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Abstract

In this thesis we consider mean-field stochastic differential equa-
tions, which are an extension of classical stochastic differential equa-
tions, where the coefficients may depend on an additional measure
component in the law of the solution. We consider the existence of
weak solutions of such equations under the assumption that the coef-
ficients are bounded and continuous, where continuity is understood
in the 2-Wasserstein metric in the measure component. We follow
the treatment given in the article of Li, J. and Min, H., Weak solu-
tions of mean-field stochastic differential equations (2017). We start
by recalling some fundamental notions from stochastic analysis. Then
we introduce the path space, along with the classical local martingale
problem and functional stochastic differential equations. Furthermore
we introduce the Wasserstein spaces of measures and how to differen-
tiate functions depending on a measure variable. Finally we show the
existence of weak solutions to mean-field stochastic differential equa-
tions under bounded, measurable and continuous coefficients by show-
ing that there exists a solution to the corresponding local martingale
problem.

Tiivistelmä

Tässä tutkielmassa käsittelemme odotusarvokentällisiä stokastisia
differentiaaliyhtälöitä, mitkä ovat yleistys klassisille stokastisille diffe-
rentiaaliyhtälöille. Odotusarvokentällisen stokastisen differentiaaliyhtälön
kerroinfunktiot saattavat riippua ylimääräisestä mittakomponentista
ratkaisun jakauman muodossa. Käsittelemme heikkojen ratkaisujen
olemassaoloa tällaisille yhtälöille olettaen, että kerroinfunktiot ovat
rajoitettuja ja jatkuvia, missä jatkuvuus mittakomponentin suhteen
ymmärretään jatkuvuutena 2-Wasserstein metriikan suhteen. Seuraamme
artikkelia Li, J. ja Min, H. Weak solutions of mean-field stochastic dif-
ferential equations (2017). Aloitamme palauttamalla mieliimme joitakin
keskeisiä käsitteitä stokastisesta analyysistä. Tämän jälkeen esittelemme
polkuavaruuden, klassisen lokaalin martingaaliongelman ja funktionaa-
liset stokastiset differentiaaliyhtälöt. Lisäksi esittelemmeWassersteinin
mittojen avaruudet ja funktioiden differentioituvuuden mittakompo-
nentin suhteen. Lopuksi osoitamme heikkojen ratkaisujen olemassaolon
odotusarvokentällisille stokastisille differentiaaliyhtälöille olettaen että
kerroinfunktiot ovat rajoitettuja, mitallisia ja jatkuvia. Tämä tehdään
näyttämällä, että vastaavalla lokaalilla martingaaliongelmalla on ole-
massa ratkaisu.
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1 Introduction

Throughout the thesis we make the convention to use the abbreviation SDE
for stochastic differential equation.

This thesis deals with a type of SDEs called mean-field SDEs. How the
classical SDE

dXt = b(s,Xs)ds+ σ(s,Xs)dWs (1)

has coefficients depending on a time variable and a spatial variable, in the
mean-field case we have

dXt = b(s,Xs,PXs)ds+ σ(s,Xs,PXs)dWs. (2)

This means that in the mean-field case the coefficients are allowed to depend
on the law of the solution, which is a measure. This extension brings difficul-
ties, for example defining derivatives with respect to measure components
and applying existing theory of SDEs to the mean-field case. Typically one
can freeze the measure component and then use the corresponding result
in the classical SDE case to obtain results, which we will see later in this
thesis to be useful. However there is a degree of complexity that is added
and needs to be treated.

The above discussion raises the question why are we interested in mean-
field SDEs? To answer this question we will first attempt to give an answer
on why are we interested in classical SDEs. One of the first examples of
a classical SDE is the Ornstein-Uhlenbeck process (see [23]), given in the
differential form by

dXt = −bXtdt+ σdWt. (3)

The equation corresponds to the Langevin (see [17]) equation for the Brow-
nian motion of a particle with friction. Physics overall is a source of many
mathematical problems and the fields of SDEs and mean-field SDEs are no
exception to such problems. The theory of ordinary differential equations
and partial differential equations comes to a stop when trying to treat such
an equation, because of the random element involved; the integral

∫ t
0 σdWs

is a random variable. Examples exist in other disciplines as well, for exam-
ple in finance and economics the randomness of a particle is replaced with
the randomness of a value of a stock. In this approach the value of an asset
called a bond can be modeled by an ordinary differential equation, but the
value of other assets, called stocks, must be modeled by an SDE (see [16]).
Another example from the field of finance is the so-called Black-Scholes (see
[3]) option valuation formula, which is of fundamental importance in the
field of mathematical finance.
Coming back to the motivation of mean-field SDEs, we have again the roots
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in physics. The interest began with the Boltzmann equations and modeling
them with mean-field SDEs, as done by Kac [15], McKean [20] and Vlasov
[26]. Mean-field SDEs are often called McKean-Vlasov SDEs based on these
contributions to the field.

The field of SDEs and stochastic analysis has been extensively studied
for almost a century now. The field began largely with Itô’s contributions in
[13] and [14]. Itô studied SDEs with Lipschitz continuous coefficients, and
over time the existence of weak solutions to SDEs began to be more widely
known, first under just continuous coefficients, and then merely measurable
and bounded coefficients. The field started to be well-investigated until a
few decades ago mean-field SDEs brought many new problems. Various ex-
istence and uniqueness results for mean-field SDEs were achieved in articles
of Funaki [8] and Gärtner [11], mostly relating to various assumptions on
the Lipschitz continuity of coefficients. Further interest was brought to the
context of mean-field SDEs via the concept of a mean-field game, that were
studied for example by Lasry and Lions in [18]. Carmona and Lacker [6]
found weak solutions to mean-field SDEs with measurable coefficients where
the diffusion coefficient σ does not depend on the law of the solution and
the drift coefficient b is sequentially continuous in the measure component.

There are (at least) two main approaches to deal with mean-field SDEs,
the Lyapunov-type approach and the martingale problem approach. For the
Lyapunov-type approach the reader can consult for example [21], [12]. In
this thesis we take the martingale problem approach. The papers of Funaki
and Gärtner used the classical local martingale problem (this originates
from Stroock and Varadhan, see [16]) to treat mean-field SDEs under their
assumptions.

We will look to investigate the existence of a weak solution to the equa-
tion

dXt = b(s,Xs,PXs)ds+ σ(s,Xs,PXs)dWs, (4)

under the assumption that the coefficients b and σ are bounded and con-
tinuous. For this case it is not sufficient to deal with the classical local
martingale problem, so we will look to extend the local martingale prob-
lem for our needs. As a motivation to the above equation we consider the
following system of interacting diffusion, studied by Chiang in [7]

dXn,i
t = b

(
Xn,i

t ,
1

n

n∑
j=1

δ
Xn,j

t

)
dt+ σ

(
Xn,i

t ,
1

n

n∑
j=1

δ
Xn,j

t

)
dW i

t

Xn,i
0 = x0, x0 ∈ Rd, 1 ≤ i ≤ n,

(5)

where Wi are independent Brownian motions and δx denotes the Dirac mea-
sure at x ∈ Rd. This system models the behaviour of n weakly interacting
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particles, similarly one can think in the context of mean-field games and
games about n players. The importance of our mean-field SDE (4) is that it
models the asymptotic behaviour of this large system of diffusions as n → ∞,
i.e. when the number of particles (or players) becomes large.

Finally we note that the classical Itô formula is of fundamental impor-
tance in the study of SDEs and the field of mean-field SDEs is no exception.
However in the mean-field case there is the lack of measure derivatives, and
thus it has been extended for example the paper of Buckdahn et al. [4], to
contain the derivatives with respect to the measure variable.

The thesis is organized as follows. In the first section we recall some
classical stochastic analysis, including the Brownian motion, stochastic in-
tegration, the classical Itô formula, and then introduce the classical SDEs.
In the second section we fix some notations and setting for our future needs.
The third section is devoted to the path space

(C([0, T ];Rd),B(C([0, T ];Rd))) (6)

and the classical local martingale problem. In the fourth section we in-
troduce the Wasserstein spaces. In the fifth section we consider measure
derivatives via a lifting to L2 and then look to extend the Itô formula to the
measure dependant case. Finally, in the sixth section we consider mean-field
SDEs, extend the local martingale problem to the mean-field case and show
that solving the local martingale problem is equivalent to solving the mean-
field SDE. Finally the main theorem of the thesis considers the existence of
a weak solution to the mean-field SDE (4) under bounded and continuous
coefficients. Our treatment follows closely the treatment in [19].
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1.1 Table of notation

Here we summarize some notations from the article that are used.

� A′f(s, y) =
∑d

i=1 bi(s, y)
∂
∂xi

f(s, y(s))+1
2

∑d
i,j,k=1(σikσjk)(s, y)

∂2

∂xi∂xj
f(s, y(s))

where y ∈ C([0, T ];Rd)

� (Ãf)(s, y, ν) =
∑d

i=1 bi(s, y, ν)∂yif(s, y)+
1
2

∑d
i,j,k=1(σikσjk)(s, y, ν)∂yiyjf(s, y)

where (s, y, ν) ∈ ([0, T ]× Rd × P2(Rd))

� Af(s, y, ν) = (Ãf)(s, y, ν)+
∑d

i=1

∫
Rd(∂µf)i(s, y, ν, z)bi(s, z, ν)ν(dz)+

1
2

∑d
i,j,k=1

∫
Rd ∂zi(∂µf)j(s, y, ν, z)(σikσjk)(s, z, ν)ν(dz)

� Mf
t = f(t, y(t))− f(0, y(0))−

∫ t
0 (∂s +A′)f(s, y(s))ds where

f ∈ C1,2([0, T ]× Rd;R)

� Cf
t = f(t, y(t))− f(0, y(0))−

∫ t
0 (∂s + Ã)f(s, y(s), µ(s))ds where

f ∈ C1,2
b ([0, T ]× Rd;R)

� Cf (t, y, µ) = f(t, y(t), µ(0))−f(0, y(0), µ(0))−
∫ t
0 (∂s+A)f(s, y(s), µ(s))ds

where f ∈ C1,2,1
b ([0, T ]× Rd × P2(Rd);R)
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2 Classical stochastic analysis

In this section we will introduce some parts of the framework and central
objects from classical stochastic analysis that are used later or generalized
to fit the mean-field case. The main object of study in this section is the
stochastic integral

∫ T
0 XtdWt. We first define what the process (Wt)t∈[0,T ]

is and then discuss what it means to integrate a stochastic process against
this process. We will then recall the classical Itô’s formula, which can be
thought of as the Fundamental Theorem of Calculus for stochastic integrals.
Finally at the end of the section we introduce the classical SDEs.

2.1 Filtrations and measurability

First we define a filtration and a stochastic basis. Let us fix a time horizon
T > 0. Here we only consider the time interval [0, T ] to fit the setting of the
thesis, but all of the following concepts could also be defined for [0,∞).

Definition 2.1. Let (Ω,F ,P) be a probability space. A collection of σ-
algebras (Ft)t∈[0,T ] is called a filtration given that Fs ⊆ Ft ⊆ F for all
0 ≤ s ≤ t ≤ T . The quadruple (Ω,F ,F = (Ft)t∈[0,T ],P) is called a stochastic
basis.

Definition 2.2. We say that the stochastic basis (Ω,F ,F,P) satisfies the
usual conditions provided that the following is satisfied:

1. (Ω,F ,P) is complete.

2. F0 contains all F-null sets.

3. The filtration (Ft)t∈[0,T ] is right continuous, that is Ft =
⋂

ε>0Ft+ε

for all t ∈ [0, T ).

We will recall also the concepts of progressive measurability and of an
adapted process:

Definition 2.3. Assume that X = (Xt)t∈[0,T ], Xt : Ω → Rd is a stochastic
process on (Ω,F ,P) and let F = (Ft)t∈[0,T ] be a filtration.

1. We say thatX is progressively measurable with respect to the filtration
F given that for all s ∈ [0, T ] the map (ω, t) → Xt(ω) from Ω × [0, s]
to Rd is measurable with respect to Fs ⊗ B([0, s]) and B(Rd).

2. We say that X is adapted with respect to the filtration F given that
for all t ∈ [0, T ] we have that Xt is Ft-measurable.
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These concepts of measurability will be for the most part sufficient for
our needs. We will now consider the concept of a local martingale in finite
time. Often local martingales are considered in infinite time along with the
sequence of stopping times tending to infinity. The modification for a finite
time interval is as follows.

Definition 2.4. Assume a stochastic basis (Ω,F ,F,P) satisfying the usual
conditions. We say an F-adapted process X = (Xt)t∈[0,T ] is a local mar-
tingale given that there exists a non-decreasing sequence of stopping times
(τn)n∈N, such that 0 ≤ τn ≤ T for all n ∈ N and limn→∞ P(τn = T ) = 1 and
that Xτn = (Xt∧τn)t∈[0,T ] is a martingale for all n ∈ N.

We will also need to estimate the expectation of a supremum of a process.
For this we have the Doob’s maximal inequality which we recall here. For
more information one can see [16, Theorem 1.3.8].

Proposition 2.5. Assume X = (Xt)t∈[0,T ] is a continuous martingale and
p ∈ (1,∞). Then for t ∈ [0, T ] it holds

E
(
sup
s∈[0,t]

|Xs|
)p ≤ ( p

p− 1

)p
E|Xt|p. (7)

2.2 Brownian motion and stochastic integrals

We shall next define the Brownian motion which is of fundamental impor-
tance in stochastic analysis and in the study of SDEs.

Definition 2.6. Let (Ω,F ,F,P) be a stochastic basis. An adapted stochas-
tic process W = (Wt)t∈[0,T ], Wt : Ω → R is called a standard (Ft)t∈[0,T ]-
Brownian motion given the following is satisfied:

1. W0 = 0 holds P-a.s.

2. For all 0 ≤ s < t ≤ T the increment Wt −Ws is independent from Fs.
This means the sets C and {Wt − Ws ∈ A} are independent for all
C ∈ Fs and A ∈ B(R).

3. For all 0 ≤ s < t ≤ T the increment Wt −Ws is normally distributed
with mean 0 and variance t− s.

4. The map t → Wt(ω) is continuous for all ω ∈ Ω.

We call W a standard d-dimensional Brownian motion if instead of 3. we
have that for all 0 ≤ s < t ≤ T the incrementWt−Ws is normally distributed
with mean 0 and covariance matrix (t−s)Id, where Id is the identity matrix.
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It is not a trivial question whether such a process even exists. It turns
out the existence in the d-dimensional case follows from the 1-dimensional
case. Here we have the following:

Proposition 2.7. The standard Brownian motion exists.

This can be proven in multiple ways, for example Kolmogorov’s extension
theorem, see [16, Theorem 2.2.2].

Next we will turn to the problem of defining the stochastic integral∫ T
0 XtdWt, where (Xt)t∈[0,T ] is a stochastic process. As with Riemann and
Lebesgue integration there is a problem of determining what functions, or
in our case processes, can be integrated. We will start by defining the inte-
grals of the so-called simple processes. Assume from now on that we have a
stochastic basis (Ω,F ,F,P) that satisfies the usual conditions, and that we
have a 1-dimensional (Ft)t∈[0,T ]-Brownian motion.

Definition 2.8. A stochastic process X = (Xt)t∈[0,T ] is called simple, given
that there exists a partition P = {0 = t0, . . . , tn = T} of the interval [0, T ]
and Fti-measurable random variables vi : Ω → R, i ∈ {0, . . . , n−1} that are
uniformly bounded over Ω, such that

Xt(ω) =

n∑
i=1

χ(ti−1,ti](t)vi−1(ω). (8)

We denote the class of simple processes by LT
0 .

For the case of stochastic processes on [0,∞) the simple processes are
defined with an increasing sequence that tends to infinity instead of a par-
tition, and countable set of random variables. We now define a stochastic
integral for simple functions.

Definition 2.9. For a process X given by Equation (8) and t ∈ [0, T ] we
define the stochastic integral of X with respect to W to be(∫ t

0
XsdWs

)
(ω) :=

n∑
i=1

vi−1(ω)(Wt∧ti(ω)−Wt∧ti−1(ω)). (9)

Notice that for a fixed t the integral is a random variable. Further on
we will drop the ω from the notation of stochastic integrals for notational
convenience. In this way we get a linear operator that sends simple processes
to continuous, square-integrable martingales that start at zero. One also has
the Itô isometry which states that for 0 ≤ s ≤ t ≤ T and a simple process
X it holds

E
([ ∫ t

0
XudWu −

∫ s

0
XudWu

]2∣∣∣Fs

)
= E

(∫ t

s
X2

udu
∣∣∣Fs

)
a.s. (10)
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Next we define a larger class of processes, which is still reasonably nice.
Its main property is that one can approximate processes in this new class
by simple processes in an appropriate metric. The definition is as follows.

Definition 2.10. Define LT
2 to be the space of all progressively measurable

processes X = (Xt)t∈[0,T ], Xt : Ω → R such that

|X|T = E
(∫ T

0
X2

sds
) 1

2
< ∞, (11)

equipped with the metric

d(X,Y ) := |X − Y |T . (12)

One then defines the stochastic integral of a process in LT
2 by the limit

(in L2) ∫ t

0
XsdWs = lim

n→∞

∫ t

0
X(n)

s dWs (13)

Where X(n) ∈ LT
0 is a sequence approximating X in L2. This sequence

exists, but we omit the proof, see [9, Proposition 3.1.11]. Furthermore
one can choose the version of

∫ t
0 XsdWs such that

( ∫ t
0 XsdWs

)
t∈[0,T ]

is a

continuous, L2-martingale that starts identically at zero, see [9, Proposition
3.1.12].

One can extend the class LT
2 slightly in a way that integration still makes

sense as follows

Definition 2.11. Define LT,loc
2 to be the class of all progressively measurable

X = (Xt)t∈[0,T ] such that

P
({

ω ∈ Ω :

∫ T

0
X2

s (ω)ds < ∞
})

= 1. (14)

The integral is defined by localizing the process in LT,loc
2 with an in-

creasing sequence of stopping times such that the stopped processes are in
LT
2 .

Now we perform an extension of the stochastic integral to the case where
the integrator is the d-dimensional Brownian motion. To this end we assume
we have a d-dimensional (Ft)t∈[0,T ]-Brownian motion W .

Definition 2.12. For a process Y = (Yt)t∈[0,T ], Yt : Ω → Rd×d, such that

for each i, j = 1, . . . , d it holds Y ji
t ∈ LT

2 , we define the stochastic integral
of Y with respect to W to be∫ t

0
YsdWs :=

( d∑
i=1

∫ t

0
Y 1i
t dW i

s , . . . ,
d∑

i=1

∫ t

0
Y di
t dW i

s

)
, t ∈ [0, T ]. (15)

9



2.3 Itô’s formula

In this section we recall the classical Itô formula, which corresponds to the
fundamental theorem of calculus, but for stochastic integrals. Assume that
we have a continuous and adapted process X = (Xt)t∈[0,T ] that can be
represented as

Xt = x0 +

∫ t

0
YsdWs +

∫ t

0
Zsds, t ∈ [0, T ], a.s., (16)

for Y ∈ LT
2 and Z progressively measurable and integrable for all ω ∈ Ω.

Furthermore we recall the definition of C1,2([0, T ] × R;R), [16, Remark
5.4.1, p.312].

Definition 2.13. A continuous function f : [0, T ] × R → R belongs to

C1,2([0, T ]×R;R) provided that the partial derivatives ∂f
∂t ,

∂f
∂x and ∂2f

∂x2 exist
on (0, T )×R, are continuous and can be continuously extended to [0, T ]×R.

Then we have the following:

Theorem 2.14. For f ∈ C1,2([0, T ]× R;R) and X as above one has

f(t,Xt)− f(0, X0) =

∫ t

0

∂f

∂s
(s,Xs)ds+

∫ t

0

∂f

∂x
(s,Xs)YsdBs

+

∫ t

0

∂f

∂x
(s,Xs)Zsds+

1

2

∫ t

0

∂2f

∂x2
(s,Xs)Y

2
s ds,

for t ∈ [0, T ] a.s.

(17)

Itô’s formula extends also to f ∈ C1,2([0, T ] × Rd;R) and processes X
which have a representation with respect to Y,Z : [0, T ]×Ω → Rd×d,Rd and
Y is coordinate-wise in LT

2 and Z is progressively measurable and integrable
for every ω ∈ Ω, see for example [16, Theorem 3.3.6].

2.4 Classical SDEs

Next we want to make sense of the formal equation

dXt = σ(t,Xt)dWt + b(t,Xt)dt. (18)

One has to interpret this as an integral equation because dWt does not make
sense as a derivative in the classical sense. This is because the set of ω for
which the standard Brownian motion is nowhere differentiable contains a full
measure set. However towards this goal we defined the stochastic integral
with respect to the Brownian motion so we can define the following:
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Definition 2.15. Assume we have a stochastic basis (Ω,F , (Ft)t∈[0,T ],P)
along with an (Ft)t∈[0,T ] Brownian motion (Wt)t∈[0,T ]. Assume x0 ∈ R and
σ, b : [0, T ] × R → R are continuous and bounded. A pathwise continuous
and adapted stochastic process X = (Xt)t∈[0,T ] is a strong solution of the
SDE

dXt = σ(t,Xt)dWt + b(t,Xt)dt, with X0 = x0, (19)

if X0 = x0 and

Xt = x0 +

∫ t

0
σ(s,Xs)dWs +

∫ t

0
b(s,Xs)ds for t ∈ [0, T ]a.s. (20)

Notice that for strong solutions we obtain an adapted solution given a
specific stochastic basis. One has the classical existence result for strong
solutions, see [16, Theorem 5.2.9]:

Proposition 2.16. If σ, b are uniformly Lipschitz in the space coordinate,
then there exists a strong solution to equation (19).

It turns out one can also take another approach to finding a solution to
equation (19). This is the concept of a weak solution.

Definition 2.17. Assume σ, b : [0, T ]×R → R are continuous and bounded.
A weak solution of

dXt = σ(t,Xt)dWt + b(t,Xt)dt, with X0 = x0 (21)

is a pair (Ω,F , (Ft)t∈[0,T ],P), (Xt, W̃t)t∈[0,T ] such that the stochastic basis
satisfies the usual conditions, the process X is continuous and Ft-adapted,
the process (W̃t)t∈[0,T ] is an (Ft)t∈[0,T ]-Brownian motion and

Xt = x0 +

∫ t

0
σ(s,Xs)dW̃s +

∫ t

0
b(s,Xs)ds for t ∈ [0, T ] a.s. (22)

In this approach we are more free with the particular stochastic basis
our solution process will be defined on. A straightforward verification shows
that strong solutions are weak solutions so the terminology makes sense.
These definitions also extend to the d-dimensional case, i.e. where
b, σ : [0, T ]× Rd → Rd,Rd×d.

Finally to end this section we recall the useful Burkholder-Davis-Gundy
inequalities which are used in estimating norms related to integrals of LT,loc

2

processes with respect to the Brownian motion by square functions. See for
example [16, Theorem 3.3.28].
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Proposition 2.18. Assume p ∈ (0,∞). There exists constants ap, bp > 0

such that for any X = (Xt)t∈[0,T ] ∈ LT,loc
2 , it holds

bp

∥∥∥∥∥
√∫ T

0
X2

t dt

∥∥∥∥∥
p

≤

∥∥∥∥∥ sup
s∈[0,T ]

∣∣∣ ∫ t

0
XsdBs

∣∣∣∥∥∥∥∥
p

≤ ap

∥∥∥∥∥
√∫ T

0
X2

t dt

∥∥∥∥∥
p

(23)

The bound ap ≤ c
√
p for some absolute c > 0 can be obtained for

p ∈ [2,∞). However we do not need this.
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3 The Setting

In this section we will fix some notation.

We denote by P(Rd) as the set of probability measures on (Rd,B(Rd)).
Further we denote the law of the random variable X by PX . Fix a time
horizon T > 0 and consider a stochastic basis (Ω,F ,F,P) that satisfies
the usual conditions on which we have a d-dimensional (Ft)t∈[0,T ] Brownian
motion W = (Wt)t∈[0,T ]. We assume that W is independent from F0 such
that

Ft = σ(Ws : s ∈ [0, t]) ∪ F0, (24)

so the filtration (Ft)t∈[0,T ] is the natural filtration of W , augmented by

F0. Furthermore we assume that for all µ ∈ P2(Rd) there exists a random
variable ξ ∈ L2(Ω,F0,P;Rd) with Pξ = µ.

The space L2(Ω,F ,P;Rd) is defined in the usual way, equipped with the
inner product (ξ, η)L2 = E(ξ · η) and the norm given by this inner product.
Here · denotes the scalar product on Rd. We identify two random variables
in L2(Ω,F ,P;Rd) if they are P-a.s. equal.

We assume assumptions made in this section hold for the rest of the
thesis.
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4 The classical local martingale problem

In this section we will introduce the classical local martingale problem (for
more details see [16, Section 5.4, p.311-319]). It will be of fundamental
importance to the proof of our main theorem. We start by introducing the
path space and then move to functional SDEs and the corresponding local
martingale problems.

4.1 The Path space

In this section we define the space of continuous functions C([0, T ];Rd) and
equip it with a σ-algebra, and a compatible metric topology. Further we
will define the coordinate process on this space that will give us a natural
filtration on the space. The coordinate process also explains the name of
the space. The space of continuous, Rd-valued functions on [0, T ] is denoted
by C([0, T ];Rd). We want to give this space a Borel σ-algebra, but this
depends on the topology given to the space. To this end we equip the space
C([0, T ];Rd) with the norm ∥x∥ := supt∈[0,T ]|x(t)|. This norm corresponds
to the concept of uniform convergence. Now we also have a complete metric
space, which yields us the topology given by this metric, that is we have
the topology of open sets T given by the supremum norm. This allows us
to define the Borel σ-algebra B(C([0, T ];Rd)) to be the smallest σ-algebra
that contains T i.e. B(C([0, T ];Rd)) = σ(T ). This makes the path space a
measurable space.

Next we want to define a certain process on the path space, known
as the coordinate process. To this end we define the coordinate process
y = (yt)t∈[0,T ] on (C([0, T ];Rd),B(C([0, T ];Rd))) by setting yt(ω) := ω(t)

for any ω ∈ C([0, T ];Rd). We also want to equip this space with a filtration,
we do this with the help of the coordinate process. To this end we define
on (C([0, T ];Rd),B(C([0, T ];Rd))) the filtration F̃y = (F̃y

t )t∈[0,T ] by F̃y
t :=

σ(ys : s ≤ t). We say this filtration is the one generated by the coordinate
process y = (yt)t∈[0,T ].

4.2 Functional SDEs and local martingale problems

We now turn to consider the equivalence of weak solution of a functional SDE
and the solution of the corresponding local martingale problem. For this we
assume that b : [0, T ] × C([0, T ];Rd) → Rd and σ : [0, T ] × C([0, T ];Rd) →
Rd×d are continuous with respect to the product topology and non-anticipating,
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which is defined to mean that b(t, f) = b(t, s → f(s ∧ t)). The definitions
are as follows.

Definition 4.1. A weak solution of the functional SDE

Xt = ξ +

∫ t

0
b(s,X·∧s)ds+

∫ t

0
σ(s,X·∧s)dW̃s, t ∈ [0, T ], (25)

is a six-tuple (Ω̃, F̃ , F̃, P̃, W̃ ,X) such that the following is satisfied.

1. (Ω̃, F̃ , P̃) is a complete probability space and F̃ = (Ft)0≤t≤T is a filtra-

tion on (Ω̃, F̃ , P̃) that satisfies the usual conditions, recall Definitions
2.1 and 2.2.

2. X = (Xt)0≤t≤T is a continuous Rd-valued process that is adapted to F̃
and W̃ = (W̃t)0≤t≤T is a d-dimensional Brownian motion with respect

to (F̃, P̃).

3. P̃(
∫ T
0 (|b(s,X·∧s)| + |σ(s,X·∧s)|2)ds < ∞) = 1 and Equation (25) is

satisfied P̃-a.s.

Definition 4.2. A solution to the local martingale problem associated with
A′ is a probability measure P̂ on (C([0, T ];Rd),B(C([0, T ];Rd))) if for every
f ∈ C1,2([0, T ]× Rd;R) the process

Mf
t := f(t, y(t))− f(0, y(0))−

∫ t

0
(∂s +A′)f(s, y(s))ds, t ∈ [0, T ] (26)

is a continuous local martingale with respect to (Fy, P̂) where y = (y(t))t∈[0,T ]

is the coordinate process on C([0, T ];Rd), the filtration Fy is generated
by y and augmented by the P̂-null sets and made right-continuous, that
is Fy

t =
⋂

s>t σ(F̃
y
s ∪ N̂ ), where N̂ = {A ⊂ C([0, T ];Rd): there exists

B ∈ B(C([0, T ];Rd)), such that A ⊂ B and P̂(B) = 0}. Furthermore the
second order differential operator A′ is given by

A′f(s, y) :=

d∑
i=1

bi(s, y)f(s, y(s))

+
1

2

d∑
i,j,k=1

(σikσjk)(s, y)∂
2
xixj

f(s, y(s)), y ∈ C([0, T ];Rd).

(27)

Now we can state the relevant Lemmas concerning the equivalence of the
above concepts. See [16, p. 312-319].
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Lemma 4.3. The existence of a weak solution (Ω̃, F̃ , F̃, P̃, W̃ ,X) to the
functional SDE (25) with a given initial distribution µ on B(C([0, T ];Rd))
(i.e. the law of ξ is µ) is equivalent to the existence of a solution P̂ to
the local martingale problem (26) associated with A′ given by (27) and with
P̂y(0) = µ. The solutions are related by P̂ = P̃ ◦X−1.

Lemma 4.4. The uniqueness of the solution P̂ of the local martingale prob-
lem (26) for a fixed initial distribution P̂y(0) = µ, where µ is a probability

measure on (Rd,B(Rd)), is equivalent to the uniqueness in law for the Equa-
tion (25) with P̃X0 = µ.

To end the section, we introduce the concept of tightness and Prohorov’s
theorem. Recall that relative compactness for a family of probability mea-
sures means that every sequence of the elements of the family has a weakly
convergent subsequence. For more details see [2, Theorems 5.1, 5.2].

Definition 4.5. A family M of probability measures on a metric measure
space (S,S) is tight if for every ε > 0 there exists a compact K ⊂ S such
that P(K) > 1− ε for every P ∈ M.

In our setting the metric measure space will be the path space

(C([0, T ];Rd),B(C([0, T ];Rd))). (28)

Theorem 4.6. Assume we have a family of probability measures M on a
metric measure space (S,S). If M is tight, then it is relatively compact. If
the space S is separable and complete and M is relatively compact, then it
is tight.

What to note here is that the path space is separable and complete, so
we have equivalence of tightness and relative compactness for families of
probability measures on it.
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5 The Wasserstein spaces

In this section we will consider the spaces of measures with a finite given
moment. We make a standing assumption that p ∈ [1,∞). Furthermore we
denote by Pp(Rd) the space of probability measures µ on (Rd,B(Rd)) with∫
Rd |x|pµ(dx) < ∞. We endow this space with the p-Wasserstein metric

Wp(µ, ν) := inf

{(∫
Rd×Rd

|x− y|pρ(dxdy)
) 1

p

,

ρ ∈ Pp(R2d) with ρ(· × Rd) = µ, ρ(Rd × ·) = ν

}
,

(29)

for ν, µ ∈ Pp(Rd).

First of all we should justify the fact that the p-Wasserstein metric ac-
tually is a metric as we call it. For this we have the following, see [25,
Theorem 7.3]

Proposition 5.1. Wp defines a metric on Pp(Rd).

We also have the useful monotonicity property for the moments Ŵp(µ) =( ∫
Rd |x|pµ(dx)

) 1
p :

If 1 ≤ p ≤ q, then Ŵp ≤ Ŵq. (30)

Later in this article we will consider the case p = 2. We also note the
following estimate that will be used later on:

Remark 5.2. W2(Pξ,Pζ) ≤ E(|ξ − ζ|2)
1
2 whenever ξ, ζ ∈ L2(Ω,F0,P;Rd).

This remark follows straightforwardly from the definition of the 2-Wasserstein
metric as long as our σ-algebra F0 is rich enough to support random vari-
ables with laws in P2(Rd), which we assumed it to be, see [4, Proof of
Lemma 3.1].

For our future interest we will also formulate the following lemma re-
garding the compactness of a specific set in P2(Rd):

Lemma 5.3. Consider for a fixed C > 0 the set E ⊂ P2(Rd) defined as

E = {µ ∈ P2(Rd) :

∫
Rd

|x|4µ(dx) ≤ C}. (31)

Then E is compact.
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Proof. First we set Bc
r := Rd \B(0, r). We will use the result that a subset

M ⊂ P2(Rd) is relatively compact if and only if

lim sup
r→∞

sup
µ∈M

∫
Bc

r

|x|2µ(dx) = 0. (32)

For this result, see [25, Theorem 7.12]. Using this we can estimate using
Hölder’s inequality for arbitrary r > 0 and ν ∈ E∫

Bc
r

|x|2ν(dx) ≤ ν(Bc
r)

1
2

(∫
Bc

r

|x|4ν(dx)
) 1

2 ≤ C
1
2 ν(Bc

r)
1
2 . (33)

Now we estimate ν(Bc
r).

ν(Bc
r) =

∫
Bc

r

dν =
1

r4

∫
Bc

r

r4dν ≤ 1

r4
C. (34)

Continuing from (33) we get∫
Bc

r

|x|2ν(dx) ≤ C
1
2

( 1

r4

) 1
2
C

1
2 =

C

r2
→ 0, (35)

as r → ∞. We also have

sup
ν∈E

∫
Bc

r

|x|2ν(dx) ≤ C

r2
→ 0, (36)

as r → ∞. This proves the relative compactness of E . We get compactness
by showing that E is closed. This follows since the limit µ of a weakly
convergent sequence (µk)k∈N in E is still an element of E .

We will later use the 2-Wasserstein space of probability measures on the
path space. This is a straightforward extension where one changes the space
Rd to C([0, T ];Rd) and thus one integrates over C([0, T ];Rd) and instead of
the Euclidean norm on Rd we consider the supremum norm on C([0, T ];Rd).
Precisely we let Pp(C([0, T ];Rd)) to be the space of probability measures
µ on (C([0, T ];Rd),B(C([0, T ];Rd))) such that

∫
C([0,T ];Rd) ∥y∥

pµ(dy) < ∞.
This space is further endowed with the p-Wasserstein metric

Wp(µ, ν) := inf
{(∫

C([0,T ];Rd)×C([0,T ];Rd)
∥x− y∥pρ(dxdy)

) 1
p
,

ρ ∈ Pp(C([0, T ];Rd)× C([0, T ];Rd)) with ρ(· × C([0, T ];Rd)) = µ,

ρ(C([0, T ];Rd)× ·) = ν
}
.

(37)
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6 Measure derivatives

In this section we consider what it means to take derivatives with respect
to a measure variable. We also introduce a version of Itô’s formula for the
law dependant case. We consider measure derivatives via a lifting to L2 and
using the Fréchet differentiability structure in L2. To this end we recall the
notion of a Fréchet derivative. In this section we follow the framework of
Buckdahn et al., for more details refer to [4, Section 2].

Definition 6.1. We say that a function f̃ : L2(Ω,F ,P;Rd) → R is Fréchet
differentiable at ξ ∈ L2(Ω,F ,P;Rd), if there exists a continuous linear map
Df̃(ξ) : L2(Ω,F ,P;Rd) → R (notice ξ is not the input of the function), such
that f̃(ξ+η)− f̃(ξ) = Df̃(ξ)(η)+ o(|η|L2) where η ∈ L2(Ω,F ,P;Rd) is such
that |η|L2 → 0.

The notation o means that |f̃(ξ+ η)− f̃(ξ)−D(̃f)(ξ)(η)|L2 ≤ ε|η|L2 for
any ε > 0 as long as |η|L2 is sufficiently small. Using Definition 6.1 we define
the derivative of a function f : P2(Rd) → R, see [5, Definition 6.1]:

Definition 6.2. We say that a function f : P2(Rd) → R is differentiable at a
probability measure µ ∈ P2(Rd), if for the function f̃ : L2(Ω,F ,P;Rd) → R
defined by f̃(ξ) := f(Pξ) there exists a ζ ∈ L2(Ω,F ,P;Rd) with Pζ = µ and
such that f̃ is Fréchet differentiable at ζ.

This definition explains what we mean by lifting the map to L2. Now
we can use the Riesz representation theorem in the Hilbert space L2 to find
a P-a.s. unique random variable γ ∈ L2(Ω,F ,P;Rd) such that Df̃(ζ)(η) =
E(γ · η) for all η ∈ L2(Ω,F ,P;Rd). For this random variable γ it was shown
by Lions, see [5, Section 6.1], that there exists a Borel function g : Rd → Rd

such that γ = g(ζ) P-a.s. and g only depends on ζ via it’s law Pζ . Based on
the above we have

f(Pξ)− f(Pζ) = f̃(ξ)− f̃(ζ)

=Df̃(ζ)(ξ − ζ) + o(|ξ − ζ|L2)

=E(g(ζ) · (ξ − ζ)) + o(|ξ − ζ|L2), ξ ∈ L2(Ω,F ,P;Rd).

(38)

Definition 6.3. We call the function ∂µf(Pζ , y) := g(y), y ∈ Rd, the deriva-
tive of the function f : P2(Rd) → R at Pζ , ζ ∈ L2(Ω,F ,P;Rd).

Remark 6.4. Notice that ∂µf(Pζ , y) is Pζ(dy)-a.e. uniquely determined.

With this notion of differentiation now in hand we can define the classes
of continuously differentiable functions and related notions that are needed
in the following. We will first define the class of C1-functions on P2(Rd), we
will then use this to define the subspaces of higher orders of differentiability.
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Definition 6.5. 1. We say that a function f : P2(Rd) → R is of class
C1(P2(Rd)), which we denote by f ∈ C1(P2(Rd)), if for all ξ ∈
L2(Ω,F ,P;Rd) there exists a Pξ-modification of ∂µf(Pξ, ·) (which we
denote also by ∂µf(Pξ, ·)) such that ∂µf : P2(Rd)×Rd → Rd is continu-
ous with respect to the product topology of the 2-Wasserstein topology
on P2(Rd) and the standard Euclidean topology on Rd. This modified
function is identified as the derivative of f .

2. The function f is said to be of class C1,1
b (P2(Rd)), if f ∈ C1(P2(Rd))

and ∂µf : P2(Rd) × Rd → Rd is bounded and Lipschitz continuous
(again with respect to the product topology, where we assume this is
the one given by the sum of the two metrics).

Comparing with the remark earlier we have that ∂µf(Pξ, ·) is unique.
Further we denote ∂µf(µ, x) = ((∂µf)i(µ, x))1≤i≤d.

Definition 6.6. 1. We say that a function f : P2(Rd) → R is of class
C2(P2(Rd)) if f ∈ C1(P2(Rd)) is such that ∂µf(µ, ·) : Rd → Rd is
differentiable for every µ ∈ P2(Rd) and it’s derivative ∂y∂µf : P2(Rd)×
Rd → Rd ⊗ Rd is continuous and jointly measurable.

2. The function f is said to be of class C2,1
b given f ∈ C2(P2(Rd)) ∩

C1,1
b (P2(Rd)) and the derivative ∂y∂µf : P2(Rd) × Rd → Rd ⊗ Rd is

bounded and Lipschitz continuous.

Now we can use the above definitions to consider f defined on [0, T ] ×
Rd×P2(Rd), in other words to the case where f depends also on a temporal
and a spatial variable.

Remark 6.7. For the following definition we assume that f , along with all
its appropriate derivatives are jointly measurable in all three variables.

Definition 6.8. 1. We say that a function f : Rd × P2(Rd) → R is of
class C2(Rd × P2(Rd)) if the following holds:

� f(x, ·) ∈ C2(P2(Rd)) for all x ∈ Rd and f(·, µ) ∈ C2(Rd) for every
µ ∈ P2(Rd).

� All derivatives ∂xk
f, ∂2

xkxl
f and ∂µf, ∂yk∂µf , 1 ≤ k, l ≤ d are

continuous over Rd×P2(Rd) and Rd×P2(Rd)×Rd, respectively.

Furthermore we say that f is of class C2,1
b (Rd×P2(Rd)) if f ∈ C2(Rd×

P2(Rd)) and all the derivatives are bounded and Lipschitz continuous.

2. We say that a function f : [0, T ] × Rd × P2(Rd) → R is of class
C1,2([0, T ] × Rd × P2(Rd)) if f(·, x, µ) ∈ C1([0, T ]), for all (x, µ) ∈
Rd × P2(Rd) and f(t, ·, ·) ∈ C2(Rd × P2(Rd)) for all t ∈ [0, T ].
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3. Finally we say that f is of class C1,2,1
b ([0, T ]× Rd × P2(Rd);R) if f ∈

C1,2([0, T ] × Rd × P2(Rd);R) and all the derivatives are uniformly
bounded over [0, T ]×Rd×P2(Rd) and Lipschitz in (x, µ, y) uniformly
with respect to t.

We now finish the section by extending Itô’s formula to the measure
dependant case. To this end we need to introduce some notations. We
denote (Ω̄, F̄ , P̄) ⊗ (Ω,F ,P) to be the product of (Ω,F ,P) with itself. For
a random variable ξ on (Ω,F ,P) we denote by ξ̄ it’s copy over (Ω̄, F̄ , P̄).
Furthermore the expectation E(·) =

∫
Ω̄(·)dP̄ only acts on random variables

with a bar. This formalism extends to stochastic processes with the exten-
sion that (ξ̄s)s≥0 denotes the copy process on (Ω̄, F̄ , P̄). Note that the copy
random variable and process share laws with the original random variable
and process.

Theorem 6.9. Assume σ = (σs), γ = (γs) are Rd×d-valued and b = (bs),
β = (βs) are Rd-valued progressively measurable stochastic processes such
that the following holds:

1. There exists a constant q > 6 such that E[(
∫ T
0 (|σs|q + |bs|q)ds)

3
q ] < ∞.

2.
∫ T
0 (|γs|2 + |βs|2)ds < ∞ P-a.s.

Further assume F ∈ C1,2,1
b ([0, T ]×Rd×P2(Rd)). Then for the Itô-processes

Xt = X0 +

∫ t

0
σsdWs +

∫ t

0
bsds, t ∈ [0, T ], X0 ∈ L2(Ω,F0,P) (39)

Yt = Y0 +

∫ t

0
γsdWs +

∫ t

0
βsds, t ∈ [0, T ], Y0 ∈ L2(Ω,F0,P), (40)

it holds that

F (t, Yt,PXt)− F (0, Y0,PX0)

=

∫ t

0

∂rF (r, Yr,PXr) +

d∑
i=1

∂yiF (r, Yr,PXr)β
i
r +

1

2

d∑
i,j,k=1

∂2
yiyjF (r, Yr,PXr)γ

ik
r γjkr

+Ē

 d∑
i=1

(∂µF )i(r, Yr,PXr , X̄r)b̄r
i
+

1

2

d∑
i,j,k=1

∂zi(∂µF )j(r, Yr,PXr , X̄r)σ̄
ik
r σ̄jk

r

 dr

+

∫ t

0

d∑
i,j=1

∂yiF (r, Yr,PXr)γ
ij
r dW j

r , t ∈ [0, T ] a.s.

(41)

We omit the proof (the reader can consult for example [19, Appendix]).
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7 Mean-Field SDEs

We assume that b : [0, T ]×Rd×P2(Rd) → Rd and σ : [0, T ]×Rd×P2(Rd) →
Rd×d are continuous and bounded throughout this section. Formally we are
looking for a weak solution of the following mean-field SDE:

Xt = ξ +

∫ t

0
b(s,Xs,QXs)ds+

∫ t

0
σ(s,Xs,QXs)dWs, t ∈ [0, T ], (42)

where ξ ∈ L2(Ω,F0,P;Rd) obeys a given lawQξ = ν ∈ P2(Rd) and (Wt)t∈[0,T ]

is a d-dimensional Brownian motion with respect to Q.

Two other questions can be asked:

� Does uniqueness hold for the mean-field SDE under the conditions of
boundedness and continuity on the coefficients?

� Can we extend the result to coefficients b, σ defined on [0, T ]×C([0, T ];Rd)×
P2(C([0, T ];Rd))? I.e. the coefficients are path-dependant.

The answer to both of these is yes, but we will not further explore these.
Both of these are considered in [19].

Next we define what is meant by a weak solution of Equation (42) and
a solution of the corresponding local martingale problem.

Definition 7.1. A six-tuple (Ω̃, F̃ , F̃,Q,W,X) is called a weak solution of
the mean-field SDE (42), given the following conditions are satisfied

1. (Ω̃, F̃ , F̃,Q) is a stochastic basis that satisfies the usual conditions
(recall Definitions 2.1 and 2.2).

2. X = (Xt)t∈[0,T ] is an Rd-valued continuous process that is adapted

to F̃ and W = (Wt)t∈[0,T ] is a d-dimensional Brownian motion with

respect to (F̃,Q).

3. Equation (42) is satisfied Q-almost surely.

Definition 7.2. A probability measure P̂ is a solution of the local martingale
problem associated with the operator Ã if for every f ∈ C1,2

b ([0, T ]×Rd;R)
the process

Cf (t, y, µ) := f(t, y(t))−f(0, y(0))−
∫ t

0
((∂s+Ã)f)(s, y(s), µ(s))ds, t ∈ [0, T ]

(43)
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is a continuous local (Fy, P̂)-martingale, where µ(t) = P̂y(t) is the law of

the coordinate process y(t) on C([0, T ];Rd) at time t, the filtration Fy is
generated by the coordinate process y, completed with the P̂-null sets and
made right-continuous, see 4.2. The (second order differential) operator Ã
is defined by

(Ãf)(s, y, ν) :=
d∑

i=1

∂yif(s, y)bi(s, y, ν)+
1

2

d∑
i,j,k=1

∂2
yiyjf(s, y)(σikσjk)(s, y, ν).

(44)
Here ∂s + Ã denotes the pointwise sum of the operators ∂s and Ã (notice
∂sf does not depend on the measure ν).

The local martingale problem and it’s solution above extend the case
where the coefficients bi and σik only depend on (s, y) to the case where
they also depend on the probability measure ν ∈ P2(Rd). With the above
extension we can also extend Lemma 4.3:

Lemma 7.3. The existence of a weak solution (Ω̃, F̃ , F̃,Q, B,X) of Equation
(42) with given initial distribution ν on B(Rd) is equivalent to the existence
of a solution P̂ of the local martingale problem associated with Ã given by
Definition 7.2 with P̂y(0) = ν.

Proof. (a) We start with the sufficiency by assuming that we have a solution
P̂ on (C([0, T ];Rd),B(C([0, T ];Rd))) of the local martingale problem asso-
ciated with Ã. We then define the coefficients b̃(s, x) = b(s, x, P̂y(s)) and

σ̃(s, x) = σ(s, x, P̂y(s)). For these coefficients and all f ∈ C1,2([0, T ]×Rd;R)
the operator Ã is given by

Ãf(s, y) =

d∑
i=1

∂yif(s, y)b̃i(s, x) +
1

2

d∑
i,j,k=1

∂2
yiyjf(s, y)(σ̃ikσ̃jk)(s, y) (45)

and we have that

Mf
t := f(t, y(t))− f(0, y(0))−

∫ t

0
(∂s + Ã)f(s, y(s))ds, t ∈ [0, T ], (46)

is a continuous local martingale with respect to (Fy, P̂). Now we notice that P̂
is a solution of the classical local martingale problem given in Definition 4.2,
and thus we can invoke Lemma 4.3 to get a weak solution (Ω̃, F̃ , F̃,Q,W,X)
of the SDE

Xt = X0 +

∫ t

0
b̃(s,Xs)ds+

∫ t

0
σ̃(s,Xs)dWs, ∈ [0, T ]. (47)
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We also notice (see [16, Proposition 4.6, p. 315]) that (Ω̃, F̃ ,Q) can be
chosen as an extension of the space

(Ω̂, F̂ , P̂) := (C([0, T ];Rd),B(C([0, T ];Rd)), P̂). (48)

This is done in the following way: For a suitable probability space (Ω̄, F̄ , F̄ =
(F̄t), P̄), on which a d-dimensional (F̄, P̄)-Brownian motion is defined, (Ω̃, F̃ ,Q)
is the completed product space (Ω̃, F̃ ,Q) = (Ω̂, F̂ , P̂)

⊗
(Ω̄, F̄ , P̄), equipped

with the smallest right-continuous and augmented filtration F̃ = (F̃t)t∈[0,T ],

for which F̂t
⊗

F̄t ⊂ F̃t for all t ∈ [0, T ] (see the Appendix). Further-
more we extend every process Z adapted to F̂ and defined on (Ω̂, F̂ , P̂)
to a process Z̃ that is defined on (Ω̃, F̃ ,Q) and adapted to F̃ by setting
Z̃t(ω̂, ω̄) = Zt(ω̂), where (ω̂, ω̄) ∈ Ω̃, t ∈ [0, T ]. Now making the observa-
tion that Q(A × Ω̄) = P̂(A) holds for all A ∈ F̂ we get for all Γ ∈ B(Rd),
s ∈ [0, T ],

Q
Z̃s
(Γ) = Q((ω̂, ω̄) ∈ Ω̂× Ω̄ : Z̃s(ω̂, ω̄) ∈ Γ)

= Q({ω̂ ∈ Ω̂ : Zs(ω̂) ∈ Γ} × Ω̄)

= P̂(ω̂ ∈ Ω̂ : Zs(ω̂) ∈ Γ) = P̂Zs(Γ).

(49)

Further we note that X = (Xt)t∈[0,T ] can be chosen as the extension of the
coordinate process y = (y(t))t∈[0,T ], in other words Xt(ω̂, ω̄) = y(t, ω̂) =
ω̂(t), t ∈ [0, T ].

Combining Equations (47) and (49) we obtain

Xt = X0 +

∫ t

0
b(s, x, P̂y(s))ds+

∫ t

0
σ(s,Xs, P̂y(s))dWs

= X0 +

∫ t

0
b(s, x,QXs)ds+

∫ t

0
σ(s,Xs,QXs)dWs, t ∈ [0, T ].

(50)

This gives that (Ω̃, F̃ , F̃,Q,W,X) is a weak solution of the mean-field SDE
(42).

(b) We then proceed to consider the necessity. To this end we assume
that (Ω̃, F̃ , F̃,Q,W,X) is a weak solution of the mean-field SDE

Xt = X0 +

∫ t

0
b(s,Xs,QXs)ds+

∫ t

0
σ(s,Xs,QXs)dWs, t ∈ [0, T ], (51)

where for X0 ∈ L2(Ω,F0,P) it holds QX0 = ν and W = (Wt)t∈[0,T ] is a

d-dimensional (F̃,Q)-Brownian motion.

We will show (Cf (t, y, µ))t∈[0,T ] is a continuous local (Fy,QX)-martingale.
Here QX denotes the law of X with respect to the probability measure Q.
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We first fix the law QXs . Further defining b̄(s, x) = b(s, x,QXs) and simi-
larly σ̄(s, x) = σ(s, x,QXs) we have from (51) the solution (Ω̃, F̃ , F̃,Q, B,X)
of the classical SDE

Xt = X0 +

∫ t

0
b̄(s,Xs)ds+

∫ t

0
σ̄(s,Xs)dBs, t ∈ [0, T ],

and then the classical local martingale problem gives us a probability mea-
sure P̂ on (C([0, T ];Rd),B(([0, T ];Rd))) such that P̂y(0) = ν and P̂ = QXs ,

and such that Mf
t = f(t, y(t)) − f(0, y(0)) −

∫ t
0 (∂s + A′)f(s, y(s))ds is a

continuous local (Fy, P̂)-martingale. Recalling the definition of the classi-

cal differential operator we have A′f(s, y) = Ãf(s, y,Qy); so that Mf
t =

Cf (t, y,Q) is a continuous local martingale. This finishes the proof.

Using the extension given in Lemma 7.3 we can prove the following
Lemma:

Lemma 7.4. Let the probability P̂ on (C([0, T ];Rd),B(C([0, T ];Rd))) be a
solution of the local martingale problem associated with Ã given in Definition
7.2. Then for the operator A applied to functions f ∈ C1,2,1([0, T ] × Rd ×
P2(Rd);R) which is given by

(Af)(s, y, ν) := (Ãf)(s, y, ν) +

d∑
i=1

∫
Rd

(∂µf)i(s, y, ν, z)bi(s, z, ν)ν(dz)

+
1

2

d∑
i,j,k=1

∫
Rd

∂zi(∂µf)j(s, y, ν, z)(σikσjk)(s, z, ν)ν(dz),

(52)

we have that for every f ∈ C1,2,1([0, T ]× Rd × P2(Rd);R) the process

Cf (t, y, µ) := f(t, y(t), µ(t))− f(0, y(0), µ(0))

−
∫ t

0
((∂s +A)f)(s, y(s), µ(s))ds, t ∈ [0, T ],

(53)

is a continuous local martingale with respect to (Fy, P̂), where µ(t) = P̂y(t) is

the law of the coordinate process on C([0, T ];Rd) at time t and the filtration
Fy is generated by y, completed and made right-continuous. Further, if
f ∈ C1,2,1

b ([0, T ]×Rd×P2(Rd);R), then the process Cf is a martingale with

respect to (Fy, P̂).

Proof. Assume we are given the solution P̂ of the local martingale prob-
lem associated with Ã. We then have by Lemma 7.3 a weak solution
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(Ω̃, F̃ , F̃,Q, B,X) to the SDE

Xt = X0 +

∫ t

0
b(s,Xs,QXs)ds+

∫ t

0
σ(s,Xs,QXs)dWs, t ∈ [0, T ], (54)

where QXs = P̂. Now for an arbitrary f ∈ C1,2,1([0, T ] × Rd × P2(Rd);R),
the necessity part of the proof of the previous lemma gives precisely the
argument that shows Cf in (53) is a continuous local (Fy, P̂)-martingale.

Notice the same argument works, since the Cf changes according to
whether we have a function f that changes in the measure component, Itô’s
formula Theorem 6.9 gives two extra terms, but they get absorbed by the
extension of the operator Ã.
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7.1 The Existence Theorem

Now we have the required ingredients from the prerequisites and Lemmas
7.3 and 7.4 to prove the main theorem of the thesis regarding the existence
of a weak solution to Equation (42):

Theorem 7.5. There exists a weak solution (Ω̃, F̃ , F̃, Q̃, B,X) of the mean-
field SDE (42).

Recall that we assume b, σ are continuous and bounded where bounded-
ness and continuity in the measure variable is understood with respect to
the 2-Wasserstein metric.

Proof. We prove this by showing that the local martingale problem has a
solution and then invoking Lemma 7.3. To this end we partition the interval
[0, T ] in the following way. For each n ∈ N let tni = iT2−n, where 0 ≤ i ≤
2n, then let Pn := {tn0 , . . . , tn2n}. We then define for any y ∈ C([0, T ];Rd)
and µ ∈ C([0, T ];P2(Rd)) the non-anticipating functionals b(n)(s, y, µ) =
b(s, y(tni ), µ(t

n
i )), σ

(n)(s, y, µ) = σ(s, y(tni ), µ(t
n
i )), where s ∈ (tni , t

n
i+1] and

0 ≤ i ≤ 2n.

Now let (Ω,F ,F,P) be a stochastic basis and let W = (Wt)t∈[0,T ] be a d-

dimensional (F,P)-Brownian motion. Furthermore let ξ ∈ L2(Ω,F0,P;Rd)
be a random variable with the law Pξ = ν.

We define now, for n ≥ 1, the continuous, F-adapted and unique process

X(n) = (X
(n)
t )t∈[0,T ] by the Euler scheme

X
(n)
t = X

(n)
tni

+

∫ t

tni

b(s,X
(n)
tni

,P
X

(n)

tn
i

)ds+

∫ t

tni

σ(s,X
(n)
tni

,P
X

(n)

tn
i

)dWs

X
(n)
0 = ξ, t ∈ (tni , t

n
i+1], 0 ≤ i ≤ 2n−1.

(55)

We note that X(n) then solves the SDE

X
(n)
t = ξ+

∫ t

0
b(n)(s,X(n),PX(n))ds+

∫ t

0
σ(n)(s,X(n),PX(n))dWs, 0 ≤ t ≤ T.

(56)

Next we want to prove tightness for the laws of the processes X(n). To
this end we will next prove the inequality

sup
n≥1

E[|X(n)
t −X(n)

s |2m] ≤ Cm,T,b,σ|t− s|m, m ≥ 1, 0 ≤ s, t ≤ T, (57)
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where the constant Cm,T,b,σ does not depend on the process X(n). To this
end assume s < t, and recall that b, σ are bounded. We now compute, using
equation (56), the inequality (a+ b)p ≤ cp(a

p + bp), valid for a, b ≥ 0, p ≥ 1,
and the Burkholder-Davis-Gundy inequality (recall Proposition 2.18), that

E[|X(n)
t −X(n)

s |2m]

=E
[∣∣∣ ∫ t

s
b(n)(r,X(n),PX(n))dr+

∫ t

s
σ(n)(r,X(n),PX(n))dWr

∣∣∣2m]
≤E

[
c2m

(∫ t

s

∣∣b(n)(r,X(n),PX(n))
∣∣dr)2m

+ c2m

(∫ t

s

∣∣σ(n)(r,X(n),PX(n))
∣∣dWr

)2m
]

≤ c2mc2mb |t− s|2m + c2mE
[(∫ t

s
cσdWr

)2m
]

≤ c2mcbT |t− s|m + c2mc2mσ
√
2m|t− s|m

=Cm,T,b,σ|t− s|m,

(58)

which is what was desired.

We will next verify that for any ε > 0 and any t ∈ [0, T ] it holds

1

δ
sup
n≥1

P
(

sup
t≤s≤t+δ

|X(n)
t −X(n)

s | ≥ ε
)
= 0. (59)

To this end, fix ε > 0 and let n ≥ 1, δ > 0 be arbitrary. We estimate using
Markov’s inequality

P(|X(n)
t −X(n)

s | ≥ ε) ≤ E[|X(n)
t −X

(n)
s |2m]

ε2m

≤ sup
n≥1

E[|X(n)
t −X

(n)
s |2m]

ε2m
≤ Cm

ε2m
|t− s|m.

(60)

We will now perform a similar estimate on E supt≤s≤t+δ|X
(n)
t − X

(n)
s |2m.

First of all we have supt≤s≤t+δ|X
(n)
t −X

(n)
s | ≤ δcb+supt≤s≤t+δ

∣∣∣ ∫ t
s σ

(n)
r dWr

∣∣∣.
By linearity we only need to estimate the expectation of the second term
(to the 2mth power). We have using the simple inequality for pth power’s
of sums and the Burkholder-Davis-Gundy-inequality that

E
∣∣∣ sup
t≤s≤t+δ

∫ s

t
σ(n)
r dWr

∣∣∣2m
≤C

(2m)
BDG

(
E
∫ t+δ

t
|σ(n)

r |2dr
) 2m

2

≤C
(2m)
BDGc

2m
σ δm.

(61)
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From this it follows that(
E
∣∣ sup
t≤s≤t+δ

|X(n)
t −X(n)

s |2m
∣∣) 1

2m ≤ δcb + (C
(2m)
BDG)

1
2m cσδ

m
2 . (62)

Now using the above for m ≥ 2 we get

sup
n≥1

P
(

sup
t≤s≤t+δ

|X(n)
t −X(n)

s | ≥ ε
)
≤ δm

ε2m
cb,σ,m. (63)

Now dividing both sides of the inequality by δ and letting δ → 0 gives us
(59).

Denote P(n) to be the law of X(n). From this estimate and [2, Theorem
7.3 and Corollary p.82-83] it follows that the sequence (P(n))n∈N is tight on
(C([0, T ];Rd),B(C([0, T ];Rd))). Thus by Prohorov’s theorem, see Theorem
4.6, there exists a probability measure Q on

(C([0, T ];Rd),B(C([0, T ];Rd))) (64)

and a subsequence (nk)
∞
k=1 such that P(nk) → Q weakly as k → ∞. The

weak convergence along a subsequence implies that Qy(0) = ν.

Now using the facts that X(n) is a solution to Equation (56) and the
coefficients b, σ are bounded along with Lemmas 7.3 and 7.4 we get that for
every f ∈ C1,2,1

b ([0, T ]× Rd × P2(Rd);R) and n ≥ 1,

Cf

b(n)σ(n)(t, y,P(n)
y ) = f(t, y(t),P(n)

y(t))− f(0, y(0),P(n)
y(0))

−
∫ t

0
(∂s +A(n))f(s, y,P(n)

y(s))ds, t ∈ [0, T ],
(65)

is an (F,P(n))-martingale such that P(n)
y(0) = P

X
(n)
0

= Pξ = ν. Here

A(n)f(s, z, µ) =
d∑

i=1

∂yif(s, z(s, µ(s)))bi(s, z(sn), µ(sn))

+
1

2

d∑
i,j,k=1

∂2
yiyjf(s, z(s), µ(s))(σikσjk)(s, z(sn), µ(sn))

+

d∑
i=1

∫
C([0,T ];Rd)

(∂µf)i(s, z(s), µ(s), y(s))bi(s, z(sn), µ(sn))µ(dy)

+
1

2

d∑
i,j,k=1

∫
C([0,T ];Rd)

∂zi(∂µf)j(s, z(s), µ(s), y(s))(σikσjk)(s, z(sn), µ(sn))µ(dy),

(66)
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(s, z, µ) ∈ [0, T ]× C([0, T ];Rd)× P2(C([0, T ];Rd)) and sn = sn(s) := tni for
tni ≤ s < tni+1 and sn = sn(s) := T for s = T .

Now Cf

b(n)σ(n) : [0, T ]×C([0, T ];Rd)×P2(C([0, T ];Rd)) → R is bounded
and continuous, thanks to the boundedness and continuity of b, σ and f . Fur-
thermore Cf

b(n)σ(n)(·, y, µ) is an (F,P(n))-martingale so that for any bounded,

continuous and non-anticipating function ϕ : [0, T ] × C([0, T ];Rd) → R,
0 ≤ s ≤ t ≤ T , it holds (see Lemma 8.4)

0 = EP(n)

[
(Cf

b(n)σ(n)(t, y,P(n)
y )− Cf

b(n)σ(n)(s, y,P(n)
y ))ϕ(s, y)

]
. (67)

Now define Cf
bσ(t, y, µ) := f(t, y(t), µ(t)) − f(0, y(0), µ(0)) −

∫ t
0 (∂s +

A)f(s, y, µ)ds, where Af(s, y, µ) = Af(s, y(s), µ(s)) is defined by (52). Fur-

thermore let Fn(t, z) := Cf

b(n)σ(n)(t, z,P
(n)
y ) and F (t, z) := Cf

bσ(t, z,Qy).
Our main goal for the majority of the remaining proof is to show that
Fn(t, ·) → F (t, ·) uniformly on compact subsets of C([0, T ];Rd) along the
subsequence for which P(n) → Q weakly. For notational simplicity we iden-
tify the subsequence with the sequence itself. Now we note that for all

k ≥ 2, supn≥1

∫
C([0,T ];Rd) ∥y∥

kP(n)(dy) = supn≥1 E[supt∈[0,T ]|X
(n)
t |k] < ∞.

Here the second term can be estimated from above using the fact that X(n)

solves equation (55), the Burkholder-Davis-Gundy inequality and the fact
that b, σ are bounded. We skip this estimation as it is essentially identical
to the estimate we did earlier in the proof. Now note that P(n) → Q in the
2-Wasserstein metric on P2(C([0, T ];Rd)) (Recall Equation (37) and [25,
Theorem 7.12]).

We will now move to the uniform convergence on compact subsets. To
this end we take an arbitrary compact K ⊂ C([0, T ];Rd). Since K is com-
pact, it is pre-compact so for any ε > 0, there exists ω1, . . . , ωm ∈ K,
m ≥ 1, such that the closed balls B̄ε(ωi) := {g ∈ C([0, T ];Rd) : ∥g−ωi∥ ≤ ε},
i = 1, . . . ,m cover K, i.e. K ⊂

⋃m
i=1 B̄ε(ωi).

Now we want to show that for the centers of these balls ωi it holds
Fn(t, ωi) → F (t, ωi) for t ∈ [0, T ], 1 ≤ i ≤ m. For this we recall that

Fn(t, ωi) =Cf

b(n)σ(n)(t, ωi,P(n)
y )

= f(t, ωi(t),P
(n)
y(t))− f(0, ωi(0),P

(n)
y(0))

−
∫ t

0
(∂s +A(n))f(s, ωi(s),P

(n)
y(s))ds,

(68)
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and similarly

F (t, ωi) =Cf
bσ(t, ωi,Qy)

= f(t, ωi(t),Qy(t))− f(0, ωi(0),Qy(0))

−
∫ t

0
(∂s +A)f(s, ωi(s),Qy(s))ds.

(69)

From these definitions, for t ∈ [0, T ], 1 ≤ i ≤ m after multiple applications of
the triangle inequality and by Itô’s formula Theorem 6.9 we get (we denote
I to be the indicator function of the set in it’s subscript)

|Fn(t, ωi)− F (t, ωi)|

≤ |f(t, ωi(t),P
(n)
y(t))− f(t, ωi(t),Qy(t))|+ |f(0, ωi(0),P

(n)
y(0))− f(0, ωi(0),Qy(0))|

+

∫ t

0
|∂sf(s, ωi(s),P

(n)
y(s))− ∂sf(s, ωi(s),Qy(s))|ds

+
2n−1∑
l=0

d∑
j=1

|∂yjf(s, ωi(s),P
(n)
y(s))bj(s, ωi(t

n
l ),P

(n)
y(tnl )

)

− ∂yjf(s, ωi(s),Qy(s))bj(s, ωi(s),Qy(s))|I[tnl ,tnl+1)
(s)

+
1

2

2n−1∑
l=0

d∑
j,k,r=1

|∂2
yjyk

f(s, ωi(s),P
(n)
y(s))(σjrσkr)(s, ωi(t

n
l ),P

(n)
y(tnl )

)

− ∂2
yjyk

f(s, ωi(s),Qy(s))(σjrσkr)(s, ωi(s),Qy(s))|I[tnl ,tnl+1)
(s)

+

2n−1∑
l=0

d∑
j=1

∫
C([0,T ];Rd)

|(∂µf)j(s, ωi(s),P
(n)
y(s), z(s))bj(s, ωi(t

n
l ),P

(n)
y(tnl )

)

− (∂µf)j(s, ωi(s),Qy(s), z(s))bj(s, ωi(s),Qy(s))|I[tnl ,tnl+1)
(s)µ(dz)

+
1

2

2n−1∑
l=0

d∑
j,k,r=1

∫
C([0,T ];Rd)

|∂zj (∂µf)k(s, ωi(s),P
(n)
y(s), z(s))(σjrσkr)(s, ωi(t

n
l ),P

(n)
y(tnl )

)

− ∂zj (∂µf)j(s, ωi(s),Qy(s), z(s))(σjrσkr)(s, ωi(s),Qy(s))|I[tnl ,tnl+1)
(s)µ(dz).

(70)

Denote this as a sum In + IIn + IIIn + IVn + Vn, where

In := |f(t, ωi(t),P
(n)
y(t))− f(t, ωi(t),Qy(t))|

+ |f(0, ωi(0),P
(n)
y(0))− f(0, ωi(0),Qy(0))|

+

∫ t

0
|∂sf(s, ωi(s),P

(n)
y(s))− ∂sf(s, ωi(s),Qy(s))|ds,

(71)
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IIn :=
2n−1∑
l=0

d∑
j=1

|∂yjf(s, ωi(s),P
(n)
y(s))bj(s, ωi(t

n
l ),P

(n)
y(tnl )

)

− ∂yjf(s, ωi(s),Qy(s))bj(s, ωi(s),Qy(s))|I[tnl ,tnl+1)
(s),

(72)

IIIn :=
1

2

2n−1∑
l=0

d∑
j,k,r=1

|∂2
yjyk

f(s, ωi(s),P
(n)
y(s))(σjrσkr)(s, ωi(t

n
l ),P

(n)
y(tnl )

)

− ∂2
yjyk

f(s, ωi(s),Qy(s))(σjrσkr)(s, ωi(s),Qy(s))|I[tnl ,tnl+1)
(s),

(73)

IVn :=
2n−1∑
l=0

d∑
j=1

∫
C([0,T ];Rd)

|(∂µf)j(s, ωi(s),P
(n)
y(s), z(s))bj(s, ωi(t

n
l ),P

(n)
y(tnl )

)

− (∂µf)j(s, ωi(s),Qy(s), z(s))bj(s, ωi(s),Qy(s))|I[tnl ,tnl+1)
(s)µ(dz),

(74)

and

Vn :=
1

2

2n−1∑
l=0

d∑
j,k,r=1

∫
C([0,T ];Rd)

|∂zj (∂µf)k(s, ωi(s),P
(n)
y(s), z(s))(σjrσkr)(s, ωi(t

n
l ),P

(n)
y(tnl )

)

− ∂zj (∂µf)j(s, ωi(s),Qy(s), z(s))(σjrσkr)(s, ωi(s),Qy(s))|I[tnl ,tnl+1)
(s)µ(dz).

(75)

We now want to show that In + IIn + IIIn + IVn + Vn → 0 when
n → ∞, which amounts to showing that each of these terms goes to zero
separately, since each of them is non-negative. Here we restrict ourselves on
the term IVn, the other terms are treated similarly. We elaborate more on
this after we show that IVn → 0 as n → ∞. We use the following equality
ab− cd = b(a− c) + c(b− d) on the integrand in IVn to get

IVn =
2n−1∑
l=0

d∑
j=1

∫
C([0,T ];Rd)

∣∣bj(s, ωi(t
n
l ),P

(n)
y(tnl )

)((∂µf)j(s, ωi(s),P
(n)
y(s), z(s))

− (∂µf)j(s, ωi(s),Qy(s), z(s))) + (∂µf)j(s, ωi(s),Qy(s), z(s))

(bj(s, ωi(t
n
l ),P

(n)
y(tnl )

)− bj(s, ωi(s),Qy(s)))
∣∣I[tnl ,tnl+1)

(s)µ(dz).

(76)

Which we can now estimate using the triangle inequality and the fact that
bj are bounded and all the derivatives of f are uniformly bounded to get

IVn ≤
2n−1∑
l=0

d∑
j=1

∫
C([0,T ];Rd)

(
C
∣∣(∂µf)j(s, ωi(s),P

(n)
y(s), z(s))− (∂µf)j(s, ωi(s),Qy(s), z(s))

∣∣
+C

∣∣bj(s, ωi(t
n
l ),P

(n)
y(tnl )

)− bj(s, ωi(s),Qy(s))
∣∣)I[tnl ,tnl+1)

(s)µ(dz)

(77)
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Furthermore the derivatives (∂µf)j are Lipschitz in the measure component
so we further estimate

IVn ≤C

∫ T

0

(
W2(P

(n)
y(s),Qy(s)) +

2n−1∑
l=0

d∑
j=1

|bj(s, ωi(t
n
l ),P

(n)
y(tnl )

)

− bj(s, ωi(s),Qy(s))|I[tnl ,tnl+1)
(s)

)
ds.

(78)

We are now looking to show that the last integral converges to zero as
n → ∞. To this end we show the following:

1. W2(P
(n)
y(s),Qy(s)) ≤ W2(P

(n)
y ,Qy), s ∈ [0, T ].

2. W2(P
(n)
y(tnl )

,Qy(s)) ≤ C2−
n
2 +W2(P

(n)
y ,Qy), s ∈ (tnl , t

n
l+1], 0 ≤ l ≤ 2n−1.

The first item shows that the first term in the integral converges to zero as
n → ∞ since P(n) → Q in the 2-Wasserstein metric on P2(C([0, T ];Rd)).
The second item on the other hand when paired with the facts that b :
[0, T ] × Rd × P2(Rd) → Rd is continuous and ωi ∈ C([0, T ];Rd) shows that
the second term in the integral also converges to zero as n → ∞. Then by
the boundedness of the terms and the bounded convergence theorem one
concludes that IVn → 0 as n → ∞. Now on to showing items 1 and 2.

For 1 we note that for any ε > 0 and n ≥ 1, there is a probability space
(Ω′,F ′,P′) and on it continuous stochastic processes yP = (yP (s))s∈[0,T ] and

yQ = (yQ(s))s∈[0,T ] such that P′
yP

= P(n)
y and P′

yQ
= Qy and

ε+W2(P(n)
y ,Qy) ≥

(
E
[

sup
s∈[0,T ]

|yP (s)− yQ(s)|2
]) 1

2 . (79)

Now using the inequality from Remark 5.2 we obtain for all s ∈ [0, T ] that

ε+W2(P(n)
y ,Qy) ≥

(
E
[

sup
s∈[0,T ]

|yP (s)− yQ(s)|2
]) 1

2

≥
(
E
[
|yP (s)− yQ(s)|2

]) 1
2 ≥ W2(P

(n)
y(s),Qy(s)).

(80)

From which item 1 follows by letting ε → 0.

For 2 we first use the triangle inequality on the Wasserstein space and
then the same inequality from Remark 5.2 along with the item 1 we just
proved to obtain

W2(P
(n)
y(tnl )

,Qy(s)) ≤ W2(P
(n)
y(tnl )

,P(n)
y(s)) +W2(P

(n)
y(s),Qy(s))

≤
(
E
[
|X(n)

tnl
−X(n)

s |2
]) 1

2 +W2(P(n)
y ,Qy).

(81)
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We now recall the equation (55) and use the same method as inequality (58)
on the expectation in the inequality above to obtain

W2(P
(n)
y(tnl )

,Qy(s)) ≤ C2−
n
2 +W2(P(n)

y ,Qy). (82)

Which proves the second item. Thus as we mentioned before, by the bounded
convergence theorem the integral IVn → 0 as n → ∞. Vn is essentially ex-
actly the same, instead of invoking the properties of b, here we use the
properties of σ, which both are assumed to be bounded and continuous.
Further we use the fact that ∂zj (∂µf)k is Lipschitz in the measure compo-
nent, which is the same process. The terms IIn and IIIn are in spirit the
same to each other, here we only need the boundedness and continuity along
with the items 1 and 2, so this also works. For the term In we need only the
continuity and boundedness properties of f and do not use the properties
of b, σ.

Thus we are done with our task of showing that Fn(t, ωi) → F (t, ωi) for
t ∈ [0, T ], 1 ≤ i ≤ m for all centers ωi of the balls covering K. Therefore
also for any ε > 0, there exists nε ≥ 1 such that for all n ≥ nε we have
|Fn(t, ωi)− F (t, ωi)| ≤ ε for 1 ≤ i ≤ m.

We next want to show that we can control |Fn(t, ωl)−Fn(t, ω)| whenever
ω, ωl are contained in a small ball.

To this end we first note that since K is a compact set, and thus bounded
so we find an R > 0, such that K ⊂ B̄R(0) = {ω ∈ C([0, T ];Rd) : ∥ω∥ ≤ R}.

Now notice again by the boundedness of b, σ and a similar inequality as

inequality (58) that there exists a constant C0 > 0 such that E[|X(n)
s |4] ≤ C0

for s ∈ [0, T ], n ≥ 1. Now we recall the subspace E of P2(Rd), defined by

E = {µ ∈ P2(Rd) :

∫
Rd

|x|4µ(dx) ≤ C0}, (83)

which we showed to be compact in Lemma 5.3. Furthermore for any t ∈
[0, T ], n ≥ 1 we have that P(n)

y(t) ∈ E , which follows by the bound on the
fourth moment we indicated above.

We now define the continuity modulus mR,E : R+ → R+ for any δ > 0
by

mR,E(δ) := sup{|γ(s, x, ν, z)− γ(s, x′, ν, z)| : s ∈ [0, T ], ν ∈ E
x, x′ ∈ Rd, such that |x|, |x′| ≤ R, |x− x′| ≤ δ, z ∈ Rd

γ ∈ {b, σ, f, ∂sf, ∂yf, ∂2
yyf, ∂µf, ∂z(∂µf)}}.

(84)

This is done to control every term after estimating |Fn(t, ωl)−Fn(t, ω)| with
the triangle inequality and the bounds for b, σ.
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Now we note by the facts that f ∈ C1,2,1
b ([0, T ] × Rd,P2(Rd);R) and

(b, σ) ∈ Cb([0, T ]×Rd ×P2(Rd);Rd ×Rd×d) and that [0, T ]×{x ∈ Rd; |x| ≤
R}×E is a compact set as a product of compact sets we obtain the fact that
all γ in the definition of the continuity modulus are uniformly continuous
on [0, T ]× {x ∈ Rd; |x| ≤ R} × E . This implies that mR,E(δ) → 0 as δ → 0.

Now by the definition of Fn for any ω, ωl ∈ K, n ≥ 1 it holds

|Fn(t, ωl)− Fn(t, ω)|

≤ |f(t, ωl(t),P
(n)
y(t))− f(t, ω(t),P(n)

y(t))|

+ |f(0, ωl(0),P
(n)
y(0))− f(0, ω(0),P(n)

y(0))|

+

∫ t

0
|∂sf(s, ωl(s),P

(n)
y(s))− ∂sf(s, ω(s),P

(n)
y(s))|ds

+Cb

∫ t

0

d∑
i=1

|∂yif(s, ωl(s),P
(n)
y(s))− ∂yif(s, ω(s),P

(n)
y(s))|ds

+

∫ t

0

d∑
i=1

|∂yif(s, ω(s),P
(n)
y(s))||b

(n)
i (s, ωl(s),P(n)

y )− b
(n)
i (s, ω(s),P(n)

y )|ds

+Cσ

∫ t

0

d∑
i,j,k=1

|∂2
yiyjf(s, ωl(s),P

(n)
y(s))− ∂2

yiyjf(s, ω(s),P
(n)
y(s))|ds

+
1

2

∫ t

0

d∑
i,j,k=1

|∂yiyjf(s, ω(s),P
(n)
y(s))||σ

(n)
ik (s, ωl(s),P(n)

y )

−σ
(n)
ik (s, ω(s),P(n)

y )|ds+ Cb

∫ t

0

d∑
i=1

∫
Rd

|(∂µf)i(s, ωl(s),P
(n)
y(s), z)

− (∂µf)i(s, ω(s),P
(n)
y(s), z)|P

(n)
y(s)(dz)ds

+Cσ

∫ t

0

d∑
i,j,k=1

∫
Rd

|∂zi(∂µf)j(s, ωl(s),P
(n)
y(s), z)

− ∂zi(∂µf)j(s, ω(s),P
(n)
y(s), z)|P

(n)
y(s)(dz)ds.

(85)

Here we did a similar trick as in estimating the integral IVn earlier and then
exploited the boundedness of the coefficients b, σ. However we notice that
all of these terms can be crudely estimated from above by the continuity
modulus for any ω, ωl ∈ K ⊂ B̄R(0) such that |ω(s) − ωl| ≤ ε, s ∈ [0, t].
Thus it holds for these ω, ωl that |Fn(t, ωl)−Fn(t, ω)| ≤ CmR,E , ε > 0. Now
for all ω ∈ K we find i, 1 ≤ i ≤ m such that ω ∈ B̄ε(ωi) and thus we obtain
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by a double application of the triangle inequality

|Fn(t, ω)− F (t, ω)|
≤ 2CmR,E(ε) + max

1≤i≤m
|Fn(t, ωi)− F (t, ωi)|

≤ 2CmR,E(ε) + ε

(86)

for n ≥ nε, ω ∈ K. The last term in the inequality goes to zero as ε → 0.
Therefore Fn(t, ·) converges uniformly on the compact set K to F (t, ·) for
all t ∈ [0, T ].

We are now done with the main part of the proof. To conclude, we fix s <
t in [0, T ]. We have for all non-anticipating ϕ ∈ Cb([0, T ]×C([0, T ];Rd);R)
by the uniform convergence

0 =EP(n) [(C
f

b(n)σ(n)(t, y,P(n))− Cf

b(n)σ(n)(s, y,P(n)))ϕ(s, y)]

=EP(n) [(Fn(t, y)− Fn(s, y))ϕ(s, y)]

→EQ[(F (t, y)− F (s, y))ϕ(s, y)]

=EQ[(C
f
bσ(t, y,Q)− Cf

bσ(s, y,Q))ϕ(s, y)],

(87)

as n → ∞ along the (sub)sequence of n ≥ 1 for which P(n) → Q weakly. Now
from this equation we can use the characterization for martingales against
integrals of continuous functions (Lemma 8.4) and thus we get that for any
f ∈ C1,2,1

b ([0, T ]× Rd × P2(Rd);R),

Cf (t) = f(t, y(t),Qy(t))− f(0, y(0),Qy(0))−
∫ t

0
(∂s +A)f(s, y(s),Qy(s))ds

(88)
is an (Fy,Q)-martingale. Now due to the definitions of A and Ã, we

can invoke Lemma 7.3 to obtain a d-dimensional Brownian motion W̃ =
(W̃s)s∈[0,T ] defined on an extension (Ω̃, F̃ , Q̃) of (C([0, T ];Rd),B((C([0, T ];Rd)),Q)

such that (Ω̃, F̃ , F̃, Q̃, W̃ ,X) is a weak solution to the mean-field SDE (42),
where X = y and F̃ ⊃ Fy is a suitable filtration.

Thus we have established a weak existence result for the mean-field SDE
(42) under the condition of merely bounded and continuous coefficients b
and σ.
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8 Appendix

Here we mention some of the technical results used before.

Remark 8.1. Recall first in the proof of Lemma 7.3 we claimed that there
exists a smallest right-continuous and complete filtration F̃ = (F̃t)t∈[0,T ]

for which F̂t
⊗

F̄t ⊂ F̃t. Here recall that the F̂t denotes the Borel σ-
algebra on the path space and F̄t is a σ-algebra on a probability space on
which we have defined a d-dimensional Brownian motion. We elaborate the
construction of such a σ-algebra. Denote Gt := F̂t

⊗
F̄t. The problem is

that (Gt)t∈[0,T ] might not satisfy the usual conditions. However we can define

F̃t :=
⋂

s>t σ(Gs ∪ N ). Each of the σ-algebras σ(Gs ∪ N ) is complete, and
defining the intersection of these σ-algebras forces it to be right-continuous,
this follows since

⋂
r>t F̃r =

⋂
r>t

⋂
s>r σ(Gs ∪ N ) =

⋂
s>t σ(Gs ∪ N ) = F̃t.

Here N denotes the null-sets of the product probability measure P̂×P where
the probability with a hat corresponds to the solution to the local martingale
problem. Clearly also F̂t

⊗
F̄t ⊂ F̃t.

Here we will also recall the following result from [16, p. 315] to represent
a solution of an SDE as the coordinate process against a certain stochastic
basis and a Brownian motion:

Proposition 8.2. Assume b : [0, T ] × C([0, T ];Rd) → Rd and σ : [0, T ] ×
C([0, T ];Rd) → Rd×d are progressively measurable and let

Mf
t = f(y(t))− f(y(0))−

∫ t

0
(A′f)(y)ds, t ∈ [0, T ]. (89)

Let P̂ be a probability measure on (C([0, T ];Rd),B(C([0, T ];Rd))) such that
Mf is a continuous local (Fy, P̂)-martingale for the choices f(x) = xi and
f(x) = xixj, 1 ≤ i, j ≤ d. Then there exists a d-dimensional Brownian

motion W = (Wt)t∈[0,T ] defined on an extension (Ω̃, F̃ , P̃) of

(C([0, T ];Rd),B((C([0, T ];Rd)), P̂) (90)

such that (Ω̃, F̃ , F̃, P̂,W,X) is a solution to the functional SDE (25), where
X = y.

Here (A′f)(y) is defined as A′f(s, y) where f does not depend on s.
This is helpful as whenever we are investigating something and have a solu-
tion to the local martingale problem, we can represent this solution as the
coordinate process.

In the proof of Theorem 7.5 we used the following relation for martin-
gales:
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M = (Mt)t∈[0,T ] on C([0, T ];Rd) is a martingale with respect to Fy if
and only if E[(Mt(y) − Ms(y))ϕ(s, y)] = 0 for any non-anticipating ϕ ∈
Cb([0, T ]× C([0, T ]× Rd);R) and s < t. This result is not obvious, we will
first prove it when ϕ is measurable, and not continuous. This is a weaker
assumption since in our setting continuous functions are measurable.

Lemma 8.3. M = (Mt)t∈[0,T ] is a martingale with respect to F = (Ft)t∈[0,T ]

if and only if for 0 ≤ s < t ≤ T and any ϕ : Ω → R bounded and Fs-
measurable function it holds

E[(Mt −Ms)ϕ] = 0 (91)

Proof. Assume that M is a martingale. We get by a simple computation
using the tower property of conditional expectation and the fact that ϕ is
Fs-measurable (’take out what is known’ property)

E[(Mt −Ms)ϕ] =E[E[(Mt −Ms)ϕ|Fs]]

=E[ϕE[(Mt −Ms)|Fs]] = 0, a.s.
(92)

Where the last equality follows from the fact that M is a martingale.

Now assume that E[(Mt − Ms)ϕ] = 0 holds for all ϕ : Ω → R, Fs-
measurable and bounded. Especially for A ∈ Fs it holds that E[(Mt −
Ms)IA] = 0. However upon rewriting we obtain∫

A
MtdP =

∫
A
MsdP (93)

and thus E(Mt|Fs) = Ms a.s. which finishes the proof.

We want to extend this characterization to the case where ϕ is assumed
to be continuous, this makes one direction of the above implications harder,
and the other easier. As every continuous function is measurable in our
setting, we obtain the first direction immediately. We now formulate the
result:

Lemma 8.4. M = (Mt)t∈[0,T ] is a martingale with respect to Fy = (Fy
t )t∈[0,T ]

if and only if for 0 ≤ s < t ≤ T and any ϕ : [0, T ] × C([0, T ];Rd) → R,
non-anticipating, bounded and continuous it holds

E[(Mt −Ms)ϕ(s, y)] = 0. (94)

Proof. We assume there exists A ∈ B(C([0, s];Rd)) such that (the expecta-
tion is taken against Q on C([0, s];Rd))

E[(Mt −Ms)IA] > 0. (95)
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By the regularity of probability measures on metric spaces (see [24, Theorem
1.2]), for any ε > 0 we can find an open set G, such that A ⊂ G and
Q(G) ≤ Q(A) + ε. Thus we also have

E[(Mt −Ms)IG] > 0. (96)

Now we can approximate the function IG pointwise and in probability (with
respect to Q) by continuous functions ϕn. This can be done for example
by the usual distance function construction. Most importantly we find a
continuous function ϕ : [0, T ]× C([0, T ];Rd) → R for which it holds

E[(Mt −Ms)ϕ] > 0, (97)

which is a contradiction.
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