
This is a self-archived version of an original article. This version
may differ from the original in pagination and typographic details.

Author(s):

Title:

Year:

Version:

Copyright:

Rights:

Rights url:

Please cite the original version:

CC BY-NC-ND 4.0

https://creativecommons.org/licenses/by-nc-nd/4.0/

Factors Enabling and Hindering Value Co-Creation in Continuous Service Development :
A Systematic Literature Review

© Authors, 2021

Published version

Elo, Jenny; Lumivalo, Juuli; Tuunanen, Tuure; Salo, Markus

Elo, J., Lumivalo, J., Tuunanen, T., & Salo, M. (2022). Factors Enabling and Hindering Value Co-
Creation in Continuous Service Development : A Systematic Literature Review. In Proceedings
of the 55th Hawaii International Conference on System Sciences (HICSS 2022). University of
Hawai'i at Manoa. Proceedings of the Annual Hawaii International Conference on System
Sciences. https://doi.org/10.24251/HICSS.2022.174

2022

Factors Enabling and Hindering Value Co-Creation in Continuous Service
Development: A Systematic Literature Review

Jenny Elo
Faculty of IT

University of Jyväskylä
jenny.m.elo@jyu.fi

Juuli Lumivalo
Faculty of IT

University of Jyväskylä
juuli.k.lumivalo@jyu.fi

Tuure Tuunanen
Faculty of IT

University of Jyväskylä
tuure@tuunanen.fi

Markus Salo
Faculty of IT

University of Jyväskylä
markus.t.salo@jyu.fi

Abstract
This paper presents a systematic literature review

(SLR) investigating the factors that enable and hinder
value co-creation in organizations’ continuous service
development processes. Employing the lens of service-
dominant (S-D) logic, we classify the identified factors
into three interrelated dimensions: institutions,
resources, and service exchange. Our systematic
findings may inform organizations’ efforts to support
the emergence of positive rather than negative value
outcomes when implementing continuous practices in
their service development. In addition, we outline
avenues for further research in this emerging topic area.

1. Introduction

Driven by the opportunities brought by digitalization
and the demands of vastly competitive and dynamic
markets, organizations across various industries are
increasingly adopting continuous development practices
to propose value to their customers faster and without
compromises in service quality. As one of the most
recent phenomena of digital service development,
DevOps (development and operations) [1] and
continuous practices (e.g., continuous delivery and
deployment) have attracted growing interest amongst
practitioners and researchers, especially in the software
engineering (SE) community [2-4]. The DevOps
approach, built on agile and lean principles, breaks
down organizational silos and aligns actors’ incentives
in service development [5-7]. To date, many leading
digital service providers, such as Facebook, Netflix,
Google, and Amazon, have changed their service
development and innovation processes into continuous
ones by adopting DevOps and continuous practices (see,
e.g., [8]) and reduced their time to deliver service
updates from days to minutes down to seconds [4, 9].

Extant literature presents various benefits of
continuous development for organizations. For

example, increased performance and productivity (e.g.,
[10-12]), shorter time to market (e.g., [11, 13-15]), cost
savings (e.g., [16, 17]), improved quality (e.g., [10-14,
18, 19]), enhanced customer and employee experience
and satisfaction (e.g., [16, 17, 20]), and improved
employee well-being (e.g., [10, 12, 19, 21]) are among
the positive outcomes realized by employing continuous
development.

Still, the literature remains scattered and does not
effectively explain how different outcomes emerge, i.e.,
how continuous development affects value co-creation
(VCC) between the focal actors in the organizations’
service development ecosystems. Furthermore,
arguments have been made that DevOps and continuous
practices have not been sufficiently studied in the
scientific literature. Instead, the current understanding
of these topics is centered on industry and practice (e.g.,
[4, 18, 22]). To address this gap, we conduct a
systematic literature review (SLR) addressing the
effects of DevOps and continuous practices on
organizations. To this end, we have set the following
research question (RQ): Which factors have been found
in the literature to enable/hinder VCC in continuous
service development?

Employing the metatheoretical framework of
service-dominant (S-D) logic [23-25], we understand
service development ecosystems as “relatively self-
contained, self-adjusting system[s] of resource-
integrating actors connected by shared institutional
arrangements and mutual value creation through service
exchange” [24:10-11]. Our findings provide a
systematic understanding of the factors that enable and
hinder VCC between these ecosystem actors (e.g.,
internal teams, partners, and customers) and thus may
support the emergence of positive rather than negative
value outcomes in the organizations’ continuous
development processes.

From a theoretical perspective, our research expands
prior research by focusing on the specific characteristics
of continuous service development and explains how
they influence VCC. Our research shows that

Proceedings of the 55th Hawaii International Conference on System Sciences | 2022

Page 1406
URI: https://hdl.handle.net/10125/79506
978-0-9981331-5-7
(CC BY-NC-ND 4.0)

institutions, resources, and service exchange are the
deciding dimensions in VCC, all affected by enabling
and hindering factors via continuous service
development. Furthermore, we identify opportunities
for future research.

The remainder of our paper is structured as follows.
Next, we provide a background on DevOps and
continuous practices as manifestations of continuous
development and S-D logic as our lens for
understanding VCC in continuous service development.
Then, we introduce our research method, followed by
our findings. Finally, in the fifth section, we discuss the
contribution and implications of our study and conclude
with limitations and suggestions for future research.

2. Theoretical background

2.1. Continuous service development

During the past two decades, traditional service
development methods (e.g., waterfall) with rigid step-
by-step development projects, usually ending with the
first major release of the system, have increasingly been
replaced with lightweight and iterative development
methods for systems and software [7, 22, 26]. In recent
years, the development and operations (DevOps) [1]
approach in particular has become popular in the SE
practitioner and research community [2] as a means to
achieve development continuity.

DevOps promotes actor collaboration and
automation [4, 27] and relies on various continuous
practices that shorten the time between committing a
change and deploying it to production while ensuring
high service quality [26]. DevOps enables organizations
to transform their service development and innovation
processes into continuous ones and boost their service
delivery speeds from an initial idea to release and from
continuous customer and process feedback to rapid
enhancements of services to meet customers’ dynamic
expectations [5].

DevOps is founded on the agile (see Agile Manifesto
[28]) and lean principles [29] of software development
and enables the scaling of agility to the entire digital
service organization. DevOps can be considered a
general term that describes various continuous practices
(see, e.g., [8]). The most common of these practices are
continuous integration, continuous delivery, and
continuous deployment [2].

In continuous integration, development teams
frequently integrate changes to a system for automatic
testing [26, 27]. This enables continuous delivery
whereby system development teams release new
versions of a working system several times a day
through optimization, automation, and the utilization of
the build, test, and release process [27]. Continuous

deployment goes one step further by automatically
releasing a system into production as soon as it is ready
[27, 30]. However, continuous practices are also
discussed in the literature separate from DevOps. For
this reason, in this study, we use the general term
“continuous (service) development” to address the
implications of these practices and development
continuity for VCC in organizations’ service
development ecosystems.

2.2. S-D logic and VCC in continuous service
development

S-D logic [23-25] offers a metatheoretical
framework for a systemic understanding of VCC [31].
It identifies service—the process by which actors apply
their resources for the benefit of others (or
themselves)—as the fundamental basis of exchange,
and the core of this exchange is VCC [23, 31].
Moreover, value in this VCC process is considered an
emergent, positively or negatively valenced outcome of
an actor’s well-being or viability [31]. This study
focuses on the ways by which the co-creation of value
and the positive value outcomes are enabled or hindered
by continuous service development.

S-D logic allows for the adjustment of the lens of
investigation to different levels of aggregation [32]. For
example, it is possible to zoom in to focus on
understanding individual actors (micro-level) or zoom
all the way out to attain a more holistic understanding of
the VCC process among an extensive network of actors
(e.g., macro-level; society) and much more in between
[24, 33]. Our study focuses on the organizational level
and how the actor-to-actor exchange is affected by
continuous development in organizations’ service
development ecosystems. Based on S-D logic, we
conceptualize these ecosystems as systems of resource-
integrating and service-exchanging actors (e.g., internal
teams, partners, and customers) coordinated by
institutions and their arrangements for mutual VCC
[24, 31].

Institutions in S-D logic are understood as the rules,
norms, meanings, practices, and other similar elements
enabling and constraining actors’ resource integration
and service exchange within service ecosystems [24].
Institutions and their essential role as the coordination
mechanisms for VCC have been emphasized in the
recent literature on S-D logic [24, 31]. Further, S-D
logic identifies two broad types of resources—operand
(e.g., natural resources) and operant (e.g., knowledge
and skills)—that actors integrate for VCC. Finally, the
purpose of the interactive service exchange is to enable
mutual VCC between the ecosystem actors [23, 24].
These three interrelated dimensions (institutions,
resources, and service exchange) constitute the

Page 1407

foundation for our understanding of VCC in continuous
service development in this study. The application of the
dimensions is described in later sections.

S-D logic has been utilized in various disciplines and
domains to introduce and understand the service
perspective to exchange and to support the systemic
understanding of VCC (see [32] for details). However,
apart from individual studies (see, e.g., [34]), its
potential has remained untapped in the context of
continuous service development. For example,
regarding the effects of continuous development,
previous studies have mainly focused on presenting the
general benefits and challenges of continuous practices
for organizations. In this study, we strive to advance this
understanding and view S-D logic as the best suited lens
to provide an understanding of the actors’ activities in
service ecosystems and how continuous development
may positively or negatively affect the outcomes of
these activities.

3. Research methodology

We conducted a systematic literature review (SLR)
[35] employing six scientific databases: ProQuest (446),
Emerald Insight (89), Science Direct (255), IEEE
Explore (354), AIS Library (6), and ACM Digital
Library (113). We performed abstract searches in
December 2020 using a search string (DevOps OR
"development and operations" OR continuous
integration OR continuous development OR continuous
deployment OR continuous delivery OR continuous
"software development" OR continuous "software
engineering" OR continuous "system* development"
OR continuous innovation) AND (co-crea* OR cocrea*
OR co-dest* OR codest* OR collaborat*) AND (service
OR product OR system* OR software). The search
string was modified slightly for different databases due
to limitations and differences in search possibilities
(e.g., only nine keywords were allowed in
ScienceDirect). Further, databases that did not allow for
the searching of only abstracts (e.g., Google Scholar,
Springer Link) were not employed.

We evaluated the relevance of the records (n = 1263)
to our study in three rounds. First, the records were
evaluated solely based on their title. At this stage, the
inclusion criteria were 1) The article addresses
continuous service development/innovation or DevOps
and 2) It is written in English. Based on these criteria,
records with titles indicating that they were not relevant
to the study were excluded. Records that may have been
relevant to the study based on their title were included
in the second round. Records with titles that could not
unequivocally indicate whether they could be relevant
to the study were also included in the second round for
abstract review.

Second, applying the same inclusion criteria, the
relevance of the remaining records (n = 345) was
evaluated based on their abstracts. At this stage, we also
eliminated duplicate records (n = 25). After this round,
153 articles remained for the third and final round,
where the relevance of the remaining records was
evaluated based on their full text. Here, we added three
more inclusion criteria to evaluate the records: 3) The
article is peer-reviewed, 4) The full-text article is
available (to us), and 5) The article focuses on
implications (e.g., benefits/challenges) of DevOps or
continuous practices. The fifth criterion was added to
critically evaluate the remaining records based on their
ability to answer our research question and strictly
target articles focused on continuous development
implications. Subsequently, nine articles were found
relevant to be included in our SLR.

The nine included articles were subjected to
backward and forward searches to find additional
relevant records. The search led to the discovery of 76
additional records (based on title relevance), which were
evaluated through the same process (abstract and full-
text review) and inclusion criteria as the initial records.
This process resulted in 14 more relevant articles for our
systematic review, for a total of 23 included articles. The
limited number of articles can be attributed to the
emerging topic area and our specific focus on the
implications of continuous development. More detailed
information on the articles is provided in Table 1.

Table 1. Information on the included articles
Publication year
2021 1 4%
2020 4 17%
2019 2 9%
2018 1 4%
2017 4 17%
2016 7 30%
2015 3 13%
2014 0 0%
2013 1 4%
Publication type
Conference paper 11 48%
Journal article 10 43%
Magazine (IEEE Software) 2 9%
Method
Case Study 10 43%
Systematic Literature Review (SLR) and Survey 3 13%
Survey (Quantitative) 2 9%
Interviews (Qualitative) 2 9%
SLR 2 9%
SLR and Interviews 1 4%
Mixed Method 1 4%
Multivocal Literature Review 1 4%
Systematic Mapping Study 1 4%
Continuous development approach/practice(s)
DevOps 14 61%
Continuous Delivery 4 17%
Continuous Deployment 3 13%
Continuous Delivery and Deployment; DevOps 1 4%
DevOps/Agile 1 4%

For the analysis, the first author made extensive

notes on each included article and coded the enabling
and hindering factors of VCC found in them in a
spreadsheet format. A total of 135 codes related to

Page 1408

enabling factors and 197 codes related to hindering
factors were established. The codes (factors and their
descriptions) were first inductively labeled (e.g.,
culture, communication and collaboration, tools) and,
through several iterations, classified into representative
groups to determine focal categories of VCC in
continuous service development. We then further
classified the determined categories into three
interrelated VCC dimensions (institutions, resources,
and service exchange) using the S-D logic lens [24].
Following S-D logic descriptions, categories that
represented coordinating factors (e.g., guidelines,
practices, assumptions, and beliefs) guiding actors’
activities in the continuous development process (e.g.,
culture, roles and responsibilities) were classified under
the institutional dimension. Categories representing
integrated resources in continuous development (e.g.,
technology and tools, knowledge and skills) were
classified under the resource dimension. Finally,
categories describing interactive exchange elements of
VCC (e.g., communication and collaboration) were
designated to the service exchange dimension. The
categories and their placement in the different VCC
dimensions are further described in the next section.

4. Findings

In this section, we present the findings of our
systematic review. Figure 1 presents a conceptual
framework that, building on S-D logic and extended by
our findings, depicts the three interrelated and
dynamically interacting VCC dimensions and the focal
VCC categories we derived from the continuous
development literature.

Figure 1. Dimensions and focal categories of

value co-creation in continuous service
development

All three dimensions of VCC include factors that

enable and hinder the co-creation of value in the actor-
to-actor networks of organizations’ service
development ecosystems. Enablers represent factors of

continuous development that support the process of
VCC between the ecosystem actors within the
discovered categories. Hindrances, on the other hand,
are factors that undermine the process through
institutional, resource, or service exchange reasons.
These have often been presented in the previous
literature as challenges resulting from the adoption and
use of continuous practices.

Based on our literature review, significant categories
in the institutional dimension that affect VCC are
(organizational) culture, actor perceptions and
orientations, roles and responsibilities, and continuous
principles and practices, comprising both enabling and
hindering factors that influence VCC in continuous
service development. Further, our study revealed
various categories of resources that affect actors’
resource integration in continuous service development
either directly or through their actions. These resources
include service infrastructure and architecture,
knowledge and skills, technology and tools, and the
development processes characterized by, for example,
automation, frequent and reliable releases, and
continuous/rapid feedback. Finally, service exchange
includes the interactive category of communication and
collaboration and is also affected both positively and
negatively by continuous development. Next, we
describe the focal findings (VCC categories and factors)
under each dimension. A summary of our findings is
presented in Table 2.

4.1. Institutions

4.1.1. Culture. DevOps emphasizes culture. Indeed, a
few of the reviewed studies report the positive effects of
continuous development on organizational culture.
They were realized as experiences of a less of a culture
of blame [20] and overall advances in organizational
culture and mindset [12]. In [20], improved culture was
connected to more engaged teams, thus positively
affecting VCC. However, cultural challenges might also
arise from continuous development, especially at the
adoption stage, as significant changes to the cultural
mindset are required [15], and changing a longstanding
organizational culture may prove difficult [6, 19]. The
reviewed literature reports cultural hindrances to VCC,
such as a lack of (organizational) motivation to adopt
continuous practices [30] and the difficulty of obtaining
buy-in from stakeholders [15]. [16] suggests that
cultural factors, more so than technical factors, may
limit the adoption of continuous development.
Furthermore, the lack of organizational vision [3],
strategic suggestions from management [36], and lack
of management support for implementing continuous
practices [18, 19] were among the found challenges.

Page 1409

4.1.2. Perceptions. Continuous development facilitates
trust relationships among actors [15, 16, 37]. In [16],
continuous development was reported to enable teams
to feel more valued, positively affecting their
engagement [16]. In turn, actor perceptions may hinder
VCC as a result of the challenges of overcoming the Dev
versus Ops mentality [36, 38], having to adapt mindsets
[18, 19, 39], and actors’ unwillingness to accept
continuous development [11]. Customers, for example,
may not be prepared to handle a shorter release cycle
and receive constant updates on service features [14,
30]. In addition, work overload resulting from
continuous development was reported as a factor that
hinders employee well-being [40]. The most significant
perceptual challenge, primarily related to the adoption
of continuous development, is resistance to change [3,
14, 17, 20, 36, 38-40]. Resistance may occur at different
organizational levels but also from the partner and
customer organizations [17].

4.1.3. Orientation. Shared goals and objectives are
essential in promoting continuous development and
VCC [3]. Development and operations teams were
reported to better align their goals to business needs
through DevOps [17]. However, actors’ focus on their
personal goals and priorities [15, 39] was reported as a
challenge. Everyone has their interests and approaches
to working, and these competing goals may cause
tensions, hindering VCC [37, 39]. This challenge is not
unique to continuous development, but it reminds us that
the transition to continuous development (e.g., breaking
down silos) does not imply the automatic alignment of
actors’ goals and intentions but that organizations
should actively enforce working towards a shared goal
[41].

4.1.4. Roles and responsibilities. Continuous
development enables teams to take on new
responsibilities. In [20], increased development
responsibilities provided more team autonomy,
increasing teams’ engagement. In [12], development
teams’ full ownership of the developed service was
reported to remove barriers, bureaucracy, and waiting
overhead. Furthermore, granting more power to
operations and engaging them in service development
from the start was found in [41] to enable VCC. In [42],
mixing the responsibilities of development and
operations was found to be beneficial, as teaching and
learning from each other improved teams’ trust
relationships. The hindering aspect of roles and
responsibilities arises from continuous development
causing actors to reassess their established roles and
adapt to new tasks and responsibilities [6, 30]. The
changes in responsibilities may lead to
misunderstandings about who is responsible for which

activities [20]. Thus, resource and responsibility
accountability issues may occur [36, 39, 42].
Furthermore, broadening the responsibilities of
developers may negatively impact their productivity in
core tasks [41]. There may also be resistance to the
increase in responsibilities [18, 21]. In [42], the
introduction of operations tasks to development teams
was found to be complicated. Finally, our findings
suggest that continuous development may cause friction
between development and operations teams due to their
different approaches to working [18], thus resulting in a
hindrance of mutual VCC.

4.1.5. Standard definition/practices for DevOps.
Although introduced in 2009, DevOps still has no
standard definition [3, 17] and no standard framework
that provides a complete roadmap of its activities [3, 6].
The lack of standard practices and definitions for
continuous development may make it difficult for
organizations to establish continuity and decide which
principles and practices to follow [6], thus hindering the
foundations for VCC.

4.2. Resource integration

4.2.1. Infrastructure and architecture. Examples of
infrastructural enablers of VCC were also found in the
literature. In [10], fewer bugs after service deployment
were attributed to automated testing, static code
analysis, and production-like environments in the
deployment pipeline. Furthermore, infrastructure
automation and virtualization were found to lessen
operations teams’ maintenance workloads [12] and
enhance the readiness for infrastructural changes [10].
In [18], DevOps infrastructure automation was found to
considerably reduce on-call escalations and false and
repetitive alarms. Infrastructure challenges that
hindered VCC concerned the building and maintaining
the infrastructure and deployment pipeline [11, 15, 16,
36] and challenges in moving from legacy infrastructure
to microservices [36, 38]. There may also be a lack of
adequate infrastructure to support automation [17].
Achieving compatibility between DevOps and legacy
systems and dealing with applications not suited to
continuous development were among the reported
architectural challenges [3, 15, 17, 19]. [16] notes that
to mitigate these challenges, the continuous
development ecosystem should be built over time using
an approach based on continuous improvement.

4.2.2. Knowledge and skills. Shared technical
knowledge between operations and development
enforced by continuous development enables VCC,
contributing to more frequent releases and faster
diagnoses and resolutions of problems [20].

Page 1410

Table 2. Summary of the findings
Dim. Category Examples of enabling (+) and hindering (-) factors References*

In
st

itu
tio

ns

Culture
+ Improvements in culture [20, 36]
- Lack of organizational interest and motivation [3, 6, 11, 12, 15–19, 30, 40] - Lack of management/stakeholder support

Orientation +/- Aligned/competing goals [3, 15, 17, 37, 39] - Lack of team commitment

Perceptions

+/- Improved/lack of trust relationship [15, 16, 20, 36, 37, 42] + Improved employee/customer engagement
- Resistance to change [3, 11, 14, 17–20, 30, 36, 38–

40] - Changing employee/customer mindsets
- Dev vs. Ops mentality

Roles and
responsibilities

+/- Shared responsibilities [10, 12, 17, 20, 41, 42]
- Changes/uncertainty in roles and responsibilities [6, 18, 20, 21, 30, 36, 39–42] - Added responsibilities

Standard definition /
practices for DevOps

- Lack of a standard definition for DevOps [3, 6, 17, 42] - Lack of standard practices/frameworks for DevOps

R
es

ou
rc

es

Architecture - DevOps and legacy systems [3, 15, 17, 19, 36, 37] - Moving from legacy to microservices architecture

Infrastructure
+/- Infrastructure automation [10–12, 17, 18]
- Moving from legacy infrastructure to microservices [14–16, 36, 38] - Building the deployment pipeline

Knowledge and skills
+ Shared knowledge [10, 20]
- Lack of/insufficient skills [3, 11, 12, 14, 15, 17–20, 30,

36, 39–42] - Lack of training/coaching

Process

+ Rapid/continuous feedback
[3, 6, 10–12, 14–20, 37, 38, 40–
43]

+/- High level of automation (build, test, deployment,
etc.)
+ Frequent and reliable releases
- Adapting existing processes to DevOps [11, 12, 14, 15, 17, 19, 21, 30,

36, 37, 40] - Balancing speed vs. quality

Technology and tools
+ Tools to support the process (automation)
and collaboration [10, 16, 21, 38, 41, 42]
- Implementing new technology stacks and tools [10, 12, 15, 19, 20, 38]

Se
rv

ic
e

Ex

ch
an

ge

Communication
and collaboration

+ Preventing/breaking down silos
 [6, 10, 14, 16–18, 20, 40–42] + Improved communication and collaboration

- Adjusting to close collaboration [3, 6, 10, 16, 18, 19, 30, 36, 40,
42, 44] - Lack of transparency and sharing

*The numbers refer to the references in each category (+/- in their own rows), not to the sources of the presented examples

In [10], continuous development via reducing
dependence on individual developers and limited tacit
knowledge was found beneficial. Knowledge and skills
category also included factors that hindered VCC in
continuous development, as DevOps demands highly
skilled people and the development of new skillsets [15,
30, 41], and it is not always easy to find people with
experience and expertise in DevOps to meet these
demands [18, 19, 39]. The steep learning curve, again
especially at the adoption stage (e.g., new roles and
responsibilities, new technology and tools), necessitates
high-quality training that provides the skills required for
continuous development [20, 40]. The learning and
adaptation that continuous development requires from
the customer/end-user perspective may also hinder VCC
if not adequately supported [11].

4.2.3. Process. Continuous development supports a
frequent and reliable release process. This was reported
in the reviewed literature, among other things, to enable
innovation, build trust relationships, increase
confidence, and contribute to a working environment
characterized by less waste and stress, better work
morale, and job satisfaction [10, 12, 14, 16, 37].
Continuous development processes bring benefits to the
organization but also improve the ways of working,
positively contributing to the improved well-being of
actors [42].

The improved speed and productivity of service
delivery is a perceived process benefit of continuous
development. Productivity in continuous development
is enabled, for example, through continuous integration,
testing, and feedback [17], automated deployment [11],
releases "with a click of a button" [15], and a more agile

Page 1411

way of specifying requirements [10]. Moreover, the
reported enablers behind improved service quality
include a more straightforward quality assurance
process [10], prototyping [10], deployment in small
increments [12, 37], fast feedback cycles [12, 16], and
build, test, and deployment automation [14]. Besides
productivity and quality, continuous development also
supports proposing superior value to customers and end-
users, for example, through a flexible process to
accommodate change requests at any time [17], the
ability to include more features into the pipeline [6],
shorter development cycles, the possibility to of
frequent release frequently [6], early/rapid feedback
from the end-users [6, 15], and testing with real
customers (continuous experimentation) [6].

However, various process challenges have the
potential to hinder VCC by negatively affecting process
resources. These challenges included, among other
things, inconsistent environments [36], lack of service
virtualization [36], traceability across the DevOps
landscape [36], lack of feedback and the prioritization
of bugs [36], operations stability [17], the adaptation of
existing processes to DevOps [19], difficulty in
managing various configurations and run-time
environments [11], release planning and managing the
fast-paced environment [11], the use of small batches
[30], and balancing speed and quality [12, 21].

As revealed through the process section, automation
is one of the focal enablers of VCC in continuous
development. An increase in automation supports, for
example, the consistency of environments across
different stages of the software lifecycle [17], renders
knowledge explicit and transparent to developers [12],
and drives improved service productivity and quality
[11, 14, 37]. However, there may also be risks that
remain hidden by automation [40], and achieving full
automation brings its challenges [3, 42].

Another clear process enabler of continuous
development is rapid and continuous feedback. The
presence of a short feedback loop at each service
development stage enables teams to produce high-
quality software and identify and solve problems faster
[10, 14, 16, 17, 38, 41, 43]. As disclosed in earlier
paragraphs, continuous feedback about users also
facilitates the development of relevant service features
and functionalities, thus enabling better customer value
propositions [11, 12, 14, 37, 40]. It also enables
discovering alternative solutions to make better
decisions on what service features to (dis)continue
developing [14]. Besides user/customer feedback,
continuous and real-time feedback from the entire
deployment pipeline and automated infrastructure
enable the more rapid identification and resolution of
problems [11].

4.2.4. Technology and tools. Continuous development
tools (see, e.g., [16, 26, 38]) enabling, for example,
collaboration, and management and automation of the
development process, are central to continuous
development and key to supporting VCC activities
presented in many of the other categories. Challenges
related to technology and tools, potentially hindering
VCC concerned providing complex technology
environments needed for DevOps [19], implementing
DevOps technology [19], setting up and managing the
tools for the deployment pipeline [10, 15, 19, 20],
scarcity of tools [44], and Dev and Ops teams having
separate toolsets and metrics [38].

4.3. Service exchange

4.3.1. Communication and collaboration. Continuous
development prevents and breaks down functional and
physical silos [16, 17] and supports increased
collaboration among actors [14, 17, 20]. In [18],
improved communication was found to improve the
speed and effectiveness of problem-solving. Increased
collaboration also improves knowledge and experience
sharing between teams. In [42], collaboration enabled
VCC as development and operations teams became
more trusting and understanding of each other. The
communication and collaboration category also
included factors that hinder VCC. The literature
included reports of communication and collaboration
issues [36], challenges in achieving effective
communication [16, 19], hardware dependency (in the
embedded domain) [44], exhaustion from being
available for close collaboration [10], challenges
adjusting to new ways of working [42], and fostering
transparency and the culture of sharing [3].

5. Discussion and conclusion

We have reviewed and synthesized existing
continuous development literature to determine factors
enabling and hindering VCC in continuous service
development. Our findings show that institutions
(culture, actor perceptions and orientation, roles and
responsibilities, and continuous principles and
practices), resources (architecture and infrastructure,
knowledge and skills, processes, and technology and
tools), and service exchange (communication and
collaboration) are the deciding dimensions of VCC, all
of which are affected by enabling and hindering factors
via continuous development.

Our contribution to the literature is threefold. First,
our study expands the theoretical understanding of S-D
logic and VCC in the context of continuous service
development. Through our synthesis of hindering and

Page 1412

enabling VCC factors based on the reviewed studies, we
deepen the understanding of the S-D logic’s meta-
theoretical constructs also from a practical perspective.

Second, through the application of S-D logic, our
research goes beyond the synthesizing of general
benefits and challenges of continuous development to
organizations that currently dominate the understanding
of development continuity effects in the continuous
development literature. Instead of merely focusing on
the outcomes (e.g., benefits), we address how these
outcomes are enabled and hindered (i.e., how
continuous development affects VCC between the focal
actors in the organizations’ service development
ecosystems). To the best of our knowledge, such a
perspective on continuous development has not been
presented before. The identification of the enabling and
hindering factors and the affected VCC categories and
dimensions may reveal new opportunities for both
research and practice for studying and improving the
VCC potential resulting from continuous service
development in organizations. The advanced
understanding may help managers in their efforts to
support positive rather than negative value outcomes in
their continuous service development processes.

Our review, while systematic, by no means attempts
to provide an exhaustive list of all possible factors that
may support and hinder the co-creation of value in
continuous development. However, the dimensions and
categories of VCC we have identified through our
analysis can help managers consider the full effects of
continuous development from institutional, resource,
and service exchange perspectives. As an important
implication for research and practice, our study
highlights that continuous development is more than a
technical or resource issue. This is shown, for example,
by our findings of various institutional factors that
enable and hinder VCC among actors in the service
development ecosystem, which are in line with the latest
emphases of S-D logic [24, 31].

Further, we argue that understanding both positive
(enabling) and negative (hindering) factors affecting
VCC is essential for organizations to efficiently support
VCC between ecosystem actors. The presented
categories and examples of factors can enable managers
to consider the levels at which the identified enablers are
realized in their service development processes. It is
equally important, if not more important, to identify the
hindrances to be avoided or mitigated in order to
strengthen VCC and realize the potential benefits of
continuous development described previously.

Third, through our review, we have identified gaps
in the current stream of literature that pose exciting
opportunities for future research contributions on this
topic. First, many challenges of continuous
development reported in the extant literature are related

explicitly to the introduction and adoption of continuous
practices in organizations (e.g., resistance to change,
moving from legacy systems to microservices, adjusting
to close collaboration). This reflects the novelty of
continuous development as a phenomenon and for
organizations. In the future, it would be particularly
interesting to examine the enablers and hindrances to
VCC that are identified in continuous development
processes after continued use. In this regard,
longitudinal research could be conducted to study how
the practices and implications change over time.

Another compelling continuation of our research is
to move from the identified factors to understanding the
mechanisms of VCC in continuous development (i.e., an
empirical investigation on what and how dynamic value
outcomes emerge in the continuous service
development processes). While this study identified
factors that potentially support or undermine realizing
the VCC potential in organizations’ continuous service
development processes, actor-specific experiences of
process outcomes and their underlying mechanisms
remain uncovered. We are currently taking steps to
address this gap through an empirical investigation
conducting semi-structured interviews with multiple
case organizations from different digital service
domains. We welcome other researchers to join us in
this endeavor.

Furthermore, current research on continuous
development has focused mainly on the web domain,
although research has started to expand, for example, to
the embedded systems context (see, e.g., [44]). We see
potential in moving from software-intensive web
applications to understanding continuous development
in other service contexts. For example, cyber-physical
systems (CPS) enabled services that represent a new
frontier for service research [45, 46] could provide a
topical context where, for example, connectivity, data,
and the merging of cyber and physical worlds introduce
exciting opportunities for investigation. The ways in
which the characteristics of these kinds of services
affect and are affected by continuous development is an
exciting topic for future research.

Finally, as our review shows, continuous
development literature focuses significantly on the
internal actors of organizations (especially the
development and operations teams). Expanding the
understanding of how continuity affects and can be
supported in more extensive networks of actors (e.g.,
from the perspective of engaging partners, customer
organizations, and end-users) in the service
development process and the means of leading
continuity through the entire organization’s
development and innovation activities are also
interesting topics to explore.

Page 1413

Our study also has limitations. First, the articles
included in the review may be limited due to our choice
of databases, the design of the search string, and the
abstract-level search. We aimed to actively reduce these
limitations by executing trials on different keyword
combinations and conducting backward and forward
searches on the relevant articles. Through these actions,
we are confident that the set of included literature
provides a firm base for our conceptualizations of
factors, categories, and dimensions focal to VCC.
Furthermore, the number of included articles in our
review reflects the topic’s novelty and our decision to
focus on reported implications of continuous
development. Second, the analysis and coding process
of the enabling and hindering VCC factors was based
primarily on the first author’s interpretations. However,
this limitation was mitigated by the provision of
extensive notes of the process and comprehensive
discussions on the interpretations and findings with the
other authors of the paper.

To conclude, this paper is the first step towards our
research on VCC in continuous service development
and innovation. We encourage others to contribute to
this emerging topic, hopefully motivated by our findings
and suggestions for future contributions. As our study
shows, continuous development is an evolving,
multifaceted, socio-technical phenomenon into which
research from diverse fields can provide novel insights.

6. Acknowledgements

This research has been partly funded by the Foundation
for Economic Education, Finland [grant number
34014860].

7. References

[1] P. Debois, “Devops: A Software Revolution in the

Making?”, Cutter IT Journal, 8(24), 2011.
[2] D. Stahl, T. Martensson, and J. Bosch, “Continuous

practices and devops: beyond the buzz, what does it all
mean?”, In Proceedings of the 43rd Euromicro
Conference on Software Engineering and Advanced
Applications, SEAA, 2017, 440-448.

[3] A.A. Khan and M. Shameem, “Multicriteria decision‐
making taxonomy for DevOps challenging factors using
analytical hierarchy process”, Journal of software:
evolution and process, 32(10), 2020, pp. 1-26.

[4] L.E. Lwakatare, P. Kuvaja, and M. Oivo, “An exploratory
study of DevOps: extending the dimensions of DevOps
with practices”, In Proceedings of the 11th International
Conference on Software Engineering Advances,
ICSEA, 2016, 91-99.

[5] D. Teixeira, R. Pereira, T.A. Henriques, M. Silva, and J.
Faustino, “A Systematic Literature Review on DevOps
Capabilities and Areas”, International journal of human

capital and information technology professionals, 11(3),
2020, pp. 1-22.

[6] L. Riungu-Kalliosaari, S. Mäkinen, L.E. Lwakatare, J.
Tiihonen, and T. Männistö, “DevOps Adoption Benefits
and Challenges in Practice: A Case Study”, In Product-
Focused Software Process Improvement, PROFES,
2016, 590-597.

[7] J. Humble and J. Molesky, “Why enterprises must adopt
devops to enable continuous delivery”, Cutter IT
Journal, 8(24), 2011, pp. 6-12.

[8] B. Fitzgerald and K. Stol, “Continuous software
engineering: A roadmap and agenda”, The Journal of
systems and software, 12(3), 2017, pp. 176-189.

[9] T. Savor, M. Douglas, M. Gentili, L. Williams, K. Beck,
and M. Stumm, “Continuous deployment at Facebook
and OANDA”, In Proceedings of the 38th International
Conference on software engineering companion, 2016,
21-30.

[10] J. Itkonen, R. Udd, C. Lassenius, and T. Lehtonen,
“Perceived Benefits of Adopting Continuous Delivery
Practices”, In Proceedings of the 10th ACM/IEEE
International Symposium on empirical software
engineering and measurement, 2016, 1-6.

[11] P. Rodríguez, A. Haghighatkhah, L.E. Lwakatare, S.
Teppola, T. Suomalainen, J. Eskeli, T. Karvonen, P.
Kuvaja, J.M. Verner, and M. Oivo, “Continuous
deployment of software intensive products and services:
A systematic mapping study”, The Journal of systems
and software, 12(3), 2017, pp. 263-291.

[12] L.E. Lwakatare, T. Kilamo, T. Karvonen, T. Sauvola, V.
Heikkilä, J. Itkonen, P. Kuvaja, T. Mikkonen, M. Oivo,
and C. Lassenius, “DevOps in practice: A multiple case
study of five companies”, Information and Software
Technology, 11(4), 2019, pp. 217-230.

[13] J. Roche, “Adopting DevOps practices in quality
assurance”, Communications of the ACM, 56(11), 2013,
pp. 38-43.

[14] M. Leppänen, S. Mäkinen, M. Pagels, V. Eloranta, J.
Itkonen, M.V. Mantyla and T. Mannisto, “The highways
and country roads to continuous deployment”, IEEE
Software, 32(2), pp. 64-72.

[15] L. Chen, “Continuous Delivery: Overcoming adoption
challenges”, The Journal of systems and software, 12(8),
2017, pp. 72-86.

[16] L. Leite, C. Rocha, F. Kon, D. Milojicic, and P. Meirelles,
“A Survey of DevOps Concepts and Challenges”, ACM
computing surveys, 52(6), 2019, pp. 1-35.

[17] B. de França, J. Jeronimo Helvio, and G. Travassos,
“Characterizing DevOps by Hearing Multiple Voices”,
In Proceedings of the 30th Brazilian Symposium on
software engineering, 2016, 53-62.

[18] F.M.A. Erich, C. Amrit, and M. Daneva, “A qualitative
study of DevOps usage in practice”, Journal of software:
evolution and process, 29(6), 2017.

[19] M. Rowse and J. Cohen, “A Survey of DevOps in the
South African Software Context”, In Proceedings of the
54th Hawaii International Conference on System
Sciences, HICSS, 2021, 6785-6794.

[20] M. Senapathi, J. Buchan, and H. Osman, “DevOps
Capabilities, Practices, and Challenges: Insights from a
Case Study”, In Proceedings of the 22nd International

Page 1414

Conference on evaluation and assessment in software
engineering, 2018, 57-67.

[21] S. Neely and S. Stolt, “Continuous Delivery? Easy! Just
Change Everything (Well, Maybe It Is Not That Easy)”,
In Proceedings of Agile Conference, 2013, 121-128.

[22] A. Wiedemann, N. Forsgren, M. Wiesche, H. Gewald and
H. Krcmar, “Research for practice: the DevOps
phenomenon”, Communications of the ACM, 62(8), pp.
44-49.

[23] S.L. Vargo and R.F. Lusch, “Evolving to a New
Dominant Logic for Marketing”, Journal of marketing,
68(1), 2004, pp. 1-17.

[24] S. Vargo and R. Lusch, “Institutions and axioms: an
extension and update of service-dominant logic”,
Journal of the Academic Marketing Science, 44(1),
2016, pp. 5-23.

[25] S. Vargo and R. Lusch, “Service-dominant logic:
continuing the evolution”, Journal of the Academic
Marketing Science, 36(1), 2008, pp. 1-10.

[26] S. Mäkinen, M. Leppänen, T. Kilamo, A. Mattila, E.
Laukkanen, M. Pagels, and T. Männistö, “Improving the
delivery cycle: A multiple-case study of the toolchains
in Finnish software intensive enterprises”, Information
and software technology, 8, 2016, pp. 175-194.

[27] Humble, J. and D. Farley, Continuous Delivery: Reliable
Software Releases through Build, Test, and Deployment
Automation, Addison-Wesley Professional, Upper
Saddle River, NJ, 2010.

[28] K. Beck, M. Beedle, A. van Bennekum, A. Cockburn, W.
Cunningham, M. Fowler, J. Grenning, J. Highsmith, A.
Hunt, R. Jeffries, J. Kern, B. Marick, R.C. Martin, S.
Mellor, K. Schwaber and J. Sutherland, “Manifesto for
Agile Software Development”, 2001, Accessed Jun 11,
2021, https://agilemanifesto.org.

[29] Poppendieck, T. and M. Poppendieck, Implementing
Lean Software Development: From Concept to Cash,
Addison-Wesley Professional, 2006.

[30] G.G. Claps, R. Berntsson Svensson, and A. Aurum, “On
the journey to continuous deployment: Technical and
social challenges along the way”, Information and
software technology, 57(1), 2015, pp. 21-31.

[31] S.L. Vargo, K. Koskela-Huotari, and J. Vink, “Service-
Dominant Logic: Foundations and Applications”, In E.
Bridges and K. Fowler (eds.), The Routledge Handbook
of Service Research Insights and Ideas. Routledge,
2020, 3-23.

[32] S.L. Vargo and R.F. Lusch, “Service-dominant logic
2025”, International journal of research in marketing,
34(1), 2017, pp. 46-67.

[33] X. Wang, Y.D. Wong, C. Teo, and K.F. Yuen, “A critical
review on value co-creation: towards a contingency
framework and research agenda”, Journal of service
theory and practice, 29(2), 2019, pp. 165-188.

[34] N. Barqawi, K. Syed, and L. Mathiassen, “Applying
service-dominant logic to recurrent release of software:
an action research study”, The Journal of business &
industrial marketing, 31(7), 2016, pp. 928-940.

[35] C. Okoli, “A Guide to Conducting a Standalone
Systematic Literature Review”, Communications of the
Association for Information Systems, 37(43), 2015, pp.
879 – 910.

[36] M.A. Akbar, W. Naveed, S. Mahmood, A.A. Alsanad, A.
Alsanad, A. Gumaei, and A. Mateen, “Prioritization
Based Taxonomy of DevOps Challenges Using Fuzzy
AHP Analysis”, IEEE Access, 8, 2020, pp. 202487-
202507.

[37] L. Chen, “Continuous Delivery: Huge Benefits, but
Challenges Too”, IEEE Software, 32(2), pp. 50-54.

[38] B.G. Ghantous and A. Gill, “DevOps: Concepts,
Practices, Tools, Benefits and Challenges”, In
Proceedings of the 21st Pacific Asia Conference on
Information Systems, PACIS, 2017.

[39] P. Perera, M. Bandara, and I. Perera, “Evaluating the
impact of DevOps practice in Sri Lankan software
development organizations”, In Proceedings of the
International Conference on Advances in ICT for
Emerging Regions, ICTer, 2016, 281-287.

[40] A. Hemon-Hildgen, F. Rowe, and L. Monnier-Senicourt,
“Orchestrating automation and sharing in DevOps
teams: a revelatory case of job satisfaction factors, risk
and work conditions”, European journal of information
systems, 29(5), 2020, pp. 474-499.

[41] M. Shahin, M. Zahedi, M. Babar, and L. Zhu, “Adopting
Continuous Delivery and Deployment: Impacts on Team
Structures, Collaboration and Responsibilitie”, In
Proceedings of the 21st International Conference on
evaluation and assessment in software engineering,
2017, 384-393.

[42] K. Nybom, J. Smeds and I. Porres, “On the Impact of
Mixing Responsibilities Between Devs and Ops”, In
Proceedings of the 17th International Conference on
Agile Processes in Software Engineering, and Extreme
Programming (XP), 2016, 131–143.

[43] M.A. Akbar, S. Mahmood, M. Shafiq, A. Alsanad, A.A.
Alsanad, and A. Gumaei, “Identification and
prioritization of DevOps success factors using fuzzy-
AHP approach”, Soft computing, 2020.

[44] L.E. Lwakatare, T. Karvonen, T. Sauvola, P. Kuvaja,
H.H. Olsson, J. Bosch, and M. Oivo, “Towards DevOps
in the Embedded Systems Domain: Why is It So Hard?”,
In Proceedings of the 49th Hawaii International
Conference on System Sciences, HICSS, 2016, 5437-
5446.

[45] T. Tuunanen, E. Kazan, M. Salo, R. Leskelä, and S.
Gupta, “From digitalization to cybernization: Delivering
value with cybernized services”, Scandinavian Journal
of Information Systems, 13(2), 2019, pp. 83-96.

[46] C. Peters, P. Maglio, R. Badinelli, R.R. Harmon, R.
Maull, J.C. Spohrer, T. Tuunanen, S.L. Vargo, J.J.
Welser, H. Demirkan, T.L. Griffith, and Y.
Moghaddam, “Emerging Digital Frontiers for Service
Innovation”, Communications of the Association for
Information Systems, 39, 2016, pp. 136-149.

Page 1415

