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Abstract: Jet fragmentation transverse momentum (jT) distributions are measured in
proton-proton (pp) and proton-lead (p-Pb) collisions at √sNN = 5.02TeV with the ALICE
experiment at the LHC. Jets are reconstructed with the ALICE tracking detectors and
electromagnetic calorimeter using the anti-kT algorithm with resolution parameter R = 0.4
in the pseudorapidity range |η| < 0.25. The jT values are calculated for charged particles
inside a fixed cone with a radius R = 0.4 around the reconstructed jet axis. The measured
jT distributions are compared with a variety of parton-shower models. Herwig and Pythia
8 based models describe the data well for the higher jT region, while they underestimate
the lower jT region. The jT distributions are further characterised by fitting them with
a function composed of an inverse gamma function for higher jT values (called the “wide
component”), related to the perturbative component of the fragmentation process, and with
a Gaussian for lower jT values (called the “narrow component”), predominantly connected
to the hadronisation process. The width of the Gaussian has only a weak dependence
on jet transverse momentum, while that of the inverse gamma function increases with
increasing jet transverse momentum. For the narrow component, the measured trends are
successfully described by all models except for Herwig. For the wide component, Herwig
and PYTHIA 8 based models slightly underestimate the data for the higher jet transverse
momentum region. These measurements set constraints on models of jet fragmentation
and hadronisation.
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1 Introduction

Jets are groups of collimated particles mainly resulting from fragmentation of hard scattered
partons produced in high-energy particle collisions. Jet production in quantum chromo-
dynamics (QCD) [1–5] can be thought as a two-stage process [6]. After being produced in
the hard scattering, partons reduce their virtuality by emitting gluons [7]. Since the mo-
mentum transfer scale (Q2) is large during the showering, perturbative QCD calculations
can be applied. When Q2 becomes of the order of ΛQCD, partons hadronise into final-state
particles through processes that cannot be calculated perturbatively [8–14]. Instead, the
implementation of specific hadronisation models in Monte Carlo event generators such as
PYTHIA [8] and Herwig [10] can be used.

In this work the fragmentation of partons is studied using the jet fragmentation trans-
verse momentum, jT. The jT is defined as the perpendicular component of the momentum
of the constituent particle with respect to reconstructed jet momentum, ~pjet. The length
of the ~jT vector is

jT = |~pjet × ~ptrack|
|~pjet|

, (1.1)

where ~ptrack is the momentum of the constituent particles. It is one of many jet shape
observables to study the properties of fragmenting particles with respect to the initial
hard momentum during the fragmentation process. The jT provides a measurement of the
transverse momentum spread of the jet fragments.
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Previously, jT has been studied using two-particle correlations where jT is calculated
for particles with respect to the highest transverse momentum particle in each event instead
of reconstructed jet. The study using the correlation method was done by the CCOR collab-
oration at ISR in pp collisions at centre-of-mass energies

√
s = 31, 45 and 63 GeV [15] and

by the PHENIX collaboration at RHIC in pp collisions at
√
s = 200 GeV [16] and d-Au colli-

sions at a center-of-mass energy per nucleon pair √sNN = 200 GeV [17]. The results showed
no clear dependence on the transverse momentum (pT) of the trigger particle. Jet measure-
ments to study jT were done by the CDF collaboration in pp̄ collisions at

√
s = 1.96 TeV [18]

at Tevatron, by the ATLAS collaboration in pp at
√
s = 7 TeV [19] and by the LHCb col-

laboration in pp collisions at
√
s = 8 TeV [20] at the LHC. The results show a dependence

of the width of jT distributions with respect to the pT of jets at the LHC energies.
Jets are used as an important probe for the study of the deconfined phase of strongly

interacting matter, the quark-gluon plasma (QGP) that is formed in high-energy collisions
of heavy nuclei. There exists plenty of experimental evidence of jet energy loss, such as the
suppression of inclusive hadron spectra at high transverse momentum [21–25], the modifi-
cation of back-to-back hadron-hadron [26, 27] and direct photon-hadron correlations [28],
hadron-jet correlations [29, 30], the modification of reconstructed jet spectra [31, 32] and
jet substructure [33–36], as compared to the expectations from elementary proton-proton
collisions.

Jet quenching in heavy-ion collisions evolves multi-scale steps from hard to soft pro-
cesses [37, 38]. Hard scales dominate in the elementary hard scattering. The hard scat-
tering is followed by the subsequent branching process down to non-perturbative scales.
Soft scales, of the order of the temperature of the medium, characterise interactions of
soft partons produced in the shower with the QGP. Soft scales also govern hadronisation,
which is expected to take place in vacuum for sufficiently energetic probes, even though
some changes can persist from modifications of colour flow [39–41]. Understanding the
contributions from the different processes to the jet shower evolution in medium and their
scale dependence is crucial to constrain the dynamics of jet energy loss in the expanding
medium [42], and fundamental medium properties like the temperature-dependent trans-
port coefficient [43, 44]. Besides heavy-ion collisions one should study also smaller systems
such as p-Pb in order to get an important baseline. Cold nuclear matter effects [45–47] in
p-Pb collisions need to be considered to interpret the measurements in heavy-ion collisions.

The results for jT distributions obtained using two-particle correlations were recently
reported by the ALICE Collaboration [48] in pp and p-Pb collisions. In this paper, jet
reconstruction provides a better estimate of the initial parton momentum than the leading
hadron in two-particle correlations. Additionally, contrary to the correlation studies, the
jT distribution is not smeared by hadrons decaying from a short living resonance.

The jT distributions are studied by reconstructing jets with the ALICE tracking detec-
tors and electromagnetic calorimeter using the anti-kT algorithm [49] with resolution pa-
rameterR = 0.4 in the pseudorapidity range |η| < 0.25 in pp collisions at

√
s= 5.02TeV and

p-Pb minimum bias collisions at √sNN = 5.02 TeV. It is worth noting that there is a shift in
the centre-of-mass rapidity of ∆y = 0.465 in the direction of the proton beam because of the
asymmetric collision system. The jT distribution is further analysed by fitting and separat-
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ing it into two distinct components that are assigned to the parton shower and the hadroni-
sation process. The attempt to separate the two components is presented for the first time
using jets in various jet transverse momentum (pT, jet) ranges. We also compare the results
with those obtained from PYTHIA (PYTHIA 8.3) and Herwig (Herwig 7.2) simulations.

2 Experimental setup and data samples

The data presented here were recorded by the ALICE detector in 2017 for pp collisions at√
s = 5.02 TeV with 7.6×108 minimum-bias events (Lint = 15.7 nb−1) and in 2013 for p-Pb

collisions at√sNN = 5.02 TeV with 1.3×108 events (Lint = 620 nb−1). Detailed information
about the ALICE detector during LHC Run 1 and Run 2 can be found in refs. [50, 51].

The V0 detector [52] provides the information for event triggering. The V0 detector
consists of two scintillator hodoscopes that are located on each side of the interaction point
along the beam direction. It covers the pseudorapidity region −3.7 < η < −1.7 (V0C) and
2.8 < η < 5.1 (V0A). To select the minimum-bias trigger signals are required in both the
V0A and V0C . This condition is used to reduce the contamination of data from beam-gas
events using the timing difference of the signals between the V0A and V0C detectors [51].

The analysis is performed with events that have a primary vertex within |zvtx| < 10 cm
of the nominal interaction point at zvtx = 0 along the beam direction. Charged particles
are used for reconstruction of the primary vertex and jets. The charged particles are re-
constructed with the Inner Tracking System (ITS) [53] and the Time Projection Chamber
(TPC) [54]. These detectors are located inside a large solenoidal magnet that provides a
homogeneous magnetic field of 0.5T. Tracks within a pseudorapidity range |η| < 0.9 over
the full azimuth are accepted. The ITS is made up of the Silicon Pixel Detector (SPD) in
the innermost layers, the Silicon Drift Detector (SDD) in the middle layers and the Silicon
Strip Detector (SSD) in the outermost layers, each consisting of two layers. The tracks are
selected following the hybrid approach [55] which ensures a uniform distribution of tracks
as a function of azimuthal angle (ϕ). The hybrid approach combines two different classes
of tracks. The first class consists of tracks that have at least one hit in the SPD. The tracks
from the second class do not have any SPD associated hit and mainly rely on the position in-
formation of the primary vertex when reconstructing the tracks. Combining the information
from the ITS and TPC provides a pT resolution ranging from 1 to 10 % for charged particles
from 0.15 and 100 GeV/c. For tracks without the ITS information, the momentum resolu-
tion is comparable to that of ITS+TPC tracks below transverse momentum pT = 10 GeV/c,
but for higher momenta the resolution reaches 20 % at pT = 50 GeV/c [51, 56].

The EMCal covers an area with a range of |η| < 0.7 in pseudorapidity and 107 degrees
in azimuth and is made up of 12288 towers in total. Each tower consists of 76 alternating
layers of 1.44mm lead and 77 layers of 1.76mm scintillator material. The EMCal is also
used to provide a high-energy photon trigger for a high-pT, jet data sample that is com-
plementary to the minimum bias trigger for a low pT, jet data sample. The EMCal can
be used to trigger on single shower deposits or energy deposits integrated over a larger
area. The latter is used for the high-energy photon trigger. The EMCal trigger definition
for p-Pb collisions in 2013 requires an energy deposit in a group of the towers of either
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10 GeV for the low threshold trigger or 20 GeV for the high threshold trigger. A sample
of 3 × 106 events ( Lint = 5 nb−1) with the EMCal trigger provides increased statistics
for pT, jet > 60 GeV/c where the trigger bias disappears in the analysis [57]. The energy
of the electromagnetic shower clusters is reconstructed in the EMCal by searching for a
tower with an energy deposit greater than a defined seed energy and merging all towers
that share the energy cluster. To avoid double counting, when a cluster is matched with
charged particles measured by the ITS and TPC, the sum of the transverse momentum of
all the matched tracks are subtracted from the cluster energy.

3 Analysis method

For each collision event, jets are reconstructed with the anti-kT algorithm [49] and reso-
lution parameter R = 0.4 using FastJet [58]. The pT-recombination scheme is used when
reconstructing jets. Jets are selected in |η| < 0.25 to satisfy the fiducial acceptance of the
EMCal. The jet energy resolution JER = σ(preco

T,jet)/ptrue
T,jet is calculated as 20% (18%) at

ptrue
T,jet = 20GeV/c and 21% (19%) at 100GeV/c in pp (p-Pb) collisions. The jet angular

resolution is estimated as 29% (28%) and 2% (2%) at pT, jet = 20GeV/c 20% (19%) and
1.2% (1.2%) at pT, jet = 100GeV/c in pp (p-Pb) collisions for pseudorapidity and azimuthal
angle, respectively. In the jet reconstruction both charged particles with pT > 0.15 GeV/c
and EMCal clusters with pT > 0.3 GeV/c are considered. All charged particles within a
fixed cone with a resolution parameter R are taken as jet constituents, instead of using
the list of jet constituents provided by the jet algorithm [19, 59]. Results are presented in
terms of the jet transverse momentum pT, jet.

The resulting jT distributions are corrected for detector effects using the unfolding
method in ref. [60]. The response matrix used for the unfolding is obtained from events
generated by PYTHIA 8 Monash 2013 (PYTHIA 8.2) [61] for the correction of the data
sample in pp collisions and PYTHIA 6 Perugia 2011 (PYTHIA 6.4) [62] for the correction
of the one in p-Pb collisions. The events are transported through the ALICE experimental
set up described with GEANT 3 [63, 64]. This response matrix (jrec

T , prec
T,jet, j

true
T , ptrue

T,jet)
has 2 × 2 dimensions to correct the detector inefficiency for jet transverse momentum
(pT, jet) and jT simultaneously, where jtrue

T and ptrue
T,jet are obtained from particle level jets

by PYTHIA 6 and 8 and jrec
T and prec

T,jet are the corresponding measured values in ALICE,
respectively. As a primary method the unfolding is performed with an iterative (Bayesian)
algorithm as implemented in the RooUnfold package [60]. The unfolding procedure is tested
by dividing the generated data sample into two halves. The first half is used to fill the
response matrix. The second half is used to test the closure of the unfolding method. For
40 < pT, jet < 150 GeV/c, the generated pT, jet distribution is recovered. For jT > 0.1 GeV/c,
the jT distribution is also recovered.

The effect of the underlying event background is estimated by looking at a cone per-
pendicular to the observed jet axis (π2 rotation in ϕ, for details see refs. [65, 66]). The
background jT is calculated for any track that is found within this cone and the rotated
jet axis is used as reference for jT. The background obtained in this manner is subtracted
from the unfolded inclusive jT distribution, which gives the resulting signal distribution as
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shown in eq. (3.1). The probability of events with jets inside the perpendicular cone are
estimated as 1–2% of the total number of jets. Jets reconstructed with charged particles
only (charged jet) for R = 0.4 and pch

T, jet > 5GeV/c are used to check other jets inside
the perpendicular since charged jets can cover the full azimuthal angle contrary to the
case of jets in the EMCal acceptance. To make sure there is no jet contribution in the
background, those events are not used for background estimation. Because of this reason,
Nperpendicular jets is less than Njets by about 1–2% in eq. (3.1).

1
Njets

dN
jT, chdjT, ch

∣∣∣∣
signal

= 1
Njets

dN
jT, chdjT, ch

∣∣∣∣
inclusive

− 1
Nperpendicular jets

dN
jT, chdjT, ch

∣∣∣∣
background

(3.1)
The resulting signal distribution is fitted with the two-component function shown in

eq. (3.2). A Gaussian distribution centered at jT = 0 GeV/c is used for lower jT and an
inverse gamma function is used for jT above 1 GeV/c, where B1 to B5 are parameters [48].

1
Njets

dN
jT, chdjT, ch

= B2

B1
√

2π
e
−

j2
T

2B2
1 + B3B

B4
5

Γ (B4)
e
−B5

jT

jB4+1
T

(3.2)

To achieve stable results the fitting is performed in two steps. First, lower and higher parts
of the jT distribution are fitted with a Gaussian and inverse gamma function, respectively.
After getting the results from the individual fits, they are combined into a single function
with initial values from the individual results and then an additional fit is performed. After
getting the fit function,

√〈
j2

T
〉
(RMS) and yield values are extracted separately from each

component. The narrow component RMS from the Gaussian part is determined as√〈
j2

T
〉

=
√

2B1 (3.3)

and the wide component RMS value from the inverse gamma function is calculated as√〈
j2

T
〉

= B5√
(B4 − 2) (B4 − 3)

, (3.4)

where it is required that B4 > 3.

4 Systematic uncertainties

The systematic uncertainties in this analysis come from the background estimation, the
unfolding procedure and the uncertainties related to track and cluster selection. The effect
originating from uncertainty in the tracking efficiency is estimated with a PYTHIA simula-
tion by removing 4% of tracks randomly from each event corresponding to a mismatching
probability of tracks between the ITS and TPC. The resulting variations in the RMS values
are less than 4% and 5% for the wide and narrow components, respectively. The uncer-
tainty related to the EMCal energy scale was estimated by scaling cluster energies up and
down by 2% in the PYTHIA particle level generation in order to reflect a non-linearity
correction of the EMCal energy scale ranging from about 7% at 0.5 GeV/c to a negligible
value above 3 GeV/c. Similarly, the jet momentum was scaled by ±2% when determining
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pT, jet to check how the cluster energy affects jT distributions. The variation of both RMS
components is seen to be less than 2%.

The systematic uncertainty on the background estimation was studied using the “ran-
dom background” method as an alternative to that of the perpendicular-cone. This method
assigns new random η and ϕ of the existing tracks in the event using a uniform distribu-
tion without changing their pT values. A random jet cone is also from uniform η and ϕ

distributions covering |η| < 0.25 and 0 < ϕ < 2π and tracks near the jet axis are not used.
The resulting uncertainty is below 5% for the wide component RMS and below 9% for the
narrow component RMS in p-Pb collisions. To study the effect of background fluctuations
in p-Pb collisions, a study based on embedding particles generated with PYTHIA in real
events was performed. The embedded particles are simulated by following the multiplicity
density information [67] and pT distribution [68] of charged particles in p-Pb collisions in
ALICE. The effect in RMS is negligible for both RMS components.

The systematic uncertainty introduced by the unfolding procedure was determined
by repeating the unfolding using the Singular-Value Decomposition (SVD) method as an
alternative [69]. Given that the SVD method does not allow for multi-dimensional un-
folding, the unfolding is performed separately for different pT, jet intervals. In a PYTHIA
closure test, the true distribution for jT > 0.1 GeV/c was in general found to be between
the unfolded distributions from the iterative and SVD methods within 2%. The difference
between the methods when unfolding data is used as an estimate of the unfolding uncer-
tainty. The iterative unfolding algorithm permits the change of the number of iterations as
a regularisation parameter. The stability of the results was verified by using one iteration
above and below instead of the default value, where the default value is chosen by checking
that unfolded jT distributions converge. Also, the regularisation parameter k is varied by
one unit above and below with respect to the default solution of the SVD method that is
determined by following the guideline [69]. The iterative algorithm requires a prior esti-
mate of the shape of the distribution. As a default prior, generated PYTHIA distribution
is used. To estimate the effect of the prior, the unfolded jT distribution is used as a prior
instead. The effect of the unfolding for different ranges of pT, jet is tested by varying the
first value of pT, jet from 5 to 15GeV/c. These effects are found negligible compared to
that for the two different unfolding methods. The resulting uncertainty by the unfolding
procedure is below 8% for both wide and narrow component RMS in p-Pb collisions. In
pp collisions it is 9% and 12% for the wide and narrow components, respectively.

The model dependence of the unfolding procedure was explored by weighting the re-
sponse matrix with PYTHIA. The jet yield in the response matrix is varied by ±30% for
the angularity g > 0.1. The angularity is defined as g = Σi (pT,i × ri) /pT,jet, where pT,i

is the pT of the ith constituent of the jet and ri =
√

∆η2
i + ∆ϕ2

i is the distance of the ith

constituent from the jet axis [32, 70]. The effect is found to be below 2% for the wide
component and negligible for the narrow component.

The different sources of systematic uncertainty are considered as uncorrelated and the
values are summed in quadrature. The summary table in table 1 shows an overview of
systematic uncertainties for 40 < pT, jet < 60GeV/c in pp and p-Pb collisions.
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jT distribution at jT = 0.2–0.8–2GeV/c Wide RMS Narrow RMS
source pp p-Pb pp p-Pb pp p-Pb

Background 2–2–5% neg.–2–5% 1.1% 5% 2.9% 9%
Unfolding 10–neg.–20% 10–neg.–12% 9% 8% 12% 8%
Tracking 2–2–2% 2–1–neg.% 0.4% 4 % 0.2% 5%
EMCal 2–2–5% 2–2–2% 1.8% 1% 0.2% 1%

Model dependence neg.–2–5% neg.–neg.–10% 0.5% 2% neg. neg.
Total 11–4–22% 10–3–16% 9% 10 % 12% 13%

Table 1. Summary of systematic uncertainties for 40 < pT, jet < 60GeV/c in pp and p-Pb collisions.

5 Results

The jT distribution in pp collisions at
√
s = 5.02 TeV is compared with that in p-Pb

collisions at √sNN = 5.02 TeV in figure 1 for jet transverse momentum in 40 < pT, jet <

60GeV/c. The ratio of the jT distributions represents the consistence of the result in pp
and p-Pb collisions and implies no clear cold nuclear matter effects in p-Pb collisions. For
the interval in 100 < pT, jet < 150GeV/c, the comparison is not provided because of the
lack of enough statistics in minimum-bias pp collisions and the absence of the data sample
with the EMCal trigger in the corresponding pp data taking period.

Figure 2 shows the distributions of jT for charged particles in different pT, jet intervals
after applying the unfolding correction and background subtraction in p-Pb collisions at
√
sNN = 5.02 TeV. The yield at low jT stays constant with increasing pT, jet. At high jT

the yield increases and the distributions become wider with increasing pT, jet as indicated
by the ratios of the jT distributions shown in the bottom panel. Notably, this is due to
kinematical limits. At midrapidity, within a fixed cone the maximum jT depends on the
track momentum by the relation of jT,max ≈ R × pT, track, resulting in an increase of the
possible jT as pT, jet increases. Though jets with larger momenta are more collimated, the
net effect is an increase of 〈jT〉 as pT, jet increases. These measurements are consistent with
the findings by the ATLAS [19] and LHCb collaborations [20].

Figure 3 shows the jT distribution in p-Pb collisions at √sNN = 5.02 TeV for jets
with 60 < pT, jet < 80GeV/c compared with expectations from various generators in pp
collisions at

√
s = 5.02TeV. PYTHIA 8 based models (PYTHIA 8.3) and Herwig (Herwig

7.2) handle both the showering process and hadronisation differently. PYTHIA 8 uses the
Lund string model [71] to perform the hadronisation stage. Herwig uses a cluster model
for the hadronisation [9, 10]. PYTHIA 8 has pT-ordered showers by default while Herwig
implements a parton shower using the coherent branching algorithm [72], which has angular
ordering as a central feature. The pT-ordering in a PYTHIA 8 shower is a compromise [73]:
ordering in the pT at splitting ensures the ordering in the hardness and also effectively
favours large angles. Herwig describes the jT distribution better than other models for the
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Figure 1. Comparison of the jT distributions in pp and p-Pb collisions at
√
s, √sNN = 5.02TeV

in 40 < pT, jet < 60GeV/c. The centre-of-mass rapidity in p-Pb collisions is shifted by ∆y = 0.465
in the direction of the proton beam.

whole jT region. Other PYTHIA 8 based models describe the data at high jT but not in
the low jT region. The results for the other pT, jet intervals are reported in figures B1, B2
and B3 that derive the same conclusion. Models describe the data better as pT, jet increases
in pp collisions. This is also true at higher jT, however, models underestimate the data at
lower jT consistently for all pT, jet ranges in p-Pb collisions.

PYTHIA 8 Monash 2013 [61] adopted LHC data to constrain the initial-state radiation
and multi-parton interaction parameters based on the default parameters of PYTHIA 8
tune 4C [74]. There is no clear separation of the jT distributions originating from the
different tunes of PYTHIA 8. As of version 8.3 PYTHIA 8 implemented two more shower
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Figure 2. The jT distributions of charged particles in R = 0.4 anti-kT jets as measured in p-Pb
collisions at √sNN = 5.02 TeV for different ranges of pT, jet. The centre-of-mass rapidity is shifted
by ∆y = 0.465 in the direction of the proton beam. The bottom panel shows ratios of the jT
distributions with respect to that in 40 < pT, jet < 60GeV/c.

models as part of the code. Those are VINCIA and Dire Showers that are based on the
kT (transverse momentum of a dipole)-ordered picture of QCD splitting [75, 76]. The
jT distributions generated by the two shower models were obtained by using the default
parameters of PYTHIA 8 tune 4C. In order to study the effect of the NLO calculation
accuracy for the parton showering in PYTHIA 8 (POWHEG NLO + PYTHIA PS), the jT
distribution generated with the combined POWHEG [77] and PYTHIA simulation is also
compared to the data. The jT distributions obtained with the POWHEG NLO calculation
and Dire Shower display themselves as upper and lower bounds of the PYTHIA 8 based
models for the higher jT region; however, they are within the systematic uncertainty of
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Figure 3. The jT distribution in p-Pb collisions at √sNN = 5.02 TeV for jets with transverse
momentum in 60 < pT, jet < 80GeV/c. The measured data are compared to calculations by
theoretical models in pp collisions at

√
s = 5.02TeV.

the data for the higher jT region. PYTHIA 8 Angantyr extends pp simulation of PYTHIA
8 to the case of heavy-ion collisions [78]. PYTHIA 8 Angantyr is used to simulate p-Pb
collisions with the nuclear parton distribution function (PDF) EPS09LO [47] for the Pb-ion
beam. The resulting jT distribution is almost the same with those by pp simulations with
a proton PDF and it does not describe the data for the lower jT region at all.

The distributions are fitted with the two-component fit motivated by [48]. The function
forms are given in eq. (3.2). An example of the fitted distribution is shown in figure 4 for
60 < pT, jet < 80 GeV/c. The Gaussian term corresponds to the narrow part that can be
associated with the hadronisation process, while the inverse gamma corresponds to the
wide component characterising the QCD shower. The jT distributions are described well
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Figure 4. The jT distribution of charged particles with a two-component fit for 60 < pT, jet <

80 GeV/c. The distribution is fitted with the two-component fit described in section 3.

by the two-component model fit. The corresponding statistical uncertainties are calculated
via the general error propagation formulas in eq. (5.1)

δ
√〈

j2
T
〉

=
√

2δB1 and

√√√√( (5− 2B4)B5δB4

(2(B4 − 2)(B4 − 3))
3
2

)2

+
(

δB5√
(B4 − 2) (B4 − 3)

)2

(5.1)

for the narrow and wide component RMS values, respectively.
The widths of the jT distributions are determined as a function of the transverse

momentum of jet. The RMS
(√〈

j2
T
〉 )

values for the two components are shown in figure 5
along with comparisons to Monte Carlo simulations. There is clear separation in the width
of the wide and narrow components of the jT distributions. The RMS values of the wide
component are 3-4 times larger than the narrow component RMS. The wide component
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components, respectively. The grey filled bands with (without) a hatched line in the ratio plots
represent the statistical (systematic) uncertainties of the p-Pb data. Note that pp data points are
shifted by -2GeV/c on the horizontal axis to be distinguished from p-Pb data points.

RMS shows an increasing trend with increasing pT, jet that is parameterised by a linear
function as

√〈
j2

T
〉

= 0.005 (±0.004)× pT, jet + 0.497 (±0.255), while the narrow component
RMS stays constant with the fitted value of 0.253 (±0.009). Both of these trends are
qualitatively consistent with the results in the dihadron jT analysis [48].

All models except for Herwig describe the RMS values relatively well for the narrow
RMS component. For the wide RMS component Herwig describes the data best as pT, jet
increases. Dire Shower shows clearly lower values compared to data up to 18% for the wide
RMS components. Other PYTHIA 8 based models show a good description for the lower
jT region, however, they underestimate the data for the higher pT, jet region.

– 12 –



J
H
E
P
0
9
(
2
0
2
1
)
2
1
1

20 40 60 80 100 120
)c (GeV/

T, jet
p

0

1

2
)

c
 (

G
e

V
/

〉 
T 2 j 〈

 = 5.02 TeV
NN

sp-Pb 

 = 0.465
cms

y ∆

 = 0.4R, TkAnti-

| < 0.25
jet

η|

ALICE, Wide
T

jJet 

, Narrow
T

jJet 

, Wide
T

jDihadron 

, Narrow
T

jDihadron 

Figure 6. Comparison of results from the jet-based and dihadron-based jT analyses [48]. Ranges of
dihadron trigger pT (pT, trigger) are converted to corresponding pT, jet ranges using observed mean
pT, jet values in pT, trigger bins. Dihadron results are shown for 0.2 < x|| < 0.4, where x|| is the
longitudinal component fraction of the associated track momentum with respect to the momentum
of the trigger track. The difference of the two analyses originates from the different kinematic
selections and the choice of the axis used for the jT calculation. See text for more details.

6 Discussion

The comparison with the results from the dihadron analysis [48] performed for the same
collision system and energy is shown in figure 6. Different pT regions of leading particles
used in the dihadron analysis are converted to the corresponding average momentum of
the jets which contain those leading particles. The wide and narrow components of the
dihadron results are for 0.2 < x|| < 0.4, where x|| is the projection of the momentum of
the associated track to that of the trigger particles. Wide component RMS values tend
to increase with increasing pT, trigger and pT, jet, whereas narrow component RMS values of
both results show a weak dependence on pT, jet above 20 GeV/c. The trends are similar for
dihadron and jet jT results. However, the RMS values of the dihadron analysis are larger
than those for the jet analysis both for the narrow and wide components.

The difference in the narrow and wide RMS components can be explained by the
following two factors. The first one is due to the different kinematic selections on the
charged particles in the same jet from which the jT values are calculated. The other one
is due to the choice of the axis used for the jT calculation. In the dihadron analysis jT is
calculated for all near-side tracks if the associated tracks satisfy the condition ~pleading×~pa >

0. Here ~pleading and ~pa are the momentum vectors of the leading and associated tracks,
respectively. Thus, the kinematical limit jT,max can be larger in the dihadron analysis than
in the jet analysis in which only particles in a cone with R = 0.4 are considered.
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Figure 7. The effect of changing the R parameter in jet finding on jT distributions obtained with
PYTHIA 8 simulations. Comparison of (a) jT signal distributions for different R parameters and
their ratios to that of R = 0.3 and (b) RMS values of the wide and narrow components and their
ratios to that of R = 0.3 for the wide component only.

The effect of the R parameter choice and pT, jet dependence on jT was studied using
PYTHIA 8 and the results are shown in figure 7a. The usage of a fixed cone sets stringent
limits on the possible jT values. Increasing the cone size loosens these limits and allows for
higher jT values. The effect on the wide and narrow components of the jT distributions
for PYTHIA 8 is shown in figure 7b, where the wide component RMS gets larger by
about 10% when going from R = 0.3 to 0.4 and from 0.4 to 0.5, indicating that the
kinematic limit introduced by increasing R results in a widening of the jT distribution.
For the narrow component the effect is relatively small and they appear independent of
the R parameter and pT, jet. There can also be a broadening effect for jets caused by the
increasing gluon jet fraction as the kinematical limit increases [70]. Additionally, there is
an effect originating from the kinematic cut on x|| values in the dihadron analysis that can
alter the jT distributions — but that is not further investigated here.

It is worth noting that the leading-track momentum vector provides an imperfect
estimate of the jet axis. Because the leading track in general is at an angle compared to
the jet axis, the resulting jT values based on the leading track are biased from the axis of
the jet. Practically, the jet axis found by the jet finding algorithm tends to minimise the jT
of jet constituents. Moreover, in the dihadron correlation analysis the usage of the leading
hadron as the trigger particle imposes a trigger bias favouring quark jets resulting in jet
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erence) and the jet axis (jet-axis reference) within the same jet for three different pT, jet intervals
with R = 0.4.

narrowing. The impact of the different axes adopted in the two analyses is investigated
by measuring jT with respect to the leading track momentum (leading track reference),
instead of the jet axis (jet-axis reference) within the same jet for R = 0.4. The results are
shown in figure 8. The widths of the jT distributions for the jet-axis reference overall are
smaller than those of the leading track reference. The bias of the choice of axis becomes
small as pT, jet increases. As shown in the bottom panels, the ratios of the distributions
increase monotonically, implying that the leading track reference makes both the wide and
narrow components wider as the ratio distributions show a monotonic increase.

Dihadron jT distributions [48] are compared to those of jet jT. Although a direct
comparison between jet and dihadron jT measurements is not possible because of the effects
of the different kinematic selection and choice of the axis, RMS values of the wide and
narrow components can be quantitatively understood by considering the good agreement
between PYTHIA and data.

7 Conclusion

In this work the jet fragmentation transverse momentum (jT) distribution of charged par-
ticles 1

Njets
dN

jT, chdjT, ch
is studied using jet reconstruction in pp and p-Pb collisions at

√
s,

√
sNN = 5.02 TeV. The jT distributions of charged particles in p-Pb collisions become

wider as the jet transverse momentum pT, jet increases. This is understood as an effect of
the reduction of the kinematical limit with increasing pT, jet, allowing for higher jT values.
The jT distribution in p-Pb collision is compared with that in pp collisions for jet trans-
verse momentum in 40 < pT, jet < 100GeV/c, which shows no clear modification of the jT
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distribution for the p-Pb collision system. No significant cold nuclear matter effects are
observed in the previous and current jT measurements using dihadron correlations [48] and
jet reconstruction. For the jet study, higher statistics in pp collisions for both minimum bias
and EMCal trigger is demanded to interpret the effect in lower jT and higher pT, jet. The jT
distributions in p-Pb collisions are compared with various parton shower and fragmentation
models. All models describe the data well for the higher jT region, while they underesti-
mate the data by about 20% and 40% at lower jT in pp and p-Pb collisions, respectively.

Two distinct components of the jet fragmentation transverse momentum jT are ex-
tracted for narrow and wide contributions to quantify the jT distribution further in pp and
p-Pb collisions. The width of the narrow component has only a weak dependence on jet
transverse momentum, while that of the wide component increases with increasing jet trans-
verse momentum. The results are qualitatively consistent as a function of pT, jet with the
previous jT study performed with dihadron correlations [48]. We also present a comparison
to PYTHIA 8 (PYTHIA 8.3) and Herwig (Herwig 7.2) simulations to figure out if the two
distinct components are described well by models or differences are present. For the wide
component, Herwig and PYTHIA 8 based models slightly underestimate the data for the
higher jet transverse momentum region. For the narrow component, the measured trends
are successfully described by all models except for Herwig. This is opposite to the case of
the jT distributions at lower jT where the narrow component corresponds. This indicates
that the shape of the jT distribution in models is also important to describe the data.

In addition to the result in p-Pb collisions, a high statistics in pp collisions will fur-
ther constrain predictions in model calculations for jet fragmentation and hadronisation.
Future studies of the jT distribution performed differentially in the longitudinal momen-
tum fraction z can be used to constrain transverse-momentum dependent fragmentation
functions [12].
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A Comparison of the jT distributions with models for other pT, jet regions
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Figure 9. The jT distribution in pp and p-Pb collisions at
√
s,
√
sNN = 5.02 TeV for 40 < pT, jet <

60GeV/c comparing to theoretical models in pp and p-Pb collisions.
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comparing to theoretical models in pp and p-Pb collisions.
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