference TrustZone
OS to demonstrate the attack presented in this paper, though
the attack is not due to an OP-TEE bug but rather a missing
hardware feature.

Our attack allows an attacker to execute arbitrary code in
the secure world or read arbitrary data from the secure world
into the rich OS. Our attack is a control-flow attack [14,55]
on the OP-TEE kernel.

Also in the paper, we show a hardware vulnerability on
SoC [10] that compromises ARM TrustZone. Using the

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s11416-021-00413-y&domain=pdf

R. Stajnrod et al.

Secure

ll Trusted Services
Trusted OS

E Trusted Partition

: Manager*

EL3 Firmware / Secure Monitor

Non-secure
EL( AArch32 M AArché4 M
- [
AR AArché64 Kernel [H

EL2 Hypervisor

AArch32 App

AArch32 Kernel

* Secure EL2 from Armv8.4-A

Fig. 1 Normal and secured worlds © Arm

DMA attack, we gain the ability to replace trusted appli-
cations with malicious ones. Furthermore, we demonstrate
an attack on a Raspberry Pi computer and explain how this
method affects other platforms. This paper also provides
measures to mitigate this vulnerability. The attack was not
possible when AMBA AXI was present. Unfortunately, the
AMBA AXTis not present on a few modern hardware devices,
including Raspberry Pi 3,4 and Jetson Nano.

2 Background
2.1 ARM TrustZone

ARM TrustZone technology aims to establish trust in ARM-
based platforms. In contrast to a TPM (Trusted Platform
Module), which is designed as a fixed-function device with
a predefined feature set, TrustZone represents a much more
flexible approach by leveraging the CPU as a freely pro-
grammable trusted platform module. To do that, ARM
introduced a special CPU mode called ‘secure mode’ in addi-
tion to the regular normal mode, thereby establishing the
notions of a ‘secure world’ and a ‘normal world” (Fig. 1).
The distinction between these worlds is entirely orthogonal
to the standard ring protection between user-level and kernel-
level code, and hidden from the operating system running in
the normal world [1].

As an example, the Linux kernel runs in EL1 and the
userspace processes execute in EL0. The separation of the
secure and normal worlds protects specific RAM ranges and
peripherals only accessible by the secure world. This sep-
aration means that a compromised normal world code (in
the userspace or the kernel) cannot access these memory
ranges or devices. However, this separation is entirely artifi-
cial. The same cores run both secure and normal worlds, and
they use the same RAM (Fig. 2). The Non-Secure (NS) bit
determines whether the CPU executes in the normal world
or in the secure world context to create a separation in mem-
ory. TrustZone technology extends beyond the processor
into the SoC peripherals connected with the SoC, such as
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the DRAM controller (Fig. 2), the DMA (Direct Memory
Access), the secure boot ROM, the GIC (Generic Inter-
rupt Controller), the TrustZone Address Space Controller
(TZASC), the TrustZone Protection Controller (TZPC), and
the Dynamic Memory Controller (DMC). The above com-
ponents communicate through the AXI bus and the SoC
communicates with peripherals through the AXI_to_APB
bridge. Third-party companies implement the SoC periph-
erals; therefore, some vendors do not comply entirely with
TrustZone specifications to reduce costs.

It is possible to access the entire memory from the secure
world but not vice versa. To traverse to EL3, we use the
Secure Monitor Call (SMC) instruction. Unfortunately, the
SMC implementation depends on the manufacturer and, thus,
is prone to bugs and other vulnerabilities [21]. This paper
focuses on the physical level of memory isolation.

TrustZone enables memory partitions between normal and
secure worlds by using the TZASC and the TZPC. In addi-
tion, these controllers provide a secure I/O to peripherals over
standard interfaces. For instance, the TZPC routes the SPI
access to the secure world. Furthermore, the NS bit secures
on-chip peripherals from accessing from the Rich Execu-
tion Environment (REE) [8]. TZASC utilizes the NS bit for
a memory-mapped device like DRAM. These two devices
require support from the AXI bus, which is vendor-specific.

Examples of the secure world trusted applications are
secure PIN and biometric checks. Another trusted applica-
tion use case is Digital Right Management (DRM) for online
media. Again, private information is kept within the secure
world so hackers cannot access the keys required to reverse-
engineer the system. [36] describes many more use cases of
TrustZone for [oT and mobile devices.

2.2 OP-TEE

OP-TEE [39] is a Trusted Execution Environment (TEE)
designed as a companion to a non-secure Linux kernel
running on ARM Cortex-A cores using the TrustZone tech-
nology. OP-TEE implements TEE Internal Core API v1.1.x,
which is the API exposed to Trusted Applications and the
TEE Client API v1.0, which is the API describing how to
communicate with a TEE. The GlobalPlatform API defines
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these specifications [22]. The non-secure OS is referred to
as the Rich Execution Environment (REE) in TEE specifica-
tions.

OP-TEE is widespread in Snapdragon, IMX7, Hikey,
DragonBoard, and many other products.

OP-TEE is designed primarily to rely on the ARM
TrustZone technology as the underlying hardware isolation
mechanism. However, it is compatible with other isolation
technologies suitable for the TEE concept and goals, such
as running as a virtual machine or on a dedicated processor
core. The main design goals for OP-TEE are:

— Isolation - OP-TEE provides isolation from the non-
secure OS and protects the loaded Trusted Applications
(TAs) from each other by using underlying hardware sup-
port.

— Small footprint - OP-TEE should remain small enough
to reside in a reasonable amount of on-chip memory as
found on ARM-based systems.

— Portability - OP-TEE is aimed to be pluggable to differ-
ent architectures and must support various setups such as
multiple client OSs or multiple TEEs.

OP-TEE offers threads and shared memory between the REE
to the secured OS, secured interrupts RPC from the secure
world to the REE and the SMC interface communication
from the REE to the secure world.

OP-TEE main components are the:

— OP-TEE binary OS executing in secure EL1 (TrustZone);

OP-TEE Linux kernel driver;

Linux userspace libraries; and

— aLinux userspace daemon (tee-supplicant) that performs
services on behalf of the OP-TEE OS. It is responsible for
passing the secured part of the TA into the secure world.

There are several types of TAs. The early TAs hard-link to
OP-TEE core binary and, therefore, are available before the
REE runs. The second type is an REE File system TA, which
is available once the REE OS runs. The TA is composed of

two parts: secured and non-secured. It is signed and may be
encrypted. The key used to sign the TA is the same key used
to sign the original OP-TEE binary core blob used when built.

Each TA is composed of two parts: a Linux userspace
application and a secure world application. TA execution fol-
lows the next steps:

1. Initialize Context and Open Session: Creates a context
and loads the TA secure part into the OP-TEE core in the
TrustZone.

2. Invoke command. The non-secure part sends commands
to the secured TA receiver.

3. Close session and Finalize context.

OP-TEE secure storage manager implements a secure file
system in two ways: REE-FS and protected memory (if pos-
sible). When a TA writes data to the secured storage, the
trusted storage invokes TEE file system operations to store
the data. Then the TEE file system encrypts the data and
passes the data to tee supplicant, keeping the data in the REE
file system. The TEE file system is visible in the Linux file
system as a directory. Each object within the TEE is assigned
an internal identifier in addition to the TA objects.

Kept in the TEE file system, the key-manager responsibil-
ities are data encryption and decryption. It uses three types
of keys:

— SSK - Secure storage keys
— TSK - TA storage keys
— FEK - File system key

The FEK derives from TSK, which derives from the SSK.
The SSK derives from the unique hardware key (HUK). The
HUK may not be accessible from the REE and it is up to the
manufacturer to provide it, and provide access to it.

The OP-TEE kernel is not encrypted. Therefore, a DMA
attack on the OP-TEE kernel is more straightforward than
on a TA-encrypted program as it bypasses the MMU permis-
sions model and the need to encrypt the code.

Each TA is signed and optionally encrypted with a private
key. The decryption takes place in OP-TEE in the TrustZone.
Thus, the program in its decrypted form is only visible in the
secured RAM and the processor’s EL3 cache. It is, therefore,
sensible to attack in the decryption area.

3 The DMA attack

Direct Memory Access (DMA) allows I/O devices to access
the memory. DMA has evolved since its inception and after
introducing many high-speed I/O peripherals, vendors started
to incorporate DMA engines to initiate DMA transactions
without coordinating with the DMA controller.
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ARM implements the advanced microcontroller bus archi-
tecture (AMBA), an open standard for on-chip interconnect
specification. DMA transactions connect through the DMA
controller to the on-SOC AMBA AXI Bus (AMBA advanced
extensible interface), and the AMBA AXI Bus supports
the TrustZone NS-bit. Thus, the DMA controller can han-
dle secure and non-secure events simultaneously, with full
support for interrupts and peripherals. Examples of DMA
devices are graphic cards, network adapters, FireWire, Thun-
derBolt, etc. Although DMA is essential for fast I/O trans-
actions, it also opens new vulnerabilities to DMA attacks
[7,26,46].

3.1 Attack goal

On a SOC lacking an SMMU (System Memory Management
Unit) or TZASC, running OP-TEE without NS-bit support,
the secured memory is accessible through DMA transactions.
Through this vulnerability, we can exploit TrustZone. We
escalate privileges by reading data from the secure world.
In this attack, we inject code to the Monitor in EL3, thus
executing malicious programs in the secure world OS. This
injection lets us bypass any validation of the secure operating
system and makes it possible to patch the EL1 kernel and
execute arbitrary code.

3.2 The attack - ‘trusted’ arbitrary code execution

We base the attack primitive on Write What Where vul-
nerability achieved using DMA transactions. We use this
vulnerability to show that we can gain access to execute arbi-
trary code in the OP-TEE OS. We bypass OP-TEE OS TA
signature validation and gain control of every trusted appli-
cation in the system, which we present later in the paper. Our
approach is to change the opcodes that return error values
of key functions without changing the stack. This technique
impedes CFI tools such as gcc compiler stack guard [13],
Clang CFI [2], or KFCI [34] to detect our attack.

Trusted applications are located on the REE file system
because it usually contains more memory; using this file sys-
tem makes it easier to update those applications. The trusted
applications are built separately from the trusted operating
system (similar to Linux kernel and userspace applications
in the normal world) and are signed with a private key from
the manufacturer of the device application (e.g. Samsung
sign their trusted applications with their private key). Typical
usages of trusted applications are DRM validations, HMAC
(keyed-hash message authentication code)-based one-time
password, AES encryption and more. Using the trusted appli-
cations, the device’s manufacturer can ensure a compromised
user or kernel will not break the device’s integrity. When the
manufacturer wants to update a trusted application, they sign
the new version with the same private key and distribute it to
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Table 1 PI3 specifications

SoC Broadcom BCM2837

CPU 4 cores, ARM Cortex A53, 1.2 GHz,
(clocked to 700 MHz)

1GB LPDDR2 (900 MHz)

19.2 MHz

RAM
Clock

the users. When the secure world OS executes a trusted appli-
cation, a security error will occur if the signature is invalid
and the program will not run.

In our attack, we first use a DMA attack to read memory
pages from the RAM. Peripheral devices such as FireWire,
PCI-connected devices (Network cards, GPU, etc.) can initi-
ate a DMA attack, as demonstrated by [46,49], and [26]. The
CPU can also initiate DMA attacks by activating the DMA
controller. After reading memory pages from the RAM,
we analyse the memory and compare it to ARM Trusted
Firmware to locate similar functions. (Most TrustZone soft-
ware implementations are based on ARM Trusted Firmware,
making reverse-engineering the code simpler.) Moreover,
some significant vendors’ secure OS (Trusted Execution
Environment) is in the market (QSEE, OP-TEE). We com-
pare our memory dump to the compiled versions of those;
by doing so, we can find the functions that validate trusted
application signatures. Because in some cases, some of the
widely used TEE OS uses Address Space Layout Randomi-
sation (ASLR) [12], we can use the address from our memory
dump to override trusted applications signature validations
with a DMA attack. After doing so, we can just replace any
TA with our own malicious TA. Thus, even though we do
not know the correct signature private key, the TEE OS will
succeed to validate our malicious TA.

4 Attack evaluation
4.1 Raspberry Pi platform

We use a Raspberry PI3 Model B to demonstrate the attack.
Table 1 presents the Raspberry PI3 Model B’s main specifi-
cations.

Figure 4 presents the BCM2837 chip. This Broadcom
SOC supports TrustZone and DMA transactions through
the AMBA Advanced Microcontroller Bus Architecture AXI
(Advanced Extensible Interface). As mentioned earlier, not
all vendors’ implementations comply with the entire hard-
ware specifications. For example, Fig. 4 shows that the
BCM2837 has the correct AXI bus, but it lacks the TZASC
and TZPC, making it vulnerable to DMA attacks.
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Table2 DMA Control Block Data Structure

32-bit  Word Description Associated Read-
Offset only Register
0 Transfer TI
Information
1 Source Address SOURCE_AD
2 Destination Address DEST_AD
3 Transfer Length TXFR_LEN
4 2D Mode Stride STRIDE
5 Next Control Block Address NEXTCONBK
6-7 Reserved - set to zero N/A

4.2 OP-TEE for PI

OP-TEE supports Raspberry Pi 3 Model B. In addition,
the ARM Trusted Firmware is the basis for implementing
secure world software for the ARM A-Profile architectures
(ARMvVS-A and ARMv7-A), including an Exception Level
3 (EL3) Secure Monitor. ARM Trusted Firmware for the
Raspberry Pi provides a suitable starting point for the pro-
ductisation of secure world boot and runtime firmware [4].
When a vendor uses OP-TEE on any hardware in general
and on Raspberry Pi specifically, they will most likely use a
trusted application to implement hardware security measures
and secure their devices [35].

Table3 DMA Controller

32-bit Address offset Register name Description

0 CS DMA Channel
Control and Status

1 CONBLK_AD DMA Channel
Control Block Address

2 TI DMA Channel
Transfer Information

3 SOURCE_AD DMA Channel
Source Address

4 DEST_AD DMA Channel
Destination Address

5 TXFR_LEN DMA Channel
Transfer Length

6 STRIDE DMA Channel
2D Stride

7 NEXTCONBK DMA Channel
Next CB Address

8 DEBUG DMA Channel
Debug

4.3 Raspberry Pi DMA

As noted earlier, the CPU can access the DMA controller.
Therefore, we chose to perform this attack through the CPU.
We authored a Linux kernel module to perform the DMA
transactions. This module maps the DMA controller and con-
figures the DMA control block to initiate DMA transactions.
In OP-TEE’s Linux kernel, the DMA controller address space
is not available to the userspace. However, it is plausible
to assume that an IoT device, for example, will enable this
device for peripherals access. We argue an attack is possi-
ble in many IoT devices, and we will show the following
scenarios:

1. Some IoT devices map physical memory to the userspace
to increase performance and save kernel access, leading
to DMA controller access.

2. Linux-based devices (IoT devices, routers, etc.) do not
update their kernel versions very often due to compatibil-
ity issues and many devices. Thus one day’s vulnerability
can be used to exploit the device and gain root access to
perform actions on the DMA controller [37,50].

3. Attack peripheral device (Bluetooth/WIFI chip, SSD con-
troller, etc.) to perform malicious DMA transactions
[17,47,52].

All those scenarios may lead to a DMA attack and, on some
devices, to TrustZone vulnerability.
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Table 2 presents the Control Block structure of a DMA in
the Raspberry Pi. Table 3 shows the DMA Controller regis-
ters. To initiate a DMA transaction, we first set the Control
Block structure and then set CONBLK_AD in the DMA con-
troller structure. We perform two types of DMA transactions:

1. Set SOURCE_AD to the secure world physical address to
read data of the secure world.

2. Set DEST_AD to the secure world physical address to
write malicious code to the secure world, thereby achiev-
ing arbitrary code execution.

5 The attack - evaluation on raspberry Pi

In the OP-TEE environment, trusted applications are signed
with the key from the build of the original OP-TEE core
blob. Trusted applications consist of a signed ELF header,
named from the UUID of the trusted application (set during
compilation time) and the suffix .za.

When a trusted application is replaced in the REE file-
system with the new one, the signatures and UUID are
validated by the OP-TEE OS (Fig. 5).

OP-TEE provides a Linux kernel driver to interact with
the OP-TEE in TrustZone. For instance, the PTA_SYSTEM
_OPEN _TA_BINARY function access the OP-TEE OS.
PTA_SYSTEM_OPEN_TA_BINARY calls system _open _ta
_binary, which looks for the user-trusted application ELF
by the UUID in the storage (file-system). After finding the
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trusted application ELF in the REE file-system, the OP-TEE
OS loads the ELF header and maps the TA sections into the
secure memory using PTA _SYSTEM_MAP _TA_BINARY.
After loading the trusted application, the user is able to invoke
the trusted application functionality through the OP-TEE
Linux kernel driver.

We focus on two functions:

ree_fs_ta_open and

ree_fs_ta_read

called by PTA _SYSTEM _OPEN _TA _BINARY, and
PTA _SYSTEM _MAP _TA _BINARY, respectively.

Trusted applications binaries contain a signed header so
that a malicious user cannot replace the trusted applica-
tions. If a malicious user replaces a trusted application,
then OP-TEE OS returns a security error when executing
those trusted applications. In order for OP-TEE OS to val-
idate those signatures as a trusted application executes, the
function ree_fs_ta_open loads the trusted application header,
validates the application header signature (Fig. 6) and vali-
dates its size (Fig. 7). When OP-TEE OS maps the TA into
the secure memory, it loads the application to the memory
using ree_fs_ta_read, which validates the encrypted trusted
application signature (Figs. 8 and 9).

In the first step, we reverse-engineered OP-TEE OS (using
radare2 [31]) in order to find key opcodes of both functions
to exploit (Figs. 6, 7, 8, 9). We used DMA transactions to
read chunks of physical RAM in order to find the opcodes
that match the functions above. Once we located the opcodes
in the memory and noticed that these functions load in the
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1 /* Validate header signature x/

2 res = shdr_verify_signature (shdr);
if (res != TEESUCCESS)

A goto error_free_payload;

Fig.6 ree_fs_ta_open Header signature validation

if (ta_size != offs + shdr—>img_size) {
res = TEE ERROR SECURITY;
goto error_free_hash;

}

S T S N

Fig.7 ree_fs_open TA size validation

1 if (handle—>shdr—>img_type —
SHDR ENCRYPTED.TA) {

2 /%

3 x Last read:
authenticated

! * decryption.

6 res = tee_ta_decrypt_final (handle—>
enc_ctx ,handle—>ehdr, NULL, NULL, 0);

7 if (res != TEESUCCESS)

8 return TEE ERROR SECURITY ;

9

time to finalise

Fig.8 ree_fs_ta_read decrypts a TA header

same location in physical memory every time. We used DMA
transactions to override the return values of the validations
mentioned above (Figs. 6, 7, 8, 9), thereby gaining the abil-
ity to compile our own trusted application, sign it with an
arbitrary key and execute it on the machine.

We replaced two types of opcodes: the comparison opcode
of w0 register was replaced with cmp wO,w0 so it always
returned true and, when moving the return value of the func-
tion to w0 register, we replaced this command with eor
w0,w0,w0 so the value of w0 register would be 0, again hav-
ing the return values of the validation functions equal true.
We were able to perform this replacement using just a simple
DMA transaction with the control block DEST_AD, which
contains the physical address of the opcodes we found, all of
which are located in the secure world memory. In our case,
we compiled a new TA with the same UUID as the origi-
nal one and put it in the file-system location. By executing
our malicious TA, we gained the ability to manipulate ARM
TrustZone to run invalidly signed binaries. For instance, we
compiled a fake AES TA (given in the examples of the OP-
TEE suite) that encrypts data with our malicious key. Thus,
every time the user uses this TA to perform AES, it will not
encrypt the data with the secret key.

1 /%

2 * Last read: time to check if our
digest matches the expected

3 x one (from the signed header)

i */

5 res = check_digest (handle);

6 if (res != TEESUCCESS)

7 return res;

Fig. 9 ree_fs_read validates the encrypted header against the hash of
the plain header

5.1 Other attack possibilities

Using DMA attacks on the TrustZone gives a wide range
of attack possibilities. In this paper, we show the usage of
DMA attacks to perform ACE (Arbitrary Code Execution);
however, itis also possible to use this method to read arbitrary
code from physical memory whereby a malicious user can
access sensitive data.

6 Mitigation

When choosing an SoC, you must compare the device
requirements to the SoC features. In our case, when select-
ing an SoC, we want to make sure the SoC architecture has
all the chips required for ARM TrustZone to work correctly
(TZASC, TZPC, supported bus, etc.). Unfortunately, check-
ing the SoC architecture is not always easy and not automatic
because not all vendors publish their SoC architecture. We
suggest that SoC vendors be more transparent about their
architecture when it comes to security features. We also
recommend that manufacturers ensure their SoC hardware
supports TrustZone ARM Core and TrustZone specifications.
In cases where a fully compatible TrustZone is not avail-
able (lack of hardware on the SoC that makes the TrustZone
secure), we list other protection techniques:

— Using SMMU (similar to IOMMU on Intel x86) to con-
figure specific addresses for DMA controllers. SMMU
works as MMU for BUS access so any memory access
through the BUS is matched to the permission config-
ured to the accessed address. With SMMU and a correct
configuration, a DMA attack through peripherals will not
be possible. It is also important to note a kernel attacker
could change this configuration.

— In the case of Raspberry Pi, by disabling the DMA con-
troller, a non-privileged user or peripheral would not be
able to use DMA transactions.

— Set the secure world on a different RAM without DMA
controller mapping so there is no physical interface
between the normal and secure worlds.
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A software technique would encrypt parts of the OP-TEE
code itself, mainly the TA decipher functions. Then, when
OP-TEE runs these functions, it decrypts them into the cache,
validates the TA, and evicts the processors’ cache. Using this
method [54], an attacker would have to time his attack to get
the RAM code. However, combining this method with ASLR
impedes the attack.

7 Related work

In the area of ARM, [11] et al. describe a downgrade or roll-
back attack. A trusted application is encrypted for security
purposes by public and private keys that originate from the
hardware. In cases when the system is updated, old TAs can
still be executed on the new system. A downgrade attack is
when an attacker exploits a vulnerability in the old TA ver-
sion by patching the old version onto the new TA version.
According to [11], the above applies to the OP-TEE and
QSEE (Qualcomm’s Secure Execution Environment). [11]
et al. describe a simple procedure for mobile phones: root
the device, remount the ‘system’ partition in READ-WRITE
mode, replace the current trustlet with an old vulnerable trust-
let and use the trustlet. [11] et al. describe another possible
rollback attack on the chain of trust and proves it possible to
downgrade the bootloader successfully.

Many words have been written on side-channel attacks
and other vulnerable targets in ARM architecture in prior
research. For example, Armageddon [32] et al. explore
attacks on ARM caches, concentrating on cross-core cache
attacks in non-rooted ARM mobile devices and showing a
novel approach to exploit the coherence protocols. Although
most smartphones have multiple processors that do not share
caches, cache coherence protocols allow processors to fetch
cache lines. By exploiting the lack of cache flush on ‘old’
ARM cores (before ARMvS), a novel technique that analy-
ses cache eviction strategies and another approach to perform
cycle-timing without root access, the Armageddon [32] et
al. provide a method to gain sensitive information such as
inter-keystroke timings or the length of a swipe action. As
for TrustZone vulnerability, Armageddon [32] et al. shows
a cache attack used to monitor cache activity caused within
the ARM TrustZone from the normal world.

Flush and Reload attack [53] et al. take advantage of the
coherence protocol in a multiprocessor computer. In most
ARM processors, the last-level cache is inclusive (i.e. it
includes low-level cache lines); therefore, examining the
content of the last-level cache may provide the contents of
low-level cache lines of another core. However, the AutoLock
[19] tool assesses the actual risk in cache attacks, prevents
cross-cache evictions and highlights the intricacies of cache
attacks in ARM. [19] et al. claim that unlike Intel proces-
sors, many ARM caches are both inclusive and exclusive
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and, therefore, harden the LLC (last-level cache) attacks. In
their work, Demme et al. [16] demonstrate that small changes
to the cache architecture have a considerable impact on side-
channel vulnerability. Finally, [28] et al. present in their work
a side-channel cache attack against Samsung TrustZone via
the Android’s Keymaster cryptographic functions.

Like cache attacks, DMA attacks are continuously under
research. [49] et al. show that by dumping memory fre-
quently enough using DMA transactions, write patterns can
be examined. Some algorithms, such as the RSA Mont-
gomery ladder [23], may leak secrets. DAGGER [46], a
DMA-based keystroke logger, exfiltrates captured data to
an external entity and cannot be detected by anti-virus soft-
ware. [46] shows how DAGGER can steal cryptographic
keys, target OS kernel structure, and copy files from the file
cache on Linux and Windows through DMA malware even
if the memory addresses are random. [46] et al. also offer
countermeasures to detect DMA attacks. [9] et al. integrate
DMA attacks through FireWire into Metasploit [24]. Thus,
an attacker could use Metasploit [24] for payload selection,
session control, etc. and attack via DMA over Firewire.

TRESOR-HUNT [7] relies on the insight that DMA-
capable adversaries are not restricted to simply reading
physical memory but can write arbitrary values to memory as
well. Hard disk encryption keys were considered safe if not
saved on the RAM. Still, TRESOR-HUNT [7] injects mali-
cious code to the kernel using a DMA attack and then extracts
disk encryption keys from the CPU into the target system’s
memory from which they can be retrieved using a normal
DMA transfer. [48] et al. show that an adversary with physi-
cal access to a device could impersonate the device’s memory
controller by attaching a malicious memory controller to the
exposed pins of each DIMM socket of RAM; by doing so, an
attacker would have full access (READ/WRITE) to the tar-
get memory. Duflot et al. [17] introduce the vulnerability of
remote code execution on a network adapter and how it could
compromise the system-running kernel using DMA attack.
BROADPWN [6] is a novel approach of privilege escalation
from exploiting a bug in Broadcom WiFi chip into a DMA
attack on the main processor of the device.

There are also hardware tools that perform attacks, such
as PCI leech [41] that performs DMA attacks, Lan turtle [27]
that performs a man-in-the-middle attack, and kon-boot [25]
that bypasses Windows password protection [45].

The emerging cache, DMA and hardware attacks demon-
strate that software bugs can impose security risks, and
weak hardware implementation is becoming more com-
mon, specifically when new features rely on old secu-
rity assumptions. For example, in the Raspberry PI case,
CVE-2018-18068 is a privilege escalation vulnerability of
non-authorised memory access via inter-processor debug-
ging. This vulnerability is also demonstrated by [38] et
al. who show that because ARMv7 (the ARM debugging
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model) requires no physical access, a low-privilege host can
use ARM debugging features to gain read/write access to
TrustZone secure world. Furthermore, because there is no
hardware privilege access control, a low-privilege host can
initiate a debug session with a high-privilege target using
ARM debugging features. [38] et al. use ARM debugging
features to leak private keys from the secure world, thus com-
promising ARM TrustZone security.

The hardware implementation bugs of ARM debugging
features affect development boards, IoT devices, and mobile
devices. Defence against these vulnerabilities requires hard-
ware and software solutions like the vulnerability we found.
[38] et al. suggest that ARM should add restrictions in
the interprocessor debugging model to enforce permission
between host and target. OEMs should add software-based
access control to go with the hardware permission model.

Matt Spisak et al. [44] describe another processor feature-
based attack using ARM CoreSight debug features. [44] et
al. leverage ARM PMU (Performance Monitoring Unit) to
create a rootkit that cannot be detected by the kernel moni-
tor because it does not change the kernel syscall but rather
attaches through the PMU to any syscall. Thus, every syscall
will raise a PMU event and the rootkit would modify the
syscall’s input and output data. This attack is possible due
to a hardware implementation bug of a debug signal authori-
sation that enables debug features in the hardware. Cloaker
[15] et al. leverage the ARM architecture System Control
Register (SCTLR) to move the exception vector table (EVT)
from high to low address so that mapping a malicious EVT
at address 0x0 would intercept all exceptions.

Much is found in the literature on control-flow integrity
(CFI). [34] et al. present the kernel CFI used to protect the ker-
nel’s stack and heap. However, a flaw in the kernel may allow
user processes to write to kernel-space. Therefore, processor
vendors presented the NX (Never Execute) bit that thwarts
execution from the kernel’s data portions. However, the exe-
cution segments were still writable and vulnerable to exploits.
This led to making the kernel execution part read-only. But
this also was not enough as all of the userspace portions could
be written-to and executed via a kernel exploit. To probity
this, Intel created the supervisor mode execution preven-
tion (SMEP) and ARM privileged-execute-never (PXN) bit.
These features restrict the kernel from executing userspace
memory while in kernel mode. Thus, attackers started to tar-
get the stack, mainly manipulating the return addresses kept
on the stack. This type of attack is referred to as ‘return-
oriented programming’ (ROP) attacks. ROP attacks exploit
indirect calls, i.e. function pointers. These attacks concen-
trate on a function’s calling (forward edge) and returning
(backwards edge). Thus, the primary purpose of CFl s to try
to ensure that forward edges go to the expected addresses and
that the backward edges are not changed. CFI is implemented
through the Clang compiler extensions and utilizes link-time

Table 4 List of vulnerable SoCs

Manufacturer SoC Device Missing
TI CC2538 Sensibo TSASC
HISILICON Hi3518EV200 Security

Cameras TZASC
HISILICON Hi3519V101 Security

Cameras TZSAC

optimisation (LTO) to examine the entire kernel code. Func-
tions are classified according to their signature and checked
in runtime. Another mechanism is kCFI, which narrows the
classification of the edges. Thus, OP-TEE must be compiled
with Clang and then kFCI applied to use this feature. Unfor-
tunately, none of these defences thwarts a DMA attack.

In the area of thwarting hypervisor CFI attacks, [51] et
al. offer Hypersafe. Hypersafe protects the hypervisor from
CFT hijack attacks through a memory lockdown and restricts
pointer indexing, a layer of indirection that converts the con-
trol data into pointer indexes. These pointers indexes are
limited such that the corresponding call/return targets strictly
follow the hypervisor control flow graph, expanding protec-
tion to control-flow integrity.

This mitigation reduces the ease of performing a DMA
attack on the hypervisor and, combined with IOMMU, it is
possible to impede the attack.

8 Conclusions

Using DMA attacks on the TrustZone yields a wide range
of attack possibilities. In this paper, we show the usage of
DMA attack to perform ACE (Arbitrary Code Execution).
However, it is also possible to use this method to read arbi-
trary code from physical memory, whereby a malicious user
can access sensitive data. We also show that hardware imple-
mentation bugs are common even on security features like
ARM TrustZone.

Table 4 presents a few SoCs of real IoT devices that lack
some TrustZone hardware but support TrustZone in the ARM
Core, thus making the TrustZone ‘untrusted’. One can claim
the devices using this SoC do not use TrustZone at all; how-
ever, if this were the case, then those devices would not be
using all the security options given to them, thus introducing
architecture security flaws [20,30,42].

Funding Open Access funding provided by University of Jyviskyld
Jyu).

@ Springer



R. Stajnrod et al.

Declarations

Conflict of interest The authors declare that they have no conflicts of
interest.

Research involving human participants and/or animals Not applicable.

Informed consent Not applicable.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. A technical report on tee and arm trustzone. https://community.
arm.com/developer/ip-products/processors/b/processors-ip-blog/
posts/a-technical-report-on-tee-and-arm-trustzone. ~ Accessed:
2020-04-16

2. Abadi, M., Budiu, M., Erlingsson, U., Ligatti, J.: Control-flow
integrity principles, implementations, and applications. ACM
Trans. Inf. Syst. Secur. 13(1), 4 (2009)

3. About the axi trustzone memory adapter. https://developer.arm.
com/docs/dto0017/a/about-the-axi-trustzone-memory-adapter.
Accessed: 2020-04-15

4. Arm trusted firmware. https://github.com/ARM-software/arm-
trusted-firmware. Accessed: 2020-04-15

5. Arm trustzone. https://developer.arm.com/ip-products/security-
ip/trustzone. Accessed: 2020-04-15

6. Artenstein, N.: Broadpwn: Remotely compromising android and
ios via a bug in broadcom’s wi-fi chipsets. Black Hat USA (2017)

7. Blass, E.-O., Robertson, W.: Tresor-hunt: attacking cpu-bound
encryption. In: Proceedings of the 28th Annual Computer Secu-
rity Applications Conference, pp. 71-78 (2012)

8. Blazy, O., Yeun, C.Y.: Information Security Theory and Practice:
12th IFIP WG 11.2 International Conference, WISTP 2018, Brus-
sels, Belgium, December 10-11, 2018, Revised Selected Papers.
Lecture Notes in Computer Science. Springer International Pub-
lishing (2019)

9. Breuk, R., Spruyt, A.: Integrating dma attacks in metasploit.
In: Sebug, D., volume 2 (2012). http://sebug.net/paper/Meeting-
Documents/hitbsecconf2012ams

10. Cerdeira, D., Santos, N., Fonseca, P., Pinto, S.: Sok: understand-
ing the prevailing security vulnerabilities in trustzone-assisted tee
systems. In: 2020 IEEE Symposium on Security and Privacy (SP),
pp. 1416-1432. IEEE (2020)

11. Chen, Y., Zhang, Y., Wang, Z., Wei, T.: Downgrade attack on trust-
zone. arXiv preprint arXiv:1707.05082 (2017)

12. Cook, K.: Kernel address space layout randomization. Linux Secu-
rity Summit (2013)

13. Cowan, C., Pu, C., Maier, D., Walpole, J., Bakke, P., Beattie, S.,
Grier, A., Wagle, P., Zhang, Q., Hinton, H.: Stackguard: Automatic
adaptive detection and prevention of buffer-overflow attacks. In:

@ Springer

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.
26.

217.

28.

29.

30.

31.

32.

33.

34.

USENIX Security Symposium, vol. 98, pp. 63—78. San Antonio,
TX (1998)

Davi, L., Koeberl, P., Sadeghi, A.-R.: Hardware-assisted fine-
grained control-flow integrity: Towards efficient protection of
embedded systems against software exploitation. In: 2014 51st
ACM/EDAC/IEEE Design Automation Conference (DAC), pages
1-6. IEEE (2014)

David, EM., Chan, E.M., Carlyle, J.C., Campbell, R.H.: Cloaker:
hardware supported rootkit concealment. In: 2008 IEEE Sympo-
sium on Security and Privacy (sp 2008), pp. 296-310. IEEE (2008)
Demme, J., Martin, R., Waksman, A., Sethumadhavan, S.: Side-
channel vulnerability factor: a metric for measuring information
leakage. In 2012 39th Annual International Symposium on Com-
puter Architecture (ISCA), pp. 106-117. IEEE (2012)

Duflot, L., Perez, Y.-A., Valadon, G., Levillain, O.: Can you still
trust your network card. CanSecWest/corel0, pp. 24-26 (2010)
Gottel, C., Felber, P., Schiavoni, V.: Developing secure services for
iot with op-tee: a first look at performance and usability. In: IFIP
International Conference on Distributed Applications and Interop-
erable Systems, pp. 170-178. Springer (2019)

Green, M., Rodrigues-Lima, L., Zankl, A., Irazoqui, G., Heyszl,
J., Eisenbarth, T.: Autolock: Why cache attacks on {ARM} are
harder than you think. In: 26th {USENIX} Security Symposium
({USENIX} Security 17), pp. 1075-1091 (2017)

Guan, L., Liu, P, Xing, X., Ge, X., Zhang, S., Yu, M., Jaeger, T.:
Trustshadow: Secure execution of unmodified applications with
arm trustzone. In: Proceedings of the 15th Annual International
Conference on Mobile Systems, Applications, and Services, pp.
488-501 (2017)

Guilbon, J.: Attacking the arm’s trustzone. https://blog.quarkslab.
com/attacking-the-arms-trustzone.html. Accessed: 2020-04-16
https://globalplatform.org/specs-library/tee-internal-core-api-
specification . Accessed 2021-8-05

Joye, M., Yen, S.-M.: The montgomery powering ladder. In: Inter-
national Workshop on Cryptographic Hardware and Embedded
Systems, pp. 291-302. Springer (2002)

Kennedy, D., O’gorman, J., Kearns, D., Aharoni, M.: Metasploit:
The Penetration Tester’s Guide. No Starch Press (2011)

kon-boot. https://kon-boot.com/. Accessed: 2021-10-21

Kupfer, G., Tsafrir, D., Amit, N.: IOMMU-resistant DMA attacks.
PhD thesis, Computer Science Department, Technion (2018)
lan-turtle. https://hak5.org/products/lan-turtle/. Accessed: 2021-
10-21

Lapid, B., Wool, A.: Cache-attacks on the arm trustzone imple-
mentations of aes-256 and aes-256-gcm via gpu-based analysis.
In: International Conference on Selected Areas in Cryptography,
pp- 235-256. Springer (2018)

Leonard, J.: Why trustzone matters for iot. https://blog.nordicsemi.
com/getconnected/why-trustzone-matters-in-iot. Accessed:
2020-04-15

Lesjak, C., Hein, D., Winter, J.: Hardware-security technologies
for industrial iot: Trustzone and security controller. In: IECON
2015-41st Annual Conference of the IEEE Industrial Electronics
Society, pp. 002589-002595. IEEE (2015)

Libre and portable reverse engineering framework. https://rada.re/
n/. Accessed: 2020-04-17

Lipp, M., Gruss, D., Spreitzer, R., Maurice, C., Mangard, S.:
Armageddon: Cache attacks on mobile devices. In 25th {USENIX}
Security Symposium ({USENIX} Security 16), pp. 549-564 (2016)
Makkaveev, S.: The road to qualcomm trustzone apps fuzzing.
https://research.checkpoint.com/2019/the-road- to-qualcomm-
trustzone-apps-fuzzing/. Accessed: 2020-04-16

Moreira, J., Rigo, S., Polychronakis, M., Kemerlis, V.P.: Drop the
rop fine-grained control-flow integrity for the linux kernel. Black
Hat Asia (2017)


http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/a-technical-report-on-tee-and-arm-trustzone
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/a-technical-report-on-tee-and-arm-trustzone
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/a-technical-report-on-tee-and-arm-trustzone
https://developer.arm.com/docs/dto0017/a/about-the-axi-trustzone-memory-adapter
https://developer.arm.com/docs/dto0017/a/about-the-axi-trustzone-memory-adapter
https://github.com/ARM-software/arm-trusted-firmware 
https://github.com/ARM-software/arm-trusted-firmware 
https://developer.arm.com/ip-products/security-ip/trustzone
https://developer.arm.com/ip-products/security-ip/trustzone
http://sebug.net/paper/Meeting-Documents/hitbsecconf2012ams
http://sebug.net/paper/Meeting-Documents/hitbsecconf2012ams
http://arxiv.org/abs/1707.05082
https://blog.quarkslab.com/attacking-the-arms-trustzone.html
https://blog.quarkslab.com/attacking-the-arms-trustzone.html
https://globalplatform.org/specs-library/tee-internal-core-api-specification
https://globalplatform.org/specs-library/tee-internal-core-api-specification
https://kon-boot.com/
https://hak5.org/products/lan-turtle/
https://blog.nordicsemi.com/getconnected/why-trustzone-matters-in-iot
https://blog.nordicsemi.com/getconnected/why-trustzone-matters-in-iot
https://rada.re/n/
https://rada.re/n/
https://research.checkpoint.com/2019/the-road-to-qualcomm-trustzone-apps-fuzzing/
https://research.checkpoint.com/2019/the-road-to-qualcomm-trustzone-apps-fuzzing/

Attacking TrustZone on devices lacking memory protection

35.

36.

37.

38.

39.

40.

41.

42.

43.
44,

45.

46.

47.

48.

49.

50.

51.

Nehal, A., Ahlawat, P.: Securing iot applications with op-tee from
hardware level os. In: 2019 3rd International conference on Elec-
tronics, Communication and Aerospace Technology (ICECA), pp.
1441-1444 (2019)

Ngabonziza, B., Martin, D., Bailey, A., Cho, H., Martin, S.: Trust-
zone explained: architectural features and use cases. In: 2016 IEEE
2nd International Conference on Collaboration and Internet Com-
puting (CIC), pp. 445-451 (2016)

Nikolai, Hampton: (Computerworld. The working dead: The secu-
rity risks of outdated linux kernels. https://www2.computerworld.
com.au/article/615338/working-dead-security-risk-dated-linux-
kernels/. Accessed: 2020-04-16

Ning, Z., Zhang, F.: Understanding the security of arm debugging
features. In: 2019 IEEE Symposium on Security and Privacy (SP),
pp. 602-619. IEEE (2019)

Open portable trusted execution environment. http://www.op-tee.
org/. Accessed: 2020-09-30

Papp, D., Ma, Z., Buttyan, L.: Embedded systems security: threats,
vulnerabilities, and attack taxonomy. In: 2015 13th Annual Con-
ference on Privacy, Security and Trust (PST), pp. 145-152. IEEE
(2015)

pcileech. https://github.com/ufrisk/pcileech. Accessed: 2021-10-
21

Pinto, S., Gomes, T., Pereira, J., Cabral, J., Tavares, A.: lioteed:
an enhanced, trusted execution environment for industrial iot edge
devices. IEEE Internet Comput. 21(1), 40-47 (2017)

Shen, D.: Exploiting trustzone on android. Black Hat USA (2015)
Spisak, M.: Hardware-assisted rootkits: Abusing performance
counters on the {ARM} and x86 architectures. In: 10th {USENIX}
Workshop on Offensive Technologies ({WOOT} 16) (2016)

Steal windows password. https://arstechnica.com/gadgets/
2021/08/how-to-go-from-stolen-pc-to-network-intrusion-in-30-
minutes

Stewin, P., Bystrov, I.: Understanding dma malware. In: Interna-
tional Conference on Detection of Intrusions and Malware, and
Vulnerability Assessment, pp. 21-41. Springer (2012)

The latest security information on intel R products. https:/www.
intel.com/content/ www/us/en/security-center/advisory/intel-sa-
00266.html. Accessed: 2020-04-15

Trikalinou, A., Lake, D.: Taking dma attacks to the next level.
BlackHat USA (2017)

van Dijk, M., Haider, S.K., Jin, C., Nguyen, P.H.: Advanced power
side channel cache side channel attacks dma attacks (2017)
Wallen, J.: Most iot devices are an attack waiting to happen, unless
manufacturers update their kernels. https://www.techrepublic.
com/article/most-iot-devices-are-an-attack- waiting-to-happen-
unless-manufacturers-update-their-kernels/. Accessed: 2020-04-
16

Wang, Z., Jiang, X.: Hypersafe: A lightweight approach to provide
lifetime hypervisor control-flow integrity. In: 2010 IEEE Sympo-
sium on Security and Privacy, pp. 380-395 (2010)

52.

53.

54.

55.

56.

57.

Weinmann, R.-P.: Baseband attacks: Remote exploitation of mem-
ory corruptions in cellular protocol stacks. In: WOOT, pp. 12-21
(2012)

Yarom, Y., Falkner, K.: Flush+ reload: a high resolution, low noise,
13 cache side-channel attack. In: 23rd {USENIX} Security Sympo-
sium ({USENIX} Security 14), pp. 719-732 (2014)

Yehuda, R.B., Zaidenberg, N.J.: Protection against reverse engi-
neering in arm. Int. J. Inf. Secur. 19(1), 39-51 (2020)

Zhang, M., Sekar, R.: Control flow integrity for {COTS} binaries.
In: Presented as part of the 22nd {USENIX} Security Symposium
({USENIX} Security 13), pp. 337-352 (2013)

Zhang, M., Zhang, Q., Zhao, S., Shi, Z., Guan, Y.: Softme: a
software-based memory protection approach for tee system to resist
physical attacks. Security and Communication Networks, 2019
(2019)

Zhao, S., Zhang, Q., Qin, Y., Feng, W., Feng, D.: Minimal kernel:
an operating system architecture for {TEE} to resist board level
physical attacks. In: 22nd International Symposium on Research
in Attacks, Intrusions and Defenses ({RAID} 2019), pp. 105-120
(2019)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

@ Springer


https://www2.computerworld.com.au/article/615338/working-dead-security-risk-dated-linux-kernels/
https://www2.computerworld.com.au/article/615338/working-dead-security-risk-dated-linux-kernels/
https://www2.computerworld.com.au/article/615338/working-dead-security-risk-dated-linux-kernels/
http://www.op-tee.org/
http://www.op-tee.org/
https://github.com/ufrisk/pcileech
https://arstechnica.com/gadgets /2021/08/how-to-go-from-stolen-pc-to-network- intrusion-in-30-minutes
https://arstechnica.com/gadgets /2021/08/how-to-go-from-stolen-pc-to-network- intrusion-in-30-minutes
https://arstechnica.com/gadgets /2021/08/how-to-go-from-stolen-pc-to-network- intrusion-in-30-minutes
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00266.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00266.html
https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00266.html
https://www.techrepublic.com/article/most-iot-devices-are-an-attack-waiting-to-happen-unless-manufacturers-update-their-kernels/
https://www.techrepublic.com/article/most-iot-devices-are-an-attack-waiting-to-happen-unless-manufacturers-update-their-kernels/
https://www.techrepublic.com/article/most-iot-devices-are-an-attack-waiting-to-happen-unless-manufacturers-update-their-kernels/

	Attacking TrustZone on devices lacking memory protection
	Abstract
	1 Introduction
	2 Background
	2.1 ARM TrustZone
	2.2 OP-TEE

	3 The DMA attack
	3.1 Attack goal
	3.2 The attack - `trusted' arbitrary code execution

	4 Attack evaluation
	4.1 Raspberry Pi platform
	4.2 OP-TEE for PI
	4.3 Raspberry Pi DMA

	5 The attack - evaluation on raspberry Pi
	5.1 Other attack possibilities

	6 Mitigation
	7 Related work
	8 Conclusions
	References




