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Chaos and its Degradation-Promoting-Based
Control in an Antithetic Integral Feedback Circuit

Armin M. Zand, Mohammad Saleh Tavazoei, and Nikolay V. Kuznetsov

Abstract— This letter deals with a novel variant of antithetic
integral feedback controller (AIFC) motifs which can feature
robust perfect adaptation, a pervasive (desired) ability in natural
(synthetic) biomolecular circuits, when coupled with a wide class
of process networks to be regulated. Using the separation of time-
scales in the proposed kind of AIFC, here we find a reduced-
order controller that captures the governing slow part of the
original solutions under suitable assumptions. Inspired by Rössler
systems, we then make use of such a simpler controller to show
that the antithetic circuit can exhibit chaotic behaviors with
strange attractors, where the bifurcation from a homeostatic state
to chaotic orbits can happen, e.g., when considering saturated
Hill-type reactions for the actuation. Addition of degradation
terms to the controller species, whether naturally due to dilution
or exogenously using protein tags, is showcased by simulation
results to be an effective solution in suppressing deterministic
chaos and aperiodic oscillations. In the same vein, we recapitulate
the recently introduced antithetic rein IFC motif and confirm
that the promotion of degradation by a rein mechanism also can
control chaos and improve the stability of closed-loop circuit.

Index Terms—Oscillatory reaction networks, adaptation, sin-
gular perturbation theory, synthetic biology, bifurcation analysis.

I. INTRODUCTION

ROBUST perfect adaptation (RPA), as a pervasive feature
observed in evolved natural circuits, from cellular to

organismal level, provides the living network with a structural
architecture that maintains its functionality (e.g., the regulation
of an output variable at given targets) regardless of unexpected
perturbations and environmental uncertainties [1]–[4]. To be
more specific, such a (perfect) homeostatic property refers to
the ability of a biological system in robustly returning the state
of its output species back into the (same) prestimulus baseline,
even when the external stimulation is still present [2], [5], [6].

This is proven to be achievable by structuring an integral
feedback control (IFC) mechanism in the circuit of interest
[5], [7], [8]. In particular, the antithetic IFC motif (AIFC),
initially developed in [3], has gained a significant attention in
recent years [6], [9]–[12] due to its universal [4] capability
of structuring IFC (and, hence, ensuring RPA) in control
of a generally unknown biochemical process network. As
an improved version of this motif, the authors of [13] have
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recently added an extra inhibitory reaction from a controller
species to the target species being regulated in the process side,
the addition of which it is believed to enhance the stability of
resulting closed-loop circuit. They called it antithetic rein IFC
(ARIFC) motif and proved its functionality for the case of
controlling a simplified (two-species) gene-expression model.

Observation of chaos, extreme sensitivity to slight changes,
has long been a classical phenomena of interest explored both
experimentally and theoretically in a wide range of fields, from
electrical [14] to biochemical systems [15]. Thus far, however,
there has been little reports on chaos tailored to synthetic
biology contexts [16]. In this regard, studying the functionality
of genetically embeddable IFC structures in the presence of
rich dynamics and chaotic attractors is of central interest to this
letter. More specifically, we provide a case study based on a
modified kind of minimal AIFC motifs to address the question
of whether sustained nonperiodic oscillations can coexist with
such RPA-achieving regulatory circuits.

To do so, in Section II, we initially sketch the involved
chemical reaction network (CRN) and the associated dynamic
model of the considered variant of AIFC. Motivated by the
previous work [6], we next utilize geometrical singular pertur-
bation tools [17]–[19] to derive a (zero-order approximated)
quasi-steady state approximation (QSSA) for this motif under
suitable assumptions, treating the original (full) circuit as a
singular singularly perturbed system (SSPS). As the next step,
based on the Rössler systems [20], we propose the CRN of a
two-species autocatalytic process network whose closed-loop
circuit, where the previously derived reduced model acts as its
controller part, can generate chaos with spiral-type attractors.
As such a dissipative oscillatory response indeed represents the
slow solution of its original AIFC counterpart circuit, we may
expect that the full antithetic system also behaves similarly.
Chaos analysis in both of the reduced and full (autonomous)
systems comes then into consideration to study this matter
with more details, presented in Section IV.

From the fact that the concentrations of biomolecules found
in naturally-evolved living circuits are being ”diluted” out as
the host cell’s volume increases [10], it can be immediate
that in the fast-growing cells the dilution effect may cause
memory leakage in the stored integral variable, thereby giving
rise to an imperfect adapting circuit [4], [6]. Viewed in this
way, Section V discusses the effect of such a leakage on the
observed chaotic oscillations and interestingly show that it acts
as a natural chaos control mechanism. This holds also true if
the degradation terms has been added to the controller species
exogenously, e.g., by the addition of protein degradation tags.
More, this section suggests another biomolecular mechanism
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to suppress chaos, where we modify our chaotic circuits in
such a manner that they encompass a rein structure similar to
[13]. Here we indeed try to recapitulate an enzymatic version
of the ARIFC, increasing the rein reaction rate of which can
help precluding chaotic orbits. Section VI concludes the letter.

II. CONSIDERED BIOCHEMICAL SYSTEMS

A. Full (AIFC-based) closed-loop circuit

Consider that the process being controlled, say F (t), is con-
sisted of n arbitrary, distinct species, say {X1, ..., Xn}, con-
nected to each other through an unknown, complex reaction
network Rx with uncertain parameters (rate constants) and re-
action rates. Now, assume that the dynamic model of F (t) can
be generally described by some nonautonomous (sufficiently
smooth) vector field F(x, t) = [F1(x, t), ...,Fn(x, t)]T :
Rn≥0 × R≥0 → Rn, where the state variable vector x(t) =
[x1(t), ..., xn(t)]T ∈ Rn≥0 represents the corresponding con-
centration of the species evolving over time with t ∈ [t0, t1]
Note the parametric space of the system that is not constrained
in this setting to be necessarily time-invariant. Here we connect
a biochemically constructible exogenous controller block (the
AIFC-based motif under study) to this process and prove that
robust (perfect) homeostasis can be ensured at steady-state
level of the target species Xn (i.e., the output concentration
xn(t) as t → ∞) in the resulting closed-loop structure,
regardless of what reactions constitute F (t) and how exactly
they are mapped. To exhibit RPA, it implicitly requires the
(positive) equilibrium(s) of closed-loop to be stable.

This controller block, in a minimal manner, only incorpo-
rates two distinct (controller) species, called as Z1 and Z2, for
the desired integral feedback strategy to be structured in the
closed-loop system. This happens by taking place a specific
annihilation mechanism, consider the comparison (outflow)
reaction R3 = Z1 + Z2

η−→ ∅, in which the two species
sequester [21] each other identically with a rate η ∈ R>0. It
produces some inactivated species (the biomolecules Z1:Z2)
not affecting other reaction rates inside the network of interest
(indicated symbolically by ”∅”, where ∅ represents the neutral
annihilation product leaving the reacting system).

Choose the time-varying (differentiable) reference input
signal µ(t) : R → R≥0, or the control input in a traditional
sense, to be externally encoded into the closed-loop circuit
as the propensity of firing an inflow reaction in the form
R2 = ∅ µ−→ Z1, corresponding to which the species Z1 is
constitutively being produced. Then, let the process network
to be sensed in the controller block by the sensing reaction
R5 = Xn

θ2−→ Xn + Z2, in which Xn (catalytically) charges
Z2 with the sensor gain θ2 ∈ R>0. Moreover, let the controller
block to convey the (computed) control signal, which encodes
the time integration of output deviation from the set-point (i.e.,∫

(xn(t)−µ(t)/θ2)dt) as molecular dynamics, through taking
place the (enzymatic) actuation reaction R1 : Z2 + Xn −⇀↽−
C −→ Z2. Where the output species is deemed as the substrate
being converted to an enzyme-substrate complex (the species
C), and where the species Z2 from the controller side acts as
the (total) enzyme quantity catalyzing the degradation of Xn,
with a catalytic rate θ1 ∈ R>0. The association (dissociation)

rate of such an actuation reaction is assumed to be the positive
scalar kf (kr).

These reactions, taken together, shape such a closed-loop
circuit shown in Fig. 1a, in which the two species Z2 and
Xn establish a local negative feedback loop nearby. They can

be represented as the set Rz = {R1 : Z2 + Xn
kf−⇀↽−
kr

C
θ1−→

Z2,R2 : ∅ µ−→ Z1,R3 : Z1 +Z2
η−→ ∅,R4 : Z1

γc1−−→ ∅,R5 :

Xn
θ2−→ Xn + Z2,R6 : Z2

γc2−−→ ∅}.
In this scenario, by assuming (deterministic) mass-action

rate equations and also that the substrates in the actuation
reaction are in considerable excess w.r.t the enzymes (making
it legitimate to apply the QSSA of R1 [22]), the dynamical
behavior of the considered closed-loop control system can then
be modeled by the following evolution equations
ẋ = F(x, t)− enθ1z2xn/(Kn + xn), xi(t0) = x0

i (1a)
ż1 = µ(t)− ηz1z2 − γc1z1, z1(t0) = z0

1 (1b)
ż2 = θ2xn − ηz1z2 − γc2z2, z2(t0) = z0

2 (1c)

where ei ∈ Zn is the standard basis of Rn and Kn, given by
Kn = (θ1 + kr)/kf , is the Michaelis-Menten constant of R1

representing its enzyme affinity.
Note the effect of diluting cellular context in the controller

part that is approximated in (1b) and (1c) by some constant
degradation terms with rates γc1, γc2 ∈ R≥0. It implicitly
assumes that the host cell grows exponentially in size. In
the case that we neglect the effect of such a controller
degradation, a hidden IFC architecture lied on the molecular
concentrations of Z1 and Z2 can be further unraveled by
formulating the dynamics of the integral variable ζ = z2− z1,
i.e. ζ̇ = θ2xn−µ(t). This mechanism apparently forces xn(t)
to precisely track the set-point µ/θ2 at steady state and helps
it to (perfectly) reject a wide class of disturbances that may
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Fig. 1. (a) Considered AIFC structure (left) in control of an unknown
process network (right). (b) The two-species network specified in Section II-B.
(c) Target closed-loop output, x2(t), of both the full and reduced systems,
obtained from (5) and (6) respectively for the default parameter set Pd and
initial conditions Id, in two different scenarios of controller leakage.
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perturb the system (1) meanwhile (where, equivalently, RPA
ensues), the internal model principle says [7]. It additionally
necessitates the changing input µ to vary in a reasonably
slow manner. Notice also that the positiveness of the species’
concentrations in this circuit naturally imposes the positive
orthant of Rn+2 to be a positively invariant set for this system,
so long as the prescribed initial conditions are also picked from
the same set (i.e., [x(t0), z1(t0), z2(t0)] ∈ Rn+2

≥0 ).

B. Proposed open-loop circuit of interest

The CRN of considered (two-node) process network can be

shown by the reaction set Rx = {Rx1 : E1 + X1 −⇀↽− C1
kc1−→

E1, Rx2 : X2
κ−→ X2+X1, Rx3 : ∅ kb−→ X2, Rx4 : X2

ϑ−→ 2X2,

Rx5 : X1+X2 −⇀↽− C2
kc2−→ X1}. Fig. 1b shows the schematic of

this (autocatalytic) circuit. Also, the forward and reverse rate
pairs for Rx1 and Rx5 are {αf1 , αr1} and {αf2 , αr2}, respectively.

III. MODEL REDUCTION ANALYSIS

In this section, we analytically show that the solutions of
(full) system (1) for large selections of η can be approximated
over a finite time interval t = [t0, t1] by that of the following
reduced-order system (whose state variables are distinguished
by bar marks){

˙̄x = F(x̄, t)− enθ1z̄x̄n/(Kn + x̄n), x̄i(t0) = x̄0
i (2a)

˙̄z = θ2x̄n − µ(t)− γc2z̄, z̄(t0) = z̄0 (2b)

provided that some assumptions are met.

Assumption 1. Suppose that F and µ(t) are sufficiently
smooth functions with respect to all their variables so that
a unique, well-behaved solution of the initial value problem
(2) exists for some z̄(t0) = z̄0 ∈ R>0, x̄i(t0) = x̄0

i ∈ R≥0

over all t ∈ [t0, t1]. Assume this holds also for the full system
(1) with xi(t0) = x0

i ∈ R≥0, zj(t0) = z0
j ∈ R≥0 at least over

an interval η ∈ [η0,∞) with η0 ∈ R>0.

In this letter, we shall restrict our attention to a particular
class of processes that can together with the selected controller
parameters hold the following assumption valid for the closed-
loop response (2).

Assumption 2. For the obtained solutions from (2) with
z̄(t0) = z̄0 and x̄i(t0) = x̄0

i , the state variable z̄ varies for
all t ∈ [t0, t1] in a compact set Sz̄ ⊂ R≥0 whose minimum is
in the interior of positive orthant.

To prove that such a QSSA exists for the full system,
we reformulate (1) as a standard singularly perturbed system
(SPS) [17]–[19]
ẋ = F(x, t)− enθ1z2xn/(Kn + xn), xi(t0) = x0

i (3a)
εż1 = εµ− z1z2 − εγc1z1, z1(t0) = z0

1 (3b)
εż2 = εθ2xn − z1z2 − εγc2z2, z2(t0) = z0

2 (3c)

by taking the perturbing (parasitic) parameter, called ε ∈ R>0,
as ε := 1/η. In this formalism, zi are regarded as the fast
(exhausting) variables while xi(t) are considered to be the
slow ones with dynamics independent of the rate constant η.

Under Assumption 1 and for sufficiently small ε, one may
find a slow (integral) manifold for the dynamics of SPS (3)

with the form Z = Mε(X , t, ε),Z = [z1, z2]T , if it can
be shown that the boundary layer (BL) solution of system
(3) admits at least one isolated root which is asymptotically
stable uniformly in t and x for the prescribed z0

1 and z0
2 .

Such a BL system can be obtained from freezing the slow
modes (ε = 0) and dilating time (τ := t/ε), while treating
the slow variables and time as parameters. However, a simple
computation reveals that the Jacobian of BL dynamics, given
by dZ/dτ = [−z1z2,−z1z2], is singular throughout the state
space. This property is a direct result of special annihilation
mechanism employed to establish IFC, where each molecule
of Z1 binds only to one molecule of its sequestration pair Z2.

Applying a proper state transformation may be of help to
regularize the SSPS problem (3). Particularly, we introduce
the change of variable z = z2 − z1 to (3) in place of z2(t),
which results in

ẋ = F(x, t)− enθ1(z + z1)xn/(Kn + xn), (4a)
ż = θ2xn − µ(t)− γc2z − (γc2 − γc1)z1, (4b)
εż1 = εµ− z1(z + z1)− εγc1z1, (4c)

where z(t) is now deemed as a slow variable (because ε has
disappeared from ż) with initial condition z(t0) = z0

2 − z0
1 .

Theorem 1. Hold Assumptions 1 and 2 true. Then, there exists
a sufficiently large η∗ ≥ η0 such that for η ∈ [η∗,∞) the
following relations between time responses of the original
system (1) and its QSSA obtained from (2) remain valid,
provided that x0

i = x̄0
i , z0

1 ≥ 0, and z0
2 = z̄0 + z0

1 .
1) |xi(t) − x̄i(t)| = O(1/η) and |z2(t) − z̄(t)| = O(1/η)

for all t ∈ [t0, t1].
2) There exists t∗ > t0 such that z1(t) = O(1/η) for every

t ∈ [t∗, t1].
Proof: The inner layer dynamics of the transformed sys-

tem (4) can be readily determined as dz1/dτ = −z1(z+ z1),
which admits two different isolated quasi-steady states for
z1(t), that are, z1 = M0 = 0 and z1 = −z. Its Jacobian
also can be computed as −∂(z2

1 + zz1)/∂z1 = −2z1 − z.
Assuming z > c as a fixed parameter where c is positive

(Assumption 2), it is a straightforward exercise to solve this
one-dimensional differential equation and see that z1 = 0 is an
exponentially stable equilibrium for this BL subsystem, whose
domain of attraction includes all non-negative z1(t0). Then,
by referring to the Tikhonov’s theorem (See [17, Th. 3.1], [18],
[19]), one can easily follow the desired conclusion.

IV. CHAOS ANALYSIS

In this section, we consider the proposed circuit Rx as the
process network being controlled in (2) and describe (with the
aid of QSSAs [22] for Rx1 and Rx5 ) the dynamic model of the
resulting reduced closed-loop circuit as

˙̄x1 = κx̄2 − kc1x̄1/(K1 + x̄1), (5a)

˙̄x2 = kb + ϑx̄2 −
kc2x̄1x̄2

K2 + x̄2
− θ1z̄x̄2

Kn + x̄2
, (5b)

˙̄z = θ2x̄2 − µ− γc2z̄, (5c)

where K1 = (kc1 + αr1)/αf1 and K2 = (kc2 + αr2)/αf2 . A
quick comparison easily finds such a circuit as a slightly
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(a)

(b)

Fig. 2. Reduced system (5) can show chaos for small Kn. (a) Chaotic
attractor of this system in phase space, where Kn = 0.15. A chaotic temporal
evolution of the states is also shown. (b) Bifurcation diagram demonstrating
the local extrema of x̄2(t) for variations of Kn from 0 to 6.5. Also provided
is the LLE for Kn ∈ [0, 0.625]. Pd and Id are the typical settings used.

modified version of the Rössler chaotic prototype considered
previously in the paper [20, eq. (1)], a topology similar
to which was also employed in the recent research work
[16]. We firstly define a typical set of parameters, Pd,
and initial conditions, Id, as {kb = 10 nMh−1, ϑ =
0.9515 h−1, θ1 = 5.8 h−1,Kn = 6 nM,K2 = 0.15 nM, kc2 =
4.7 h−1, θ2 = 0.86 h−1, µ = 5.4 nMh−1, κ = 7.7 h−1, kc1 =
75 nMh−1,K1 = 0.03 nM, γc1 = 0 h−1, γc2 = 0 h−1} and
(x̄1(t0), x̄2(t0), z̄(t0)) = (0.035, 5.2, 2.59), respectively, and
make use of these two as the default setting for providing
our numerical simulation results hereafter. For this setting,
the (unique) positive equilibrium point of (5), denoted by
p∗ := [x̄∗1, x̄

∗
2, z̄

∗], can be written out as p∗ ≈ [0.05, 6.28, 5.3],
implying the stability of closed-loop as the eigenvalues of its
Jacobian, J(x̄1, x̄2, z̄) := [∇T ˙̄x1, ∇T ˙̄x2, ∇T ˙̄z]T ∈ R3×3, at
p∗ are λ1,2 ≈ −0.19± j1.59, λ3 ≈ −315.6. This point can be
confirmed from Fig. 1c, which evaluates the time response
of this circuit when being perfectly adapted to a step-like
perturbation increasing θ1 by 100% in magnitude.

In this setting, if we decrease Kn in (5b) from 6 nM to
0.15 nM, the control system (5) will admit a different unique
(hyperbolic) equilibrium p∗ ≈ [0.05, 6.28, 2.77]. Calculating
the characteristics of matrix J at this (unstable) point easily
identifies it as an index-2 saddle-focus with eigenvalues λ1,2 ≈
0.39± j2.17, λ3 ≈ −315.6.

It is seen that a (spiral-type) attractor, illustrated in Fig. 2a,
absorbs the solution of this system. Indeed, decreasing Kn

in Pd has amplified the oscillations created by (5b) and
(5c) in the variables x̄2(t) and z̄(t), thereby giving rise to
a 2D attractive limit cycle near the surface x̄2-z̄, where a
(dissipative) motion spirals out around the positive (unstable)
focus p∗. At this time, the equation (5a) plays the role of

a threshold switch triggering which guides such a spiral flow
and lifts it up along x̄1. The nonlinear term −kc1x̄1/(K1 + x̄1)
wherein reinjects such a flow, settling it back again near the
spiraling-out motion. If we let the switch to work considerably
faster than remaining reactions (Compare κ and kc1 in Pd with
other values), the two oscillating variables will jump back and
forth along the two branches of a Z-shaped hysteresis-type
(slow) manifold repeatedly, in which case a chaotic response
yet invariant w.r.t R3

≥0 can be observed.
Taking one step forward, we show the bifurcation diagram

of (5) for variations on Kn as the bifurcation parameter. As
can be seen from Fig. 2b, when 3.2 nM ≤ Kn ≤ 6.5 nM, the
system works in a steady state region with one fixed point
(so that RPA also takes place), while the emerging bifurcation
point at Kn = 3.2 nM generates a period-1 limit cycle for
0.788 nM ≤ Kn ≤ 3.2 nM, whose amplitude is decreasing
w.r.t Kn. At Kn equal to 0.788 nM, 0.384 nM, and 0.31 nM,
the period-doubling cascade converges to period-2, -4, and -8
orbits, respectively, and routs to chaos when Kn ≈ 0.29 nM.
Further details regarding chaotic regions and rich dynamics for
smaller values of Kn can be determined from the magnified
area of Fig. 2b (indicated by a magnifier icon), whose results
are also supported in parallel by providing the pertinent finite-
time largest Lyapunov exponent (LLE) of (5), computed using
the Wolf’s method [23]. Here the observation time, integration
step size, and initial conditions used to calculate LLEs are
0 ≤ t ≤ 5000 h, ∆t = 0.001 h, and Id, respectively. We
shall also note that the obtained state variable z̄(t) in such a
chaotic setting has a minimum greater than c = 0.4 for all
0 ≤ t ≤ 5000 h. Thus, Assumption 2 is already met if we
take t0 = 0 and t1 = 5000 h.

As the last step, by comparing (5) to (2), the analogous full
(AIFC-based) circuit of (5), in the form (1), can be noticed as

ẋ1 = κx2 − kc1x1/(K1 + x1), (6a)

ẋ2 = kb + ϑx2 −
kc2x1x2

K2 + x2
− θ1z2x2

Kn + x2
, (6b)

ż1 = µ−ηz1z2−γc1z1, (6c)
ż2 = θ2x2−ηz1z2−γc2z2. (6d)

It is easy to check that both the reduced model (5) and full
system (6) satisfy Assumption 1. Now, one can choose a non-
negative initial condition for z1 and set x0

i = x̄0
i , z

0
2 = z̄0 +z0

1 .
Then, Theorem 1 in Section III declares that, when 0 ≤ t ≤
5000 h, the fast dynamics of (6) for (sufficiently) large η will
be attracted (rapidly enough) to a slow manifold (z1 = 0)
on which the evolution of (slow) dynamics can be tightly
captured by (5). Here Z1 acts as a short-lived intermediate
species (governing the transient) being waned faster as η
becomes stronger. By this explanation it becomes clear that
if the annihilation mechanism (R3) occurs faster than the
switching rates kc1 and κ, we then may expect to have (for
Pd, Kn = 0.15, η � 1, and z1(t0) ≥ 0) the slow solution of
(6) generating chaos after a transient.

To confirm this point, we set x(t0) = x̄(t0) (where x̄(t0)
was already provided in Id), z1(t0) = 0.01, and z2(t0) = 2.6
to illustrate the simulation results in Fig. 3. Note the trend
in Fig. 3b when η ≈ kc1. Here a (Hopf) bifurcation at η ≈
14 nM−1h−1 routs to chaos for the first time. See also Fig. 4
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(a)

(b)

Fig. 3. Full (AIFC-based) circuit also exhibits chaotic oscillations for large
values of η. (a) Attractors of the system (6) for four different scales of η,
which start by a limit cycle for η = 100 and become sparsely- and densely-
filled chaotic for stronger annihilations. (b) Bifurcation diagram showing the
spectrum of oscillation amplitudes in x2(t), where η varies logarithmically
from 10−2 to 105. The complementary LLE is drawn for η ∈ [0.5, 2000].

for further explorations. Although there may not be available
valid, accurate in vivo values for the affinity η at hand, at least
in vitro studies initially suggest that, using some engineered
protein-protein interactions displaying sequestration, e.g., by
homodimerizations of (C62)Gcn42 or heterodimerizations of
FosC and JunC (with resulting binding rates vary from 26.64
to 57.6 nM−1h−1), the chaotic range for η evoked by Fig. 3
can be of biological relavance [21, Supplementary Table SII].

V. CHAOS SUPPRESSION MECHANISMS

This section introduces two different mechanisms which
can control the observed chaos. The first approach is to add
degradation terms to the controller species and the second one
considers a rein feedback mechanism as effective solution.

In Section IV, given that γc1 and γc2 are set zero in Pd,
we have indeed supposed no degradation terms for the circuits
of controller blocks. Controller degradation can be a direct
result of cellular growth or might be determined more by,
e.g., synthetically addition of some protein degradation tags.
In both cases, it leads to a leaky integration [10] produc-
ing steady-state tracking errors (Follow this from Fig. 1c).
Although having controller degradation may deteriorate the
performance of circuit’s adaptation mechanism, it is shown
to be effective in enhancing the closed-loop stability [6], [9],
a crucial prerequisite for RPA to be achieved. To have an
intuition, form the gradient flow of the simpler system (5)
as ∇f = ∂ ˙̄x1

∂x̄1
+ ∂ ˙̄x2

∂x̄2
+ ∂ ˙̄z

∂z̄ and readily see that it holds
∇f ≤ ϑ − γc2, introducing γc2 as a dissipative element
individually increasing which steers the flow of biological
system to a null-volume attractor.

To determine whether the resulting attractor is chaotic,
(a)periodic, or fixed point, we design a simulation study (See
Fig. 5) consisted of the two-parameter bifurcation diagrams,
which classify and map (by colors and labels) the number of
nontransient local extrema of x2(t) in the full system (6), say

Fig. 4. Comparing the bifurcation diagram (and LLE) of the reduced system
(gray colors), which was previously provided in Fig. 2b, with that of its
corresponding full AIFC system obtained from (6) for η = 103 (pink colors).

β(p1, p2) ∈ N, for every pair of parameters of interest (i.e.
(p1, p2), one of which is γc2). If β(p∗1, p

∗
2) = 1, we label the

pair (p∗1, p
∗
2) as ”SS”, indicated by blue ink, which represents

the steady-state region. In a similar vein, for β(p∗1, p
∗
2) coming

from {2}, {3, 4, 5}, {6, ..., 10}, or {11, ..., 21}, we assign the
labels ”P2”, ”P4”, ”P8”, or ”P16” to (p∗1, p

∗
2), respectively.

Due to computational complexities for accurately classifying
more extrema points, we grouped all β(p∗1, p

∗
2) ≥ 22 together

as ”CH”, implying chaotic orbits. As shown in Fig. 5, for a
wide range of parametric uncertainties, there always exists an
interval for γc2 6= 0 by which chaotic or periodic orbits are
precluded (of course at the cost of having adaptation errors).

Let us now simply add an extra actuation reaction, say
Rθ3 : Z1

θ3−→ Z1 + X1, from the controller species Z1

to X1, taking into account that a new (positive) feedback
loop comprising the reactions Rθ3 , Rx5 , R5, and R3 will
now be a part of the closed-loop system. Assuming mass-
action rate kinetics for Rθ3 , the addition of such a uni-
molecular activation will only affect the dynamics in (1a)
as ẋ = F(x, t) − enθ1z2xn/(Kn + xn) + e1θ3z1. It is now
fairy easy to check that the resulting motif (depicted in Fig.
6a) follows a structure similar to the ARIFC motif in [13],
with the only distinction that the rein mechanism here (R1) is
modeled by Hill reaction rates. One can follow this from (1a).
Can this modification, even in a chaotic setting, still bring the
stability improvements for the closed-loop circuit in the regime
of high rein gains, i.e. θ1 →∞? Fig. 6b tries to address this
question where the process being controlled is kept intact (Rx

in Section II-B). As can be seen (for η = 102 and θ3 = 1),
increasing the rein constant rate can lead the ARIFC-based
circuitry to achieve asymptotic stability and avoid strange
behaviors. Fig. 6c further highlights this fact for a wide range
of variations on θ3. This point puts forth the idea that the
promotion of degradation even by utilizing a rein structure
can also play the role of a natural chaos control scheme.

VI. CONCLUSION

In this letter, we considered a modified version of the
universal (standard) AIFC motif. Using singular perturbation
methodologies and under suitable assumptions, we obtained a
QSSA for the solutions of this motif when the sequestration
binding η is sufficiently strong, considered as the associated
reduced model. To be more specific, we indeed proved through
a nonlinear approach that, for a particular class of solutions,
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Fig. 5. Controller degradation may help to eliminate aperiodic oscillations.
Two-parameter bifurcation diagrams for γc2 ∈ [0, 1], Kn ∈ [0, 0.625], µ ∈
[3.75, 6.75], η ∈ [0.5, 2000]. Default parameters are Pd and η = 103.

the abundance of species Xi and Z2 from (1) can be made
(arbitrarily) close to the values of x̄i and z̄ obtained from (2),
respectively, where the sequestration binding η is (sufficiently)
strong and the initial conditions satisfy x0

i = x̄0
i , z0

1 ≥ 0,
and z0

2 = z̄0 + z0
1 . This particular class of solutions shall

be characterized by imposing Assumptions 1 and 2 on the
dynamic model (2).

Benefiting from such a finding, we next suggested a chaotic
three-species (autocatalytic) circuit based on the previously ob-
tained reduced-order controller to show that its corresponding
AIFC-based circuit also can generate chaos for η � 1. Being
limited to the considered biomolecular control systems, we
lastly studied the underlying role of degradation promotion in
damping chaotic oscillations and precluding aperiodic orbits.

One may incidentally look at the regulatory effects of
employed rein IFC on a time-average level basis and notice
that it still exhibits the ability to maintain homeostasis in face
of undesired disturbances, even in a chaotic fashion. This is
illustrated by Fig. 6d, where Avg(S(t)) = 1

t−t0

∫ t
t0
S(τ)dτ .

It is seen that taking average over the output x2 can filter
even nonperiodic fluctuations about the set-point, whereby
showing stringent resilience w.r.t. perturbations. Similar topics
were previously taken into account by [8], [16] to address
such phenomena, however, putting further effort to analytically
study the performance of biological IFC schemes in a more
general, chaotic setup might be of interest for future work.
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