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• Browning studies overlooked freshwater
habitats like small and temporary wet-
lands.

• Macrophytes, invasive species, and food
webs are disregarded in browning studies.

• Browning and the aquatic-terrestrial habi-
tat coupling should be investigated.

• Browning is a more global phenomenon
than current focus on boreal zones sug-
gests.

• Remote sensing offers great potential to
investigate browning at a global scale.
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Water browning or brownification refers to increasingwater color, often related to increasing dissolved organicmatter
(DOM) and carbon (DOC) content in freshwaters. Browning has been recognized as a significant physicochemical phe-
nomenon altering boreal lakes, but our understanding of its ecological consequences in different freshwater habitats
and regions is limited. Here, we review the consequences of browning on different freshwater habitats, food webs
and aquatic-terrestrial habitat coupling. We examine global trends of browning and DOM/DOC, and the use of remote
sensing as a tool to investigate browning from local to global scales. Studies have focused on lakes and rivers while sel-
dom addressing effects at the catchment scale. Other freshwater habitats such as small and temporary waterbodies
have been overlooked, making the study of the entire network of the catchment incomplete.While past research inves-
tigated the response of primary producers, aquatic invertebrates and fishes, the effects of browning on macrophytes,
invasive species, and food webs have been understudied. Research has focused on freshwater habitats without consid-
ering the fluxes between aquatic and terrestrial habitats. We highlight the importance of understanding how the
changes in one habitat may cascade to another. Browning is a broader phenomenon than the heretofore concentration
on the boreal region. Overall, we propose that future studies improve the ecological understanding of browning
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through the following research actions: 1) increasing our knowledge of ecological processes of browning in other wet-
land types than lakes and rivers, 2) assessing the impact of browning on aquatic foodwebs at multiple scales, 3) exam-
ining the effects of browning on aquatic-terrestrial habitat coupling, 4) expanding our knowledge of browning from
the local to global scale, and 5) using remote sensing to examine browning and its ecological consequences.
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1. Introduction

Over the last three decades, surface waters have become browner
throughout the Northern Hemisphere (Monteith et al., 2007) raising con-
cerns about the processes in action, its spatial extent and the consequences
for water quality and aquatic trophic webs. The change in water color to-
ward browner hues is known as the “brownification” process or “brow-
ning”. Since no consensus exists on a preferred term to describe the
increase in water color, we refer to it as (water) browning throughout this
article.

Browning of surface waters refers to an increase in water color toward
yellow-brown hues (Graneli, 2012). Water color is strongly related to dis-
solved organic matter (DOM) or carbon (DOC) of terrestrial origin
(Weyhenmeyer et al., 2014; Kritzberg, 2017). DOMoriginates from decom-
position processes of dead organisms, such as microorganisms, animals,
and plants in both aquatic and terrestrial habitats. DOM is a natural compo-
nent of water and includes any compounds that can pass through a 0.45 μm
mesh (Evans et al., 2005). Therefore, the composition of DOM varies be-
tween different environments. In general, DOM is composed of a small pro-
portion of low molecular weight compounds, such as amino acids, and a
larger proportion of high and medium molecular weight humic and fulvic
acids, commonly referred as humic substances. DOMabsorbs light in the ul-
traviolet and in the short wavelengths of visible light, which gives a yellow-
brown color to DOM-rich waters (Evans et al., 2005).

DOC is the primary component of DOM. It plays an important role in
surface waters' biogeochemistry and ecology, e.g., food web dynamics
and structure, carbon budgets and acid-base chemistry (Salonen et al.,
1983; Hruška et al., 2003; Cole et al., 2007; Jansson et al., 2007). Browning
and lake productivity tend to have a unimodal relationship, where initial in-
crement of DOC tends to boost biological productivity until a concentration
of about 5 mg/L is reached, whereafter subsequent browning tends to
2

decrease productivity (e.g., Finstad et al., 2014; Seekell et al., 2015). In
lakes, water color is often measured with absorbance coefficients at 254
and 440 nm (e.g., Köhler et al., 2013; Fasching et al., 2014); and is consid-
ered brown when DOC concentration exceeds 10 mg/L. However, the
browning of waters may be greater than the increase in DOM/DOC content
in waters (Hongve et al., 2004; Erlandsson et al., 2008). Concurrent in-
creases in DOM and dissolved iron (Fe) concentrations in surface waters
have been observed in the arctic, boreal and temperate zones and associ-
ated to changes in water color (e.g., Kritzberg and Ekström, 2012;
Sarkkola et al., 2013; Brezonik et al., 2019; Xiao and Riise, 2021). DOM
and Fe molecules can form stable complexes that are difficult to process
by aquatic organisms, and contribute to the browning process (see in
Maranger and Pullin, 2003, Sarkkola et al., 2013, Weyhenmeyer et al.,
2014, Lei et al., 2020).

Browning of waters usually refers to the increased amount of terrestri-
ally derived DOM and more recently Fe in surface waters. In contrast,
changes in DOM composition have been less studied in regards to brow-
ning; but gained more interest in the last ten years (e.g., Jane et al., 2017;
Xenopoulos et al., 2021) since it plays an important role in water color
changes. Higher proportions of humic substances can partly explain water
browning. Humic substances are more aromatic – possessing strong chem-
ical stability – with large size and high molecular weight (Martin-Mousset
et al., 1997; Ekström et al., 2011). All these characteristics make DOM
less photochemically and biologically degradable, i.e. refractory/recalci-
trant DOM (Ågren et al., 2008; Hansell, 2013), as bacteria for instance pref-
erentially use lowmolecular weight DOM such as carbohydrates and amino
acids (Berggren et al., 2010). Moreover, the degradation efficiency of
aquatic consumers usually decreases with DOM age (Raymond and Bauer,
2001), whereas fresh DOM from catchment vegetation can significantly
boost the system productivity (Lennon and Pfaff, 2005). The seasonal and
annual variations of DOM and Fe concentrations have only been
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demonstrated in the last 20 years (Laudon et al., 2004; Dawson et al., 2008;
Haaland et al., 2010; Finstad et al., 2016). Hence, the understanding of the
change in DOM composition and concentration must be improved.

No single mechanism can explain water browning (Temnerud et al.,
2014; Škerlep et al., 2020) that is likely to greatly impact both ecological
and societal aspects. Water browning affects food webs, e.g., prey-
predator interactions or primary production (Karlsson et al., 2009;
Ranåker et al., 2012; Kritzberg et al., 2020), and ecosystems services of
aquatic ecosystems, e.g., fish production, drinking water quality, and recre-
ation services (Solomon et al., 2015; Kritzberg et al., 2020).

In this review, we focus on the diversity of ecological consequences of
water browning on trophic levels of aquatic ecosystems, highlight knowl-
edge gaps regarding the effect of browning on aquatic-terrestrial habitat
coupling, and investigate the potential of browning as a more global phe-
nomenon than currently presented. We aim to set research directions to im-
prove our understanding of the browning phenomenon and its impact on
ecosystem functioning. Specifically, our objectives are to review the conse-
quences of browning on 1) different freshwater habitats, 2) food webs,
3) aquatic-terrestrial habitat coupling, present 4) browning and the
DOM/DOC increase in different regions of theworld, andfinally 5) examine
tools such as remote sensing to investigate the extent of browning from
local to global scales.

2. Ecology of water browning

2.1. Browning alters lakes and rivers: what about other freshwater habitats?

Water browning alters directly and indirectly many characteristics of
freshwater habitats, such as their optical and thermal conditions, oxygen
availability, bioavailability of pollutants in water, and greenhouse gases se-
questration and emission (Table 1). However, studies have focused on
lakes, rivers, or controlled experiments (e.g., respectively Arzel et al.,
2020, Berggren and Al-Kharusi, 2020, and Ekström et al., 2011; Fig. 1).
Freshwaters encompass a wide diversity of other habitats, including small
and temporary wetlands, which are not defined in regulations globally.
There aremany different temporarywetland types (e.g., alpine pool, prairie
pothole, vernal pool); but they are all small, shallow, and they often dry an-
nually (Calhoun et al., 2017). The unique features of these wetlands make
them biodiversity hotspots for many species, such as aquatic invertebrates
(Colburn et al., 2007), semi-aquatic amphibians (Snodgrass et al., 2000;
Gibbons et al., 2006) or waterbirds (Nummi et al., 2019, 2021), and terres-
trial moose (Alces alces) or hares (Lepus sp.) (Dixneuf et al., 2021).
Table 1
Effect of water browning on the characteristics of surface waters (↓ = decrease, ↑ = in

Water characteristics
affected by browning

Effect of browning

Optical conditions • ↓ Ultraviolet exposure and visible light penetration through the w
• Red colors become the most penetrating wavelengths in high-DO

Thermal conditions • Stronger thermal stratification and shallower thermocline in high
• Less likely to happen in shallow lakes that have enough mixing en
thermal stratification

Oxygen (O₂) availability • Dissolved O₂ depletion due to ↑ microbial respiration and loss of b
producers
• Browning-related steeper thermal stratification prevents the mixi
water to deeper parts of the waters
• Browning-anoxia feedback loop: release and ↑ solubility of DOC,
phosphorus

Greenhouse gases
sequestration and
emission

• DOC concentration positively correlated to CO₂ efflux and total in
• Net contribution of browning to CO₂ emissions from lakes ambigu
between DOC mineralization and burial depends on lake biogeoch
• ↑ Dissolved methane in lakes

Bioavailability of
pollutants in water

• ↑ Concentration of arsenic and vanadium linked to ↑ concentratio
complex in surface waters
• Concomitant ↑ in water color and mercury burial in lakes, and ↑ in
by browning-induced anoxic conditions
• ↑ Bioavailability of organic pollutants in water by sorption proces

3

Browning may have direct and indirect consequences on aquatic and
semi-aquatic species (see Sections 2.2 and 2.3) Hence, we may expect
that the degradation of small and temporary wetlands due to browning
will have drastic consequences on their inhabitants and users. However,
no studies have focused on the potential browning of temporary wetlands;
although one paper mentioned a concomitant increase of the water color
and DOC concentration of temporary ponds in Spain (Fig. 1A and B;
Serrano, 1994). Additionally, several papers investigated the DOC/DOM
characteristics of temporary wetlands (e.g., Yu et al., 2015; Chow et al.,
2016). The importance of small and temporary wetlands is now recognized
(Zedler, 2003; Calhoun et al., 2017; Ramsar Convention on Wetlands,
2018). Research on such habitats should thus now investigate how brow-
ning may modify them and their communities; it would improve knowl-
edge on the processes of browning and help targeting good integrated
watershedmanagement strategies, including networks of all wetland types.

2.2. Browning affects aquatic food webs

The impacts and major role of light, temperature and chemistry on pri-
mary production, prey-predator interactions, and food web structure in
aquatic environments are well known (Grant, 1986; Wissel et al., 2003;
Ask et al., 2009; Ranåker et al., 2012). Hence, most research investigating
the ecological consequences of browning focused on the response of pri-
mary producers (e.g., Ask et al., 2009; Forsström et al., 2013; Seekell
et al., 2015) and planktonic communities (e.g., Estlander et al., 2017;
Saebelfeld et al., 2017; Williamson et al., 2020), especially in lakes. Other
studies showed the different responses of fishes to browning (Hedström
et al., 2017; Hayden et al., 2019; van Dorst et al., 2020) or the direct link
between a 20-year decline of aquatic macroinvertebrates and browning of
boreal lakes (Arzel et al., 2020). However, there is far less knowledge re-
garding the effects of browning on macrophytes, invasive species, and
food webs.

2.2.1. Macrophytes
Although plants can benefit from browning through the attenuation of

UV-B penetration, CO2 provisioning and binding of harmful metals
(Scully et al., 1995; Sobek et al., 2003;Wang et al., 2010), further browning
and subsequent change in light regime may cause submerged macrophyte
decline (Reitsema et al., 2020) due to a decrease of theirmaximum growing
depth (Bociag, 2003; Reitsema et al., 2018), particularly if associated with
climate warming (Choudhury et al., 2019; Reitsema et al., 2020). However,
Nagengast and Gąbka (2017) showed that submerged macrophyte
crease).
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Fig. 1.Number of publicationsmentioning A) water browning (and synonyms) or an increase in water color in different freshwater habitats, and B) an increase in DOM/DOC
concentration or export to waters in different freshwater habitats. Some articles mention bothwater browning and an increase in DOM/DOC concentration or export, in these
cases they are counted in both panels A and B. Advanced search was carried out using Web of Science Core Collection on 12/11/2021; the search terms are provided in the
supplementary material (S1).
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occurrence depends on water color in Polish lakes. If they might initially
benefit from increased temperature and browning, they are expected to col-
lapse after a certain threshold (Choudhury et al., 2019), programming a po-
tential global decline with browning expansion and reinforcement.
Macrophyte declinemight induce a homogenization effect with a reduction
of structurally complex littoral habitats (Hilt et al., 2013), which might in
turn disturb higher trophic levels in freshwaters (Scharnweber et al.,
2016). In addition, a decline in Carex and even stronger in Equisetummac-
rophytes was noted between the 1990s and the 2010s in boreal lakes
(Suhonen et al., 2011; Pöysä et al., 2017). Although water browning was
not directly linked to the decline of these emergent macrophytes in these
studies, it should be further investigated, like the unexplored response of
floating macrophytes to browning.

2.2.2. Invasive species
In some cases, water browning may have more influence on lake inva-

sion by non-native macrophytes than climate warming if it negatively af-
fects the growth of the native plants and its capacity to resist invasion or
compete (Mormul et al., 2012). Nevertheless Xu et al. (2018) found con-
trasting results, highlighting the need for further research in different envi-
ronments. Jellyfish invasions in the Southern Hemisphere are limited by
the sensitivity of medusa stage to UV radiation; browning is thus expected
to provide favorable conditions for invasion of lakes (e.g., Craspedacusta
sowerbii in Caputo et al., 2018). Moreover, Gallardo et al. (2016) noted in-
creasing organic matter content in invaded freshwater habitats by invaders
of different trophic positions (e.g., primary producers, filter collectors),
which may be due to additional loadings such as excretion and changing
hydrological conditions. Such increase may lead to water browning, for ex-
ample via top-down effects by introduced or invasive fish (e.g., Milardi
et al., 2019). Severe browning is related to increasing levels of anoxia
that may promote the invasion of low oxygen tolerant invasive species.
Such could be predatory invertebrates (such as Chaoborus), or fishes (such
as Crucian and Prussian carps) with a potential for ecosystem-level effect;
but we are not aware of such studies directly related to browning. Similarly,
there is very little research accounting for the potential effect of invasive
species on browning. Invasive species usually have their highest effects
4

far outside of their native range. Different species have been frequently in-
troduced in South America, like the North American beaver (Castor
canadensis) and African hippopotamus (Hippopotamus amphibius). They
have caused an enhanced transfer of DOM from terrestrial to aquatic eco-
systems, potentially contributing to browning, thus influencing habitats
for other species (e.g., Westbrook et al., 2017; Shurin et al., 2020). Intro-
duced ungulates, such as game species (e.g., deer) could indirectly cause
browning via their browsing effects; they have potential to alter riparian
vegetation, and in turn carbon fluxes to water (Opperman and
Merenlender, 2000). All in all, the impact of water browning on invasive
species and vice versa has received little attention and requires further
research.

2.2.3. Food webs
Browning influences the productivity of food webs nonlinearly: it ini-

tially increases the overall biomass, but subsequently starts to reduce it
(Karlsson et al., 2009, 2015; Seekell et al., 2015). While such changes are
documented, especially in algal communities and fish biomass (Karlsson
et al., 2009; Finstad et al., 2014; van Dorst et al., 2020), very few studies in-
cluded most or all different trophic levels to measure how a browning gra-
dient in nature influences overall biomass, energyflows and transfer. When
considering browning gradients and food webs together, one issue is the
multiplicity of simultaneous processes, since browning is associated with
increasing levels of nitrogen and phosphorus that give a net boost to food
webs (e.g., Hayden et al., 2019; Keva et al., 2021). However, semi-natural
experiments have used terrestrial carbon additions in small ponds or
lakes, using various tracers (e.g., sugar) or isotopically different terrestrial
plants (e.g., maize), to track how additional carbon is transferred upwards
in food webs (e.g., Pace et al., 2004; Carpenter et al., 2005; Taipale et al.,
2008; Scharnweber et al., 2014; Jones et al., 2018). They mainly suggest
a relatively high carbon transfer up to fish, but there is often a very clear
contrast to natural conditions where terrestrial-derived dissolved organic
carbon is often of residual quality, meaning not available or not preferred
by upper trophic level consumers (e.g., Brett et al., 2017). Studies about
lake food webs along browning gradients are scarce and even less is
known about small and temporary wetlands. Their hydroperiodicity and
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varying foodweb structure, usually without fish predators, strongly deviate
from lakes. Browning may therefore impact food webs differently pending
on freshwater habitat types. Moreover, their small size makes them more
influenced by the surrounding terrestrial habitats, with which they are
likely linked through bidirectional fluxes of elements and organisms.

2.3. Browning calls for an aquatic-terrestrial habitat coupling approach

Terrestrial and aquatic habitats are inherently connected via fluxes of
elements and organisms, but most studies focus on habitats separately
(e.g., Polis et al., 1997; Soininen et al., 2015). Many animals are living at
the interface of terrestrial and aquatic habitats, providing important in-
sights to understand how changes in one habitat may cascade to another.
Furthermore, aquatic-terrestrial coupling is likely bidirectional and should
be viewed as feedback loops sincemany organisms use both habitats during
their lifecycle.

2.3.1. Amphibians
To our knowledge, no research has been carried out to investigate the

potential impact of browning on amphibian populations. Amphibians pro-
vide ecosystem services (Hocking and Babbitt, 2014) from cultural services
to structural and functional supporting services (i.e., influence ecosystem
structure through bioturbation, and ecosystem functions such as nutrient
cycling through waste excretion, respectively). They also have an unfavor-
able conservation status worldwide (Stuart et al., 2004). Water browning is
expected to extend and intensify in ponds and small lakes which are the
breeding habitats of most Palearctic amphibians (Bolochio et al., 2020). It
is therefore important to assess the potential effects of this phenomenon
on this group. The reduction in light intensitymay be detrimental to species
or stages using vision to forage underwater. The predictions are not obvious
for tadpoles that feed on phytoplankton but also on biofilm (Altig et al.,
2007) if the proportion of autotroph bacteria increases in lentic ecosystems.
Less ambiguous is the fact that humic acids can, on one hand, interfere with
olfaction in fish (Fisher et al., 2006), thus potentially decreasing their pre-
dation pressure on tadpoles; but on the other hand, impair the tadpole’s
ability to recognise dragonfly predators (Polo-Cavia et al., 2016).

The larval stages of amphibiansmay benefit from the attenuation of UV-
B radiation due to browning. UV radiation is harmful to amphibians espe-
cially during their development (Bancroft et al., 2008; Londero et al.,
2019). For instance, in the boreal species Rana temporaria, embryos ex-
posed to UV-B displayed a higher frequency of developmental anomalies,
late metamorphosis and smaller size than controls (Pahkala et al., 2001).
In addition to the effects on foraging and development, the changes in the
photic environment induced by browning (Scully et al., 2003; Nydahl
et al., 2019) are expected to affect social interactions of species that mate
in water and partly rely on visual communication with bright UV-
reflecting color patches and exaggerated morphological traits like
European newts. A reduction of light transmission in turbid water seems
to limit the expression of sexual traits of Lissotriton helveticus males even if
the underlying mechanism is not identified (Secondi et al., 2007) but a re-
duction of the food acquisition rate is a possible cause (Baker, 1992). Newts
display a complex courtship usually on the pond bottom that includes visual
and olfactory components (Halliday, 1977). Lissotriton vulgaris females as-
sess the UV component of the ventral coloration of males and spend more
time close to a male when UV radiation is available (Secondi et al.,
2012). The lack of UV in brownwaters was shown to affect species recogni-
tion between L. vulgaris and L. helveticus in the lab (Secondi and Théry,
2014). When visual cues are not available females may give more weight
to olfactory information as observed in the Alpine newt though (Denoël
and Doellen, 2010). However, humic acids may interfere with olfactory
communication in water breeding amphibians like newts, as demonstrated
in fish (Mesquita et al., 2003; Fisher et al., 2006). Finally, humic acids have
been shown experimentally to have a hormone-like effect in fish and am-
phibians causing a slight feminization (Steinberg et al., 2004). Thus, a
change in water color may reduce the ability for individuals to acquire
food, detect predators, express sexual traits involved in mate selection,
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assess potential mates, and affect the expression of sexual hormones.
These issues have not been investigated in amphibians yet. Nevertheless,
negative consequences on individual fitness and population growth may
be expected. It is noteworthy that many amphibian species breed in natu-
rally stained water and seem to sustain viable populations, even Lissotriton
newts where sexual selection for visual traits is strong. Particular attention
should be given to areas where clear waters were dominant and are now
browning. There, locally adapted populations may be more at risk than
populations that have been living in heterogeneous environments where
water bodies with different levels of browning have been co-occurring for
a long time, for instance in mixed landscapes with forest and open areas.
This concern should be rapidly addressed as clear lakes are more sensitive
to browning than brown lakes (Knoll et al., 2018; Williamson et al., 2020).

2.3.2. Waterbirds
In the boreal environment, the abundance of waterbirds feeding on

fishes, plants and invertebrates showed a positive relation with clear
water andmacrophyte percentage cover (Hansson et al., 2010). The impact
of browning on waterbirds has not been demonstrated yet, but water brow-
ning causes macrophyte decline (Reitsema et al., 2018). The decline (rich-
ness and abundance) of ducks with an insectivorous diet over the past
25 years (Pöysä et al., 2019; Elmberg et al., 2020) could also be linked to
the concomitant decline of aquatic invertebrates associated with water
browning (Arzel et al., 2020). The different compartments of lake food
webs are interrelated, so disturbances on one level can greatly impact
others, potentially leading to changes from local to large scale.
Fennoscandian lakes are the main breeding area of migratory ducks in
Europe (European Commission, 2001). A decline in duck breeding success
over the boreal environment, as a direct or indirect result of browning,
could lead to strong consequences on their population dynamics. Insecti-
vores are one of the largest guilds of predators (Nyffeler et al., 2018). A de-
cline in insects will surely negatively impact their predators through
trophic cascades. For instance, the Diptera family, in which many species
have an aquatic larval stage, represents at least 20% of the diet of predators
of distinct taxa, e.g., birds, bats and invertebrate predators such as Odonates
(Vesterinen et al., 2020). A general decline of biomass or abundance in this
taxonmay thus have profound and global consequences in the tree of life as
the insect resource is shared by so many predator groups.

2.3.3. Pathogens
At the global scale, browning may also affect drinking water quality,

and increase the risk of pathogen persistence by reducing the potential
for solar UV inactivation of pathogens (Williamson et al., 2017). Water-
borne pathogens are one of themost frequent sources of infectious diseases.
For example, theUnited States counts between 12 and 19million people in-
fected annually (Trtanj et al., 2016; Williamson et al., 2017). Waterborne
pathogens of humans and wildlife include bacteria, fungi, protozoans and
viruses. Among them, slow and high pathogenic avian influenza persistence
in the aquatic environment is expected to be promoted by climate change
with an increase in temperatures (see in Dalziel et al., 2016); but studies
overlooked browning processes also linked to climate change.Many studies
demonstrated the importance of solar radiation in the inactivation of the
four types of pathogens in surface waters (King et al., 2008; Overholt
et al., 2012; Mattle et al., 2015; Nguyen et al., 2015). Pathogen vectors,
e.g., mosquitoes, are also sensitive to natural solar UV radiation (Berry
et al., 2020), through a decrease in larval survivorship. Browning decreases
UV-B penetration (Williamson et al., 2016), hence its solar inactivation po-
tential (SIP) in the water column, which can favor the survival of patho-
gens. For example, Williamson et al. (2015) showed that the long-term
increase of DOM in lake Giles in North America and the concurrent in-
creased UV absorption led to a two-fold diminution of SIP. Similarly,
DOM provides a refuge for mosquito larvae to UV radiation, which in-
creases habitat suitability (Berry et al., 2020).

Climate change projections predict increased heavy precipitation events,
which will translate into an enhanced release of DOM into surface waters, es-
pecially in highly disturbed catchments (Ren et al., 2016). Further research is
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needed to efficiently target relevant management and treatment efforts
against pathogens; focus should be on high-DOMwaters and future increased
precipitation zones where pathogens are highly expected to thrive.

2.3.4. Flows of energy and organisms between terrestrial and aquatic
environments

Browningmay impact strongly and inmultiple ways energy sources and
flows in aquatic environments, but may also alter the fluxes from aquatic to
terrestrial environments. Terrestrial leaves may be an alternative carbohy-
drate source for herbivorous zooplankton, which can use terrestrial carbo-
hydrates for their fatty acid synthesis under phytoplankton deficiency
(Taipale et al., 2016a). However, the fate of other terrestrial origin biomol-
ecules (e.g., amino acids) in the aquatic food webs is not known, and most
of current knowledge is related to indirect consequences. For example,
browning has a great impact on the phytoplankton composition, and the
synthesis and transfer of physiologically essential long-chain polyunsatu-
rated fatty acids (PUFA), such as eicosapentaenoic acid (EPA, 20:5ω3)
and docosahexaenoic acid (DHA, 22:6ω3) (Taipale et al., 2016b;
Strandberg et al., 2016); PUFA are required for optimal growth and repro-
duction of zooplankton, fish and mammals (Arts et al., 2009). Since EPA
and DHA are synthesized only by certain phytoplankton taxa (Taipale
et al., 2016b), changes in the phytoplankton community influence EPA
and DHA availability for herbivorous zooplankton, and their transfer in
the foodweb. Browningmight have opposite impacts on the phytoplankton
composition in different climatic zones and biomes. Consequences in nutri-
tional quality of sestonmight thus differmarkedly between these zones. For
example, Senar et al. (2019) found that browning favored cyanobacteria
and decreased sestonic EPA and DHA content in temperate lakes. However,
in boreal lakes, strong browning is known to inhibit cyanobacteria (Taipale
et al., 2016b; Senar et al., 2021), but favor the raphidophyte Gonyostomum
semen (Lepistö et al., 1994; Lebret et al., 2018) whichmight result in an ap-
parent increase on EPA even thoughG. semen is too large to be consumed by
most zooplankton (Gutseit et al., 2007; Strandberg et al., 2020).

Zooplankton studies are scarce, but current results suggest that herbiv-
orous cladocerans and calanoids are able to detect high quality alternative
diets, and thus mitigate browning-induced lower nutritional quality of
seston (Taipale et al., 2016a; Senar et al., 2019). However, the low avail-
ability of high-quality algae may limit zooplankton biomass production
(Taipale et al., 2019). Moreover, the negative impact of browning on the nu-
tritional quality of seston and zooplankton was recently identified in the pro-
ductivity gradient of subarctic lakes (Keva et al., 2021), and was mostly
explained by the structural changes in the zooplankton community. Alto-
gether, two separate studies have shown that browning decreases nutritional
quality of perch for human consumption by leading to lower EPA and DHA
and higher mercury content (Taipale et al., 2016b; Strandberg et al., 2017).

Recent studies have also shown the impact of PUFA on the survival of
insectivore bird chicks (Twining et al., 2016), which makes aquatic ecosys-
tem insect fluxes important PUFA sources also for insectivorous birds.
While the hatching of aquatic insects will have direct important effects on
birds and riparian insects, there might be a feedback loop via terrestrial in-
sects and bird faeces back to the aquatic environment (Scharnweber et al.,
2014). Aquatic invertebrate communities are strongly structured by selective
fish predation that may change the insect fluxes to terrestrial habitats
(Gratton et al., 2008; Milardi et al., 2019), and may even cause trophic cas-
cades in riparian terrestrial habitats (Knight et al., 2005). Insect flux also con-
tains both harmful and beneficial substances (Chaves-Ulloa et al., 2016;
Popova et al., 2017), differing between ecosystems. Moreover, very little is
knownonhowpotential changes in the synthesis and transfer of essential bio-
molecules in freshwater food webs influence consumers in the interface of
aquatic and terrestrial ecosystems (but see Taipale et al., 2016b); for instance,
the consequences on animals feeding on aquatic resources such as waterbirds
or semi-aquatic mammals is not known and calls for future research.

2.3.5. Beavers as promoters of browning
While the causes of browning are mainly attributed to human activities

(see Section 3.1), natural disturbances such as beaver-induced floods may
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also substantially contribute to the process. Beavers (Castor sp.) are
known as ecosystem engineers to cause significant patch disturbance in bo-
real riparian ecosystems (Remillard et al., 1987; Nummi and Kuuluvainen,
2013; Kivinen et al., 2020). By damming, and the ensuing flooding, beavers
cause the death of herbaceous vegetation and trees because of the anaero-
bic conditions of roots caused by the flood (Thompson et al., 2016;
Johnston, 2017). Organicmatter and nutrients coming from the dead plants
and soil are then flushed from the flood zone to the dammed water body,
hence affecting the biogeochemical conditions of the water (Vehkaoja
et al., 2015; Nummi et al., 2018). Vehkaoja et al. (2015) showed that bea-
ver lakes had higher DOC concentrations than non-beaver lakes in small bo-
real lakes, with an increase in DOC concentration within the three first
years of beaver impoundment. DOC concentrations returned to their pre-
flooding level after 4–6 years. Blanchet (2020) observed the same pattern
with higher water color measured in lakes recently flooded, i.e. three
years, compared to lakes without beaver activity or with older flood events.
In the first impoundment years, DOC arriving in water bodies comes from
the decaying plants (Hodkinson, 1975; Nummi, 1989) and is mainly com-
posed of low molecular weight molecules that could be easily processed
microbially. The following impoundment years, however, bring DOC with
terrestrial characteristics to the waterbody (Rasilo et al., 2015), i.e. refrac-
tory and aromatic molecules with high molecular weight which are less ef-
ficiently used by organisms and mainly removed by photochemical
reactions. Although DOC concentrations usually return to their pre-flood
level (Vehkaoja et al., 2015), the remaining DOC may be composed of
more coloredmolecules, hence contributing to the browning phenomenon.
Newly established beaver ponds, in particular, may contribute more to
browning in comparison to old beaver ponds as they have more humic-
like DOM (Catalán et al., 2017).

While the immediate effects of beavers on water chemistry and aquatic
animals are known, there is far more limited understanding of riparian
changes and potential feedback loops back to aquatic habitats. These as-
pects are important to consider, as beavers were hunted to the brink of ex-
tinction between the 16th and 19th centuries in Eurasia, leaving only eight
isolated populations from France to Mongolia by the end of the 19th cen-
tury (Nolet and Rosell, 1998). They were reintroduced in the 20th century
which led to a successful recovery of some beaver populations and their
gradual return to their previous distribution area (Whitfield et al., 2015;
Halley et al., 2021). Their increasing population, for instance, resulted in in-
creased DOC concentrations in streams in a 30-year study in Germany
(Smith et al., 2020). Therefore, the recent and current population increase
of beavers and their substantial role in the biogeochemistry of headwater
bodies and the riparian zone are strong arguments to include them in re-
search on water quality, especially in the boreal landscape where beavers
are largely distributed, and in areas where they are non-indigenous.

3. Drivers and subsequent spatial extent of water browning

3.1. Main drivers of water browning

Over the past two decades of studies, no single mechanism but rather a
combination of several drivers can explain water browning (Temnerud
et al., 2014; Škerlep et al., 2020; Xiao et al., 2020), such as acid recovery,
weather patterns and land-use (Hongve et al., 2004; Monteith et al.,
2007; Björnerås et al., 2017; Kritzberg, 2017), which evolve at different
timescales. Most of the research investigating the causes of browning was
carried out on lakes and rivers (e.g., de Wit et al., 2016; see Fig. 1A and
B). As mentioned in Section 2.1, browning processes in small and tempo-
rarywetlands remain unknown, although they are connected to other fresh-
waters via surface and subsurface hydrologic connections (Ameli and
Creed, 2017). Research on browning of surface waters should thus include
aquatic networks at the catchment scale at least, to get a more holistic view
of the processes.

As several reviews already addressed the potentialmechanisms of brow-
ning (e.g., Evans et al., 2005; Creed et al., 2018; Kritzberg et al., 2020), we
provide a summary of water browning drivers in Table 2 to concentrate



Table 2
Summary of the main past and present factors driving water browning over time (↓ = decrease, ↑ = increase).

Driver Effect(s) References

Acid recovery
↓ Acid deposition • ↑ DOM mobility and solubility in soils, and ↑ transport to aquatic systems

• Changes in DOM composition toward more colored molecules
Monteith et al., 2007; LoRusso et al., 2020;
Meyer-Jacob et al., 2020; Redden et al., 2021

Climate (change)
↑ Precipitation • ↑ Water table and ↑ connectivity between organic soils and surface waters:

DOM leaching
• 10% ↑ in precipitation estimated to ↑mobilization of organic matter from soils
to freshwaters by at least 30%

Hongve et al., 2004; Laudon et al., 2011; de Wit et al.,
2016; Mahdiyan et al., 2021

↑ Temperature • ↑ Export of DOM to freshwaters: stimulation of soil biological activity ↑ organic
matter decomposition and DOM solubility
• 2 °C ↑ in temperature estimated to ↑ organic matter decay rates up to about
10%, mainly through changes in runoffs

Christ and David, 1996; Moore and Dalva, 2001;
Dawson et al., 2008; Catalán et al., 2016

Permafrost thawing (due to ↑ temperatures) • ↑ DOM concentration in waters
• Change in DOM composition: mobilization of ancient DOM from deeper soil
layers with lower degradation efficiency

Feng et al., 2013; Ewing et al., 2015; Ward and Cory,
2015; Wauthy et al., 2018; Ma et al., 2019

Land cover
Forest cover • Coniferous forests = sources of DOC and Fe in freshwaters Finstad et al., 2016; Björnerås et al., 2017
Wetland cover • Wetlands = major contributors of DOM to surface waters

• Peatland cover can account for 78% of DOC catchment export to lakes on the
long-term

Dillon and Molot, 1997; Mattsson et al., 2005; Arvola
et al., 2016

Land use
Agriculture • Soil degradation and water flow modification: releases DOM, excess nutrients,

and pesticides to freshwaters
Karlen et al., 1997; Ogle et al., 2005; Graeber et al.,
2012

Afforestation • Accumulation of soil organic carbon (due to ↑ in forest cover) and its export to
surface waters, especially if coniferous trees
• Considered as contributing to long-term browning on the centennial timescale

Meyer-Jacob et al., 2015; Kritzberg, 2017; Škerlep
et al., 2020

Clearcutting and site preparation practices • ↑ DOM leaching through multiple factors: ↑ groundwater level, ↑ loose organic
matter due to topsoil disturbance, and ↑ organic matter decomposition rate (due
to ↑ soil temperature)
• Effect of harvesting and preparation practices potentially of short-term

Piirainen et al., 2007; Laudon et al., 2009; Winkler
et al., 2009; Sarkkola et al., 2010; Schelker et al.,
2012; Glaz et al., 2015

Peatland drainage • ↑ Export of DOM to surface waters due to ↑ decomposition of surface peat
• Release of old DOM (up to several thousands of years; less efficiently used than
modern DOM) by their mobilization from deeper parts of the soil

Hulatt et al., 2014a, 2014b; Marttila et al., 2018; Finér
et al., 2021; Nieminen et al., 2021

Interplay between acid deposition, climate change, and land use
“Greening” phenomenon (i.e., ↑ vegetation
productivity due to ↑ growing season,
biomass, and cover)

• ↑ DOM concentration in surface waters due to ↑ export of DOM from
catchments
• DOM export in arctic and boreal waters estimated to ↑ by 65% in the next
hundred years, primarily because of greening

Larsen et al., 2011; Finstad et al., 2016; Zhu et al.,
2016; Kritzberg, 2017
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here below on the actual and potential extent of browning following these
drivers.

3.2. Spatial extent of water browning processes

The main factors identified that affect browning processes include acid
recovery, climate change (heavier precipitation events and increasing tem-
peratures, melting of permafrost), land cover, land use, and catchment
greening. The combination of several of these factors has mainly caught re-
searchers’ attention in the Northern Hemisphere (Fig. 2). In the articles
cited in this review, evidence of long-term browning has only been demon-
strated in the Northern Hemisphere through different processes (Fig. 2A, B,
and C), with a clear focus on cold and temperate regions (Fig. 2D). Our
work shows that the semantic of water browning remains unclear globally
(Fig. 2A, B, C). This is due to the imbrication of diverse processes at its or-
igin. This makes it difficult to get an overview of its extent at the global
scale, although evidence of processes linked to browning waters can be
found from cold to tropical regions.

3.2.1. Cold regions
Here we focus on the comparatively cold regions of the globe that con-

tain the climate zones (e.g., polar and subpolar) or biomes (e.g., boreal) typ-
ical to the region. In the Northern Hemisphere, the increase in water color
and DOMconcentration in arctic lakes and rivers ismainly due to the green-
ing of tundra (Fraser et al., 2011; Epstein et al., 2012), as well as climate
change and its consequences on permafrost (Ma et al., 2019) and peatlands
(Dillon andMolot, 1997;Minayeva et al., 2016).Wetlands cover 60%of the
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Arctic zone, most of which are peatlands (Minayeva and Sirin, 2009). Cli-
mate change predictions project a faster warming in the Arctic compared
to other climate zones (IPCC, 2014), with increasing precipitation events,
which will result in permafrost loss; it will in turn degrade arctic peatlands
and facilitate the export of aromatic, high molecular weight, colored DOM
(Frey and Smith, 2005; Ewing et al., 2015; Minayeva et al., 2016). In the
Southern Hemisphere, no research has investigated a possible browning
trend in Antarctic surface waters. Nevertheless, the literature on DOC sug-
gests a generally very low concentration in Antarctic freshwaters, with a
low proportion of humic substances (Barker et al., 2013; Foreman et al.,
2013). However, ongoing climate change may impact carbon fluxes in
Antarctica, including DOC (Quesada and Velázquez, 2013).

The subarctic zone may experience intense browning due to acid recov-
ery, increased temperatures and precipitation, and permafrost thawing,
which promote the release of more colored but less efficiently processed
DOM from soils (Monteith et al., 2007; Ekström et al., 2011; Finstad
et al., 2016; Björnerås et al., 2017; Ma et al., 2019). Mzobe et al. (2018)
showed that peatlands and secondarily forest productivity are key contrib-
utors of DOC in subarctic streams, but water remains less brown than in bo-
real zones (Lau et al., 2021). Boreal surfacewaters are affected by all drivers
identified in Table 2, making them particularly susceptible to
brownification.

3.2.2. Temperate regions
In the temperate area, DOC/DOM increase and composition change, as

well as their drivers have been primarily studied in Europe and North
America. In the UK, studies focused more on DOC concentration rather



Fig. 2. Spatial extent of in situ studies on water browning processes cited in this review. A: articles demonstrating evidence of water browning or brownification (increase in
absorbance, color units, or DOM/DOC content); B: articles highlighting an increase in DOM/DOC concentration with or without mentioning the term water browning (and
synonyms); C: articles showing an increase in water color without mentioning the termwater browning (and synonyms); D: total number of articles demonstrating browning
processes combining A, B, C without duplicated articles. Reviews and controlled experiments were excluded.
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than the browning phenomenon in itself (Fig. 2). DOC concentration has
doubled in the Acid Waters Monitoring Network since the 1980s (Worrall
et al., 2003; Evans et al., 2005), and has been linked to decreasing acid de-
position (Davies et al., 2005; Evans et al., 2005). DOC trends were posi-
tively correlated to temperature, and negatively correlated to ionic
strength (Evans et al., 2005). Rainfall patterns (wet-dry cycles) seem to in-
fluence DOC trends, but in a more variable way since rainfall varies intra-
and inter-annually, while forestry practices are considered to play a
minor role in the increase in DOC levels (Harriman et al., 2003; Evans
et al., 2005). However, UK lakes may experience browning differently
since the composition of DOM related towater color depends on catchment
parameters, i.e. land use/land cover (Yates et al., 2019). It has been demon-
strated that DOM originating from agricultural inputs is mainly of a low
aromaticity and molecular weight; high aromaticity being associated with
high water color (Fasching et al., 2014). As agriculture covers 72% of UK
territory (UK Government, 2020), a change in DOM composition is likely
to have concurrently happened with increased DOC concentration in
waters, potentially leading to slow water browning in some catchment
areas.

Czech Republic was exposed to high atmospheric pollution, which
peaked in the 1980s and sharply declined in the 2000s. The change in
acid deposition strongly influenced DOM concentration in the Malše
River since 1969 (Hejzlar et al., 2003) and in 9 water bodies, streams and
reservoirs (Oulehle and Hruška, 2009). Concurrently with changes in acid
deposition, climatic (increasing temperature) and hydrologic conditions
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(i.e. proportion of histosols, runoff), may have resulted in large amounts
of DOM in surface waters due to an increased solubility, mobility and trans-
port. A change towardmore colored DOMmay also be expected in response
to acid recovery (Ekström et al., 2011).

In France, 30% of the lakes may be affected by organic matter enrich-
ment (Sepp et al., 2018); several studies have investigatedDOMparameters
in French streams, but no studies focused on browning have been carried
out. Humic substances generally dominated DOM composition between
2010 and 2013 in a north-eastern French river, and the highest values of
the SUVA254 (an index for aromaticity) could not be explained (Assaad
et al., 2015). Few studies in France have investigated DOM quality in
lakes and reservoirs, although humic substances are present in a higher pro-
portion than in rivers (Martin-Mousset et al., 1997). Birgand and Novince
(2004) observed a long-term (15–20 years) increase of DOM concentration
in Breton streams (Western France). Climate fluctuations could explain the
interannual variation, and the riparian zones appeared as a substantial con-
tributor of DOM export to surface waters. Humic substances, DOC and Fe
concentrations were strongly and positively correlated in the Penzé river.
As several streams in the Brittany region have already experienced a rise
in DOM concentration and exhibited a high proportion of humic substances
(Birgand andNovince, 2004;Marie et al., 2015), water browning is likely to
impact the local biodiversity and drinking quality since 85% of surface wa-
ters in Brittany are used for drinking purposes. Hence, there is a clear neces-
sity to understand the factors governing the transfer of DOM to surface
waters in France.
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In the US, based on the US Environmental Protection Agency’s National
Lakes Assessment (NLA) data (1000+ lakes sampled in 2007 and 2012),
Leech et al. (2018) showed that the proportion of “murky” lakes (experienc-
ing both eutrophication and browning) increased by almost 12%, with
suspected negative consequences for water quality and food web structure.
This study called for more research to understand how the combined
“greening” and “browning” of lakes affects ecological processes in the US.

In Canada, Meyer-Jacob et al. (2020) assessed whether DOC levels are
still influenced by acid deposition in 75 lakes in the Greater Sudbury region
that has been heavily affected by sulfur dioxide emissions from local metal
smelting during the 20th century. They found that acid deposition has his-
torically had a strong impact on lake-water DOC dynamics in this region,
but that other drivers, such as changes in climate or vegetation cover, are
becoming the dominant controls on changes in DOC concentration.

At a larger scale, comparisons between European countries have been
done. Mattsson et al. (2009) showed that catchments with drained surfaces
in France concentrated and exported less DOC compared to Danish and Finn-
ish measurements, explaining that more factors promote the export of DOM
into surface waters in boreal environments than in more temperate ones.

3.2.3. Tropical regions
In the tropical and subtropical regions, only one recent article directly

mentioned water browning while studying harmful algal blooms (Hu
et al., 2021); however, it does not appear in Fig. 2 as the study does not pro-
vide evidence of browning. The term “blackwater river” is, nevertheless,
often used to describe a type of tropical brown river (Gandois et al., 2020;
Zhang et al., 2020; Constantino et al., 2021). With the exception of black-
water rivers, natural tropical rivers have generally low DOC concentration
compared to temperate rivers (Lewis et al., 2006).

Land-use and land cover changes (e.g., to pasture, crop production, ur-
banization) seem to be the main factors influencing DOM export, concen-
tration, and changes in composition, especially in Brazil where
agriculture and urbanization contribute the most because of low water
treatment (Hudson et al., 2007; Gücker et al., 2016). In Rwanda, agricul-
tural lands are not a substantial contributor of DOC transfer to streams
(Rizinjirabake et al., 2019) compared to forest plantations. Many tropical
regions have experienced clear-cutting and monoculture plantations.
Clear-cutting of tropical riparian areas may have immediate effects on car-
bon fluxes and water color (Smolders et al., 2018). Indonesian oil palm
plantations are often established by draining natural peatlands, with subse-
quent and potentially long-term effects on DOC leaching (Cook et al.,
2018). Tropical peatlands are natural sources of large amounts of DOM:
most blackwater rivers drain peatlands (Martin et al., 2018). Peatlands deg-
radation by deforestation and drainage for agricultural exploitation may
have resulted in an enhanced export of DOM and Fe to surface waters, espe-
cially in the wet season (Moore et al., 2011; Gandois et al., 2013; Zhang
et al., 2020). The Siak blackriver in Sumatra, for example, drains heavily
degraded peatlands and exhibits one of the highest DOC concentrations in
the world (Rixen et al., 2008).

Spencer et al. (2010) showed that DOM concentration with more
aromatic and colored molecules, increased in a tropical river with greater
runoff, suggesting that hydrological conditions may play a similar role in
waters of tropical, temperate and cold regions. In the context of climate
change, the predicted increase of temperatures and precipitations
could stimulate DOC soil production and export in tropical regions,
leading to water browning (Moore and Dalva, 2001; Hawkins and
Sutton, 2011).

4. Browning trends with global changes and remote sensing as an
approach for global studies

Global changes, e.g., land cover/land-use changes and climate change,
are expected to drive further browning, while havingmajor impacts on bio-
diversity and societies. Land cover and land-use changes are one of the
main drivers of changing color of surface waters. Sixty percent of land-use
changes are associated with direct human activities and 40% with indirect
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drivers such as climate change (Song et al., 2018). Waters are likely to be-
come browner in tropical areas with deforestation, and in temperate
areas with reforestation or afforestation, since these practices enhance
DOM export to surface waters (Schelker et al., 2012; Kritzberg, 2017;
Song et al., 2018; Škerlep et al., 2020). Global changes may deeply impact
species distribution worldwide (Chen et al., 2011), which in turn will affect
ecosystems community composition and functional diversity (Ochoa-
Ochoa et al., 2012; Buisson et al., 2013; Pecl et al., 2017), but no studies
have assessed the link with browning and potential feedbacks. Browning
of waters has not been identified as a global change component yet (but
see Freeman et al., 2020), but its strong interrelation with other global en-
vironmental changes needs immediate attention and further research to im-
prove conservation and management strategies at all scales.

An array of remote sensing approaches can provide an inclusive view of
water quality variability to help understanding the possible causes of vari-
ations at large scales (Boggs et al., 2001). Hence, the new availability of
spectral and spatial resolutions for remote sensing data time series is open-
ing up opportunities to monitor the impact of land-use and land cover
changes on water quality at spatially explicit scales; remote sensing has
thus high potential for evaluating control efforts to protect freshwater hab-
itats (e.g., lakes, rivers, ponds, wetlands). Current monitoring data cannot
provide a global picture of browning (Sepp et al., 2018). Nevertheless, sev-
eral remote sensing analyses have focused on color, or DOC and DOMmea-
surement parameters in recent years. The increase in coloredDOM (CDOM)
concentration can be detected in the blue and green region of the light spec-
trum (especially below~500 nm). At high concentrations of CDOM, the ab-
sorbance of the red light spectrum can be significant. Hence, passive remote
sensing has been investigated through a large number of sensors on various
platforms to map this water quality parameter (Gholizadeh et al., 2016).
The band ratio has been the most common algorithm used. Landsat 7 and
8 imageries can be reasonably used for the estimation of CDOM levels (R2

up to 0.82 with Landsat 8 data) (Olmanson et al., 2016; Chen et al.,
2020). Using the green to red band ratio (band 3 to band 4, B3/B4 ratio)
from Sentinel-2 imagery, Toming et al. (2016) obtained good correlations
with lake CDOM (R2 = 0.72) and DOC (R2 = 0.92) concentrations, but
weaker ones with lake color (R2 = 0.52). Additionally, lake color in the
study did not exceed 30 mg Pt/L, while many lakes in the boreal and arctic
regions may display color values twenty times higher (Taipale et al., 2008;
Arvola et al., 2010; Vesterinen et al., 2016). Nevertheless, remote sensing of
water color is progressing since it is considered as a useful indicator of
water quality (Gardner et al., 2021).

Remote sensing may also be used to monitor drivers of water browning
like forestry activities (Xulu et al., 2020) that may contribute to a large ex-
port of DOM to surface waters (Schelker et al., 2012). Several approaches
could be combined at the catchment scale. For instance, in a study using
the Normalized Difference Vegetation Index (NDVI) on forested areas in
the western US, vegetation cover and several soil properties were identified
as the key variables that explained water quality response across a broad
range of conditions (Rust et al., 2019). In Sri Lanka, a study based on re-
mote sensing provided empirical evidence of the contribution of healthy
(high NDVI values) forest cover on the improvement of watershed water
quality (Kumarasiri et al., 2021). The above ground biomass was the dom-
inant carbon storage among the other carbon pools. The water quality pa-
rameters were not correlated with the soil erosion rates, which was
possibly attributed to the mitigation effects of the healthy forest cover
within the studied catchment. Time series of remote sensing data can
also be used to quantify how forest disturbances vary in space and
time, then to estimate related factors (e.g., proximity, intensity, and
total areal extent of harvest) that influence water quality within a water-
shed. Regarding active remote sensing, recent technologies of growing
interest such as LIDAR sensors offer accurate perspectives to estimate
the role of forested wetlands in the carbon cycle, and understand how
forest practices impact carbon storage at the landscape scale
(Halabisky et al., 2020). Hence, remote sensing can be used to assess
the color of surface waters worldwide, as well as the global causes and
consequences of water browning.



C.C. Blanchet et al. Science of the Total Environment 812 (2022) 152420
5. Conclusion and future steps in research on browning

We identified five research actions to make significant steps forward in
our knowledge of water browning:

1- Assess browning ecological processes in otherwetland types than lakes and rivers.
No study has addressed processes at the catchment scale, including net-
works of small and temporary wetlands with lakes and rivers. Their poten-
tial degradation due to browning may affect all levels in the landscapes.

2- Evaluate the impact of browning on aquatic food webs at multiple scales. The
majority of studies overlooked macrophytes, invasive species, and the im-
pact on the whole foodweb structure in different freshwater habitats. Mul-
tiple foodweb structuremarkers such as compound specific stable isotopes
of amino acids or mercury would likely provide options to study food web
processes in full browning gradient.

3- Investigate the effects of browning on aquatic and terrestrial coupling. There are
many fluxes between the aquatic and terrestrial habitats, such as through
beaver activity and pathogen emergence. There is a clear lack of knowl-
edge on the effects of browning on water-dependent amphibians, water-
birds and mammals. The coupling of aquatic and terrestrial habitats will
help to understand consequences on the transfer of energy through the
food webs.

4- Understand the water browning processes at the global scale. Most of the re-
search has focused on the boreal region in the Northern Hemisphere, but
we highlighted the occurrence of water browning processes at a larger
scale from the polar to the tropical regions. We note a clear lack of knowl-
edge on polar, especially Antarctic, and tropical waters.

5- Develop remote sensing methods to monitor the ecological consequences of water
browning from catchment to global scales. Passive remote sensing has been
mainly used to monitor CDOM in freshwaters, but other promising ap-
proaches are emerging; that includes active remote sensing, and focus on
landscape parameters and land use determinants related to water quality.

The reinforcement of water browning impacts water bodies through its
interrelation with global environmental changes. There is a clear need for
global studies to investigate the extent, underlying mechanisms, and eco-
logical consequences of browning. Remote sensing has a crucial role to
play in such future research.
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