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Abstract 

Mapping with laser-induced breakdown spectroscopy (LIBS) can offer more than just the 

spatial distribution of elements: The rich spectral information also enables mineral 

recognition. In the presented study, statistical approaches were used for the recognition of 

the spodumene from lithium pegmatite ores. A broad spectral range (280–820 nm) with 

multiple lines was first used to establish the methods based on vertex component analysis 

(VCA) and K-means and DBSCAN clusterings. However, with a view to potential on-site 

applications, the dimensions of the data sets must be reduced in order to accomplish fast 

analysis. Therefore, the capability of the methods in mineral identification was tested with 

limited spectral range (560–815 nm) using Li-pegmatites with various mineralogical 

characters. 
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1 Introduction 

The demand for lithium has strongly increased in recent years, and in 2020 lithium was 

identified as critical raw material by the EU level (1). The highest proportion of the supply is 

currently used in battery technology (65 %), but lithium is used also in glass and ceramics 

(18%), lubricating greases, (5 %), polymer production (3 %), continuous casting mould flux 

powders (3%), and air treatment, (1 %) (2). The biggest lithium producers are Australia, 

Chile, China, and Argentina (2). The occurrences of lithium deposits worldwide are reviewed 

elsewhere, e.g., (3) but in western Finland are located an economically important Kaustinen 

lithium pegmatite province, where the main ore mineral is spodumene (4). Theoretically 

spodumene contains 8.03 percent of Li2O (5) and it is currently the most investigated and 

utilized Li-mineral. Coarse grain size makes beneficiation of spodumene pegmatites rather 

easy (3). Ore mineral composition, assemblage, grain size, and ore texture are some of the 

critical features need to be discovered, e.g., to optimize a flotation process (6).  

To exploit lithium resources more profitably, the efficiency of the whole supply chain should 

be enhanced. On-site information about the chemical composition and mineral distributions 

of samples taken during mining and beneficiation activities are crucial. Laser-induced 

breakdown spectroscopy (LIBS) can offer rapid chemical analysis of solid samples (7–9) 

and it is suitable also into analysis of mineral and rocks samples (10–12). Remotely used, 

LIBS is also efficient to in situ and real-time measurements (13). Especially handheld LIBS 

(12, 14, 15) has the potential to study different kinds of geological samples already in field.  

The main strength of LIBS is the analysis of light elements, e.g., lithium and beryllium, which 

is a challenge for other on-site techniques, like XRF. The use of LIBS in analysis of Li-

bearing minerals has been previously reported in the literature, e.g., where the focus has 

been in the determination of Li grades (16–18) or Li distribution (19). The known challenges 

in the quantitative LIBS analysis are that, firstly, the calibration should be done with samples 

of very similar physical and chemical matrix, e.g., in Refs (16, 20). In analysis of 

heterogenous rock samples, finding a set of suitable reference materials may not be trivial 

(12). Secondly, due to the self-absorption phenomenon (21), the calibration curve built with 

resonance lines, which, e.g., Li line 670.8 nm is known to be (22), readily shows nonlinear 

behavior at higher concentrations. The reported detection limits for Li-bearing minerals have 

been as good as 5 ppm (16, 19) and 240 ppm (18) but as discussed by Sweetapple et al. 
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(18) and Rossi et al. (17) the calibration of lithium needs further development. However, our 

aim was in developing cost-effective technique for the needs of the exploration, mining, and 

beneficiation industries, and instead of determining the Li grade, we focused on identification 

of minerals. 

Each LIBS spectrum contains emission lines of the elements from the sampled area. Thus, 

2D map can be constructed to visualize the locations of the selected element in a 

heterogeneous sample. In mineral recognition a bunch of elemental distribution maps can 

be misleading, because some minerals can have chemically similar composition. As seen 

in previous research by Sweetapple and Tassios, 2015, a Li-distribution map cannot solely 

explain macroscopical characters observed in the sample. Thus, our approach is to establish 

procedures for the characterization of spodumene. In this task, several chemometric 

methods, namely K-means, DBSCAN, and vertex component analysis (VCA) are used for 

grouping similar spectra. In this way, information of the whole LIBS spectrum is used to 

reveal mineralogical distributions and textures of rock samples without a priori knowledge of 

the sample. Development has been made for possible applications in the on-site analysis, 

keeping in mind that in the field the size of analyzed data must be restricted, i.e., enough 

information must be obtained in minimal time, effort, and cost. Our suggestion is to limit the 

spectral information by using both narrow spectral range and pre-handling the data with 

principal component analyses (PCA). Therefore, the methods are first established with a 

data set measured at wide spectral range and then their applicability with an optimized 

spectral range is evaluated. 

2 Material & Methods 

2.1 Samples 

The Kaustinen lithium pegmatite province has six known lithium deposits: Syväjärvi, 

Rapasaari, Länttä, Outovesi, Leviäkangas, and Emmes (4). These pegmatite rocks have 

comparable textures and mineralogy and can be included in albite-spodumene subgroup of 

lithium–cesium–tantalum (LCT) pegmatites. The main minerals include albite, quartz, 

spodumene, muscovite, and K-feldspar (23). Spodumene appears at the Rapasaari deposit 

mostly as greenish/greyish crystals, shaped like laths and these are oriented perpendicular 

to wall-rock contact (24). The approximate lithium concentration of spodumene at the 
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Rapasaari deposit was estimated as 7.21 wt% Li2O (24). Spodumene at the Länttä deposit 

is similarly shaped and in addition a reddish colored form can be observed (25). The size of 

spodumene grains in pegmatites is typically in cm-scale, but also more fine-grained 

variations occur. The approximate mineral contents in the Rapasaari and Länttä deposits 

are presented in Table 1. Li contents in other minerals are not known, but muscovite can 

contain up to 3.6 % of Li2O when lithium substitutes mostly for aluminum. Quartz can also 

host minor amounts of Li (26). 

Table 1. The main minerals of the Kaustinen Li-pegmatite province with general formulas and approximate 
contents in weight-% based on previous research from the deposits of Länttä (27) and Rapasaari (24). 

Mineral 
Content (wt%) 

Rapasaari 
Content (wt%) 

Länttä 
General formula 

Spodumene 14.7 16.6 LiAlSi2O6 
Quartz 25.8 25.9 SiO2 
Albite 37.1 34.2 NaAlSi3O8 

K-feldspar 9.5 13.1 KAlSi3O8 
Muscovite 7.0 3.9 KAl2(AlSi3O10)(OH)2 

 

Four rock samples were chosen from the Länttä and Rapasaari deposits, varying in grain 

sizes and spodumene colors (Table 2). Spodumene grains typically exist as elongated lath 

shaped crystals and the samples were sawed parallel to the longest crystal axes. To verify, 

that orientation of mineral grains does not have significant influence on the results, another 

surface perpendicular to the longest spodumene axes was sawed to sample 1. In total five 

areas (1.5 cm × 2 cm) were mapped with LIBS. Before the LIBS measurements, photos of 

the analysis areas were taken both in natural light and in 248 nm light from KrF excimer 

laser (Lambda Physik, Optex). The macroscopic inspection of the coarse-grained samples 

was used to identify minerals, which was used to confirm the LIBS analysis results.  

Table 2. The description of the Li-pegmatite samples. 

Sample Measurement Sample site Grain size Spodumene  

1 Map 1 and Map 2 Länttä 
Coarse-
grained 

Greenish 

2 Map 3 Länttä 
Coarse-
grained 

Reddish 

3 Map 4 Länttä 
Medium-
grained 

Greenish 

4 Map 5 Rapasaari Fine-grained 
Greenish / 

Greyish 
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2.2 LIBS mapping 

LIBS is efficient analysis method for 2d mappings when spatial distributions are essential 

(28). Thus, for studying the elemental and mineralogical differences in the Li-pegmatite 

samples, LIBS measurements were carried out from x number of spots in y number of rows. 

The laser-induced plasma was generated at the excitation wavelength of 266 nm. The laser 

pulse duration was 3.3 ns with repetition rate 100 Hz (NT230, Ekspla). The laser energy was 

~1.2 mJ (Ophir PE10-SH-V2) and the diameter of the ablated spot at the sample surface 

was ~135 µm. Plasma emission was collected with fused silica fiber and a long-pass filter 

with a cut-on of 266 nm was used in to block the laser light from the spectrometer. Maps 1 

and 2 were measured at spectral range (280–820 nm) with Echelle spectrometer (Mechelle 

7500, Multichannel Instruments) and ICCD (DiCAMPRO PCO). Maps 3–5 were measured 

at narrower spectral range (560–815 nm) using Czerny-Turner spectrometer (SP-150, Acton 

Research Corp.) with 300 mm-1 grating (blazed to 500 nm) and ICCD (Andor iStar). The 

detailed measurement parameters of the five LIBS mappings are given in Table 3. 

Table 3. The specification of experiments.  

Measurement parameter Maps 1 and 2 Maps 3–5 

Spectral range (nm) 280–820 560–815 

Data pixels 18233 1024 

Mapped area (cm) 1.5 cm × 2 cm 1.5 cm × 2 cm 

Step (µm) 400 200 

Sample points (row X column) 38 X 50 75 X 100 

Number of acquisitions 50 10 

Number of spectra 1900  7500 

Delay 300 ns 50 ns 

Gate 1 µs 2 µs 

2.3 Statistical approaches for mineral identification 

A LIBS spectrum of a certain mineral can be considered as a fingerprint within a dataset: A 

unique composition of emission lines with characteristic line intensity values. This enables 

the use of chemometric data analysis for the characterization of the LIBS spectra and an 

extensive review is presented elsewhere (29). In the case of mineral and rock samples 

several LIBS studies are published with varying techniques, e.g., principal component 

analysis (PCA) (30–35), partial least squares (PLS) (36), partial least squares discriminant 

analysis (PLS-DA) (30, 34, 37–39), hybrid sparse partial least squares (SPLS) and least-

squares support vector machine (LS-SVM) model (40), K-means clustering (41, 42), soft 
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independent modelling of class analogy (SIMCA) (35, 41), support vector machines (SVM) 

(39, 43), singular value decomposition (SVD) (44), convolutional neural network with two-

dimensional input (2D CNN) (45), Spectral Angle Mapper (SAM) (46), and random forest 

(RF) (47). Our aim was to establish procedures for the characterization of spodumene with 

VCA, K-means, and DBSCAN without a priori knowledge of the samples. The whole 

statistical approach to handling the data of Maps 1–5 is presented in Fig. 1. 

 

Figure. 1. Data analysis procedure for the LIBS spectra. 

The principle of VCA is based on the idea, that because emission lines mostly do not overlap 

with each other, i.e., are principally located in different parts of the spectral domain, data 

has strong built-in orthogonality. Mineral spectra are assumed to be a linear mixture of 

different elements and data itself as a linear mixture of these mineral spectra. As stated in 

Table 3, each spectrum of the Maps 1 and 2 consists of ~18000 pixels and therefore a single 

data point 𝒙 is vector in ℝ18000. This allows rearranging the spatial dataset of the 

measurement (row x column) to a list 𝑋 = [𝒙1, 𝒙2, … , 𝒙𝑛]𝑇, where 𝑛 is number of data points 

in the list. Now, 𝑋 can be expressed as  

𝑋 = 𝑀𝑌, 
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where 𝑌 is matrix of prototype spectra for different minerals, 𝑀 = [𝒎1, 𝒎2, … , 𝒎𝑛]𝑇 is mixing 

matrix, where 𝒎𝒊 =  [𝑚1, 𝑚2, … , 𝑚𝑝] is a proportion of each prototype spectra for data point 

𝒙𝑖 and T is matrix transpose. It is reasonable to give non-negativity constraint for 𝒎, i.e., 

𝑚𝑖 > 0 ∀ 𝑖. 

Often these proportions are constrained to sum to one, i.e., 

∑ 𝑚𝑗 =
𝑝

𝑗=1
1 

for each data point 𝒙𝑖. If specific datapoint totally matches one prototype spectrum with 

respective mixing matrix value 1, this sample point represents the mineral given as prototype 

spectrum. 

However, if we do not know beforehand 𝑌, i.e., have a set of mineral prototype spectra, this 

problem is ill-posed. Using a set of such model spectra is not trivial, because experimental 

variations affect relative intensities in the LIBS spectra of even pure homogeneous samples. 

In addition, in rock analysis a laser beam can hit more than one mineral simultaneously, 

especially in case of the fine-grained samples. Chemical alterations and trace element 

contents are also seen in a mineral LIBS spectrum. For example, in spodumene pegmatites 

the main Li emission is observed in almost every mineral spectrum, with at least minor 

intensity. Therefore, spectra are often expressed as a linear combination of two or more 

prototype spectra. In the latter case, the higher the value of mixing matrix is, the stronger is 

the contribution of that prototype spectrum in the original spectrum. VCA based spectral 

unmixing is a sub-pixel method, which assumes that data contains at least one pure pixel 

for each prototype spectrum. In this case it can show a combination of minerals in the pixel 

of the data set, here spectrum. Because data has strong inside orthogonality, we can use 

geometric approach to find 𝑌 from the data set while data points are in different parts of 

ℝ18000. The data set can be covered with a convex hull. Now, the vertices of this hull are 

assumed to be the prototype spectra of each mineral.  

To determine these vertices, here VCA (48) was used because of its computational 

efficiency. However, there are several other ways as well, e.g., Pixel Purity Index (49). This 

type of data analysis is common for example in hyperspectral imaging research (50). In 

VCA, the data set is projected to the lower dimensional space using orthogonal projections. 
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Here the maximum value of the first projected component is fixed to the first prototype 

spectrum. Using affine transformation with this fixed component data set is rotated 

orthogonally and the second prototype is fixed as maximum value in this direction. This is 

continued until the desired number of prototype spectra is gained. Now, we know 𝑌 =

[𝒚1, 𝒚2, … , 𝒚𝑝]
𝑇

, where 𝒚𝑖 ∈ ℝ18000. Mixing matrix 𝑀 can now be solved using ordinary least 

squares (OLSQ) 

𝑀 = (𝑌𝑇𝑌)−1𝑌𝑇𝑋,                                                                         [1] 

or using non-negative least squares’ algorithms. Because of the built-in orthogonality in 𝑋, 

equation [1] does not give negative results. Now by rearranging M to the original spatial 

dimensions of the imaged data we have gained relative proportion maps. These express 

into what extent each spectral data point can be seen as a mixture of these prototype 

spectra.  

Cluster analysis (unsupervised machine learning) gives us information about how a data set 

can be divided into different clusters. In geometrical sense, clusters are data points which 

are near to each other. Here we are using two classical algorithms: K-means (51) and 

DBSCAN (52). Dimension of this LIBS data set is relatively high, each spectrum is in ℝ18000, 

which makes use of distance-based algorithms computationally heavy. Thus, dimension 

reduction by principal component analysis (PCA) is applied to the data set before clustering. 

Cluster centroids express the mean value of the spectra of cluster points and can be used 

to explain what mineral cluster represents. 

DBSCAN as a density-based algorithm is used to cluster data sets, but it is also applied in 

the detection of the possible outliers of the data set, i.e., spectra, which differ notably from 

the found clusters. There can be several reasons for outliers in the data set. They can be 

spectra where elements from two adjacent minerals can be seen and such data points are 

so called local outliers, which are located between clusters in respective projection. In case 

of possible accessory minerals or coarse measurement errors, e.g., intensive cosmic ray 

signal in the spectrum, the points are global outliers located outside of all clusters. To reduce 

the effect of these outliers we propose the following practice and spatial-median algorithm 

to replace outlier spectra with reasonable data. First, the mission is to find the right number 

of outliers and specify their reason. This can be done by alternating meta-parameters of 

DBSCAN and then check the result spectra. If we are only interested in global outliers, we 
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must find out parameters, which gives the rest of the data in one cluster and just finds global 

outliers. If we are also interested in local outliers, we need to cluster data set to several 

clusters. After a right number of outliers has been detected, Algorithm 1 can be used to 

replace outlier as a median spectrum from its neighborhood. 

  

Algorithm 1: 

1. Select spatial neighborhood of the outlier. 
2. Compute PCA for these spectra 
3. Determinate data point, from which spectrum corresponds the median of 1. principal 

component 
4. Replace outlier with spectrum of the data point selected in 3. 

 

For the evaluation of the results obtained by VCA and clustering methods, two alternative 

techniques were used in the visualization of spodumene occurrence. Firstly, a model 

spectrum was measured from a representative spodumene sample, and it was applied to 

the original data with linear fitting procedure with the constraint of negative coefficients, i.e., 

non-negative least squares’ algorithm (Lsqnonneg) from a Matlab toolbox. The principles of 

fitting are described in more detail elsewhere, e.g., (53) and use of this method in mineral 

identification has been demonstrated in sulfide-bearing samples from the massive pyrite-

copper-zinc Pyhäsalmi deposit with LIBS (54). Secondly, as the lithium content is at the 

highest in spodumene, relative lithium distributions are visualized as intensity maps. In this 

data set, lithium is detected in all minerals, most likely related to LIBS sensitivity to Li 

analysis and the line intensities remain rather low outside the spodumene regions. A cut-off 

level for representing spodumene was therefore experimentally selected to show only the 

locations, where the intensity value was over 60 % of the maximum value of integral of the 

Li line.  

Data analysis was carried out with Python 3.7 and Mathworks Matlab R2015a programs. 

Image manipulations were made with Inkscape 0.91 and GIMP 2.8.16. As the Maps 1 and 

2 were both measured from sample 1, the data sets were combined, but visualization and 

analysis were carried out separately. 
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3. Results & discussion 

3.1 Development of the statistical approaches with rich spectral 

data 

The photograph of two measured areas from Li-pegmatite rock sample (Maps 1 and 2) is 

shown in Fig. 2. The orientation of the greenish spodumene grains can be observed in the 

enlarged photos, especially in those illuminated with 248 nm laser light, where spodumene 

has red luminescence.  

 

Figure 2. Photographs of Maps 1 and 2 under natural and laser light visualize the character of the sampled 
areas. Two perpendicular surfaces were measured to ensure that orientation of spodumene grains, which in 
this sample show orange luminescence, does not have significant influence on the results of data analysis. 

For the development of statistical data analysis, data set with rich spectral information, i.e., 

spectra measured at wide spectral range to provide multiple emission lines, was used. In 

total, the combined data set of Maps 1 and 2 contained 3800 spectra showing emission lines 

from 280 nm to 820 nm with 18233 pixels per spectrum (Table 3). In the first step of the 

procedure presented in Fig. 1, a combination of PCA and DBSCAN was applied to the data 

set. Optimal results in the determination of clusters were obtained when the neighborhood 

was set to 4000 and a minimum of three neighbors and six principal components were used. 

With this approach, the six PCs explained the main characters of the spectral data set. Of 

these PCs 1–3 explain the main mineralogical characters while PCs 4–6 represent mostly 
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geochemical alterations. With PCA, we reduced data set to ℝ6 and the first three reduced 

PCs explained 90.37 % of singular values. As a result of DBSCAN, 14 outliers were found 

and replaced, and their features are further discussed in Section 3.3. The spectral analysis 

was continued with the determination of the main minerals by grouping the spectra with VCA 

and two clustering algorithms, DBSCAN and K-means. 

3.1.1. Spectral unmixing with VCA 

Linear spectral unmixing method, vertex component analysis (VCA), found five spectral 

endmembers, i.e., prototype spectra, groups from the data sets of Maps 1 and 2. The VCA 

maps (Fig. 3) visualize the location of the data points as proportion maps, which express 

into what extent the spectrum on each point can be explained by the prototype spectra, as 

described in Section 2.3. The endmembers are supposed to present the prototype spectra 

of the main minerals and the main elements are marked in the spectra (Fig. 3, middle). 

 

Figure 3. The five endmembers of vertex component analysis (VCA) represent the main minerals in Maps 1 
and 2 and the characteristic elements are marked in the endmember spectra. It is assumed that the whole 
data set can be interpret as a linear combination of endmembers prototype, i.e., spectra. The constructed 
maps illustrate the proportions, how much the spectrum at the certain data point is explained by respective 
endmember. 
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Only silicon emission lines can be seen in endmember 1 and the most intense regions in 

the respective maps represent chemically the simplest quartz form and these correspond to 

macroscopically recognized minerals seen in Fig. 2. Because the main minerals of 

spodumene pegmatites are silicates (Table 1), endmember 1 shows correlation (green) to 

other mineral regions as well. In endmember 2 spectrum, major lines are lithium, silicon, 

aluminum, and sodium, and it can be mainly seen to represent spodumene as the lithium 

emission line intensity is the highest. When the VCA map of endmember 2 is compared to 

the photo under UV laser light (Fig. 2), clear correlation to the location of luminescent 

spodumene grains can be detected. Endmember 3 spectrum shows lines of silicon, calcium, 

and sodium, and the highest occurrence in the maps is connected to a few small locations 

with high calcium content in the original spectra. Endmember 4 spectrum has the lines of 

aluminum, silicon, sodium, lithium, and potassium, which are typical for K-bearing minerals: 

K-feldspar and muscovite (Table 1). From endmember 5 lines of silicon, aluminum, calcium, 

and sodium can be detected and the chemical composition correlates to albite (Table 1). To 

verify the result that endmember 2 is representing spodumene locations, maps based on 

the Lsqnonneg fitting of spodumene model spectrum and intensity distribution of Li emission 

line 812.6 nm were constructed (Section 2.3). Constructed maps and the estimated 

spodumene percentages can be compared with VCA maps of endmember 2 (Fig. 4).  

 

Figure 4. A comparison of three methods for the identification of the spodumene occurrence: a model spectrum 
matching using Lsqnonneg fitting (left), lithium distribution with integral of line 812.6 nm (middle), and maps of 
VCA endmember 2 (right). 

The spatial occurrence of spodumene determined by VCA correlates to the maps from the 

alternative approaches. The percentage values of spodumene contents in the sampled area, 
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calculated from the most probable locations visualized in Fig. 4, are similar. In the maps, 

where the results are based on the mineral recognition (Lsqnonneg and VCA) instead of 

elemental content, slightly higher values were obtained. The difference is most likely caused 

by the classification of spectra at the borders of the spodumene grains. The laser can also 

hit another mineral simultaneously, e.g., quartz, resulting in lower lithium intensity value, but 

the mineral classification can count the mixture still as spodumene group. The interpretation 

is supported by the observation, that the highest lithium content (Fig. 4. middle) seems to 

be decreasing towards the edges of spodumene grains. In general, the results are 

comparable, and no remarkable difference can be detected between the surfaces related to 

measurement on surfaces parallel either perpendicular to the spodumenes’ longest crystal 

axes. Therefore, the pegmatite samples can be measured regardless orientation of the 

spodumene grains. It can be noted that a triangle-shaped area in Map 2 can be observed in 

endmembers 2, 4, and 5 in VCA maps which corresponds to intense blue luminescence in 

Fig. 2. In the closer look to the original LIBS spectra from this area, we found lines of 

beryllium (313.0 nm and 332.1 nm), indicating the presence of beryl (Be3Al2Si6O18), which 

can be found as an accessory mineral in the Kaustinen Li-pegmatites (55). These spectra 

were found similar to the spectra reported in LIBS research of beryl (33). It seems, that the 

appearance of two beryllium lines, is not enough to separate the beryl to its own group. Beryl 

spectra contain also rather intensive lithium lines, as demonstrated the light blue area in the 

Li distribution map (Fig. 4, middle).  

3.1.2. Cluster analyses with K-means and DBSCAN 

Two cluster analyses (K-means and DBSCAN) were carried out with the pre-reduced 

spectral data set of the Maps 1 and 2. K-means, using three principal components, divided 

the data into six clusters based on the distance from the cluster center. Centroid spectra 

and the corresponding maps of clusters are presented in Fig. 5. Projection of all six clusters 

with respect to the first three reduced principal components is also presented. 
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Figure 5. K-means cluster analysis presented as maps (left), corresponding cluster centroid spectra (middle), 
and cluster projection (right).  

 

The interpretation of the K-means centroids is based on the appearance of the major 

spectral lines which have been marked to the respective spectra. Five of these were found 

to be presenting the minerals of Li-pegmatites: beryl (cluster 1, brown), spodumene (cluster 

2, red), albite (cluster 3, green), quartz (cluster 4, turquoise), and K-feldspar/muscovite 

(cluster 5, orange). Because the centroid is a mean spectrum from all the spectra within the 

cluster, also lines from the trace elements are observed. Some remarks can be made from 

the projection of clusters. The red points (spodumene) appear very densely together, so 

clustering is efficient at the separation of spodumene from the other minerals. Other clearly 

separated ones are green (albite), and turquoise (quartz). In the projection the brown (beryl) 

and orange (K-feldspar/muscovite) points are more separated. The centroid of cluster 1 was 

interpreted as beryl, as it contains beryllium lines. The respective projection is somewhat 

separated and, also few spectra of some other mineral were found to be clustered into this. 

In case of orange cluster (K-feldspar/muscovite) separation of projection is explained by the 

cluster consisting of more than one chemically rather similar mineral, which both may also 

have of chemical variations. The projection of cluster 6 (violet) is located between the 

clusters of spodumene and albite and the centroid spectrum clearly contains lines originating 
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from both minerals. Thus, this cluster is composed most likely from spectra formed when 

the laser beam is hitting these minerals simultaneously at their borders. 

In another cluster analysis, DBSCAN, the neighborhood size for the reduced data set was 

determined to be 1000 and a minimum number of neighbors to 30. Four cluster groups were 

formed and DBSCAN maps, corresponding centroid spectra and the data projected with the 

first three reduced principal components are presented in Fig. 6.  

Figure 6. DBSCAN cluster analysis presented as maps (left), corresponding cluster centroid spectra (middle), 

and cluster projection (right).  

The centroid spectra of DBSCAN analysis were interpret as the following mineralogical 

groups: beryl (cluster 1, brown), spodumene (cluster 2, red), albite (cluster 3, green), and 

quartz (cluster 4, turquoise). The rest of the data, which are not grouped in DBSCAN are 

presenting unclassified spectra (violet). The centroid spectra (Fig. 6, middle) show several 

elements. Potassium in the centroid spectrum indicates that the K-bearing minerals, K-

feldspar/muscovite, are also included in this group of unclassified spectra. The projection of 

the DBSCAN data shows that four clusters are occurring as individual groups, while the 

violet points representing the unclassified data are dispersed all around the projection. When 

the centroid spectra of DBSCAN (Fig. 6) are compared with the ones generated by K-means 
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for clusters 1–4 (Fig. 5), only slight differences are observed mainly at the appearance of 

small lines, i.e., trace elements. 

The percentage levels of recognized minerals from K-means and DBSCAN analyses were 

calculated from the maps and are presented in Table 4. DBSCAN has somewhat lower 

levels in all minerals and a rather high amount of data (19 %) are left as unclassified spectra 

(violet, Fig. 6). It can be estimated that spodumene group in DBSCAN contains fewer 

intermediate spectra than K-means. Higher levels of spodumene are achieved with K-

means, and the numbers are comparable to the results obtained from the spodumene 

recognition based on Li distribution (Fig. 4, Map 1: 41.0 % & Map 2: 35.6 %). 

Table 4. Percentages of minerals recognized from the spectral data of Maps 1 and 2 with K-means and 

DBSCAN. 

Mineral 

Map 1 Map 2 

K-means (%) DBSCAN (%) K-means (%) DBSCAN (%) 

Spodumene 41.0 36.5 35.5 31.5 
Quartz 35.8 34.5 38.2 37.5 
Albite 12.9 9.7 14.0 10.8 

K-feldspar/Muscovite 2.9 – 1.8 – 
Beryl 3.3 0.2 7.4 2.7 

Combination  4.1  3.1  
Unclassified  19.1  17.5 

3.2 Feasibility for VCA, K-means, and DBSCAN in spodumene 

recognition with a limited spectral information 

In the second part of the study, we tested how developed statistical approaches work, if the 

spectral range is limited to show only the most informative spectral lines to the 

characterization of spodumene. These measurements were performed with a Czerny-

Turner type spectrometer, because within the grating the orders of the spectral lines can 

overlap. The spectral range (560–815 nm) shows intensive lithium lines at 610.4, 670.8 nm, 

and 812.6 nm, but also potassium at 766.5 and 769.9 nm, and sodium at 589.3 as well as 

at 568.7 nm can be detected. We can also observe second order emission lines of aluminum 

at 616.4 and 618.6 nm, and silicon at 576.3 nm (Fig. 7).  
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Figure 7. Limited spectral range measurements from spodumene, albite, and quartz with marked lines, of 

which Si and Al are 2nd order. 

The outliers were first determined with combination PCA and DBSCAN from data set of 

Maps 3–5 (Table 3). Altogether 30 outliers were detected: 12 from the Map 3, 16 from the 

Map 4, and two from the Map 5. Most of the mineralogical characteristics were explained 

with three PCs and each of the data sets was reduced to ℝ3. Singular values for three 

reduced PCs explained 99.8 % for Map 3, 99.4 % for Map 4, and 99.4 % for Map 5. 

When a limited spectral range was used, in VCA three endmembers from each of the Maps 

were formed, and they were recognized as spodumene, albite, and quartz. As the focus was 

on the detection of the main ore mineral, the endmembers recognized as spodumene are 

visualized as maps (Fig. 8) together with respective photos and spodumene locations 

determined by Lsqnonneg as well as lithium intensity distribution. On the contrary to the map 

in Fig. 4, here the intensity of the line 610.4 nm was used to demonstrate the spodumene 

occurrence, because the 812.6 nm line intensity was small due to the lower efficiency of 

both grating and ICCD at 800 nm range (Fig. 8). Line 610.4 nm was more suitable for the 

task than resonance line 670.8 nm which suffers from self-absorption. For VCA, the lesser 

number of the spectral lines measured does not seem to influence the determination of 

spodumene content, if the characteristic lines of the main minerals can be observed. The 
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grain size and the spodumene content is significantly smaller in Map 5 and macroscopically 

investigation is challenging. However, with VCA there is no notable effect on the calculated 

percentages between three data analysis approaches. 

It can be remarked that opposite to the luminescence behavior of spodumene observed in 

Fig. 2, within these samples the spodumene grains are not showing uniform luminescence 

under UV laser light irradiation (Fig 8, left). However, in Map 5 spodumene seems to occur 

with red luminescence in UV light (Fig. 8), which enables to estimating the length of the 

spodumene grains as 1 mm at the highest. It can be also noted, that spodumene grains in 

Map 3 have reddish color in natural light, which is common to spodumene from the Länttä 

deposit. 

 

Figure 8. The capability of VCA in the detection of spodumene in the case of optimized spectral range is tested 
against Lsqnonneg fitting of the model spectrum and spatial lithium intensity distribution. The dissimilarity of 
three Li-pegmatites can be seen in photographs under natural and laser light. 

The K-means and DBSCAN cluster analyses were carried out separately to the data of Maps 

3–5. The visualization of the clustering maps and their projections are demonstrated in Fig. 

9. In K-means procedure, from the data of Maps 3 and 4 was formed three clusters while 

from data of Map 5 was formed only two. The parameters for the DBSCAN were the same 

as in for the data of Maps 1 and 2 and as a result, DBSCAN found four clusters for Map 3, 

three clusters for Map 4, and two clusters for Map 5. 
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Figure 9. K-means and DBSCAN analyses for Maps 3, 4, and 5.  

 

It is obvious, that the clusterings are not as efficient when the spectral information is cut 

down from the range of 280–820 nm (~18 000 pixels) to 560–815 nm (~1 000 pixels). 

Nevertheless, in the centroid spectra of the coarse- and medium-grained samples (Maps 3 

and 4) the mean spectrum with the highest lithium intensity can be characterized as 

spodumene and can be used to separate other silicate minerals. In the K-means projections 

in Fig. 9, the respective cluster is illustrated with red color and within the projections of Maps 

3 and 4, the red cluster seems to be separated from blue and green clusters without notable 

spatial variations. The calculated spodumene percentages (Map 3: 35.8 %; Map 4: 43.0 %) 

for K-means are quite comparable with results gained with VCA and alternative techniques 

in Fig. 8. The results from the DBSCAN spodumene detection were similar but the 

percentages of spodumene were 33.4 % for Map 3 and 35.4 % for Map 4. It seems, that 

with the data of limited spectral information, DBSCAN gives somewhat lower spodumene 

percentage values, in general, than the other methods presented in Table 5, especially at 

the medium-grained and fine-grained samples (data of Maps 4 & 5). The reason for this is 

most likely due to the fact, that on the contrary to other methods, DBSCAN clustering lefts 

some spectra as unclassified. In the closer look we noticed that these spectra locate in 
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mineral grain borders in the respective maps and most likely represent the intermediate 

spectra of two minerals. In the coarse-grained sample (Map 3) the number of unclassified 

spectra is thus smaller and the spodumene percentage is closer to the ones obtained by 

other methods. 

When considering the data of the fine-grained sample with low spodumene content (Map 5), 

K-means seems to fail in the detection of the cluster with features of spodumene. DBSCAN 

is somewhat more effective: the data of Map 5 can be separated into spodumene (red: 1.4 

%) and to group, which centroid interpreted as intermediate spectra of albite and quartz 

(blue, 87.6 %). The recognition was based on the relative intensities of lines of Na, Al, and 

Si in the blue centroid. The rest of the data of Map 5 was not grouped with DBSCAN (violet: 

11.0 %) and it most likely contains also spectra measured from spodumene grain edges, as 

the centroid contained rather high lithium intensities. Spodumene contents obtained with 

different data analysis procedures of Maps 3, 4, and 5 are collected into Table 5. 

Table 5. The spodumene content (%) estimated by VCA, DBSCAN, and K-means for the coarse-grained (Map 

3), medium-grained (Map 4) and fine-grained (Map 5) Li-pegmatite samples. For comparison, percentages 

from the Lsqnonneg fitting of the model spectrum and spatial lithium intensity distribution, visualized in Fig. 8, 

are also given. 

 Map 3 (%) Map 4 (%) Map 5 (%) 

VCA spd 36.8 44.6 5.1 
DBSCAN 33.4 35.4 1.4 
K-means 35.8 43.0 – 

Lsqnonneg 38.3 48.7 6.2 
Lithium level 36.5 45.1 5.9 

3.3 Outliers in detection of accessory minerals 

Altogether 14 global outliers, i.e., spectra, which differ notably from found clusters, were 

distinguished from the spectral data of Maps 1 and 2, as described in Section 3.1. Although 

the global outliers were removed from the data set before the main data analysis, the closer 

inspection of their spectra can give insight to accessory minerals. Two of them were found 

to be an intermediate spectrum of three main minerals: spodumene, albite, and K-

feldspar/muscovite, while the rest of the outliers are calcium and niobium rich minerals. The 

representative spectrum of the calcium rich mineral (Fig. 10. a) include only several strong 

calcium emission lines. Because this spectral range does not allow detection phosphorus or 

carbon, this could be either spectrum of apatite or calcite, both known to occur accessory 
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minerals in the target area (23). The Nb-rich mineral spectrum (Fig. 10. b) represents most 

likely Nb-Ta oxide which has also been recognized in the Kaustinen lithium pegmatite 

province (23). This is also supported by the fact, that the spectrum (Fig. 10. b) matches to 

the previous results of Ta-Nb ores analyzed with LIBS (56). 

 

Figure 10. Examples of spectra recognized as outliers from Maps 1 and 2. 

In limited spectral range measurements (Maps 3–5) in total 30 outliers were detected. 

Because this range contained only a few elemental peaks (see Fig. 7), it was not possible 

to perform thorough accessory mineral analysis. In general, outlier detection can be a 

valuable tool for achieving information about the location and composition of accessory 

minerals. 

4. Conclusions 

We utilized laser-induced breakdown spectroscopy (LIBS) with sophisticated statistical 

methods in analysis of Li-pegmatite ore samples. Key factors in the research were that no 

beforehand knowledge of the mineralogy was needed, and the size of spectral data was 
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optimized. Vertex component analysis (VCA) and two cluster analyses (K-means and 

DBSCAN) were used to separate the ore mineral spodumene from the gangue, estimate its 

content and visualize texture. VCA was able to separate spodumene regardless the mineral 

grain size. Both clustering analyses found spodumene in coarse- and medium-grained 

samples, but the information about the other main minerals was lost when the spectral 

information was limited to lines of the main minerals. The presented approaches may serve 

as a basis for in-situ and online applications also in analysis of other Li-bearing minerals. 
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