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ARTICLE

Ecological dependencies make remote reef fish
communities most vulnerable to coral loss
Giovanni Strona 1✉, Pieter S. A. Beck2, Mar Cabeza 1, Simone Fattorini 3, François Guilhaumon4,5,

Fiorenza Micheli 6, Simone Montano7,8, Otso Ovaskainen 1,9,10, Serge Planes11,12, Joseph A. Veech13 &

Valeriano Parravicini 11

Ecosystems face both local hazards, such as over-exploitation, and global hazards, such as

climate change. Since the impact of local hazards attenuates with distance from humans,

local extinction risk should decrease with remoteness, making faraway areas safe havens for

biodiversity. However, isolation and reduced anthropogenic disturbance may increase eco-

logical specialization in remote communities, and hence their vulnerability to secondary

effects of diversity loss propagating through networks of interacting species. We show this to

be true for reef fish communities across the globe. An increase in fish-coral dependency with

the distance of coral reefs from human settlements, paired with the far-reaching impacts of

global hazards, increases the risk of fish species loss, counteracting the benefits of remo-

teness. Hotspots of fish risk from fish-coral dependency are distinct from those caused by

direct human impacts, increasing the number of risk hotspots by ~30% globally. These

findings might apply to other ecosystems on Earth and depict a world where no place, no

matter how remote, is safe for biodiversity, calling for a reconsideration of global con-

servation priorities.
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The effects of human activities on our planet are so
pervasive1 that many denote the current epoch as the
Anthropocene2. In these challenging times for biodiversity,

species face extinction3,4, and ecosystems deteriorate under the
synergic influence of global hazards (such as climate change) and
local human stressors (such as overexploitation)5,6. Since global
hazards act indeed globally, while local ones are associated with
proximity to human activities, their combined effect is expected
to decrease with the remoteness of the local ecosystem (Fig. 1a).
Therefore, pristine and isolated ecosystems—sometimes referred
to as “wilderness areas”—are considered sanctuaries that have the
potential to preserve nature during the current and future bio-
diversity crises7.

However, local anthropogenic disturbances can favour gen-
eralist species over specialized ones8–10, as corroborated by pre-
vious work showing a positive relationship between the degree
of ecological specialization and time with no disturbances in
in-silico ecological networks11. In addition, due to the reduced
in-flow of individuals into communities, we might also expect a
higher specialization of ecological interactions in isolated
habitats12. Specialized consumers can be more efficient in using
their (few) resources when these are available but have, in prin-
ciple, a higher co-extinction risk than generalist species13,14.
Thus, while specialization increases ecological networks’ robust-
ness to species loss under stable environmental conditions, it also
makes them more fragile towards potential cascading effects of
primary extinctions (triggered, for example, by warming)11.
Therefore, undisturbed and isolated communities should have
many specialized interactions increasing their vulnerability to
global change (Fig. 1a). Such an ecological mechanism depicts a
component of risk which is distinct and adds up to that stemming
from the increased chances of local extinction that species are
experiencing in isolated habitats15.

Here we test whether a positive relationship between ecological
specialization/vulnerability and remoteness exists in natural sys-
tems, and whether the resulting increased risk of species loss in
remote areas can question the common reliance on remote areas
as biodiversity strongholds. For these goals, we focused on one of
the most biologically diverse and socio-economically significant
ecosystems on the planet, coral reefs, which, despite international
attention and global protection programmes, continue to dete-
riorate under the influence of local human impacts (such as
physical destruction and pollution) and the increasing effects of
climate change (such as coral bleaching)16–19. By assessing the
local dependency of fish assemblages on corals across the world’s
oceans, we show that the increase in the frequency and strength
of fish-coral associations with distance from human settlements,
combined with the global reach of coral bleaching, obliterate the
benefits of remoteness on reef fish local extinction risk.

Results and discussion
Exploring the risk-remoteness relationship in reef fish. We
quantified remoteness as travel time to major cities20,21 (Fig. 2a).
This measure captures both the local impact of direct anthro-
pogenic disturbances (Fig. 1b) and geographical isolation (Sup-
plementary Fig. 1), being therefore well suited to test our
hypotheses. Using a global dataset providing standardized mea-
sures of anthropogenic impacts on oceans19, we quantified the
cumulative risk of species loss for reef fish assemblages from local
and global hazards. Local hazards stem from direct human
activities (six impacts related to fishing activities plus light pol-
lution, shipping, nutrient pollution, organic chemical pollution,
and direct human impacts on coastal and near-coastal habitats).
They decline with increasing remoteness from human settlements
(Figs. 1b, 2b). Global hazards are related to global processes such

as ocean warming, ocean acidification and sea-level rise. They
also decline with increasing remoteness but in a much weaker
way (Figs. 1c, 2c). These patterns indicate that the necessary
conditions for the risk-remoteness relationship to occur are met
(Fig. 1a).

Given that we were able to demonstrate the necessary
conditions empirically, we then addressed our primary questions.
Specifically, we explored (i) the relationship between reef
remoteness and strength of fish-coral ecological interactions;
and (ii) the potential effect of such a relationship on the shape of
the risk-remoteness relationship for reef fish. Such explorations
required first assessing the degree of fish-coral dependency
globally. The fish species known from literature to rely exclusively
on corals for food or shelter represent only a fraction (~20%) of
local coral reef fish diversity22–25. However, experimental
evidence suggests that the loss of corals may affect more than a
half of fish diversity26, as also supported by recent statistical
estimates27. This mismatch highlights that assessing fish
assemblages’ vulnerability to coral loss requires considering the
dense network of elusive, direct, and indirect links28 that create
interaction pathways from coral to fish species.

To assess the influence of both direct and indirect coral-fish
links on fish species persistence, we collected information on the
global distribution and ecological traits of 9,143 fish species
associated with coral reefs. We used these data and analytical
approaches of previous studies29–32 to identify potential trophic
and habitat-related associations between corals and fish, and
between prey and predatory fish species. We constructed local-
scale networks of potential coral→ fish→ fish interactions (on a
spatial grid of 1° × 1° covering 1761 reef localities worldwide) by
combining previously published information on fish dependency
on corals, spatial co-occurrences of species (accounting for
species niche and biogeographical history), and the ecological
traits of fish species. Finally, we quantified the dependency of fish
assemblages on corals as the proportion of fish species in each
locality (i.e., 1° × 1° cell in our grid) with direct or indirect links to
corals within the local ecological network (Fig. 2f). This crucial
step enables identifying indirect dependencies that would not
have been apparent by just tallying coral dependent fish species
from the literature. We found that the dependency of fish
assemblages on corals increases with coral reefs’ remoteness.
These results support the remoteness-specialization hypothesis
(Fig. 1f) and provide an important confirmation that the co-
evolutionary mechanisms affecting the emergence of specializa-
tion in ecological networks identified by theoretical work11,12 also
apply to real-world systems. Furthermore, the average percentage
of fish species identified as dependent on corals by our network
approach (38% ± 10% s.d.) matches a recent global scale estimate
obtained with a completely independent statistical model
(41% ± 18% s.d.)27, corroborating the idea that a world without
corals might have half as many fish species.

We then decomposed the fish-coral dependency by distin-
guishing between fish directly associated with corals (i.e., having a
minimum distance to corals in the network of one link) compared
to fish indirectly linked to corals (i.e., having a minimum distance
to corals of more than one link). We found that the relative
importance of directly associated fish increases with remoteness
(Fig. 3), which further strengthens the support for the hypothesis.
Not only does the overall fish coral dependency increase with
remoteness from a quantitative perspective, but the relative
contribution of direct dependencies becomes stronger. Since we
expect the effects of coral loss to be stronger on directly coral-
associated fish than on indirectly associated fish, this result
reinforces the idea that remote communities will be substantially
more affected than accessible ones as the impacts of global change
propagate across ecological networks. An extensive set of
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Fig. 1 Theoretical and empirical relationships between remoteness vs local/global hazards and ecosystem vulnerability from ecological dependencies.
a Theoretical expectation of a decrease in local and local+ global hazards with remoteness, and a counteracting increase in ecosystem vulnerability due to
ecological dependencies. b Comparison between reef remoteness, measured as travel time (in loge transformed hours) from a reef locality to the closest
major city21, and local hazards (cumulative local impacts on reef localities for 2013, consisting of six impacts related to fishing activities, light pollution,
shipping, nutrient pollution, organic chemical pollution, and direct human interactions on coastal and near-coastal habitats19). c Comparison between
reef remoteness and global hazards (cumulative global impacts on reef localities for 2013, consisting of warming, acidification, and sea level rise19).
d Comparison between reef remoteness and cumulative local+ global impacts. e Comparison between reef remoteness and bleaching susceptibility
quantified, for each reef locality, as the average bleaching alert level from 1985 to 2019. f Comparison between reef remoteness and fish-coral dependency
(quantified as the fraction of fish diversity directly or indirectly connected to corals through a coral→ fish→ fish network path at 1761 reef localities at a
resolution of 1° × 1°). For each relationship, we report the Spearman’s rank correlation coefficient (rs).
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sensitivity analyses confirm that these results are not affected by
potential biases in the availability of information on fish ecology
and distribution, nor are they driven by geographical variation in
functional redundancy or species abundances (see “Methods” and
Supplementary Fig. 2).

Mapping fish risk hotspots. The effect of global and local
hazards and that of ecological dependencies show a striking
spatial complementarity in determining global reef-fish risk. We
mapped areas of high local+ global hazards (falling in or above

the 70th percentile) as well as areas of high combined fish-coral
dependency and bleaching susceptibility. The latter are reef
localities in or above the 70th percentiles of both fish-coral
dependency and bleaching susceptibility, and comprise 9.4% of
reef localities (165 1° × 1° cells of our global reef map). Com-
paring the two maps reveals how only nine reef localities, or 0.5%
of areas highly threatened by local and global hazards also have a
high fish-coral dependency and bleaching susceptibility. Thus,
when we consider as hotspots of risk all localities from either of
the two maps, the total number of reef fish assemblages at risk

Fig. 2 Global maps of reef remoteness, local and global hazards, bleaching susceptibility and fish-coral dependency. a Global remoteness of coral reefs,
quantified as travel time (in loge transformed hours) from the target reef locality to the closest major city21. b loge transformed local hazards (cumulative
local impacts on reef localities for 2013, consisting of: six impacts related to fishing activities, light pollution, shipping, nutrient pollution, organic chemical
pollution and direct human interactions on coastal and near-coastal habitats19). c loge transformed global hazards (cumulative global impacts on reef
localities for 2013, consisting of: warming, acidification and sea level rise19). d loge transformed local+ global hazards; e global bleaching susceptibility,
quantified as the average bleaching alert level from 1985 to 2019. f Fish-coral dependency, quantified as the proportion of fish species that are directly or
indirectly connected to corals through an identified coral→ fish→ fish network path at 1761 reef localities at a resolution of 1° × 1°.

Fig. 3 The relative contribution of direct fish-coral dependency increases with reef remoteness. We decomposed the total fish-coral dependency (i.e.
the total fraction of fish species having at least one path to corals in the local coral→ fish→ fish networks) by distinguishing between fish species having a
minimum distance of 1 step (i.e. network link) to corals, and fish species having a minimum distance to corals >1 step. While the fraction of fish with direct
associations with corals increases with remoteness, that of indirectly associated fish decreases (a). Thus, as we move away from human influence, the
relative contribution of direct fish-coral dependency increases from 26 to 68% on average (b). The plots summarize the results obtained in 1761 reef
localities at a resolution of 1° × 1°. Solid lines represent average values, while shaded areas represent standard deviations. The Spearman’s rank correlation
coefficients (rs) were computed on the full set of results (n= 1761), and not on the averaged values. Remoteness of coral reefs was quantified as travel time
(in loge transformed hours) from the target reef locality to the closest major city21.
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increases by 29%, from 535 to 691 reef localities (39.2% of reefs)
(Fig. 4). Further, our study reveals that the fish communities on
some of the most remote coral reefs are at relatively high risk of
local species extinction (Figs. 2 and 4).

Thus, the effects of local and global hazards in reef fish
assemblages and those of ecological dependencies combined with
bleaching vulnerability show a remarkable complementarity.
Many areas that are not hotspots of risk from global or local
hazards are potential hotspots of risk due to ecological network
fragility and vice versa. This pattern is a strong warning that the
ongoing biodiversity crisis is truly global and that distance from
human influence does not guarantee safety. In turn, it highlights a
profound need to account for ecological dependencies when
assessing the risk global change poses to particular species.

Accounting for ecological dependencies in risk assessment. The
very different nature of the risk sources makes exploring the
potential effect of the remoteness-specialization relationship on
global risk projections challenging. Here, the risk assessment
framework provided by IPCC’s fifth assessment report—which

quantifies risk as the combination of vulnerability, exposure, and
hazard5—might provide a formal layout to tackle the challenge.

As a proof of concept, we devised an equation which quantifies
risk by combining additively global and local hazards with the
effect of ecological dependencies as applied to our fish-coral case
study. To include the effect of ecological dependencies, we had to
identify a potential “trigger” capable of transforming the
vulnerability stemming from fish-coral dependency into an
additional component of local risk. An obvious trigger is local
susceptibility to bleaching events16–18, which we identified based
on bleaching alert level data from 1985 to 2019 (Fig. 2e; see
“Methods” for details). Bleaching is a global hazard (in that its
cause does not originate from a single point source) that can have
local effects. Bleaching susceptibility can indicate the probability
of local coral mortality and loss. Combining bleaching suscept-
ibility with the local estimate of fish-coral dependency (from the
network analysis) quantifies, therefore, a local risk for fish
communities stemming from the bottom-up effects of coral loss
across coral-fish networks.

Depending on the different weights assigned to either the risk
component stemming from global and local hazards or to the one

Fig. 4 Spatial comparison between hot-spots of risk from local and global hazards vs. hotspots of risk from fish-coral dependency combined with
bleaching risk. a Magenta pixels are reef localities (at a resolution of 1° × 1°) falling above the 70th percentile of local+global hazards (based on 2013
cumulative human impacts on reef localities19 as in Fig. 2d); cyan pixels are reef localities falling simultaneously above the 70th percentile of fish-coral
dependency (fraction of fish diversity per reef locality directly or indirectly connected to corals through the coral→ fish→ fish network, as in Fig. 2f) and
above the 70th percentile of bleaching susceptibility (quantified, for each reef locality, as the average bleaching alert level from 1985 to 2019 as in Fig. 2e);
dark blue pixels are reef localities falling in both of the previous categories. b Percentage of reef localities worldwide where the fish community is put at risk
by either local+global hazards (magenta line) or by fish-coral dependency combined with bleaching susceptibility (cyan line) for increasing values of
remoteness, quantified as travel time (in loge transformed hours) from the target reef locality to the closest major city21. c Frequency of reef risk hotspots
from either local+global hazards (magenta line), fish-coral dependency combined with bleaching susceptibility (cyan line), or both (dark blue line), for
increasing values of remoteness (frequency relative to the respective total number of risk hotspots; data were pooled to the first decimal digit of
remoteness). d Percentage of reef localities worldwide where the fish community is put at risk by either local+ global hazards (magenta line), fish-coral
dependency combined with bleaching susceptibility (cyan line), at least one of these two sources of risk (dashed dark blue line), or both (continuous dark
blue line), for different percentile thresholds used to identify hotspots. The thresholds were identified (and applied) independently for local+ global
hazards, fish-coral dependency and bleaching susceptibility.
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stemming from ecological dependencies (i.e., the α and β terms in
Eq. 4) we can identify different patterns for the risk-remoteness
relationship. The two extremes correspond to the risk emerging from,
alternatively, only local and global hazards, or only ecological
dependencies triggered by local bleaching susceptibility (Fig. 5).
However, under the parsimonious assumption that both sources of
risk are equally important for fish species (i.e., for example, that a
coral dependent fish species would be equally threatened by mass
coral mortality as by overfishing) the risk-remoteness relationship
becomes flat, providing a strong argument that distance from
humans does not make a fish community any safer.

The risk-remoteness relationship in global conservation. With
reef fish providing protein to half a billion people worldwide33

and the critical importance of fish for addressing micronutrient
deficiencies34, our results have profound societal implications;
remote coral reefs won’t be able to compensate for the losses of
coral and fish species directly impacted by human activities,
threatening the livelihoods of millions. Also, our study reveals an
essential macroecological and eco-evolutionary mechanism that
might dramatically amplify risks from global change in natural
systems.

The risk patterns observed for reef fish communities suggest
that our already disconcerting projections about biosphere
fragility might be overly optimistic. Moreover, the results of our
study temper any hopes that, by protecting wilderness areas, we
safeguard biodiversity vaults that can withstand the past and
ongoing environmental destruction and changes brought by the
Anthropocene. Therefore, aggressively addressing global hazards
while supporting local management and conservation at both
intensely used and remote locations emerges as the only hope to
reverse the current biodiversity crisis.

Methods
Fish distribution. We rasterized a detailed reef distribution vector map35 at 5 × 5
latitude/longitude degrees (by considering as reef area each cell in the raster
intersecting a polygon in the original shapefile). We collected all the occurrences of
fish species intersecting the rasterized reef area from both the Ocean Biogeographic
Information System36 and the Global Biodiversity Information Facility37. We used
taxonomic and biogeographical (i.e., latitudinal/longitudinal extremes for a given
species) information from FishBase38 to exclude potential incorrect occurrences
(i.e., all the records falling outside the known species ranges). We also restricted the
list to all the species for which FishBase provided relevant ecological information
(as these were needed to evaluate prey-predator species interactions and identify
indirect links between fish species and coral, see below). The filtered list comprises
9143 fish species.

For these species, we used occurrence data to generate species ranges. For this,
we used the α-hull procedure39, but instead of pre-selecting an α parameter and
using it for all species, we developed a procedure to obtain conservative species
ranges while including most of the known occurrences. First, we selected a very
small α (0.001), to obtain a hull including most of the occurrences. Then, we
progressively incremented α in small amounts (0.005) by computing, for each
increment, the ratio between the relative reduction in the resulting hull area (in
respect to the previous hull), and the relative reduction of occurrences included in
the hull (in respect to the total number of available occurrences for the target
species). We stopped increasing α when the ratio became <10. This procedure
ensured that only isolated sites far from the core distribution of a species were
excluded, while the range was stretched as much as possible around known
occurrences.

After delineating ranges for each species, we rasterized the reef vector map at a
higher resolution (1 × 1 latitude/longitude degree) and used it as a reference layer to
extract fish occurrences at each reef location. This resolution is finer than that used
by other global studies on reef fish diversity and distribution40,41. We took the 1° × 1°
reef raster as the reference grid in all subsequent analyses and spatial interpolations,
considering all the reef cells hosting at least five fish species (n= 1761).

Fish distribution validation. To validate the fish distribution data, we compared
them with a smaller independent dataset (GASPAR) providing fish occurrences for
196 globally distributed reef localities42, which we rasterized against the same
reference grid used for our fish and coral distribution data. Because this dataset is
based on comprehensive check-lists, its information can be considered as ascer-
tained presence-absence data. Thus, we compared our list of fish occurrences (at
one degree) in each cell where data from the GASPAR dataset were also available,
computing true skill statistics score as TSS= [(a × d)− (b × c)]/[(a+ c) × (b+ d)],
with a being predicted & observed occurrences; b being predicted, but not observed
occurrences; c being observed but not predicted occurrences; and d being not
observed and not predicted occurrences. We obtained a median TSS of 0.53, with a
median sensitivity (the proportion of correctly predicted presences) of 0.60, and a
median specificity (the proportion of correctly predicted absences) of 0.96, indi-
cating that our mapped ranges were sufficiently conservative and rarely generated
false presences. Finally, given that we were analysing coral reef fishes, we excluded a
few grid cells where our methods returned no fish species.

Environmental data. We obtained environmental data (surface temperature, salinity,
pH, and total chlorophyll as a proxy for productivity) at a spatial resolution of 5 arcmin
from Bio-ORACLE v2.043, and we upscaled these data on the reference reef grid
(averaging the variable values in each 1 × 1 latitude/longitude degree grid).

Human impact. As a measure of human impact on reef localities, we used the 14
cumulative human impact layers (for 2013)19 available at https://doi.org/10.5063/
F12B8WBS. For the purposes of our analysis, we categorized them into “local
hazards” stemming from direct human impacts (specifically, six impact layers
related to fishing activities plus light pollution, shipping, nutrient pollution, organic
chemical pollution, and direct human interactions on coastal and near-coastal
habitats, such as trampling); and “global hazards” related to planetary wide pro-
cesses (warming, acidification and sea level rise). The original dataset has a reso-
lution of 1 km2 and was therefore upscaled on the reference reef grid (averaging the
variable values in each 1 × 1 latitude/longitude degree grid).

Time travel to cities. We quantified the “remoteness” of each reef locality in terms
of travel time (based on the fastest possible local means of terrestrial and aquatic
transportation, hence excluding air travel) to the closest human settlement. For
this, we used the procedure described in Weiss et al.21 which consists of first
combining information on land types and use, topography, distribution of roads
and railways, position of national borders to derive a friction surface raster map
indicating the average speed at which humans can travel through each pixel; and
then applying an algorithm to identify the least costly paths (i.e. those requiring the
shortest travel time) from each pixel to a target locality (e.g. a city)21.

The original publication21 provides a global map of accessibility that does not
include water localities, which is clearly problematic for reefs. We therefore
produced a new map of travel time (in hours) including also water pixels (at the
same resolution of Weiss et al.21, i.e. 1 km2) by using their friction map, the same

Fig. 5 Fish-coral dependency modifies the risk-remoteness relationship.
Coral reef remoteness was quantified as travel time (in loge transformed
hours) from the target reef locality to the closest major city21. The blue dots
represent risk quantified as the sum of threats from local+ global hazards
on reefs (as in Fig. 2d), while magenta dots represent risk quantified as
bleaching susceptibility × fish-coral dependency. Both components of risk
(i.e., local+ global hazards and bleaching susceptibility × fish-coral
dependency) were rescaled between 0 and 1. The two rescaled risks
components are then combined into a single risk assessment equation
where risk= [α (local+ global hazards)+ β (bleaching susceptibility × fish-
coral dependency)]/2. The lines in the plot represent the slopes of the
trend lines from different parametrizations of the risk equation. When equal
weight is given to the two risk components, risk remains almost constant
across remoteness values (trend line slope=−0.002, black dashed line).
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layer of human urban centre (the ‘high-density centres’ variant of the Global
Human Settlements44) and the same cost distance algorithm (cumulative cost
distance, which we computed using SAGA gis45). Then, we upscaled the high-
resolution map on our grid of 1 × 1 degree reef localities (computing the mean
accessibility per each 1 × 1 degree cell).

Bleaching susceptibility. We downloaded annual layers reporting maximum
bleaching alert level at the global scale and at a resolution of 50 km from 1985 to
201946. Alert levels range from 0 (no stress) to 4 (mortality likely). We upscaled
each layer on the reef reference grid (averaging alert level data) and computed an
index of bleaching susceptibility as the average of recorded alert level in each coral
reef pixel of the reference raster.

Building ecological networks of fish→ fish interactions. We built networks of
fish→ fish interactions by using a multi-step procedure. (1) We generated a model
capable of predicting the probability of occurrence of a prey-predator interaction
between two given fish species based on some of their functional and ecological
traits. For this, we obtained information on fish body size, trophic level, minimum
and maximum depth, and habitat preference for 17,722 fish species from
FishBase38, OBIS36 and GBIF37 (from the latter two sources, we specifically derived
complementary data on species depth occurrences, which we used to fill in gaps in
FishBase). We combined this information with a large dataset of known prey-
predator interactions assembled from the Global Biotic Interactions dataset,
GLOBI47. After filtering GLOBI according to the set of species with available
ecological information and removing replicated records, we obtained 11,188
individual prey-predator pairs (for a total of 2643 species). We then identified an
identical number of absences (pairs of species not interacting, and hence not
having a link in the network). GLOBI includes only observed interactions, while it
does not provide explicit information on non-interacting species. Although one can
ideally generate a list of absences by sampling from all pairwise combinations of
species not listed by GLOBI, this procedure might lead to the mislabelling of an
actual prey-predator pair as a non-interacting pair simply because the species
combination is missing from the database. To reduce this risk and generate
“reliable” pseudo absences (that is, truly representative of associations not possible
in the real world), we used a stochastic approach where we sampled species pairs at
random from all possible species combinations not present in GLOBI with the
important addition of two constraints; namely, the prey needed to be at least 30%
larger than the predator and/or the predator needed to have a trophic level ≤3.0
(according to FishBase trophic classification).

(2) We then used a random forest classifier (a machine learning technique; we
used the Python package Scikit-learn48) where the dependent variable was the
presence or (pseudo) absence of interactions, and the independent variables were
prey and predator traits (prey body size, prey trophic level, prey min and max
depth and eight dummy variables for habitat; and the same variables for predator,
for a total of 24 independent variables). We first explored the ability of the model
by training it on a random subsample (50%) of the dataset (including true
presences and pseudo absences), and then testing it on the remaining fraction. The
model performed very well, being capable of predicting observed (true positives)
and unobserved interactions (true negatives) in the testing set with an exceptional
precision and accuracy (TSS= 0.93; type I error rate= 0.05; type II error
rate= 0.02). After this first exploration, we used the full dataset to train the model
to be used on the actual data. Out-of-bag validation score in the final model based
on the complete dataset was >0.97.

The random forest predictor was used to assess the probability of trophic
interaction between a large list of potential interactions generated by combining all
fish species from our reef fish occurrence dataset known to rely mainly or
exclusively on fish for their survival (i.e. “true piscivores”, FishBase trophic
level > 3.5), with all the fish in the dataset. The full list included 31,768,450 potential
interactions, that we reduced to 6,721,450 interactions by keeping only the
interacting pairs identified by the random forest classifier with a probability ≥0.9.

(3) If the ecological dependency between two species is actually manifested then the
two species must obviously co-occur at some locations, and vice-versa, co-occurrence is
a necessary pre-requisite for an ecological dependency. Following this logic, we took a
final, additional step to further filter and improve the fish→ fish interaction list. In
particular, we quantified the tendency for species to co-occur in the same locality as one
potential proxy layer for species interactions, complementary to our other approaches.
There are various factors that can affect the co-occurrence of two species. In a
simplification, this can emerge from stochasticity, shared environmental requirements,
shared evolutionary history, and ecological dependencies. We attempted to disentangle
the effect of the last factor from the first three.

For each target species pair, we computed overlap in distribution as the raw
number of reef localities where both target species were found. Then, we compared
this number with the null expectation obtained by randomizing the distribution of
species occurrences across reef localities. We designed a null model accounting for
randomness, species niche and biogeographical history, and hence randomizing the
occurrence of species only within areas where they could have possibly occurred
according to environmental conditions and biogeographical factors (e.g., in the
absence of hard or soft barriers). To implement the null model, we first excluded
from the list of potential localities all the areas outside the biogeographical regions
where the target species had been recorded, with regions identified according to

Spalding et al.49. Then, within the remaining areas, we identified all the reef
localities with climate envelopes favourable to target species survival. For this, we
identified the min and max of major environmental drivers (mean annual surface
temperature, salinity, pH) where the target species occurred, and then we identified
all the localities with conditions not exceeding these limits. We generated, for each
pairwise species comparison, one thousand randomized sets of species occurrences
by rearranging randomly species occurrence within all suitable localities. We
quantified co-occurrence between the species pair in each random scenario. Finally,
we compared the observed co-occurrence with the random co-occurrences,
computing a p-value as the fraction of null models with co-occurrence identical or
higher than the observed one. We kept only the pairs with a p-value < 0.05. This
further reduced the fish→ fish list to 1,365,863 interactions. We used the networks
to build site-specific networks interactions in all 1° × 1° reef localities of our
reference grid, by filtering it according to local fish species diversity.

Measuring fish-coral dependency. We compiled from literature22–25 a list of fish
species known to be associated with corals, in terms of habitat and/or trophic
specialization. This list includes 44% of the fish species we used in our analysis
(4040/9,143). As above, we used the known associations (or lack thereof) in the
dataset to identify coral dependency in the unassessed fish. For this, we trained two
independent random forest classifiers (again using the Python package Scikit-
learn48), one to model generic habitat associations, and the other one to model
corallivory. In both models, the dependent variable was the presence/absence of
coral-association, and the independent variables were the same ecological features
used to predict fish→ fish trophic interactions (i.e. prey body size, prey trophic
level, prey min and max depth and eight dummy variables for habitat), plus an
additional variable quantifying the fraction of documented coral-associated species
in the family of the target fish. Both models showed high precision and accuracy
(with a TSS of 0.57 for the habitat association model, and of 0.81 for the corallivory
model). Combining the list of coral dependent species from literature (n= 897)
with our model predictions (n= 356) yielded a total of 1253 fish species.

We linked all the coral-dependent species in the local fish→ fish networks to a
symbolic “coral” node. Then, we quantified the overall dependency of fish
assemblages on corals in each reef locality as the fraction of fish having at least one
(unidirectional) path to corals across network links. We opted for this simple and
intuitive measure after finding it produced virtually identical results to several,
more complex, measures of fish-coral dependency that we explored (such as
weighted and unweighted network distance between individual fish species and
coral genera, and dependency values estimated using co-extinction simulations50).
For each network, we also quantified, separately, the fraction of fish species directly
associated with corals (i.e., having a minimum distance to corals in the network of
one link) and indirectly associated with corals (i.e. having a minimum distance to
corals of more than one link).

Risk assessment framework. Following the definitions from the IPCC’s fifth
assessment report, we separate vulnerability (combination of sensitivity and
adaptive capacity) from exposure to an extrinsic forcing agent (‘hazard’). Then we
quantify risk as the combination of vulnerability, exposure, and hazard5.

Assuming, for illustrative purposes, a combined linear effect of local and global
hazards on the risk experienced by a target system, we can model the latter (R) as:

R ¼ E ´ ðHlocal ´V local þ Hglobal ´VglobalÞ; ð1Þ
with E being exposure, and Hlocal, Hglobal, Vlocal and Vglobal being local and global
hazards and their respective vulnerabilities. If we then focus on average per-species
risk, and assume no relationship between a system’s remoteness and its intrinsic
vulnerability to local and global hazards, we can further simplify the equation by
setting E, Vlocal and Vglobal to 1:

R ¼ Hlocal þHglobal ð2Þ
To account for the effect of the expected increase in ecological dependencies

with remoteness8 in the illustrative risk assessment model described by Eq. (2), we
can add one term to quantify the combined effect of the vulnerabilities emerging
from ecological dependencies combined with the exposure to relevant hazards
capable of exploiting such vulnerabilities and triggering cascading effects through
interaction links (“triggers”):

R ¼ ½αðHlocal þ HglobalÞ þ βðecological dependency ´ triggersÞ�=2 ð3Þ
Here, α and β are weights that can be used to modulate the relative importance of
the two risk components (impacts from humans and global change vs ecological
dependencies). Assuming that both risk components are rescaled in [0,1], to keep R
in [0,1], we need to set 0 ≤ α ≤ 2 and β= 2− α.

Applying the risk assessment framework to reef fish communities. We
modelled the local risk of a reef fish community (in each 1° × 1° grid cells in the reef
reference raster) using two different approaches. First, we quantified the risk as
originating from the sum of local and global hazards (Eq. (2)), where local and
global hazards refer to the human impact layers19, as described in the “Human
impact” section above. Then, we re-assessed risk for each reef fish assemblage when
accounting also for the risk component possibly deriving from ecological
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(fish-coral) dependencies combined with a relevant hazard (e.g., death of coral
species due to bleaching) capable of triggering cascading effects across species
interaction links by adapting Eq. (3):

R ¼ ½αðHlocal þ HglobalÞ þ βðcoral dependency ´ coral bleaching susceptibilityÞ�=2
ð4Þ

Fish-coral dependency and coral bleaching susceptibility were assessed as
described in the sections above. To make the different components of risk
comparable, prior to computing risk, we rescaled both local+ global hazards and
fish-coral dependency × coral bleaching susceptibility between 0 and 1 across all
reef localities. We did the same for the two sets of risk assessment values obtained
using either Eqs. (1) or (2) (to permit direct comparison between the shapes of the
risk-remoteness relationships).

Both equations ideally provide the average risk of a species in a given locality,
that is they assume exposure= 1. Also, they assume that the average local degree of
vulnerability towards either local or global hazard is constant among localities;
therefore, the respective vulnerability terms can be removed from the risk
equations given that they are constants which would affect each locality the same.
See the “Potential caveats in the risk assessment equations” section below for
additional discussion on these issues.

Assumptions of the risk assessment equations. In this study we demonstrated
how the framework of environmental risk assessment could incorporate species
dependencies to more thoroughly examine the relationship between risk and
remoteness. The proposed risk assessment equations are not intended to provide a
definitive global risk assessment of reef fish assemblages. Instead, they are func-
tional to assessing if, and to what degree, the risk component stemming from
ecological dependencies can affect the expected relationship between risk and
remoteness. The exact form of the equations is not overly important. In our
equations we assumed constant vulnerability of fish assemblages to local and global
hazards. That is, we ignored hazard-specific vulnerabilities. Although fish on coral
reefs are likely vulnerable to the various hazards to different extents, modelling this
amount of complexity would be extremely difficult. Considering the multiplicity of
hazards per locality, and their potential complex interactions, it would be extremely
challenging to obtain precise and realistic values for each of them to test our
assumptions. However, we were able to compile several proxies of potential vul-
nerability to some of the main hazards, and in particular we computed the average
vulnerability to fishing for all fish species in each reef locality, using the vulner-
ability measure provided by FishBase and based on the method by Cheung et al.51.
Based on geographic distributions of the species, we determined the temperature,
pH, and organic matter limits for each species, and then we used these data as
indicators of each species potential tolerance to changes in temperature, acid-
ification and organic pollution. Based on species habitat preference as defined by
FishBase, we determined the fraction of demersal, benthopelagic, and coral asso-
ciated species, as likely more affected by direct human disturbances (such as
trampling); and the proportion of pelagic fish as potentially affected by shipping.
We then compared those vulnerability proxies with remoteness, finding no strong
relationships which would need to be incorporated into the risk equations (Sup-
plementary Fig. 3).

Then, we explored if our results held when exposure was taken into account
(i.e., projecting the average per-species risk to the full fish assemblages). Exposure
is a typical parameter involved in environmental risk assessment. For this, we
multiplied the risk for the (loge-transformed) corresponding fish diversity. The
observed patterns (Supplementary Fig. 4) were consistent with those relative to
average species risk, which means that our conclusions scale up to fish
assemblages. Again, the results of our study do not provide absolute estimates of
risk for any of the fish species or coral reefs. However, with further research, we
believe such estimates could be realistically obtained given sufficient species-
specific data and more information about how the detrimental effects of each
hazard are manifested.

Sensitivity analyses. We performed various analyses to check the robustness of
our results and conclusions against potential biases stemming from data avail-
ability. In particular, we focused on potential relationships between the quality and
quantity of information on species ecology and distribution, and remoteness. First,
we checked for unequal distribution of sampling effort, under the hypothesis that
remote localities could be less investigated than those close to human settlements.
A comparison between the number of fish records available from OBIS36 and
GBIF37 vs remoteness across all 1° × 1° reef localities revealed that this is not the
case, with sampling effort remaining relatively high across all localities regardless of
remoteness (Supplementary Fig. 2a, R2= 0.0008).

We then explored whether the availability and quality of the ecological
information we used in our analyses decreased with remoteness. For this we
evaluated how the TSS values obtained from the comparison between the species
ranges devised with our procedure and independent species distribution data from
the GASPAR dataset42 varied across reef localities with remoteness. We found no
relationship (Supplementary Fig. 2b, R2= 0.0292). We also looked at the individual
species TSS values obtained by comparing the distribution of a target species
devised by our procedure with that according to the GASPAR dataset. Consistently
with the previous result, we found no pattern linking the average of local species’

TSS values to remoteness (Supplementary Fig. 2c, R2= 0.0001). We also explored
whether remoteness affected negatively the fraction of species (for which we had
distributional data) to be discarded in each locality due to the lack of the ecological
information needed in our analyses. Again, the analysis revealed no effect of
remoteness on data availability (Supplementary Fig. 2d, R2= 0.0992).

Another potential question arising from our conclusions is whether they would
still be valid when species abundances are considered alongside species diversity.
To explore this issue, we tested whether the relative abundance of coral-dependent
fish changes with remoteness using all the data available from the Reef Life Survey
(RLS) dataset52. Finding that coral dependent fish become less abundant as
remoteness increases would weaken our results, as the increasing species-level
vulnerability stemming from coral dependency would be counterbalanced by the
reduction in the overall number of individuals threatened by coral loss. This is not
the case. On average, coral associated fish are more abundant than the other species
(with an average number of individuals per survey of 782 for coral associated
species vs 658 for non associated species). More importantly, the local proportion
of associated individuals is unaffected by remoteness (Supplementary Fig. 2e,
R2= 0.0002).

Finally, we tested whether our results could be driven or confounded by a
potential relationship between functional redundancy and remoteness. We
quantified functional redundancy in each locality as one minus the ratio between
the number of unique functional entities and total species richness. We identified
functional entities using the method and functional diversity datasets as in Mouillot
et al.53. We found no relationship between functional redundancy and remoteness
(Supplementary Fig. 2f, R2= 0.0042).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All the data used in the analysis are freely available online from the sources listed in the
Method section, and particularly: (1) reef distribution map: http://data.unep-wcmc.org/
datasets/1; (2) fish occurrence data: https://obis.org/; and GBIF (Actinopterygii, https://
doi.org/10.15468/dl.k6vam4; Elasmobranchii, https://doi.org/10.15468/dl.pu4tcx;
Holocephali, https://doi.org/10.15468/dl.npckhm; Sarcopterygii, https://doi.org/
10.15468/dl.huzujv); (3) fish ecology data: http://www.fishbase.org; (4) ocean impact
layers: https://doi.org/10.5063/F12B8WBS; (5) the friction surface map needed to
compute accessibility: https://malariaatlas.org/research-project/accessibility-to-cities; (6)
human settlement data: http://data.europa.eu/89h/jrc-ghsl-
ghs_smod_pop_globe_r2016a; (7) bleaching alert data: https://coralreefwatch.noaa.gov;
(8) environmental layers: https://www.bio-oracle.org; (9) marine eco-regions: https://
data.unep-wcmc.org/datasets/38; (10) fish trophic interactions: https://
www.globalbioticinteractions.org; (11) reef fish abundance data: https://
portal.aodn.org.au/search. (12) GASPAR dataset: https://rs.figshare.com/collections/
Supplementary_material_from_Coral_reef_fishes_reveal_strong_divergence_in_the_pre-
valence_of_traits_along_with_the_global_diversity_gradient_/5647995/2. The list of
coral-associated fish compiled from literature as well as the data used for the fish range
validation and the dataset of functional traits are provided together with all scripts used
in the analyses at https://doi.org/10.5281/zenodo.570297254.

Code availability
All the scripts and data permitting to replicate the analyses and reproduce the figures are
available from https://doi.org/10.5281/zenodo.5702972 54.
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