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Abstract
We consider extensions of quasiconformalmaps and the uniformization theorem to the
setting ofmetric spaces X homeomorphic toR2.Given ameasureμon such a space,we
introduceμ-quasiconformal maps f : X → R

2, whose definition involves deforming
lengths of curves by μ. We show that if μ is an infinitesimally metric measure, i.e., it
satisfies an infinitesimal version of the metric doubling measure condition of David
and Semmes, then such a μ-quasiconformal map exists. We apply this result to give
a characterization of the metric spaces admitting an infinitesimally quasisymmetric
parametrization.

Keywords Metric doubling measure · Quasiconformal mapping · Quasisymmetric
mapping · Conformal modulus

Mathematics Subject Classification Primary 30L10 · Secondary 30C65 · 28A75 ·
51F99

1 Introduction

The quasisymmetric uniformization problem asks one to characterize, as meaningfully
as possible, those metric spaces which may be mapped onto a domain in the Euclidean
plane, or the 2-sphere, by a quasisymmetric homeomorphism. Informally, a mapping
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is quasisymmetric if it roughly preserves the relative distance between triples of points.
See Sect. 4 for the precise definition.

Significant results on the uniformization problem, such as the Bonk–Kleiner theo-
rem [4] and its extensions in [21] and [22], have been obtained for surfaces that are
non-fractal, i.e., their 2-dimensional Hausdorff measure is locally finite. These spaces
carry enough rectifiable paths for classical methods such as conformal modulus to be
applicable. By surface, we mean a 2-manifold equipped with a continuous metric.

In contrast, the class of fractal surfaces is too general for the standard methods.
Consequently, understanding the quasisymmetric uniformization of fractal surfaces
has proved extremely difficult. Any progress is desirable, especially due to applications
to geometric group theory (cf. [3,12]) and complex dynamics (cf. [5]).

The usual method for constructing quasisymmetric maps is to first show the
existence of some conformal or quasiconformal map in the spirit of the classical
uniformization theorem. Then, if the underlying surface has good geometric prop-
erties, one can use quasiconformal invariants to show that such a map is actually
quasisymmetric.

A fundamental difficulty in extending this method to fractal surfaces is the lack of
a suitable definition of quasiconformality. The classical metric definition (see Sect. 4)
is too weak to lead to a satisfactory theory in this generality. The geometric definition
(see Sect. 2) requires the existence of many rectifiable paths, which need not be the
case for fractal surfaces.

In Sect. 2, we propose the definition of μ-quasiconformality for homeomorphisms
f : X → R

2, depending on a measure μ on X . This is a modification of the geometric
definition: we deform the metric on X using μ to obtain the μ-length of a curve, and
we define the correspondingμ-modulus of a family of curves in X . A homeomorphism
f is μ-quasiconformal if the μ-modulus of every family of curves in X is comparable
to the conformal modulus of its image under f in R2.

A quasisymmetric map f : X → R
2 is μ-quasiconformal when μ is the pullback

of the Lebesgue measure on R
2. Our goal is to find measures μ on a given space X

for which the existence of μ-quasiconformal maps can be shown.
In Sect. 3, we introduce the notion of infinitesimally metric measure on X . These

correspond to the metric doubling measures of David and Semmes [6,13], the corre-
spondence being similar to the one between metrically quasiconformal (MQC) maps
and quasisymmetric (QS) maps, where the former is an infinitesimal condition and
the latter is a global condition. Metric doubling measures can be used to produce qua-
sisymmetric maps via deformation of the metric on X . Our first main result shows that
a μ-quasiconformal map exists if μ is an infinitesimally metric measure.

Theorem 1.1 Let X beametric space homeomorphic toR2 which supports an infinites-
imally metric measure μ. Then there exists a μ-quasiconformal map f : X → �,
where � = D ⊂ R

2 or � = R
2.

To prove Theorem 1.1, we first show that the metric d on X can be deformed using
μ to yield a “quasiconformally equivalent” metric q that has locally finite Hausdorff 2-
measure. Then,we apply the uniformization theorem in [14] to obtain a quasiconformal
map (X , q) → R

2. Composing, we then get the desired μ-quasiconformal map.
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Infinitesimally Metric Measures

In view of the correspondence between infinitesimally metric measures and metric
doubling measures, it is natural to attempt to characterize the class of metric spaces
X that admit metrically quasiconformal maps f : X → R

2 in terms of infinitesimally
metric measures. However, it turns out that the existence of such maps can be rather
arbitrary unless strong conditions are imposed on X .

Instead, we consider the notion of infinitesimally quasisymmetric (I-QS) mapping
(Definition 4.1). Suchmaps form an intermediate class between those ofMQC and QS
maps. In our second main result, we characterize the metric spaces which admit such
maps into R

2 as the spaces that carry infinitesimally metric measures with suitable
properties.

Theorem 1.2 Let X be a metric space homeomorphic to R2. There exists an infinites-
imally quasisymmetric map f : X → �, where � = D or � = R

2, if and only if
X is infinitesimally linearly locally connected and supports an infinitesimally metric
measure μ such that (X , μ) is infinitesimally Loewner.

See Sect. 4 for definitions. The proof combines Theorem 1.1 with estimates for the
μ-modulus that generalize the modulus estimates in [11].

One motivation for our work is to understand the conformal geometry of metric
surfaces in the absence of strong geometric assumptions such as Ahlfors regularity,
linear local connectedness, and the Loewner condition (see Sect. 4). In Sect. 5, we
present four examples to illustrate possible behaviors of metric surfaces under weaker
geometric assumptions. We remark that, while the main theorems of this paper are
applicable to any metric space homeomorphic to R

2, including fractal spaces, all
of these examples have locally finite Hausdorff 2-measure. The four examples are
summarized here, listed by section in which they appear.

5.1. A surface that admits anMQC parametrization byR2 but not an I-QS parametriza-
tion. This surface is linearly locally connected (LLC) but not Loewner. This
example also illustrates how metric quasiconformality is not preserved under tak-
ing inverses or precomposing with a QS map.

5.2. A surface that admits a geometrically quasiconformal (QC) parametrization byR2

but not a MQC parametrization. This surface is upper Ahlfors 2-regular but not
infinitesimally LLC.

5.3. A surface that admits an I-QS parametrization by R
2 but not a quasisymmetric

parametrization. This surface is upper Ahlfors 2-regular but not LLC.
5.4. A surface that, despite being a geodesic space of locally finite Hausdorff 2-

measure, violates infinitesimal upper Ahlfors 2-regularity at every point along a
non-degenerate continuum. This surface is LLC, and it admits a QC parametriza-
tion by R

2 but not a MQC parametrization.

In particular, these examples show that the class of I-QS maps from R
2 onto a metric

space differs from both the class of QS maps and the class of MQC maps.

2 �-Quasiconformal Maps

We assume throughout the paper that (X , d) is a metric space homeomorphic to the
Euclidean plane R2. We denote B(x, r) = {y ∈ X : d(x, y) < r}, B(x, r) = {y ∈
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X : d(x, y) ≤ r}, and S(x, r) = {y ∈ X : d(x, y) = r}. If B is a ball of radius r , we
denote by λB the ball with the same center and radius λr . A path in X is a continuous
map γ : I → X , where I is an interval. The image of such a path is called a curve in
X .

We recall the Carathéodory construction of measures, cf. [7, 2.10]. Let F be a
family of subsets of X , and ϕ : F → [0,∞]. For A ⊂ X and δ > 0, the δ-content
φδ(A) is

φδ(A) = inf
∑

S∈G
ϕ(S),

where the infimum is taken over all countable

G ⊂ {S ∈ F : diam(S) ≤ δ} such that A ⊂
⋃

S∈G
S.

Then, since φδ(A) is decreasing with respect to δ, the limit

ψ(A) = lim
δ→0+ φδ(A) ∈ [0,∞]

exists. Moreover, if every S ∈ F is a Borel set, then ψ is a Borel regular measure in
X .

Applying the Carathéodory construction with F all the non-empty subsets of X
and φ(S) = α(m)2−m diam(S)m gives the m-dimensional Hausdorff measure Hm in
X , where α(1) = 2 and α(2) = π .

Before defining μ-quasiconformal maps, we review the classical geometric defini-
tion of quasiconformality. However, we replace the standard modulus of path families
with the modulus of curve families, which lead to equivalent definitions but are easier
to work with in our setting.

Let � be a family of curves (i.e., images of paths) in X . A Borel function ρ : X →
[0,∞] is admissible for � if

∫
C ρ dH1 ≥ 1 for all C ∈ � with locally finite H1-

measure. The (conformal) modulus of � is defined as

mod� = inf
∫

X
ρ2 dH2, (1)

where the infimum is taken over all admissible functions ρ.
Let X ,Y bemetric spaces homeomorphic toR2 and f : X → Y a homeomorphism.

Then f is geometrically quasiconformal (QC), if there exists K ≥ 1 such that

K−1 mod� ≤ mod f � ≤ K mod�

for all curve families � in X . In this case, we also say that f is geometrically K -
quasiconformal (K -QC).
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We now define μ-quasiconformal maps. Let μ be a Radon measure in X with no
atoms such that μ(B) > 0 for every open ball B ⊂ X . Recall that a Borel regular
measure μ is Radon if it is finite on compact sets.

We associate with μ a collection B of open balls in X such that for every point
x ∈ X there is rx > 0 such that B(x, r) ∈ B for every r < rx . We also make the
requirement that B(x, rx ) is compact for all x . We refer to such a collection B as an
admissible cover. From now on we use the convention that every measure μ comes
equipped with an admissible cover B.

Definition 2.1 The μ-length measure μ in X is defined by the Carathéodory con-
struction with F = B and ϕ : B → [0,∞], ϕ(B) = 2π−1/2μ(B)1/2.

The μ is normalized so that if X = R
2 andμ the Lebesguemeasure, then μ = H1

(for any choice of B).

Definition 2.2 Let � be a family of curves in X . We say that a Borel function ρ : X →
[0,∞] is μ-admissible for � if

∫
C ρ dμ ≥ 1 for all C ∈ � with locally finite μ-

measure. We denote the set of such functions by �μ(�). The μ-modulus of � is

modμ � = inf
ρ∈�μ(�)

∫

X
ρ2 dμ.

Notice that if μ(C) = 0 for some C ∈ �, then there are no μ-admissible functions
for � and thus modμ � = ∞. On the other hand, if μ is not locally finite on any
C ∈ �, then modμ � = 0. Definition 2.2 coincides with (1) when X = R

2 and μ the
Lebesgue measure.

Definition 2.3 Let f : X → � be a homeomorphism, where � is a domain in R2. We
say that f and f −1 are μ-quasiconformal, if there exists K ≥ 1 such that

K−1 modμ � ≤ mod f � ≤ K modμ �

for every curve family � in X .

Definition 2.3 naturally leads to the following questions:

(1) How to decide if a given metric space X carries a measureμ for which there exists
a μ-quasiconformal map into R2?

(2) How to decide if there exists a μ-quasiconformal map for a given (X , μ)?

Concerning Question (2), it is reasonable to ask if the reciprocality condition (Def-
inition 3.7 below) can be modified to yield a characterization similar to the one
obtained in [14] for the 2-dimensional Hausdorff measure. In the next section, we
introduce infinitesimally metric measures and show that they lead to the existence of
μ-quasiconformal maps.

123



K. Rajala et al.

3 Infinitesimally Metric Measures

We now define the infinitesimally metric measures. Let X , μ, B, and μ be as above.
Moreover, for x, y ∈ X let

q(x, y) = inf μ(C(x, y)),

where the infimum is taken over all curvesC(x, y) that join x and y in X . Thus q defines
a pseudometric on X . In the following, we use the subscripts d and q to indicate which
(pseudo)metric is being used in our notation for balls, spheres, and diameter.

Definition 3.1 The measure μ is infinitesimally metric (I-MM) if there exist � > 1,
Ci ≥ 1 such that

C−1
i q(y, z) ≤ μ(Bd(x, r))

1/2 ≤ Ciq(y, z) (2)

for every Bd(x, r) ∈ B, y ∈ Bd(x, r/�), and z ∈ Sd(x, r).

It follows immediately from the definition that if μ is I-MM, then q is a metric on
X .

Recall that a metric space X is (Ahlfors) 2-regular if there exists C ≥ 1 such
that C−1r2 ≤ H2(B(x, r)) ≤ Cr2 for all x ∈ X , r ∈ (0, diam X). We say that X
is lower or upper 2-regular if, respectively, the first or second of these inequalities
holds. Definition 3.1 imposes a similar infinitesimal condition on the measure μ. In
fact, we show in Lemmas 3.4 and 3.5 that (X , q) is infinitesimally Ahlfors 2-regular.

The remainder of this section is dedicated to the proof of Theorem 1.1. We first
restate the theorem.

Theorem 3.2 Let X be a metric space homeomorphic to R2 which supports an I-MM
μ. Then there exists a μ-quasiconformal map f : X → �, where � = D ⊂ R

2 or
� = R

2.

As groundwork, we require several lemmas to estimate the 1- and 2-dimensional
Hausdorff measures corresponding to the metric q.

We fix an I-MM μ. Let B = {Bd(x, r) : x ∈ X , r < rx } be the admis-
sible cover associated with μ. The assumption that μ has no atoms implies that
limr→0 μ(Bd(x, r)) = 0 for all x ∈ X . Definition 3.1 then implies that the met-
rics d and q are topologically equivalent.

Lemma 3.3 We have

μ(Bd(x, r)) ≤ C2
i μ(Bd(x, r))

for every Bd(x, r) ∈ B, where Ci is the constant in Definition 3.1.
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Proof Since Bd(x, r) is compact and X homeomorphic to R
2, there exists a point

z ∈ ∂(X \ Bd(x, r)). Observe that z ∈ Sd(x, r). Let ε > 0, and let w ∈ Bq(z, ε) such
that r < d(x, w) < rx . Now,

μ(Bd(x, r))
1/2 ≤ μ(Bd(x, d(x, w))1/2

≤ Ciq(x, w) ≤ Ciq(x, z) + Ciε

≤ C2
i μ(Bd(x, r))

1/2 + Ciε.

Letting ε → 0 proves the claim. �	
Lemma 3.4 We have

C−2
i r2 ≤ μ(Bq(x, r)) ≤ C3

i r
2

for every ball Bq(x, r) contained in Bd(x, rx/2), where Ci is the constant in Definition
3.1.

Proof Let

s = inf
y∈X\Bq (x,r)

d(x, y) and t = sup
z∈Bq (x,r)

d(x, z).

Clearly Bd(x, s) ⊂ Bq(x, r). We claim that there exists y ∈ Sd(x, s) such that
q(x, y) ≥ r . If not, then X \ Bq(x, r) and Bd(x, s) are disjoint closed sets, with
Bd(x, s) compact. This implies that dist(X \ Bq(x, r), Bd(x, s)) > 0, contradict-
ing the definition of s. Since μ is assumed to be I-MM, we have μ(Bq(x, r)) ≥
μ(Bd(x, s)) ≥ C−2

i r2.
Likewise, Bq(x, r) ⊂ Bd(x, t). Similarly to the first part of the proof, we note that

(X \ Bd(x, t)) ∩ Bq(x, r) �= ∅. Thus, there exists z ∈ Sd(x, t) such that q(x, z) ≤ r .
Since μ is I-MM, Lemma 3.3 gives

μ(Bq(x, r)) ≤ μ(Bd(x, t)) ≤ C2
i μ(Bd(x, t)) ≤ C3

i r
2.

�	
For s, δ > 0, let Hs

q and Hs
q,δ denote the s-dimensional Hausdorff measure and

Hausdorff δ-content on (X , q), respectively.

Lemma 3.5 We have

π

4C2
i

μ(A) ≤ H2
q(A) ≤ 100πC2

i μ(A)

for any Borel set A ⊂ X, where Ci is the constant in Definition 3.1.
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Proof Let δ > 0, and let U ⊂ X be an open set with A ⊂ U and μ(U ) ≤ μ(A) + δ.
Using the basic covering theorem (see [9, Thm. 1.2]), choose a sequence of pairwise
disjoint balls Bj = Bq(x j , r j ) with Bj ⊂ U , Bj ⊂ Bd(x j , rx j /2) and 10r j < δ for
all j , such that U ⊂ ∪∞

j=15Bj . Then

H2
q,δ(A) ≤ π

∞∑

j=1

(10r j )
2 ≤ Cπ

∞∑

j=1

μ(Bj ) ≤ Cπμ(U ) ≤ Cπ(μ(A) + δ),

where C = 100C2
i (the π comes from the normalization ofH2). The upper bound for

H2
q(A) follows.
For the lower bound, fix n and define the Borel set

An = {x ∈ A : Bq(x, 1/n) ⊂ Bd(x, rx/2)} ∩ A.

Let {E j } be a cover for An with diamq(E j ) < 1
2n for all j . Removing sets from the

cover if necessary, we may assume that for every j there exists x j ∈ An such that
E j ⊂ Bq(x j , 2 diamq E j ) and Bq(x j , 1/n) ⊂ Bd(x j , rx j /2). Since

μ(An) ≤
∞∑

j=1

μ(Bq(x j , 2 diamq E j )) ≤ 4C2
i

∞∑

j=1

diamq(E j )
2,

we get

π

4C2
i

μ(An) ≤ H2
q,1/2n(An) ≤ H2

q(A).

Since μ(A) = limn→∞ μ(An), the claim follows. �	
Lemma 3.6 We have

2

Ci
√

π
H1

q(A) ≤ μ(A) ≤ 4C3
i√
π
H1

q(A)

for any Borel set A ⊂ X, where Ci is the constant in Definition 3.1.

Proof Since X is homeomorphic to R2, it is locally compact and can be exhausted by
compact sets X j .We can also approximate both μ(A) andH1

q(A) frombelowwith the
measures of the sets A j = A ∩ X j , and by considering some compact neighborhood
X j+k of A j we can assume that

sup
x∈X

diamq(Bd(x, r)), sup
x∈X

diamd(Bq(x, r)) → 0 as r → 0.

We first consider Borel sets

An = {x ∈ A : 1/n < rx } ∩ A, n ∈ N.
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Let σ > 0 be arbitrary and δ > 0 small enough so that diamd(Bq(x, 2δ)) <

min{σ, 1/n} for every x . Fix any cover {E j } of An with diamq(E j ) < δ for all j .
Removing sets from the cover if necessary, we may assume that for every j there
exists x j ∈ An such that dist({x j }, E j ) < diamq(E j ) and rx j > 1/n. Let

t j = inf{t > 0 : E j ⊂ Bd(x j , t)}.

Then for every j we have E j ⊂ Bd(x j , t j ). Moreover, since

E j ⊂ Bq(x j , 2 diamq E j ) ⊂ Bq(x j , 2δ),

we have t j < min{σ, 1/n}.
For every j,m ∈ N there exists y j

m ∈ E j \ Bd(x j , t j − 1/m), so that

μ(Bd(x j , t j − 1/m))1/2 ≤ Ciq(x j , y
j
m).

Since y j
m ∈ Bq(x j , 2 diamq E j ), we have μ(Bd(x j , t j ))1/2 ≤ 2Ci diamq(E j ).

Recall thatμ is definedby theCarathéodory construction:μ(An) = limσ→0 μ,σ (An),
where μ,σ is the corresponding σ -content. By Lemma 3.3 we get

μ,σ (An) ≤ 2π−1/2
∑

j

μ(Bd(x j , t j ))
1/2 ≤ 2π−1/2C2

i

∑

j

μ(Bd(x j , t j ))
1/2

≤ 4π−1/2C3
i

∑

j

diamq(E j )

(the 2π−1/2 comes from thenormalizationof μ) andhenceμ,σ (An) ≤ 2π−1/2C3
i H1

q(An).
This holds for all σ > 0 and n ∈ N, so we have μ(A) ≤ 4π−1/2C3

i H1
q(A).

The other inequality canbeprovedmore directly,with similar arguments butwithout
the need to consider the sets An . �	

We will apply the main result in [14]. It depends on the following definition. A
quadrilateral Q = Q(ζ1, ζ2, ζ3, ζ4) is a set homeomorphic to a closed square in R

2,
with boundary edges ζ1, ζ2, ζ3, ζ4 (in cyclic order). For sets E, F ⊂ G, �(E, F;G)

denotes the family of curves in G that join E and F . While path families were consid-
ered in [14], the results applied below remain valid when they are replaced with curve
families.

Definition 3.7 Let Y be a metric space homeomorphic to R2 with locally finite Haus-
dorff 2-measure. The space Y is reciprocal if there exists κ ≥ 1 such that for all
quadrilaterals Q = Q(ζ1, ζ2, ζ3, ζ4) in X ,

mod�(ζ1, ζ3; Q)mod�(ζ2, ζ4; Q) ≤ κ (3)

and for all x ∈ X and R > 0 such that X \ B(x, R) �= ∅,

lim
r→0

mod�(B(x, r), X \ B(x, R); B(x, R)) = 0. (4)
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It was shown in [15] that the inequality opposite to (3) holds in every Y . That is,
there exists a universal constant κ ′ > 0 such that

mod�(ζ1, ζ3; Q)mod�(ζ2, ζ4; Q) ≥ κ ′

for all quadrilaterals Q ⊂ Y .

Theorem 3.8 (Theorem 1.4 [14]) Let Y be a metric space homeomorphic to R2, with
locally finite Hausdorff 2-measure. There exists a QC map h : Y → � ⊂ R

2 if and
only if Y is reciprocal.

The next proposition is a generalization of Theorem 1.6 from [14], where the mass
upper bound is assumed for every radius.

Proposition 3.9 Let Y be a metric space homeomorphic to R
2. Suppose there exist

CU > 0 and for every y ∈ Y a radius ry > 0 such that

H2(B(y, r)) ≤ CUr
2 (5)

for every r < ry. Then Y is reciprocal.

Proof Condition (4) follows by considering the admissible function

ρ(z) = 1

log(R/r)d(y, z)
.

To prove (3), we modify the proof of [14, Proposition 15.5]. We give the main steps
and refer to [14] for the missing details. Let Q = Q(ζ1, ζ2, ζ3, ζ4) be a quadrilateral.
Then there exists a ρ that is weakly admissible (admissible outside an exceptional
curve family of zero modulus) for �(ζ1, ζ3; Q), such that

∫

Y
ρ2 dH2 = mod�(ζ1, ζ3; Q).

Fix a curve C ∈ �(ζ2, ζ4; Q). We may assume that C is homeomorphic to [0, 1] and
has finite length. Using the basic covering theorem, we find a finite cover {5Bj } =
{B(y j , 5r j )} of C such that y j ∈ C and 36r j < ry for all j , and such that the balls Bj

are pairwise disjoint. Moreover, let g : Q → [0,∞],

g(y) =
∑

j

r−1
j χ6Bj∩Q(y). (6)

Since every C′ in �(ζ1, ζ3; Q) intersects at least one of the balls 5Bj , it follows that g
is admissible for�(ζ1, ζ3; Q). Moreover, since ρ is a minimizer for mod�(ζ1, ζ3; Q),
applying the weak admissibility of (1 − t)ρ + tg and letting t → 0 leads to

mod�(ζ1, ζ3; Q) ≤
∫

Q
ρg dH2 =

∑

j

r−1
j

∫

6Bj∩Q
ρ dH2. (7)
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For the maximal function Mρ : Q → [0,∞],

Mρ(z) = sup
r>0

1

H2(B(z, 5r))

∫

B(z,r)∩Q
ρ dH2,

standard arguments show that

∫

Q
(Mρ)2 dH2 ≤ 8

∫

Q
ρ2 dH2. (8)

Now we apply (5) to estimate the right-hand term of (7) from above by

1296CU

∑

j

r j
H2(B(y j , 36Bj )

∫

B(y j ,6 j )∩Q
ρ dH2

≤ 1296CU

∑

j

r j inf
y∈C∩Bj

Mρ(y).

Since the right-hand term is bounded from above by 1296CU
∫
C Mρ dH1, we con-

clude that

y �→ 1296CUMρ(y)

mod�(ζ1, ζ3; Q)

is admissible for �(ζ2, ζ4; Q). Combining the admissibility with (6) and (8), we have

mod�(ζ2, ζ4; Q) ≤ 8 · 12962C2
U

mod�(ζ1, ζ3; Q)
,

from which (4) follows. �	
Proof of Theorem 1.1 ByLemmas 3.4 and 3.5, the space (X , q) satisfies the assumption
of Proposition 3.9. Thus by Theorem 3.8 there exists a QCmap h : (X , q) → � ⊂ R

2.
By the Riemann mapping theorem, we can choose h such that � = D or � = R

2.
Moreover, by Lemmas 3.5 and 3.6 the μ-modulus modμ(�) and the conformal 2-
modulus mod2(�) in X are comparable for any curve family �, so h precomposed
with the identity map from (X , d) to (X , q) is μ-quasiconformal. �	

4 Infinitesimally Quasisymmetric Maps

In this section, we introduce the notion of infinitesimally quasisymmetric map and
apply our results on infinitesimally metric measures to give a characterization for the
spaces that admit such a parametrization by a Euclidean planar domain.

Recall that a homeomorphism f : (X , d) → (Y , d ′) between metric spaces is
quasisymmetric (QS) if there exists a homeomorphism η : [0,∞) → [0,∞) such
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that

d(x, y)

d(x, z)
≤ t implies

d ′( f (x), f (y))

d ′( f (x), f (z))
≤ η(t) (9)

for all distinct points x, y, z ∈ X . Closely related is the following definition. A home-
omorphism f : (X , d) → (Y , d ′) between metric spaces ismetrically quasiconformal
(MQC) if there exists H ≥ 1 such that

lim sup
r→0

sup{d ′( f (x), f (y)) : d(x, y) ≤ r}
inf{d ′( f (x), f (y)) : d(x, y) ≥ r} ≤ H

for all x ∈ X .

Definition 4.1 A homeomorphism f : (X , d) → (Y , d ′) is infinitesimally quasisym-
metric (I-QS) if there exists a homeomorphism η : [0,∞) → [0,∞) such that for
every x ∈ X there exists a radius rx > 0 such that (9) holds for all y, z ∈ B(x, rx ).

It is a standard exercise to show that if f : X → Y and g : Y → Z are QS, then
g ◦ f and f −1 are also QS. These properties also hold for the class of I-QSmaps. Note
that both properties may fail for MQC maps, even for metric spaces homeomorphic
to R2. In Sect. 5.1, we give an example of this.

It is immediate from the definitions that any QSmap is I-QS, and any I-QS isMQC.
Thus infinitesimal quasisymmetry is an intermediate condition between quasisymme-
try and metric quasiconformality. In Sect. 5.3, we give an example of a map which is
I-QS but not QS.

Recall that a metric space (X , d) is linearly locally connected (LLC) if there exists
λ ≥ 1 such that the following properties hold:

(1) For any x ∈ X , r > 0 and y, z ∈ B(x, r) there exists a continuum K ⊂ B(x, λr)
with y, z ∈ K .

(2) For any x ∈ X , r > 0 and y, z ∈ X \ B(x, r) there exists a continuum K ⊂
X \ B(x, λ−1r) with y, z ∈ K .

Definition 4.2 A metric space (X , d) is infinitesimally linearly locally connected (I-
LLC) if there exists � ≥ 1 such that for every x ∈ X there exists a radius rx > 0 such
that the above properties hold for all r < rx .

It is easy to see that the LLC property is preserved under QS maps. Similarly, I-QS
maps preserve the I-LLC property. Since every planar domain is I-LLC, any metric
space that admits an I-QS map to such a domain must also be I-LLC.

Finally, we introduce a modification of the Loewner condition of Heinonen and
Koskela [11]. We denote by �(A, B) the family of curves which join sets A and B in
X . Recall that X (equipped withH2) is Loewner if there exists a decreasing function
φ : (0,∞) → (0,∞) such that mod�(E, F) ≥ φ(t) for all disjoint non-degenerate
continua E, F satisfying

dist(E, F)

min{diam E, diam F} ≤ t . (10)
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Also, recall our convention that any measure μ comes equipped with an admissible
cover B = {B(x, r) : 0 < r < rx }.
Definition 4.3 Ametric space X equippedwith ameasureμ is infinitesimally Loewner
(I-Loewner) if there exists a decreasing function φ : (0,∞) → (0,∞) such that
modμ �(E, F) ≥ φ(T ) for all disjoint continua E, F such that E joins x and S(x, t),
F ⊃ S(x, rx ) joins S(x, s) and S(x, rx ), and 0 < s, t < rx/2, s/t ≤ T .

It follows from the Loewner property of R2 that every planar domain, equipped
with Lebesgue measure and any admissible cover, is I-Loewner. The remainder of this
section is dedicated to the proof of Theorem 1.2. We first restate the theorem.

Theorem 4.4 Let X be a metric space homeomorphic toR2. There exists an I-QS map
f : X → �, where � = D or � = R

2, if and only if X is I-LLC and supports an
I-MM μ such that (X , μ) is I-Loewner.

To prove the theorem, we first show in Lemma 4.5 and Proposition 4.7 that if
f : X → � is I-QS, then the pullback of Lebesgue measure satisfies the conditions of
the theorem (we already noticed that the existence of f forces X to be I-LLC). For the
other direction, we show in Proposition 4.8 that μ-quasiconformal maps X → � ⊂
R
2, such as the map in Theorem 1.1, are I-QS under these conditions. Proposition 4.8

can be seen as an infinitesimal analog of [11, Theorem 4.7], and it is proved using
similar arguments.

Lemma 4.5 Let f : X → � ⊂ R
2 be an I-QS map, and μ = f ∗L2 the pullback

measure of the Lebesgue measure L2. Equip μ with admissible cover B = {B(x, r) :
0 < r < rx }, where the rx are the radii in Definition 4.1 of I-QS maps. Then

η(1)−1H1( f (C)) ≤ μ(C) ≤ 4η(5)H1( f (C))

for any curve C ⊂ X.

Proof We may assume that the curve C is simple and compact. As in Lemma 3.5, it
suffices to prove the claim for sets C for which there exists δ > 0 such that the set of
points x satisfying B(x, δ) ∈ B is dense in C.

Fix such a δ and a sequence (Bj ) = (B(x j , r j )) of disjoint balls such that x j ∈ C,
5Bj ∈ B, 5r j < δ, andC ⊂ ∪ j5Bj , ordered so that if γ is any injective parametrization
of C then s j = γ −1(x j ) is a monotone sequence.

Let

Tj = sup{t > 0 : B( f (x j ), t) ⊂ f (Bj )}

for every j . Then there exists z j ∈ X with d(x j , z j ) ≥ r j and | f (x j )− f (z j )| ≤ 2Tj .
Using the infinitesimal quasisymmetry of f we find that for any y j ∈ 5Bj

| f (x j ) − f (y j )| ≤ η(5)| f (x j ) − f (z j )|

123



K. Rajala et al.

so that f (5Bj ) ⊂ B( f (x), 2η(5)Tj ). By the choice of Tj also B( f (x), Tj ) ⊂ f (Bj )

and thus

μ(5Bj ) = L2( f (5Bj )) ≤ 4πη(5)2T 2
j ≤ 4πη(5)2| f (x j ) − f (xk)|2

for all k �= j as the balls Bj are disjoint. Now the δ-content μ,δ satisfies

μ,δ(C) ≤ 2π−1/2
∑

j

μ(5Bj )
1/2 ≤ 4η(5)

∑

j

| f (x j ) − f (x j+1)|.

Since f (C) is the non-overlapping union of the subcurves connecting f (x j ) and
f (x j+1), we have μ,δ(C) ≤ 4η(5)H1( f (C)) for any δ > 0 and thus μ(C) ≤
4η(5)H1( f (C)).

To prove the other inequality, fix ε > 0 and let Bj = B(x j , r j ) be a sequence of
balls in B covering C with diam Bj < σ and Bj ∩ C �= ∅ for all j and some σ > 0.
Since X is locally compact and C is compact, diam f (Bj ) < ε for all j when σ is
sufficiently small.

By the infinitesimal quasisymmetry of f we have

diam f (Bj )
2 ≤ 4π−1η(1)2L2( f (Bj )) = 4π−1η(1)2μ(Bj )

for every j , and hence

H1
ε( f (C)) ≤ 2π−1/2η(1)

∑

j

μ(Bj )
1/2.

Thus H1
ε( f (C)) ≤ η(1)μ,σ (C) ≤ η(1)μ(C), and the same upper bound holds for

H1 since ε was arbitrary. �	
Corollary 4.6 Let f and μ be as in Lemma 4.5. Then f is μ-quasiconformal.

Proof Let � be a curve family in X and ε > 0. We choose a μ-admissible function ρ

with
∫
X ρ2 dμ ≤ modμ(�) + ε and define ρ̃ = ρ ◦ f −1 in �. If a curve C ∈ � has

locally finite μ-measure, then by Lemma 4.5 and a change of variables

∫

f (C)

ρ̃ dH1 ≥ 1

4η(5)

∫

C
ρ dμ,

so that 4η(5)ρ̃ is admissible for f (�). Thus using the definition of μ and a change of
variables we have

mod( f (�)) ≤ 16η(5)2
∫

�

ρ̃2 dL2 = 16η(5)2
∫

X
ρ2 dμ ≤ 16η(5)2

(
modμ(�) + ε

)
.

The other direction can be proved similarly using the other inequality of Lemma 4.5.
�	
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Proposition 4.7 Let f , μ, and B be as in Lemma 4.5. Then μ is I-MM and satisfies
the I-Loewner condition.

Proof Let � > 1 be large enough so that η(1/�) ≤ 1
2 . Fix x ∈ X and 0 < r < rx/2

so that B( f (x), diam f (B(x, r))) ⊂ �. In order to prove the I-MM condition (2), fix
y ∈ B(x, r/�) and z ∈ S(x, r). Then the segment [ f (y), f (z)] is contained in �.
Let C = f −1([ f (y), f (z)]), which is a curve connecting y and z.

Now let

T = sup{t > 0 : B( f (x), t) ⊂ f (B(x, r))}.

Using Lemma 4.5 and infinitesimal quasisymmetry, we have

μ(C) ≤ 4η(5)H1( f (C)) = 4η(5)| f (y) − f (z)| ≤ 4η(5) diam f B(x, r)

≤ 8η(1)η(5)T ≤ 8η(1)η(5)√
π

L2( f (B(x, r)))1/2

= 8η(1)η(5)√
π

μ(B(x, r))1/2,

so the first inequality in (2) holds.
For the reverse inequality, notice first that our choice of � implies that | f (x) −

f (y)| ≤ 1
2 | f (x) − f (z)| and thus | f (y) − f (z)| ≥ 1

2 | f (x) − f (z)|. Let C be any
curve connecting y and z. Now by Lemma 4.5

μ(C) ≥ η(1)−1H1( f (C))

≥ η(1)−1| f (y) − f (z)| ≥ 1

2η(1)
| f (x) − f (z)|

≥ 1

2
√

πη(1)2
L2( f (B(x, r)))1/2 = 1

2
√

πη(1)2
μ(B(x, r))1/2,

since f (B(x, r)) ⊂ B( f (x), η(1)| f (x) − f (z)|). Hence also the second inequality
in (2) holds. We conclude that μ is I-MM.

Finally, we show the I-Loewner condition. Fix x ∈ X and disjoint continua E and
F as in Definition 4.3, so that there are y ∈ F ∩ S(x, s) and z ∈ E ∩ S(x, t). By
infinitesimal quasisymmetry,

dist( f E, f F)

diam E
≤ | f (y) − f (x)|

| f (z) − f (x)| ≤ η(s/t).

By definition, F contains S(x, rx ). In particular, f S(x, rx ) surrounds f (x), and we
have dist( f E, f F) ≤ diam f F . Combining the estimates yields

dist( f E, f F)

min{diam E, diam F} ≤ max{η(s/t), 1}.
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Since R2 is Loewner, there is φ′ such that

mod�( f E, f F) ≥ φ′(max{η(s/t), 1}).

On the other hand f is μ-quasiconformal by Theorem 1.1, so

modμ �(E, F) ≥ K−1 mod�( f E, f F)

for some K ≥ 1. We conclude that the I-Loewner condition holds with φ(T ) =
K−1φ′(max{η(T ), 1}). �	
Proposition 4.8 Let μ be an I-MM on X, and f : X → � a μ-quasiconformal home-
omorphism. Suppose that X is I-LLC and μ satisfies the I-Loewner condition. Then f
is I-QS.

Proof Let � and λ be the constants in Definitions 3.1 and 4.2 of I-MM and I-LLC,
respectively. We will prove the equivalent statement that g = f −1 is I-QS. In this
proof, for a point a ∈ � and set A ⊂ �, let a′ = g(a) and A′ = g(A).

Fix x ∈ � and r > 0 so that

B(x, 3r) ⊂ � ∩ g−1(B(x ′, rx ′/(10λ4�4))
)
,

and y, z ∈ B(x, r). By our choice of r , we can choose w ∈ g−1S(x ′, rx ′) so that
the segment [x, w] contains z. Moreover, taking r to be sufficiently small, we can
ensure that the segment [x, w] lies in �. Notice that w /∈ B(x, 3r). Let m = d(x ′, y′)
and  = d(x ′, z′). Let t > 0. We must find an upper bound η(t) on m/ that holds
whenever |x − y|/|x − z| ≤ t , such that η(t) → 0 as t → 0. Assume then that y, z
satisfy |x − y|/|x − z| ≤ t .

Suppose first that m/ ≥ �λ2. Then, by the I-LLC property, we can connect x ′ to
z′ by a continuum E ′ contained in B(x ′, λ), and y′ tow′ by a continuum F ′ contained
in X \ B(x ′,m/λ). Let k = �log�(m/(λ2))�,

Bj = B(x ′,� j/λ), and A j = B(x ′,� j/λ) \ B(x ′,� j−1/λ).

Then, by the definition of I-MM,

ρ = 1

k

k∑

j=1

CiχA j

μ(Bj )1/2

is μ-admissible for �(E ′, F ′). Thus

modμ �(E ′, F ′) ≤
∫

X
ρ2 dμ ≤ 1

k2

k∑

j=1

C2
i μ(A j )

μ(Bj )
≤ C2

i

k
≤ C2

i

log�(m/(λ2))
.

Hence modμ �(E ′, F ′) becomes arbitrarily small as m/ increases to infinity.
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Since g is μ-quasiconformal, mod�(E, F) is also small, where E = g−1(E ′) and
F = g−1(F ′). But these sets connect x to z and y to w, respectively, and have relative
distance

�(E, F) = dist(E, F)

min{diam E, diam F} ≤ |x − y|
|x − z| .

Thus, by the Loewner property of R2, we have |x − y|/|x − z| → ∞ as m/ → ∞,
establishing the distortion inequality in this case.

Suppose then that 0 < m/ < �λ2. In this case we choose E = [x, y] and
F = [z, w] ∪ g−1S(x ′, rx ′). We may assume that 2|x − y| < |x − z|, since otherwise
there is nothing to prove. Applying the I-Loewner condition to E ′ and F ′, we have

modμ �(E ′, F ′) ≥ φ(/m).

Combiningwith theμ-quasiconformality of g,wegetmod �(E, F) ≥ K−1φ(/m).
On the other hand, by our choice of w we can estimate mod�(E, F) from above as
follows:

mod�(E, F) ≤ mod�(S(x, |x − z|), S(x, |x − y|)) = 2π
(
log

|x − z|
|x − y|

)−1
.

Combining the estimates, we see that φ(/m) ≤ 2πK (log(1/t))−1. Observe that this
bound becomes arbitrarily small as t → 0. Since φ is decreasing, this yields an upper
bound η(t) on m/ that goes to zero as t → 0. �	

5 Examples

In this section, we work out in detail a number of specific examples of metric spaces
homeomorphic to the plane. All of our examples have locally finite Hausdorff 2-
measure, and we assume throughout this section that a given metric space is equipped
with the Hausdorff 2-measure. We write a point x in coordinates as x = (x1, x2) if
x ∈ R

2 or x = (x1, x2, x3) if x ∈ R
3.

In addition to the examples of this section, we refer the reader to Example 4.7
of [10] for a family of uniformly LLC surfaces in R

3, equipped with the ambient
Euclidean metric, that are conformally equivalent but not uniformly QS equivalent
to the Euclidean plane. We also refer to Example 2.1 of [14] for an example of a
non-reciprocal metric on the plane, and to Example 17.1 of [14] for a non-rectifiable
surface in R

3 that is QC equivalent to the Euclidean plane. Finally, see [17] for the
construction of a surface of locally finite Hausdorff 2-measure that is QS equivalent
to the plane but not QC equivalent.
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5.1 ConformalWeight that Decreases Rapidly Near the Origin

Define a metric d on the Riemann sphere R̂2 = R
2 ∪ {∞} via the conformal weight

ω(x) =
{
e−1/|x |/|x |2 if x �= 0

0 if x = 0,∞ .

That is, for all x, y ∈ R̂
2, the metric d is given by d(x, y) = infγ

∫
γ

ω ds, where

the infimum is taken over all absolutely continuous paths γ : [0, 1] → R̂
2 such that

γ (0) = x and γ (1) = y.
It is easy to check that d(0, x) = e−1/|x | for all x ∈ R̂

2 \ {0}. In particular,
d(0,∞) = 1 and we see that d is finite. Next, let x, y ∈ R̂

2 \ {0} and assume
that |x | ≤ |y|. By considering the concatenation of the straight-line path from x to
(|y|/|x |)x and a circular arc from (|y|/|x |)x to y, we obtain the estimate

d(x, y) ≤ e−1/|y| − e−1/|x | + 2πe−1/|y|

|y| .

As a consequence, if (x j ) and (y j ) are sequences in R̂2 such that x j → ∞ and y j →
∞, then d(x j , y j ) → 0. This is sufficient to conclude that (R̂2, d) is homeomorphic
to the Riemann sphere.

In fact, by considering the pushforward of ω under the inversion map x �→ x/|x |2,
we see that (R̂2, d) is isometric to the metric space (R̂2, d̃), where d̃ is the metric
generated by the conformal weight ω̃(x) = e−|x |. In particular, any ball in (R̂2, d)

centered at ∞ not containing the origin is bi-Lipschitz equivalent to a Euclidean disk.
In Fig. 1, a number of geodesics emanating from the point p = (.3, 0) are plotted.

Observe that the length-minimizing path from p to a point q in the upper left region
of the plot is the concatenation of the straight-line path from p to the origin and the
straight-line path from the origin to q.

This example illustrates how metric quasiconformality is not preserved in general
under taking inverses or under precomposition with a quasisymmetry, as the following
proposition shows.

Proposition 5.1 Let ι : (R2, | · |) → (R2, d) be the identity map, and let h : R2 → R
2

be the linear map defined by h(x1, x2) = (x1/2, x2).

(a) ι is MQC with H = 1, as is its inverse.
(b) ι is 1-QC.
(c) ι is not I-QS.
(d) (ι ◦ h)−1 is MQC.
(e) ι ◦ h is not MQC.

Proof Claim (a) is immediate for all x �= 0 by virtue of ω being a conformal weight,
and it also holds for x = 0 by the radial symmetry of ω.

Claim (b) is also immediate if we exclude x = 0. However, observe that recipro-
cality condition (4) holds for the metric d at the origin. Thus the geometric definition
is unaffected by adding the origin back in, so the claim holds on all of R2.
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For claim (c), let (t j ) be a sequence of positive numbers converging to zero, and let

y j = (2t j , 0), z j = (t j , 0). Then |y j − 0| = 2t j , |z j − 0| = t j , d(y j , 0) =
√
e−1/t j ,

and d(z j , 0) = e−1/t j . But then |y j − 0|/|z j − 0| = 2 while d(y j , 0)/d(z j , 0) → ∞,
violating the I-QS condition.

For claim (d), note that (ι ◦ h)−1 = h−1 ◦ ι−1 : (R2, d) → (R2, | · |) is the post-
composition of a MQC map by a QS map, which is always MQC.

Claim (e) follows from a variation of the argument for (c). Let (t j ) again be a
sequence of positive numbers converging to zero, and let y j = (t j , 0) and z j = (0, t j ).

Then h(y j ) = (t j/2, 0) and h(z j ) = z j . This gives d(h(y j ), 0) =
√
e−1/t j and

d(z j , 0) = e−1/t j , showing that ι ◦ h is not MQC. �	
Claim (c) of Proposition 5.1 can be strengthened to the following.

Proposition 5.2 There is no I-QS map f : (R2, | · |) → (R2, d).

Proof Suppose that such an I-QS map f exists. Then f −1 is also I-QS. Since metric
quasiconformality is preserved under postcomposition by an I-QS map, it follows that
f −1 ◦ ι is an MQC map of the Euclidean plane. By the equivalence of definitions
of quasiconformality in the Euclidean setting (for example, see [20, Thm. 34.1]), we
conclude that f −1 ◦ ι is QS and thus that ι itself is I-QS. This contradicts claim (c) of
Proposition 5.1. �	

Note that the claims in Proposition 5.1 all hold if we replace R2 with R̂2 equipped
with the spherical metric. We also observe that (R2, d) is not upper 2-regular: The
Hausdorff 2-measure of the ball Br = B(0, r), where r ∈ [0, 1], is given by

H2(Br ) =
∫

Br
ω2 dL2 = 2π

∫ R

0
e−2/t/t3 dt,

where R = −(log r)−1. This evaluates to

H2(Br ) = 2πe−2/R
(
1

4
+ 1

2R

)
= 2πr2

(
1

4
− log r

2

)
.

Since − log r → ∞ as r → 0, we see that upper 2-regularity fails.

Proposition 5.3 The space (R̂2, d) is linearly locally connected. However, it is not a
Loewner space.

The proof of linear local connectedness uses the following lemma.

Lemma 5.4 Let x ∈ R
2 and r > 0 be such that B(x, r) ⊂ B(0, e−2). Then B(x, r) is

simply connected.

Proof The claim is obvious when x = 0, so we assume that x �= 0. We argue by
contradiction. Suppose that B = B(x, r) is not simply connected. Since (R̂2, d) is a
geodesic space, all metric balls are connected. Hence the failure of simple connectivity
implies that there exists a component V of R̂2 \ B not containing ∞.
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Fig. 1 Geodesics emanating from the point (.3, 0)

Observe that B(0, e−2) coincides with the Euclidean ball B(0, 1/2). In this region,
ω is increasing as a function of the radius. Let L be the Euclidean straight line which
contains x and the origin. The increasing property of ω implies that L ∩ B(0, e−2) is
a geodesic segment. Thus L ∩ B(x, r) is connected, and in particular V ∩ L = ∅.

It follows that V is contained in one of the two open half-planes defined by the line
L , denoted byW . Let z ∈ V and let S denote the Euclidean circle of radius |z| centered
at the origin. Let L ′ denote the Euclidean straight line containing 0 and z. ThenW \ L ′
consists of two disjoint open sets W1,W2, where x ∈ ∂W1. We observe that there
exists a point y ∈ S ∩ B ∩ W 2. A length-minimizing curve from x to y must cross L ′
at some point v. However, the radial symmetry of ω implies that d(v, z) ≤ d(v, y),
and thus that d(x, z) ≤ d(x, y). This gives a contradiction, and we conclude that B is
simply connected. �	

Proof of Proposition 5.3 That (R̂2, d) is linearly locally connected can be shown from
Lemma 5.4 as follows. By Lemma 2.5 in [4], it suffices to show that there exists r0 > 0
and λ ≥ 1 such that every ball B(x, r) of radius r ∈ (0, r0) is contractible inside the
ball B(x, λr).

Let s = e−2/4 and let L ≥ 1 be such that (R̂2 \ B(0, s), d) is L-bi-Lipschitz
equivalent to a Euclidean disk. Let r0 = e−2/(4L2) and λ = L2. For any r ∈
(0, r0) and x ∈ R̂

2, the ball B(x, λr) is contained in B(0, e−2) or it is contained in
(R̂2\B(0, s), d). In the first case, B(x, r) is simply connected byLemma5.4 and hence
contractible. In the second case, the L-bi-Lispchitz equivalence of (R̂2 \ B(0, s), d)
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with a Euclidean disk implies that B(x, r) is contractible inside B(x, λr).We conclude
that (R̂2, d) is linearly locally connected.

We now show that (R̂2, d) is not Loewner. Let E = (−∞, 0) × {0} and let
Ft = [rt , Rt ] × {0} for t ∈ (0, 1), where rt = −1/ log(t/2) and Rt = −1/ log t .
Then dist(E, Ft ) = diam(Ft ) = t , so that �(E, Ft ) = 1 for all t . Observe that
limt→0 Rt/rt = 1.

Since the identity map ι : (R2, | · |) → (R2, d) is 1-QC, the modulus of �(E, Ft )
relative to the metric d is the same as the modulus of the same curve family relative
to the Euclidean metric. These curve families arise classically in the Teichmüller
ring problem [1, Chapter III]. One can give an upper bound on their modulus as
follows. Let �t denote the family of curves which span the open Euclidean annulus
At = A((rt , 0); Rt − rt , rt ), where t is sufficiently small so that Rt < 2rt . For
sufficiently small t , the annulus At does not intersect E . The family �t majorizes
�(E, Ft ) and has modulus 2π/ log(rt/(Rt − rt )).

As t → 0, we have that mod�(E, Ft ) goes to zero. Hence (R2, d) is not Loewner.
�	

The Loewner condition and linear local connectedness are conceptually similar in
that they both rule out the existence of cusps and sequences of bottlenecks that become
arbitrarily thin. In fact, the two properties are equivalent for the class of Ahlfors
2-regular metric spheres. This follows from Theorem 1.1 and Theorem 1.2 in [4]
together with the quasisymmetric invariance of the Loewner condition [19, Cor. 1.6].
This example illustrates how, for metric spheres of finite Hausdorff 2-measure, linear
local connectedness does not imply the Loewner condition without the assumption of
Ahlfors regularity.

5.2 An Accumulation of Spikes, I

The purpose of this example is to give a metric surface X so that the Hausdorff 2-
measure on X is upper 2-regular but X fails to be I-LLC. Upper regularity implies,
by Proposition 3.9, that there is a QC parametrization of X by the Euclidean plane.
However, X does not admit anMQC parametrization by the Euclidean plane, as shown
by the following simple lemma.

Lemma 5.5 Suppose there is an MQC map g : � → X, where � is a domain in R
2.

Then X is I-LLC.

Proof Let x ∈ X and x ′ = g−1(x). Let Rx > 0 be sufficiently small so that
Hg(x ′, R) ≤ 2H for all R < Rx .

For small r > 0, g−1(B(x, r)) ⊂ B(x ′, Rx ). Let y, z ∈ B(x, r), y′ = g−1(y),
z′ = g−1(z), and R′ = sup{|x ′ − w′| : w′ ∈ g−1(B(x, r))}. Then there is a curve C
from y′ to z′ which is contained in B(x ′, R′). The metric quasiconformality implies
that g(C) is a curve from y to z contained in B(x, 2Hr).

Similarly, let y, z ∈ X \ B(x, r), with y′ = g−1(y) and z′ = g−1(z). Now, let
R′ = inf{|x ′ − w′| : w′ ∈ � \ g−1(B(x, r))}. Connect y′ to z′ by a curve C in
� \ B(x ′, R′). Then metric quasiconformality implies that g(C) is a curve from y to
z contained in X \ B(x, r/(2H)). This establishes that X is I-LLC. �	
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We construct this example as a surface in R
3 containing a sequence of spikes that

become progressively smaller and converge to a point. For all n ∈ N, let tn = 2−n ,
hn = 2−n/2, and rn = 2−2 · 2−3n/2. The surface X is constructed by removing each
Euclidean disk B((tn, 0), rn) from R

2, identified here with R2 × {0}, and replacing it
with a cone Sn of height hn . That is, Sn has vertex (tn, 0, hn) and joins toR2 along the
circle S((tn, 0), rn). We equip X with the ambient Euclidean metric from R

3, though
the example works just as well if we were to take the induced length metric.

We check that X is upper 2-regular. Let x ∈ X and r > 0. In the first case,
assume that r ≤ |x |/20, where | · | is the Euclidean norm in R

3. A computation
shows that B(x, r) intersects at most one of the cones Sn . It is clear thatH2(B(x, r)∩
(R2 × {0})) ≤ πr2. By the elementary geometry of cones in R

3, it also holds that
H2(B(x, r) ∩ Sn) ≤ πr2. We conclude that H2(B(x, r) ≤ 2πr2.

In the second case, assume that r > |x |/20. Then B(x, r) ⊂ B(0, 21r), writing 0
to denote the origin in R3. For this, we compute

H2(B(0, 2−n)) ≤ π2−2n +
∞∑

k=n

H2(Sn)

≤ π2−2n + π

∞∑

k=n

2−3n/2
√
2−n + 2−3n

≤ π2−2n + π

∞∑

k=n

2−3n/2(2−n/2 + 2−3n/2) � 2−2n .

We deduce that H2(B(0, 21r)) � r2, and therefore that X is upper 2-regular.
Finally, the point yn = (tn, 0, hn) lies outside the ball Bn = B(0, |yn|/2). Any

continuum connecting yn to the unbounded component of R2 \ Bn must pass through
the smaller ball X \ B(0, 2tn). However, limn→∞ tn/|yn| = 0, violating the I-LLC
property.

5.3 An Accumulation of Spikes, II

By modifying the previous example, we construct a space which is I-QS equivalent to
the plane but not QS equivalent.

We carry out the same construction as above, now taking tn = 2−n , hn = 2−n , and
rn = 2−2 · 2−2n . Instead of cones, we replace the Euclidean disks B((tn, 0), rn) with
cylinders Cn of height hn . More precisely, Cn = En ∪ Fn , where En = {(x1, x2, x3) :
(x1, x2) ∈ S((tn, 0), rn), 0 ≤ x3 ≤ hn} and Fn = B((tn, 0), rn) + (0, 0, hn). Again,
we equip the resulting space X with the restriction of the ambient Euclidean metric to
X to get (X , d).

The space X is not LLC because the cylinders get progressively narrower; thus X
is not QS equivalent to the Euclidean plane. However, we claim that X equipped with
μ = H2 satisfies the conditions of Theorem 1.2 and therefore admits an I-QS map
from R

2.
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First, notice that for every x ∈ X \ {(0, 0, 0)} there is rx > 0 so that B(x, rx ) ⊂ X
is 10-bi-Lipschitz equivalent to a planar disk. In particular, the conditions of Theorem
1.2 hold for all such points x .

We still need to verify the conditions of Theorem 1.2 for x = 0 = (0, 0, 0). Take
r0 = 1/2. The I-LLC condition follows from our choices of tn , hn , and rn . Also,
calculating as in Sect. 5.2, we conclude that r2 � H2(B(0, r)) � r2 for all r > 0.
Therefore, the q-metric on X is comparable to the metric d, and μ is I-MM.

Finally, we show that the I-Loewner condition is satisfied at 0. For a fixed T > 0,
let s, t > 0 satisfy s/t ≤ T . Let n ∈ N be such that 2−n−1 ≤ s < 2−n . Consider two
disjoint continua E, F ⊂ X as in Definition 4.3. We make the observation that the
cylinders Cn and Cn−1 are separated by a distance of at least 2−n−1. Thus F ∩ (R2 ×
{0})∩ B(0, 2−n+1) contains a continuum F ′ of diameter at least 2−n−1. Next, we split
into two cases. If t ≥ s, then by similar reasoning E∩(R2×{0})∩ B(0, 2−n) contains
a continuum E ′ of diameter at least 2−n−2. If t ≤ s, then take E ′ to be a continuum
in E ∩ (R2 × {0}) ∩ B(0, t) of diameter at least t/16.

Then d(E ′, F ′) ≤ 2−n+2, and E ′ and F ′ have relative distance

�(E ′, F ′) ≤ 2−n+2

min{2−n−2, t/16} ≤ max {128T , 16} .

Let T ′ = max{128T , 16}, so that �(E ′, F ′) ≤ T ′. Consider the domain

G =
(
R
2 \

∞⋃

n=1

B((tn, 0), rn)

)
× {0} ⊂ X .

The domain G is Loewner; let ϕ̃ be the associated Loewner function. We have then
the inequality

mod�(E, F) ≥ mod�(E ′, F ′;G) ≥ ϕ̃(T ′).

We conclude that the I-Loewner condition is satisfied at 0.

5.4 Gluing a Grushin Half-Plane to a Euclidean Half-Plane

The Grushin plane is a basic example of a sub-Riemannian manifold. See [2, Sect.
3.1] for an overview. One approach to the Grushin plane, studied in [16], is given by
the following definition. For each β ∈ (0, 1), the β-Grushin plane isR2 equipped with
themetric d̃ obtained from the singular conformal weight ω̃ : R2 → [0,∞] defined by
ω̃(x) = |x1|−β . The standard Grushin plane is obtained by taking β = 1/2. Note that
the standardGrushin plane does not have locally finite Hausdorff 2-measure. However,
in the case when β ∈ (0, 1/2), it was shown in [18] and [23] that the β-Grushin plane
is bi-Lipschitz equivalent to the Euclidean plane. In particular, the β-Grushin plane is
Ahlfors 2-regular. Moreover, the identity map R

2 → (R2, d̃) is QS. A proof of this
can be found in [16, Thm. 4.3].
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Here, we present a modified version of the Grushin plane. Let β ∈ (0, 1/2). Define
the conformal weight ω : R2 → [0,∞] by

ω(x) =
{ |x1|−β if x1 > 0
1 if x1 ≤ 0

.

Let d denote the resulting metric.
First, we establish a ball–box relationship. For all r ≤ 1, let

Dr = [−r , (1 − β)r1/(1−β)] × [−r , r ].

Note that, for all x2 ∈ R, the straight-line curve from (0, x2) to ((1 − β)r1/(1−β), x2)
has length r . Observe further that ω ≥ 1 on Dr . From this, it follows that d(x, 0) ≥ r
for all x ∈ ∂Dr . Next, by considering the concatenation of the vertical line segment
from 0 to (0, x2) with the horizontal line segment from (0, x2) to x , we see that
d(x, 0) ≤ 2r for all x ∈ ∂Dr . We conclude that

Bd((0, 0), r) ⊂ Dr ⊂ Bd((0, 0), 2r) (11)

for all r ≤ 1.
Next, observe that H2(Bd(0, 2r)) is bounded from below by

∫

Dr

ω2 dL2 = 2r2 + 2r
∫ R

0
t−2β dt = 2r2 + r (2−3β)/(1−β)

1 − 2β
. (12)

For β ∈ (0, 1/2), the inequality (2−3β)/(1−β) < 2 holds, fromwhich we conclude
that

lim inf
r→0

H2(Bd(x, r))

r2
= ∞

for all x lying on the vertical axis. On the other hand, (12) is an upper bound on
H2(Bd(x, r)), showing that (R2, d) has locally finite Hausdorff 2-measure.

Since ω is constant on each vertical line, we see that metric balls are simply con-
nected. In particular, (R2, d) is LLC.

This example illustrates how a metric surface with locally finite 2-measure can
violate infinitesimal upper 2-regularity at every point in a fairly large set, namely
a non-degenerate continuum. Since any metric surface that is infinitesimally upper
2-regular is reciprocal, this suggests the following question.

Question 5.6 Is there a metric surface for which reciprocality condition (4) fails at
every point on a non-degenerate continuum?

The space (R2, d) in this example is reciprocal and hence does not answer this
question. In fact, the identity map onto the Euclidean plane is 1-QC. This can be
shown by a change of variables argument; see also Proposition 3.5 in [8], where
the corresponding fact is proved for the β-Grushin plane. In contrast, we have the
following.
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Proposition 5.7 There is no MQC map from the Euclidean plane to (R2, d).

Proof Assume there is a MQC map f : R2 → (R2, d). Observe that the identity
map ι : R2 → (R2, d) is locally quasisymmetric outside of the vertical axis Z . This
implies that F = ι−1 ◦ f : R2 → R

2 is MQC outside of the set f −1(Z). By a classical
removability theorem for planar quasiconformal mappings [20, Thm. 35.1], it follows
that F is globally QS; see also Proposition 2.5 of [8].

Let x ∈ f −1(Z). By quasisymmetry, there exists H ≥ 1 such that

BEuc(F(x), s(r)) ⊂ F(BEuc(x, r)) ⊂ BEuc(F(x), Hs(r))

for all r > 0, where s(r) = inf{|F(x) − F(y)| : y ∈ R
2 \ BEuc(x, r)}. Comparing

this with the ball–box relationship (11), we conclude that f is not MQC. This is a
contradiction. �	

A similar argument shows that there is no MQC map from (R2, d) to R2.
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