
Nana Assyne

JYU DISSERTATIONS 467

Determining the essential
competencies of software professionals
A unified framework

JYU DISSERTATIONS 467

Nana Assyne

Determining the essential competencies
of software professionals

A unified framework

Esitetään Jyväskylän yliopiston informaatioteknologian tiedekunnan suostumuksella
julkisesti tarkastettavaksi Agora-rakennuksen auditoriossa Aud 2

marraskuun 30. päivänä 2021 kello 12.

Academic dissertation to be publicly discussed, by permission of
the Faculty of Information Technology of the University of Jyväskylä,

in building Agora, auditorium Aud 2 on November 30, 2021 at 12 o’clock noon.

JYVÄSKYLÄ 2021

Editors
Marja-Leena Rantalainen
Faculty of Information Technology, University of Jyväskylä
Timo Hautala
Open Science Centre, University of Jyväskylä

Copyright © 2021, by University of Jyväskylä

ISBN 978-951-39-8947-7 (PDF)
URN:ISBN:978-951-39-8947-7
ISSN 2489-9003

Permanent link to this publication: http://urn.fi/URN:ISBN:978-951-39-8947-7

DEDICATION

I dedicate this work to my late mother Mrs. Emilia Mary Assyne and my wife
Mavis Assyne for their selfless support in my life. You girls will continue to be
my motivator in all that I do. To my mother, even though you did not live to read
the final work, “the original” (Mrs. Assyne) is in charge. For Mavis, on this long
journey, you have been by my side encouraging and pushing me to take the next
step. Without your support, it would have been impossible for me to complete
this journey. Thank you.

I also dedicate this work to my Dad (Hon. S.K. Assyne), my daughters
(Mame Esane and Naa Aso), and the entire Assyne family. It is your advice and
support that has brought me this far; I say thank you and remember to continue
to pray for me to be a good boy.

ABSTRACT

Assyne, Nana
Determining the Essential Competencies of Software Professionals: A Unified
Framework
University of Jyväskylä, 2021, 74 p.
(JYU Dissertations
ISSN 2489-9003; 467)
ISBN 978-951-39-8947-7

The competencies of software professionals have been under the radar of
software engineering research and practice for decades. Different models and
frameworks, as well as identification and assessment criteria, have been
developed to understand and manage software engineering competencies (SEC).
Although research on software engineering competencies is not lacking, there
appears to be insufficient measures for stakeholders (software professionals,
educators, and the software industry) to identify and assess SEC based on
different software development projects. Previous studies have portrayed SEC as
static in software projects; thus, their evolution is not covered in the literature. To
the best of our knowledge, no holistic software engineering competence model
or framework has been presented to identify competencies, competence
satisfaction levels, and the essential competencies to be used in different software
projects.

In light of these observations, we first conducted a mapping study to un-
derstand the state of research on SEC, revealing gaps in the knowledge. We then
attempted to address some of the gaps by building models and frameworks for
managing SEC using findings from the literature and several rounds of stake-
holder consultations. Data from interviews with supervisors in software devel-
opment were used to construct a holistic framework to identify competencies,
competence satisfaction levels, and the essential competencies for software pro-
jects or software development assignments.

The outcome of this dissertation is an in-depth analysis of SEC and frame-
works for managing SEC. We identified 62 hard competencies, 63 soft competen-
cies, and a combination of 25 essential SEC competencies. We propose three
stakeholder satisfaction levels for SEC assessment: basic, performance, and de-
lighter. The most significant contribution of our study is the holistic SEC frame-
work for both software engineering research and practice. However, based on
empirical observations, we also report 27 competencies not mentioned in the re-
viewed literature, 11 of which are considered essential competencies for software
professionals.

Keywords: software engineering competence, essential competence, competence
framework, competence model, Kano model, competence satisfaction levels,
systematic mapping study

TIIVISTELMÄ (ABSTRACT IN FINNISH)

Assyne, Nana
Ohjelmistoammattilaisten olennaisten pätevyyksien määrittäminen yhtenäisen
kehyksen avulla
University of Jyväskylä, 2021, 74 s.
(JYU Dissertations
ISSN 2489-9003; 467)
ISBN 978-951-39-8947-7

Ohjelmistoammattilaisten osaamista eli kompetensseja (Software Engineering
Competence, SEC) on tarkasteltu ohjelmistotuotannon tutkimuksessa ja
käytännössä vuosikymmeniä. Niiden ymmärtämiseksi ja hallitsemiseksi on
kehitetty malleja ja viitekehyksiä sekä tunnistus- ja arviointikriteereitä. Vaikka
alan tutkimus on ollut laajaa, eri sidosryhmillä (ohjelmistoammattilaiset,
kouluttajat ja ohjelmistoteollisuus) ei kuitenkaan näytä olevan riittävästi keinoja
tunnistaa ja arvioida ohjelmistokehitysprojekteissa tarvittavaa osaamista. Ennen
kaikkea tarvittavat kompetenssit on ollut tapana kuvata pysyviksi, joten niiden
muutosta ei kirjallisuudessa juurikaan käsitellä. Kokonaisvaltaista
ohjelmistokehityksen osaamisen hallintamallia tai viitekehystä ei näytä
tutkimuskirjallisuudesta löytyvän osaamisen, eri ohjelmistoprojekteissa
tarvittavien olennaisten kompetenssien ja tyytyväisyystasojen tunnistamiseksi.

Väitöstutkimuksessa kartoitimme ensin kompetenssitutkimusta. Tämä toi
esiin tutkimusaukkoja, joita täyttääksemme rakensimme asteittain malleja tai
kehyksiä osaamisen hallintaan kirjallisuuden sekä sidosryhmien kuulemisen
pohjalta. Tästä syntyi lopuksi kokonaisvaltainen ohjelmistokompetenssien kehys.
Tutkimusaineistosta eli ohjelmistokehitystyön esimiestehtävissä olevien
henkilöiden haastatteluista tunnistimme kokonaisvaltaista viitekehystä käyttäen
eri kompetenssit ja ohjelmistoprojektien kannalta olennaiset kompetenssit sekä
tyytyväisyystasot.

Tutkimuksen tuloksena saimme syvällisen analyysin kompetensseista sekä
niiden hallinnan malleista ja viitekehyksistä. Lisäksi tunnistimme 62 ns. ”kovaa”
kompetenssia (hard competencies) ja 63 ns. pehmeää kompetenssia (soft
competencies) sekä 25 olennaisen kompetenssin yhdistelmän. Arviointia varten
määritimme perus-, suoritus- ja ilahduttavuustason. Kokonaisvaltainen kehys on
väitöstutkimuksen keskeisin tulos. Empiiristen havaintojen perusteella
raportoimme myös 27 kompetenssia, joita tarkastelemamme kirjallisuus ei sisällä.
Niistä 11 katsotaan ohjelmistoalan ammattilaisille välttämättömiksi
kompetensseiksi.

Avainsanat: ohjelmistotekniikan osaaminen, olennainen osaaminen,
osaamiskehys, osaamismalli, Kano-malli, tyytyväisyystasot, systemaattinen
kartoitustutkimus

Author Nana Assyne
Faculty of Information Technology
University of Jyväskylä
Finland
ORCID 0000-0003-0469-6642

Supervisors Mirja Pulkkinen
Faculty of Information Technology
University of Jyväskylä
Finland

Hadi Ghanbari
School of Business
Aalto University
Finland

Reviewers Petri Kettunen
Department of Computer Science
University of Helsinki
Finland

Eleni Berki
Software Engineering Education and Quality
Management SEEQMA Ltd
London
UK

Opponent Markku Oivo
Department of Information Processing Science
University of Oulu
Finland

ACKNOWLEDGEMENTS

Throughout my Ph.D. journey, there have been individuals and groups that have
stood by my side in this journey. Indeed, how could I have achieved this if you
were not there for me? You all did your best, and I say thank you from the bottom
of my heart.

First of all, I would like to thank my supervisors, who through their diligent
advice and support have made my journey successful. Special thanks to Dr. Timo
Käkölä and the late Dr. Eetu Luoma for their supervisory role in the earlier part
of my Ph.D. journey. I am indebted to you, Prof. Pekka Abrahamsson, for your
guidance and generosity in providing the main data for this dissertation. My
gratitude also goes to the students of the SE course at Norwegian University of
Science and Technology. In all, this Ph.D. journey could not have been fruitful
without the support of my main supervisors, Dr. Mirja Pulkkinen and Dr. Hadi
Ghanbari, for their immense support and diligent guidance to me on this journey.
To both of you, you have imparted so much to my life, and I will be indebted to
you for the rest of my academic career. All I can say to both of you is Thank You!

I would like to thank Prof. Pasi Tyväinen, Prof. Tuure Tuunanen, Prof.
Mikko Siponen, and the entire staff of the Faculty of Information Technology of
the University of Jyväskylä. Your support made it happen. I cannot forget to men-
tion Nina Pekkela and Marha-Leena Rantalainen. I must acknowledge the Ghana
Institute of Management and Public Administration (GIMPA) for their support
on this journey. With the mention of GIMPA, I take the opportunity to thank
certain individuals: Prof. Frank Manu, Prof. Gamel Wiredu, Seth Twum, Mansah
Preko, Faculty and staff of SOT-GIMPA, and the entire GIMPA community.

In all, there are certain individuals and groups that I cannot forget to thank.
They include Offornze family, Emmanuel Owusu-Marfo, my brother from an-
other mother, Justice Kweku Ackaah-Boafo, Victor Steward Sabuka, my boss Dr.
Isaac Wiafe, my Jyväskylä school mates Dr. Jonas Kodwo Boateng, and Truth
Lumor, Pro. Duku Osei, Prof. George Armah, Dr. Charles Kessey, my mentor Dr.
Myriam Menezero, Dr. Richard A. Owusu, Joseph Osei-Amoah, Belayneh Bekele,
Ethel Awoonor-Williams, and the entire Awoonor Williams family. I would like
to acknowledge the contributions of Stein Rudvin, Geoff Utberg, Dr. Leah
Riungu-Kalliosaari, Patrick Eshun, Dr. Perpetual Crentsil, and Adelaide Lönn-
berg, who read through my work for me. On groups, I cannot forget the support
of my “A” and “O” level group, my church members—International Evangelical
Church Finland, the Nzema group of Finland, Think Africa, and anyone who
contributed to the success of this journey but whose name I could not mention
here.

Finally, I would like to thank my girls, Mavis, Naa Aso, Mame Esane, and
the entire Assyne family for your selfless support. I say “Meda bɛ ase”. To crown
it all, I would like to thank Almighty God for his blessings on me.

Espoo 15.11.2021
Nana Assyne

LIST OF INCLUDED ARTICLES

I Assyne, N., Ghanbari, H., & Pulkkinen, M. (2021). The state of research on
software engineering competencies: A systematic mapping study. Journal
of Systems and Software (Revised and resubmitted for review)

II Assyne, N. (2019). Hard competencies satisfaction levels for software en-
gineers: a unified framework. In S. Hyrynsalmi, M. Suoranta, A. Nguyen-
Duc, P. Tyrväinen, & P. Abrahamsson (Eds.), ICSOB 2019: 10th Interna-
tional Conference of Software Business (pp. 345–350). Springer. Lecture Notes
in Business Information Processing, 370.

III Assyne, N. (2020). Soft competencies and satisfaction levels for software
engineers: A unified framework. In D. Winkler, S. Biffl, D. Mendez, & J.
Bergsmann (Eds.), Software quality: Quality intelligence in software and sys-
tems engineering. Proceedings of the 12th International Conference, SWQD 2020,
Vienna, Austria, January 14–17, 2020 (371, pp. 69–83). Springer. Lecture
Notes in Business Information Processing. 371.

IV Assyne, N., Ghanbari, H., & Pulkkinen, M. (2021). The essential competen-
cies of software professionals. A unified competence gate framework. In-
formation and Software Technology (Submitted for review)

V Assyne, N. (2020). Towards a security competence of software developers:
A literature review. In W. Yaokumah, M. Rajarajan, J.-D. Abdulai, I. Wiafe,
& F. A. Katsriku (Eds.), Modern theories and practices for cyber ethics and se-
curity compliance (pp. 73–87). IGI Global.

LIST OF ACRONYMS

ACM Association for Computing Machinery
AIS Association of Information Systems
CBK Common Body of Knowledge
CFSE Competency Framework for Software Engineers
IDE Integrated Development Environment
IEEE Institute of Electrical and Electronics Engineers
IT Information Technology
LNBIP Lecture Notes in Business Information Processing
SE Software Engineering
SEC Software Engineering Competence
SQL Structured Query Language
SWEBOK Software Engineering Body of Knowledge
SWECOM Software Engineering Competency Model
SWQD Software Quality Days Conference
UComGSP Unified Competence Gate for Software Professionals
UFHCSL Unified Framework of Hard Competency Satisfaction Levels
UFSCSL Unified Framework of Soft Competency Satisfaction Levels

FIGURES

FIGURE 1. Overview of the studies in this dissertation 22
FIGURE 2. Research development approach .. 36
FIGURE 3. Participants in stakeholder consultations 38
FIGURE 4. Respondents characteristics based on interview data 39
FIGURE 5. Roles of software professionals in the software development

project .. 43
FIGURE 6. Graph used in the Kano model (Kano, 2016) 49
FIGURE 7. Process steps for using the unified competence gate for

software professionals (UComGSP) ... 50
FIGURE 8. Unified Competence Gate for Software Professionals

(UComGSP) .. 52

TABLES

TABLE 1. Publication plan ... 32
TABLE 2. Contributions of the co-authored papers 33
TABLE 3. Roles, associated positions and tasks of software

professionals ... 45
TABLE 4. Competency Framework for Software Engineers (CFSE) 47
TABLE 5. Categorization metrics for Kano analysis (reproduced from

(Kano, 2016)) .. 48
TABLE 6. Identified competencies.. 50
TABLE 7. Competence satisfaction level framework 51
TABLE 8. Analysis of the theoretical contribution of the dissertation 58

file:///%5C%5Cusers%5Cmac%5CDropbox%5CJYU%5CsoftwareStartup%5CmyWork%5CResearchWork%5CCompetencies%5CPhDThesis%5Cthesis%5CTraditionalSoftwareEngineering%5CEetu%5CSummaryOfCompetencyResearch%5CThesis%5CThesis%5CFinalThesis%5CDissertation%5CNanaDissertationPackage%5CAfterProofreading%5CDissertationNanaAssyneV5.1.docx#_Toc88181110

CONTENTS

ABSTRACT
TIIVISTELMÄ (ABSTRACT IN FINNISH)
ACKNOWLEDGEMENTS
LIST OF INCLUDED ARTICLES
LIST OF ACRONYMS
FIGURES AND TABLES
CONTENTS

1 INTRODUCTION .. 15
1.1 Background in the context of the software engineering bodies of

knowledge .. 16
1.2 Research objectives ... 18

2 OVERVIEW OF CHAPTERS .. 22
2.1 Article I – The state of research on software engineering

competencies: A systematic mapping study ... 23
2.2 Article II - Hard competencies satisfaction levels for software

engineers: A unified framework ... 25
2.3 Article III - Soft competencies and satisfaction levels for software

engineers: A unified framework ... 27
2.4 Article IV – The essential competencies of software professionals:

A unified competence gate framework ... 28
2.5 Article V - Towards a security competency of software developers’: A

literature review .. 30
2.6 Publication status .. 31

3 RESEARCH APPROACH ... 34
3.1 Critical realism .. 34
3.2 Methodology ... 35

3.2.1 Literature review ... 36
3.2.2 Design process ... 37

4 THEORETICAL FOUNDATION ... 41
4.1 Competence versus competency, soft and hard competence, and

essential competencies ... 41
4.2 Software roles, associated positions, and tasks 42
4.3 Competency framework for software engineers (CFSE)..................... 46
4.4 Kano model .. 47
4.5 Framework construction and its applications 49

5 CONTRIBUTIONS, LIMITATIONS, AND FUTURE RESEARCH
TOPICS .. 53

5.1 Summary of results and contributions .. 53
5.2 Contributions to the body of knowledge .. 55

5.2.1 Conceptualization of Software Engineering Competencies of
Software Professionals .. 55

5.2.2 Contextualization of SEC of software professionals 57
5.3 Limitations and future research .. 59

6 CONCLUSION ... 61

YHTEENVETO (SUMMARY IN FINNISH) .. 63

REFERENCES ... 65

ORIGINAL PAPERS

The way we build software has changed drastically over the past three decades.
However, challenges due to the complexity and size of software products and
software environments continue to grow. Research has attempted to solve these
challenges by studying both practical and academic implications in various areas
of the software engineering field (Silveira Neto et al., 2013). For instance, in the
area of software engineering competencies (SEC), Lenberg et al. (2015) corrobo-
rate this by suggesting that there is no lack of literature on SEC. However, ac-
cording to Calazans et al. (2017) and Gimenes et al. (2012), the software industry
is facing a significant shortage of skilled software professionals. Currently, some
23.9 million developers are employed worldwide, and this is expected to grow to
28.7 million by 2024 (Data, 2019).

To engineer software does not require complex machinery (Casale et al.,
2016); rather, it requires the competence of the software professionals, making it
the essential asset for software development. Despite this, IEEE (2014) points out
that the development of the competencies has not kept pace with what the indus-
try needs. To overcome this concern and fill the apparent gap, both practitioners
and academics have been looking at ways to identify and train professionals in
software engineering (Moreno et al., 2012). Competence is generally defined as “a
collection of skills, abilities, and attitudes to solve a problem in a given context”
(Holtkamp et al., 2015, p. 137). Software engineering competence (SEC) is defined
by IEEE (2014) as a set of skills, knowledge, and attitudes of software professionals to
fulfill a task in software development projects. This covers the entire development
process (IEEE, 2014).

SEC has a rich body of literature (Lenberg et al., 2015) and it is a strategic
research area in the software engineering discipline (Colomo-Palacios et al.,
2013a). Preliminary literature review suggests that the focus areas of SEC re-
search are: (1) competence identification and classification; (2) competence meas-
urement and assessment; and (3) curriculum development (Acuña et al., 2006;
Ardis et al., 2014; Hilburn et al., 2013; Hubwieser et al., 2013; IEEE, 2014; Kobata
et al., 2015; Rivera-Ibarra et al., 2010; Sedelmaier & Landes, 2014a; Studt et al.,
2015; T. Turley & Bieman, 1995). The above research areas are supported by both

1 INTRODUCTION

16

scientific (such as above) and practitioner documents, such as the software assur-
ance competency model.

From the viewpoint of both practitioners and academics, the management
of competence of software professionals is necessary for successful software de-
velopment (Colomo-Palacios et al., 2013a). However, to the best of our
knowledge, a holistic model or framework for managing SEC that considers the
key stakeholders and competence development is missing. Even more im-
portantly, we were unable to find one that considers the current software devel-
opment methodology, such as agile (Abrahamsson et al., 2002; Dyba & Dingsoyr,
2008; Kropp et al., 2016) and DevOps (Debois, 2011). In all, the SEC area lacks a
holistic model or framework that could be used by different SEC stakeholders,
including software professionals, educators, and the software industry, in deter-
mining the essential competencies for software development, customized accord-
ing to the characteristics of a particular software project or software development
assignment.

In view of this, this doctoral dissertation aims to investigate and provide an
in-depth analysis of the SEC of software professionals for managing software de-
velopment. The aim is further, to develop models or frameworks for identifying
competencies, competence satisfaction levels, and the essential competencies re-
quired for software projects or software development assignments. We sought to
achieve our aim by using findings from previous literature and by conducting an
empirical study using qualitative data from the industry.

The results of this study not only provide a holistic framework for manag-
ing the SEC but also provide an in-depth analysis of the SEC research area (the
current state of research on SEC). Further, we provide a practical illustration of
how the developed frameworks can be used according to the characteristics of a
particular software project or software development assignment. The results of
this dissertation provide a means to manage SEC through the different view-
points of stakeholders of competence development. Therefore, this dissertation
contributes to both research and practice.

1.1 Background in the context of the software engineering bodies
of knowledge

The competence of software professionals has over the years been a focus re-
search area among academics and practitioner studies (Silveira Neto et al., 2013).
This has led to the development of standard documents such as SE 2014: Curric-
ulum Guidelines for Undergraduate Degree Programs in Software Engineering
(IEEE-CS & ACM, 2015), Graduate Software Engineering 2009 (GSwE2009), Cur-
riculum Guidelines for Graduate Degree Programs in Software Engineering
(Pyster, 2009), Software Engineering Competency Model (SWECOM) (IEEE,
2014), Software Assurance Competency Model (Hilburn et al., 2013), and E-Com-
petence Framework (CEN, 2014). Both the scientific literature and standard

17

documents, such as the aforementioned, have provided different ways of observ-
ing and organizing the understanding of SEC. Thus, there is a rich body of liter-
ature on SEC (Lenberg et al., 2015).

However, theory development is an area that requires more studies to help
grow the software engineering field (Johnson et al., 2012; Johnson & Ekstedt, 2015;
Päivärinta & Smolander, 2015). Theories help in explaining and predicting the
phenomena of the discipline (Johnson & Ekstedt, 2015), particularly those that
can be used to organize and observe the understanding of stakeholders involved
in the development of SEC (Frezza et al., 2018). In answering the question “Why
do we need one more professional competency model?,” Mead and Shoemaker
(2013) pointed out that “the answer lies in the significant difference between the
competencies required to produce working code and those that are needed to
produce software free from exploitable weaknesses. That difference is under-
scored by the presence of the adversary” (Mead & Shoemaker, 2013, p. 119).
Hence, to help solve the differences, there is a need for models or frameworks,
including holistic ones and those for specific areas of SEC.

A concern of the software industry is the development of the talents of hu-
man resources. This is because the quality and innovation of products and ser-
vices produced by the industry are dependent on the knowledge, abilities, and
skills of the software professionals (André et al., 2011; Rivera-Ibarra et al., 2010).
As already stated, the development of software does not require complex ma-
chinery; rather, it requires the competence of the software professionals. How-
ever, the software industry is facing a significant shortage of skilled software pro-
fessionals (Calazans et al., 2017). To identify and train such professionals to fill
the gap, studies have proposed various curricula to support the training and de-
velopment of skills, the identification and classification of SEC competencies, and
measures to assess software professionals’ competencies (Colomo-Palacios et al.,
2013b; IEEE, 2014; Moreno et al., 2012; Pérez et al., 2017; Sedelmaier & Landes,
2014b).

Various attempts have been made to define the competencies needed by
software professionals for software development (Humphrey, 1989; Mead &
Shoemaker, 2013). Their success in doing so, however, is debatable (Mead &
Shoemaker, 2013). For example, several works (Alavi et al., 2012b; Colomo-
Palacios et al., 2010, 2013b; Moreno et al., 2012; Pérez et al., 2017; T. Turley &
Bieman, 1995; Zendler et al., 2014) have defined, identified, and classified com-
petencies for software engineering. In proposing a software engineering body of
skill (SWEBOS), Sedelmaier and Landes (2014b) identified and structured com-
petencies of software professionals into three categories: (1) comprehension of
the complexity of software engineering processes, (2) awareness of problems and
understanding of cause-effect relationships, and (3) team competency, including
communication skills. There are also practitioner guide documents, such as
SWECOM, which assesses SEC by considering skill area and work activity for
each skill activity in an increasing level of five stages (IEEE, 2014) and the soft-
ware assurance (SwA) competency model for assessing and providing assurance
to software professionals. SwA has five competence levels (Hilburn et al., 2013).

18

The people capability maturity model (People CMM) is a workforce prac-
tice guide to continuously improve the capability of the organizational workforce.
It has five maturity levels (the initial level, the managed level, the defined level,
the predictable level, and the optimizing level) (Curtis et al., 2009). The European
e-competence framework (e-CF) aims at standardizing ICT professionals’ com-
petencies within the European Union. It has 40 reference competencies and 5 e-
CF areas (CEN, 2014). The Essence kernel by Object Management Group, Inc
(OMG) (Object Management Group, 2018) focuses on providing a common basis
for defining the software development practices, which are organized using three
areas: alphas, activity spaces, and competencies. Each of these organized areas is
further examined using three discrete areas: customer, solution, and endeavor.
The competencies subset of the essence kernel assesses the capabilities required
to conduct the work of software engineering. The kernel competencies are further
subdivided using the three discrete areas into stakeholder representation, analy-
sis, development, testing, leadership, and management as competency areas for
competency management. Each competency area has five levels by which teams
can assess the competencies (Object Management Group, 2018).

The models or frameworks mentioned above have attempted to consolidate
their assessments into five levels, perhaps because they take more fine-grained
approaches suitable for education and related assessments. Thus, the competen-
cies of the software professional have not kept pace with what the industry re-
quires (IEEE, 2014). Some studies in the SEC area suggest that there is a gap be-
tween the competencies needed by the industry and what the educational insti-
tutions produce (Colomo-Palacios et al., 2013b; Radermacher et al., 2014;
Sedelmaier & Landes, 2014b). It has been established that the software industry
faces a shortage of skilled software professionals. Although there are scientific
studies (e.g., Ardis et al., 2014; Kobata et al., 2015; Pawlowski & Holtkamp, 2012)
and practitioner documents (e.g. IEEE-CS & ACM, 2015; Pyster, 2009) for training
software professionals, the gap remains between what educational institutions
produce and what the industry requires.

Since our main audience are the stakeholders involved in staffing develop-
ment projects, or teams and recruiting SE professionals, this dissertation devel-
ops a new framework that departs from the frameworks that assess the gradual
development of skills, abilities, and knowledge of an individual in their journey
to becoming a professional or a more proficient professional.

1.2 Research objectives

There have been studies that have examined the models or frameworks for or-
ganizing and observing SEC. The literature on software engineering competence
models or frameworks is not necessarily lacking. For example, Acuña and Juristo
(2004), Acuña et al. (2006), Bröker (2014), Rivera-Ibarra et al. (2010), Thurner et al.
(2016), and IEEE (2014) have studied and created models or frameworks for or-
ganizing and observing the SEC. However, their focus was on the identification,

19

assessment, and classification of SEC in isolation of the different stakeholders of
SEC development. Manawadu et al. (2015) and Turley (1991) indicated the exist-
ence of certain competencies of software professionals that are essential for soft-
ware development. However, a comprehensive study on the essential competen-
cies of software professionals dated back to 1994, which is the work of Turley and
Bieman (1994).

Previous research work on SEC has addressed competence assessment lev-
els of software professionals; thus, we know of base competencies (e.g., Thurner
et al., 2016), essential technical competencies (e.g., Broadbent et al., 1992; Colomo-
palacios et al., 2013; Moreno et al., 2012), and models for identifying and classi-
fying SEC (e.g., Pérez et al., 2017; Rivera-Ibarra et al., 2010). However, the assess-
ment levels of these models did not consider the performance levels associated
with the competence. Therefore, there are no measures to determine the satisfac-
tion levels to assure the stakeholders of SEC. Thus, there is a need for an in-depth
analysis of SEC that encompasses the identification, assessment, and essential
competencies of software professionals. It is clear that understanding the compe-
tences of software professionals is essential for software development. (Alavi et
al., 2012a; Colomo-Palacios et al., 2013a; Goel, 2006; Manawadu et al., 2015;
Orsoni & Colaco, 2013; Robinson et al., 2005; Saldaña-Ramos et al., 2012).

Thus, this dissertation, through an in-depth analysis, attempts to under-
stand the software engineering research area and to develop a framework for
managing the competencies of software professionals for software development.
The results of this study not only show models and frameworks for identifying
and assessing SEC but also extend the use of the models to identifying and as-
sessing the competencies of software professionals and the essential competen-
cies for software development. The study exceptionally pays attention to the
stakeholders of the SEC. Furthermore, the results show the practical determina-
tion of the assessment levels (the satisfaction levels) according to different soft-
ware projects or software development assignments.

The creation of good methods and tools has never been sufficient for soft-
ware development. For this reason, the strategic use of people competencies is
inevitable (Casale et al., 2016). To function effectively and productively in this
ever-evolving environment, there is a need to develop strategic competencies,
especially the employment of human resources with requisite competencies to
use the methods and tools (Rivera-Ibarra et al., 2010). As pointed out by Acuña
and Juristo (2004), we risk developing tools and methods that are beyond the
capabilities of the people, if their competencies are not known and developed.
Therefore, we used a comprehensive literature review, expert consultation, and
interview data to find solutions to the identified gaps.

A model that can help explain and predict the SEC needed for the develop-
ment of software must consider the stakeholders involved in the development of
the SEC. Such model(s) must also consider the dynamic nature of different
unique projects or assignments and the current development methods, such as
agile (Abrahamsson et al., 2002; Dyba & Dingsoyr, 2008; Kropp et al., 2016) and
DevOps (Debois, 2011). The models must consider the logic and rationale of

20

using competencies in the development of software and examine the behavior of
software professionals in the role of software development.

In this research, using a literature review, expert consultations, and inter-
view data, we constructed a theoretical model for explaining and predicting, or-
ganizing, and observing SEC. By building the model, we aim to provide a meas-
ure that explains SEC for the use of both research and practice. The main research
question (RQ) that guided this effort is as follows:

RQ How do the essential competencies of software professionals evolve
over time?

The following sub-questions were addressed in targeting the main RQ:

RQ1 What is the state of research related to software engineering competen-
cies and their evolution?

RQ2 What are the different satisfaction levels of software professional’s
competencies?

RQ3 What are the different competencies of software engineering roles?
RQ4 What are the essential competencies of software professionals?

We approached this study in stages using theories and empirical evidence, as
discussed in the next chapter.

To contextualize our work, we provide definitions of some key terms used
in this dissertation. According to Frezza et al. (2018), stakeholders of SEC devel-
opment may include “educators, students, industry, and other employers of com-
puter graduates, policymakers, professional societies, etc.” Thus, for our study,
we simplify them to include software professionals (i.e., individuals who hold
software engineering competencies), educators (i.e., institutions that provide
software engineering education to software professionals and communities of
practice within the software engineering field), and software industry (i.e., enti-
ties who utilize the competencies held by the software professionals for-profit or
for non-profit purposes). The term software industry is sometimes complex to
define due to the nature and how we use and develop software. The work of
Tyrväinen et al. (2008) makes a distinction between the software industry busi-
ness as primary software industry and secondary software industry. The primary
software industry develops software as its core activity and may include some
auxiliary activities. The secondary software industry is hosted by companies fo-
cusing on another type of business but developing software as part of the devel-
opment of their processes, products, or services. Since both of these software or-
ganization types employ software professionals, our usage of the term ‘software
industry’ encompasses both the primary and the secondary software industry
types. We also use the phrase holistic framework. According to previous studies,
competence frameworks or models are for identification and assessment. Thus,
we define our holistic framework as one that can be used by the key stakeholders
of SEC to identify competencies, assess competence satisfaction levels, and iden-
tify the essential competencies for software development.

The structure of this dissertation is as follows. Chapter 1 describes the mo-
tivation for the study, provides background information in the context of the

21

software engineering body of knowledge, and states the objectives of the study.
Chapter 2 gives an overview of the dissertation, a summary of the five articles of
the dissertation, the publication status of the articles, and the contributions of the
coauthors of the articles. Chapter 3 presents the scope of the research and the
research approach adopted for the individual articles. Chapter 4 presents the the-
oretical foundation for the dissertation by examining concepts such as compe-
tence, software roles in software engineering, competency framework for soft-
ware engineering, the Kano model, and the UComGSP and how it can be used.
Finally, Chapter 5 presents the contributions limitations and future research top-
ics.

Given the importance of competencies of software professionals to the develop-
ment of software, Barreto et al.’s (2008) emphasis that software development is
human-intensive, and the significant shortage of skilled software professionals
in the software industry, we consider it prudent to examine the current state of
the literature on SEC. This enabled us to identify and investigate the gaps in the
SEC field. In this chapter, we review our studies, Articles I, II, III, IV, and V.

FIGURE 1. Overview of the studies in this dissertation

2 OVERVIEW OF CHAPTERS

Article I

•Research Question(s): RQ1
•Reseach Methods: Systematic Mapping study
•Result(s): Conceptual Model, Research Agenda

Article II

•Research Question(s): RQ2
•Reseach Methods: Qualitative Study
•Result(s): Conceptual Model

Article III

•Research Question(s): RQ2, RQ3, RQ4
•Reseach Methods: Qualitative Study
•Result(s): Theorical Model, Competence Identification & Assessment

Article IV

•Research Question(s): RQ2, RQ3, RQ4
•Reseach Methods: Qualitative study
•Result(s): Theorical Model, Competence Identification & Assessment

Article V

•Research Question(s): RQ2, RQ3
•Reseach Methods: Traditional Literature Review
•Result(s): Conceptual Model, Research Agenda

23

2.1 Article I – The state of research on software engineering

competencies: A systematic mapping study

Research objectives
Over the past decades, significant studies have been conducted on the SEC. Soft-
ware development is considered a human-intensive field. Colomo-Palacios et al.
(2013) stated that the SEC research area is a strategic research area for software
engineering. Lenberg et al. (2015) established that there is no lack of literature on
SEC. Notwithstanding, the industry is facing a significant shortage of skilled de-
velopers. Acuña and Juristo (2004) argued that we risk developing tools and
methods that are beyond the capabilities of the people if their competencies are
not known and developed (Acuña & Juristo, 2004). Educating and training soft-
ware professionals to acquire the requisite skills for software development is
never an easy task; as Sedelmaier and Landes (2013) pointed out, there are no
cookbooks for this task.

However, it is worth mentioning that software professionals are the key
drivers for software development. Ignoring their development (competencies) is
invariably an oversight of robustness and innovation in software development.
Therefore, it is important to know and understand the state of affairs regarding
software professionals' competencies. We define SEC as the knowledge, skills,
and attitudes of software professionals to fulfill a task in a software development
project (IEEE, 2014).

The main objective of this study was to understand the current literature on
SEC. To this end, a mapping study was conducted using the guidelines of
Petersen et al. (2008) and Petersen et al. (2015) to provide a comprehensive over-
view of the SEC research area.

Research results
Through an extensive search of previous studies and rigorous inclusion and ex-
clusion processes, we identified 60 relevant primary studies for the review study.
By analyzing these primary studies, we provide an overview of the current state
of research on SEC, with a particular focus on common SEC research areas, avail-
able SEC models and frameworks, and the essential competencies of a software
professional.

Our results indicated that despite a rich body of literature, several areas of
SEC need further scientific investigation. Future studies are needed to propose
better models and frameworks for providing theoretical accounts as well as prac-
tical implications on different aspects of SEC, especially assessing the satisfaction
levels of SEC stakeholders. More empirical research is also needed to provide a
better understanding of how the competencies of software professionals change
over time or as they move from one role to another. Lastly, further research is
needed to assess and provide a fresh account of the essential competencies of
future software professionals, especially concerning modern development

24

methods and techniques, such as agile methods (Abrahamsson et al., 2002) and
DevOps (Debois, 2011).

The results also showed two main research areas (personnel and organiza-
tional research areas) and six subcategories. The personnel competence research
area focuses on software professional competencies, that is, the skills, abilities,
and attitudes required for developing software products or services. These are
the catalysts for developing a software product or service, and they include the
soft and the hard competence areas. Examples are creative thinking and pro-
gramming skills. The organizational competence research focuses on tools and
instruments, such as assessment and identification models and frameworks,
which are used for organizing, assessing, measuring, and managing personnel
competencies.

The study identified 14 different models or frameworks that enable stake-
holders to understand the underlying logic of the SEC in the context of software
development and on which further SEC research is scaffolded. In the area of per-
sonnel competence research, three of the models and frameworks are for the ge-
neric identification of competencies of software professionals, one is for defining
the roles and competencies of software testers specifically, and one is for as-
sessing the competencies of software professionals. The models and frameworks
in the organizational research area are for (1) managing competence research and
learning, (2) the competence process model is for design, development, and im-
plementation of software, (3) human resource management, (4) competence evo-
lution identification and competence stakeholder identification.

According to Turley and Bieman (1995), essential competencies of software
engineering are the skills, knowledge, and attitudes of software professionals
necessary for excellent performance in a software project or software develop-
ment assignment. Forty-nine essential competencies were identified in nine pri-
mary studies. The coded items identified in the primary studies were classified,
and 11 themes emerged from those essential competencies. The themes were
mapped to the top-level themes of Rivera-Ibarra et al.’s (2010) framework for
identifying competencies. They are technical knowledge or skills (referred to as
the essential hard competencies, and defined as task-oriented competencies), so-
cial knowledge or skills (competencies for organizing cooperation and interper-
sonal relations in a software development project), and personal traits or skills
(personal attributes for working well in different spheres of life).

The results also showed changes in SEC research over the past two and a
half decades. The first trend that we observed from the primary studies was an
increase in the total number of primary studies that have used quantitative re-
search methods since 2011. Regarding the contribution types, it seems that pro-
posing a set of lessons learned continues to be the focus of SEC research, as the
number of primary studies that have this type of contribution remains the highest
over time. Regarding research areas, however, it seems that since 2012, soft com-
petencies have been receiving some attention from SEC research. Another trend
we observed in the essential competence studies is the number of competencies
identified per study; that is, fewer essential competencies are being identified in

25

recent studies. Thus, this highlights a need for a fresh understanding of the es-
sential competencies, which especially considers the current software develop-
ment trends, such as using agile methods and DevOps.

Summary
In this study, the authors strived to improve SEC research and practice by provid-
ing up-to-date information on software development methods to sensitize the
key players in the field. The goals of this study were two-fold. The initial step
was to obtain a comprehensive overview of the current state of research on SEC,
and the next phase involved identifying potential gaps in SEC research to guide
future studies. By analyzing these studies, we identified two main SEC research
areas: personnel and organizational. We also identified and presented a set of
SEC models and frameworks that could be used by SEC research and practice.

Furthermore, we identified a set of essential competencies of software pro-
fessionals, most of which deal with their social and personality skills and compe-
tencies (i.e., soft skills). Based on this observation, we argue that separating soft
and hard competencies may soon be a concept of the past, and future research
and practice should consider them as two equally critical pillars of software en-
gineering competencies. Our findings show, among other things, that the human-
intensive nature of software development requires further attention from both
research and practice. Therefore, we argue that the development of the SEC can-
not be conducted in isolation but must consider the viewpoints of different SEC
stakeholders, including software professionals, educators, and the software in-
dustry. Furthermore, future research should seek to identify and provide a better
understanding of the essential software engineering competencies that contrib-
ute to developing high-quality software products and systems in modern socie-
ties.

2.2 Article II - Hard competencies satisfaction levels for software
engineers: A unified framework

Research objectives
Previous studies have suggested that software development is a human-inten-
sive field. Software development requires a combination of soft and hard compe-
tencies for successful development (Moreno et al., 2012; Sedelmaier & Landes,
2014b). The research area of software engineering competence has become a stra-
tegic research area for academicians in software engineering. However, under-
standing any phenomenon, such as SEC, requires structures such as models and
frameworks. Bhattacherjee defined a model or framework as tools required to
classify or organize an observation for a general understanding of the phenome-
non (Bhattacherjee, 2012). However, previous studies have examined the availa-
bility of models or frameworks for managing the SEC, neglecting to consider all
the key stakeholders of SEC as part of an overall puzzle. These stakeholders in-
clude the educators, the software industry, and the software professionals

26

(Frezza et al., 2018); not considering them under one framework limits our un-
derstanding of the phenomena with SEC. Consequently, this study addressed
this apparent gap.

Most previous studies on SEC have split the categorization of competence
study into hard or technical and soft or behavioral competence categorization.
Thus, the authors’ initial step was to utilize this categorization. This study fo-
cused on the hard/technical competencies required for software engineering.
Hard or technical competence is defined as the technical skills required to per-
form a given software development task. The authors set out to understand (1)
the models and frameworks available for organizing and observing hard compe-
tencies and (2) how best to utilize available models to determine the satisfaction
level of a competence. Thurner et al. (2014) defined basic competencies as those
that are crucial for studying software engineering. Previous SEC studies have in-
dicated competencies that are essential for software development (e.g., Alavi et
al., 2012; Colomo-Palacios et al., 2013; Goel, 2006; Manawadu et al. 2015; A.
Orsoni & Colaco, 2013; Robinson et al. 2005, Saldaña-Ramos et al. 2012l; Turley
& Bieman, 1995) . However, we did not find any study that examined these dif-
ferent types of competencies from the perspective of the different stakeholders of
SEC development or, more importantly, for accessing the competence satisfac-
tion levels that will provide assurance to the stakeholders. Against this back-
ground, we sought to develop a model that will consider the key stakeholders
(software professionals, educators, and software industry) of competence studies
as suggested by Frezza et al. (2018) and IEEE (2014), and that will be capable of
determining the satisfaction levels of competence while also determining compe-
tencies essential to software engineering.

We identified the following model and framework: (1) the Kano model de-
termines the satisfaction of a customer related to product development (Kano et
al., 1984) and (2) the competency framework for software engineers (Rivera-
Ibarra et al., 2010), which considers the roles of software engineering, focusing
on technical competencies, as was the goal of this study.

Research findings
We identified that there was no model or framework for determining the essen-
tial competencies of software engineering without resorting to a typical academic
exercise. Article I also revealed that the model or framework does not consider
the key stakeholders of competence development.

Using existing models from the SEC research area and other research areas,
we developed a unified framework of hard competency satisfaction levels for
software engineers (UFHCSL) by employing previous literature and focus-group
discussion. UFHCSL enables the determination of satisfaction levels of hard com-
petencies and the essential hard competencies for software engineering. The sat-
isfaction levels determined by UFHCSL are basic competency, performance com-
petence, and delighter competence. The results revealed the three-satisfaction
level in project management roles, requirement analysis role, software design
role, programming role, validation and verification role, configuration manage-
ment role, test and quality role, documentation role, and maintenance role. The

27

UFHCSL also allows the determination of the essential hard competencies of soft-
ware professionals. Lastly, the framework considers the key stakeholders of SEC:
software professionals, educators, and the software industry.

Summary
The resulting competence framework known as the UFHCSL can be utilized by
software professionals, educators, and the software industry to determine the
satisfaction derived from a competence. The model can be employed by practi-
tioners and academics. Thus, this research contributes to the SEC field by devel-
oping a framework for determining the satisfaction levels of hard competencies
and the essential competencies for software development.

2.3 Article III - Soft competencies and satisfaction levels for
software engineers: A unified framework

Research Objectives
The competencies of professionals are the driving force of software development.
In human resources studies, they are mainly classified as hard and soft skills.
Previous studies have focused on the hard skills of developers (Lenberg et al.,
2015). However, Article I found that this is changing and that the focus of SEC
research is drifting toward the study of soft skills. Harris and Rogers defined soft
skills or competencies as “work ethics, positive attitude, social grace, facility with
language, friendliness, integrity and the willingness to learn” (Harris & Rogers,
2008).

Previous studies have focused on identifying these skills without consider-
ing the assurance that the competencies may give to the software industry or
software professional. In short, the benefits that can be derived from using a soft
competence are not known beforehand. Some studies have mentioned the base
competencies of software students. This is defined by Thurner et al. (2014) as the
prerequisite competencies needed by software engineering students to acquire
technical competencies. However, they are not the only satisfaction level or cate-
gory in SEC. In this study, we argue for the existence of other levels of satisfaction,
hence the aim of Article II and Article III.

Furthermore, Article I also found that models and frameworks for under-
standing SEC lack the viewpoints of all the stakeholders involved in SEC. Thus,
this study focused on soft competencies of software engineering by addressing
the following: (1) assessing existing models or frameworks for organizing and
observing the understanding of SEC, (2) developing a model/framework for de-
termining the satisfaction levels of soft competencies, (3) developing a
model/framework for the determination of the essential soft competencies for
software engineering, and (4) using the model/framework to validate a dataset
to produce competency satisfaction levels and essential competencies for soft-
ware engineering. To do this, we selected some existing models, and through ex-
pert discussions using an iterative approach, we developed the unified

28

framework of soft competence satisfaction levels for software engineers
(UFSCSL). The model was later used to identify the satisfaction levels of SEC.
Basic, performance, and delighter competencies satisfaction were identified for
software engineering. The paper also identified the essential competencies for
software engineering.

Research findings
The results of Article III, which complement Article II, support the assertion that
soft and hard competencies are the main driving force of software development.
Combining the two means successful and robust software development. The re-
sult shows the UFSCSL for determining satisfaction levels for soft competencies
for software engineering and the essential soft competencies for software engi-
neering. Thus, this study provided a framework that determines the satisfaction
levels and essential soft competencies for software development.

Our results showed three types of competence satisfaction levels in soft-
ware engineering: basic, performance, and delighter. By using the main actors of
competence development, we determined the competencies using the following
categories of personal and social competencies: personal category—development
on the job, personal development, and rights and limits; social categories—inter-
personal relations, cooperation, and teamwork; and handling and solving con-
flicts. Thus, we provided a second-level granularity of the soft competencies of
essential competencies for software engineering.

Summary
In Article III, based on the data collected from expert discussions and supervisors
in software development, we developed a framework that can be used to identify
satisfaction levels for soft competencies and further identify the essential soft
competencies for software engineering. The framework (UFSCSL) is capable of
producing outcomes useful for software professionals, educators, and the soft-
ware industry.

2.4 Article IV – The essential competencies of software
professionals: A unified competence gate framework

Research objectives
In Article IV, using an extensive literature review, focus group discussions, and
empirical evaluation, we developed a framework called the Competence Gate for
Software Professionals (UComGSP). UComGSP can be used to identify and man-
age SEC. This study, which combined Articles II and III, examined the future of
SEC. The framework developed was based on the Kano model (Kano et al., 1984)
and the competency framework for software engineers (Rivera-Ibarra et al., 2010).
Based on Article I, which argued that separating soft and hard competencies may
soon be a concept of the past, and that future research and practice should con-
sider them as two equally critical pillars of software engineering competence

29

studies, UComGSP can be used to identify and assess SEC based on different
software projects or software development assignments. Thus, this study con-
tributes to SEC research and practice.

Even though previous studies have established that essential competencies
are important for software development, a model for the determination accord-
ing to different projects has yet to be found in the literature. André et al. (2011)
suggested that, in most software projects or software development assignments,
people are assigned to roles and teams based on the experience of the project or
team leader. Turley and Bieman (1995) argued for the identification of excep-
tional competencies to enhance software development. Frezza et al. (2018) and
IEEE (2014) pointed out that the development of competence requires different
stakeholders. Frezza et al. (2018) listed the following as those involved in compe-
tence development (stakeholders of competence development): educators, stu-
dents, industry and other employers of computing graduates, policymakers, and
other professional societies. Article I established that future research would need
to identify and provide a better understanding of the essential software engineer-
ing competencies contributing to developing high-quality software products and
systems in modern societies. Thus, this study aimed to fill these gaps by devel-
oping a holistic framework for determining and identifying competencies for
both academic and practitioner use, a competence satisfaction level that serves as
an assurance to stakeholders, and the essential competencies of software profes-
sionals that can vary according to a different software project or software devel-
opment assignment.

Research findings
We have provided a framework for analyzing competence models or frameworks
on SEC. The analysis of the competence models or frameworks should be consid-
ered as a steppingstone to developing a holistic model for SEC. In this analysis,
we provided some variables for analyzing competence models or frameworks
involving stakeholders in SEC and identifying the essential competence for soft-
ware engineering. Thus, we have provided a framework and a tool for assessing
competencies that will support the strategic nature of SEC research.

The results presented individual competencies and their satisfaction levels:
basic, performance, and delighter. The roles as stated in the competency frame-
work for software engineers (CFSE) are project management, requirement anal-
ysis, software design, programming, validation and verification tests, configura-
tion management, tests and quality engineering, documentation, and mainte-
nance. The results also show the essential competencies of software engineering.
A key competence that was highlighted in Article I is the shift in the development
of the agile methodology as a competence for software professionals. It is im-
portant to note that agile competence was identified as a basic competence. That
is, it is a prerequisite competence that is necessary and expected from software
professionals. Therefore, we must pay attention to agile methodology as a com-
petence in any curriculum development in software engineering.

The study resulted in the development of a holistic framework for identify-
ing and assessing competencies, revealing 63 soft competencies and 62 hard

30

competencies mapped to the roles of software engineering, 3 satisfaction levels
(basic, performance, and delighter) and their definitions, and 25 identified essen-
tial competencies of software professionals. We also report 27 competencies not
mentioned in the reviewed literature; 11 of them are considered essential compe-
tencies for software professionals. We have also provided a working definition
for the essential competence as skills, knowledge, and attitudes of software pro-
fessionals necessary for excellent performance (a desirable outcome to the project
owners) in a software project or software development assignment. Furthermore,
the study provided an analysis of the models and frameworks of SEC, which can
be used as a starting point for research on SEC.

Summary
This study aimed to provide a holistic framework enabling SEC stakeholders to
(1) identify SE competencies, (2) identify the essential SEC, and (3) assess the sat-
isfaction levels derived from those competencies. The study achieved its aim by
developing a holistic framework for managing SEC. This holistic framework
(UComGSP) can be used by the key stakeholders of SEC for developing SEC.

2.5 Article V - Towards a security competency of software
developers’: A literature review

Research Objectives
Article IV used the UComGSP to identify SEC for software development. From
the identified SEC, some new competencies were observed. As stated in Article
IV, those new observations do not mean new competencies. Thus, Article IV
called for more investigations to elucidate and expand on those competencies.
For this reason, Article V used a traditional literature review to identify the secu-
rity competencies of software developers and set an agenda for the future direc-
tion of research on these competencies.

The ubiquitous nature of computing adds complexity to software develop-
ment. Software development is human-intensive. However, previous studies
suggest that the security competence of software developers has been treated as
a subsidiary of security engineer’s rather than software engineer’s competence,
thus limiting our understanding of how to improve software developers’
knowledge of software security skills. Security competence of software develop-
ers is essential in software development, because security matters must be ad-
dressed right from the start of the software development process (Mano et al.,
2006). However, the security competence of software developers has not been
adequately addressed in previous studies.

In advocating for security engineering environment studies for software de-
velopers, Cheng et al. (2008) pointed out that there is an urgent need to create an
environment that integrates various tools and provides comprehensive facilities
to the designers, developers, users, and maintainers of a software system (Cheng
et al., 2008). Yet, the skills needed for such development are not well known or

31

structured in previous studies. Therefore, there is a need to examine the security
skills of the developers; hence, the purpose of Article V. To develop SEC, Article I
suggests the need to consider the competencies of developers vis-à-vis the roles
and duties of the developer. As a first step, we set up an agenda for assessing the
security competencies of software developers.

Research findings
A traditional literature review was chosen as the method for data collection for
this study. In the review study, 13 security competencies were identified after the
analysis. They were classified into two groups: programming-related competen-
cies and non-programming-related competencies. In the area of programming-
related competencies, the following were identified: secure programming or cod-
ing skills, secure mobile software development skills, secure socket layer skills,
web application security skills, integrated development environment (IDE) secu-
rity skills, code analysis tool skills, modeling SQL injection skills, handling buffer
overflow skills, and security pattern skills. In the area of non-programming-re-
lated competencies, the following were identified: software security policy skills,
security best practice and standard skills, system security assurance tool skills,
and vulnerability assessment tool skills. The study provided a framework for un-
derstanding the security competencies of software developers by mapping the
identified competencies to the common body of knowledge (CBK) framework of
information security professionals’ skills. The study also sets out the implications
of not having these competencies.

Summary
We identified 13 security competencies of software developers from the literature,
using a traditional literature review. The competencies were grouped into two
categories: programming-related skills and non-programming-related skills.
Nine competencies were programming related and four were non-programming
related. To create a framework for help with future studies, we mapped the iden-
tified competencies to the CBK framework of information security professionals’
skills. Seven of the competencies were mapped to both information communica-
tion technology and security criteria, and four to information communication
technology. The study set an agenda for the future direction of research on the
security competencies of software developers.

2.6 Publication status

Given the importance of the research topic and the fact that the main driving
force of software development is software professionals (Casale et al., 2016), we
hope our findings will receive consideration from the software development
community for practice and research. Thus, we have prepared several scientific
papers and submitted them to different SE outlets. As part of this dissertation,
five papers were prepared. Two peer-review conference papers and a book

32

chapter have been published and two journal papers have been submitted or re-
submitted for review (see Table 1).

Article I, which is the justification of this study, is a literature review. It has
passed the second round of peer review and received a “revise and submit as
new” request from the Journal of Systems and Software, a highly regarded peer-
review journal published by Elsevier Inc. Articles II and III were published sep-
arately in annual peer-review conferences: the 10th International Conference on
Software Business (ICSOB) and the 12th International Conference on Software
Quality (SWQD). The papers were presented at these conferences and used as a
data source for Article IV.

Article IV has been submitted to Information and Software Technology, one
of the leading journals in the SE discipline published by the Association for Com-
puting Machinery. Finally, Article V, which is a book chapter, is a study on one
of the newly observed competencies from Article IV. The book, Modern Theories
and Practices for Cyber Ethics and Security Compliance, is published by IGI
Global. Research contributions of the coauthored papers are given in Table 2.

TABLE 1. Publication plan

Article Author(s) Title Forum Status
Article I Assyne,

Ghanbari, &
Pulkkinen

The State of Research on
Software Engineering
Competencies: A System-
atic Mapping Study

Journal of Sys-
tems and Soft-
ware

Revised
and resub-
mitted for
review

Article II Assyne Competencies and Satis-
faction Levels for Soft-
ware Engineers: Unified
Framework

10th International
Conference, IC-
SOB 2019 – 370
LNBIP

Published

Article III Assyne Soft Competencies and
Satisfaction Levels for
Software Engineers: Uni-
fied Framework

12th International
Conference,
SWQD 2020 –
371 LNBIP

Published

Article IV Assyne,
Ghanbari, &
Pulkkinen

The Essential Competen-
cies of Software Profes-
sionals. A Unified Compe-
tence Gate Framework

Information and
Software Tech-
nology

Submitted
for review

Article V Assyne Towards a Security Com-
petence of Software De-
velopers: A Literature Re-
view

2020 IGI Global Published

33

TABLE 2. Contributions of the co-authored papers

Article Title Author Contributions

Article I

The State of Research on Soft-
ware Engineering Competen-
cies: A Systematic Mapping
Study

Nana Assyne

Conceptualization,
Methodology, Formal
analysis, Data Curation,
Writing - Original Draft,
Writing- Reviewing and
Editing, Visualization

Hadi Ghanbari

Conceptualization,
Methodology, Writing -
Original Draft, Writing-
Reviewing and Editing,
Supervision

Mirja Pulkkinen

Methodology, Writing -
Original Draft, Writing-
Reviewing and Editing,
Supervision.

Article IV

The Essential Competencies
of Software Professionals. A
Unified Competence Gate
Framework

Nana Assyne

Conceptualization,
Methodology, Formal
analysis, Data Curation,
Writing - Original Draft,
Writing- Reviewing and
Editing, Visualization

Hadi Ghanbari

Conceptualization,
Methodology, Writing -
Original Draft, Writing-
Reviewing and Editing,
Supervision

Mirja Pulkkinen

Methodology, Writing -
Original Draft, Writing-
Reviewing and Editing,
Supervision.

This doctoral research seeks to understand the SEC area by providing an in-depth
analysis of essential competencies for software engineering. By this, we aim to
build a framework that is empirically grounded and can be used by both aca-
demics and practitioners. Software development is complex and requires dyna-
mism in its processes. As already stated, software development is human-inten-
sive, and software professionals have a direct influence on the quality of the soft-
ware they develop. A study in such an area requires an approach that enables us
to understand human behavior. Wohlin and Aurum (2015) posited that an indi-
vidual’s behavior is influenced by the meanings endowed to an event. Thus, the
selected approach must support our understanding of the people and the envi-
ronment in which the research is being conducted.

3.1 Critical realism

Critical realism as a research paradigm overcomes an odd dualism such as objec-
tivism and subjectivism (Bhasskar, 2008; Vincent & O’Mahoney, 2018). It pro-
vides a means to distinguish between what is real and what we know (Vincent &
O’Mahoney, 2018). In short, critical realists see the world through objectivism
while recognizing the fact that knowledge is subjective (Bhasskar, 2008; Vincent
& O’Mahoney, 2018). As suggested by Vincent and O’Mahoney (2018), crucial to
understanding the world well, good research requires a bridge between ontology
and epistemology. It also provides a means to use theories to analyze and evalu-
ate data that suggest appropriate changes to a problem (Vincent & O’Mahoney,
2018). By contrast, interpretive methods, such as action research and ethnogra-
phy, are mainly for building theories compared to testing theories (Bhattacherjee,
2012).

Researchers are influenced by their beliefs and assumptions. The most com-
mon sets of beliefs and assumptions are positivist, interpretivist, or critical real-
ism. Positivism is the scientific study of the social world. It is applied to separate

3 RESEARCH APPROACH

35

facts and values to express the cause of something, or for an explanation of uni-
versal laws. Those with this belief are of the view that reality is objectively given
and can be measured by its properties (Myers, 1997). Interpretivists assume that
the world can be seen or interpreted with an agreed language with meaning
(Myers, 1997), and designers deal with the creation and evaluation of technology
artifact (Cole et al., 2005). Between these two assumptions is critical realism. With
this in mind, my personal belief that guided the conduct of this Ph.D. study is
critical realism (Bhasskar, 2008). We show in the methodology section how we
used theories in the analysis and evaluation of the data to gain the results, that is,
the outcomes of this dissertation.

3.2 Methodology

Methods are processes or techniques used by researchers to empirically validate
a phenomenon of interest or under investigation (Kaplan & Maxwell, 1994;
Nandhakumar & Jones, 1997; Orlikowski & Baroudi, 1991). Such techniques or
processes are used to gather and analyze data (empirical evidence) to discover a
new understanding of a phenomenon. The research method is described as “the
procedures and techniques used to compile systematic observations and to make
sense of those observations in the generation and examination of ideas and theo-
ries”(B. Lee & Cassell, 2013, p. 123). There are different types of research methods
available to researchers. However, the selection of a method by a researcher is
dependent on the phenomenon to be investigated, and more importantly, the be-
lief and the assumption of the researcher (Orlikowski & Baroudi, 1991). Thus, a
qualitative research approach (Myers & Newman, 2007; Schultze & Avital, 2011;
Venkatesh et al., 2003) is suitable for the studies proposed in this dissertation.
That is, our phenomenon is related to humans, thus, a natural context. Therefore,
different techniques were used to gather data for the investigation. They include
a literature review, stakeholders’ consultations, and interviews. Figure 2 shows
how the different techniques were combined to validate SEC.

36

FIGURE 2. Research development approach

3.2.1 Literature review

Following the initial traditional literature of understanding of the research topic
area, a systematic literature review was conducted to justify the study and to
identify a clear gap for the dissertation. As already stated, literature on SEC is not
lacking; therefore, to gain a good understanding of the research area, a systematic
mapping study was conducted based on the guidelines of Kitchenham and
Charters (2007) and Petersen et al. (2008, 2015). A mapping study provides an
overview of a research area by identifying the quantity, type of research, and
results within the area (Petersen et al., 2008). It was apparent that there were gaps
in the SEC literature, such as the lack of a holistic model or framework for man-
aging SEC and the lack of understanding of the essential competencies that con-
tribute to the development of high-quality software product systems in modern
societies. Thus, in phase 1, the study chose to collect data by analyzing a range of
previous SEC studies to initiate the filing of the gaps identified (Figure 2).

To ensure a wider coverage of the extant literature, we searched several da-
tabases, including IEEE Xplore, ACM Digital Library, Scopus, AIS eLibrary, and
Science Direct. After selecting these databases, search strings were developed. In
the literature review for Article I, a total of 12,250 potentially relevant papers
were retrieved from all five databases. After applying the inclusion/exclusion

37

plus quality assessment, 60 papers qualified for the review. Data analysis was
performed on the extracted primary studies to answer the research questions.

To analyze the extracted data, we employed content analysis (Vaismoradi
et al., 2013). According to Vaismoradi et al. (2013), content analysis is well suited
for analyzing multifaceted data by labeling relevant items (coding) in the text and
interpreting the content. The coding procedure also assists in quantifying the
qualitative analysis results, for example, counting the frequency of occurrence,
which can indicate the significance of an issue. Content analysis is defined as the
use of a “systematic coding and categorizing approach used for exploring large
amounts of textural information unobtrusively” (Vaismoradi et al., 2013, p. 400).
Hsieh and Shannon (2005) discussed different approaches for conducting content
analysis: conventional or open content analysis, directed content analysis, and
summative content analysis.

We combined these approaches. Conventional content analysis aims at an
open and data-driven approach to describe a phenomenon, with no prior theory
or framework guiding the analysis. Directed content analysis is led by a chosen
theory or prior research findings, and it aims at completing or refining the exist-
ing knowledge with new findings from the analyzed data. Summative content
analysis involves counting or comparing words or content. Based on the litera-
ture analysis, two theories (the Kano model and CFSE) were identified for the
creation of the initial version of the framework. In the next phase of the investi-
gation, we used field data to validate the initial version (Figure 2), which was
based only on literature and theories.

3.2.2 Design process

The initial versions were subjected to stakeholders’ consultations that involved
academics and practitioners. This led to the development of partial versions, such
as the UFHCSL and UFSCSL. Thus, in phase 2 (Figure 2), we embarked on a field
validation that involved stakeholder consultations. This involves submitting par-
tial versions of the framework to conferences for feedback.

The first partial version of the framework was published as a work-in-pro-
gress at the proceedings of Euromicro SEAA 2019, Greece. A presentation Work-
in-progress track was held to the conference participants to collect feedback for
the incremental development of the framework. Thus, the conference was used
as a focus group discussion to collect data for incremental design. At the end of
the focus group discussion, two main areas for improvement were suggested.
First, competence categorization (i.e., soft and hard) is essential for the develop-
ment of the framework, mainly because both categories have different meaning
and usage (Moreno et al., 2012). Second, the satisfaction levels of SEC must be
added as a key feature to the framework.

Based on the suggestions from the group discussions, two separate partial
versions (UFHCSL and UFSCSL) were created. The two versions were submitted
to two separate conferences, and the frameworks were presented for feedback.
The following tracks were held: Software Business Education in the 10th Interna-
tional Conference on Software Business 2019, Finland, and Industry Challenges

38

and Collaborations in the International Conferences on Software Qualities 2020,
Austria. Participants were informed of the purpose of the presentation, that is, to
use the venues as focus group discussions.

A summary of the participants in these three stakeholder consultations is
presented in Figure 3. Feedback was received and incorporated into the next it-
eration process of the framework development. According to Peffers et al. (2008),
artifact development requires some form of iteration. Thus, we performed itera-
tion accordingly until a meaningful framework was achieved. This led to the par-
tial creation of the UComGSP.

The development of the framework was continued with pre-processed in-
terview data in phase 3. Since the interview data were pre-processed, we adopted
an exploratory approach in which the focused research questions did not restrict
the data collection effort. In phase 3 (see Figure 2), an interview dataset with 138
participants from various positions within the industry (i.e., software engineers,
managers, supervisors, mentors) was used. All the participants were from Nor-
way. Students of SE courses at Norwegian University of Science and Technology
(135) conducted the interviews with a given interview structure from the course
lecturer1. The interview data were processed by 4–5 students into a spreadsheet.
To analyze the data based on the research objectives, we used a (Mason, 2002;
Myers & Newman, 2007) qualitative research guide. Figure 4 represents the dis-
tribution of respondents’ characteristics.

FIGURE 3. Participants in stakeholder consultations

1 The course was lectured by professor Pekka Abrahamsson, who generously made the data

available for further study.

0

2

4

6

8

10

12

Academics Practitioners Mixed

Stakeholders consultations

Euromicro SEAA 2019 Greece

10th International Conference on Software Business 2019, Finland

International Conferences on Software Qualities 2020, Austria

39

As the dataset was qualitative (interview data), we also aimed to analyze it using
a qualitative approach; we made use of content analysis. Content analysis can be
used to characterize responses in an open-ended survey, focus group, and inter-
view transcripts (Krippendorff, 2018; Robson, 2002). It is defined as exploring
large amounts of textual information in an orderly way to establish a trend or
pattern (Vaismoradi et al., 2013). “Content analysis is a research technique for
making replicable and valid inference from texts (or other meaningful matter) to
the contexts of their use” (Krippendorff, 2018). In this dissertation, with particu-
lar reference to the interview data, content analysis was used to determine the
presence of certain themes or concepts within the data of 138 participants into an
organized and concise conceptual structure.

The expected outcome of content analysis can be quantitative or qualitative.
We examined the meanings of the content of the interview data to identify rele-
vant concepts based on the interview question: What are the competencies ex-
pected from persons working as software professionals in your organization?
A content analysis must follow a certain procedure (Krippendorff, 2018). Thus,
Krippendorff (2018) developed a framework for content analysis with the follow-
ing components: texts (a body of the text of which the analytical effort will begin),
research questions (a question of which the text will help to answer), context
(context of the analyst’s choice of making sense of the text), analytical constructs
(units of words for the operationalization of the research question), inference
(meaning extracted to answer the research question), and validity (evidence to
justify the analysis).

Conducting these steps led to developing a holistic framework for manag-
ing SEC and determining the essential competencies that contribute to the devel-
opment of high-quality software products and systems in modern societies. Thus,
the final result of this study included a holistic framework for determining the
essential competencies for software development, which can be customized ac-
cording to the type of software project or software development assignment.

FIGURE 4. Respondents characteristics based on interview data

40

Therefore, the final framework, UComGSP (Figure 2, phase 3), was achieved us-
ing literature, theories, stakeholder consultations, and pre-processed interview
data.

A competence model is used for defining and assessing competencies. It is gen-
erally defined as a framework for defining the competencies requirement of a job.
It can be used to identify, measure, assess, or evaluate the skills, attitudes, and
knowledge needed to perform a task. A competence model “is a catalogue in
which both general and technical competencies needed to perform a professional
role are defined, including the level required for each one” (Saldaña-Ramos et al.,
2012, p. 405). Satisfaction level is a term used in this study to mean competence
development stages or levels. Therefore, it determines the performance level of
competence in a software project or software development assignment by ad-
dressing the question: What value or performance level will competence “x” add
to the development of a software project or software development assignment?

4.1 Competence versus competency, soft and hard competence,
and essential competencies

The word competency or competence sometimes has varied and ambiguous
meanings, depending mainly on the content or cultural contexts (Le Deist &
Winterton, 2005). In this dissertation, we avoid these conceptual ambiguities and
the debates by adopting the descriptive narratives used by Sedelmaier and
Landes (2014):

Competency denotes a comprehensive capability to act appropriately in complex situ-
ations. The capability to act includes technical knowledge, also called factual
knowledge. The capability to cope with complex and new situations also presupposes
additional skills, which are often subdivided into social, personal and methodological
competence. (Sedelmaier & Landes, 2014, p. 395)

To this end, we define competence in software engineering as “a complete set of
abilities, skills knowledge and capabilities needed to engage in a software devel-
opment activity effectively.” As such, competencies are associated with both

4 THEORETICAL FOUNDATION

42

individuals and enterprises. From the individual perspective, they are related to
education and human resource management (Le Deist & Winterton, 2005), while
from the enterprise perspective, they are concerned with the resource-based view
of the firm (Wernerfelt, 1984). Competencies can be divided into two main types:
hard and soft competencies (Harzallah & Vernada, 2002; Havelka et al., 2009;
Rainsbury et al., 2002; Tahvanainen & Luoma, 2018).

In summarizing other definitions of soft skills, Harris and Rogers (2008)
stated that they are “work ethics, positive attitude, social grace, facility with lan-
guage, friendliness, integrity, and the willingness to learn” and complement hard
or technical skill (Harris & Rogers, 2008, p. 19). For the authors, most soft skills
do not require formal training. Until recently, these skills were typically self-
taught and self-developed. They are usually not industry specific. Further, a soft
skill mostly requires emotional intelligence (Andrews & Higson, 2008; Trivellas
& Reklitis, 2014). “Soft skills are the personal individuality that has a major im-
pact on the behavior of a person, while having interaction with others in a work-
ing setup” (Ahmed e al., 2013, p. 172). They include communication, flexibility,
leadership, motivation, patience, persuasion, problem-solving abilities, team-
work, time management, and work ethics.

By contrast, hard skills are needed to perform a job or assignment (Urs,
2013). These skills are teachable and acquired mainly through formal training
and studies. Often the trainer is required to be smart or must possess a good IQ
to acquire the required skill. However, with this sort of skill, the rules remain the
same regardless of the industry (Andrews & Higson, 2008; Harzallah et al., 2002;
Trivellas & Reklitis, 2014). They include language, typing speed, degree or certif-
icate, and machine operation.

We use the term essential competence to denote the “essential competen-
cies,” “most relevant competencies,” and “most needed competencies” (Calazans
et al., 2017; Chang et al., 2016; Engelbrecht et al., 2018; Gimenes et al., 2012;
Magenheim et al., 2010; Sedelmaier & Landes, 2012; Suhartono & Sudirwan, 2016;
T. Turley & Bieman, 1995). As defined by Turley and Bieman (1995), essential
competencies of software engineering are the skills, knowledge, and attitudes of
software professionals necessary for excellent performance in a software project
or software development assignment.

4.2 Software roles, associated positions, and tasks

In organizational settings, competencies are linked to roles. Thus, we examined
the roles and tasks or responsibilities associated with software engineering. De-
pending on the organization, different names may be associated with certain
roles (e.g., software developer, software designer, software engineer). This makes
the study of the competencies of these roles difficult. To avoid such confusion, in
this study we use the term software professional to address individuals who em-
ploy the necessary skills to design, construct, test, and maintain computer

43

software (Kalliamvakou et al., 2019; Kobata et al., 2013; León-sigg et al., 2018).
Thus, we provide the context in which this competence study can be viewed.

Defining roles and responsibilities has not been easy in software engineer-
ing as with any other field. In most cases, different names are given to the same
role. However, West (2004) suggested that the name(s) must be contextualized to
the organization culture or the activities to be performed. For this reason, we
make use of the roles defined in the software engineering body of knowledge
(SWEBOK) (Bourque & Fairley, 2014) and the software engineering competency
model SWECOM (IEEE, 2014). SWECOM, inspired by SWEBOK, provides vari-
ous knowledge and skillsets for software engineering. These skill sets are
grouped into five areas:

1. cognitive skills,
2. behavioral attributes and skills,
3. requisite knowledge,
4. related disciplines,
5. technical skills.

SWECOM further divides technical skills into life cycle skill areas and cross-cut-
ting skill areas. While cross-cutting skill areas are skill sets needed throughout
the life cycle of developing software, life cycle skill areas are those needed to per-
form a task in different phases of software development. Thus, since this study
aimed to identify competencies and tasks associated with them and relate them
to the roles of software development, we used the life cycle skill (comprising
skills and activities) and mapped it to the software engineering roles in SWEBOK.
Some of the different roles, their associated positions, and tasks or responsibili-
ties for a typical software development project are requirement analyst, designer,
programmer, test and quality engineer, and configuration and maintenance en-
gineer. Figure 5 shows these roles and how they can overlap.

FIGURE 5. Roles of software professionals in the software development project

Requirement
analyst Designer Programmer

Software test
& quality
engineer

Configuration
&

maintenance
engineer

44

The different positions assigned to software professionals depend on the size of
the organization or type of software project to be undertaken (Saiedian & Dale,
2000). Again, it is important to note that these roles can be more or less to what
is in Figure 5. We acknowledge that these roles can be performed by a dedicated
person or be shared and performed by all members of a team. The latter espe-
cially applies to agile software development methodologies, which rely on small
and self-organized teams. In adopting these roles in Table 3, we also want to
acknowledge that the field of software engineering has been undergoing a para-
digm shift, such as agile (Abrahamsson et al., 2002) and DevOps (Debois, 2011)
approaches to developing software. Such a shift brings into focus some emerging
roles and responsibilities that hitherto were not part of the one presented in Table
3, for example, “product owner” and “scrum master”. Notwithstanding this par-
adigm shift of approach, our study shows that even if agile methods are broadly
adopted in practice and are also present in software engineering research, their
specificity has not yet received much attention in SEC research; therefore, we re-
lied on the traditional role definitions as the basis for our competence study.
Therefore, to put the study into the context of competencies of software engineer-
ing, we use requirement analyst, designer, programmer, test and quality engi-
neer, and configuration and maintenance engineer to illustrate different roles,
positions, and responsibilities in a typical software development project.

Software professionals with certain competencies discover the require-
ments for developing software. As shown in Figure 5, a software professional
with the role of requirement analyst discovers the software requirements. Table
3 shows some of the typical positions, roles, and responsibilities associated with
the requirement discovery of a software professional in a software project. After
the elicitation of the requirements, the software professionals take the role(s) of
designing the architecture of the software based on the requirements. In Figure
5, we use the designer to show the stage of software professionals’ role(s) in a
software project. Typical positions, roles, and responsibilities associated with
software professionals in designing the architecture of the software are presented
in Table 3. The next role to be performed by software professionals is the con-
struction of the software. In Figure 5, we use the programmer to represent the
construction role(s). The programmer converts the design specifications into
functional software. In the next stage, the software professional in his or her ca-
pacity as a test and quality engineer (Figure 5) oversees the testing and quality
issues of the software. After performing the test and being satisfied with the qual-
ity of the software, the software professional moves to the role of configuration
and maintenance engineer. In that role, the software professional configures and
oversees the maintenance of the software. It is important to note that the activities
to be performed by the software professionals can or may overlap during the
software development stage. In Table 3, we have provided a framework depict-
ing the typical positions, roles, and responsibilities associated with software pro-
fessionals.

45

TABLE 3. Roles, associated positions and tasks of software professionals

Roles Description Associated positions Tasks
Require-
ment analyst

Requirement analyst
role represents soft-
ware professional(s)
with the responsibility
of eliciting the func-
tional and non-func-
tional attributes of a
software system to
meet the goals of a cus-
tomer.

System engineer, re-
quirement technical
leader, requirement
engineer, require-
ment analyst, require-
ment lead manager,
requirement techni-
cian, etc.

Identify stakeholders, per-
form analysis on the re-
quirement, use appropri-
ate means to describe the
requirements, construct,
and analyze prototypes,
etc.

Designer Designer role repre-
sents software profes-
sional(s) responsible
for designing the archi-
tecture of software
based on the require-
ment.

Software designer,
lead designer, tech-
nical designer, design
technician, etc.

Design technics for soft-
ware design, manage soft-
ware design activities,
specify a common inter-
face, and the use software
design review, etc.

Programmer Programmer is the
software profes-
sional(s) responsible
for constructing the
software. It involves
converting the design
specifications into
functional software.

Senior software engi-
neer, lead developer,
software technical
leader, software tech-
nician, etc.

Select the environment for
developing the software,
monitor the software de-
velopment process, create
code and implement the
design, and document
and comment the codes,
etc.

Software
test & qual-
ity engineer

Software test and qual-
ity engineer represent
software profes-
sional(s) responsible
for overseeing the test-
ing and quality issues
of software.

Senior test/quality
engineer, lead soft-
ware test/quality en-
gineer, software
test/quality engineer,
test/quality engineer,
test technician, etc.

Identify stakeholders and
tools for testing the soft-
ware, develop a test plan
for testing the software,
and collect and report
data resulting from test-
ing/demonstration, etc.

Configura-
tion &
maintenance
engineer

 Configuration &
maintenance engineer
is the software profes-
sional(s) responsible
for maintaining and
sustaining the software
during its lifecycle.

Senior mainte-
nance/configuration
engineer, lead
maintenance/config-
uration engineer,
maintenance/config-
uration engineer,
maintenance techni-
cian, etc.

Develop transition and
identify stakeholders for
transition, maintain soft-
ware configuration, per-
form problem identifica-
tion and correction, and
monitor and analyze soft-
ware maintenance activi-
ties, etc.

46

To quote West (2004), people are of the view that “I am the universe and the
universe is me, what I do matters and what other people do does not matter until
it messes with my universe” (West, 2004, p. 49). Such an assumption hinders peo-
ple from perceiving how different roles in an organization need to work hand-
in-hand to accomplish an organizational goal. Thus, identifying the roles and
their responsibilities provide a means to know which skills are needed to accom-
plish the organizational goal (IEEE, 2014). Furthermore, it enables people to un-
derstand how their roles overlap especially when it is being performed by differ-
ent people. It also provides a means to switch from one role to another internally
or externally. (Chrissis et al., 2011; West, 2004). We make use of West’s (2004)
definition of roles, which states that a role is “a brief summary description of a
person’s function in a relationship to a particular aspect of a business.” In this
illustration using the requirement engineer as a position for software profession-
als, we provide the following brief summary: requirement elicitation, require-
ment analysis, and requirement verification and validation are the different roles
associated with the requirement engineer.

Knowing what to do also serves to help people evaluate the skills they have.
Therefore, there is a need to describe the responsibilities of each role for software
professionals. In the above illustration of the software professionals, using re-
quirement engineers, we have shown in Table 3 that there can be different posi-
tions and that the positions may show hierarchy. Regarding the roles, we also
showed that there can be different roles to be performed by different people or
the same person depending on the organization.

4.3 Competency framework for software engineers (CFSE)

The competency framework for software engineers (CFSE) is a framework that
facilitates and guides the development of software professional competencies as
well as identifies the training needs for developing those competencies. The
framework, which is built on the previous classification of the competence sub-
ject, is categorized into hard and soft. The design is based on the activities and
interactions of the engineers during the software development process.

The hard competency category, which is about technical competencies, fo-
cuses on the roles of software engineering and the use of technology. These roles
are based on the definition of SWEBOK roles in software engineering. They are
project management, requirement analysis, software design, programming, val-
idation and verification tests, configuration management, quality, tests, docu-
mentation, and maintenance. The soft competency category is divided into social
competencies and personal competencies. Social competence is further classified
into interpersonal relations, cooperation and work in a team, and handling and
solving conflicts. The personal competencies area is also further classified into
development in the job, personal development, and rights and limits. The authors
of CFSE defined it as “a set of knowledge, abilities and key behaviors, with spe-
cial emphasis on the soft skills” (Rivera-Ibarra et al., 2010).

47

TABLE 4. Competency Framework for Software Engineers (CFSE)

General Compe-
tence Classification

First Level Classification Second Level Classification

Hard

Technical knowledge

Project management
Requirement analysis
Software design
Programming
Validation and verification tests
Configuration management
Quality
Tests
Documentation
Maintenance

Use of technology

Evaluation and selection of tools to
support influenced areas
Adaption and use of tools to support
influenced areas

Soft

Social competencies

Interpersonal relations
Cooperation and teamwork
Handling and solving conflicts

Personal competencies

Development in the job environment
Personal development
Rights and limits

With the main aim of extrapolating the essential competencies of software pro-
fessionals in general, we see the framework as fitting, since it considered both
soft and hard competencies which are the generally accepted categorization in
competency literature. The framework also considers granularity, which is essen-
tial for fitting the work to the community. Lastly, CFSE was chosen because, in
organizational settings, competencies are linked to roles. CFSE describes the roles
of software engineering in the hard competence category. CFSE and the con-
structs in the framework are shown in Table 4. For details, readers can refer to
the original study by Rivera-Ibarra et al. (2010). For our study, we adapted the
technical knowledge (hard competencies), social, and personal competencies
(soft competencies), which are connected to SWEBOK and SWECOM.

4.4 Kano model

The Kano model is a quality framework for mapping and prioritizing product
features to customer needs. The model was initially introduced in the manufac-
turing industry, but more recently, it has been applied in the software develop-
ment industry. The model takes into consideration the views of both the cus-
tomer and developer in the development of a product instead of a passive ap-
proach of only developers (Y. C. Lee et al., 2008). As such, the model assists soft-
ware development teams in determining the basic, performance, and delighter

48

categories of features of a product or service. Previous studies have deployed the
Kano model for the development of IT systems and concluded that the model
prioritizes user involvement, that is, it allows the inclusion of customers’ views
in the development of a system (Gangurde & Patil, 2018; Huang, 2018; Y. C. Lee
et al., 2008; Lehtola & Kauppinen, 2006; Liu, 2000; Piaszczyk, 2011; Richardson,
2001). In this study, we used the Kano model to consider the views of SEC stake-
holders about the set of competencies that they value the most. In this scenario,
the “customer” is the software industry (i.e., entity using the competencies), and
the set of competencies that they value the most is considered a product or ser-
vice.

According to (Kano et al., 1984), a customer’s decision-making options on
product or service acquisition are based on conscious and subconscious deliber-
ations (Kano et al., 1984). There is, therefore, the need to understand these pro-
cesses of decision-making to help develop products or services. Kano et al. (1984)
categorized these processes into three requirement levels: basic, performance,
and delighter. Basic requirements relate to the customer’s expectations about a
product or service. These requirements are classified as basic since their presence
is not dynamic enough to change the options and the opinion a customer has
about the product. However, their absence may result in complaints from the
customer. Performance requirements, by contrast, are the expected prerequisites
that customers know, and they are essential influential factors in the customer’s
decision-making. These critical prerequisites create high levels of satisfaction
when employed appropriately. Delighters are those requirements that do not en-
gender any complaints from the customers when absent; however, they surprise
the customer pleasantly when present. Delighters are sometimes referred to as
attractive or “wow” factors (Kano et al., 1984). The variables or metrics originally
used by Kano for classifying or describing these three requirements are shown in
Table 5. Each competence from our collected data is associated with the following
metrics for classification and categorization.

TABLE 5. Categorization metrics for Kano analysis (reproduced from (Kano, 2016))

Metric 1 (Basic) Metric 2 (Performance) Metric 3 (Delighter)
• Must-Be’s
• Threshold attributes,

price of entry
• Taken for granted and

expected by customers
• Can be attracted or vari-

able in nature

• One dimensional
• Result in satisfaction

when fulfilled
• Consciously evaluated

when looking at alter-
native

• Often “more the better”
requirements

• Can be attributes or var-
iable in nature

• Innovation or wow fac-
tor

• They delight customers
when delivered

• They will not dissatisfy
when missing

• They are most unspo-
ken of by customers.

• Can be attributes or
variable in nature

49

FIGURE 6. Graph used in the Kano model (Kano, 2016)

Kano originally illustrated these requirements using a graph, see Figure 6. It is
important to note that the graphical representation of these competencies is be-
yond the scope of this research. However, we reproduced the original graph to
further emphasize our arguments for understanding purposes.

We used the metrics in Table 5 to classify the competencies derived from
the data. It is important to state that even though the Kano model has been used
in software engineering literature specifically on products and services, this work
is the first to use it on competencies, a concept that is directly related to humans.
Thus, this work charts a new direction in competence studies.

4.5 Framework construction and its applications

The aim of this dissertation is to develop a framework that is useful for academics
and practitioners. We will now illustrate how to use the proposed framework for
identifying software professionals’ competencies, determining the satisfaction
levels of SEC, and identifying the essential competencies of software profession-
als in different software projects. Figure 7 shows the process steps for using the
UComGSP, which is the final framework as a result of this study.

50

FIGURE 7. Process steps for using the unified competence gate for software profession-
als (UComGSP)

TABLE 6. Identified competencies

Competence Category SE Identified competencies
Soft Teamwork, knowledge transfer, cooperation
Hard Coding competencies across platforms, basic coding skills,

good coding skills

UComGSP consists of three steps. In the first step, particular attention is not paid
to the categorization of the competencies, but it is rather assumed that this is done
before using the competence gate. That is, competencies are identified and clas-
sified according to the choice of classification, for example, hard or soft compe-
tence. Details of such classifications can be seen in Assyne (2020, 2019). In the
second step of the process, each identified competence is accessed using the met-
rics in Table 5. Based on the assessment, in the third step, the competencies are
classified as basic, performance, or delighter. If the value of a competence satis-
fies Metric 1, it is classified as basic; if it satisfies Metric 2, it is performance; and
if it satisfies Metric 3, it is delighter. The basis satisfaction levels following the
Kano model are presented in Table 5.

Next, we present a scenario to illustrate the use of UComGSP. Table 6 con-
tains competencies that have been identified and classified using the categoriza-
tion of hard and soft competencies. To make a choice using the metrics stated
(Table 5), the following must be observed. In the competence categorization of
soft competencies, teamwork, knowledge transfer, and cooperation are used as
examples to illustrate how the choice is made. On the hard competencies’ cate-
gorization, coding competencies across platforms, good coding skills, and basic
coding skills are also used to show how the choice is made. Making a choice as
preference will indicate that cooperation, a behavioral competence, is defined as
the ability to work with others on a software project or software development
assignment, which is required in any software development. This competence
meets Metric 1 in Table 5. Thus, cooperation will be classified as a basic compe-
tence.

Teamwork is a competence that allows software professionals to work to-
gether for the effective development of a software product or service. Teamwork
leads to higher performance in software development. Therefore, they are ex-
pected prerequisites that are known, and they are essential influential factors in
the software industry decision-making options on competence. These are critical

Step-Competence
collections

•Classified data

Step-Competence
process

•Metric 1
•Metric 2
•Metric 3

Step-Competence
levels

•Basic
•Perfomance
•Delighter

51

prerequisites that create high levels of satisfaction when employed appropriately.
Therefore, teamwork meets Metric 2 in Table 5 and is classified as performance
competence.

Knowledge transfer competence is the behavioral competence of having an
outstanding ability to impart knowledge to others in a software development.
This type of competence does not engender any complaints from the software
industry when absent from the software professional. However, it surprises the
software industry when present. Thus, a knowledge transfer meets Metric 3 and
is classified as delighter. Basic coding skills are technical skills, such as the ability
to read and understand code. This competence is required from any software
professional. Such competencies are taken for granted; however, their absence
will be noticed by the software industry. Therefore, they meet Metric 1 and are
classified as basic competence. Good coding skills include technical competence,
such as commenting well and self-reliance in coding. Such technical competen-
cies are expected prerequisites that are known, and they are essential influential
factors on the software industry decision-making options on competence. There-
fore, it is a performance competence. Coding competencies across platforms is a
technical competence of being able to code on multiple platforms. Thus, it is a
technical delighter competence.

Using the scenario illustrated above, the stakeholders can use the frame-
work proposed (UComGSP) to determine the satisfaction levels of competencies
for any software project or software development assignment. Basic competencies
are prerequisite competencies that are necessary and are expected by the soft-
ware industry. Mostly, they are taken for granted. The software industry consid-
ers these competencies as natural when delivered properly. However, when de-
livered poorly, the software industry complains. Performance competencies are
competencies that the software industry expects and can articulate. They are
mostly in the minds of the software industry actors, and when they are delivered
well, they create more satisfaction. These competencies can be described as “uni-
dimensional” competence. Delighter competencies are competencies unexpected
by the software industry. Mostly unexpected by the software industry but in-
creases the delight and surprise when available; however, its absence may have
no effect on the software industry. Table 7 provides details of the competencies
and their satisfaction levels used in the scenario.

TABLE 7. Competence satisfaction level framework

Competency category Competency Satisfaction levels

Soft

Cooperation Basic
Teamwork Performance
Knowledge transfer, Delighter

Hard

Basic coding skills Basic
Good coding skills Performance
Coding competencies across platforms Delighter

52

FIGURE 8. Unified Competence Gate for Software Professionals (UComGSP)

In developing the final version, which is presented in this study, all feedback
from the group discussions was taken into consideration. Thus, in this study, to
provide an avenue for different usages of the framework, we present two sepa-
rate frameworks, one for soft and one for hard competence for determining com-
petence and satisfaction levels. We also present a scenario for determining satis-
faction levels based on different software projects or software development as-
signments. Thus, the final framework is as follows (see Figure 8):

• A–UComGSP shows the framework without the competencies used to il-
lustrate how to use the framework.

• B–UComGSP shows the framework with specific competencies stacked to
show the levels.

The proposed framework can be used by software professionals, educators, and
the software industry. Software professionals can use the framework to deter-
mine with which competencies they are employable. Educators can also use the
framework to determine which competencies they need to teach to the software
professionals for them to be employable. Finally, the software industry can also
use the framework to determine which employers they should employ and at the
same time use it to validate competencies needed by a particular software project
or software development assignment. A key consideration of the use of this
framework is that it can be adjusted to different software projects or software
development assignments, paving a way for its use with new methodologies
used to develop software such as agile and DevOps.

In this chapter, we present the contribution of this dissertation, which is twofold:
that is, from a theoretical and a practical perspective. Limitations of this study
and future topics are also discussed in this chapter.

The results add to SEC studies by providing a new dimension in both re-
search and practice in the SEC. The dissertation aimed to investigate and provide
an in-depth analysis of the SEC of software professionals for software develop-
ment. It provides insight into the management of SEC as well as how competen-
cies can vary according to different projects. The dissertation explored means of
identifying SEC, determining satisfaction levels of SEC, and the identification of
essential competencies of software professionals. Thus, the results show how to
organize and observe the understanding (Bhattacherjee, 2012; Mead &
Shoemaker, 2013) of the SEC. Section 5.1 shows the research questions, summary
of results, and contributions.

5.1 Summary of results and contributions

RQ1: What is the state of research related to software engineering
competencies and their evolution?
The literature on SEC is not lacking; SEC is considered to be the backbone for the
successful development of software products or services. The previous review
studies have only examined specific areas in SEC, such as the role of personality
in software engineering. However, personnel and organizational research areas
were identified as the main research areas. We also identified SEC models and
frameworks for research and practice, as well as a set of essential competencies
of software professionals. The SEC overview and the research gaps identified in
this dissertation will help to provide a better understanding of future research on
SEC, particularly on how to deal with the essential competencies of software

5 CONTRIBUTIONS, LIMITATIONS,
AND FUTURE RESEARCH TOPICS

54

professionals that contribute to the development of high-quality software prod-
ucts and systems in modern societies.

RQ2: What are the different satisfaction levels of software professional’s
competence?
Previous literature categorized competence into soft and hard competencies.
Other studies have established that there are some competencies of software pro-
fessionals that are necessary for excellent performance in software development.
A competence model was developed to enable the understanding of the under-
lying logic of the SEC in terms of satisfaction. The model was developed in an
iterative process. This model enables the determination of the satisfaction level
by considering the stakeholders of the SEC. The model enables the determination
of competencies according to the dynamics of the projects. Three satisfaction lev-
els were identified: basic, performance, and delighter. Thus, it provides a means
to understand and observe competencies during software development.

RQ3: What are the different competencies of software engineering roles?
In organizational settings, competencies are linked to roles. Previous studies on
software engineering have linked roles with tasks or responsibilities. Software
professionals’ competencies can also be associated with the tasks or responsibil-
ities in a software project.

Thus, this study identified the competencies for software development and
classified them into behavioral and technical competencies with a further granu-
larity as follows:

• Behavioral competencies:
− Interpersonal relationship
− Cooperation and working in team
− Handling and solving conflicts
− Development in the job environment
− Personal development
− Rights and limits

• Technical competencies using the software engineering roles:
− Project management
− Requirement analysis
− Software design
− Programming
− Validation and verification
− Configuration management
− Test and quality

We used the literature to set an agenda for the identification of competencies as-
sociated with the software developer’s security competencies. We identified pro-
gramming-related security competencies and non-programming-related security
competencies. We also developed a framework for identifying the software de-
veloper’s security competence.

55

RQ4: What are the essential competencies of software professionals?
Essential competence is defined as the skills, knowledge, and attitudes of soft-
ware professionals necessary for excellent performance in software development.
We identified essential competencies of software professionals and mapped them
to the roles of software engineering. The identification of essential competencies
was not dynamic according to different projects. This study identified the essen-
tial competencies for behavioral competencies and technical competencies. The
essential competencies were mapped to the roles of software engineering. Newly
observed essential competencies were brought up in the study.

5.2 Contributions to the body of knowledge

Through an in-depth analysis, this dissertation determines the satisfaction levels
of the competencies of software professionals. Of particular importance is the de-
termination and identification of the essential competencies of software profes-
sionals. Using the three key stakeholders of SEC, we identified gaps in SEC re-
search. This dissertation has addressed several of these gaps, which serve as the-
oretical contributions to advance knowledge. In the next sections, we provide
more detail on the theoretical contributions.

5.2.1 Conceptualization of Software Engineering Competencies of Software
Professionals

Developing software successfully requires competent software professionals
(Casale et al., 2016), as they directly influence the quality of the software devel-
opment process. The mapping study was conducted to provide an overview of
the current state of research on SEC. The review revealed that there is a rich body
of literature published in this area (Lenberg et al., 2015); however, there is a need
to study the evolution of software engineering competencies over time as well as
to identify essential competencies necessary for developing the next generation
of software products. The mapping study also revealed that identification, as-
sessment, and development of SEC are interrelated functions, which must be con-
sidered as a whole and from the perspective of the stakeholders (software pro-
fessionals, educators, and software industry). However, the mapping study did
not identify any study that proposed a comprehensive model or framework that
could be used for such a holistic approach. More importantly, we did not find
any model or framework for assessing the benefit of SEC for these stakeholders,
for instance, by determining satisfaction levels derived for possessing or using a
competence. As mentioned by Mead and Shoemaker (2013), the SEC models and
frameworks are beneficial in organizing and observing the understanding of the
SEC. According to Frezza et al. (2018) and IEEE (2014), competence development
is not the sole responsibility of software professionals. It also requires the partic-
ipation of other stakeholders, including software companies and the software

56

industry in general, as well as educators who provide education and training to
software professionals. Therefore, providing a model or framework that consid-
ers the key main stakeholders for organizing and observing the SEC will enhance
software development in practice and research.

In view of this, the first contribution of the dissertation was to develop a
holistic model for organizing and observing the SEC, with a special focus on iden-
tifying, assessing, and developing SEC, secondary to the use of the model to ob-
serve and organize SEC. Developing software successfully requires competent
software professionals (Casale et al., 2016), as they directly influence the quality
of the software development process. Thus, to answer the question of the efficacy
of the SEC model and framework for managing the SEC (Mead & Shoemaker,
2013), the studies resulting in Articles II, III, and IV were conducted. The models
and frameworks contribute theoretically and practically to the advancement of
knowledge. Typically, the holistic model developed using an iterative process in
this dissertation addresses to Frezza et al. (2018) and IEEE (2014) argument that
competence development is not the sole responsibility of software professionals.
Rather, it requires the participation of other stakeholders, such as software com-
panies and the software industry in general, as well as the educators who provide
education and training to software professionals. Thus, this study developed a
framework that can be used for the identification, assessment, and development
of the SEC.

The second contribution is the determination of competence satisfaction
levels that serve as an assurance to the stakeholders of competence development.
Barreto et al. (2008) pointed out that staffing people for software development is
not a straightforward decision-making process. Therefore, having a model that
helps in determining the satisfaction levels that serve as an assurance for the
stakeholder involved in competence development is helpful. Additionally, cer-
tain studies have provided different forms of competencies necessary for soft-
ware development. These include base competence defined by Thurner et al.
(2014) and essential competence defined by Calazans et al. (2017), Chang et al.
(2016), and Turley and Bieman (1995). Also, the software assurance competency
model enables software organizations to access the capabilities of software assur-
ance professionals. It has 1-5 levels (Hilburn et al., 2013). However, specific per-
formance levels have never been defined. Thus, this study defined three stages
of competencies for software development. Basic competencies (satisfaction level)
are prerequisite competencies that are necessary and are expected by the soft-
ware industry. They are mostly taken for granted. The software industry per-
ceives these competencies as natural when delivered properly. However, when
delivered poorly, the software industry complains. Performance competencies
(satisfaction level) are competencies that the software industry expects and can
articulate. They are mostly in the minds of the software industry, and when they
are delivered well, they create more satisfaction. These competencies can be de-
scribed as “unidimensional” competence, in that satisfaction grows exponen-
tially when executed properly. Delighter competencies (satisfaction level) are
competencies unexpected by the software industry. Mostly unexpected by the

57

software industry but increases the delight and surprise when available however
its absence may have no effect on the software industry. We state that certain
factors, such as innovation, training, etc., can cause a competence to change from
one level (state) to the other. This can be either to improve or reduce performance.
Therefore, we describe these levels (basic, performance, and delighter) as stages
in the competence growth path (competence evolution). This is because compe-
tence in the state of performance can be affected by training and cause it to change
to basic or delighter and vice versa.

Last is the contribution of the identification of competencies of software
professionals for software development. This is made up of the identification of
competencies of software professionals and the essential competencies of soft-
ware professionals. André et al. (2011), Charette (2005), and Nelson (2007) estab-
lish that not having the right people assigned to the roles as well as problems
with team management are two human factors that contribute to the failure of
software projects or software development. assignments. In short, the right com-
petencies of software professionals are key to successful software development,
especially essential competencies (Manawadu et al., 2015). Thus, this dissertation
has identified the competencies of software professionals for software develop-
ment. More importantly, the thesis also identified the essential competencies of
software professionals. From our Article I, we found that the major research on
the essential competencies of software professionals is over two decades old.
Thus, this thesis served as a review of the essential competencies study on SEC.
The thesis compared the identified essential competencies with those in the liter-
ature and listed the new observations of essential competencies of software pro-
fessionals. Finally, in organizational settings, competencies are linked to roles.
André et al. (2011), Charette (2005), and Nelson (2007) also established that not
having the right people assigned to the roles as well as problems with team man-
agement are two human factors that contribute to the failure of software projects
or software development assignments. Therefore, this thesis answers this by as-
signing the hard competencies identified to the roles of software engineering.
Furthermore, the satisfaction levels of the hard competencies were also classified
using the roles.

5.2.2 Contextualization of SEC of software professionals

We further analyzed our contributions using the theoretical contribution frame-
work of Corley and Gioia (2011). In their framework, they pointed out that theo-
retical contribution is not only when a variable is added or subtracted from a
theory, but it must also explain the additions and subtractions of the variables.
The authors provided two main dimensions with their subdimensions:

1. Originality
a. revelatory
b. incremental

2. Utility
a. practical usefulness
b. scientific usefulness.

58

TABLE 8. Analysis of the theoretical contribution of the dissertation

Originality Utility
Incremental
- The combination of the constructs in

both the CFSE and Kano models allows
for the creation of a holistic framework
for managing the SEC

Scientific
- The model developed can be applied in

other fields of study

Revelatory
- Kano model use in SEC studies
- Soft and hard competencies can be seen

as equal pillars of software engineering

Practice
- Organization can use the model to de-

termine the competencies for project
- The identified competencies can be

used as yardsticks for software devel-
opment

Incremental as a sub-dimension of originality asks whether there is an addition
or subtraction of a variable and how such addition and subtraction affect the new
phenomena. The subdimension revelatory is the contribution toward the ad-
vancement of knowledge. The dimension of utility entails how the theory is prac-
tically implemented, that is, the use of the concept in an organization or society.
Practical utility involves using the concept in an organization for an outcome. By
contrast, scientific utility is being able to use the theory in other fields to increase
knowledge advancement (Corley & Gioia, 2011). The theoretical contribution of
this dissertation using the framework of Corley and Gioia (2011) is presented in
Table 8.

In terms of revelatory of originality contribution, the Kano model has only
been applied to products and services. Our study is the first to apply the Kano
model to the competencies of software professionals (human resources), which
charts a new path in software engineering. Through the use of the combined
models and frameworks, we were able to advance knowledge on SEC. Our stud-
ies propose that the soft and hard competence can be seen as equal pillars of soft-
ware engineering. The originality dimension of theoretical contribution is further
subdivided into incremental and revelatory (Corley & Gioia, 2011). During the
theorization process, the incremental contribution was used to enable organizing
and observing the SEC. In this process, we combine the constructs of the Kano
model with the CFSE (Rivera-Ibarra et al., 2010). This was deliberately done to
enable understanding of the SEC from the traditional classification of the SEC
since each model or framework had a different perspective. However, the com-
bination of the variables enables us to develop a holistic framework for identify-
ing, assessing, and developing the SEC. This hitherto was handled separately by
different models or frameworks. Thus, the competence framework for managing
hard (Article II) and soft (Article III) competencies was developed. The determi-
nation of competencies on the traditional levels enables us to understand the
trend in both had and soft competencies. Thus, addition and subtraction provide
a means of understanding the phenomena and advance knowledge in SEC re-
search. In this dissertation, using the separate models for soft and hard, we were

59

able understand the different satisfaction levels (assessment), essential compe-
tencies (identification), and their contribution to any software development. Ad-
ditionally, we were able to determine competence using the roles of software en-
gineering. This is because in organizational settings, competencies are linked to
roles. Our findings therefore provide a means to link the role, associated position,
and responsibilities.

With regard to scientific utility, our frameworks can be applied to other
fields where the use of human resources is applicable. Thus, the frameworks can
be used to advance knowledge in the domain of human resources in general. Ad-
ditionally, the process used to develop the UComGSP illustrates how to develop
a framework or model using an iterative process, which is key for developing an
artifact. On a practical level, an organization can use the framework to determine
the competencies for different software projects or software development assign-
ments. Furthermore, the identified competencies can be used as a yardstick for
software development. It is worth mentioning that there are other works, such as
the people capability maturity model (People CMM) (Curtis et al., 2009), the Es-
sence Kernel by Object Management Group, Inc. (OMG) (Object Management
Group, 2018), and the European e-competence framework (e-CF) (CEN, 2014),
that can be used to assess the competence levels of software professionals. How-
ever, we provide another framework, one that considers the main audience of
SEC—the stakeholders involved in staffing development projects, teams, or re-
cruiting SE professionals. We also recognize the existence of software process im-
provement (SPI) (McFeeley, 1996), capability maturity model (CMM) (Software
Engineering Institute, 2010), and related, multiple standards and standardization
organizations, such as IEEE and ISO/IEC that provide standards to software or-
ganizations to guide and improve productivity and quality, reduce costs and
time to market, and increase customer satisfaction.

5.3 Limitations and future research

This dissertation acknowledges some limitations. These limitations range from
generalizability of the results, data collection, data analysis, and limitations on
the concepts. To discuss the limitations of this study, we use four types of threats
to validity suggested by Wohlin et al. (2012) and Runeson and Höst (2009). Con-
struct validity concerns the use of the right operational measures to study the
main research phenomenon, in our case SEC. SEC is associated with individuals
and enterprises (Le Deist & Winterton, 2005; Wernerfelt, 1984). Therefore, the
concept sometimes could have become misconstrued during its study.

This dissertation made use of literature data and interview data. Regarding
construct validity to the literature data, there is a concern about using the right
measure for studying SEC. To avoid potential misconceptions, the definitions
and keywords were carefully selected from previous SEC studies and with the
contribution of all the research team. Further, to identify relevant literature, the
identified keywords were used to develop and test a search string. Even though

60

we had used known papers from some selected literature review in the SEC area
to validate the use of the term competence in the string statement as against terms
such as skills, knowledge, attitude, etc., we also want to acknowledge that we
may have missed some papers during the selection process. Nevertheless, a
thoughtful process was considered before the use of that term competence. For
the interview data, to mitigate this threat, we based this study using operational
words from the definition of (Ahmed et al., 2013; Frezza et al., 2018; IEEE, 2014;
Urs, 2013). Thus, the transcribed interviews were analyzed using well-estab-
lished operational words from the literature. This study used the identified com-
petencies to propose the essential competencies of software professionals. It is
important to note that previously studied models and frameworks were used to
attain the results. Furthermore, the results were compared with previous studies
on the subject matter to assess the consistency of our results.

Causal relations as they relate to internal validity were not an issue with
this study. This is because we did not apply statistical inference in this study for
causal relationships. External validity concerns the extent to which the findings
of a study can be generalized (Wohlin et al., 2012). Our study is based on a liter-
ature review, interview data, and group discussion. One of the limitations of the
study is the scope of the data collection, which was confined to companies situ-
ated in one country (Norway). Nevertheless, most of the companies that the in-
terviewees worked for have global representation and businesses outside Nor-
way. However, this limitation invites further studies with data from other coun-
tries to test the generalizability of the results. With the development of compe-
tence satisfaction levels, we call for further studies to understand how specific
competencies evolve within different projects. That is, how the competencies of
an individual evolve and how the competency within a software organization
(e.g., a software or IT company, or IT organization within a user organization)
develops its SE competency as part of their HR management.

Finally, reliability, as defined by Wohlin et al. (2012), is the extent to which
the data collection and analysis processes are influenced by the researchers in-
volved in the study. To this end, a well-structured process for collecting and an-
alyzing the data was developed and followed. This process allowed for replica-
tion of the study. Further, since the authors of this study were not directly in-
volved in the data collection, to increase the reliability of the findings, the authors
consulted the leader of the data collection team during the analysis stage to re-
solve ambiguity in the dataset. On the development of the frameworks, we pur-
posefully selected different conferences that are attended by both practitioners
and academics. Thus, the frameworks were validated by key stakeholders in SEC.
We also used different data sources to attain the findings.

Regarding future research, we suggest that studies validate the observed
competencies, especially those identified as essential competencies of software
professionals. We further call for more studies to validate the proposed frame-
work. We suggest further research to understand how competencies within the
satisfaction levels can change (e.g., from basic to performance or delighter) and
its implications for software development.

This doctoral dissertation aimed to investigate and provide an in-depth analysis
of the SEC of software professionals for managing software development. The
goal was to enable SEC stakeholders (i.e., software professionals, educators, and
the software industry) (1) identify SE competencies, (2) identify the essential soft-
ware engineering competence, and (3) assess the satisfaction levels derived from
those competencies. Hence, the studies in this dissertation used the literature on
SEC, interview data from 138 participants in various positions within the indus-
try in Norway, and expert consultations.

The dissertation resulted in the development of frameworks including the
unified framework of hard competency satisfaction levels, the unified framework
of soft competency satisfaction levels, the unified competence gate for software
professionals, and the software professional security competencies framework.
The frameworks can be used to manage software engineering competencies.
More importantly, as pointed out throughout the different studies in this disser-
tation, the development of software engineering competencies cannot be done in
isolation. Thus, the unified competence gate for software professionals is an ex-
cellent framework that considers the key stakeholders of software development.
Using the frameworks developed, the study also identified some competencies
and essential competencies for software development. The study also discovered
some new competencies that were previously not in the extant literature. Of im-
portant to this study is the use of a unified competence gate for software profes-
sionals, which can be used to evaluate the competence levels for different soft-
ware projects or software development assignments. The dissertation also calls
on researchers to examine some specific competencies and their implications for
the industry. This dissertation demonstrated the security competencies of soft-
ware professionals to exemplify the use of the frameworks.

In the software business area, competitive advantage is usually short-lived;
therefore, ingenuity and competencies of software professionals are needed to
continue to create groundbreaking innovations (Sambamurthy et al., 2003). For
this reason, the use of the unified competence gate for software professionals,
which allows for the assessment of the needed competencies according to

6 CONCLUSION

62

different software projects or software development assignments, will be an an-
swer to the creation of innovations that can affect a firm’s performance, as
pointed out by Sambamurthy et al. (2003). This will create avenues for software
businesses to flourish. Further, having the right competencies for a software pro-
ject or software development assignment will also indicate being able to deliver
the project on time, which will also affect the cost of delivery of software. Deliv-
ering software projects or software development assignments on time will also
lead to customer satisfaction, which, in effect, influences software businesses. The
studies in this dissertation can have an impact on software businesses when ap-
plied in software development projects.

An area of consideration for this dissertation was the data for the empirical
evaluation. Although there was already processed interview data to start the re-
search, the style of the research required other sources of data as well. Focus
group discussion was selected to complement the interview data. However, hav-
ing a venue that could bring the key stakeholders of SEC (software professionals,
educators, and the software industry) under one roof was a concern. Conferences
were selected as the appropriate venue. This required presenting the studies’
findings at the conferences, which required having the paper accepted through
the conferences’ peer-review system since they were academic conferences. This
process was time-consuming and significantly extended the time of the study;
however, it provided rich data to complement the interview data. Given that re-
search on software engineering competence is not lacking, conducting a system-
atic review of such extensively studied concepts entailed dealing with many ar-
ticles. This was another time-consuming process that delayed the reporting of the
results. Overall, we have provided an outcome that can be beneficial to software
practitioners and researchers.

63

YHTEENVETO (SUMMARY IN FINNISH)

Tämän päivän yhteiskunta on vahvasti riippuvainen erilaisten ohjelmistojen
toiminnasta, siksi pätevien ohjelmistoalan ammattilaisten kysyntä on
kasvamassa. Ohjelmistokehitys on monimutkainen prosessi, jossa hyödynnetään
intensiivisesti inhimillistä pääomaa, toisin sanoen monitahoista osaamista. Sen
vuoksi tulosten laatuun vaikuttavat ohjelmistoalan ammattilaisten taidot ja
pätevyys (Colomo-Palacios ym., 2013). Monimutkaisessa ympäristössä, jossa
sekä henkilökohtaiset taidot että tiimityö ovat välttämättömiä, eri sidosryhmille
on tärkeää varmistaa etukäteen ohjelmistoalan ammattilaisten
osaamispotentiaali. Colomo-Palacios et al. (2013) näkevät, että inhimillisen
osaamisen kehittäminen ja hallinta on yksi ohjelmistoteollisuuden keskeisistä
huolenaiheista. Kirjoittajat korostavat myös ohjelmistoalan ammattilaisten
vakiintuneiden urapolkujen puutetta, koska alalla ei ole sovittu
roolimäärityksistä ja pätevyyden todentamisesta järjestelmällisesti. Lisäksi puute
osaavista ihmisistä ja ongelmat tiimin johtamisessa ovat kaksi ihmisten kykyihin
liittyvää tekijää, joiden on havaittu vaikuttavan ohjelmistoprojektien
epäonnistumiseen (André et al., 2011; Charette, 2005; Nelson, 2007).

Tiivistäen ohjelmistoalan ammattilaisten kompetenssit ovat avain
onnistuneeseen ohjelmistoprojektien hallintaan. Tätä varten voidaan erottaa
välttämättömät kompetenssit (Manawadu et al., 2015; Turley & Bieman, 1995).
Kattava kirjallisuushaku ei kuitenkaan löytänyt kokonaisvaltaista
ohjelmistotuotannon (Software Engineering Competence, SEC) osaamismallia tai
-viitekehystä, jonka avulla voitaisiin tunnistaa osaaminen, osaamisen
tyydyttävyystasot ja eri ohjelmistoprojekteissa tarvittavat välttämättömät
kompetenssit. Lisäksi olemassa olevien mallien ja kehysten analyysi osoittaa, että
ne ovat resurssi-intensiivisiä ja monimutkaisia käyttää eikä niitä voida räätälöidä
eri ohjelmistoprojektien erityispiirteiden mukaan. Näin ollen useimmissa
ohjelmistoprojekteissa ihmiset jaetaan rooleihin ja ryhmiin projektipäällikön tai
tiiminvetäjän joskus rajallisen kokemuksen perusteella (André et al., 2011).

Ohjelmistoliiketoiminnassa kilpailuetu on pääosin lyhytaikaista, joten
ohjelmistoammattilaisilta vaaditaan kekseliäisyyttä ja osaamista jatkaa
uraauurtavien innovaatioiden luomista (Sambamurthy ym., 2003). Tästä syystä
yhtenäinen osaamiskartoitus ohjelmistoalan ammattilaisille on vastaus yrityksen
suorituskykyyn vaikuttavien innovaatioiden luomiseen, kuten Sambamurthy et.
al. (2003) ehdottavat. Se mahdollistaisi tarvittavien kompetenssien arvioinnin eri
ohjelmistoprojektien mukaan, mikä vahvistaisi ohjelmistoyritysten
liiketoimintaa. Lisäksi ohjelmistoprojektien oikeanlainen osaaminen tukee myös
kykyä toimittaa projekti ajoissa, mikä puolestaan vaikuttaa ohjelmistojen
kustannuksiin. Kun ohjelmistoprojektit toimitetaan ajallaan, seuraa
asiakastyytyväisyyttä, mistä edelleen syntyy myönteisiä vaikutuksia
ohjelmistoliiketoimintaan. Tämän väitöstutkimuksen tulokset on suunnattu
näiden myönteisten kehityskulkujen vahvistamiseen ohjelmistoliiketoiminnassa,
ohjelmistokehitysprojekteihin sovellettaessa.

64

Väitöskirjassa vastasimme seuraaviin tutkimuskysymyksiin:

Tutkimuskysymys 1. Mikä on ohjelmistotekniikan osaamiseen ja sen
kehitykseen liittyvän tutkimuksen tilanne?

Tutkimuskysymys 2. Mitkä ovat ohjelmistoalan ammattilaisten
tyytyväisyystasot?

Tutkimuskysymys 3. Mitkä ovat ohjelmistosuunnitteluroolien erilaiset
kompetenssit?

Tutkimuskysymys 4. Mitkä ovat ohjelmistoalan ammattilaisten olennaiset
pätevyydet?

Tuloksena kehitimme kokonaisvaltaisen viitekehyksen, jonka avulla
ohjelmistoalan sidosryhmät (ohjelmistoammattilaiset, kouluttajat ja
ohjelmistoteollisuus) voivat (1) tunnistaa alan kompetenssit, (2) tunnistaa
välttämättömät ohjelmistotekniset kompetenssit ja (3) arvioida näistä kyvyistä
johdettuja tyytyväisyystasoja. Tutkimukseen valittiin laadullinen lähestymistapa,
koska se on avoin esiin nouseville ongelmille. Ehdotetun viitekehyksen
kehittämiseen ja validointiin käytettiin ohjelmistotekniikan osaamista koskevaa
tutkimuskirjallisuutta, haastattelutietoja 138 alan eri tehtävissä Norjassa
työskenteleviltä henkilöiltä sekä asiantuntijakonsultaatioita.

Kaikkiaan tunnistimme 63 niin sanottua pehmeää kompetenssia (soft
competence) ja 62 teknis-tiedollista kompetenssia (hard competence), jotka
kartoitimme tunnustettuihin rooleihin käytännön ohjelmistokehitystyössä.
Kompetenssien joukosta tunnistimme ohjelmistoammattilaisen 25 keskeistä
kompetenssialuetta. Olemme myös laatineet toimivan määritelmän näille
välttämättömille kompetensseille eli ohjelmistoalan ammattilaisten taidoille,
tiedoille ja asenteille, jotka ovat välttämättömiä erinomaisen suorituskyvyn
saavuttamiseksi ohjelmistoprojekteissa. Seuraavaksi kompetenssit jaettiin Kano-
laadunarviointimallia (Kano model) käyttäen analyyttisesti kolmelle
tyytyväisyystasolle (perus-, suoritus- ja ilahduttavuustaso) vastaavien
määritelmien mukaan. Esitimme skenaariokuvauksen avulla, kuinka
sidosryhmät voivat arvioida ohjelmistoprojektissa tarvittavia eri osaamistasoja.
Suosittelemme kuitenkin lisätutkimuksia ymmärtääksemme, kuinka
tyytyväisyystasojen kompetenssit voivat muuttua (esim. perustasosta suoritus-
tai ilahduttavuustasoon). Lisätutkimusta tarvitaan havaittujen uusien
kompetenssien tutkimiseksi ja validoimiseksi. Niistä 11 luokiteltiin oleellisiksi
kompetensseiksi.

65

REFERENCES

Abrahamsson, P., Salo, O., Ronkainen, J., & Warsta, J. (2002). Agile Software
Development Methods: Review and Analysis. VTT Publications, 478, 3–107.

Acuña, S. T., & Juristo, N. (2004). Assigning people to roles in software projects.
Software - Practice and Experience, 34(7), 675–696.
https://doi.org/10.1002/spe.586

Acuña, S. T., Juristo, N., & Moreno, A. M. (2006). Emphasizing human
capabilities in software development. IEEE Software, 23(2), 94–101.
https://doi.org/10.1109/MS.2006.47

Ahmed, F., Capretz, L. F., Bouktif, S., & Campbell, P. (2013). Soft Skills and
Software Development: A Reflection from Software Industry. International
Journal of Information Processing and Management, 4(3), 171–191.
https://doi.org/10.4156/ijipm.vol4.issue3.17

Alavi, S. B., Moteabbed, S., & Arasti, M. R. (2012a). A qualitative investigation
of career orientations of a sample of Iranian software engineers. Scientia
Iranica, 19(3), 662–673. https://doi.org/10.1016/j.scient.2011.08.033

Alavi, S. B., Moteabbed, S., & Arasti, M. R. (2012b). Sharif University of
Technology A qualitative investigation of career orientations of a sample
of Iranian software engineers. Scientia Iranica, 19(3), 662–673.
https://doi.org/10.1016/j.scient.2011.08.033

André, M., Baldoquín, M. G., & Acuña, S. T. (2011). Formal model for assigning
human resources to teams in software projects. Information and Software
Technology, 53, 259–275. https://doi.org/10.1016/j.infsof.2010.11.011

Andrews, J., & Higson, H. (2008). Graduate Employability, ‘Soft Skills’ Versus
‘Hard’ Business Knowledge: A European Study. Higher Education in
Europe, 33(4), 411–422. https://doi.org/10.1080/03797720802522627

Ardis, M., Budgen, D., Hislop, G. W., Offutt, J., Sebern, M., & Visser, W. (2014).
SE 2014: Curriculum Guidelines for Undergraduate Degree Programs in
Software Engineering. IEEE Computer Society.

Assyne, N. (2019). Hard competencies satisfaction levels for software engineers:
A unified framework. Lecture Notes in Business Information Processing, 370
LNBIP. https://doi.org/10.1007/978-3-030-33742-1_27

Assyne, N. (2020). Soft Competencies and Satisfaction Levels for Software
Engineers: A Unified Framework. Lecture Notes in Business Information
Processing, 371 LNBIP. https://doi.org/10.1007/978-3-030-35510-4_5

Barreto, A., Barros, M. de O., & Werner, C. M. L. (2008). Staffing a software
project: A constraint satisfaction and optimization-based approach.
Computers and Operations Research, 35(10), 3073–3089.
https://doi.org/10.1016/j.cor.2007.01.010

Bhasskar, R. (2008). A Realistic Theory of Science. In Taylor & Francis (Vol. 24,
Issue 5). Routledge. https://doi.org/10.2307/2215817

Bhattacherjee, A. (2012). Social Science Research: principles, methods, and
practices. In Textbooks collection (Vol. 9). https://doi.org/10.1186/1478-
4505-9-2

66

Bourque, P., & Fairley, R. E. (2014). Guide to the Software Engineering - Body of

Knowledge (SWEBOK (R)): Version 3.0. In IEEE Computer Society Press.
https://doi.org/10.1234/12345678

Broadbent, M., Lloyd, P., Hansell, A., & Dampney, C. N. G. (1992). Roles ,
Responsibilities and Requirements for Managing Information Systems in
the 1990s. International Journal of Information Managemet, 72(12), 21–38.

Bröker, K. (2014). Identification and measurement of computer science
competencies in the area of software development, software engineering
and programming. Proceedings of the Tenth Annual Conference on
International Computing Education Research - ICER ’14, 141–142.
https://doi.org/10.1145/2632320.2632322

Budgen, D., & Brereton, P. (2006). Performing systematic literature reviews in
software engineering. Proceedings of the 28th International Conference on
Software Engineering, 45(4ve), 1051–1052.

Calazans, A., Paldês, R., Masson, E., Rezende, K., Braosi, E., Perera, N., & Brito,
I. S. (2017). Software Requirements Analyst Profile : A Descriptive Study
of Brazil and Mexico. 2017 IEEE 25th International Requirements Engineering
Conference, 204–212. https://doi.org/10.1109/RE.2017.22

Casale, G., Chesta, C., Deussen, P., Di Nitto, E., Gouvas, P., Koussouris, S.,
Stankovski, V., Symeonidis, A., Vlassiou, V., Zafeiropoulos, A., & Zhao, Z.
(2016). Current and Future Challenges of Software Engineering for
Services and Applications. Procedia Computer Science, 97, 34–42.
https://doi.org/10.1016/j.procs.2016.08.278

CEN. (2014). European e-Competence Framework 3.0 - A common European
Framework for ICT Professionals in all industry sectors.

Chang, J., Wang, T., Lee, M., Su, C.-Y., & Chang, P.-C. (2016). Impacts of Using
Creative Thinking Skills and Open Data on Programming Design in a
Computer-supported Collaborative Learning Environment. 2016 IEEE 16th
International Conference on Advanced Learning Technologies, 396–400.
https://doi.org/10.1109/ICALT.2016.78

Charette, B. R. N. (2005). Why Software Fails We waste billions of dollars each
year on entirely preventable mistakes Market Crash : After its new. IEEE
Spectrum, September, 1–10.

Cheng, J., Goto, Y., Morimoto, S., & Horie, D. (2008). A Security Engineering
Environment Based on ISO / IEC Standards : Providing Standard ,
Formal , and Consistent Supports for Design , Development , Operation ,
and Maintenance of Secure Information Systems. 2008 International
Conference on Information Security and Assurance, 350–354.
https://doi.org/10.1109/ISA.2008.106

Chrissis, M. B., Konrad, M., & Shrum, S. (2011). CMMI for Development, Guidlines
for process integration and product improvement (Third Edit).

Cole, R., Purao, S., Rossi, M., & Sein, M. (2005). Being proactive: where action
research meets design research. ICIS 2005 Proceedings, 27.

Colomo-Palacios, R., Casado-Lumbreras, C., Soto-Acosta, P., García-Peñalvo, F.
J., & Tovar-Caro, E. (2013a). Competence Gaps in Software Personnel: A

67

Multi-Organizational Study. Computers in Human Behavior, 29(2), 456–461.
https://doi.org/10.1016/j.chb.2012.04.021

Colomo-Palacios, R., Casado-Lumbreras, C., Soto-Acosta, P., García-Peñalvo, F.
J., & Tovar-Caro, E. (2013b). Computers in Human Behavior Competence
gaps in software personnel : A multi-organizational study. Computers in
Human Behavior, 29(2), 456–461. https://doi.org/10.1016/j.chb.2012.04.021

Colomo-Palacios, R., Tovar-Carlos, E., Garcia-Crespo, Å., & Gómez-Berbís, J. M.
(2010). The Case of Software Engineers Identifying Technical Competences
of IT Professionals : International Journal of Human Capital and Information
Technology Professionals, 1(March), 31–43.
https://doi.org/10.4018/jhcitp.2010091103

Corley, K. G., & Gioia, D. A. (2011). Building theory about theory building:
what constitutes a theoretical contribution? Academy of Manaagement
Review, 36(1), 12–32. https://doi.org/10.5465/AMR.2011.55662499

Curtis, B., Hefley, B., & Miller, S. A. (2009). People Capability Maturity Model
(P-CMM) Version 2 . 0 , Second Edition. In Business Process Management
Journal (Issue July). https://doi.org/Report CMU/SRI-2001-MM-001

Data, E. (2019). Global Developer Population and Demographic Study 2019. In
Evans Data Corporation, Tech. Rep. (Vol. 1).

Debois, P. (2011). Devops: A software revolution in the making. Journal of
Information Technology Management, 24(8), 3–39.

Dyba, T., & Dingsoyr, T. (2008). Empirical Studies of Agile Software
Development : A Systematic Review. Information and Software Technology,
50, 833–859. https://doi.org/10.1016/j.infsof.2008.01.006

Engelbrecht, L., Landes, D., & Sedelmaier, Y. (2018). A Didactical Concept for
Supporting Reflection in Software Engineering Education. 2018 IEEE
Global Engineering Education Conference (EDUCON), 547–554.
https://doi.org/10.1109/EDUCON.2018.8363278

Frezza, S., Daniels, M., Pears, A., Cajander, A., Viggo, K., Kapoor, A.,
Mcdermott, R., Peters, A.-K., Sabin, M., & Wallace, C. (2018). Modelling
Competencies for Computing Education beyond 2020 : A Research Based
Approach to Defining Competencies in the Computing Disciplines. 23rd
Annual ACM Conference on Innovation and Technology in Computer Science
Education, 148–174.

Gangurde, S., & Patil, S. (2018). Benchmark product features using the Kano-
QFD approach: a case study. Benchmarking: An International Journal, 25(2),
450–470. https://doi.org/http://dx.doi.org/10.1108/MRR-09-2015-0216

Gimenes, I. M. S., Barroca, L., & Barbosa, E. F. (2012). The Future of Human
Resources Qualifications in Software Engineering – Meeting Demands
from Industry and Benefiting from Educational and Technological
Advances. 2012 26th Brazilian Symposium on Software Engineering, 181–185.
https://doi.org/10.1109/SBES.2012.19

Goel, S. (2006). Competency Focused Engineering Education with Reference to
IT Related Disciplines: Is the Indian System Ready for Transformation?

68

Journal of Information Technology Education, 5, 27–52.
https://doi.org/10.28945/233

Harris, K. S., & Rogers, G. E. (2008). Soft Skills in the Technology Education
Classroom : What Do Students Need. Technology Teacher, 68(3), 19–25.

Harzallah, M., Giuseppe, B., & Vemadat, F. (2002). A Formal Model for
Assessing Individual Competence in Enterprises. IEEE International
Conference on Systems, Man and Cybernetics, 6.
https://doi.org/10.1109/ICSMC.2002.1173300

Harzallah, M., & Vernada, F. (2002). IT-Based Competency Modeling and
Management : from Theory to Practice in Enterprise Engineering and
Operations. Computer in Industry, 48, 157–179.

Havelka, D., & Mermout, Jeffrey, W. (2009). Toward a Theory of Iformation
Technology professional Competence. Jounal of Computer Information
Systems, Winter 2009.

Hilburn, T., Ardis, M., Johnson, G., Kornecki, A. J., & Mead, N. R. (2013).
Software Assurance Competency Model (Issue March).
http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=47953

Holtkamp, P., Jokinen, J. P. P., & Pawlowski, J. M. (2015). Soft Competency
Requirements in Requirements Engineering, Software Design,
Implementation, and Testing. Journal of Systems and Software, 101, 136–146.
https://doi.org/10.1016/j.jss.2014.12.010

Hsieh, H.-F., & Shannon, S. E. (2005). Three Approaches to Qualitative Content
Analysis. Qualitative Health Research, 15(9), 1277–1288.
https://doi.org/10.1177/1049732305276687

Huang, J. (2018). Application of Kano model and IPA on improvement of service
quality of mobile healthcare Jui-Chen Huang. 16(2).

Hubwieser, P., Berges, M., Magenheim, J., Schaper, N., Bröker, K., Margaritis,
M., Schubert, S., & Ohrndorf, L. (2013). Pedagogical content knowledge for
computer science in German teacher education curricula. Computing
Education, 95–103. https://doi.org/10.1145/2532748.2532753

Humphrey, W. S. (1989). Managing the Software Process. Addson Wesley.
IEEE-CS, & ACM. (2015). Curriculum Guidelines for Undergraduate Degree

Programs in Software Engineering. In Computing Curricula Series (Issue
February). http://usir.salford.ac.uk/6939/

IEEE. (2014). Software Engineering Competency Model (SWECOM). IEEE.
http://www.dahlan.web.id/files/ebooks/SWECOM.pdf

Johnson, P., & Ekstedt, M. (2015). The Tarpit - A general theory of software
engineering. Information and Software Technology, 70, 181–203.
https://doi.org/10.1016/j.infsof.2015.06.001

Johnson, P., Ekstedt, M., & Jacobson, I. (2012). Where’s the theory for software
engineering? IEEE Software, 29(5), 94–95.
https://doi.org/10.1109/MS.2012.127

Kalliamvakou, E., Member, S., Bird, C., Zimmermann, T., Begel, A., Deline, R.,
& German, D. M. (2019). What Makes a Great Manager of Software
Engineers ? IEEE Transactions on Software Engineering, 45(1), 87–106.

69

Kano. (2016). What is the Kano Model? KanoModel.com. https://kanomodel.com/,

retrieved 19.04.2018
Kano, N., Seraku, N., Takahashi, F., & Tsuji, S. (1984). Kano. Attractive Quality

and Must-Be Quality. The Journal of the Japanese Society for Quality Control,
14, 39–48.

Kaplan, B., & Maxwell, J. A. (1994). Qualitative Research Methods for
Evaluating Computer Information Systems. In J. G. Anderson, C. E.
Aydin, & S. J. Jay (Eds.), Evaluating Health Care Information Systems:
Methods and Applications (pp. 45–68). SAGE. https://doi.org/10.1007/0-
387-30329-4

Kobata, K., Uesugi, T., Adachi, H., & Aoyama, M. (2015). A curriculum
development methodology for professional software engineers and its
evaluation. Proceedings of IEEE International Conference on Teaching,
Assessment and Learning for Engineering: Learning for the Future Now, TALE
2014, December, 480–487. https://doi.org/10.1109/TALE.2014.7062552

Kobata, K., Uesugi, T., Adachi, H., & Aoyama, M. (2013). Software Engineering
Education Program for Software Professionals of High Competency at.
2013 20th Asia-Pacific Software Engineering Conference (APSEC), 2, 117–122.
https://doi.org/10.1109/APSEC.2013.125

Krippendorff, K. (2018). Content Analysis: An Introduction to Its Methodology
(Fourth Edi). SAGA Publications.

Kropp, M., Meier, A., & Perellano, G. (2016). Experience Report of Teaching
Agile Collaboration and Values Agile Software Development in Large
Student Teams. 2016 IEEE 29th International Conference on Software
Engineering Education and Training (CSEET), 76–80.
https://doi.org/10.1109/CSEET.2016.30

Le Deist, F. D., & Winterton, J. (2005). What is competence? Human Resource
Development International, 8(1), 27–46.
https://doi.org/10.1080/1367886042000338227

Lee, B., & Cassell, C. (2013). Research methods and research practice: History,
themes and topics. International Journal of Management Reviews, 15(2), 123–
131. https://doi.org/10.1111/ijmr.12012

Lee, Y. C., Sheu, L. C., & Tsou, Y. G. (2008). Quality function deployment
implementation based on Fuzzy Kano model: An application in PLM
system. Computers and Industrial Engineering, 55(1), 48–63.
https://doi.org/10.1016/j.cie.2007.11.014

Lehtola, L., & Kauppinen, M. (2006). Suitability of requirements prioritization
methods for market-driven software product development. Software
Process Improvement and Practice, 11(1), 7–19.
https://doi.org/10.1002/spip.249

Lenberg, P., Feldt, R., & Wallgren, L. G. (2015). Behavioral Software
Engineering: A Definition and Systematic Literature Review. Journal of
Systems and Software, 107, 15–37. https://doi.org/10.1016/j.jss.2015.04.084

León-sigg, M. De, Pérez-valenzuela, B. J., Vázquez-reyes, S., & Cisneros, J. L. V.
(2018). Adaptation of the Initial Software Development Method for a

70

Single Developer. 6th International Conference in Software Engineering
Research and Innovation. https://doi.org/10.1109/CONISOFT.2018.00013

Liu, X. F. (2000). Software quality function deployment. Potentials, IEEE, 19(5),
14–16. https://doi.org/10.1109/45.890072

Magenheim, J., Nelles, W., Rhode, T., Schaper, N., & Schubert, S. (2010).
Competencies for Informatics Systems and Modeling Results of
Qualitative Content Analysis of Expert Interviews. IEEE EDUCON 2010
Conference, 513–521. https://doi.org/10.1109/EDUCON.2010.5492535

Manawadu, C. D., Johar, M. G. M., & Perera, S. S. N. (2015). Essential Technical
Competencies for Software Engineers : Perspectives from Sri Lankan
Undergraduates. International Journal of Computer Applications, 113(17), 27–34.
https://pdfs.semanticscholar.org/c01d/90376b8d36bea073190aee76f77ec8
83f1f6.pdf

Mano, C. D., Duhadway, L., & Striegel, A. (2006). A Case for Instilling Security
as a Core Programming Skill. Proceedings. Frontiers in Education. 36th
Annual Conference, 13–18. https://doi.org/10.1109/FIE.2006.322347

Mason, J. (2002). Qualitative Researching. In Qualitative Research Journal (Vol. 41,
Issue 1). https://doi.org/10.1159/000105503

McFeeley, B. (1996). IDEAL: User’s Guide for Software Process Improvement. In
Cmu/Sei-96-Hb-001.

Mead, N. R., & Shoemaker, D. (2013). The Software Assurance Competency
Model: A Roadmap to Enhance Individual Professional Capability.
Software Engineering Education Conference, Proceedings, 119–128.
https://doi.org/10.1109/CSEET.2013.6595243

Moreno, A. M., Sanchez-segura, M., Medina-dominguez, F., & Carvajal, L.
(2012). Balancing Software Engineering Education and Industrial Needs.
The Journal of Systems & Software, 85(7), 1607–1620.
https://doi.org/10.1016/j.jss.2012.01.060

Myers, M. D. (1997). Qualitative research in information systems. Management
Information Systems Quarterly, 21(June), 1–18.
https://doi.org/10.2307/249422

Myers, M. D., & Newman, M. (2007). The qualitative interview in IS research:
Examining the craft. Information and Organization, 17(1), 2–26.
https://doi.org/10.1016/j.infoandorg.2006.11.001

Nandhakumar, J., & Jones, M. (1997). Too close for comfort? Distance and
engagement in interpretive information systems research. Information
Systems Journal, 7(2), 109–131. https://doi.org/10.1046/j.1365-
2575.1997.00013.x

Nelson, R. (2007). IT Project Management: Infamous Failures, Classic Mistakes,
and Best Practices. MISQE, 6(2), 67–78.

Object Management Group. (2018). Essence - Kernel and Language for Software
Engineering Methods (Essence). In OGM (Issue Versión 1.2).
https://www.omg.org/spec/Essence/1.2

71

Orlikowski, W. J., & Baroudi, J. J. (1991). Studying information technology in

organizations: Research approaches and assumptions. Information Systems
Research, 2(1), 1–28. https://doi.org/10.1287/isre.2.1.1

Orsoni, A., & Colaco, B. (2013). A Competency Framework for Software
Development Organizations. 2013 UKSim 15th International Conference on
Computer Modelling and Simulation, 507–511.
https://doi.org/10.1109/UKSim.2013.101

Päivärinta, T., & Smolander, K. (2015). Theorizing about software development
practices. Science of Computer Programming, 101, 124–135.
https://doi.org/10.1016/j.scico.2014.11.012

Pawlowski, J. M., & Holtkamp, P. (2012). Towards an internationalization of the
information systems curriculum. Multikonferenz Wirtschaftsinformatik 2012 -
Tagungsband Der MKWI 2012, 2011(March), 437–449.
https://www.scopus.com/inward/record.uri?eid=2-s2.0-
84879862734&partnerID=40&md5=377ec064ba5a4994dcda2fb9148041fa

Pawlowski, J. M., Holtkamp, P., & Kalb, H. (2010). Globalization Competences
in Information Systems and E-Learning. In Lecture Notes in Business
Information Processing.

Peffers, K., Tuunanen, T., Rothenberger, M., & Chatterjee, S. (2008). A Design
Science Research Methodology for Information Systems Research. Journal
of Management Information Systems, 24(3), 45–77.
https://doi.org/10.2753/MIS0742-1222240302

Pérez, J., Vizcarro, C., García, J., Bermúdez, A., & Cobos, R. (2017).
Development of Procedures to Assess Problem-Solving Competence in
Computing Engineering. IEEE TRANSACTIONS ON EDUCATION, 60(1),
22–28. https://doi.org/10.1109/TE.2016.2582736

Petersen, K., Feldt, R., Mujtaba, S., & Mattsson, M. (2008). Systematic Mapping
Studies in Software Engineering. 12Th International Conference on
Evaluation and Assessment in Software Engineering, 17, 10.
https://doi.org/10.1142/S0218194007003112

Petersen, K., Vakkalanka, S., & Kuzniarz, L. (2015). Guidelines For Conducting
Systematic Mapping Studies in Software Engineering : An Update.
Information and Software Technology, 64, 1–18.
https://doi.org/10.1016/j.infsof.2015.03.007

Piaszczyk, C. (2011). Model Based Systems Engineering with Department of
Defense Architectural Framework. Systems Engineering, 14(3), 305–326.
https://doi.org/10.1002/sys

Pyster, A. (Editor). (2009). Graduate Software Engineering 2009 (GSwE2009)
Curriculum Guidelines for Graduate Degree Programs in Software Engineering:
Vol. Integrated.

Radermacher, A., Walia, G., & Knudson, D. (2014). Investigating the skill gap
between graduating students and industry expectations. Companion
Proceedings of the 36th International Conference on Software Engineering - ICSE
Companion 2014, 291–300. https://doi.org/10.1145/2591062.2591159

72

Rainsbury, E., Hodges, D., Burchell, N., & Lay, M. (2002). Ranking Workplace

Competencies: Student and Graduate Perceptions. 8–18.
Richardson, I. (2001). Software Process Matrix: A Small Company SPI Model.

Software Process: Improvement and Practice, 6(Daft 1992), 157–165.
https://doi.org/10.1002/spip.144

Rivera-Ibarra, J. G., Rodríguez-Jacobo, J., & Serrano-Vargas, M. A. (2010).
Competency Framework for Software Engineers. 2010 23rd IEEE
Conference on Software Engineering Education and Training, 33–40.
https://doi.org/10.1109/CSEET.2010.21

Robinson, M. A., Sparrow, P. R., Clegg, C., & Birdi, K. (2005). Design
engineering competencies: Future requirements and predicted changes in
the forthcoming decade. Design Studies, 26(2), 123–153.
https://doi.org/10.1016/j.destud.2004.09.004

Robson, C. (2002). Research Real World (Second Edi). Blackwell Publishing.
Runeson, P., & Höst, M. (2009). Guidelines for conducting and reporting case

study research in software engineering. Empirical Software Engineering,
14(2), 131–164. https://doi.org/10.1007/s10664-008-9102-8

Saiedian, H., & Dale, R. (2000). Requirements Engineering : Making the
Connection Between the Software Developer and Customer. Information
and Software Technology, 42, 419–428.

Saldaña-Ramos, J., Sanz-Esteban, A., García-Guzmán, J., & Amescua, A. (2012).
Design of a Competence Model for Testing Teams. IET Software, 6(5), 405–
415. https://doi.org/10.1049/iet-sen.2011.0182

Sambamurthy, V., Bharadwaj, A., & Grover, V. (2003). Shaping Agility Through
Digital Options: Reconceptualizing The Role Of Information Technology
In Contemporary Firm. MIS Quartely, 27(2), 237–263.

Schultze, U., & Avital, M. (2011). Designing interviews to generate rich data for
information systems research. Information and Organization, 21(1), 1–16.
https://doi.org/10.1016/j.infoandorg.2010.11.001

Sedelmaier, Y., & Landes, D. (2013). A Research Agenda for Identifying and
Developing Required Competencies in Software Engineering. International
Journal of Engineering Pedagogy, 3(2), 0–4.

Sedelmaier, Y., & Landes, D. (2014a). A Multi-Perspective Framework for
Evaluating Software Engineering Education by Assessing Students ’
Competencies SECAT – A Software Engineering Competency Assessment
Tool. IEEE Frontiers in Education Conference (FIE).

Sedelmaier, Y., & Landes, D. (2012). A Research Agenda for Identifying and
Developing Required Competencies in Software Engineering. 2012 15th
International Conference on Interactive Collaborative Learning (ICL), 01, 1–5.
https://doi.org/10.1109/ICL.2012.6402195

Sedelmaier, Y., & Landes, D. (2014b). Software Engineering Body of Skills
(SWEBOS). IEEE Global Engineering Education Conference, EDUCON, April,
395–401. https://doi.org/10.1109/EDUCON.2014.6826125

Silveira Neto, P. A. D. M., Gomes, J. S., De Almeida, E. S., Leite, J. C., Batista, T.
V., & Leite, L. (2013). 25 years of software engineering in Brazil: Beyond an

73

insider’s view. Journal of Systems and Software, 86(4), 872–889.
https://doi.org/10.1016/j.jss.2012.10.041

Software Engineering Institute. (2010). CMMI for Development, Version 1.3. In
Software Engineering Process Management Program (Issue November).

Studt, R., Winterfeldt, G., & Mottok, J. (2015). Measuring Software Engineering
Competencies. IEEE Global Engineering Education Conference, EDUCON,
March, 908–914. https://doi.org/10.1109/EDUCON.2015.7096081

Suhartono, J., & Sudirwan, J. (2016). Academic Competence of Computer
Science Graduate Degree from the Employer ’ s Perspective. 2016
International Conference on Information Management and Technology
(ICIMTech), November, 176–181.
https://doi.org/10.1109/ICIMTech.2016.7930325

Tahvanainen, S., & Luoma, E. (2018). Examining the Competencies of the Chief
Digital Officer. Twenty-Fourth Americas Conference on Information Systems,
2009, 1–10.

Thurner, V., Axel, B., & Andreas, K. (2014). Identifying Base Competencies as
Prerequisites for Software Engineering Education. IEEE Global Engineering
Education Conference (EDUCON), April, 1069–1076.
https://doi.org/10.1109/EDUCON.2014.6826240

Thurner, V., Schlierkamp, K., Bottcher, A., & Zehetmeier, D. (2016). Integrated
Development of Technical and Base Competencies: Fostering Reflection
Skills in Software Engineers to be. IEEE Global Engineering Education
Conference, EDUCON, April, 340–348.
https://doi.org/10.1109/EDUCON.2016.7474576

Trivellas, P., & Reklitis, P. (2014). Leadership Competencies Profiles and
Managerial Effectiveness in Greece. Procedia Economics and Finance,
9(Ebeec 2013), 380–390. https://doi.org/10.1016/S2212-5671(14)00039-2

Turley, R. T. (1991). Essential Competencies of Exceptional Professional Software
Engineers (Issue July). Colorado State University.

Turley, R. T., & Bieman, J. M. (1994). Identifying essential competencies of
software engineers. Proceedings of the 22nd Annual ACM Computer Science
Conference on Scaling up : Meeting the Challenge of Complexity in Real-World
Computing Applications - CSC ’94, 271–278.
https://doi.org/10.1145/197530.197637

Turley, T., & Bieman, M. (1995). Competencies Nonexceptional of Exceptional
and Software Engineers. J. Systems Software, 1995:28(28), 19–38.

Tyrväinen, P., Warsta, J., & Seppänen, V. (2008). Evolution of secondary
software businesses: Understanding industry dynamics. In IFIP
International Federation for Information Processing: Moving Towards
Cooperative IT Transfer and Knowledge Diffusion (Vol. 287, pp. 381–401).
Springer. https://doi.org/10.1007/978-0-387-87503-3_22

Urs, D. S. (2013). Soft Skills for the Engineering Students. Synergy, 9(2), 137–142.
https://pdfs.semanticscholar.org/fbf4/0a9446331b41d3f11ef3b7035fe33e2
b452f.pdf

74

Vaismoradi, M., Turunen, H., & Bondas, T. (2013). Content Analysis and

Thematic Analysis : Implications for Conducting a Qualitative Descriptive
Study. Nursing and Health Science, 15, 398–405.
https://doi.org/10.1111/nhs.12048

Venkatesh, V., Morris, M. G., Davis, G. B., Davis, F. D., Cole, R., Purao, S., Rossi,
M., Sein, M. K., Dyer, W. G., Wilkins, a. L., Easton, G., Eisenhardt, K. M.,
Academy, T., Review, M., Freeze, R., Raschke, R., Germonprez, M.,
Hovorka, D., Gal, U., … Walsham, G. (2003). Management Information
Systems Research Center, University of Minnesota. MIS Quarterly, 27(3),
533–556. https://doi.org/10.2753/MIS0742-1222240302

Vincent, S., & O’Mahoney, J. (2018). Critical Realism and Qualitative Research:
An Introductory Overview. In The SAGE Handbook of Qualitative Business
and Management Research Methods: History and Traditions (pp. 201–216).
https://doi.org/10.4135/9781526430212.n13

Wernerfelt, B. (1984). A Resource-Based View of the Firm. Strategic Management
Journal, 5(2), 171–180. https://doi.org/10.1002/smj.4250050207

West, M. (2004). Real Process Improvement Using the CMMI (Taylor & F).
AUERBACH PUBLICATIONS.

Wohlin, C., & Aurum, A. (2015). Towards a decision-making structure for
selecting a research design in empirical software engineering. Empirical
Software Engineering, 20(6), 1427–1455. https://doi.org/10.1007/s10664-
014-9319-7

Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Regnell, B., & Wesslén, A.
(2012). Experimentation in Software Engineering. In Springer Science &
Business Media. https://doi.org/10.1037/12345-011

Zendler, A., Klaudt, D., & Seitz, C. (2014). Empirical Determination of
Competence Areas to Computer Science Education. Journal of Educational
Computing Research, 51(1), 71–89. https://doi.org/10.2190/EC.51.1.d

ORIGINAL PAPERS

I

THE STATE OF RESEARCH ON SOFTWARE ENGINEERING
COMPETENCIES: A SYSTEMATIC MAPPING STUDY

by

Nana Assyne, Hadi Ghanabari & Mirja Pulkkinen

Journal of Systems and Software, under revision.

Request a copy from the author.

II

HARD COMPETENCIES SATISFACTION LEVELS FOR
SOFTWARE ENGINEERS: A UNIFIED FRAMEWORK

by

Nana Assyne, 2019

Lecture Notes in Business Information Processing vol 370, LNBIP

https://doi.org/10.1007/978‐3‐030‐33742‐1_27

Reproduced with kind permission by Springer.

This is a self-archived version of an original article. This version
may differ from the original in pagination and typographic details.

Author(s):

Title:

Year:

Version:

Copyright:

Rights:

Rights url:

Please cite the original version:

In Copyright

http://rightsstatements.org/page/InC/1.0/?language=en

Hard Competencies Satisfaction Levels for Software Engineers : A Unified Framework

© 2019 Springer Nature Switzerland AG

Accepted version (Final draft)

Assyne, Nana

Assyne, N. (2019). Hard Competencies Satisfaction Levels for Software Engineers : A Unified
Framework. In S. Hyrynsalmi, M. Suoranta, A. Nguyen-Duc, P. Tyrväinen, & P. Abrahamsson
(Eds.), ICSOB 2019 : 10th International Conference of Software Business (pp. 345-350). Springer.
Lecture Notes in Business Information Processing, 370. https://doi.org/10.1007/978-3-030-
33742-1_27

2019

Hard Competencies Satisfaction Levels for Software
Engineers: A Unified framework

Nana Assyne

Faculty of Information Technology, University of Jyväskylä, Finland
nana.m.a.assyne@student.jyu.fi

Abstract. Software engineer’s/developer’s competency has long been
established as a key pillar for the development of software. Nevertheless, the
satisfaction levels derived from using a competency needs more investigation.
The aim of this paper is to propose a framework for identifying hard
competencies and their satisfaction levels. The paper contributes to the software
engineering competency research by highlighting the satisfaction levels of hard
competence for the benefit of the educators (academia), software engineers and
users of software competence (practitioner).

Keywords: Hard competency, Technical competency, Software engineers’
competencies, Competence satisfaction levels.

1 Introduction

Software are the principal driving force for hardware that currently run our daily lives.
As such software development is propelled by the competency of the software
developers. Competency is said to be the combination of abilities, knowledge, and skills
for performing an assigned task. Competency then includes both soft and hard
competencies [1]: a hard skill is or are the skill(s) one needs to be able to perform a job
or assignment. Hard skills are teachable and acquired mostly through formal training
and studies, and are sometimes referred to as technical skill. Often for example a trainee
is required to be smart or must possess a good IQ to acquire the required skill. Thus,
hard/technical skills are pre-requisite skills required by software engineers/developer
in software development process.

Whereas both practical and empirical knowledge on technical competencies of
software developers is not lacking, competency study has become an important and
fundamental strategic area for academic research. Colomo-palacios et al. identify the
competency levels relevant to software engineering of professional profiles [2]. Turley
and Bieman in an attempt to identify non-exceptional and exceptional competencies of
software engineers, also provided the technical competencies of software engineers [3].
Yet – there is paucity of studies that examines the satisfaction levels derived for
possessing or using a competence.

Though the works of [4]; [2] and [5] establish the essence of hard or technical
competence to software development, if we do not know the satisfaction level derived

2

as assurance for the possessor or the user, beneficiary cannot know which competency
will be demanded or be needed. Our initial study looked at [2] work, which examined
relevant levels of profile of software engineers and professional. Also the work of [6]
assesses base competencies necessary for software engineering students. We do agree
with the said work and argue further that it gives credence to the software engineering
competency. However, we are of the view that additional satisfaction levels of the
competency will provide assurance for both possessor and users in the software
engineering community. Thus, there is a need to provide strategic frameworks for the
various satisfaction levels of hard or technical competencies of software developers.
This paper forms part of broader research on software developer’s competency study.

The goal of this paper is to use existing models to create classification levels for the
benefit of the users and possessors of software engineering competency. We therefore
set our research question as: how do we determine the benefit or satisfaction of a
competency of technical or hard competencies for software developers, thus, the
research question for this paper is:

 What are the different satisfaction levels derived from using a software
technical or hard competency?

Research on software competency is not necessarily lacking in software engineering

studies [7], however, in this study the Kano model, which is the main framework for
this study is being used for the first time on competencies as against it original use on
products. To structure this study to fit into previous studies for practical use, we also
made use of Competency Framework for Software Engineers (CFSE) [8]. The
framework has two main areas, that is soft and hard competency. Since this paper
focuses on hard competency, we make use of that as part of the framework. This paper,
is structured as follow: section 2 discusses the theoretical foundations, section 3,
methodology and the proposed framework, section 4, conclusions and future work.

2 Theoretical foundations

2.1 Kano model

The Kano model provides a quality function-deployment framework that aids
products or service developers to take into consideration the customer’s voice and
preferences in the development phase instead of a passive approach of only developers
[9–15] employed the Kano model for ICT system development and established that the
model highlights user involvement. The model assists in determining basic,
performance and delighters of a product or service.

In this paper, we conceptualize the customer as the software community
(organization using the competencies) and the product or service as the needed
competency. According to Kano et al. [16], customer’s decision-making options on
product or service acquisition, are founded on conscious and subconscious
deliberations. For effective product and or service development there is the need to
understand these deliberative conscious and subconscious processes of decision-

3

making. Kano et al.’s categorization of these processes into three-requirement levels
(basic, performance and delighters) is relevant. For instance, basic requirements
emanate from customer’s expectations about a product or service, since their presence
are immutable to influence customer options and opinion about the product. However,
their absence may result in complaints from the customer. By extension, performance
requirements, are expected pre-requisites knowledge factor vital in influencing
customer decision-making options. These are critical pre-requisite requirements when
appropriately adopted yields high levels of satisfaction. Meanwhile, at the delighter
level, product and service developers are required to include surprise elements often
referred to as ‘wow’ factors to entice, attract and influence customer choice options and
preferences [16].

2.2 Competence framework for software engineers

Competency Framework for Software Engineers (CFSE) is a framework proposed
by [17]. It identifies the training needs of software community and also serves as a
guide for competency identification. The framework is divided into two main categories
with sub-categories under main categories. The main categories are hard and soft
competency. The soft competency category has socials and personals. The hard
competency category has subcategories similar to roles for software development
identified in SWEBOK. These includes project management, requirement analysis,
software design, programming, validation and verification tests, configuration
management, quality, tests, documentation and maintenance.

Our study, forms part of a broader software engineering competency study, which
aims at creating classification maps for the satisfaction levels of software engineers’
competencies. Specifically, in this paper, we focus on hard competency. Since CFSE
serve the purpose of identifying hard soft competencies, we make use of the hard
category side. This framework provides a granularity which align closes with the roles
of software engineering. Thus, we make use of hard category aspect and the kano model
to create our desired framework for the study. The result will be a unified framework
to identify and classify the satisfaction levels of hard competencies for the use of the
software engineering community.

3 Methodology and proposed framework

According to [18] framework as design science artifact requires some iteration in the
validation of the process in developing. Justification for the need of the artifact has been
presented through using literature, but it also requires stakeholder input, Thus, we
present the proposed model for validation in this conference.

3.1 Propose Model: A Unified framework of Hard competency satisfaction

levels for software engineers (UFHCSL)

This framework originates in the Kano model and CFSE. The Kano model as quality
function-deployment model has been used for research work in software engineering.

4

Our study is the first to apply the Kano model on human resources as a means to
determine the competency satisfaction levels of software engineers. CFSE is a
framework for identifying competencies of software engineers, and there are more
compatible frameworks available, such as [19–22] which provide a means to identify
competencies of software developers. However, in line with our objectives, the CFSE
frame work provides required granularity and align with the roles of software
engineering, we think the work of Rivera-ibarra et al. (2010) is suitable for our
objectives.

Figure 1. Unified framework of hard competency satisfaction levels for

software engineers

To use the presented framework (UFHCSL), hard competencies are identified and

classified using the hard category in [17] framework, followed by competency
identification or classification subjected to the metrics of Kano model (we provide the
metrics as table 1) to determines its satisfaction levels. The Categorization metrics is
divided into three main parts (satisfaction levels): 1) basic, 2) performance and 3)
delighter competencies. In each part a number of parameters are considered e.g. socials
(interpersonal relations, cooperation and work in a team, and handling and conflicts
resolution) and personals (development in the job, personal development, rights and
limits).

5

4 Conclusion and future work

The proposed framework UFHCSL uses the kano model and the CFSE framework
to create framework that can be use to identify hard competencies of software
developers, their satisfaction levels and the most valued competencies of the
developers. This framework add to the work of [23]. Thus, we have provided a
framework that can be beneficial to educators, competency users, and possessors of
hard competencies. The future work will be to use empirical data to evaluated the
framework.

References

1. Sedelmaier, Y., & Landes, D. (2014). Software Engineering Body of Skills (
SWEBOS). In 2014 IEEE Global Engineering Education Conference
(EDUCON) (pp. 395–401)

2. Colomo-palacios, R., Carlos, U., & Madrid, I. I. I. De. (2010). The Case of
Software Engineers Identifying Technical Competences of IT Professionals :
International Journal of Human Capital and Information Technology
Professionals, 1(March), 31–43

3. Turley, T., & Bieman, M. (1995). Competencies Nonexceptional of
Exceptional and Software Engineers. J. Systems Software, 1995:28(28), 19–38.

4. Patel, A., Benslimane, Y., Bahli, B., & Yang, Z. (2012). Addressing IT Security
in Practice : Key Responsibilities , Competencies and Implications on Related
Bodies of Knowledge. In 2012 IEEE International Conference on Industrial
Engineering and Engineering Management (pp. 899–903)

5. Manawadu, C. D., Johar, M. G. M., & Perera, S. S. N. (2015). Essential
Technical Competencies for Software Engineers : Perspectives from Sri
Lankan Undergraduates. International Journal of Computer applications,
113(17), 27–34

6. Thurner, V., Axel, B., & Andreas, K. (2014). Identifying Base Competencies
as Prerequisites for Software Engineering Education. In IEEE Global
Engineering Education Conference (EDUCON) (pp. 1069–1076)

7. Lenberg, P., Feldt, R., & Wallgren, L. G. (2015). Behavioral software
engineering: A definition and systematic literature review. Journal of Systems
and Software, 107, 15–37

8. Holtkamp, P., Jokinen, J. P. P., & Pawlowski, J. M. (2015). Soft competency
requirements in requirements engineering, software design, implementation,
and testing. Journal of Systems and Software, 101, 136–146

9. Lee, Y. C., Sheu, L. C., & Tsou, Y. G. (2008). Quality function deployment
implementation based on Fuzzy Kano model: An application in PLM system.
Computers and Industrial Engineering, 55(1)

10. Gangurde, S., & Patil, S. (2018). Benchmark product features using the Kano-
QFD approach: a case study. Benchmarking: An International Journal, 25(2),
450–470

11. Huang, J. (2018). Application of Kano model and IPA on improvement of

6

service quality of mobile healthcare Jui-Chen Huang, 16(2).
12. Lehtola, L., & Kauppinen, M. (2006). Suitability of requirements prioritization

methods for market-driven software product development. Software Process
Improvement and Practice, 11(1), 7–19

13. Liu, X. F. (2000). Software quality function deployment. Potentials, IEEE,
19(5), 14–16

14. Piaszczyk, C. (2011). Model Based Systems Engineering with Department of
Defense Architectural Framework. Systems Engineering, 14(3), 305–326

15. Richardson, I. (2001). Software Process Matrix: A Small Company SPI Model.
Software Process: Improvement and Practice, 6(Daft 1992), 157–165

16. Kano, N., Seraku, N., Takahashi, F., & Tsuji, S. (1984). Kano. Attractive
Quality and Must-Be Quality. The Journal of the Japanese Society for Quality
Control, 14, 39–48.

17. Rivera-ibarra, J. G., Rodríguez-jacobo, J., Fernández-zepeda, J. A., & Serrano-
vargas, M. A. (2010). Competency Framework for Software Engineers and. In
2010 23rd IEEE Conference on Software Engineering Education and Training
(pp. 33–40)

18. Peffers, K., Tuunanen, T., Rothenberger, M., & Chatterjee, S. (2008). A Design
Science Research Methodology for Information Systems Research. J. Manage.
Inf. Syst., 24(3), 45–77

19. Linck, B., Ohrndorf, L., Kiel, T. D. L., Magenheim, J., & Neugebauer, J.
(2013). Competence model for informatics modelling and system
comprehension. In 2013 IEEE Global Engineering Education Conference
(EDUCON) (pp. 85–93)

20. Tuffley, D. (2012). Optimising virtual team leadership in Global Software
Development. IET Software, 6(March 2011), 176–184

21. André, M., Baldoquín, M. G., & Acuña, S. T. (2011). Formal model for
assigning human resources to teams in software projects. Information and
Software Technology, 53, 259–275

22. Schulte, C., Magenheim, J., Kathrin, M., & Budde, L. (2017). The Design and
Exploration Cycle as Research and Development Framework in Computing
Education. In 2017 IEEE Global Engineering Education Conference
(EDUCON) (pp. 867–876)

23. Rivera-Ibarra, J. G., Rodríguez-Jacobo, J., & Serrano-Vargas, M. A. (2010).
Competency Framework for Software Engineers. In 2010 23rd IEEE
Conference on Software Engineering Education and Training (pp. 33–40) 1

III

SOFT COMPETENCIES SATISFACTION LEVELS FOR
SOFTWARE ENGINEERS: A UNIFIED FRAMEWORK

by

Nana Assyne, 2020

Lecture Notes in Business Information Processing vol 371, LNBIP

https://doi.org/10.1007/978‐3‐030‐35510‐4_5

Reproduced with kind permission by Springer.

This is a self-archived version of an original article. This version
may differ from the original in pagination and typographic details.

Author(s):

Title:

Year:

Version:

Copyright:

Rights:

Rights url:

Please cite the original version:

In Copyright

http://rightsstatements.org/page/InC/1.0/?language=en

Soft Competencies and Satisfaction Levels for Software Engineers : A Unified
Framework

© Springer Nature Switzerland AG 2020

Accepted version (Final draft)

Assyne, Nana

Assyne, N. (2020). Soft Competencies and Satisfaction Levels for Software Engineers : A Unified
Framework. In D. Winkler, S. Biffl, D. Mendez, & J. Bergsmann (Eds.), Software Quality : Quality
Intelligence in Software and Systems Engineering. Proceedings of the 12th International
Conference, SWQD 2020, Vienna, Austria, January 14–17, 2020 (371, pp. 69-83). Springer.
Lecture Notes in Business Information Processing. https://doi.org/10.1007/978-3-030-35510-
4_5

2020

Soft Competencies and Satisfaction Levels for Software
Engineers: A Unified framework

Nana Assyne

Faculty of Information Technology
University of Jyväskylä, Jyväskylä, Finland

nana.m.a.assyne@student.jyu.fi

Abstract. The importance of software engineers’ competency has long been
established as a key pillar for the development of robust software in order to
achieve quality software. Software engineering competency research is not
necessarily lacking. Nevertheless, the satisfaction derived from using software
competency needs more investigation. The aim of this study is to identify soft
competencies from empirical data and create satisfaction levels for software
engineers’ soft competencies. The result shows 63 soft competencies with three
different satisfaction levels consisting of basic, performance and delighters. The
paper contributes to the SEC research by highlighting the satisfaction levels of
soft competency for the benefit of the educators (academia), software engineers
(possessor) and users of software competency (practitioner).

Keywords: Soft competency, Software engineers’ competencies, Competency
satisfaction levels, Essential competencies.

1 Introduction

The competencies of software engineers have long been recognized as essential for the
development of efficient and robust software [1]. According to IEEE software
engineering competency is defined as the knowledge, skills and attitudes of software
developers to fulfill a task in a software development project [2]. This includes both
soft and hard competencies [3]. Lenberg et al. pointed out that research work on
software engineering competency (SEC) is not necessarily lacking. Yet, most of the
earlier research on SEC focused on technical or hard competencies as against soft or
behavioral competencies [4]. Harris & Rogers, define soft skills or competencies as
“work ethics, positive attitude, social grace, facility with language, friendliness,
integrity and the willingness to learn” [5, p.19]. Thus, the identification and use of soft
competencies help in the development of complex software, because the software
development involves a combination of soft and hard competencies [3, 6].

Works of authors such as Broadbent et al., Moreno et al., and Colomo-palacios et al.
have established that soft competency is essential for development of software [6–8].
More importantly, recent literature suggests an increase in the number of software soft
competencies studies with emphasis on identification of soft competencies [4].

2

Holtkamp et al. argued that, soft competencies are crucial for the development of global
software engineering [9]. Nonetheless, the satisfaction levels of these competencies
have not been adequately explored. Accordingly, this paper reports the identification
and satisfaction levels of soft SEC as part of a bigger research on SEC.

The knowledge or identification of competencies is one phase of competency
equation. The other phase is the benefit derived in the using such competency. The
second phases have not received much attention in SEC research. Thurner et al., argue
for minimum or base competency as a basic requirement for students of software
engineering [10]. We support the base competency requirement and advocate for
further investigations to determine the various levels of satisfaction of competencies.
We therefore argue for satisfaction levels of soft competencies for software engineers,
and state our research questions as:

RQ1: What are the different satisfaction levels derived from using a software
soft competency?
RQ2: Which of these soft competencies are perceived as most valuable for
Software engineering?

Knowledge of soft competencies and their satisfaction levels serve as insurance for

users (people or organizations who use the competencies possessed by the developers
to produce a product or a service), educator (people who train the developers to acquire
the competencies), and the engineers’ (people who receive training and therefore
possesses some competencies). Therefore, we have adopt the Kano model [11] and
Competency Framework for Software Engineers (CFSE) [12] as a lens to develop
satisfaction rankings that can be employed by (i) the possessor of the competencies, (ii)
users of the competencies and (iii) by the trainer of competencies possessors. The rest
of the paper is presented as follows: section 2 looks at the background and related works
and discuss the research models; section 3 discusses the methodology; section 4
presents the results; and section 5 and 6 looks at the discussions and conclusions
respectively.

2 Theoretical foundation and Related Works

2.1 Soft competency

According to Harris & Rogers, soft skill is or are skills that mostly do not require
formal training [5]. Until recently, these skills were mostly self-taught and self-
developed. They are mostly not industry specific. In addition, they mostly require
emotional intelligence [13][14] E.g. communication flexibility, leadership, motivation,
patience, persuasion, problem-solving abilities, teamwork, time management, work
ethics.

Soft competency connotes skills that complement technical skills; therefore, it
cannot be overlooked in the development of software engineering. [They complement
technical skills and thus cannot be overlooked in software engineering]. They are
considered to be essential for global software projects [9, p.136]. (Broadbent et al.

3

established that the biggest skill gaps for software engineers were business strategies
and marketing of their services [7]. This was emphasized by Moreno et al. [6]. Other
studies have argued that more attention must be given to social and inter-personal
competencies [15] and emotional intelligence [16].

In proposing a body of skills (SWEBOS) for software engineering, Sedelmaier and
Landes identified and structured soft competencies of software engineers into three
categories [3]. These include (i) comprehension of the complexity of software
engineering processes, (ii) awareness of problems and understanding of cause-effect
relationships, and (iii) team competency including communication skills. Although,
this provided useful information that facilitates software development practices, it fails
to provide relevant information regarding the satisfaction levels derived for possessing
or using a competency. Evidently, there is a gap in existing literature. Perhaps, this is
because researchers in the area of behavioral of software engineering have been
focusing on few concepts [4] and ignore other relevant issues such as the assurance for
using or possessing a particular competency

To address this, this study seeks to identify and also create a satisfaction level of the
competencies from perspective of users, educators, and engineers. This will
complement research on SEC in general and soft competency research specifically. To
enable us to achieve our research objectives, we make use of CFSE and Kano model.
The next sub-sections discuss CFSE and the Kano model.

2.2 Kano model

The Kano model is a quality function-deployment framework that helps developers
of product or service to include customer’s voice in the development phase. It has been
applied mostly in the development of products. This is because it takes into
consideration the views of both the customer and developer in the development of a
product instead of a passive approach of only developers [17]. [17–23] used the Kano
model for the development of ICT system and concluded that the model prioritizes user
involvement. It assists in determining basic, performance and delighters of a product or
service.

In our scenario, the customer is the software community (organization using the
competencies) and the product or service is the competency. According to Kano et al.,
customer’s decision-making options on product or service acquisition, are based on
conscious and subconscious deliberations [11]. There is therefore the need to
understand these deliberative conscious and subconscious processes of decision-
making to help develop products or services. Kano et al., categorized these processes
into three-requirement levels (basic, performance and delighters). Basic requirements
relate to customer’s expectations about a product or service. These requirements are
classified as basic since their presence are not dynamic enough to change the options
and opinion a customer has about the product. However, their absence may result in
complaints from the customer. Performance requirements, on the other hand, are
expected pre-requisites that customers know and they are essential influential factors
on the customer’s decision-making options on products or services. These are critical
pre-requisite requirements that create high levels of satisfaction when employed

4

appropriately and otherwise if not used. The last requirement termed delighters are
those requirements that do not engender any complaints from the customers when
absent however surprises the customer when present. Delighters are sometimes referred
to as attractive or “wow” factors [11].

2.3 Competency framework for software engineers

Competency Framework for Software Engineers (CFSE) is a framework that
facilitates, identifies the training needs, and guides the design of software engineers’
competencies. The design is based on the activities and interactions of engineers during
the software development process. The constructs of this framework are under the main
classification of competency (Hard and Soft). Hard competency category relates to the
technical aspects of software engineering. These aspects are based on the definition of
the SWEBOK roles in software engineering. They are project management,
requirement analysis, software design, programming, validation and verification tests,
configuration management, quality, tests, documentation and maintenance. The soft
part of the categorization is classified into social and personal. Social aspects include
interpersonal relations, cooperation and work in a team, and handling and conflicts
resolution. Personals on the other hand includes development in the job, personal
development, rights and limits. It can broadly be considered as “a set of knowledge,
abilities and key behaviors, with special emphasis on the soft skills” [12].

The objective is to create a classificatory system that identifies and explains
satisfaction levels of software engineers' competencies. Therefore, we consider the
framework suitable. This is because it considers both soft and hard competency and this
is the bigger objective we intend to achieve. Furthermore, the framework considers
granularity, which is essential for fitting the work to the community. In line with the
objective of this study, we focus on the soft competency aspect of the framework and
merge it with Kano model. This resulted in a unified framework for identifying and
classifying the satisfaction levels of soft competencies. For detailed analysis of the
individual meanings of critical variables of CFSE, readers can refer to the original paper
of [12]. The detail of the proposed framework for this paper is explained in the next
section.

3 A Unified framework of Soft competency satisfaction levels for
software engineers (UFSCSL)

As mentioned earlier, the framework is derived from the CFSE and Kano model.
From the CFSE we made use of the soft competency category since our aim is to
identify and classify only the soft competency. From among frameworks such as [24–
27] for identifying software engineering competencies CFSE framework is the one that
has more granularity, thus making it easy for in-depth analysis. In addition, the Kano
model has been used for research work in software engineering, but not for analyzing
competencies. Thus, this provides a means to chart a new path for competency research.
The soft part of the CFSE framework is first categorized into socials and personals and

5

each have lower granularity as shown in figure 1. The variables of the Kano model
(basic, performance, and delighters) were included (see section 2.4), to provide the
satisfaction levels for the competencies. See figure 1 for the “soft satisfaction levels of
software engineers” framework.

Fig. 1. Unified framework of soft competency satisfaction levels for software engineers
(UFSCSL)

To use the UFSCSL, first, the competencies are identified and classifying using the

variables in [12]within the frameworks. Then each competency identified or classified
is subjected to the metrics of Kano model to determines its satisfaction levels. Thus,
given as basic, performance and delighter competencies for socials (interpersonal
relations, cooperation and work in a team, and handling and conflicts resolution) and
personals (development in the job, personal development, rights and limits).

6

4 Methodology

4.1 Data Collection

An exploratory qualitative study was adopted. Specifically, [28, 29] qualitative
research guide was employed to extrapolate the required data. We agree with the
philosophy that an individual’s behavior is influenced by the meanings attached to
events [30]. Thus, one hundred and thirty-eight (138) participants were drawn from
workers in various positions within the industry: practitioner/software
engineers/managers/supervisors/mentor. All participants were from software industries
based in Norway. A semi-structured interview was used for data collection. Interviews
were face-to-face and focused on expected skills of a software developer. Each
interview session lasted for about 1 hours. The interview was conducted with the
support of assistants. Table 1 represents the distribution of respondents’ characteristics.

Table 1. Respondents Characteristics

Years of Experience Category Freq
1 - 5 40
6 – 10 17
11 - 15 7
16 - 20 15
21 - 25 11
26 - 30 13
31 - 35 2
36 - 40 2
unspecified 31

Background Software 72
Hardware 11
Research
/university

11

Others 19
Unspecified 25

4.2 Data analysis

A thematic analysis offers an accessible means for organizing and describing a
dataset under specific themes. Currently, there is no widely agreed way of going about
how to use the method [31]. The soft competency satisfaction framework was therefore
adopted to guide the analysis.

Both inductive analysis and deductive analysis were used. The coding of the data
was done without any pre-defined framework. This enable the themes to emerge from
the data. The framework (UFSCSL) was then applied to further code the theme that
emerged from the data. Two categories were used on the bases of the epistemology of
this research. That is, we were aware of the competencies that have been identified and
exist in literature, but our epistemology was that within those identified there will be
different satisfaction levels. Hence, we employed both categories in this paper. We

7

outline the following steps below based on the outcome of our analysis and guided by
the steps of [31].

Step 1 Familiarization of the data

The interview was conducted with the help of assistants, with the aim of capturing
large groups of respondents. Each interviewer transcribed his or her own interview. The
author of this paper acquainted himself by reading through the transcribed scripts.
During this stage, notes were taken in cases where there were difficulties in
understanding aspects of the data. Further discussions were made with the head of data
collection to resolve any ambiguity in the data.

Step 2 Generating initial codes

Initial codes were generated from the data by extracting keywords. This was done
without recourse to initial pre-defined coding framework. The total number of
competencies that were identified from the transcribed data were six hundred forty-one.

Step 3 Searching for themes

After the initial code, all initial codes were grouped into themes, this facilitated the
identification of themes. These themes were generated without resort to pre-defined
coding framework. Three hundred sixty soft competencies were identified at this stage.

Step 4 Reviewing themes

The themes were compared with existing themes. That is, a pre-defining coding
framework was also used. In this case, the Rivera-Ibarra et al. [12] CFSE framework
was used.

Step 5 Defining and naming

Next defined themes and meanings were assigned. These names and meanings were
reviewed with literature before the competencies were validated using the variables in
the Kano model. This stage resulted in 22 basics, 26 performance and 16 delighter
competencies.

Phase 6 Producing the report

The emerged themes that resulted from comparing data themes and themes from the
framework were used to produce the results discussed in the next section.

5 Results

5.1 RQ1: What are the different satisfaction levels derived from using a
software soft competency?

We present the result in Table 2 using the framework (UFSCSL) developed for this
paper. The results show the individual competencies and their satisfaction levels, that
is: basic, performance, and delighters. They were grouped according to the broader

8

theme of soft competency: social and personal. We also provided definitions using the
classification levels from the Kano model for the competencies.

Table 2. soft competencies and their satisfaction Levels

Socials
 Satisfaction

levels
Software engineer competencies

Interpersonal
relations

Delight (i) communicate to outside world, and (ii) sociable
Performance (i) communication skill, (ii) adaptability, (iii)

human skill, and (iv) interpersonal skill.
Basic (i) social skills and (ii) contributing to the society.

Cooperation
and work in
team

Delight (i) Excellent teacher, (ii) see bigger picture, and
(iii) leadership.

Performance

(i) team work, (ii) team organizer, (iii)
approachable, (iv) open and communicating, (v)
learn from others, and (vi) voice your own
opinions.

Basic

(i) Cooperation, (ii) maturity, (iii) teach and share
knowledge, and (iv) dedication to work.

Handling and
solving
conflicts

Delight (i) humbleness, (ii) customer awareness, and (iii)
understand customer needs.

Performance (i) meeting skills, and (ii) contact with clients.
Basic (i) Listen ears, (ii) compromise, and (iii) empathy.

Personals

Development
in the job
environment

Delight (i) unafraid, (ii) creative and brave, and (iii) think
outside the box.

Performance

(i) persistence, (ii) flexible, (iii) versatile, (iv)
focus, (v) accuracy, (vi) analytical skills, (vii)
logical mindset and keep and overview, and (viii)
creativity.

Basic

(i) Willingness to learn, (ii) curious, (iii)
passionate about your job, (iv) ask questions, (v)
confidence, (vi) honest and responsible.

Personal
development

Delight

(i) can apply theories in application, (ii) see
opportunity in systems, (iii) initiative, (iv) separate
work and being available, and (v) self-sufficient.

Performance

(i) precise and detail oriented, (ii) self-reliance, (ii)
independence (iv) understand needs for further
development, and (v) know the working
environments.

Basic (ii) pragmatic, (iii) patience, and (iii) open to new
ideas.

Right and
limits

Delight -
Performance (i) attention to detail
Basic (i) Introspection and admit error, (ii) admit

ignorance, and (iii) interest in the field.

9

Basic

From the interview data and the analysis, basic competencies are pre-requisite
competencies that are necessary and are expected by the users of the competency.
Mostly they are taken for granted. Users see these competencies as natural when
delivered properly. However, when delivered poorly, users will complain.

Performance

From the interview data and the analysis performance competencies are what users
expect and can articulate. They are mostly in the minds of the users and when they are
delivered well, they create more satisfaction. These competencies can be described as
“uni-dimensional” competency, in that the satisfaction grows exponentially when
executed properly.

Delighters

From the interview data and the analysis, the delighter competencies are unexpected
by the user. Mostly unexpected by the user but increases the delight and surprise when
available however its absence may have no effect on user.

5.2 RQ2: Which of these soft competencies are perceived as most valuable for
Software engineering?

As mentioned earlier, delighters are attractive or wow factors that valuable for the
development of a product [11]. Therefore, we present our delighter competencies as the
most valuable or essential competencies for software engineering. The table 3 shows
the competency based on Rivera-Ibarra et al. CFSE framework [12]. The table shows
the competency category and the identified essential soft competency for software
engineers that are useful for software development.

Table 3. Most valuable competencies.

Competency area Competency name
Socials
Interpersonal relations Communicate to outside world

Sociable

Cooperation and work in team

Excellent teacher
See bigger picture
Leadership

Personals

Handling and solving conflicts

Humbleness
Customer awareness
Understand customer needs

Development in the job environment

Unafraid
Creative and brave

10

Think outside the box

Personal development

Can applied theories in application
See opportunity in systems
Initiative
Separate work and being available
Self-sufficient

6 Discussions

Following our analysis, we aimed to provide a satisfaction level for the competencies
identified from our primary data. A total of 63 competencies emerge from our data. Out
of that 29 was for social competencies and 34 was for personals competencies with
three satisfaction levels.

Table 4. Total number of soft competencies based on the satisfaction levels
classification

Competency area Satisfaction levels Total Number
Socials
Interpersonal relations Delight 2

8 Performance 4
Basic 2

Cooperation and work in team Delight 3
13 Performance 6

Basic 4
Handling and solving conflicts Delight 3

8 Performance 2
Basic 3

Personals
Development in the job
environment

Delight 3
17 Performance 8

Basic 6
Personal development Delight 5

13 Performance 5
Basic 3

Right and limits Delight 0
4 Performance 1

Basic 3
Total

Table 4 shows the number of competencies and number of satisfactions of the

competency area. Under socials competency area cooperation and work in team had 13
competencies, interpersonal relations and handling and solving conflicts had 8
competencies each. The cooperation and work in team competency reflect the team
competency category of Sedelmaier and Landes [3]. Under personals competency area,

11

development in the job environment had 17 competencies, followed by personal
development with 13 and right and limits with 4 competencies.

Table 5. Identified soft competencies and prior work.

Category Identified soft
competency

Comparison

Socials

Interpersonal relations

Sociable, communication
skill, adaptability, human
skill, interpersonal skill,
social skills

Consistent with prior
work

Communicate to outside
world, contributing to the
society,

New observations

Cooperation and work in
team

See bigger picture,
leadership, team work,
Cooperation, teach and
share knowledge, team
organizer, approachable,
open and communicating,
learn from others

Consistent with prior
work

Maturity, Excellent
teacher, voice your own
opinions. dedication to
work

New observations

Handling and solving
conflicts

Customer awareness,
understand customer
needs, meeting skills,
contact with clients,
empathy

Consistent with prior
work

Humbleness, compromise New observations
Personals

Development in the job
environment

Unafraid, creative and
brave, think outside the
box, persistence, flexible,
versatile, analytical skills,
creativity, Willingness to
learn, curious, ask
questions, confidence,
focus, accuracy, logical
mindset and keep and
overview, honest and
responsible

Consistent with prior
work

Passionate about your job New observations

Separate work and being
available, self-sufficient,

Consistent with prior
work

12

Personal development

precise and detail
oriented, self-reliance,
independence, pragmatic,
patience, initiative, open
to new ideas.
Can apply theories in
application, see
opportunity in systems,
understand needs for
further development,
know the working
environments

New observations

Right and limits

Attention to detail, Consistent with prior
work

Introspection and admit
error, admit ignorance,
interest in the field

New observations

Some of the identified competencies in the categories are consistent with exiting

literature such as the work of [3, 15, 16, 32–34]. Table 5 highlights the new observations
and comparison to prior work. With regard to satisfaction levels, competencies were
identified in all the categories except rights and limits delighters. A total of 16 essential
competencies using the Kano model was identified. These competencies are consistent
with literatures such as [35, 36]. Furthermore we have been able to create a satisfaction
level, that adds to the works of [10, 37] that made argument for based competencies.

On the essential soft competencies for software engineers, we have been able use
model analysis to extrapolate the essential competencies that are in agreements with the
work of [35, 36, 38]. Thus, providing a new way of identifying essential competencies.

The novelty in this work are: (i) observations of new soft competency from empirical
data that are highlighted in table 4 and (ii) the Unified framework of soft competency
satisfaction levels for software engineers (UFSCSL). The UFSCSL has the ability to
identify soft competencies of software engineers and also provide a satisfaction levels
of the competency. Thus, serving as insurance model for users, possessors and the
educators. In short, the major stakeholders of software engineering competency
development are considered in this framework.

The study has both practical and research implications. From the perspective of the

users of competencies, they can use the classification to determine which competencies
will be valuable for employment. On the part of the possessor, they can use the
classification levels to evaluate what they possess. Furthermore, educators can use the
classification levels to adjust their training. Additionally, the framework which was
proposed (UFSCSL) can be used for constant evaluation on old competencies and also
on new ones.

13

7 Conclusion

The study has analyzed, identified and created a classification that can be used by
the software community. This was done by synthesized existing relevant literature. The
empirical work was based on Kano et al. [11] and Rivera-Ibarra et al. [12] CFSE
framework. The study resulted in the identification of competencies, classification
levels and essential competencies of software engineers. The study charts a new path
of identifying essential or valued competencies of software engineers by using Kano
model that has on been applied on products and services. Further studies should be done
to understand how competencies within the satisfaction level can change.

The scope of the data collection was limited to companies situated in Norway; it may
therefore limit the ability to generalize the findings universally. Nevertheless, most of
the companies that the interviewees worked for has global representation and dealings
outside Norway. With the development of competency satisfaction levels, we call for
further studies to understand how specific competencies evolves within the satisfaction
level.

Acknowledgement
The author would like to acknowledge Prof. Pekka Abrahamsson for his support in providing

the dataset for this research and Dr. Hadi Ghanbari for his guidance.

14

References

1. Weinberg, G. M. (1971). The Psychology of Computer Programming (Silver Ann.).
New York, New York 10027 Usa: Dorset House Publishing.

2. IEEE. (2014). Software Engineering Competency Model (SWECOM). IEEE. Retrieved
from http://www.dahlan.web.id/files/ebooks/SWECOM.pdf

3. Sedelmaier, Y., & Landes, D. (2014). Software Engineering Body of Skills (SWEBOS
). In 2014 IEEE Global Engineering Education Conference (EDUCON) (pp. 395–401).
IEEE. doi:10.1109/EDUCON.2014.6826125

4. Lenberg, P., Feldt, R., & Wallgren, L. G. (2015). Behavioral software engineering: A
definition and systematic literature review. Journal of Systems and Software, 107, 15–
37. doi:10.1016/j.jss.2015.04.084

5. Harris, K. S., & Rogers, G. E. (2008). Soft Skills in the Technology Education
Classroom : What Do Students Need. Technology Teacher, 68(3), 19–25.

6. Moreno, A. M., Sanchez-segura, M., Medina-dominguez, F., & Carvajal, L. (2012). The
Journal of Systems and Software Balancing software engineering education and
industrial needs. The Journal of Systems & Software, 85(7), 1607–1620.
doi:10.1016/j.jss.2012.01.060

7. Broadbent, M., Dampney, C. N. G., Lloyd, P., & Hansell, A. (1992). Roles ,
Responsibilities and Requirements for Managing Information Systems in the 1990s.
International Journal of Information Managemet, 72, 21–38.

8. Colomo-palacios, R., Casado-lumbreras, C., Soto-acosta, P., García-peñalvo, F. J., &
Tovar-caro, E. (2013). Computers in Human Behavior Competence gaps in software
personnel : A multi-organizational study. Computers in Human Behavior, 29(2), 456–
461. doi:10.1016/j.chb.2012.04.021

9. Holtkamp, P., Jokinen, J. P. P., & Pawlowski, J. M. (2015). Soft competency
requirements in requirements engineering, software design, implementation, and
testing. Journal of Systems and Software, 101, 136–146. doi:10.1016/j.jss.2014.12.010

10. Thurner, V., Schlierkamp, K., Bottcher, A., & Zehetmeier, D. (2016). Integrated
development of technical and base competencies: Fostering reflection skills in software
engineers to be. In IEEE Global Engineering Education Conference, EDUCON (pp.
340–348). Abu Dhabi, UAE: IEEE. doi:10.1109/EDUCON.2016.7474576

11. Kano, N., Seraku, N., Takahashi, F., & Tsuji, S. (1984). Kano. Attractive Quality and
Must-Be Quality. The Journal of the Japanese Society for Quality Control, 14, 39–48.

12. Rivera-Ibarra, J. G., Rodríguez-Jacobo, J., & Serrano-Vargas, M. A. (2010).
Competency Framework for Software Engineers. In 2010 23rd IEEE Conference on
Software Engineering Education and Training (pp. 33–40).
doi:10.1109/CSEET.2010.21

13. Andrews, J., & Higson, H. (2008). Graduate Employability, ‘Soft Skills’ Versus ‘Hard’
Business Knowledge: A European Study. Higher Education in Europe, 33(4), 411–422.
doi:10.1080/03797720802522627

14. Trivellas, P., & Reklitis, P. (2014). Leadership Competencies Profiles and Managerial
Effectiveness in Greece. Procedia Economics and Finance, 9(Ebeec 2013), 380–390.
doi:10.1016/S2212-5671(14)00039-2

15. Licorish, S. A., & Macdonell, S. G. (2013). Differences in Jazz Project Leaders ’

15

Competencies and Behaviors : A Preliminary Empirical Investigation. In 2013 6th
International Workshop on Cooperative and Human Aspects of Software Engineering
(CHASE) (pp. 1–8). IEEE. doi:10.1109/CHASE.2013.6614725

16. Noorman, M., Akmal, M., Osman, F., & Ibrahim, Z. (2015). Malaysian Computer
Professional : Assessment of Emotional Intelligence and Organizational Commitment.
In Procedia - Social and Behavioral Sciences (Vol. 172, pp. 238–245). Elsevier B.V.
doi:10.1016/j.sbspro.2015.01.360

17. Lee, Y. C., Sheu, L. C., & Tsou, Y. G. (2008). Quality function deployment
implementation based on Fuzzy Kano model: An application in PLM system.
Computers and Industrial Engineering, 55(1), 48–63. doi:10.1016/j.cie.2007.11.014

18. Gangurde, S., & Patil, S. (2018). Benchmark product features using the Kano-QFD
approach: a case study. Benchmarking: An International Journal, 25(2), 450–470.
doi:http://dx.doi.org/10.1108/MRR-09-2015-0216

19. Huang, J. (2018). Application of Kano model and IPA on improvement of service
quality of mobile healthcare Jui-Chen Huang, 16(2).

20. Lehtola, L., & Kauppinen, M. (2006). Suitability of requirements prioritization methods
for market-driven software product development. Software Process Improvement and
Practice, 11(1), 7–19. doi:10.1002/spip.249

21. Liu, X. F. (2000). Software quality function deployment. Potentials, IEEE, 19(5), 14–
16. doi:10.1109/45.890072

22. Piaszczyk, C. (2011). Model Based Systems Engineering with Department of Defense
Architectural Framework. Systems Engineering, 14(3), 305–326. doi:10.1002/sys

23. Richardson, I. (2001). Software Process Matrix: A Small Company SPI Model. Software
Process: Improvement and Practice, 6(Daft 1992), 157–165. doi:10.1002/spip.144

24. Orsoni, A., & Colaco, B. (2013). A Competency Framework for Software Development
Organizations. In 2013 UKSim 15th International Conference on Computer Modelling
and Simulation (pp. 507–511). IEEE. doi:10.1109/UKSim.2013.101

25. Acuña, S. T., & Juristo, N. (2004). Assigning people to roles in software projects.
Software - Practice and Experience, 34(7), 675–696. doi:10.1002/spe.586

26. Linck, B., Ohrndorf, L., Kiel, T. D. L., Magenheim, J., & Neugebauer, J. (2013).
Competence model for informatics modelling and system comprehension. In 2013 IEEE
Global Engineering Education Conference (EDUCON) (pp. 85–93). IEEE.
doi:10.1109/EduCon.2013.6530090

27. Tuffley, D. (2012). Optimising virtual team leadership in Global Software
Development. IET Software, 6(March 2011), 176–184. doi:10.1049/iet-sen.2011.0044

28. Mason, J. (2002). Qualitative Researching. Qualitative Research Journal (Vol. 41).
doi:10.1159/000105503

29. Myers, M. D., & Newman, M. (2007). The qualitative interview in IS research:
Examining the craft. Information and Organization, 17(1), 2–26.
doi:10.1016/j.infoandorg.2006.11.001

30. Wohlin, C., & Aurum, A. (2015). Towards a decision-making structure for selecting a
research design in empirical software engineering. Empirical Software Engineering,
20(6), 1427–1455. doi:10.1007/s10664-014-9319-7

31. Braun, V., & Clarke, V. (2006). Full-Text. Qualitative Research in Psychology, 3(2),
77–101. doi:10.1191/1478088706qp063oa

16

32. Kropp, M., Meier, A., & Perellano, G. (2016). Experience Report of Teaching Agile
Collaboration and Values Agile Software Development in Large Student Teams. In
2016 IEEE 29th International Conference on Software Engineering Education and
Training (CSEET) (pp. 76–80). IEEE. doi:10.1109/CSEET.2016.30

33. Robal, T., Ojastu, D., Kalja, A., & Jaakkola, H. (2015). Managing Software Engineering
Competences with Domain Ontology for Customer and Team Profiling and Training. In
2015 Portland International Conference on Management of Engineering and
Technology (PICMET) (pp. 1369–1376). Portland International Conference on
Management of. doi:10.1109/PICMET.2015.7273171

34. Samuelsen, T., Colomo-palacios, R., & Kristiansen, M. (2016). Learning software
project management in teams with diverse backgrounds. In Fourth International
Conference on Technological Ecosystems for Enhancing Multiculturality – TEEM 16.

35. Turley, T., & Bieman, M. (1995). Competencies Nonexceptional of Exceptional and
Software Engineers. J. Systems Software, 1995:28(28), 19–38.

36. Chang, J., Wang, T., & Lee, M. (2016). Impacts of Using Creative Thinking Skills and
Open Data on Programming Design in a Computer-supported Collaborative Learning
Environment. In 2016 IEEE 16th International Conference on Advanced Learning
Technologies (pp. 396–400). doi:10.1109/ICALT.2016.78

37. Thurner, V., Axel, B., & Andreas, K. (2014). Identifying Base Competencies as
Prerequisites for Software Engineering Education. In IEEE Global Engineering
Education Conference (EDUCON) (pp. 1069–1076).
doi:10.1109/EDUCON.2014.6826240

38. Suhartono, J., Sudirwan, J., & Background, A. (2016). Academic Competence of
Computer Science Graduate Degree from the Employer ’ s Perspective. In 2016
International Conference on Information Management and Technology (ICIMTech)
(pp. 176–181). IEEE. doi:10.1109/ICIMTech.2016.7930325

IV

THE ESSENTIAL COMPETENCIES OF SOFTWARE
PROESSIONALS: A UNIFIED COMPETENCIES

GATE FRAMEWORK

by

Nana Assyne, Hadi Ghanabari & Mirja Pulkkinen

Information and Software Technology, under revision

Request a copy from the author.

V

TOWARDS A SECURITY COMPETENCIES
OF SOFTWARE DEVELOPERS

by

Nana Assyne, 2020

W. Yaokumah, M. Rajarajan, J.‐D. Abdulai, I. Wiafe, & F. A. Katsriku (Eds.),
Modern Theories and Practices for Cyber Ethics and Security Compliance

(pp. 73‐87)

Reproduced with kind permission by IGI Global.

This is a self-archived version of an original article. This version
may differ from the original in pagination and typographic details.

Author(s):

Title:

Year:

Version:

Copyright:

Rights:

Rights url:

Please cite the original version:

In Copyright

http://rightsstatements.org/page/InC/1.0/?language=en

Towards a Security Competence of Software Developers : A Literature Review

© 2020 IGI Global

Published version

Assyne, Nana

Assyne, N. (2020). Towards a Security Competence of Software Developers : A Literature
Review. In W. Yaokumah, M. Rajarajan, J.-D. Abdulai, I. Wiafe, & F. A. Katsriku (Eds.), Modern
Theories and Practices for Cyber Ethics and Security Compliance (pp. 73-87). IGI Global.
https://doi.org/10.4018/978-1-7998-3149-5.ch005

2020

Copyright © 2020, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

DOI: 10.4018/978-1-7998-3149-5.ch005

Software growth has been explosive as people depend heavily on software on daily basis. Software
development is a human-intensive effort, and developers’ competence in software security is essential
for secure software development. In addition, ubiquitous computing provides an added complexity to
software security. Studies have treated security competences of software developers as a subsidiary of
security engineers’ competence instead of software engineers’ competence, limiting the full knowledge
of the security competences of software developers. This presents a crucial challenge for developers,
educators, and users to maintain developers’ competences in security. As a first step in pushing for the
developers’ security competence studies, this chapter utilises a literature review to identify the security
competences of software developers. Thirteen security competences of software developers were identified
and mapped to the common body of knowledge for information security professional framework. Lastly,
the implications for, with, and without the competences are analysed and presented.

The current explosive growth being observed in the software industry requires high-level correspond-
ing software security. This is because “software vulnerabilities or flaws are often key entrance door for
attackers” (Sametinger, 2013). They include buffer overflows, SQL injection, cross-site scripting, stack
overflow, inconsistent error handling, and so on (McGraw, 2004). Previously, software security used
to be an afterthought, but recently it is being addressed actively from the planning stage of software
development. Additionally, in today’s software development process, software testing includes security
testing instead of only functional testing (Mano, Duhadway, & Striegel, 2006), thus making the security

Nana Assyne
 https://orcid.org/0000-0003-0469-6642

University of Jyväskylä, Finland

competences of the developers more eminent in software development. Coupled with the fact that research
work on software developers’ competence is not lacking (Lenberg, Feldt, & Wallgren, 2015), the security
competences of software developers should be well recorded in literature. But on the contrary, that is
not the case. However, when they are recorded, they are recorded as a subsidiary of security engineers’
competence instead of software engineers’ competence, thus making it counterproductive to develop and
maintain the security competences of software developers to the benefit of the possessors (developers),
those who train the possessors of the competences (educators), and users of the competences (industry).

McGraw (2004) defines software security as “the idea of engineering software so that it continues
to function correctly under malicious attack”. And, Hazeyama & Shimizu (2012), goes further with the
definition by stating that “software security deals with security during the whole software development
process”. On the other hand, software engineering competence is defined by the Institute of Electrical
and Electronics Engineers (IEEE) as knowledge, skills, and attitudes of software developers to fulfil a
given task in a software development project (IEEE, 2014). Thus, the author of this chapter defines se-
curity competence of software developers as those specific security competences required by a developer
to deal with security during the whole software development process. An example is an SQL injection
skills and security pattern skills.

As mentioned above, one cannot afford to leave software security as an afterthought; developers
must strive to improve software security issues from the planning stage to the maintenance stage. The
works of Cheng et al. (2008), Hilburn and Mead (2013), and Riehle and Nürnberg (2015) are studies
that investigated methods to handle software security using the lifecycle of software development. It is
also well established that vulnerabilities and flaws are the doors attackers exploit. Works such as Kaur
and Kaur (2016), McGraw (2004), Park et al. (2010), and Wegerer and Tjoa (2016) confirm this asser-
tion in literature. In addition, assailants of software systems are persons or entities, who are active and
keep on improving their skills in attacking software systems to satisfy their desire (Cheng et al., 2008).
However, the security competences of the developers of the software are not well established in literature.

Whilst introducing security engineering environment studies for software developers, Cheng et al.
(2008) point out that there is urgent need to create an environment that integrates various tools and pro-
vides comprehensive facilities to the designers, developers, users, and maintainers of a software system
(Cheng et al., 2008). The development and maintenance of such an environment requires knowledge of
security competences of the developers to prepare and develop them to withstand the intrinsic difficulty
of assailants of a software system (Cheng et al., 2008). This implies that security know-how of the de-
veloper is very crucial. Hazeyama and Shimizu (2012) and Hilburn and Mead (2013) reiterate the need
for awareness to be channelled towards developers’ skills regarding security. However, previous studies
provide less concise and coordinated information on security competences of developers.

Summarily, these competences are scattered in several different studies. Thus, the following ques-
tions arise: what are the security competences of software developers? How can they be improved? As
part of broader research on software developers’ competences, we set our research question as what are
the security competences of a software developer that are available in literature? The remainder of this
work includes: Section 2 presents previous studies and background. Section 3 looks at the methodology
used in this study. Section 4 looks at the results. Section 5 and 6 presents the discussion and conclusion.

In this section of the study, three literature review studies on software developers’ competences are iden-
tified. These literature reviews are Cruz et al. (2015); Moustroufas et al. (2015) and Vishnubhotla et al.
(2018). Two of the studies utilized systematic literature review methods and the last study employed a
traditional literature review method. Cruz et al. (2015) and Vishnubhotla et al. (2018) that used system-
atic literature review, focused on specific areas of software developers’ competence. Cruz et al. (2015)
investigated the personality of software engineers and their roles in software development. Vishnubhotla
et al. (2018) also presented the capability and competence measurement of software engineers, including
team working in agile software development. Moustroufas et al. (2015) utilized a traditional literature
review to evaluate the adequacy of software engineer competences and created a software competence
profiling model for recruiting software engineers. Moustroufas et al. (2015) investigated and reviewed
software developers’ competence in general contrary to the first two that focused on specific areas. The
software security competence of developers did not appear in any of the three studies, thus the need for
this paper.

It is also worth mentioning that there are several efforts being made to improve security matters in
the development of software. They include the development processes and the methods to reduce vul-
nerabilities and flaws in software. Hazeyama & Shimizu (2012) proposed a software security learning
process using the traditional software development cycle. Cheng et al. (2008) reiterated for security
engineering environment for software development since security requires continuous support. Thus,
they make use of the lifecycle of software engineering for their solution which is based on International
Organization for Standardization (ISO) and the International Electrotechnical Commission (IEC) stan-
dards. The work of Verdon (2006) and McGraw (2004) examined the security policies and best practices
that are essential for software developers.

The Open Web Application Security Project (OWASP) that is OWASP top 10 -2017 that focused on
software developers and designers stated that “insecure software is undermining our financial, healthcare,
defense, energy, and other critical infrastructure.” The increasing complexity and the connectedness of
software, is making it more difficult in attaining an increase in application security. Additionally, we
face the rapid process of developing software which increases our common security risks. This makes
it impossible to accept simple security problems as listed in the OWASP top 10 – 2017. The top five on
the list are (i) Injection, (ii) Broken Authentication, (iii) Sensitive Data Exposure, (iv) XML External
Entities (XXE), and (v) Broken Access Control. The rest of the OWASP top 10 – 2017 are (vi) Security
Misconfiguration, (vii) Cross-Site Scripting (XSS), (viii) -Insecure Deserialization, (ix) Using Components
with Known Vulnerabilities, and (x) Insufficient Logging & Monitoring (OWASP, 2017). Such security
problems require corresponding skills to handle them. Given this, software developers’ need to develop
their security competences. For them to be able to develop and maintain such competences, it requires
that such competences are identified and placed in the appropriate domain. Thus, the need for this study.

A survey to identify the guidance available on the web to help software developers’ to fix security
matters was conducted by Acar et al. (2017). They concluded that not all the information on the web is
readily made for fixing security issues (Acar et al., 2017). Therefore, it may require security competences
of the developers’ to adjust the available code to meet the security demand. Hilburn & Mead (2013),
developed a software security assurance model by providing capabilities. The capability of the assurance
model was addressed by utilizing the knowledge areas. The main knowledge areas of assurance model
that were identified were: assurance across lifecycles, risk management, assurance assessment, assur-

ance management, system security assurance, system functionality assurance and system operational
assurance (Hilburn & Mead, 2013). Even though, this work focused on assurance in software security, it
also provided some capabilities or knowledge areas that are useful for this paper. Work such as Meng et
al. (2018); Miller and Heymann (2018) and Qian et al. (2018) provide some information on the security
competences of software developers. Therefore, we employ these studies stated above and other existing
studies to set the agenda for identifying the security competences of software developers and highlight
the importance of software developers’ security competences for further studies. Thus, this study seeks
to employ traditional literature reviews to identify the security competences of software developers as
the first step in broader research.

In presenting Common Body of Knowledge (CBK) for Information security professionals, Theo-
haridou & Gritzalis (2007) made a case for technical and behavioural skills for information security
professionals. The framework was achieved using 135 academic intuitions from Africa, Asia, Australia,
Europe, and South and North America to provide a skill set for information security professionals. The
framework can be utilized in identifying and assessing the skills of information security professionals.
The framework has three major areas: information communications technology skills area, security skills
area and behavioural skills area. This study aimed at identifying the security competences of software
developers from literature using traditional literature review and maps the result to the Common Body
of Knowledge for information security professional skills framework (CBK). As a result, the CBK
framework will be employed as a theoretical lens for this study.

Primarily a literature review will be mainly employed in this study. Fink defines a research literature
review as “a systematic, explicit and reproducible method for identifying, evaluating and synthesizing
the existing body of completed and recorded work produced by researchers, scholars, and practitioners”
(Fink, 2010, p. 3). In this section, an attempt is also made to distinguish between a traditional literature
review and a systematic literature review. Systematic literature review is defined by Kitchenham and
Charters as “a form of secondary study that uses a well-defined methodology to identify, analyse and
interpret all available evidence related to a specific research question in a way that is unbiased and (to
a degree) repeatable” (Kitchenham & Charters, 2007, p. vi, pp. 8). A traditional literature review is
used to demonstrate a gap or a problem in an area one seeks to research without an explicit method for
reviewing the literature (Moustroufas et al., 2015). Since this is the first step towards broader research,
a traditional literature review will be utilized.

Given this, the IEEE database was used as the database to find studies that investigated software
security. The identified competences were grouped into two areas: programming related competences
and non-programming related competences. The detail of the classification is explained in the result
section. The identified competences were then mapped to technical and behavioural skills of information
security professionals’ skill set framework. With regard to data collection, data was collected from the
IEEE database. The search strings that were utilized for the search were: software engineers/developers’
skills, competence, and security knowledge. This was done without any strict protocol. Only peer-review
papers were employed for the study. The names of the competences were extracted, descriptions of
the competences were recorded into an excel sheet for the next stage of the research. On data analysis,
competences with the same meaning were group together. Different implications of the competences

were analysed and recorded against the individual competences identified. Using conventional content
analysis guideline of Hsieh & Shannon (2005), competences were classified into two areas. They are
programming related competences and non-programming related competences. Lastly, the identified
competences were mapped to the information security professional skills set framework.

The identified competences were categorized into two. They are programming related competences
and non-programming related competences. Programming related competences are those that involve
coding. Non-programming related competences are those that do not directly deal with coding. The
competences were mapped to the common body of knowledge information security professional skills
framework. Table 1 depicts the competence area, the competence name, the citation of the papers that
the competences were extracted from and the CBK of information security professional’s framework.

Table 1 shows the competences identified, their classifications, the literature from which the compe-
tence is extracted from and their relationship to CBK of information security professionals’ framework.
In all 13 competences were identified, nine competences were programming related and 4 competences
were non-programming related. Seven of the competence maps to both information communication
technology and security criterial and 6 maps to information communication technology. The next section
provides the definition/descriptions of the competences and implications.

The art of adopting a secure practice in the development of software. This includes the skill of being
able to guide against vulnerabilities and flaws in software development. The majority of vulnerabilities
and flaws in software appear when developers ignore secure practices in programming. More details
of secure programming/coding competences can be found in the works of Mano et al. (2006); Miller &
Heymann (2018) and Zainuddin & Normaziah (2011).

Without the adoption of secure coding, developers may create software with flaws and vulnerabilities.
As pointed out by Sametinger (2013), vulnerabilities and flaws are the key entrants for attackers. Improv-
ing secure coding or programming will reduce security flaws. Secure coding must be part of a software
development curriculum. There is a need to include fundamental security principles programming
courses. Organizations must continue to introduce fresh courses on secure coding. In today’s software
development, secure coding must be started from the planning stage of the development to the end of the
software development lifecycle. This implies that developers’ competence in secure coding is essential.

As suggested by Mano et al. (2006), secured programming must be taught in the early part of a software
program. It must also be recognized as important skill for software developers.

Mobile devices may have software applications that we utilize frequently or perhaps even daily. The
process of developing apps for these devices differ from the main devices. Furthermore, the database and
the storage for these devices also differ. Thus, requiring different programming and security competences
for the development of mobile apps. More about secure mobile software development skills can be found
in the works of Meng et al. (2018); Qian, Lo, et al. (2018); Qian, Parizi, et al. (2018).

Table 1. Security competences of software developers

Competence
area Competence name Reference

CBK of information security
professionals framework (Theoharidou

& Gritzalis, 2007)

Programming related
skills

Secure programming or
coding skills

(Acar et al., 2017; Mano et al.,
2006; Miller & Heymann, 2018;
Qian, Lo, et al., 2018; Zainuddin &
Normaziah, 2011)

Information communications technology/
security

Secure mobile software
development skills

(Meng et al., 2018; Qian, Parizi, &
Lo, 2018)

Information communications technology/
security

Secure socket layer/transport
layer security (SSL/TLS)
skills

(Verdon, 2006) Information communications technology/
security

Web Application security
development skills (Qian, Lo, et al., 2018) Information communications technology/

security

Integrated development
environment (IDE) security
skill

(Meng et al., 2018) Information communications technology

Code Analysis tools skills (Meng et al., 2018) Information communications technology

Modelling SQL injection
skills

(Kaur & Kaur, 2016; Wegerer &
Tjoa, 2016)

Information communications technology/
security

Handling buffer overflow
skills (Park et al., 2010) Information communications technology/

security

Security patterns skills (Hazeyama & Shimizu, 2012) Information communications technology/
security

Non-Programming
related skills

Software security policy
skills (Verdon, 2006) Information communications technology

Software security best
practice and standard skills

(McGraw, 2004)(Hazeyama &
Shimizu, 2012)(Cheng et al., 2008) Information communications technology

System Security assurance
skills

(Hilburn & Mead, 2013)(Miller &
Heymann, 2018) Information communications technology

Vulnerability assessment
tool skills (Miller & Heymann, 2018) Information communications technology

Most of the developers of these apps lack the necessary skill for developing mobile apps, thereby creat-
ing vulnerabilities for attackers to exploit those devices. The common nature (maybe you could be more
specific here?) of the devices makes them more vulnerable. Thus, delays in providing bug fixings for new
versions of applications can provide a door for attackers. Un-updated operating systems (OS) on mobile
devices can allow attackers to exploit the vulnerabilities on the OS to attack the software application.
Developers must pay attention to secure mobile development skills since techniques used for developing
mobiles are different from that of normal devices. Fundamentally the increased usage of mobile technol-
ogy is putting pressure on mobile developers. Both the trainers and users of the security competence of
developers must adopt modern techniques to upgrade the developers to withstand the modern attackers.

Communication – data transmission between devices - is important in the applications function. This
requires developers’ skills in standard cryptographic protocol and technology for communicating on
the internet. More importantly the use of transport layer security (TLS). Developers need to have skills
in socket programming to enable them to develop this type of communication. More details of secure
socket layer skills can be found in the work of Verdon (2006)

Most attackers take advantage of eavesdropping on transmission and launch their attack. This happens
when strong encryptions are not used. Developers are to have skills in SSL or TLS encryptions technol-
ogy. This is because most devices use the internet as a means to transmit data. Without such skills will
mean that most attackers can eavesdrop on the communication and launch attacks. Developers should
understand and have skills in symmetric encryption.

Skills to protect devices or applications against web attacks such as cross-site scripting, SQL injection,
denial-of-service, etc. Most attackers use vulnerabilities of web applications to attack. It is important
to know that web application security directly relates to websites, web applications and web services
such as APIs. Again, one needs to distinguish between network security and web application security.
Therefore, the competences may defer. More details of secure socket layer skills can be found in the
works Anand & Ryoo (2017); Uskov (2013) and Uskov & Avenue (2013).

In today’s world, most of our business is done using the internet. Thus, not having the skills of develop-
ing software that can reduce web vulnerability will mean that most businesses could face catastrophes
in their dealings. There is the need to have developers who understand using up-to-date skills in proper
authentication methods, encryptions and development of patching for discovered vulnerabilities.

Most developers of software make use of IDE for the development of software. They are software ap-
plications that provide the environments for software development. Thus, they are attitude, skills, and
knowledge for using IDE securities in developing software. More details of IDE security skills can be
found in the work of Meng et al. (2018).

Such environments sometimes if not well protected, can leave vulnerabilities in the software being
developed and can be exploited by attackers. Having the skills related to the security of the use of the
said IDE provides the developer with an environment free of vulnerabilities and flaws. Security updates
are important and other security in the transmission of data. Developers must understand such security
environments and use them appropriately to avoid leaving vulnerabilities that can be taken advantage
of attackers.

Code analysis tools are used during coding to aid in analysing the code of the developer. Such tools
help in identifying bugs and guide the developer to fix them before deploying the applications. They are
attitude, skills, and knowledge for performing code analytics in software development. More details of
code analysis tools skills can be found in the work of Meng et al. (2018)

If developers do not have the skill of using code analysis tools it may mean that time to identify bugs
during coding may be long. It can result in leaving bugs to be exploited by attackers. It is also important
to note that most of these bugs are difficult to be identified by the human eye. Examples of such tools
are PMD java and SonarQube.

It is a code injection technique that attackers take advantage of data-driven applications using SQL state-
ments. It mostly happens when user inputs are not well-typed. They are attitude, skills, and knowledge
for developing software free of SQL injection. More detail of SQL injection skills can be found in the
works of Kaur & Kaur (2016) and Wegerer & Tjoa (2016).

It allows attackers to use malicious SQL statements to attack. This can be used on websites and da-
tabases. This is done by using spoof identity to temper with existing data. Such attacks are known as
vector. Without skills in SQL injection handling in web applications and applications using databases,
it will give attackers the chance to attack just systems since such vulnerability is commonly committed
by developers.

It happens when a program writing to the buffer, which is a memory area set aside to hold data overflow.
Mostly, when malformed inputs are used. they are attitude, skills, and knowledge needed to avoid buffer
overflows. More details of handling buffer overflow skills can be found in the work of Park et al. (2010).

This happens when programmers or developers assume that all inputs may be smaller, but this may not
always be the case. In case there is an overflow, the system may write beyond the allocated size causing
erratic in execution leading to access error or crashing of the system. There is the need to write code
that has built-in protections in the programming codes. The possession of such skills may reduce buffer
overflows in memory, since not all input size can be predicted well by the developer.

Security patterns are applied during software development by developers to achieve security goals.
Such security patterns are pre-defined to guide developers. Having such skills will enable developers
to know what security pattern can be used to achieve a particular security goal. That is the protected
system patterns for confidentiality and integrity of information and error detection/correction pattern
for deducing errors for corrections. More detail of security patterns skills can be found in the work of
Hazeyama & Shimizu (2012).

Without such patterns, developers are to start from scratch to develop such protections. Understanding
or having such skills, they can also develop security patterns to meet a specific goal that is not available.

A software security policy defines the specific rules of security that software to be developed must have.
That means that developers must frequently reference to make sure that the software obeys such policy.
Understanding software security policy as a skill will enable the developer to develop software that will
meet the security policy of the organization, the state and the world in general. Thus, they are attitude,
skills, and knowledge needed to develop software to meet software security policies of the organization,
the state, and the international community. More details of software security policy skills can be found
in the work of Verdon (2006).

If developers do not have the skill to understand security policies and cannot develop software to meet
what the organization, the state, and the international community have set as their policy for software
security, consumers may not trust those software products. Furthermore, software security policies are
standards, established to help reduce security threats. This means that, without them, developers may
develop software according to their skills. This can lead to a lower security standard for the software
they develop.

Best practice and standard are what has been used, tested and agreed as the best way of handling security
in software development. Security best practices and standards can guide developers in secure software
development. Thus, they are the attitude, skills, and knowledge needed to develop software security best
practices and standards. More details of software security policy skills can be found in the works Cheng
et al. (2008); Hazeyama & Shimizu (2012) and McGraw (2004).

If developers do not have such skills, it will mean they may not follow the best way of developing secure
software. Mostly, security best practices and standards serve as a guide, but also provide a means to
develop to meet certain accepted way that leads to trust.

This will mean that software developed by such developers with security best practices and standards
skills will develop secured software, thereby, reducing the vulnerabilities that an attacker can exploit.

These are tools that help developers of software from protecting the data and resources controlled by the
software. They are the first line in for defending the attackers and also assessing the software security.
Thus, they are the attitudes, skills, and knowledge needed to use system security assurance tools when
developing software. More details of system security assurance tools skills can be found in the works
of Hilburn & Mead (2013) and Miller & Heymann (2018).

Mostly, the human resources of the developer alone may not be enough for handling the development of
software. Therefore, tools are needed to support the development of secured software. System security
assurance tools support developers in such a situation. Not having the skill of using such tools will re-
quire more human hand in the development process. Alternatively, they will develop software that does
not provide the required assurance for the people.

Tools are needed to identify the threats and risks that may be in software during development. In using
such tools developers will need some special skills. Thus, they are attitude, skills, and knowledge needed
by developers to use vulnerability assessment tools during software development. More detail of vulner-
ability assessment tool skills can be found in the work of (Miller & Heymann, 2018)

Without such tools, the human factor is to be used for such identification of vulnerability and threats thus,
making such skills important for developers. It is important to note that most of such vulnerabilities are
difficult to be identified by the human eye, thus if developers have no skills in using these tools, it may
mean suck vulnerabilities and threats may be left in the software for attackers to exploit.

As stated in the related works, there were three review papers on software developers’ competences. Two
made use of a systematic review and one used a traditional review. None of these reviews mentioned
the security competences of software developers. Nevertheless, there are some similarities. The work of
Moustroufas et al. (2015) also used a traditional review, which was the same method used by this paper.

The difference between this paper and Moustroufas et al. (2015) is that they looked at software develop-
ers competence in general, whereas this paper looked at is security competence of the developers which
is a specific area in software developers’ competence. On the other hand, the other two reviews also
looked at specific areas of developers’ competence similar to this paper but used a systematic literature
review as a method. This paper agrees with these authors that competences of software developers are
essential for software development and effort must be made to maintain them especially in academia.

In proposing a security engineering environment for software developers, Cheng et al. (2008) claimed
that the tools and the developers must integrate for a secure engineering environment. We support their
assertion, but their work falls short of the implication of not having such an environment. To add to
their work, this paper has provided the security competences of the developers which are essential for
the security engineering environment they proposed. Furthermore, this paper has responded to the call
by Hazeyama and Shimizu (2012) and Hilburn and Mead (2013), that there is the need to pay attention
to security competences of the developers’. This paper has provides some of the competences, therefore
agreeing with Hazeyama and Shimizu (2012) and Hilburn and Mead (2013) that the security competences
of the developers are an essential parts of software developers’ competences. For that reason, we support
their call for more research on security competences of software developers’.

Researchers such as Cheng et al. (2008); Hilburn & Mead (2013) and Riehle & Nürnberg (2015)
have called for security competence development through the lifecycle of developers. We concede, we
could not do that, but we have identified some security competences of the developer that can be used
as a starting stage for security competences of the developers’ studies. Acar et al. (2017)stated that not
all web security resources can be used fully to solve security problems by developers. Therefore, with
the identification of the security competences of software developers, industry players can add to such
work (web resources) by using the competences they have. Thus, this chapter supports the work of
Hilburn & Mead (2013) that, knowing those security competences of software developers will help the
users, possessors, and educators. Meng et al. (2018); Miller and Heymann (2018) and Qian et al. (2018)
provided individual security competences of software developers, though this paper could not provide
a full list, the paper has provided the basis for more work to be done. Theoharidou & Gritzalis (2007)
work identified the technical and behavioural competences of information security professionals. This
assertion has been established in the literature. We did not identify any behavioural security competences
of software developers. Nevertheless, we hold the belief that there are behavioural security competences
of developers and that empirical work must be conducted to identify them.

This chapter proposes a security competence for software developers. It uses a literature review to
identify and classify security competence of software developers. Thirteen security competences of
software developers were identified. They were classified as programming related competence and non-
programming related competence. The author agrees that the methodology used has some limitations.
Nevertheless, the competence identified and the linkage provided between the security competence of
software developers and the information security professional framework will serve as a base for the
development of the security competence of software developers. Furthermore, this chapter also makes a

call for empirical research to identify the security competence of software developers. By that, the author
calls for a systematic literature review on the security competence of software developers. Again, there
is the need also to identify those security competences using the lifecycle of the software development
process.

Acar, Y., Stransky, C., Wermke, D., Weir, C., Mazurek, M. L., & Fahl, S. (2017). Developers Need
Support, Too: A Survey of Security Advice for Software Developers. In 2017 IEEE Cybersecurity Devel-
opment IEEE Secure Development Conference Developers (pp. 22–26)., doi:10.1109/SecDev.2017.17

Anand, P., & Ryoo, J. (2017). Security Patterns As Architectural Solution - Mitigating Cross-Site Script-
ing Attacks in Web Applications. In 2017 International Conference on Software Security and Assurance
(ICSSA) (pp. 25–31). IEEE. 10.1109/ICSSA.2017.30

Cheng, J., Goto, Y., Morimoto, S., & Horie, D. (2008). A Security Engineering Environment Based on
ISO / IEC Standards: Providing Standard, Formal, and Consistent Supports for Design, Development,
Operation, and Maintenance of Secure Information Systems. In 2008 International Conference on In-
formation Security and Assurance (pp. 350–354). 10.1109/ISA.2008.106

Cruz, S., Fabio, Q. B., & Fernando, L. (2015). Forty years of research on personality in software engi-
neering: A mapping study. Computers in Human Behavior, 46, 94–113. doi:10.1016/j.chb.2014.12.008

Fink, A. (2010). Conducting Research Literature Reviews: From the Internet to Paper (3rd ed.). SAGE.

Hazeyama, A., & Shimizu, H. (2012). Development of a Software Security Learning Environment. In
2012 13th ACIS International Conference on Software Engineering, Artificial Intelligence, Networking
and Parallel/Distributed Computing (pp. 518–523). IEEE. 10.1109/SNPD.2012.65

Hilburn, T. B., & Mead, N. R. (2013). Building Security In. IEEE Security and Privacy, 11(October),
89–92. doi:10.1109/MSP.2013.109

Hsieh, H.-F., & Shannon, S. E. (2005). Three Approaches to Qualitative Content Analysis. Qualitative
Health Research, 15(9), 1277–1288. doi:10.1177/1049732305276687 PMID:16204405

IEEE. (2014). Software Engineering Competency Model (SWECOM). IEEE. Retrieved from http://www.
dahlan.web.id/files/ebooks/SWECOM.pdf

Kaur, N., & Kaur, P. (2016). Modeling a SQL Injection Attack. In 2016 3rd International Conference
on Computing for Sustainable Global Development (INDIACom) (pp. 77–82). Bharati Vidyapeeth.

Kitchenham, B., & Charters, S. (2007). Guidelines for performing Systematic Literature reviews in
Software Engineering Version 2.3. Engineering (Vol. 45). doi:10.1145/1134285.1134500

Lenberg, P., Feldt, R., & Wallgren, L. G. (2015). Behavioral software engineering: A definition and
systematic literature review. Journal of Systems and Software, 107, 15–37. doi:10.1016/j.jss.2015.04.084

Mano, C. D., Duhadway, L., & Striegel, A. (2006). A Case for Instilling Security as a Core Programming
Skill. In Proceedings. Frontiers in Education. 36th Annual Conference (pp. 13–18). IEEE. 10.1109/
FIE.2006.322347

McGraw, G. (2004). Software Security. IEEE Security & Privacy. doi:10.1109/MSECP.2004.1281254

Meng, X., Qian, K., Lo, D., & Wu, F. (2018). Secure Mobile Software Development with Vulnerability
Detectors in Static Code Analysis. 2018 International Symposium on Networks, Computers and Com-
munications (ISNCC), 1–4. 10.1109/ISNCC.2018.8531071

Miller, B. P., & Heymann, E. (2018). Tutorial: Secure Coding Practices, Automated Assessment Tools
and the SWAMP. In 2018 IEEE Cybersecurity Development (SecDev) (pp. 124–125). IEEE; doi:10.1109/
SecDev.2018.00025

Moustroufas, E., Stamelos, I., & Angelis, L. (2015). Competency profiling for software engineers:
Literature review and a new model. In Proceedings of the 19th Panhellenic Conference on Informatics
(pp. 235–240). Athens, Greece: ACM. 10.1145/2801948.2801960

OWASP. (2017). OWASP Top 10 - 2017 The Ten Most Critical Web Application Security Risks. OWASP.

Park, C. S., Lee, J. H., Seo, S. C., & Kim, B. K. (2010). Assuring software security against buffer over-
flow attacks in embedded software development life cycle. In 2010 The 12th International Conference
on Advanced Communication Technology (ICACT) (Vol. 1, pp. 787–790). IEEE.

Qian, K., Lo, D., Parizi, R., & Wu, F. (2018). Authentic Learning Secure Software Development (SSD)
in Computing Education. 2018 IEEE Frontiers in Education Conference (FIE), 1–9.

Qian, K., Parizi, R. M., & Lo, D. (2018). OWASP Risk Analysis Driven Security Requirements Speci-
fication for Secure Android Mobile Software Development. In 2018 IEEE Conference on Dependable
and Secure Computing (DSC) (pp. 1–2). IEEE. 10.1109/DESEC.2018.8625114

Riehle, D., & Nürnberg, F.-A.-U. E. (2015). How Open Source Is Changing the Software Developer’s
Career. Computer Practice, 48(5), 51–57. doi:10.1109/MC.2015.132

Sametinger, J. (2013). Software Security. In 2013 20th IEEE International Conference and Workshops
on Engineering of Computer Based Systems (ECBS) (p. 216). IEEE. 10.1109/ECBS.2013.24

Theoharidou, M., & Gritzalis, D. (2007). Common Body of Knowledge for Information Security. IEEE
Security & Privacy, 64–67.

Uskov, A. V. (2013). Software and Web Application Security: State-of-the-Art courseware and Learn-
ing Paradigm. In IEEE Global Engineering Education Conference (EDUCON) (Vol. 0, pp. 608–611).
10.1109/EduCon.2013.6530168

Uskov, A. V., & Avenue, W. B. (2013). Hands-On Teaching of Software and Web Applications Security. 2013
3rd Interdisciplinary Engineering Design Education Conference, 71–78. 10.1109/IEDEC.2013.6526763

Verdon, D. (2006). Security Policies and the Software Developer. IEEE Security & Privacy. doi:10.1109/
MSP.2006.103

Vishnubhotla, S. D., Mendes, E., & Lundberg, L. (2018). An Insight into the Capabilities of Profession-
als and Teams in Agile Software Development A Systematic Literature Review. In ICSCA 2018 (pp.
10–19). Kuantan, Malaysia: ACM. doi:10.1145/3185089.3185096

Wegerer, M., & Tjoa, S. (2016). Defeating the Database Adversary Using Deception - A MySQL Da-
tabase Honeypot. In 2016 International Conference on Software Security and Assurance (ICSSA) (pp.
6–10). IEEE. 10.1109/ICSSA.2016.8

Zainuddin, H. N., & Normaziah, A. A. (2011). Secure Coding in Software Development. In 2011
Malaysian Conference in Software Engineering (pp. 458–464). IEEE. 10.1109/MySEC.2011.6140716

Competence: A set of knowledge, skills, and attitudes for performing a task.
Non-Programming-Related Competences: Software security skills that do not directly deal with

coding. For example, software security policy skills and system security assurance tools skills.
Programming Related Competences: Software security skills needed for coding. For example,

secure programming/coding skills and secure mobile software development skills.
Security Competence of Developers: A set of specific security competencies required by a devel-

oper to deal with security during the whole software development process; For example, SQL injection
skills, and security pattern skills.

Software Developer: Individuals who employ software development skills to design, construct, test,
and maintain computer software.

Software Engineering Competence: A set of knowledge, skills, and attitudes of software developers
to fulfill a given task in a software development project.

Software Security: An art of providing protection to software against hackers and attackers during
the life cycle of the software.

Traditional Literature Review: A method used to demonstrate a gap or a problem in an area one
seeks to research without an explicit method for reviewing the literature.

	DEDICATION
	ABSTRACT
	TIIVISTELMÄ (ABSTRACT IN FINNISH)
	ACKNOWLEDGEMENTS
	LIST OF INCLUDED ARTICLES
	LIST OF ACRONYMS
	FIGURES
	TABLES
	CONTENTS
	1 Introduction
	1.1 Background in the context of the software engineering bodies of knowledge
	1.2 Research objectives

	2 Overview of Chapters
	2.1 Article I – The state of research on software engineering competencies: A systematic mapping study
	2.2 Article II - Hard competencies satisfaction levels for software engineers: A unified framework
	2.3 Article III - Soft competencies and satisfaction levels for software engineers: A unified framework
	2.4 Article IV – The essential competencies of software professionals: A unified competence gate framework
	2.5 Article V - Towards a security competency of software developers’: A literature review
	2.6 Publication status

	3 Research Approach
	3.1 Critical realism
	3.2 Methodology
	3.2.1 Literature review
	3.2.2 Design process

	4 Theoretical foundation
	4.1 Competence versus competency, soft and hard competence, and essential competencies
	4.2 Software roles, associated positions, and tasks
	4.3 Competency framework for software engineers (CFSE)
	4.4 Kano model
	4.5 Framework construction and its applications

	5 Contributions, limitations, AND FUTURE RESEARCH TOPICS
	5.1 Summary of results and contributions
	5.2 Contributions to the body of knowledge
	5.2.1 Conceptualization of Software Engineering Competencies of Software Professionals
	5.2.2 Contextualization of SEC of software professionals

	5.3 Limitations and future research

	6 Conclusion
	Yhteenveto (Summary in finnish)
	References

