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1 Introduction

Classical scalar fields coupled to quantum matter play an important role in various settings
in cosmology. They are used to study the creation of seed perturbations for structure
formation, reheating processes, particle production and the creation of baryon asymmetry.
Almost exclusively in these treatments it is assumed that the scalar field evolves in some
classical, possibly quantum corrected but fixed effective potential. One rarely accounts for
the backreaction of the non-equilibrium quanta that may be created during the dynamical
process. However, such quanta may be produced copiously during out-of-equilibrium phase
transitions [1, 2] by parametric resonance [3–7] or by spinodal instability [6, 8–13], and they
could significantly affect the evolution of the system [14–18]. In this paper we study the
effects of quantum backreaction on the scalar field evolution using two-particle irreducible
(2PI) effective action methods.

A crucial step in the rigorous analysis of the problem is performing a consistent renor-
malization of the equations of motion derived from the 2PI effective action. This is a
highly non-trivial task, because in any finite truncation of the 2PI expansion, a number of
auxiliary vertex and self-energy functions appear that require setting up consistent renor-
malization conditions [19]. Other works on the renormalization of 2PI-truncated theories
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include for example references [20–22]. In this paper we carefully go through the renor-
malization of our model using the method of cancellation of the sub-divergences [23–26].
We emphasize that while the renormalization counterterms are constants, the divergences
that get subtracted, and hence also the vacuum state of the system, depend on the infrared
physics, such as temperature, or even the shape of the non-equilibrium particle spectrum.

To be specific, we study a simple λφ4-model with a spontaneous symmetry breaking
tree-level potential. We work in the Hartree approximation and perform the auxiliary
renormalizations using the MS subtraction scheme. The renormalized equations of motion
and the 2PI effective action are however scale independent and completely specified in terms
of physical parameters. We present explicit results for the vacuum and finite temperature
effective potentials as well as for the vacuum potential in the presence of non-equilibrium
fluctuations. We stress that in the non-equilibrium case the effective potential can only be
constructed a posteriori and it is not in general a useful quantity for solving the equations
of motion.

With our renormalized equations we can follow in real time how the potential energy
of the classical field is transferred into quantum fluctuations by the non-perturbative pro-
cesses. We identify a strong parametric resonance, even though our self-coupled system
is too complicated to admit a comprehensive analytical stability analysis. We also show
that due to backreaction from spinodal instability the field can pass through a potential
barrier even when starting with less energy than the initial barrier height. We also follow
the full thermal history of a system that starts with pure potential energy, until it is fully
thermalized with nearly all of its energy stored in thermal plasma. We also show that at
the initial stages of reheating the quantum system is highly coherent, but the coherence is
gradually erased by interactions as the system thermalizes.

This paper is organized as follows. In section 2 we review the 2PI effective action
techniques and introduce our truncation scheme, the Hartree approximation. In section 3
we show how to self-consistently renormalize the 2PI equations of motion and express them
in terms of physical quantities. We also study both resummed vacuum and thermal effective
potentials in the Hartree case and compare them with other approximations. In section 4 we
write our equations of motion in the Wigner space in terms of moment functions following
references [27, 28], and also complement the equations with phenomenological friction
terms. Section 5 is dedicated to numerical results. We compute the evolution of various
quantities, such as the classical field, particle number and coherence functions using the
fully coupled 2PI equations. Finally, section 6 contains our conclusions.

2 2PI effective action and equations of motion

We will study the non-equilibrium dynamics of a scalar field theory with the potential
V (φ) = −1

2µ
2φ2 + 1

4!λφ
4 using the two-particle irreducible (2PI) effective action technique

of non-equilibrium quantum field theory [29, 30]. The 2PI effective action for this theory is

Γ2PI[ϕ,∆] = S[ϕ]− i
2TrC

[
ln(∆)

]
+ i

2TrC
[
∆−1

0 ∆
]

+ Γ2[ϕ,∆], (2.1)
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Figure 1. The Keldysh contour in the complex time plane, running from some initial time to an
arbitrary future time and back again.

where ϕ(x) is the classical field and ∆(x, y) is the classical connected two-point function
and the trace contains integration over the Keldysh contour [31] C of figure 1. Moving to
a real-time representation the classical action can be written as S[ϕ] =

∑
a=± aδ

abS[ϕb],
where a and b indicate the branch on the complex time-contour, and

S[ϕb] =
∫

d4x

[1
2(∂µϕb)2 + 1

2µ
2ϕ2

b −
1
4!λϕ

4
b

]
. (2.2)

Similarly, the inverse classical propagator is given by

i∆−1
0,ab(x, y;ϕ) = −

(
�x − µ2 + 1

2λϕ
2
a

)
δ(4)(x− y)δab. (2.3)

Finally, Γ2 consists of all 2PI vacuum graphs with lines corresponding to the full propagator
∆ and interactions inferred from the shifted action

Sint
[
ϕ, φq

]
= −

∑
a=±

aδab
∫

d4x

( 1
3!λϕbφ

3
qb + 1

4!λφ
4
qb

)
, (2.4)

where φ = ϕ+ φq and φq is the quantum field.
The stationarity conditions of Γ2PI will give the equations of motion for the one- and

two-point functions:
δΓ2PI
δϕa

= 0 and δΓ2PI
δ∆ab

= 0. (2.5)

When the classical solution to the latter equation, parametrized in terms of ϕ, is reinserted
back into the effective action, we formally recover the 1PI action Γ̂1PI[ϕ] = Γ2PI[ϕ,∆[ϕ]].
In the full dynamical case the two equations are however strongly coupled and should be
solved simultaneously, as we will do in our study. For the classical field ϕ+(x) = ϕ−(x)
and we may drop the branch index and find:[

�x − µ2 + 1
6λϕ

2(x) + 1
2λ∆(x, x)

]
ϕ(x) = δΓ2

δϕ(x) . (2.6)

We also left the branch indices out from the local correlation function ∆(x, x), which is the
same for all components of the two-point function ∆ab(x, y). The stationarity condition
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Figure 2. The first few terms contributing to Γ2, including their precise coupling constant depen-
dences.

for ∆ab(x, y) leads to the Schwinger-Dyson equation[
�x − µ2 + 1

2λϕ
2(x)

]
i∆ac(x, y) = aδacδ(4)(x− y) + b

∫
d4zΠab(x, z)∆bc(z, y), (2.7)

where summation over b is implied and the self-energy function is given by

Πab(x, y) = 2iab δΓ2[ϕ,∆]
δ∆ba(y, x) = aδabδ(4)(x− y)Πsg(x) + Πab

nsg(x, y). (2.8)

To proceed we also have to specify an approximation for the interaction term Γ2.

2.1 Hartree approximation

The first few terms contributing to Γ2, arising from the action (2.4), are shown in figure 2
(the role of the indices in the couplings is related to renormalization and will be explained
in the next section). In this work we shall work in the Hartree approximation, which
includes only the first term in the series, given by

ΓH
2 = −λ8

∫
d4x∆2(x, x). (2.9)

In this case the self-energy has only a singular or local part:

Πsg(x) = − iλ
2 ∆(x, x), (2.10)

while Πab
nsg(x, y) = 0. Obviously ∂ΓH

2 /∂ϕ = 0 as well, so there is no contribution to
equation (2.6) in the Hartree approximation. We can now write the non-renormalized
equations of motion compactly as[

�x − µ2 + 1
6λϕ

2(x) + 1
2λ∆(x, x)

]
ϕ(x) = 0, (2.11a)[

�x − µ2 + 1
2λϕ

2(x) + 1
2λ∆(x, x)

]
i∆ab(x, y) = aδabδ(4)(x− y), (2.11b)

Eventually we will move to the Wigner space defined in section 4 and solve these equations
numerically in some example cases for homogeneous systems, but before we can do that,
we have to address the divergences in ∆ab and in particular in the local correlation function
∆(x, x).

– 4 –
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3 Renormalization

Systematic renormalization in the context of the 2PI expansion was thoroughly discussed in
reference [19]. Here we use the method introduced in reference [23], and later used in refer-
ences [24, 26], and we include also a connection to physical parameters. The key issue is that
any finite order truncation of Γ2[ϕ,∆] leads to an approximation for Γ̂1PI[ϕ] that contains
infinite resummations of 1PI diagrams and the associated counterterms. This gives rise to a
number of auxiliary n-point functions which need independent renormalization conditions.
These conditions can be defined by requiring that all sub-divergences cancel [23], but one
needs to introduce a different renormalized parameter for each different operator. To be
precise, all n-point functions can be classified in terms of the number of classical fields that
connect to them, and all functions that are connected also to propagator lines are auxiliary.

Below we shall first renormalize the auxiliary n-point functions in the MS-scheme and
show that the resulting 1PI action is independent of the renormalization scale. We start
by defining the renormalized fields, propagators, couplings and masses:

φ ≡ Z1/2
(2) φR, λ ≡ λ(I)

R + δλ(I),

∆ ≡ Z(0)∆R, µ2 ≡ µ2
R(I) − δµ2

(I),
(3.1)

where the index, I = 0, 1, 2, 4, follows the power of the classical field associated with the
n-point function. Written in terms of the renormalized quantities, the 2PI effective action
becomes:

Γ2PI[ϕR,∆R] = S[ϕR]− i
2TrC

[
ln(Z(0)∆R)

]
+ i

2TrC
[
∆−1

0R∆R
]

+ δS[ϕR] + i
2TrC

[
δ∆−1

0 ∆R
]

+ Γ2
[
ϕR,∆R;λ(I)

R + δ(I)
λ

]
,

(3.2)

where S[ϕR] is the same as in equation (2.2) with ϕ → ϕR, µ2 → µ2
R(2) and λ → λ(4)

R , and
∆−1

0R is the same as (2.3) with ϕ→ ϕR, µ2 → µ2
R(0) and λ→ λ(2)

R . Moreover we defined the
classical counterterm action

δS[ϕRb] ≡
∫

d4x

[
δ(2)
ϕ

2 (∂µϕRb)2 − 1
2δ

(2)
µ ϕ2

Rb −
1
4!δ

(4)
λ ϕ4

Rb

]
(3.3)

and the inverse classical counterterm propagator

iδ∆−1
0,ab(x, y;ϕR) ≡ −

(
δ(0)
ϕ �x + δ(0)

µ + 1
2δ

(2)
λ ϕ2

Ra

)
δ(4)(x− y)δab, (3.4)

where δ(I)
ϕ ≡ Z(I) − 1 and the other effective counterterms are defined as:

δ(0)
λ ≡ Z

2
(0)

(
λ(0)

R + δλ(0))− λ(0)
R , (3.5a)

δ(2)
λ ≡ Z(0)Z(2)

(
λ(2)

R + δλ(2))− λ(2)
R , (3.5b)

δ(4)
λ ≡ Z

2
(2)

(
λ(4)

R + δλ(4))− λ(4)
R , (3.5c)

δ(I)
µ ≡ Z(I)

(
−µ2

R(I) + δµ2
(I)

)
+ µ2

R(I). (3.5d)
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Also in the interaction term in (3.2) the renormalized couplings in the combination λ(I)
R +δ(I)

λ

follow the power of the classical field in the interaction term (2.4), rewritten in terms of
the renormalized quantities.

The renormalized equations of motion can now be derived from the renormalized ef-
fective action, or more directly from (2.11a) and (2.11b), by writing the non-renormalized
quantities in terms of the renormalized ones:[

Z(2)�x − µ2
R(2) + δ(2)

µ + 1
6
(
λ(4)

R + δ(4)
λ

)
ϕ2

R + 1
2
(
λ(2)

R + δ(2)
λ

)
∆R

]
ϕR = 0, (3.6a)[

Z(0)�x − µ2
R(0) + δ(0)

µ + 1
2
(
λ(2)

R + δ(2)
λ

)
ϕ2

R + 1
2
(
λ(0)

R + δ(0)
λ

)
∆R

]
i∆ab

R (x, y) = aδabδ(4). (3.6b)

Here we suppressed the arguments in the local functions ϕR(x) and ∆R(x, x), as well as in
δ(4)(x− y), for brevity. We now proceed to determine the various counterterms appearing
in these equations and in the end find the renormalized equations of motion that include
the effects of quantum corrections.

Auxiliary renormalization conditions. Because the operator acting on ∆ab
R in (3.6b)

is independent of branch indices, we can concentrate on the time ordered component ∆11
R of

the two-point function. We choose the mass-shell renormalization condition in the vacuum
configuration ϕR = vR, which simultaneously minimizes the effective action. That is, we set

i
(
∆11

R
)−1 = p2 −m2

R,
d

dp2 i
(
∆11

R
)−1 = 1, and δΓ2PI

δϕR

∣∣∣
ϕR=vR

= 0. (3.7)

These conditions imply that Z(0) = 1 in the Hartree approximation, and in our current
scheme we can also set Z(2) = 1 (see footnote 2 below). The renormalization conditions (3.7)
then become:

−µ2
R(2) + δ(2)

µ + 1
6
(
λ(4)

R + δ(4)
λ

)
v2

R + 1
2
(
λ(2)

R + δ(2)
λ

)
∆R(vR) = 0, (3.8a)

−µ2
R(0) + δ(0)

µ + 1
2
(
λ(2)

R + δ(2)
λ

)
v2

R + 1
2
(
λ(0)

R + δ(0)
λ

)
∆R(vR

)
= m2

R, (3.8b)

where ∆R(vR) refers to the still divergent local correlator computed at the renormaliza-
tion point. It should be noted that ∆ab

R is an auxiliary function and the parameter m2
R is

not yet related to any physical mass. Similarly, none of the couplings are yet related to
observables, and there is considerable amount of choice related to their definition. We will
choose the following conditions:1

δ(0)
λ = δ(2)

λ , (3.9a)

−µ2
R(0) + δ(0)

µ = −µ2
R(2) + δ(2)

µ , (3.9b)

λ(4)
R = λ(2)

R −
1
3δ

(4)
λ + δ(2)

λ . (3.9c)

1These choices are partly specific for the Hartree approximation, where the self-energy Πab is propor-
tional to the local correlation function. In any higher order 2PI truncation λ(0)

R and λ(2)
R would need to be

renormalized separately.
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Because Z(0,2) = 1 here, equation (3.9), together with eqs. (3.1) and (3.5) implies that
λ(0)

R = λ(2)
R . Equation (3.9b) is less restrictive: it merely states that both renormalized mass

terms are related to the same bare mass term. Conditions (3.9b) and (3.9c) still allow us
to choose δ(2)

µ and δ(4)
λ such that m2

R and λ(4)
R can be matched to a physical mass parame-

ter and a physical coupling. Using the conditions (3.9) and equation (3.8b) we can write
equation (3.8a) simply as

m2
R −

1
3λ

(4)
R v

2
R = 0. (3.10)

That is, we are able to keep the tree-level relation between the coupling λ(4)
R , the background

field vR and the mass parameter m2
R.

Cancelling the sub-divergences. In order to proceed, we need to find out the diver-
gence structure of the local correlation function. Using dimensional regularization we can
write

∆R(vR) = Qε
∫ ddp

(2π)d ∆11
R (p) = − m2

R
16π2

[2
ε

+ 1− ln
(
m2

R
Q2

)]
, (3.11)

where ε ≡ 4− d and 2/ε ≡ 2/ε− γE + ln(4π) and Q is an arbitrary renormalization scale.
We now separate ∆R into divergent and finite parts as follows:

∆R(vR) ≡ m2
R∆ε + ∆F0

(
m2

R, Q
)
, (3.12)

where ∆ε ≡ −1/
(
8π2ε

)
. In what follows we will suppress the Q-dependence of the function

∆F0 for brevity. Next we insert the decomposition (3.12) back into equation (3.8b), use
relations (3.9) and let the leading order terms define the renormalized mass independently
from the terms containing divergences or counterterms. In this way we get two equations
out of the equation (3.8b):

m2
R ≡ −µ2

R(2) + 1
2λ

(2)
R

[
v2

R + ∆F0
(
m2

R
)]
, (3.13)

0 = δ(2)
µ + 1

2δ
(2)
λ

[
v2

R + ∆F0
(
m2

R
)]

+ 1
2
(
λ(2)

R + δ(2)
λ

)
m2

R∆ε. (3.14)

Using definition (3.13) again in equation (3.14) and rearranging we get

δ(2)
µ −

1
2
(
λ(2)

R + δ(2)
λ

)
µ2

R(2)∆ε + 1
2
[
v2

R + ∆F0
(
m2

R
)][

δ(2)
λ + 1

2
(
λ(2)

R + δ(2)
λ

)
λ(2)

R ∆ε

]
= 0. (3.15)

This equation has a consistent solution where the leading constant terms and the terms
multiplying the combination (the sub-divergence part) v2

R+∆F0 cancel independently. This
gives two constraint equations,

δ(2)
λ + 1

2
(
λ(2)

R + δ(2)
λ

)
λ(2)

R ∆ε = 0, (3.16a)

δ(2)
µ −

1
2
(
λ(2)

R + δ(2)
λ

)
µ2

R(2)∆ε = 0, (3.16b)

from which we can finally solve the counterterms δ(2)
λ and δ(2)

µ :

δ(2)
λ = −

1
2
(
λ(2)

R
)2∆ε

1 + 1
2λ

(2)
R ∆ε

and δ(2)
µ = µ2

R(2)

1
2λ

(2)
R ∆ε

1 + 1
2λ

(2)
R ∆ε

. (3.17)

– 7 –
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Scale dependence. The scale dependence of the auxiliary couplings and the mass pa-
rameters can now be worked out as usual by requiring that the bare parameters do not
run: ∂Q

[
Qε
(
λ(2)

R + δ(2)
λ

)]
= 0 and ∂Q

[
Qε
(
µ2

R(I) − δ(I)
µ

)]
= 0. Using equations (3.17) one then

immediately finds:

Q
∂λ(2)

R
∂Q

=
(
λ(2)

R
)2

16π2 and Q
∂µ2

R(2)

∂Q
=
λ(2)

R µ
2
R(2)

16π2 . (3.18)

The latter equation applies for both mass parameters, assuming that δ(0)
µ and δ(2)

µ differ by
at most a finite and Q-independent term, which is the case in the Hartree approximation.
Equations (3.18) can be easily integrated:

λ(2)
R (Q) = λ(2)

R (Q0)

1 + λ
(2)
R (Q0)
32π2 ln

(
Q2

0
Q2

) and µ2
R(I)(Q) =

µ2
R(I)(Q0)

1 + λ
(2)
R (Q0)
32π2 ln

(
Q2

0
Q2

) . (3.19)

Remember that as a result of equation (3.9a) λ(0)
R = λ(2)

R . On the other hand, the coupling
λ(4)

R does not run at all; indeed, to keep λ(4)
R finite, we must have δ(4)

λ = 3δ(2)
λ up to finite

terms according to equation (3.9c), which implies

Q
∂λ(4)

R
∂Q

= 0 ⇒ λ(4)
R = constant. (3.20)

We shall see below that λ(4)
R can be further fixed by some physical condition.

3.1 Renormalized equations of motion

It is essential to impose a correct treatment of the local correlation function away from the
renormalization point in the equations of motion (3.6a) and (3.6b). Analogously to (3.13),
we first define a leading order mass function that contains all finite terms in equation (3.6b):

m2(ϕR,∆F) ≡ −µ2
R(2) + 1

2λ
(2)
R

(
ϕ2

R + ∆F
)
. (3.21)

Here ∆F is the finite part of the local correlation function, which must be defined analo-
gously to equation (3.12):

∆R ≡ m2(ϕR,∆F)∆ε + ∆F. (3.22)

Note that both the finite part and the divergence contain non-trivial contributions from
both the vacuum and the non-equilibrium fluctuations. Using definitions (3.21) and (3.22)
we can write equation (3.6b) as follows:[

�x +m2(ϕR,∆F) + δ(2)
µ + 1

2δ
(2)
λ

(
ϕ2

R + ∆F
)

+1
2
(
λ(2)

R + δ(2)
λ

)
m2(ϕR,∆F)∆ε

]
i∆ab

R (x, y) = aδabδ(4)(x− y).
(3.23)

Using definition (3.21) again one can show that all divergent terms in equation (3.23)
arrange as in equation (3.15) and cancel as a result of the renormalization conditions (3.16).

– 8 –
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Then, noting that λ(4)
R + δ(4)

λ = −2λ(4)
R +O(ε), the same manipulations can be done also in

equation (3.6a). This results in the final renormalized equations of motion:[
�x +m2(ϕR,∆F)

]
ϕR = 1

3λ
(4)
R ϕ

3
R, (3.24a)[

�x +m2(ϕR,∆F)
]
i∆ab

R (x, y) = aδabδ(4)(x− y). (3.24b)

These equations appear deceivingly simple: when written for the Wightman function ∆<

R =
∆+−

R , equation (3.24b) takes the form of a wave equation with a time-dependent mass and,
as we shall see in the next section, equation (3.24a) describes the motion of the one-
point function in a quantum corrected effective potential including backreaction from non-
equilibrium modes. However, despite their apparent simplicity, the equations are strongly
coupled through the local correlator in the gap equation (3.21) for the mass term.

3.2 Effective potential and physical parameters

Let us now consider the adiabatic limit of the evolution equations, where ∆F is given purely
by vacuum fluctuations with no physical excitations. In this case definition (3.21) reduces to

m2(ϕR) ≡ −µ2
R(2) + 1

2λ
(2)
R

[
ϕ2

R + ∆F0
(
m2(ϕR)

)]
, (3.25)

and correspondingly
∆R(ϕR) ≡ m2(ϕR)∆ε + ∆F0

(
m2(ϕR)

)
. (3.26)

Note that m2(ϕR) and ∆R differ from definitions (3.21) and (3.22) only through a different
value of the background field ϕR. Using the equation of motion (3.6b) in the renormalized
2PI action (3.2) we can write down the 1PI effective potential in the Hartree approximation
as follows:

VH(ϕR) = − 1
V

ΓH
2PI
(
ϕR,∆

)
= V0(ϕR) + i

2V Tr
[
ln
(
∆R

)]
− 1

8
(
λ(2)

R + δ(2)
λ

)
∆2

R(ϕR), (3.27)

where V is the space-time volume and the tree-level effective potential is

V0(ϕR) = 1
2
(
−µ2

R(2) + δ(2)
µ

)
ϕ2

R + 1
4!
(
λ(4)

R + δ(4)
λ

)
ϕ4

R = −λ
(4)
R

12 ϕ
4
R, (3.28)

where in the last step we dropped all terms of order ε. Writing iTr
[
ln
(
∆R

)]
= V

∫
dm2 ∆R

and using equation (3.26) one finds that the divergences cancel between the two last terms
in equation (3.27) and the finite part of Tr

[
ln
(
∆R

)]
creates the one-loop correction to the

effective potential. After a little algebra one finds the result:

VH(ϕR) = −λ
(4)
R

12 ϕ
4
R + m4(ϕR)

2λ(2)
R
− m4(ϕR)

64π2

[
ln
(
m2(ϕR)
Q2

)
− 1

2

]
. (3.29)

This is the vacuum effective potential in the Hartree approximation, found for example in
reference [32]. Despite the apparent Q-dependence, VH(ϕR) is in fact scale-independent.
Indeed, one can first show from definition (3.25), using (3.18), that ∂Qm2(ϕR) = 0. Then by
a direct differentiation and using equations (3.18) and (3.20) one finds that ∂QVH(ϕR) = 0.
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Physical parameters. Differentiating (3.25) with respect to ϕR one can first derive the
identity

∂m2

∂ϕR

[
1− λ(2)

R
32π2 ln

(
m2

Q2

)]
= λ(2)

R ϕR. (3.30)

Using (3.30) it is simple to show that the first derivative of the potential can be written as

∂VH
∂ϕR

= −1
3λ

(4)
R ϕ

3
R +m2(ϕR)ϕR. (3.31)

Comparing equation (3.31) with equation (3.24a) we can see that in the case of pure vacuum
fluctuations the equation of motion can be written as ∂2

t ϕR +∂VH/∂ϕR = 0. Differentiating
equation (3.31) once more with respect to ϕR one finds

∂2VH
∂ϕ2

R
= m2(ϕR) +

[
λ(2)

R
(
m2(ϕR)

)
− λ(4)

R

]
ϕ2

R. (3.32)

Because m2(vR) = m2
R, we now see that the on-shell mass parameter mR of the auxiliary

propagator can be identified with a physical mass,2 if we at the same time define

λ(2)
R
(
m2

R
)
≡ λ(4)

R . (3.33)

This is the choice of parameters we shall use in the rest of this paper.
So far we have defined the counterterm δ(4)

λ only up to a finite constant. This, and other
remaining freedom in choosing the counterterms (see footnote 2) would allow us to further
match λ(4)

R to some observable. Given that λ(4)
R does not run, equations (3.33) and (3.32) are

enough to fix the parameters of the theory. Going beyond the Hartree approximation would
lead to more complicated calculations and relations between the auxiliary parameters, but
would not change the derivation conceptually.

3.3 Finite temperature effective potential

In our derivation in section 3.1 we did not specify the finite part of the local correlation
function ∆F, and in what follows we will compute it numerically from the equations of mo-
tion. Before that it is useful to make one more observation concerning thermal corrections.
Indeed, we can include thermal corrections by a simple generalization of equations (3.25)
and (3.26):

m2(ϕR, T ) ≡ −µ2
R(2) + 1

2λ
(2)
R

[
ϕ2

R + ∆F(ϕR, T )
]
, (3.34)

with ∆R(ϕR, T ) ≡ m2(ϕR, T )∆ε + ∆F(ϕR, T ) and

∆F(ϕR, T ) ≡ ∆F0
(
m2(ϕR, T )

)
+ T 2I

(
m2(ϕR, T )/T 2), (3.35)

2In fact these relations imply that mR corresponds to a mass defined at p2 = 0, but in the Hartree case
this is the same as the physical pole mass. Going beyond Hartree approximation, one can still make mR

agree with the physical on-shell mass using the remaining freedom in definitions (3.9) and in the definition
of the wave-function counterterm Z(2), which allow adding finite parts to δ(2)

ϕ , δ(2)
µ and δ(4)

λ .
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where I
(
x
)

= 2∂xJ
(
x
)
and J

(
x
)
is the dimensionless bosonic one-loop thermal integral

J (x) ≡ 1
2π2 Re

∫ ∞
0

dy y2 ln
(
1− e−

√
y2+x−iε

)
. (3.36)

Here the infinitesimal imaginary part iε defines the correct branch of the logarithm for
a negative m2. With these definitions one can go through the analysis of the previ-
ous paragraph and show that the equation of motion of the homogeneous field is now
∂2
t ϕR + ∂VH(ϕR, T )/∂ϕR = 0, where VH(ϕR, T ) is the thermally corrected, scale indepen-

dent effective potential in the Hartree approximation:

VH(ϕR, T ) = VH
(
ϕR
)∣∣∣
m→mT

− 1
2m

2
TT

2I
(
m2
T /T

2)+ T 4J
(
m2
T /T

2), (3.37)

where m2
T ≡ m2(ϕR, T ). Note that in the 2PI approach also the vacuum part VH(ϕR)

of the potential is computed with the thermally corrected mass, which is the solution to
equations (3.34) and (3.35). It is worth mentioning that in each special case considered
above, from the vacuum renormalization (3.12) to the quantum corrected effective action
with (3.35) and without (3.26) thermal corrections, and finally to the general case (3.22),
the divergence that gets removed by counterterms is different and depends on the value of
the background field, the temperature and the particle distribution. This is an unavoidable
feature of the 2PI equations with a finite order truncation. However, in all cases the
counterterms themselves remain the same, uniquely defined constants.

Comparison to ring-resummed potentials. Equations (3.34), (3.35) and (3.37) pro-
vide a consistent resummation of the thermal potential to super-daisy level. They can be
seen as a consistent generalization of the Parwani resummation method [33]. In these ap-
proaches the thermal corrections affect all modes on equal footing, while in the usual ring re-
summation method [34, 35] only the long wavelength modes are screened by the short wave-
length modes in a thermal plasma. The advantage of the potential (3.37) is that it provides
a consistently renormalized, smooth continuation between the non-relativistic and relativis-
tic regimes. In all other ring-resummed potentials this behaviour has to be put in by hand.

To effect a fair comparison of different approximations, we write all potentials using the
same renormalization conditions. To be concrete, we use the conditions ∂2

ϕV (vR) = m2
R and

∂4
ϕV (vR) = λR. With these conditions the standard one-loop corrected potential without

the ring-corrections becomes

V1L(ϕR, T ) ≡ −1
2µ

2
Rϕ

2
R + 1

4!λRϕ
4
R + V1−loop(ϕR) + T 4J

(
m2

0(ϕR)
T 2

)
, (3.38)

where m2
0(ϕR) = −µ2

R + 1
2λRϕ

2
R and the standard one-loop vacuum potential is (this

potential also satisfies the condition ∂ϕV1−loop(vR) = 0)

V1−loop(ϕR) = 1
64π2

{
m4

0(ϕR)
[
ln
(
m2

0(ϕR)
m2

R

)
− 3

2

]
+ 2m2

Rm
2
0(ϕR)

}
. (3.39)

In the Parwani approximation [33] one replaces m2
0(ϕR) with the lowest order thermal mass

m2
0(ϕR, T ) = m2

0(ϕR) + 1
24λRT

2 in equation (3.38) and in the ring approximation [34, 35],
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Figure 3. Left: the evolution of the second ϕ-derivatives of the different potentials at ϕR = 0.
Middle: the evolution of the ratio v(T )/T , where v(T ) is the position of the second minimum.
Right: the potential at critical temperature in each approximation. The critical temperatures are
Tc ≈ 169.20GeV in the ring, Tc ≈ 153.29GeV in the Parwani and Tc ≈ 155.67GeV in the Hartree
approximation. We used mR = 100GeV and λR = 6 (which implies λ(4)

R ' 5.2). The vertical line
in the left panel shows T0 =

√
12/λRmR, where the high-temperature limit approximated thermal

mass vanishes at ϕR = 0.

where only the zero-mode is dressed by thermal corrections, one finds:

VRing(ϕR, T ) ≡ V1L(ϕR, T ) + T

12πRe
(
m3

0(ϕR)−m3
0(ϕR, T )

)
. (3.40)

Above we wrote the Hartree potential in terms of the scale dependent variables. However,
since the potential is actually scale independent, we can rewrite it at the scale Q = mR,
explicitly in terms of the physical parameters:

VH(ϕR, T )=−λ
(4)
R

12 ϕ
4
R + m4

T

2λ(4)
R
− m4

T

64π2

[
ln
(
m2
T

m2
R

)
− 1

2

]
−m

2
TT

2

2 I
(
m2
T

T 2

)
+T 4J

(
m2
T

T 2

)
, (3.41)

where m2
T is the solution to the gap equation, which now becomes

m2
T ≡ m2

R + 1
2λ

(4)
R (ϕ2

R − v2
R) + λ(4)

R
32π2

[
m2
T ln

(
m2
T

m2
R

)
+m2

T −m2
R

]
+ T 2I

(
m2
T

T 2

)
, (3.42)

with m2
R = 1

3λ
(4)
R v

2
R and where finally λ(4)

R is related to the renormalized coupling λR ≡
∂4
ϕVH(vR, 0) by

λR = λ(4)
R

[
1 + 3

( 3λ(4)
R

32π2

)
+ 3

( 3λ(4)
R

32π2

)2 ]
, (3.43)

as can be shown by direct differentiation of equation (3.41).
In the left panel of figure 3 we show the evolution of the second ϕ-derivatives of the

potentials near the critical temperature at ϕR = 0. The sharp kinks seen in the ring
(green dashed line) and Parwani (red dash-dotted line) cases at T = T0 result from the
non-analytic dependence of the resummed potentials on the thermally corrected mass term
(we are using the high-temperature expansion for m2(ϕ, T ) in these schemes). The one-
loop result (blue dotted line) does not share this feature, because there we are using the
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non-resummed mass term. Interestingly, the Hartree result (black line) does not show signs
of similar non-analyticity. In the middle panel we show the evolution of the ratio v(T )/T ,
where v(T ) is the position of the asymmetric minimum as a function of T . There are
significant differences between the approximations: in all resummed potentials a metastable
minimum emerges, and it has the largest jump in the Hartree case. In the one-loop case
the metastability does not develop, but there is a jump in v(T )/T at T ≈ 120GeV due to
the non-analytic behaviour, now of the vacuum mass term as a function of ϕ. In the right
panel we show the potentials at the critical temperature (whose value for each model is
given in the figure caption). The transition strength is dramatically different in the different
approximations and it is by far the strongest in the Hartree case. Of course one should keep
in mind that this is a very simple model, with only a single scalar field. However, when one
compares the one-loop results with lattice calculations, one typically finds that both ring
and Parwani approximations give weaker transitions than the lattice or 3d-perturbation
theory calculations [36]. It would be interesting to see if the Hartree approximation was in
better agreement with these schemes when applied in more complex models.

4 Wigner space equations

We now proceed to solving the general equations (3.24b) and (3.24a) for homogeneous non-
equilibrium systems. Of these, equation (3.24a) is already in the desired form, when we
assume that field ϕR is homogeneous, but equation (3.24b) for the correlation function will
be easier to handle in the mixed representation. Because of the homogeneity an ordinary
Fourier transformation is sufficient for the spatial coordinates, but for the time variable we
need the Wigner transformation:

∆ab
Rk(k0, t) =

∫
dr0 ∆ab

Rk

(
t+ r0

2 , t−
r0
2

)
eik0r0 , (4.1)

where t ≡ 1
2(x0 + y0) and r0 ≡ x0 − y0. Because all correlation functions ∆ab(x, y) have

the same local limit, it suffices to consider the equation for the lesser Wightman function
∆+− ≡ ∆<. Starting from equation (3.24b), we find that in the Wigner representation it
satisfies the equation,[1

4∂
2
t − k2 − ik0∂t + e−

i
2∂
m
t ∂k0m2(ϕR,∆R

)]
∆<

Rk(k0, t) = 0. (4.2)

Here the index m in the derivative ∂mt signals that the time-derivative acts only on the
mass function and not on the propagator. Equation (4.2) is still equivalent to (3.24b) and
highly complicated because of the infinite tower of t- and k0-derivatives involved. It can
be recast into a simpler form by introducing a moment expansion. Following reference [27]
we first introduce the moment functions:

ρkn(t) =
∫ dk0

2π kn0 ∆<
Rk(k0, t). (4.3)

Then taking the real and imaginary parts of equation (4.2) integrated over k0 and the
imaginary part of the same equation integrated over k0 and weighted by k0, we get three
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equations coupling the moments ρnk with n = 0, 1, 2 to the field equation for a homogeneous
field ϕR(t):

1
4∂

2
t ρ0k − ρ2k + ω2

k(t) ρ0k = 0, (4.4a)

∂tρ1k = 0, (4.4b)

∂tρ2k −
1
2
[
∂t
(
m2

eff(t)
)]
ρ0k = 0, (4.4c)[

∂2
t +m2

eff(t)
]
ϕR = 1

3λ
(2)
R ϕ3

R. (4.4d)

We used the shorthand m2
eff(t) ≡ m2(ϕR,∆R) for the mass defined in (3.22) and (3.21) and

defined ω2
k(t) ≡ k2 +m2

eff(t). The gap equation (3.21), including the out-of-equilibrium (or
thermal) modes, can be written explicitly as

m2
eff(t) = −µ2

R(2) + 1
2λ

(2)
R

{
ϕ2

R + ∆F0
(
m2

eff(t)
)

+
∫

k

[
ρ0k(t)−

θ
(
ω2

k(t)
)

2ωk(t)

]}
, (4.5)

where we defined
∫

k ≡
1

2π2
∫∞

0 d|k||k|2, and the Heaviside theta-function θ
(
ω2

k(t)
)
ensures

that the vacuum does not contain the unstable spinodal modes.3

If ρ0k(t) is identified with a thermal distribution (including the vacuum part), equa-
tion (4.5) clearly reduces to (3.34). After discretizing the momentum variable, equa-
tions (4.4c), (4.4a), (4.4d) and (4.5) can be written as a closed set of coupled first order
differential equations, which include backreaction from the non-equilibrium modes into the
evolution of the homogeneous field ϕR. The gap equation (4.5) must be solved first at the
entry to the routine, after which the solution is advanced using (4.4c), (4.4a) and (4.4d).
In practice one must introduce a UV-cutoff for the magnitude of the momentum |k|, but
results should not depend on its precise value, because all non-trivial physics results from
gradient terms acting in the infrared region. We have indeed shown that this is the case
in our numerical examples.

Friction. Our main goal is to study the dynamical evolution of ϕR including the backre-
action from the modes excited during the zero-crossings (parametric resonance) and from
the unstable modes (spinodal, or tachyonic, instability). We would also like to study
dissipative interactions in our system. To do this correctly, we should go beyond the
Hartree approximation. This would be in principle a straightforward but very laborious
task. Some formal results can be found for example in [37]. Here we will instead add
phenomenological friction terms to our equations. Following references [27] and [28] we

3Spinodal modes are the unstable modes that appear when the effective mass function is negative. We
define them explicitly in equation (5.1) below. Note that the vacuum energy integral in the spinodal region,
computed with the Heaviside function, is identical with the integral computed taking the absolute value of
the mass squared function and integrating over all momenta.
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generalize equations (4.4a), (4.4b) and (4.4c) as follows:

1
4∂

2
t ρ0k − ρ2k + ω2

k(t)ρ0k = −c1∂tρ0k, (4.6a)

∂tρ1 = −c2
(
δρ1k − δρeq

1k

)
, (4.6b)

∂tρ2k −
1
2
[
∂t
(
m2

eff(t)
)]
ρ0k = −c2

(
δρ2k − δρeq

2k

)
, (4.6c)

where δρnk ≡ ρnk − ρvac
nk with ρvac

nk being the vacuum moments defined in equations (4.8)
below, and the explicit forms for the equilibrium distributions ρeq

nk have to be provided
externally depending on the problem. Collision integrals could be computed accurately
in the context of the cQPA formalism following reference [28] (see also [38]), but here we
are only interested in qualitative effects, for which the above phenomenological approach is
sufficient. Even then the coefficients ci could be some momentum dependent functions, but
for simplicity we will assume that they are constants. Note that ρnk and ρeq

nk in general have
different vacuum distributions due to different respective solutions to mass gap equations.

Number densities and coherence function. We can get a better understanding of
the physical meaning of the moments by comparing them with the spectral cQPA solutions
found in reference [27]. As explained in section 4.2 of reference [27], the moments are in
a one-to-one correspondence with the cQPA mass-shell functions fmk± and the coherence
function f ck. The former can be further related to the particle and antiparticle number
densities nk and nk, so that one eventually finds [27, 28]:

nk = 1
ωk
ρ2k + ρ1k, (4.7a)

nk = 1
ωk
ρ2k − ρ1k − 1, (4.7b)

f c±k = ωkρ0k −
1
ωk
ρ2k ±

i
2∂tρ0k. (4.7c)

The coherence functions f c±k measure the degree of quantum coherence, or squeezing,
between particle-antiparticle pairs with opposite 3-momenta [39]. A non-coherent vacuum
state must then be defined as a state with no squeezing in addition to having no particles.
This corresponds to setting nk = nk = f c±k ≡ 0, which is equivalent to:

ρvac
0k = Θk

2ωk
, ∂tρ

vac
0k = 0, ρvac

1k = −1
2 and ρvac

2k = ωk

2 Θk, (4.8)

where Θk ≡ θ
(
ω2

k(t)
)
. Because we are assuming that ϕR is a real scalar field we also have

nk = nk, which implies that ρ1k = −1/2 at all times, so that the equation for ρ1k is actually
redundant. This is indeed a consistent solution even with the friction terms included.

5 Numerical results

We shall now solve the coupled dynamical equations (4.6a), (4.6b), (4.6c), (4.5) and (4.4d)
in a few examples chosen to illustrate the rich physics of the strongly coupled system
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including the quantum backreaction. We will uncover some known results and find new
phenomena associated with spinodal and resonant particle production at phase transitions.4

We will show that a strong spinodal instability can cause a quantum assisted barrier pene-
tration without tunneling, and we emphasize the difficulty of giving any sensible definition
for the effective potential in a non-equilibrium system. Eventually, we will follow the full
thermalization process of a scalar field starting at rest in the vacuum potential until the end,
when the energy in the field is almost completely transformed into thermal fluctuations.5

5.1 Particle production and reheating via parametric resonance

We first consider a case where the field starts from a relatively large value and oscillates
several times between positive and negative field values. Because we are also interested
in the spinodal instability, we consider a tree-level potential with a negative mass term.
As physical parameters we use mR = 100GeV and λ(4)

R = 1, given which, µ2
R(2)(Q0) can

be solved from (3.13), while the running couplings and masses are defined in (3.19). We
compute the initial value for the effective mass function m2(ϕR,∆R) using the vacuum
Hartree approximation (3.25). We used running parameters everywhere in our calculations.
This served as a useful consistency check, since all final results must be (and indeed were)
scale independent. In this example we also set the friction terms to zero, ci = 0.

The essential results for this run are shown in figures 4 and 5. In the left panel of figure 4
we show the evolution of the classical field ϕR, which here displays an orderly oscillation
pattern with a slowly decaying amplitude. The middle panel of figure 4 shows the evolution
of the fluctuations in the zeroth moment integrated over the 3-momentum, which is the
non-equilibrium contribution to the local correlation function:

∫
k δρ0k =

∫
k

(
ρ0k − ρvac

0k

)
≡

δ∆F(t, t). These results are in good agreement with reference [16], where this problem
was studied earlier using the mode equation approach. The rapid increase of δ∆F(t, t) at
early times is caused by two non-perturbative processes, the spinodal instability and the
parametric resonance.

Spinodal instability. The presence of a spinodal instability is manifest in the right
panel of figure 4, where the effective mass term m2(ϕR,∆R) is seen to become periodically
negative in the region t . 0.25. Indeed, whenever the mass-function is negative, all k-modes
satisfying

k2 +m2(ϕR,∆R) < 0 (5.1)

4The use of the term phase transition is not very accurate here, as we do not have a phase transition
in the same sense as for example in the electroweak transition. Rather, we have a situation where the
universe evolves from a cold initial state to a hot final state. It is a common practice however to refer to
this phenomenon as a phase transition as well, and we will also do so in what follows.

5Let us make a note on units: in section 3.3, when discussing the thermal effective potentials, we gave
the mass parameter a value characteristic for the electroweak phase transition, mR = 100GeV. Below we
continue to use the same value as a benchmark, and we shall be measuring all dimensionful quantities in the
GeV-units. In particular, we will be measuring time in units GeV−1, while we will be suppressing time-units
in all plots. However, in all examples that we will consider below, the physical mass mR is the only mass
scale in the problem. Thus, all results are in fact valid as such for an arbitrary mass value, if only one
rescales all dimensionful parameters by a suitable power of mR/GeV.
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Figure 4. Shown is the evolution of the classical field as a function of time (left), evolution of the
integrated non-equilibrium part of the local correlation function (middle), and the effective mass
function m2(ϕR,∆R) (right). We used λ(4)

R = 1, mR = 100GeV, ϕR,in = 300GeV and ∂tϕR,in = 0.
The moment functions were initialized to the non-coherent vacuum values (4.8). We also assumed
no friction, setting ci to zero.

are unstable and can grow exponentially. This is the spinodal or tachyonic instability.
One might then be tempted to associate the growth in fluctuations in the period t . 0.25
fully to the spinodal instability. If this was true, the excited modes should satisfy the
condition (5.1), which here translates to |k| . 60GeV. However, from figure 5 we see
that this is not the case. The fast production of modes is clearly visible in the upper
panels which show the integrated particle number (left) and the integrated modulus of
the coherence functions (right). But from the lower panels, showing time-momentum heat
plots of the same quantities, we see that the excited modes are concentrated on a frequency
band which lies entirely above the spinodal region (5.1).

Parametric resonance. While our equations are highly non-linear and strongly self-
coupled, it is apparent that the structures seen in the heat plots in figure 5 correspond
to Mathieu instabilities associated with parametric resonance, familiar from the studies
of inflationary reheating [4]. This problem was also studied using 2PI methods in ref-
erence [7], albeit with a different set of approximations and a different potential. If we
identify the mass squared of the mode function in the Mathieu equation with our mass
function m2(ϕR,∆R), and follow the analysis of section V in reference [4], we can (very
roughly) estimate the Mathieu equation q-parameter in our case to be

q ∼ 2 ∆m2
eff

(2πν)2 ≈ 2, (5.2)

where ∆m2
eff ≈ 2 × 104 GeV2 is the instantaneous amplitude and ν ≈ 21GeV is the local

frequency of oscillations of the effective mass term m2(ϕR,∆R), shown in figure 4. The
value of the q-parameter, which remains roughly the same throughout the calculation,
suggests an intermediate resonance between the narrow and broad regimes. Similarly, the
expected position of the first resonance band is by and large estimated to be

|k|rb ∼
πν
4√2
≈ 60 GeV. (5.3)

This result, and the expected width of the resonance [4] ∆|k| ∼ |k|rb ≈ 60GeV are in quali-
tative agreement with our results. In figure 5 we can even observe a second, much narrower
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Figure 5. Shown is the evolution of the integrated number density (top left) and the absolute
value of the integrated coherence function

∣∣f c±
k

∣∣ (top right), defined in equations (4.7), for the
same parameters as in figure 4. The bottom row shows the heat plots in the momentum and time
variables for the unintegrated distributions multiplied by the phase space factors: k2

2π2nk (lower
left) and k2

2π2

∣∣f c±
k

∣∣ (lower right).
band below the first one, which dominates the particle production at t ≈ 1. While this is
again in agreement with the qualitative expectations, its interpretation via Mathieu equa-
tion methods becomes even more tenuous. At late times t & 0.3 the shape of the growth
pattern fits well in the standard picture [4], but in the spinodal region the resonant pro-
duction appears to be more efficient than usual: upon spinodal zero-crossings the resonant
production that normally shows (as it indeed does at later times also in our example) a pe-
riod of anti-correlation, is here always positively correlated. While individual growth bursts
are not enhanced, this positive correlation leads to particularly strong particle production.

Because we did not include interactions in this run, the fluctuation band structure
remains stable at all times. The system also remains highly coherent, as is evident both
from the increase of the integrated coherence function and the stability of the heat plot of
the coherence function shown in the right panels of figure 5.

5.2 Strong spinodal instability

In the above analysis we made little reference to the effective potential. Indeed, the one-
particle irreducible effective action is not a very useful quantity in an out-of-equilibrium
setting and it can even be defined only after the equations of motion have been solved.
Even then one cannot define it universally, but only as a quantity evaluated locally in
time. We will now study this question in the case of a very strong spinodal instability.
To be specific, we still use the values mR = 100GeV, λ(4)

R = 1 and ∂tϕR,in = 0, but we
take ϕR,in = 243.5GeV and include also friction. We assume that collisions drive the
system to the vacuum state, i.e. we take δρeq

nk ≡ 0, and we specify the coefficients to be
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Figure 6. The upper left panel shows the time evolution of ϕR (in units GeV) and the lower
left panel that of the effective mass function m2(ϕR,∆R) (in units GeV2) in the case of a strong
spinodal instability. In the right panel we show the time-evolution of the instantaneous effective
potential (5.4) (dashed black line), embedded in a plot of the vacuum Hartree potential (dashed red
line). The colored dots indicate select times at which the instantaneous potential was evaluated as
indicated in the left panels. The solid blue line shows the instantaneous value of the non-equilibrium
vacuum potential (5.5).

c1,2 = 0.6GeV.6 In this case the initial potential energy of the field is lower than the peak
of the vacuum potential at ϕR = 0. This can be seen in the right panel of figure 6, where
we plot the Hartree-resummed vacuum potential (red dashed line) and indicate the initial
field value by the black dot.

Obviously, if the potential was held fixed, the field would simply oscillate around the
positive minimum with a decaying amplitude. However, when backreaction is included, the
picture changes dramatically. The actual field evolution is shown in the upper left panel of
figure 6. Curiously, the field stays around the positive minimum during only one oscillation
cycle, after which it apparently passes through the potential barrier, spending a rather long
time near the middle of the potential with the effective mass function close to zero. Of
course what happens is that in the first passage of the field into the spinodal region, an
explosive creation of fluctuations takes place. This is clearly demonstrated in figure 7,
which shows the integrated fluctuations in the moment functions (upper panels) and the
associated heat plots in the time-momentum plane (lower panels). These fluctuations
absorb a large amount of entropy, which decreases the free energy in the system and lowers
the barrier between the minima allowing the field to pass to the negative side. The key
issue is to not confuse the total internal energy of the system and the free energy, which
may vary strongly depending on the entropy production.

6Although we gave the friction terms only in a qualitative form, we can provide an estimate for the
magnitude of the ci-coefficients. From equations (4.6) it is clear that ci have the dimensions of mass. The
lowest order contribution to the collision integrals arises at the second order in coupling in the 2PI expansion.
Hence the naïve scale of the coefficients ci is given by

(
λ

4π

)2
m, which for λ(4)

R = 1 and mR = 100GeV gives
ci ' 0.6GeV.
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Figure 7. The upper panels: shown are the integrated non-equilibrium fluctuations of the moment
functions,

∫
k
δρ0,2k. The colored dots have the same interpretation as in figure 6. The lower panels:

heat plots showing the momentum distributions 1
2π2 k2δρnk corresponding to the upper panels. The

left panels show the zeroth moment n = 0 and the right panels the second moment n = 2.

Non-equilibrium effective potentials. While the effective potential cannot be defined
a priori, it is illustrative to construct it a posteriori as a time dependent potential that
reproduces the equation of motion (4.4d) at all times. This potential can be constructed
as the definite integral

V1PI(t;ϕR) ≡
∫ t

tin

[
−1

3λ
(2)
R ϕ3

R +m2(ϕR,∆R)ϕR

]
(∂t̃ϕR)dt̃, (5.4)

where ϕR and ∆R are the solutions of the equations of motion. We show this potential
as the dashed black line in figure 6. After the crossing to the negative side, the shape
of the potential function settles and the field oscillates around the negative minimum
with a decaying amplitude. We stress that V1PI is only useful for the visualization and
interpretation of results and there is no unique definition of the effective potential in the
non-equilibrium case.

As was already mentioned in section 3.3, in any finite truncation the renormalized 2PI
vacuum becomes dependent on the IR-physics. Another interesting potential7 function
then is the equivalent of the vacuum Hartree potential in the presence of fluctuations. This
potential is defined as

VH∆(ϕR,∆R) ≡ VH(ϕR,∆R)− 1
2m

2(ϕR,∆R)
∫

k
δρ0k, (5.5)

where VH(ϕR,∆R) is the 2PI vacuum potential (3.29) evaluated replacing the vacuum mass
function m2(ϕR) with the general mass function m2(ϕR,∆R). Note that the integral term

7In reference [16] yet another dynamical potential was defined as the difference between the total energy
of the system and the kinetic energy of the classical field.
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Figure 8. Shown is the time-evolution of the classical field (left panel) and that of the total energy
in the fluctuations and the classical field (right panel). Hϕ(t) is the energy in the classical field
and H∆(t) is the energy in the fluctuations. The physical parameters and the specific form of the
collision integrals used in this run are described in the text.

over the fluctuations of the zeroth moment is a part of the vacuum Hartree potential,
similarly to the case with the thermal potential (3.37). The potential (5.5) is shown with
the blue solid line in the right panel of figure 6. It represents changes in the 2PI Hartree
vacuum energy including the backreaction effects, and like the instantaneous V1PI-potential,
its barrier around ϕR = 0 is temporarily lowered by the backreaction. This example
demonstrates that the final stages of a phase transition may involve very complicated
quantum dynamics, where classical expectations and constraints do not hold.

We conclude this subsection by stressing on the difference of the fluctuation spectra in
the present case, shown in the lower panels of figure 7, and in the parametric resonance case
shown in figure 5. Even though we used the same mass and coupling parameters, essentially
all fluctuations are here created by the spinodal instability. Indeed, they occupy a region
in the phase space which is consistent with the instability constraint (5.1), continues all
the way to zero momentum and lies entirely below the parametric resonance band.

5.3 Self-thermalization

As our final example we study thermalization of the scalar field energy in a self-interacting
system. We use the same physical parameters and initial conditions as in section 5.1
but include collision terms with the friction coefficients c0,1 = 0.6GeV, and assume that
the collisions drive the system to thermal equilibrium, i.e. we take δρeq

nk ≡ δρth
nk. With

rigorously computed collision terms the thermal state would emerge automatically as an
attractor solution, but in our phenomenological approach we need to give a definition for
the instantaneous temperature. In thermal equilibrium a general moment can be written as

ρth
nk = 1

2 ω
n−1
k

[
nBE(ωk) + (−1)n

(
1 + nBE(ωk)

)]
, (5.6)

where nBE(k0) = (ek0/T − 1)−1 is the Bose-Einstein distribution function. In particular

δρth
0k = 1

ωk
nBE(ωk) and δρth

2k = ωknBE(ωk). (5.7)
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Figure 9. Shown are the evolution of the number density (left) and the modulus of the coherence
functions (right). In the upper panels the quantities are integrated over momentum. We used the
same parameters as in figure 5, except for non-zero friction coefficients ci = 0.6GeV in the collision
integrals with thermal equilibrium solutions.

while δρth
1k = 0. We define the equivalent temperature T = T (t) by requiring that the

thermal state has the same energy as what is stored in the fluctuations:

H∆(t) ≡
∫

k
δρ2k(t) ≡

∫
k
ωknBE(ωk). (5.8)

In all these equations ω2
k = k2 + m2(ϕR,∆R) is a function of time. The energy stored in

the classical field is

Hϕ(t) ≡ 1
2
(
∂tϕR(t)

)2 + VH∆(ϕR(t),∆R(t)). (5.9)

With our definitions of the temperature and the collision integrals the total energy H =
Hϕ +H∆ should be conserved, and we checked that this is indeed the case to a high accu-
racy in our calculations. For more details on this, and on the numerical setup in general,
see appendix A.

Spinodal slowing. In the left panel of figure 8 we show the evolution of the classical
field ϕR. Initially ϕR evolves as in the collisionless case, oscillating with a nearly constant
frequency and a large amplitude, but around t ∼ 2 the frequency starts to decrease until
it reaches a minimum around t ∼ 3. After this the field gets trapped around the positive
minimum while the oscillation frequency increases again. This spinodal slowing effect was
already seen in connection with the barrier crossing in section 5.2. The bearing of the
spinodal modes is revealed in the inset in the left panel of figure 11, which shows that the
effective mass term m2(ϕR,∆R) repeatedly becomes negative in this region. In the right
panel of figure 8 we show the energy components Hϕ and H∆. Initially all energy is stored
in the classical field, but the fraction of energy in the fluctuations increases until the system
is reheated, with almost all of the energy contained in the fluctuations.
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Figure 10. Shown are the momentum distributions k2

2π2 δρ2k (left) and k2

2π2

∣∣f c±
k

∣∣ (right) for three
different times: t = 0.2 (solid blue lines) t = 1.3 (red dotted lines) and t = 6 (black dashed lines).
Also shown in the left plot is the weighted thermal distribution k2

2π2ωknBE(ωk) for the equivalent
temperature T (t = 6) = 144.9GeV (black dotted line).

Mode transfer and decoherence. In figure 9 we again show the evolution of the
number density and coherence functions, including both the integrated quantities and the
time-momentum heat plots. There are striking, but expected differences between these
plots and the corresponding non-interacting results shown in figure 5. First, the number
density stops growing already at t ∼ 1 and eventually starts to decrease for t & 2. As
is seen from figure 8, fluctuations dominate the total energy already for t & 1, and the
subsequent decrease of particle number results from a transfer of modes to higher energies.
Thermalization process should also lead to decoherence, and this is indeed clearly visible in
the upper right panel of figure 9, which shows the integrated function

∣∣f c±k ∣∣. From the heat
plots we see that particle production gets progressively less efficient and moves to smaller
frequencies, as less and less energy is left in the classical field. From the heat plot in the
lower right panel we see that coherence is erased throughout the phase space at late times.

Thermalization. In figure 10 we show the |k|-distributions of δρ2k (left panel) and the
coherence function

∣∣f c±k ∣∣ (right panel) weighted by the phase space factor, for selected times
during the evolution. At a relatively early time t = 0.2 the distributions shown in solid
blue still display a clear parametric resonance band structure. At a later time t = 1.3
(red dotted lines) the resonant spectrum is already much more complex, apparently with
contributions from many narrow bands. Also a significant mode-transfer to the thermal
region has already taken place. Indeed, from the main plot in the left panel of figure 11
we see that the equivalent temperature at t = 1.3 is roughly 140GeV, and as the field
is relatively light, 〈m2

eff〉1/2/T . 1 with 〈m2
eff〉 being the local average of the oscillating

effective mass function, the expected maximum of the thermal spectrum is located at
〈|k|〉 ≈ 3T ≈ 400GeV. At the end of the simulation, t = 6 (black dashed curve), the
system has essentially thermalized. Almost all energy is in the fluctuations and very little
particle production activity remains. The particle number in the resonance bands is small
and the coherence is almost vanishing everywhere and in particular in the thermal region.
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Figure 11. In the left panel we show the equivalent temperature defined through equation (5.8) as
a function of time. The inset shows the parameter xeff ≡ sgn

(
m2

eff
)∣∣m2

eff
∣∣1/2

/T . In the right panel
we show the EOS-parameter of the system defined in equation (5.10). The black arrows indicate
the limiting cases of vacuum (w = −1) and kinetic (w = 1) energy dominance as well as matter
(w = 0) and radiation (w = 1/3) EOS’s, shown by horizontal lines. In all graphs shown the red
arrow points the region of maximal spinodal slowing.

Also the fluctuations in the equivalent temperature have but a small residual amplitude
left. For the final time we also plotted (black dotted line in the left panel of figure 10)
the equivalent thermal spectrum k2

2π2ωknBE(ωk) with T = 144.9GeV, corresponding to the
equivalent temperature at t = 6. The close agreement between the actual and thermal
distributions shows that the system has indeed thermalized to a very high accuracy.

Equation of state. Let us finally study the evolution of the equation of state (EOS) in
the system. The EOS-parameter is defined as

w ≡ P
H
, (5.10)

where H = Hϕ+H∆ is the total energy and the total pressure P = Pϕ+P∆ is similarly the
sum of the pressures in the classical field and in the fluctuations. The former is given by

Pϕ = 1
2(∂tϕR)2 − VH∆(ϕR,∆R), (5.11)

where VH∆ was defined in (5.5). The pressure contained in the fluctuations can be com-
puted as the spatial component of the energy-momentum tensor [27], and it can be written
in terms of the moment functions as follows:

P∆(ϕR,∆R) =
∫

k

[
δρ2k(t) +

(1
3k2 − ω2

k

)
δρ0k(t)

]
. (5.12)

It is easy to see that in the thermal limit (5.12) reduces to the negative of the thermal part
of the effective potential in the Hartree approximation: P∆ = −T 4J

(
m2
T /T

2).
We plot the EOS-parameter w in the right panel of figure 11. The EOS-parameter

starts from w = −1 and initially oscillates between w = −1, corresponding to total vac-
uum energy dominance, and w = 1, corresponding to kinetic energy dominance (kina-
tion) in the classical field sector. However, as the energy is moved out from the field
and the system thermalizes, the EOS-parameter moves to the band 0 < w < 1/3 corre-
sponding to normal matter. From the inset of the left panel we see that the average value
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〈|xeff |〉 = 〈|m2
eff |1/2/T 〉 ≈ 0.6 at late times. This indicates that the reheated thermal plasma

is almost relativistic and indeed, the EOS-parameter is asymptoting close to w = 1/3 at
late times. (In a purely thermal plasma with xeff = 0.6 one would get w ≈ 0.315.) The
periodic deviation below this value seen in figure 11 is due to the field contributions to
energy and pressure.

6 Conclusions

We have studied the non-equilibrium evolution of a system consisting of a classical scalar
field coupled to the two-point function describing quantum fluctuations. We derived renor-
malized evolution equations for the system using 2PI methods in the Hartree approxima-
tion. We derived the effective potential for this system in vacuum and in thermal equi-
librium and compared the latter with the known one-loop-resummed effective potentials.
We showed that the Parwani-resummed thermal potential [33] is closest in spirit to the
Hartree-resummed effective potential. We showed that in a non-equilibrium situation the
2PI method, in any finite truncation, leads to an effective vacuum potential (the vacuum
state) that depends on the infrared physics. Indeed, even though the renormalization pro-
cedure provides unique and constant counterterms, the split of the system into divergent
and non-divergent parts depends on the IR-physics.

We wrote our renormalized evolution equations as a set of coupled moment-equations
for the correlation function and a field equation for the one-point function in the mixed
representation and included phenomenological collision integrals describing friction. We
used this system to study the non-perturbative particle production and spinodal instabil-
ity at the end of phase transitions. We found out that quantum backreaction can have
significant effects on the evolution of the system and addressed the problems in trying to
define any practical effective potential for such dynamical systems. In particular we were
able to follow the full thermal history of a self-interacting system starting from a cold
initial state where all energy in the system was stored in the classical potential, until the
end when the system was reheated and thermalized and the field stayed at the minimum
of the thermal (Hartree) effective potential.

In this work we assumed that the quantum system lived in the Minkowski space-time.
Generalization to an expanding FRLW space-time is straightforward by a simple transform
to conformal coordinates [40]. Moreover, in many realistic systems the time scales involved
in the phase transition are much faster than the Hubble expansion. In those cases our
results are representative of the physics as such. Also, we used only a phenomenological
form for the collision integrals. It would be interesting to derive more realistic collision
terms using the methods developed in [28, 39]. Also it would be interesting to couple the
scalar field also to other quantum fields. This should be straightforward by combining the
current results with the quantum transport equations for fermions developed in [41]. In
this way one should be able to study reheating at the end of inflation in a realistic setup.
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A Numerical implementation

In this appendix we discuss some technical points that are relevant for an accurate and
efficient solution of the evolution equations. The first one concerns identifying a conserved
quantity in the non-interacting limit. The equations rewritten using this variable are much
more stable than the original equations. The second point concerns discretization. In
a naïve binning of the momentum variable, the discrete integral of the vacuum term in
equation (4.5) is badly behaved numerically near the edges of the spinodal regions. This
problem can be avoided by a more careful definition of the binned variables. Finally, we
show how our numerical setup conserves the total energy of the solved system to a high
accuracy with the self-thermalizing system as a case study.

Stabilized equations. It was noted already in reference [27] that the moment equa-
tions (4.4a), (4.4b) and (4.4c) can be written in a form that is more resistant to numerical
instabilities, using the variable

Xk ≡ 2ρ0kρ2k − ω2
k(t)ρ2

0k −
1
4(∂tρ0k)2. (A.1)

Indeed, if we multiply (4.4a) by 2∂tρ0k and (4.4c) by 2ρ0k and subtract the resulting
equations, we can show that Xk is conserved in the collisionless limit: ∂tXk = 0. With non-
vanishing friction terms Xk is no longer conserved, but the derivation with equations (4.6)
including friction proceeds analogously, and one finds:

1
4∂

2
t ρ0k − ρ2k + ω2

k(t)ρ0k = −c1∂tρ0k, (A.2a)

∂tρ1k = −c2
(
δρ1k − δρeq

1k

)
, (A.2b)

∂tXk = 2c1
(
∂tρ0k

)2 − 2c2ρ0k

(
δρ2k − δρeq

2k

)
. (A.2c)

We have thus replaced ρ2k by Xk as a dynamical variable. We will use (A.1) to set the
initial condition for Xk in terms of the initial values for ρ0k, ∂tρ0k and ρ2k, and at any
point during and at the end of the calculation we can compute ρ2k from Xk using the
inverse relation

ρ2k = 1
2ρ0k

[
Xk + 1

4(∂tρ0k)2 + ω2
k(t)ρ2

0k

]
. (A.3)

Coarse-grained binning. Whenever the effective mass term is negative there is a mo-
mentum for which m2(ϕR,∆R) = −k2 and at this point the zeroth momentum vacuum
function ρvac

0k = Θk/(2ωk) diverges. This is a mild, integrable singularity that does not
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Figure 12. Shown is the relative change in energy δH = H/H0 − 1 during calculation in
the self-thermalization case studied in section 5.3. Inset shows a close-up on the first spinodal
instability region.

affect the continuum limit, but it can cause overflows and numerical inaccuracy in a sys-
tem with a finite discretization. This problem can be avoided by a careful choice of binned
variables for the vacuum distribution. That is, we replace the vacuum distribution by a
coarse-grained distribution defined by an integration over each momentum bin q ∈ [qi, qi+1]:

1
2ωqci

→ 1
2q2
ci∆qi

[
i0(qi+1)− i0(qi)

]
, (A.4)

where qci ≡ 1
2(qi + qi+1), ∆qi ≡ qi+1 − qi and

i0(q) ≡ 1
2

[
qωq −m2artanh

(
q

ωq

)]
. (A.5)

When the bin width goes to zero, the replacement (A.4) does not make any difference.
However, for a finite discretization it avoids the singularity that would occur in the spinodal
region when the effective mass function coincides with one of the bin-momenta squared,
m2(ϕR,∆R) = −q2

ci.

Energy conservation. In figure 12 we show the relative change in the total energy
δH ≡ H/H0−1 in the example we studied in section 5.3. The total energy is H = Hϕ+H∆,
where partial energies in the fluctuations H∆ and in the classical field Hϕ were defined in
equations (5.8) and (5.9). In this example the total energy should be conserved, and
this is indeed true to a very high accuracy. In this run we used a discretized momentum
|k| ∈ [0, 2000]GeV with 1000 grid points. As can be seen in the figure, the error is essentially
negligible between the spinodal regions. Within the spinodal regions there is some residual
noise at early times. This arises from the integrable singularity near m2(ϕR,∆R) = 0, even
with the coarse grained binning, but even this error is small and can be further reduced by
reducing the bin width. We conclude that numerical errors are well under control in our
calculations.
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