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ABSTRACT In population-oriented ergonomics product design and musculoskeletal kinetics analysis,
digital spine models of different shape, pose and material property are in great demand. The purpose of
this study was to construct a parameterized finite element spine model with adjustable spine shape and
material property. We used statistical shape model approach to learn inter-subject shape variations from 65
CT images of training subjects. Second order polynomial regression was used to model the age-dependent
changes in vertebral material property derived from spatially aligned CT images. Finally, a parametric
spine generator was developed to create finite element instances of different shapes and material properties.
For quantitative analysis, the generalization ability to emulate spine shapes of different people was
evaluated by fitting into 17 test CT images. The median fitting accuracy was 0.8 for Dice coefficient and
0.43 mm for average surface distance. The age-dependent bone density regression curve was also proved
to well agree with large population statistics data. Finite element simulation was performed to compare
how shape parameters influenced the biomechanics distribution of spine. The proposed parametric finite
element whole spine model will assist the design process of new devices and biomechanical simulation
towards a wide range of population.

INDEX TERMS Spine modelling, Biomechanical simulation, Statistical shape modelling, Finite element
analysis, Population anatomy modelling

I. INTRODUCTION

SPINE controls the movement of the trunk, provides
mechanical stability for vital organs and hosts major

nerve routes through the spinal canal. It is critical to
perform a thorough biomechanical assessment before the
product design for spine structure. Nowadays, biomechani-
cal simulation [1]–[3] has become a standard procedure for
spine-related ergonomics product design, musculoskeletal
kinetics simulation [4], orthopaedic implant development
[5], medical image analysis [6], [7].

Considering the anatomical and physiological variations
between population of different ages and genders, increasing
studies have investigated spine modelling towards different

population groups or even individual person. To conduct
comprehensive spine biomechanical analysis, computational
spine models with accurate geometry and material properties
are indispensable. Although patient-specific models can be
obtained via segmenting spinal structure from a tomographic
image and determining Young’s modulus from CT voxel
intensity [8], these subject-specific models are not suitable
for population-oriented studies. Hence, there is further need
to incorporate characteristics of population into generic
application. For population-oriented modelling, it has been
more than 20 years since the first construction of the
generative spine model. Early works mainly focused on local
spine modelling [3], [9], while later studies paid attention
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to global spine modelling [10]. To the authors’ knowledge,
generative models incorporating adjustable morphology and
material property of the whole spine are still lacking.

To conduct accurate biomechanical simulation, precise
modelling of spine geometry and material properties is
in huge demand. Therefore, a basic requirement of the
generative spine model is to represent the distribution of
shape and bone density across the population. For shape
modelling, the statistical shape model (SSM) method has
been proven to effectively describe shape distribution within
a training set of subjects. The concept of SSM was first
introduced by Cootes and Taylor [11] and has been widely
used for medical image analysis [12]–[14]. SSM uses prin-
cipal component analysis (PCA) to learn a set of primary
shape modes from training subjects. Similar to SSM, sta-
tistical appearance model (SAM) [15]–[17] characterizes
image appearance (i.e., pixel intensity) distribution based
on a set of registered training images. Although SSM and
SAM methods have been widely used in the medical image
analysis field, few studies have applied these techniques for
population-oriented spine modelling. Campbell et al. devel-
oped a lumbar model generator using the SSM approach [3],
but they did not focus on the entire spine or bone material
property. It is well-known that bone material property (e.g.,
Bone Mineral Density (BMD) and Young’s modulus) can
be derived from CT pixel value using empirical equations
[18], [19]. However, this relationship has not yet been used
in SAM to model material property distribution for entire
spine.

To provide a generative spine model for population-
oriented biomechanical simulation, this study developed
parametric finite element (FE) modelling of spine shape and
bone material property based on a training set of 65 CT
images. The SSM approach was used to model spine shape
variations across the population, and nonlinear CT intensity
regression was performed to correlate bone density changes
with age. Based on this model, the FE models of different
shapes and densities can be created for population-oriented
biomechanical simulation.

II. METHODS
The pipeline for parametric FE model construction is illus-
trated in Fig. 1. A mesh-based spine anatomy template was
first registered to each training subject to obtain the shape
correspondence. The statistical shape model was used to
learn shape modes from the aligned training set. For material
modelling, voxel correspondence of vertebral images was
calculated using image registration, and then age-dependent
material property regression curve was derived from cor-
responding voxel. Finally, the shape and density models
were combined to generate different FE mesh instances of
adjustable shapes and bone densities.

A. TRAINING DATA DESCRIPTION
To cover a proper range of healthy population, we collected
retrospective Positron Emission Tomography/Computed To-

TABLE 1: Subjects distribution in different age groups

Age group Gender

Male Female

20-29 1 0
30-39 9 5
40-49 7 12
50-59 5 9
60-69 9 7
70-80 0 1

mography (PET/CT) images from four central hospitals in
the northeast, southeast and central areas of China. The
PET/CT images were acquired during the past twenty years
for health screening purpose. Among these images, 65
subjects (34 females, 31 males) without spine abnormalities
(kyphosis, lordosis and scoliosis) were selected, and their
CT images were used for model construction. Table. 1 shows
the age and gender distribution of the training data set. The
CT image acquisition used 120 kV tube voltage and 28-
298 mA current. The pixel sizes and slice spacing ranged
between 0.59 to 1.37 mm and 1.25 to 3.00 mm, respectively.

B. ETHICS STATEMENT
This study was performed under the ethical approval from
Dalian University of Technology Ethics Committees. No
patient identification information has been used in this
research or presented in this paper.

C. SHAPE MODEL CONSTRUCTION
To endorse the model with the shape variation feature, we
adopted the statistical shape model (SSM) method to learn
inter-subject spine shape variations from the training CT
images. The spine shape was represented as a triangular
surface mesh, and the shape variation was represented as
the changes of mesh vertex coordinates.

To build the SSM, a prerequisite step was obtaining the
surface point correspondence between the training subjects,
as shown in Fig. 1. A commercially available highly-detailed
spine mesh model [20] was used as the shape template
and was non-rigidly registered to all the training images
to obtain surface point correspondence. For template reg-
istration, vertebral regions were manually segmented from
the CT images using AnatomySketch Software [21], and
converted into triangular meshes using the marching cube
algorithm [22]. Key anatomical landmarks were manually
defined on each vertebra mesh as illustrated in Fig. 2,
and then Landmark-guided Robust Point Matching (LRPM)
method [23] was applied to register the shape template to
each training subject. In this way, the spine shape of each
subject was represented as the surface vertex coordinates of
the registered template mesh. To ensure accurate template
registration, key anatomical landmarks on the vertebra were
defined manually as anatomical constraint. To further refine
the template registration, we also conducted landmark-
constrained intensity-based registration to obtain voxel-level
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FIGURE 1: The pipeline of population oriented FE mesh generator construction.

FIGURE 2: The positions of key anatomical landmarks.

alignment. This was achieved by filling the registered shape
into a volumetric label image (moving image), where the
voxels inside each vertebral region were labelled with the
same value of the corresponding vertebra in the segmented
CT label image (fixed image). Then B-spline transform
from the moving image to the fixed image was calculated
as an optimization problem. To take advantage of key

anatomical landmarks, both image intensity similarity and
corresponding landmark distance served as optimized objec-
tive. The B-spline transform was solved in a multi-resolution
scheme with Gaussian pyramid and Adaptive Stochastic
Gradient Descent optimizer using Elastix software [24]. The
calculated transform was then used to map the initially
registered template to each target shape. Therefore, accurate
shape correspondence between all training subjects was
established.

Once the correspondence was established, Generalized
Procrustes Analysis (GPA) [12] was used to align n
corresponding spine shapes to eliminate inter-subject ro-
tations, scale and translations. The spinal shape of ith

aligned subject can be represented as spatial coordinates of
point set Vi = (xi1, yi1, zi1, xi2, yi2, zi2, ..., xik, yik, zik)

T

(k=147517). Afterwards, PCA was performed on the aligned
spine shapes based on covariance matrix.

V =
1

n

n∑
i=1

Vi (1)
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Cov =
1

n− 1

n∑
i=1

(Vi − V )((Vi − V )T . (2)

Therefore, it was able to calculate eigenvector ϕs (shape
modes of variation) and eigenvalues λs (variance) of co-
variance matrix. The resulting eigenvectors were then sorted
to define principle modes according to their corresponding
eigenvalues in a descending order. Subsequently, a spine
instance V generated from the shape space of the training
set can be described as

V = V +
c∑
s=1

αsϕs (3)

where V is the mean shape of the training set, ϕs is the
sth principle shape mode and αs describes the contribu-
tion of sth shape mode. Normally, αs ranging between
[−2
√
λs, 2
√
λs] results in anatomically plausible shape vari-

ations. To determine the how many shape modes should
be retained, common practice defining c is to increase the
number of modes until the ratio of the accumulated variance
to the total variance

∑c
s=1 λs∑n−1
s=1 λs

reaches 0.95 [12].

D. MATERIAL MODEL CONSTRUCTION
As explained in the introduction section, CT voxel intensity
can be further converted into material property for biome-
chanical simulations. In this study, We adopted the empirical
equations introduced in [18], [25] to calculate material
property (BMD and Young’s modulus). The conventional
SAM method does not characterize the material distribu-
tion with respect to independent physiological parameters
directly. Since a major physiological factor affecting bone
density change is age, we replaced the PCA step of SAM
with nonlinear regression regarding age. Details of material
model construction are described below.

To model the age-dependent material distribution of train-
ing subject, we needed to determine voxel correspondence
at fist, as shown in Fig. 1. The intensity-based registration
was restricted to the each vertebral region to reduce the
computation load. Given the spinal segmentation in the
previous subsection, a bounding box enclosing each vertebra
was automatically calculated, and then the cropped volume
of each vertebra was obtained. A random subject image
was chosen as reference image, and then all other training
subjects were subsequently registered with reference image
using landmark-constrained B-spline registration as men-
tioned above. To reduce the bias of reference selection, we
used an iterative step to identify the training subject whose
deformation field was the closest to the average deformation
as a new reference. The registration process was repeated
until convergence, which resulted in voxel correspondence
between the finally selected reference and all other training
subjects.

Second order polynomial regression was chosen to model
age-dependent material distribution after assessing the coef-
ficient of determination of average material distribution per
vertebra explained by linear, second order, and third order

polynomial regression. High order polynomial regression
produced higher coefficient (R2 > 0.88) of determination
than linear regression (R2 = 0.76). Significant differences
(p < 0.05) were observed between linear and high order
regression using F-tests, while no differences were found
between second and third order regression. The polynomial
function coefficients of each voxel were determined using
ordinary least squares regression,

f(t) = β1 + β2t+ β3t
2 (4)

where f(t) is material property for a voxel and t is the age
of subject in years. This procedure was repeated to model
material property distribution for each voxel within vertebra.
Considering the gender-specific differences of bone density,
we conducted separated regression for each gender and
obtained two sets of bone density models.

E. CONSTRUCTION OF PARAMETERIZED FE MESH
Based on the SSM and material model, we built an FE model
generator with adjustable shape and material properties.
The input parameter of the generator is t,d,α, where t
is scalar defining age in years; d is a two-element vector
controlling resolution of generated tetrahedral mesh, i.e., the
maximum size of the surface triangles and the maximum
volume of internal tetrahedrons [26]; α = [αi, i = 1, ..., c]
is a c-element vector of shape mode parameter (illustrated
in equation 3). The output of the generator was an FE
tetrahedral mesh with user-defined shape (controlled by α),
bone material property (controlled by t) and tetrahedral
mesh resolution (controlled by d).

The FE model of the whole spine was generated in a
vertebra-by-vertebra manner. For each vertebra, an initial
tetrahedral mesh of the FE model was created from the
reference image using the iso2mesh package [26], which
took d as the resolution settings. The generated mesh
consisted of four-node tetrahedral elements. The material
property of tetrahedral node was derived using trilinear
interpolation from reference image. Given the shape cor-
respondence between reference shape and SSM obtained
from shape model construction, the initial FE model can be
morphed into a shape instance generated from SSM. The
morphing was calculated by a 3D Thin-Plate-Spline (TPS)
spatial transform using the displacements of corresponding
surface points.

III. RESULTS
Since our model was developed for population-oriented
biomechanical simulation, it was important to know how
well the model characterized the shapes and bone material
property of different people. The generalization ability of the
shape model was evaluated by fitting the model to different
subject CT images. We also compared the age-dependent
bone density with existing large population statistics.
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FIGURE 3: Shape variations corresponding to the first four
shape coefficients of the SSM.

A. SHAPE MODEL EVALUATION

To visually assess the shape adjustment ability of the SSM,
the values of the SSM shape coefficients αi(i = 1, ..., c)
were adjusted between [−2

√
λi, 2
√
λi] and the correspond-

ing spine shape changes were observed. Fig. 3 illustrates
the shape variations corresponding to the first for shape
coefficients. α1 corresponds to the global change of the
sagittal spine curvature. The mean shape represents a stan-
dard healthy "S" shape while increasing and decreasing α1

causes lordosis and kyphosis respectively. α2 corresponds
to the anterior and posterior bending of cervical vertebrae.
α3 is related to the lateral curvature change of the thoracic
spine. α4 adjusts the lumbar vertebrae dislocation and pelvic
flatness in the anterior-posterior direction. These changes
are learned from the training set and reflect realistic spine
morphometric differences in the population.

To quantitatively evaluate the generalization ability of
SSM, we performed a CT segmentation using SSM. Ac-
curate and automatic segmentation of specific spine shape
is important for conducting successful biomechanical sim-
ulation. In this test, 17 spine CT images excluded from
training set were selected as test samples. Active shape
modelling (ASM) algorithm [11] was used to optimize the
position, orientation, scale and shape coefficients α of SSM
to fit into the vertebral region. Fig. 4 allows us to visually
inspect an example of segmentation results of the cervical,
thoracic and lumbar vertebrae. Different pseudo colours
were used to represent different vertebrae. Accurate model
fitting at vertebral level can be visually observed. In order
to quantitatively assess the fitting accuracy, each vertebral
region of testing CT images were labelled manually as
gold standard. Dice coefficient and average surface distance
(Dsurf ) were used as accuracy measurements.

FIGURE 4: Visualization of an example of segmentation for
the cervical (left), thoracic (middle) and lumbar vertebrae
(right).

Dice = 2
| RR ∩RS |
| RR | + | RS |

, (5)

Dsurf = mean
k

(
min
j

(vkR − v
j
S)
)
, (6)

where Dice coefficient reflects the overlapping ratio be-
tween the registered model and the ground truth spine
region, RR and RS represent the results of ASM seg-
mentation and the gold standard, respectively. ∩ represents
the overlapped area of the segmentation and gold stan-
dard, The average symmetric surface distance represents the
mean Euclidean distances between surface vertices of the
segmentation and gold standard, vR and vS represent the
surface vertices of the segmentation and the gold standard,
respectively, k and j denote the index value of the corre-
sponding vertex. Fig. 5 shows the box plots of the Dice
and Dsurf . For cervical, thoracic and lumbar vertebrae, it
can be seen that the segmentation achieved an accuracy of
median Dice>0.7, Dsurf<0.75 mm for cervical vertebrae
and Dice>0.8, Dsurf<0.5 mm for thoracic and lumbar ver-
tebrae, respectively. The cervical vertebrae present relatively
lower median value and greater variability of the Dice
coefficient than the thoracic and lumbar vertebrae. This is
because the cervical vertebra hs smaller size and greater
position variability. As the proposed statistical shape model
is registered in whole spine level, the registration algorithm
mainly focuses on aligning the larger vertebrae with less
pose variation, leading to less accurate registration of the
cervical vertebrae.

B. MATERIAL MODEL EVALUATION
To evaluate how well the material model reflects age-
dependent changes, we generate the voxelized L3 images of
different ages in the average shape space. Fig. 6(a) illustrates
the axial cross section of the voxelized lumbar vertebra im-
ages of different ages. The age-dependent intensity change
of cancellous bone region is observed in the section images.
It also obviously reflects that the female cancellous bone
density becomes lower than the male cancellous bone after
the age of 50.

To more quantitatively evaluate our model, we also com-
pared our age-related bone density regression curve with the
bone mineral density data collected from the literature. Li
et al. [27] used Quantitative Computed Tomography (QCT)
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FIGURE 5: Evaluation of vertebral segmentation accuracy
using Dice coefficients (a) and Dsurf (b) measurement.

to measure the mean BMD of L1 and L2 based on a large
Chinese population sample set including 4954 adults (2080
males and 2874 females) between the ages of 20 to 80, and
the BMD curve regarding different ages were plotted for
each gender. Similar to theirs, we calculated the mean poly-
nomial coefficients of the corresponding cancellous bone re-
gion using our material model and plotted the derived BMD
curve by polynomial regression and empirical equations
for comparison. Fig. 6(b) shows a reasonable agreement
between the curves of ours and Li et al [27]. Both their and
our curves describe a similar trend of age-dependent BMD
changes of both genders. The female BMD falls below the
male at the age of female’s menopause. It is encouraging to
see that our results demonstrate the same menopause age (at
which the BMD curves of male and female cross each other)
as the results of Li et al., meaning that our regression model
agrees well with the large population statistics. It can also
be observed that regression curves disagree with the large
population statistics at the marginal age groups of 20 and
80, because the corresponding training samples at these ages
are relatively small.

C. GENERATION AND SIMULATION OF FE INSTANCES

Based on our FE model generator, whole spine tetrahedral
models of varying bone density and tetrahedron resolution
were created. Fig. 7(a) illustrates a generated whole spine
tetrahedral mesh instance. Fig. 7(b) FE demonstrates the

FIGURE 6: Evaluation results of the bone density model.
(a) Visual inspection of age-dependent L3 images. (b)
Comparison of BMD in L1 and L2 between age-dependent
regression curve and population statistics.

zoomed view of lumbar vertebral instances of different ages
and mesh resolution settings. It is noted that the number of
nodes and elements in the FE mesh can be user-defined and
the age-dependent bone density changes can be observed
from sagittal cross section.

To demonstrate the ability of our model for population-
oriented spine biomechanical simulation, we conducted
three FE model of different shape parameters under com-
pression load. Assuming that the whole spine was in a
consistent position, uniformly distributed vertical load 800
N was applied on whole spine, and L5 was considered as
fixed support. We tested three FE models (191133 nodes and
964843 elements) by tuning shape parameters and keeping
vertebral material property at age 30. All elements were
considered as linear elastic material. Young’s modulus and
Poisson’s ratio of intervertebral discs (IVD) were set as 10
MPa and 0.4. The contact setting between vertebrae and
IVDs was bonded, and contact setting between facet joints
was frictionless. FE analysis was performed using ANSYS
V17.2 (ANSYS, Inc). Fig. 8 and 9 indicate the distribution
of minimum principal strain and von-Mises stress of three
shape modes. It was observed that peak strain concentrated
in T4 area, and peak stress concentrated in posterior part
of lumbar spine among different shape modes. It was noted
that α1 = −2

√
λ1 reflecting excessive kyphosis in thoracic

spine caused strain and stress increase in whole spine scale,
while α3 = −2

√
λ3 reflecting slight thoracic scoliosis

caused asymmetric concentration of stress at the concave
site in the thoracic spine. The current finding demonstrated
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FIGURE 7: Generation of the FE model instances. Bone density distribution is represented using colourbar (a) An instance
of the entire spine. (b) Multiple instances of the same lumbar vertebra of different mesh densities and ages.

FIGURE 8: Minimum principle strain distribution of different shape modes: (a) α1 = −2
√
λ1, (b) average shape, (c)

α3 = −2
√
λ3.

gross characteristics that peak strain occurred in the middle
thoracic spine under compression load, which coincided
with previous study [28].

IV. DISCUSSION
In this study, we constructed a fully parameterized whole
spine FE model based on statistical shape model and age-
dependent material model from 65 subjects of different

genders and age groups. A wide range of FE model instances
can be generated by adjusting the parameters of shape, age
and mesh resolution. The novelty of proposed model will
empower population-oriented ergonomic product design and
musculoskeletal kinetics analysis.

A merit of the model is the ability to emulate realistic
inter-subject variations of spine shape. As revealed by the
validation results, the model can be used to simulate shape

VOLUME 4, 2016 7
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FIGURE 9: Von-Mises stress distribution of different shape modes: (a) α1 = −2
√
λ1, (b) average shape, (c) α3 = −2

√
λ3.

instances excluded from training set. The experimental
results demonstrate that individual CT data can be used to
guide the creation of personalized spine models. As a result,
the model can be used to generate different shape instances
either by adjusting the SSM shape coefficients or by fitting
into individual CT images. This feature offers good flexibil-
ity towards population modelling. The first six shape modes
of SSM accounted for over 0.95 variation. Compared with
previous SSM studies for vertebra in [3], [13], it was noted
that our model required less number of modes to describe
a given percent of variation. Besides, we also assessed
the generalization ability of our model, which produced
lower reconstruction error (ASD=0.47 mm) of lumbar spine
than [3] (ASD=2.78 mm) but higher reconstruction error
(ASD=1.15 mm) of cervical vertebra than [13] (ASD=0.59
mm). This was because our SSM was constructed for whole
spine, and the reconstruction process tended to whole scale
fitting rather than each vertebra. Unlike studies reported
in [9], [29] which offered parametric shape model with
independent anatomical measurements, this study took ad-
vantage of shape modes naturally produced by SSM, where
multiple anatomical measurements contribute to variation
simultaneously.

Regarding the age-dependent bone density modelling,
the validation results show that our BMD regression curve
reasonably agrees with the large population statistics data
and our regression curves accurately reflect the age point
where the female BMD begins to fall below the male.
Despite the prevalence of BMD in clinics, BMD as single
factor has some limitations for bone quality assessment
[30]. Hence, there is further need to incorporate material
properties and anatomical shape into bone quality analysis.
Thanks to the voxel correspondence, the material property

of each node in the FE model can be interpolated from the
voxel grid. Although this study uses tetrahedral mesh as the
FE model structure, such an interpolation strategy is also
applicable to other FE model structures as long as the node
coordinates are provided. This feature offers the potential to
extend our model to different FE model structures.

For FE mesh generation, our generator allows the ad-
justment of mesh resolution. This feature makes our model
suitable for the simulations at different scales for further
whole spine scale musculoskeletal kinetics analysis and
vertebra-level ergonomic study. Although various studies put
effort into how anatomical changes in local spine influenced
biomechanics, limited studies have been reported for whole
spine FE analysis. Therefore, few data were available for
comparison with the proposed model. The results of FE
simulation under compression load shows shape modes play
an important role in affecting distribution of strain and
stress on a whole-spine scale. As a proof of concept, the
FE simulation demonstrated the value of our model for
population-oriented simulation based on adjustable shape
and bone material property.

Limitations in this study need to be addressed. First, we
used 65 training subjects to cover population of different
ages and genders. Although the model has captured realistic
shape and density changes, such an amount of training
data is still limited. As revealed by Fig. 6(b), The age-
dependent BMD curve deviates from the large population
statistics at the age group of 20-30 and 70-80, due to
insufficient training data at these ages. We will collect
more training data to cover the characteristics of population,
including healthy people and diseased patients suffering
from spinal deformities or osteoporosis. Second, the images
used in this study lacked clinical intensity calibration. We
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This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3129097, IEEE Access

X. Sun et al.: A Statistical Model of Spine Shape and Material for Population-Oriented Biomechanical Simulation

used a pseudo-calibration introduced by [31] to address
this limitation. Finally, the FE analysis did not consider
anatomy such as ligaments, muscles and ribs around spine.
We acknowledge that precise FEM simulation is a complex
procedure for clinical situation. The simulation results of
this paper proves the value of population-oriented FEM
with variable shapes and material properties. More accurate
biomechanical simulation incorporating surrounding tissues
will be added in the future studies.

V. CONCLUSION
In this study, we built a statistical model of spine shape
and bone density based on a training set of CT images. The
constructed model learned inter-subject variations of spine
shape and material property, and provided adjustable pa-
rameters for FE mesh generation. Validation results demon-
strated that the model was able to accurately emulate differ-
ent spine shapes, and offer age-dependent bone density for
population-oriented simulation. Our future work will focus
on increasing the training data set to more accurately char-
acterize the features of healthy and pathological populations.
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