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Abstract
We introduce novel concepts to solve multiobjective optimization problems involving (com-
putationally) expensive function evaluations and propose a new interactive method called
O-NAUTILUS. It combines ideas of trade-off free search and navigation (where a decision
maker sees changes in objective function values in real time) and extends the NAUTILUS
Navigator method to surrogate-assisted optimization. Importantly, it utilizes uncertainty
quantification from surrogate models like Kriging or properties like Lipschitz continuity
to approximate a so-called optimistic Pareto optimal set. This enables the decision maker to
search in unexplored parts of the Pareto optimal set and requires a small amount of expensive
function evaluations. We share the implementation of O-NAUTILUS as open source code.
Thanks to its graphical user interface, a decision maker can see in real time how the prefer-
ences provided affect the direction of the search. We demonstrate the potential and benefits
of O-NAUTILUS with a problem related to the design of vehicles.

Keywords Interactive methods · Multiobjective optimization problems · Decision makers ·
Preference information · Computational cost · Kriging

1 Introduction

Multiobjective optimization deals with the simultaneous minimization or maximization of
multiple conflicting objective functions. There, instead of a single optimal solution, so-
called Pareto optimal solutions can be identified with different trade-offs. They form a Pareto
optimal set. Typically, preference information from a domain expert, a decision maker (DM),
is needed to identify the most preferred one among the mathematically incomparable Pareto
optimal solutions.
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In multiobjective optimization, relevant questions include: How can we scale to problems
with a large number of objectives? How can we solve problems with realistic, computation-
ally expensive objective function formulations? How can an algorithm conveniently integrate
a DM’s preferences into the search? This article answers these questions by proposing a
novel method called Optimistic NAUTILUS Navigator method, for short, O-NAUTILUS,
which extends the interactive NAUTILUS Navigator method [38] to an online data-driven
approach [18], sparingly needing new objective function evaluations during the interactive
solution process and displaying additional information to support the DM. O-NAUTILUS
combines two methodologies, which we briefly discuss next: surrogate modelling and navi-
gation methods.

When dealing with computationally expensive problems, the computing resources are
usually limited and one has to think about how to use them wisely. For instance, in engineer-
ing optimization, numerical simulation is often needed to compute the objective function
values, and the evaluation of an objective function can take from several minutes up to hours
[25]. One can reduce the computational cost by replacing the original (expensive) objective
functions with computationally less costly approximation functions, typically learned from
previous evaluation data. They are called surrogatemodels ormetamodels [2,19,37,39,44,46].
Different surrogate models have been developed in the literature (e.g., radial basis functions
[36], neural networks [23,32], support vector regression [3], polynomial regression [17] and
Kriging [22,25]) and utilized in various optimizationmethods. To get an overviewof the avail-
able methods to handle computationally expensive multiobjective optimization problems, we
refer to [43] (for exact and deterministic methods) and [7] (for evolutionary methods). To
solve such problems, we cannot necessarily rely on mathematical properties such as differ-
entiability or convexity. Metaheuristic approaches like evolutionary algorithms do not make
any such assumptions [8]. However, neither their global nor local convergence can always
be guaranteed [40].

An important aspect when using surrogate models is the handling of prediction uncer-
tainty. Although replacing the original expensive functions with an approximated one is
intended to reduce the computational cost of function evaluations, it often leads to a loss of
accuracy. Approximations include some errors making the solutions inexact. Therefore, in
multiobjective optimization with expensive black-box functions, we cannot always guarantee
to reach actual Pareto optimality but can only compute approximations, particularly when
we have a limited computation budget. Consequently, we cannot always explore all parts
of the feasible region, and some Pareto optimal solutions which can be of interest to a DM
may remain undiscovered. However, it is possible to estimate the range of improvements
that may be achieved by further exploration using uncertainty quantification techniques. As a
surrogate model, Kriging (Gaussian process regression) [22,25,33] is frequently used since it
provides uncertainty quantification in the form of a local mean squared error in addition to the
predicted value of the original function. Furthermore, some mathematical properties (such
as Lipschitz continuity) may hold, which can be used to provide lower and upper bounds of
function values at yet un-evaluated decision vectors. In the literature, Lipschitz continuity
has been utilized in deterministic approaches which can guarantee the global convergence
of solutions under certain conditions (e.g., [11,16,35,39,42,46]). For Lipschitz continuous
functions, lower and upper bounds can be relatively plainly calculated [24,34,48].

The second methodology in this article is navigation, a special type of interactive method
[14]. As mentioned, preference information of a DM is typically needed to find the most
preferred solution. We can classify multiobjective optimization methods based on when
preference information is incorporated [27]. In a priorimethods, the DM provides hopes and
expectations first, and then a solution which matches them as well as possible is found, but

123



Journal of Global Optimization

the hopes may be unrealistic. Alternatively, a representative set of Pareto optimal solutions
is found, and then the DM must select the best of them in a posteriori methods. However,
generating a representative set may be computationally demanding and comparing many
solutions cognitively demanding. Interactive methods aim to avoid these shortcomings.

In interactive methods [27,29,31], the DM takes part in the solution process iteratively and
directs it with one’s preference information. At the same time, (s)he learns about the problem,
trade-offs involved andwhat kind of solutions are available. Thanks to learning, (s)he can also
adjust preferences if so desired. Furthermore, only a limited amount of information needs
to be processed at a time, which decreases cognitive load. The DM can provide preference
information in different ways, for instance, as it is done in this paper, by providing aspiration
levels representing desirable objective function values. These aspiration levels constitute a
so-called reference point.

Manydifferent interactivemultiobjective optimizationmethods havebeendeveloped in the
literature (see, e.g. [29,31] and references therein) and most of them deal with Pareto optimal
solutions. Because of trade-offs between the objective functions, to achieve any improvement
in one objective, the DM must sacrifice in some others, and this may hinder the DM’s
willingness to move. Accordingly, trade-off-free interactive methods such as the NAUTILUS
family [30] have been proposed. They start from an inferior solution and iteratively approach
Pareto optimal solutions by simultaneously improving all the objectives while following the
DM’s preferences. The solution process ends when a Pareto optimal solution is reached.

NAUTILUS Navigator [38] combines NAUTILUS ideas with navigation [14]. Supported
by a visual user interface, the DM can navigate to see how objective function values evolve
in real time and improve all objective values simultaneously. The DM directs the navigation
with reference points and the search progresses towards them.

The contribution of this article is as follows. We focus at solving problems that con-
tain computationally expensive objective functions. Our new method, O-NAUTILUS, uses
surrogate models with uncertainty quantification, and can be applied in combination with
both heuristic and deterministic optimization algorithms. In O-NAUTILUS, we consider the
probability or possibility of extending the estimated Pareto optimal set, constructed by using
surrogate models. In our proposed method, we use uncertainty quantification in the form
of (confidence) bounds from Kriging or Lipschitzian models, to build and update an opti-
mistic approximation of the Pareto optimal set and then use this information in the interactive
method.

For biobjective problems, there have been some attempts in the literature to visually aid the
DM in choosing a preferred solution using surrogate models in [47]. However, our proposed
method is not limited to biobjective problems. Another significant difference is that we use
the optimistic approximation as a part of an interactive method to aid the DM in making
targeted function evaluations. Accordingly, the DM has an option to extend the search area
and cross the current borders of the estimated Pareto optimal set for further discovery towards
optimistic boundaries. This will trigger an exploration phase: new evaluations with the costly
objective functions are conducted in a targeted way in order to assess possibilities to extend
the Pareto optimal set and find an improvement in the preferred direction.

An important characteristic of O-NAUTILUS is the alternating phases in the algorithm
which require the presence of a DM (computationally fast phase) and which do not require
the presence of a DM (computationally expensive phase). The DM may use one’s expertise
to judge how long a single exact function evaluation would take. The DM’s attention is not
needed during the computationally expensive phase.

The rest of the paper is structured as follows. We provide some background material
together with concepts and notations in Sect. 2. In Sect. 3, we introduce our new method,
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O-NAUTILUS. We demonstrate the applicability of O-NAUTILUS, and compare it with
NAUTILUS Navigator with a case study in Sect. 4. Finally, we conclude and mention future
research directions in Sect. 5.

2 Background: basic concepts and notation

This section covers basic concepts and notation of multiobjective optimization, NAUTILUS
methods and surrogate models needed in the rest of the paper. As said, we apply Kriging and
Lipschitzian models as surrogate models.

2.1 Multiobjective optimization

We consider multiobjective optimization problems with k ≥ 2 objective functions fi : S →
R

minimize { f1(x), . . . , fk(x)}
subject to x ∈ S,

(1)

where vectors of decision variables (for short, decision vectors) x = (x1, . . . , xn)T belong
to the feasible set S ⊂ R

n in the decision space. We define objective vectors as vectors in
the objective space Rk that consist of objective function values f(x) = ( f1(x), . . . , fk(x))T .
Here we assume that objective functions are continuous and their evaluations are expensive.

Because objective functions are typically conflicting with each other, it is not possible
to find a solution with all objectives reaching their individual optima and thus we consider
so-called Pareto optimal solutions. In them, no objective function value can be improved
without impairment in at least one of the others. We say that z(1) dominates z(2) (written as
z(1) � z(2)) with z(1), z(2) ∈ R

k , if z(1)i ≤ z(2)i for i = 1, . . . , k and z(1)j < z(2)j for at least one

index j . If z(1) and z(2) do not dominate each other, they are called mutually nondominated.
Furthermore, a decision vector x∗ ∈ S and the corresponding objective vector f(x∗) are
called Pareto optimal, if there does not exist another x ∈ S such that f(x) dominates f(x∗).
Typically, problem (1) has many Pareto optimal solutions constituting a so-called Pareto
optimal set E . Its image in the objective space is called a Pareto (optimal) front f(E). Here,
we refer to objective vectors that are mappings of decision vectors as solutions. In addition,
we call vectors in the objective space without any corresponding decision vector as points.

Usually, we need a DM with domain expertise to decide which Pareto optimal solution
is the most preferred one satisfying her/his preferences. We denote it as zpref . An analyst
can also take part in the solution process. By an analyst we refer to a human or a computer
program supporting the DM and typically taking care of mathematical aspects.

Information about the ranges of objective function values in the Pareto front can be useful
for the DM. The best individual optima are components of an ideal point z� = (z�1, . . . , z

�
k)

T

with z�i = minx∈S fi (x) = minx∈E fi (x) for i = 1, . . . , k. The worst values represented
in a nadir point znad = (znad1 , . . . , znadk )T with znadi = maxx∈E fi (x) for i = 1, . . . , k
are in practice difficult to calculate because the set E is unknown. The nadir point can be
approximated (see, e.g., [27] and references therein). It is also possible to ask the DM to
provide the worst possible objective function values (s)he can think of and constitute a nadir
point of them.

An important concept in this paper is reachability. For a point z ∈ R
k , if f(x) dominates z,

we say that x ∈ S is reachable from z. Furthermore, we define a reachable region as a subset
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of decision vectors in the Pareto optimal set which are reachable from z. In addition, the
image of the reachable region from z in R

k is also called a reachable region and it contains
all objective function values which can be reached from z. In the following, we assume that
z is clear from the context. Therefore, we shorten the term as a reachable region without
explicitly mentioning z.

As mentioned in the introduction, an example of providing preference information is a
reference point q = (q1, . . . , qk)T consisting of desirable values of each objective function
provided by the DM. If the individual values qi can be simultaneously achieved or improved
in a feasible solution, the reference point is called achievable and if this is not the case, it is
called unachievable.

Scalarization functions such as an achievement scalarization function (ASF) [27] can be
used for solving multiobjective optimization problems in an interactive way. For a reference
point q, the ASF can be defined as:

sz(f(x)) = maxi=1,...,k

[
fi (x) − qi
znadi − z��i

]
+ ρ

k∑
i=1

( fi (x) − qi ), (2)

where ρ is a small, positive augmentation coefficient, z��i = z�i − ε (i = 1, . . . , k) are
components of a so-called utopian point z�� ∈ R

k and ε > 0 is a small scalar.With preferences
given as a reference pointq, we can get a Pareto optimal solution to problem (1) byminimizing
the ASF in (2); see, e.g. [27,45] for details.

2.2 Overview of NAUTILUS family

As mentioned in the introduction, the idea of the interactive methods in the NAUTILUS
family [30] is to enable the DM in identifying one’s most preferred solution by starting from
a bad solution (like a nadir point) and proceeding iteratively by gaining improvement in all
objectives simultaneously. In this way, the DM receives solutions that dominate each other
from one iteration to another and gets a Pareto optimal solution only at the end of the solution
process. By avoiding the need of trading off between the objectives, the DM can reach any
Pareto optimal solution [28].

When applying interactive methods that operate with Pareto optimal solutions throughout
the solution process, the DM has to allow sacrifices in at least one objective function to find
a new Pareto optimal solution. This may hinder the DM’s willingness to move, referred to as
anchoring [4]. Furthermore, according to the prospect theory [21], past experiences affect
people’s hopes and expectations, and we do not react symmetrically to gains and losses.
Because of this, the DM may converge prematurely and fail to find one’s most preferred
solution.

All methods in the NAUTILUS family enable the DM to freely focus on the part of the
Pareto front that is interesting without making sacrifices. Family members differ from each
other in the way the DM provides preference information to direct the solution process and
how solutions are generated from iteration to iteration. These differences are described as a
NAUTILUS framework in [30].

Since the DM gradually approaches the Pareto front, the reachable region, that is, the part
of the Pareto front that still can be reached without trading off, shrinks. In other words, there
are other parts of the Pareto front that can only be reached if the DM goes backwards and, in
that way, widens up the reachable region.
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The latest member of the NAUTILUS family is NAUTILUS Navigator [38]. With it, the
DMcan navigate in the reachable region in real time and improve simultaneously all objective
values. The information shown to the DM is a visual presentation of how the reachable ranges
shrink when one approaches the Pareto front.

To be more specific, the reachable ranges describe intervals of objective function values
in the subset of Pareto optimal solutions which still are reachable from the current point
without trading off. If the solution process starts from the nadir point, the reachable range
of each objective function is defined at the beginning with the ideal and nadir points. When
the solution process continues, the ranges are defined by the so-called current iteration point
and the point with the best reachable values.

To get started, NAUTILUS Navigator needs a set of solutions that approximate the Pareto
optimal front. They are all assumed to be mutually nondominated. Besides, during the nav-
igation, we lose the connection to the decision space. This is not a problem because we
can guarantee that at the end of the navigation process, the DM will reach a nondominated
solution and can find the corresponding decision vector in the decision space. For details of
the method, see [38].

2.3 Surrogate models

In the following, by exact objective function evaluations, we mean the evaluation of the
objective functions in (1). For the O-NAUTILUSmethod, we utilize methods that can predict
function values at yet un-evaluated decision vectors x+ ∈ S utilizing a set of N already
evaluated decision vectors, say x(1), . . . , x(N ), with y(1) = f(x(1)), . . . , y(N ) = f(x(N )). In
multiobjective optimization, a common strategy is to train a surrogate model for each of
the objective functions fi separately. We will denote the predictions of function values with
ŷi ≈ fi (x+) and the corresponding exact function values with yi = fi (x+).

Furthermore, we need methods that can assess the uncertainty of the predictions by pro-
viding an uncertainty quantification in the form of ranges in which the true outcome is (likely)
to be found. Kriging models and Lipschitzian models are two common classes of such surro-
gate models, which is the reason why we chose them as surrogate models in our discussion.
The upper bound of these ranges will be denoted with f i (x

+), and the lower bound with
f
i
(x+). The ranges may have a probabilistic interpretation, such as in the Kriging models,

or a possibilistic, exact interpretation, such as in the Lipschitzian models.

2.3.1 Kriging and Gaussian process regression

The Kriging method and Gaussian process regression are mathematically very similar1. To
obtain a prediction, function values at neighboring decision vectors of the new decision
vector are weighted by distance and a factor that is determined in a training process. While
the training can be time-consuming, predictions and uncertainty quantification for a new
decision vector are very fast for such vectors that have not been evaluated yet. Therefore, in
order to find promising regions for new evaluations, aKrigingmodel can be evaluated inmany
different decision vectors. As mentioned in the general introduction to surrogate models, also
in the Kriging methods we handle multiple objectives typically by learning them separately

1 Kriging (named after geo-scientistKrige) seeks to find a best linear unbiased predictor assuming the observed
data is a realization of a stochastic processes or random field (not necessarily of the Gaussian type). Gaussian
process regression is motivated by Bayesian reasoning and uses conditional mean and variance of Gaussian
random fields to model and bound the objective function at a given decision vector.

123



Journal of Global Optimization

Fig. 1 Kriging prediction in a 1-D and b 2-D objective spaces

for each objective function [9]. The predictive distribution at a new, yet un-evaluated decision
vector x+ is then given by an independent multivariate normal distribution for each decision
vector with mean values ŷi (x+) and standard deviations ŝi (x+) for the objective functions
fi , i = 1, . . . , k. Based on this, we can compute probabilistic confidence ranges with a lower
bound f (x) and an upper bound f (x), respectively, defined for i = 1, . . . , k as:

f
i
(x+) = ŷi (x+) − αŝi (x+) (3)

f i (x
+) = ŷi (x+) + αŝi (x+), (4)

where α ≥ 0 is a user-defined confidence level.
An illustration of a Krigingmodel for a 1-D decision vector and a single objective function

is provided in Fig. 1a and for a biobjective problem in Fig. 1b. In Fig. 1a, the vertical axis
(y) denotes the function values obtained at three decision vectors, namely y(1) = f (x(1)),
y(2) = f (x(2)) and y(3) = f (x(3)). The predictions at a new decision vector x+ are given by a
1-D normal distribution with a mean value ŷ(x+) and a standard deviation ŝ(x+) quantifying
the uncertainty of the prediction. Figure 1b illustrates three predictions for a biobjective
problem. Again, the uncertain outcome of the expensive evaluations is quantified by means
of normal distributions that are indicated in the figure by their probability density function
(PDF). In the figure, we deal with bi-variate distributions. They can be used to estimate
2-D confidence ranges which are indicated in the figure by rectangles. From these, it is
straightforward to compute optimistic bounds for the objective vector resulting from an
evaluation at a specific decision vector.

The Kriging or Gaussian process method underlies several statistical assumptions, most
importantly a distance based correlation between outputs at decision vectors, where the
distance is measured in the decision space. For an in-depth description of the Kriging method
and its statisticalmotivation the reader is referred to [41]. In our experimentswe use a standard
implementation of Kriging with an isotropic, exponential kernel.

2.3.2 Lipschitz bounds for prediction and uncertainty quantification

The knowledge of the Lipschitz constant can help in designing global search algorithms
[24]. Lower or upper bounds (also called shells) for the values of a Lipschitz continuous
function can then be relatively simply computed and have been used to construct such global
optimization algorithms [24,34,48]. As will be shown, using a Lipschitz constant will also
yield an alternative, yet linear approach to surrogate modeling with uncertainty quantification
in the form of a confidence range. As it is also based on distances in the decision space and
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Fig. 2 Computation of Lipschitz
bounds in one dimension

Fig. 3 Lipschitz envelope for a 1-D function (a). Kriging uncertainty ranges for the same data (b)

provides confidence bounds, it is structurally quite similar to the aforementioned Kriging
method.

A function f is called Lipschitz continuous if there exists a real positive constant L (called
Lipschitz constant) such that for all x, x′ ∈ S

d( f (x), f (x′)) ≤ Ld(x, x′),

where d : R×R → R is a distance function. Let us again assumewe are given a data set (set of
evaluations) with N evaluated points (decision vectors). Then, if x+ denotes an un-evaluated
decision vector, its output y+ = f (x+) is bounded by the interval [ f (x+), f (x+)] ⊆ R,
with

f
i
(x+) = max

t=1,...,N
{yti − Lid(x+, x(t))} and (5)

f i (x
+) = min

t=1,...,N
{yti + Lid(x+, x(t))}. (6)

An example of the computation of Lipschitz bounds using these equations is given in
Fig. 2. Moreover, we can define a prediction as the average of the upper and lower bound,
i.e. ŷ(x+) = 1

2 ( f (x
+) + f (x+)), thus creating a Lipschitzian model. An illustration of the

Lipschitzian envelope is given in Fig. 3a and a figure of the same envelope using Kriging
is provided in Fig. 3b. The example data is part of an interactive Python plot, that can be
accessed and modified at https://trinket.io/python3/c38e5ebdbc. Since the distance function
can also be defined for multivariate decision spaces, the Lipschitzian bound calculation can
also be used efficiently for high-dimensional decision spaces.
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3 O-NAUTILUSmethod

In this section, we introduce the details of the O-NAUTILUS method. To be able to describe
the O-NAUTILUS algorithm, we first need to introduce the major components and concepts
utilized in the method. Hence, we describe them first and then provide a detailed pseudo-code
of the algorithm.

The starting point of O-NAUTILUS is a pre-generated set of solutions. We do not make
any specific assumptions regarding this set. It can, for example, be a rough approximation
of the Pareto front, or even a space filling sample of solutions. The O-NAUTILUS method
extends the NAUTILUS Navigator method by visualizing not just the reachable ranges, but
also optimistic ranges, which represent solutions which are predicted to have good objective
values, but are not represented in the set of known solutions. The O-NAUTILUSmethod does
this byworkingwith two sets of fronts at once. The first set is the nondominated front from the
set of known solutions, the same as the one used in NAUTILUS Navigator. The second set is
an optimistic estimation of the Pareto front given by a set of points in the objective space that
is calculated by multiobjective minimization on the lower bounds f

i
(x), x ∈ S, i = 1, . . . , k

that are estimated using the surrogate model. We call it an optimistic front to be described
further in the next subsection.

Using the information provided by the optimistic front and the corresponding ranges
enables the DM to strategically conduct function evaluations. In terms of navigation, this
means going beyond the reachable ranges and stepping into an “optimistic area” by con-
ducting function evaluations that are likely to find solutions in that area. This has a two-fold
benefit. Firstly, the function evaluations are conducted in regions of interest of theDM.Hence,
no resources are wasted in finding solutions that may not be of interest to the DM. Secondly,
the newly evaluated decision vectors can be added back to the known set of solutions. Based
on this new known set, surrogate models can be trained again. As this new known set contains
solutions in the region of interest of the DM, the surrogate models themselves perform better
in the region of interest. This means that the optimistic predictions obtained by the models
are more accurate in the region of interest. Hence, as the algorithm continues, the DM gets
an increasingly improved picture of the objective space in the region of interest.

In Sects. 3.1 through 3.4, we describe various components of the O-NAUTILUS method.
These components are modular and can be trivially replaced by alternatives which serve a
similar purpose. Section 3.5 then describes the O-NAUTILUS method, which puts together
the aforementioned components to support a DM to identify the most preferred solution.

3.1 Optimistic pareto Front from surrogatemodels

As described in (3) and (5), Kriging and Lipschitzian models, respectively, can be used to
estimate or determine an optimistic lower bound for an objective fi , i = 1, . . . , k, at any
point in the decision space x ∈ S as f

i
(x). To get an optimistic Pareto front from the surrogate

models, we simply solve the following problem:

minimize { f
1
(x), . . . , f

k
(x)}

subject to x ∈ S,
(7)

with any appropriate solver.
Figure 4 shows the concept of an optimistic front (for a biobjective example) graphically.

The blue (darker in greyscale) points belong to a set of exactly evaluated decision vectors P .
The orange (lighter in greyscale) points belong to the set of solutions obtained by solving
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Fig. 4 Simplified figure to demonstrate the optimistic front

(7), to be denoted by P+. The nondominated points from P form the known front, whereas
the nondominated points from P+ form the optimistic front. These are represented as blue
(darker) crosses (known front) and orange (lighter) crosses (optimistic front) in Fig. 4. These
fronts will be used by the other steps of the O-NAUTILUS method.

3.2 Reachable ranges

In Fig. 5, a path of the O-NAUTILUS method is visualized in the objective space as a 2-D
scatter plot (5a). The blue (darker) points in Fig. 5a represent P , whereas the orange (lighter)
points represent P+. The path is also visualized as a reachable ranges plot (5b) which shows
the reachable ranges for various objectives at different steps [38]. The vector z(i) in the
objective space is the step point at the i th step and has a function similar to the current point
in [38].

The intention of this visualization is to show how for every step point the reachable ranges
change and how this can be visualized in the 2-D objective space plot (5a) and in the reachable
ranges plot (5b). Note that the objective space visualization becomes impractical in higher
dimensions, whereas the reachable ranges plot can still be used.

For the j th objective, the known reachable range at step i is defined as:

[
min

y∈P,y�z(i)
y j , max

y∈P,y�z(i)
y j

]
, (8)

whereas the optimistic reachable range, which is newly introduced in this paper, is defined
by replacing P by P+ in (8). These values are displayed in the reachable range paths as
described in [38].

Focusing on the visualization of the path, we here omit details of the algorithmic procedure
and interaction with the DM, which will be discussed in Sect. 3.3. The path starts in Fig. 5 at
point 1©. In the first step, the DM aims at merely improving f2 which leads to 2©. Then, the
subsequent moves 2©– 5© are conducted such that f1 and f2 are equally improved. The last
move 5©– 6© steps into the ‘orange (lighter) region’ where additional exploration in terms
of exact function evaluation of the objective functions in the region of interest are required
in order to assess the feasibility of the move. The fact that the move does not step beyond
the orange region is indicating that such explorations will be promising and have a realistic
chance of success.

123



Journal of Global Optimization

(a) (b)

Fig. 5 Path of O-NAUTILUS visualized as a 2-D scatter plot (a) and as reachable ranges plot (b)

Looking at the relation between Fig. 5a (coordinate plot) and Fig. 5b (reachable ranges
plot), let us focus on a single point on the path, say 2©. As improvement is expected in
all objectives, the maximal improvement of this point for which we still can guarantee the
existence of a solution is indicated by the blue dashed lines (5a). This equates to values
ranging from 1 to 6 units for f1 and from 0 to 5 units for f2, as shown by the span along
the two axes in Fig. 5a. The blue (darker) ranges in Fig. 5b show the same span at step 2©.
The orange (lighter) optimistic range, which extends the lower bound of the blue (darker)
range, indicates how much we can still realistically expect to maximally improve by further
exploration. This range is determined by the optimistic front.

3.3 Navigation

O-NAUTILUS uses the concept of navigation to help a DM make function evaluations at
regions of interest and arrive at a desirable solution. Similar to NAUTILUS Navigator, the
navigation begins at the worst possible objective values, a point that we will call a combined
set nadir point (zCS,nad). This point is calculated as the supremum of the combined set of
known and optimistic fronts. The DM then takes a “step” by advancing the step point towards
the solutions in any preferred direction, thus, gaining in each objective without any trade-
offs. Unlike NAUTILUSNavigator, however, the DM does not reach a solution on the known
front at the end of the navigation. This is because, unlike NAUTILUS Navigator, which uses
an unchanging front, both the known and the optimistic fronts in O-NAUTILUS can change
with further exact function evaluations.

Instead, the navigation is conducted in the following way. Firstly, a combined set ideal
point (zCS,∗) is defined as the infimum of the combined set of known and optimistic fronts.
From this, the combined set utopian point (zCS,∗∗) is generated in a corresponding manner
to how the utopian point is derived from the ideal point. The combined set nadir point is
calculated as described in the previous paragraph. Then, a hyperbox is formed with the
combined set utopian and nadir points as the opposing corners. This hyperbox is divided
using equidistant “rungs” perpendicular to the line connecting the combined set utopian and
nadir points, starting and ending on those points, as shown in Fig. 6. The step point is then
constrained to be inside the hyperbox and on one of these rungs throughout the navigation
process. The number of these rungs is one more than the total number of steps to be taken
during the navigation process, and it is pre-defined by an analyst. A higher step count divides
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Fig. 6 Progressing the step point from step 1 to step 2 in the O-NAUTILUS algorithm. The step point (red
square) jumps from rung 1 to rung 2 in the direction of the reference point (green circle). Here, combined set
nadir and utopian points act as the zeroth and fifth rung, respectively

the hyperbox into smaller sections, giving the algorithm a higher resolution. This gives the
DM a finer control over the navigation process.

The navigation begins at the step point at the zeroth rung, i.e. the combined set nadir point.
TheDMprovides preference information that is used to define the direction of navigation (and
hence, improvement). At any step, preference information (given in the form of aspiration
levels) is valid if the corresponding reference point dominates the current step point. This is
shown graphically in Fig. 6, for step 1. The step point is represented as the red square point
on “Rung 1”. The reference point given, shown as a green circle, dominates the step point.

Once valid preference information is provided, the step point moves from the current rung
to the next, in the direction of the reference point, as shown by the arrow in Fig. 6. The step
points then keep jumping on the successive rungs in the same direction at a rate that can
be controlled by a DM or an analyst. At every step, the reachable ranges are calculated and
shown to the DM. The DM can update preference information, i.e., provide a new reference
point at any step. Note that the basic unit of O-NAUTILUS is called a “step”, as opposed to
“iteration”, which is the terminology used in most other interactive methods. In them, two
iterations are typically separated by a DM providing new preference information. On the
other hand, the steps in O-NAUTILUS proceed at a constant rate even if no new preference
information is obtained from the DM after the first one. The rate can have a default value.

The following formula is used to calculate the successive step points:

z(i+1) = z(i) + ss(i)sd(i)

sd(i) =
(
zpref − z(i)

)
‖zpref − z(i)‖

ss(i) =
(‖zCS,∗∗ − zCS,nad‖

itotal

)2
/(

zpref − z(i)
) · (

zCS,∗∗ − zCS,nad
)

itotal‖zpref − z(i)‖ ,

(9)

where itotal is the pre-definedmaximum number of steps, zpref is a valid reference point, sd(i)

is the step direction and ss(i) is the step size at the i th step (length of the arrow in Fig. 6). The
· symbol is used to denote the dot product of vectors, whereas ‖ · ‖ denotes the magnitude or
�2 norm of a vector.
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The navigation continues as long as there are known solutions reachable from the suc-
ceeding rung. At the end of these steps, the DM has a few options. (S)he can choose the last
remaining known solution as the final solution, or restart the navigation process and navigate
in a different direction to explore the two fronts. These options are available in NAUTILUS
Navigator as well. In addition to these options, O-NAUTILUS provides the option to con-
duct a function evaluation at a single point. The DM, utilizing the information provided by
the optimistic regions in the reachable ranges path, can decide whether to conduct an exact
function evaluation to find a solution in the current region of interest (the optimistic regions
of the reachable ranges plot). The mechanism to find such a potential solution to be evaluated
is described in Sect. 3.4.

Based on the results of the function evaluation, the DM can choose to end the solution
process, choosing the newly evaluated solution as the final solution. Alternatively, the DM
can continue the search for alternative solutions. This is done by including the new solution
in the known set of solutions P . Based on this updated set, new (andmore accurate) surrogate
models are trained.Anew set of optimistic solutions P+ is calculated as described in Sect. 3.1.
The navigation is then restarted with the step point at the combined set nadir point, and with
the last known aspiration levels as preference information. The DM can thus follow the same
path travelled in the previous navigation phase to see how the reachable ranges have changed,
or change preferences and follow a new path.

3.4 Expected ASF

Solving a surrogate assistedmultiobjective optimizationproblemefficiently requires updating
the surrogate models by utilizing an infill criterion. An infill criterion determines where the
next sample is to be evaluated for updating the surrogate models. The infill criterion is
obtained by optimizing an acquisition function that provides a mapping from a decision
vector to a scalar value. In the literature, different acquisition functions have been suggested,
i.e. expected improvement (EI) [20] and expected hypervolume improvement (EHVI) [10].
Both represent a trade-off between exploration and exploitation. The multiplicative EI (mEI)
[12] is interesting in the context of the O-NAUTILUS method because it also takes into
account a reference point provided by the DM. However, in our tests, solutions produced by
mEI did not follow the DM’s preferences very well.

We propose an infill criterion called expected ASF (eASF) which is the expected value
of (2). We use Monte Carlo sampling [15] to find the expected ASF. For a decision vector x,
we sample NS points using the distribution predicted by the surrogate models. For example,
while using Kriging surrogates, we use a normal distribution and the multivariate Gaussian
PDF:

PDFKriging
f =

k∏
i=1

1

ŝi (x)
√
2π

exp

(
− (ŷi (x) − yi )2

2ŝi (x)2

)
. (10)

Here it can be observed that the distribution is Gaussian for Kriging surrogates. However,
in case of Lipschitzian surrogates, we use a multivariate uniform distribution as the PDF
to draw the samples. The set of samples

{
ŷ1(x), . . . , ŷNS (x)

}
that is drawn using (10) for

a decision vector x+ is then used to calculate the ASF using (2). The set of ASF values is
ξ z(x) = {

sz1(x), . . . , s
z
S(x)

}
. The final aquisition function is expected ASF or E

[
ξ z(x)

]
. To

find the infill point we solve the following single objective optimization problem:

gASF (x) = minimize
{
E

[
ξ z(x)

]}
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by using an appropriate optimization method. As the expected ASF considers the distribution
of the ASF, it takes exploration in the search into account along with exploitation.

3.5 Algorithm description

Algorithm 1: O-NAUTILUS Algorithm
Input: Problem definition(1) MOP , set P of decision vectors and corresponding objective vectors, set

of surrogate models SMT , multiobjective optimization algorithm (MOA) and function
evaluation budget B.

1 b ← 0 // Function evaluation counter
2 s1, . . . , sk ← Train(SMT , P) // Surrogate-models

3 P+ ← Optimistic_Optimize(MOA, s1, . . . , sk)
4 if Function_Evaluations_Needed(P, P+) then
5 P ← P ∪ Individual_Optima(s1, . . . , sk , MOP)
6 b ← b + k // k exact objective function evaluation used
7 Go to step 2
8

9 zCS,∗∗, zCS,nad ← Calculate_Utopian_And_Nadir(P, P+)
10 i ← 0 // Step number

11 z(i) ← zCS,nad // Step point

12 Display_Reachable_Ranges(P, P+, zi)
13 if DM provides new preference or i = 0 then
14 zpref ← Get_Preference_From_DM()
15

16 if DM wants to stop then
17 Go to step 29
18

19 if Front P is not reached then
20 z(i) ← Compute_Next_Iteration_Point(z(i), zpref)
21 i ← i + 1
22 Go to step 12
23 if b < B and DM wants to conduct exact function evaluation then
24 P ← P+ Max_Expected_ASF(z(i), s1, . . . , sk)
25 b ← b + 1 // 1 exact point evaluation used
26 Go to step 2
27

28 else
29 Display_Chosen_Solutions(P, z(i))
30 end

Next, the complete interactive O-NAUTILUS algorithm is described. We pay particular
attention to the use of exact objective function evaluations and the use of surrogate function
evaluations, because the number of exact objective function evaluations will govern the total
computational effort. The flow of the method is given in Algorithm 1. The various functions
and variables involved in the algorithm are as follows:

1. Train takes as its input the choice of surrogate modeling technique (SMT ) and the
known set of solutions (P), and returns k trained surrogate models s1, . . . , sk , one for
each of the k objectives. Here, SMT can be any surrogate modeling technique capable of
giving optimistic predictions. In this paper, as mentioned, we consider the Kriging and
Lipschitzian surrogate modeling techniques.
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2. Optimistic_Optimize uses a multiobjective optimization method, in our imple-
mentation an evolutionary algorithm, with the surrogate models s1, . . . , sk to find an
optimistic Pareto front (P+) for the problem as described in Sect. 3.1. Note that no exact
function evaluations are conducted in this step.

3. Function_Evaluations_Needed compares P and P+ to determine whether fur-
ther exact function evaluations are needed before the navigation and the involvement of
the DM begins.
This need may arise, for example, if all solutions in P are dominated by the nondomi-
nated solutions in P+. This may happen because of two reasons. Firstly, the solutions
in P may be far from the exact Pareto front of the problem. Alternatively, the surrogate
models may not provide good predictions in certain regions, especially near the Pareto
front. Either case may give misleading information to the DM when (s)he is asked to
provide preferences. The first case can be resolved by conducting further exact function
evaluations, preferably closer to the front. This will also lead to the generation of more
samples for training the surrogate models, resolving the second case. There may be other
cases where further exact function evaluations are desirable. The choice is left up to the
analyst and not included in the algorithm.

4. Individual_Optima uses the surrogate models s1, . . . , sk to find k solutions cor-
responding to the maximum expected ASF (eASF) of the individual surrogate models.
These solutions are then evaluated using the exact objective functions. Other strategies
may be used in place of Individual_Optima to find good solutions to evaluate. For
example, an alternative option is to use a few representative solutions from P+.

5. Calculate_Utopian_And_Nadir combines the nondominated solutions from the
sets P and P+ and returns the combined set utopian point (zCS,∗∗) and the combined set
nadir point (zCS,nad) of this combined set.

6. Display_Reachable_Ranges uses P , P+ and z(i) to calculate and display the
known and optimistic reachable ranges. See also Subsec. 3.2.

7. Get_Preference_From_DM stores the most recent DM’s preferences as zpref .
8. Compute_Next_Iteration_Point calculates the step point for the next step as

described in (9).
9. Max_Expected_ASF uses the surrogate models s1, . . . , sk to find a solution that fol-

lows the DM’s preferences and is likely to lie close to the Pareto front, as described in
Sect. 3.4. This solution is then evaluated using the exact objective functions and added
to the set of known solutions.

10. Display_Chosen_Solutions displays the solutions chosen by the DM by calcu-
lating and plotting solutions from P that are reachable from z(i).

A DM can affect the algorithm by providing preferences, controlling when and where to
conduct exact function evaluations, and by terminating the algorithm once satisfied. The DM
can also pause the algorithm at any point (for example, in between steps during navigation)
e.g., to update preference information or to jump backwards. An analyst can further affect the
algorithm by choosing the surrogate modeling algorithm used in Train, the optimization
algorithms used inOptimistic_Optimize andIndividual_Optima, and by setting
the number of steps and the rate at which they progress.

4 Case study

In this section, we demonstrate how O-NAUTILUS can be used to solve a multiobjective
optimization problem. The implementation of the O-NAUTILUS method and this example
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are openly available at https://desdeo.it.jyu.fi as a part of the DESDEO software framework
and in a Zenodo repository via the link https://doi.org/10.5281/zenodo.5396677. Kriging is
used as the surrogate modeling technique and RVEA [5] as the evolutionary multiobjective
optimization algorithm to find the optimistic front as it generalizes well to a high number
of objectives. For evaluating expected ASF, CMA-ES [13] is used in our implementation.
CMA-ES is a state-of-the-art algorithm for continuous black-box optimization.

A video showcasing the UI of the O-NAUTILUS implementation can be viewed at https://
desdeo.it.jyu.fi/o-nautilus. Data generated during the experiments can also be accessed via
the same link.

4.1 Crash-worthiness design of vehicles

As the role of the DM is crucial in interactive methods, we can best demonstrate the appli-
cability of these methods with problems where the objective functions are meaningful to a
DM. Therefore, we apply O-NAUTILUS to a real-world engineering design optimization
problem called crash-worthiness design of vehicles, originally proposed in [26]. It describes
the design of the frontal structure of vehicles for crash safety optimization. When a car acci-
dent occurs, the frontal structure of the vehicle absorbs the energy caused by the crashing in
order to increase the safety of the passengers. Improving the capacity of energy absorption
can often lead to an increase in the total mass of the vehicle. However, lightweight designs
are needed to reduce the mass and the fuel consumption of a vehicle, accordingly. Therefore,
there is a trade-off between the safety and the environmental aspects, and a balanced decision
must be made in the capacity of energy absorption and the mass of the vehicle.

In the problem design, a full frontal and an offset-frontal crash test are considered to
simulate real-world accidents. A full-frontal crash usually results in a higher deceleration
compared to an offset-frontal crash, which can cause severe injuries to the passengers. An
offset-frontal test is needed to assess the structural integrity of a vehicle. In the design of the
frontal structure, these two crashing types should be considered simultaneously to improve
the overall crash-worthiness of the vehicle. Hence, there are three objectives: minimizing the
mass of a vehicle ( f1, in kg), minimizing deceleration during the full-frontal crash ( f2, in
m/s) and minimizing toe-board intrusion in the offset-frontal crash ( f3, in m). The thickness
of five components of the frontal structure of the vehicle have been chosen as the decision
variables. A mathematical formulation of the multiobjective optimization problem can be
found in Appendix A (see [26] for more details).

4.2 Interactive solution process

Next, we describe the interactive solution process using the O-NAUTILUS method. Before
involving the DM, 100 sampling points (P) were generated using the latin hypercube sam-
pling (LHS) technique based on the objective functions. The default number of steps for the
navigation was set as 100 and the default rate of navigation as 10 steps per second. First, Krig-
ing models were trained with the available sampling points. We then evaluated the optimistic
front (P+) by using RVEA on the trained Kriging models, as described in Sect. 3.1.

The combined set utopian and nadir points were calculated from P and P+ as (1661.58,
6.46, 0.058) and (1693.61, 11.28, 0.23), respectively. Initially, the known and optimistic
reachable ranges were calculated, as described in Sect. 3.2. The reachable ranges were then
shown to the DM in a graphical user interface.
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Fig. 7 Navigation view until the first change in the preference information

First, the DM wanted to provide aspiration levels for each objective based on the lower
bounds of the known reachable range. As these values seemed very promising, the DM set the
aspiration levels 1669.39 kg for f1, 7.16 m/s for f2 and 0.058 m for f3, close to the combined
set utopian point. Then, the navigation process was started to see whether these values were
achievable or not. The DM saw real-time movement, in the sense that the reachable region
started shrinking. Figure 7 shows the navigator view in the user interface of O-NAUTILUS.
In this view, the combined set utopian and nadir point is shown by green and red lines,
respectively. Also, the aspiration level provided by the DM is shown by the black line. As
the navigation continues, the known and the optimistic reachable ranges are shown in blue
(darker) and orange (lighter) areas, respectively. As can be seen in Fig. 7, the DM stopped
the navigation since the aspiration levels for f2 and f3 became unachievable based on the
known reachable ranges (shown in blue (darker shade)). However, the optimistic reachable
ranges (shown in orange (lighter shade)) indicated that solutions close to the aspiration levels
may still be achievable. Therefore, the DM decided to evaluate a new point and provided
aspiration levels for f2 and f3 based on the current lower bounds of the optimistic reachable
ranges with the intention to find a solution in the orange (lighter) area. The new reference
point was (1669.39, 7.09, 0.07) and one additional function evaluation was made by using
this reference point and eASF, as described in Sect. 3.4. The newly evaluated point (1672.33,
7.30, 0.08) had better objective function values than the current lower bounds of the known
reachable area and was added to the set of known solutions.

The navigation was restarted with the preference information which was provided for
the additional function evaluation. After a few steps, the known reachable area started to
shrink and as a consequence of the newly added point, the DM realized that the aspiration
levels for f2 and f3 were near the new lower bounds of the known reachable area. Based on
the optimistic reachable ranges, there could be solutions better in the first objective without
sacrificing in others. Therefore, the DM stopped the navigation and wanted to make another
function evaluation by providing a new reference point (1661.58, 7.09, 0.07). The newly
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Fig. 8 Navigation view until the Pareto front is reached

evaluated point (1666.37, 7.05, 0.09 ) had better values than the current lower bound of the
known reachable area for the first two objectives and was added to the set of known solutions.

The DM restarted the navigation with the newly added point. After a few steps of the
navigation, the DM realized that the known reachable areas were shrinking and while the
aspiration levels for f2 and f3 were achievable, the aspirations for f1 was not. Then, he
decided to pause the navigation in order to adjust his aspiration level for the first objective
based on the lower bounds of known reachable area. He provided a new reference point
(1666.60, 7.09, 0.07), which indicates a relaxation in the first objective. At this moment,
he decided to let the navigation reach the Pareto front to see if his desires were achievable
or not. The change in the aspiration levels and the navigation reaching the Pareto front are
illustrated in Fig. 8.

As shown in Fig. 8, the reached solution reflected the desired values for the first and
second objectives but not for the third objective. Because of this, the DM was not fully
satisfied and realized that it may be possible to improve the third objective based on the final
lower bound of the optimistic reachable ranges. Therefore, the DM wanted to conduct one
more function evaluation by adjusting the aspiration level for the third objective according
to the current optimistic front. He kept the same aspiration levels for the first two objectives.
The new reference point for additional function evaluation was (1664.60, 7.09, 0.07). Then,
the navigation was restarted with this reference point and the newly found solution added
to the known set. The DM did not change his preference information in this last navigation
since he had gained enough insight about the feasibility of his aspiration levels. Thus, he let
the navigation reach a new final solution. As can be seen in Fig. 9, this time, the reached
solution (1667.53, 7.22, 0.08) reflected the DM’s preference information quite well, and the
DMselected it as themost preferred solution. Table 1 summarizes the details of the interactive
solution process. The table lists the values of combined set nadir and utopian point, lower
and upper bounds of the known and optimistic reachable ranges, and the aspiration levels
given for each objectives for each iterations. By iterations, we mean instances when the DM
paused the navigation and provided preference information.
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Fig. 9 Navigation view until a satisfactory solution was reached

4.3 Comparison with NAUTILUS navigator

To the best of our knowledge, no quality indicators for assessing and comparing the perfor-
mance of interactive methods have been developed yet in the literature [1]. Therefore, we
make the comparison by solving the same problem with NAUTILUS Navigator.

With O-NAUTILUS, the DMmade only 3 additional exact objective function evaluations
to reach themost preferred solution. As pointed out in the previous section, 100 function eval-
uations were made to generate LHS sampling data as an input for the O-NAUTILUSmethod.
Therefore, a total of 103 function evaluations were conducted. Since in O-NAUTILUS, Krig-
ing was used as a surrogate modeling technique and RVEA as an evolutionary algorithm, we
used K-RVEA [6], an extension of RVEA which uses Kriging models, to generate the initial
data set needed by NAUTILUS Navigator. K-RVEA generated 20 nondominated solutions
with the same budget (103 exact function evaluations; 53 for LHS sampling data and 50 for
K-RVEA). K-RVEA was run for the same number of generations as RVEA in the previous
experiment.

WithNAUTILUSNavigator, theDMprovided similar preference information per iteration
and eventually reached a satisfactory solution, which was (1668.49, 7.00362, 0.13276), in a
similar manner. When this solution is compared with the one obtained by O-NAUTILUS, the
DM reached a solution reflecting his preferences for the first two objectives but not for the
last one. Therefore, we can say that he sacrificed more in the third objective in comparison
to the final solution reached with O-NAUTILUS. Based on the DM’s experience with both
methods, for the sake of brevity we list the differences without numerical details below:

• Optimistic ranges of O-NAUTILUS supported the DM in providing preference informa-
tion and finding a region of interest.

• Additional function evaluations of O-NAUTILUS supported the DM in finding and
adding new solutions in the region of interest which remained unexplored in NAUTILUS
Navigator.
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• NAUTILUS Navigator needed optimized points to start the solution process. Because of
this, there is a pre-processing stage to generate nondominated solutions by using some
appropriate multiobjective optimization method, for instance an evolutionary algorithm.
On the contrary, O-NAUTILUS can start with any initial data which is not optimized.
This means that if the DM has some available data of function evaluations for her/his
optimization problem, it can readily be utilized.

• In NAUTILUS Navigator, the satisfaction degree of the final solution was highly depen-
dent on the nondominated solutions found in the pre-processing stage. However, in
O-NAUTILUS, even if initial solutions are not good, the DM can reach very good solu-
tions with the help of additional function evaluations during the solution process. They
will be conducted in a focused manner based on her/his preference information.

The positive features of O-NAUTILUS have some trade-offs as well. Because of the opti-
mistic ranges and ability to make additional function evaluations, the DM needed to digest
more information at a time in O-NAUTILUS. In NAUTILUS Navigator, as the DM saw only
the reachable ranges, and no additional function evaluations were made in the solution pro-
cess, NAUTILUS Navigator was easier to use than the O-NAUTILUS method. Furthermore,
in O-NAUTILUS, the DM needs to wait for the additional exact function evaluation during
the solution process. In NAUTILUS Navigator, waiting is out of the question during the
interactive phase since no additional function evaluations are conducted during the solution
process.

To conclude the comparison, O-NAUTILUS effectively supported the DM by providing
optimistic reachable ranges and enabling additional function evaluations in the region of
interest of the DM. Even with randomly generated initial points, the method could achieve
satisfactory solutions by using few exact function evaluations. However, one needs to digest
more information in each iteration and wait for the function evaluations conducted in the
solution process.

5 Conclusions

In this paper we have proposed a novel method in the NAUTILUS family, termed O-
NAUTILUS for interactive multiobjective optimization. The overarching challenge was to
propose a new version of the NAUTILUS family that can be used for optimization problems
where expensive function evaluations are to be used sparingly. Tomeet this challenge, we had
to design a new, general algorithmic framework by integrating surrogate models with uncer-
tainty handling into NAUTILUS methods. The new methodology allows for an interactive
mode of exploration with alternating phases of decision making and compute-intensive steps
where new evaluations of expensive objective functions are conducted to acquire information
about promising regions of the decision space.

We have introduced novel concepts to tackle problems with expensive function evalua-
tions. These new concepts have been implemented as an interactive O-NAUTILUS algorithm
supported by a graphical user interface.With this user interface, the decisionmaker can see in
real time how the preferences provided affect the direction of the search in terms of reachable
ranges evolving. The usefulness of the new concepts is demonstrated as follows:

• We developed O-NAUTILUS as an extension of NAUTILUS Navigator by showing
optimistic ranges to the decision maker. This allows the decision maker to schedule
additional exact function evaluations to explore regions of the objective space where

123



Journal of Global Optimization

(s)he can still expect (based on optimistic bounds) further improvements. This is useful
for optimization with expensive function evaluations.

• We created an open source implementation of O-NAUTILUS in Python which can be
accessed at https://desdeo.it.jyu.fi.

• We demonstrated the implementation on an instance from the domain of crashworthiness
design, which is a typical context where expensive function evaluations occur in practice.

• We augmented the graphical representation of the reachable ranges plot to accommodate
optimistic ranges.

• Wemade several detailed decisions when developing the ideas into aworkable algorithm:
the type of user interaction and preference model and the choice of surrogate modeling
and uncertainty handling techniques. Kriging models were used but also other surrogate
models providing uncertainty quantification can be utilized. As an example of alternative
models, we mentioned Lipschitzian models.

In this contribution, we have introduced surrogate modeling techniques with uncertainty
handling for the first time in the context of NAUTILUS methods. Surrogate modeling is in
itself a very active field of research which has recently brought forward many results. Future
work should therefore include the choice and update of the surrogate modeling techniques.
One should note that although Kriging and Lipschitzian models are utilized in this paper
to approximate the optimistic Pareto front, the ideas are not limited to these two surrogate
model types and one can also use other surrogate model types which feature uncertainty
quantification. Understanding when to apply Kriging and when Lipschitzian models, or
other types of surrogate models deserves further analysis. Further experiments are also to be
conducted with O-NAUTILUS, especially with real-life problems.
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A Mathematical formulation of themultiobjective optimization
problem for the crash-worthiness design of vehicle

Following [26], the multiobjective optimization problem for the crash safety design of vehi-
cles is formulated as follows:

minimize F(x) = { f1(x), f2(x), f3(x)}
subject to 1 ≤ x j ≤ 3 j = 1, . . . , 5,

(11)
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where fi (i = 1, 2, 3) representing the relevant surrogate models, formed based on the data
collected from simulation models as described in [26], have the following formulations:

f1(x) = 1640.2823 + 2.3573285x1 + 2.3220035x2 + 4.5688768x3
+ 7.7213633x4 + 4.4559504x5

f2(x) = 6.5856 + 1.15x1 − 1.0427x2 + 0.9738x3 + 0.8364x4
− 0.3695x1x4 + 0.0861x1x5 + 0.3628x2x4

− 0.1106x21 − 0.3437x23 + 0.1764x24
f3(x) = −0.0551 + 0.0181x1 + 0.1024x2 + 0.0421x3 − 0.0073x1x2

+ 0.024x2x3 − 0.0118x2x4 − 0.0204x3x4 − 0.008x3x5

− 0.0241x22 + 0.0109x24

Here, the objective functions f1, f2, and f3 are the vehicle mass, deceleration during
the full-frontal crash, and toe-board intrusion in the offset-frontal crash, respectively. The
decision variable x j ( j = 1, . . . , 5) represents the thickness of a component of the frontal
structure of the vehicle. See [26] formore details about the surrogate construction andproblem
formulation.
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