

This is a self-archived version of an original article. This version may differ from the original in pagination and typographic details.

- Author(s): Islam, Mohammad Shahidul; Al-Majid, Abdullah Mohammed; Azam, Mohammad; Verma, Ved Prakash; Barakat, Assem; Haukka, Matti; Elgazar, Abdullah A.; Mira, Amira; Badria, Farid A.
- Title: Construction of Spirooxindole Analogues Engrafted with Indole and Pyrazole Scaffolds as Acetylcholinesterase Inhibitors

Year: 2021

Version: Published version

Copyright: © XXXX The Authors. Published by American Chemical Society

Rights: CC BY-NC-ND 4.0

Rights url: https://creativecommons.org/licenses/by-nc-nd/4.0/

Please cite the original version:

Islam, M. S., Al-Majid, A. M., Azam, M., Verma, V. P., Barakat, A., Haukka, M., Elgazar, A. A., Mira, A., & Badria, F. A. (2021). Construction of Spirooxindole Analogues Engrafted with Indole and Pyrazole Scaffolds as Acetylcholinesterase Inhibitors. ACS Omega, 6(47), 31539-31556. https://doi.org/10.1021/acsomega.1c03978

AChEI; 8i; IC₅₀ = 24.1µM

Construction of Spirooxindole Analogues Engrafted with Indole and Pyrazole Scaffolds as Acetylcholinesterase Inhibitors

Mohammad Shahidul Islam, Abdullah Mohammed Al-Majid, Mohammad Azam, Ved Prakash Verma,* Assem Barakat,* Matti Haukka, Abdullah A. Elgazar, Amira Mira, and Farid A. Badria

Cite This: https://	/doi.org/10.1021/acsomega.1c03978	Read Online	
ACCESS	III Metrics & More	E Article Recommendations	s Supporting Information
ABSTRACT: Twent indole and pyrazole cycloaddition (32CA based indole and pyra amines $7a-d$. The	y-five new hits of spirooxindole scaffolds were designed and) reaction starting from three azole scaffolds 5a-d , substituted potency of the compounds y	analogs 8a—y engrafted with d constructed <i>via</i> a [3+2]- components: new chalcone- d isatins 6a—c , and secondary vere assessed in modulating	Ph ^N

■ INTRODUCTION

interaction with the active site of hAChE.

Neurodegeneration is a key aspect of a large number of diseases that come under the umbrella of neurodegenerative disease. Of these different disorders, the most notable are Parkinson's disease, Huntington's disease, and Alzheimer's disease (AD). Alzheimer's disease (AD) symptoms are memory loss, impairment of cognitive functions, and dementia. AD involves two major neuropathological hallmarks causing neuronal dysfunctions and cell death: the presence of extracellular amyloid β -peptide (A β) deposits (senile plaques) and aggregates of the hyperphosphorylated tau protein (neurofibrillary tangles)¹ along with the tau hyperphosphorvlation are the most proposed pathogenetic mechanisms,² and mitochondrial cascade hypothesis has attracted much interest recently.³ Other much debatable AD hypotheses are the tau hypothesis,⁴ cholesterol hypothesis,⁵ inflammatory hypothesis,⁶ oxidative stress hypothesis,⁷ metal hypothesis,⁸ vascular hypothesis,9 and cell cycle hypothesis.10 Up to date, rivastigmine, galantamine, and donepezil represent the only ChE inhibitors approved for AD treatment, differing in chemical structures and pharmacologic and pharmacokinetic profiles. To design and discover a new agent that might work as ChE inhibitors is a challenge.

cholinesterase (AChE) activity using Ellman's method. Compounds 8i and 8y showed the strongest acetylcholine esterase inhibition (AChEI) with IC₅₀ values of 24.1 and 27.8 μ M, respectively. Molecular docking was used to study their

Heterocycles having azoles as a core structure have been discovered for several applications.¹¹ Pyrazoles are one of the important heterocycles, which exhibited significant properties in material sciences,¹² agriculture development,¹³ medicine,¹⁴ and pharmacological applications.¹⁵ Among pharmacological applications are antibiotic,¹⁶ sensors,¹⁷ pesticide,¹⁸ antibacterial,¹⁹ and antifungal activities.²⁰ On the other hand, several

molecules engrafted with the pyrazole scaffold have shown high efficacy toward antiviral,²¹ antitumor,²² anti-inflammatory,²³ antioxidant,²⁴ and antidepressant activities.²⁵ Indeed, many drugs incorporated the pyrazole moiety employed for the treatment of metabolic disorder diseases such as Alzheimer's,²⁶ Parkinson's,²⁷ and neuroprotective,²⁸ which makes this pharmacophore very attractive for drug discovery. One representative example of advanced glycation inhibitors reported by Han et al. is that this agent is based on the pyrazole-5-carboxamide as a core structure.²⁹ However, Turkan et al. have reported substituted pyrazole derivatives, which have been discovered as potent cholinesterase inhibitors.³⁰

Spirooxindoles exhibit a broad range of biological effects and are well-tolerated in biomedical applications.³¹ Their applications use AChEs.³² Kia et al. reported representative examples, including spirooxindoles engrafted with piperidine and pyrrolizine scaffolds, which are found to be beneficial for AChE (compound III; IC₅₀ = 3.36 μ M or 2.28 ± 0.07 μ g/mL) (Figure 1),^{32d} and another representative example based on mono- and *bis*-spiro-pyrrolidines, where the hit IV shows high efficacy against AChE with an IC₅₀ value of 2.35 μ M (Figure 1).^{32f} Chigurupati et al. reported indolopyrazolines with the

Received: July 26, 2021 Accepted: November 1, 2021

Article

Figure 1. Significant acetylcholinesterase (AChE) inhibitory activity of representative spirooxindole analogues.

Scheme 1. Synthesis of the Chalcone Engrafted with Indole and Pyrazole Scaffolds 5a-d

high biochemical application against AChE inhibition (**V**; IC₅₀ = 13.77 \pm 0.25 lM), respectively.³³ Extending our recent efforts on the development of cholinesterase inhibition, Barakat et al. reported a new series of spirooxindoles engrafted with the benzo[*b*]thiophene scaffold, which were found to exhibit moderate potential against AD (Figure 1).^{32h,34} The above reports inspired the investigation of several pharmacophores inside the rigid spirooxindole privileged structure, such as indole and pyrazole scaffolds, which might act as better AChE inhibitors.

Several progresses have been devoted toward the synthesis of spirooxindoles recently.³⁵ In between these approaches, the [3 + 2] cycloaddition reaction protocol was efficient and promising to afford the spirooxindole privileged structures with several stereogenic centers.³⁶

In this paper, we described the [3 + 2] cycloaddition reaction approach for the synthesis of new spirooxindoles based on a new chalcone engrafted with indole and pyrazole motifs. Many substituted isatins and amino acids were also investigated. The biochemical potential of AChE was also studied.

RESULTS AND DISCUSSION

Synthesis of Spirooxindole Analogs 8a–y Engrafted with Indole and Pyrazole Scaffolds. The indole and pyrazole scaffolds as interesting pharmacophores are combined into the spirooxindole analogs for exploring the acetylcholinesterase (AChE) inhibitory activity. Initially, we synthesized the new chalcones 5a–d by aldol condensation of acetyl-pyrazole and substituted indole-3-carbaldehyde in basic

Scheme 2. Synthesis of the Spirooxindole Analogues Engrafted with Indole and Pyrazole Scaffolds 8a-y

Scheme 3. Proposed Approach for the [3 + 2] Cycloaddition Reaction, Explaining the Regio- and Diastereoselective Synthesis

condition under reflux for 72 h. The new chalcone-based indole and pyrazole scaffolds, which act as a synthon for the [3 + 2] cycloaddition (32CA) reaction, are depicted in Scheme 1. Subsequently, the new series of spirooxindole analogues tethered indole and pyrazole scaffolds were constructed *via* a one-pot multicomponent reaction approach³⁷ in MeOH under reflux conditions for 2–24 h (Scheme 2). Twenty-five

examples were achieved by variation of many substituted isatins 6a-c with different electronic effects (isatin 6a; 6-chloroisatin 6b; 5-nitroisatin 6c) with four different amino acids 7a-d (thioproline 7a, octahydro-1*H*-indole-2-carboxylic acid 7b; L-proline 7c; sacrosine 7d). The spirooxindole analogues engrafted with indole and pyrazole scaffolds were isolated in a single regio- and diastereoselective isomer in

acceptable to excellent chemical yield up to 86%. The proposed mechanism, as shown in Scheme 3, proceeded *via* an *ortho/endo* 32CA approach.³⁸ The optical rotation of the synthesized compounds was measured, and the regio- and diastereoselectivity of the cycloadducts were confirmed. Single-crystal X-ray diffraction analysis of compound 8c confirmed that our hypothesis belongs to the final stereoselectivity of the cycloadducts of the final compounds. The absolute configurations of products 8a-y were assigned based on the obtained x-ray diffraction analysis as follows for the 4 stereogenic centers as *R*, *S*, *R*, *S*.

Crystal Structure Description. The X-ray structure of 8c showing atom numbering and thermal ellipsoids drawn at a 30% probability level is shown in Figure 2. The structure

Figure 2. Atom numbering and thermal ellipsoids at a 30% probability level for 8c.

agreed very well with the spectral analyses and revealed the presence of asymmetric centers at C9, C21, C10, and C13. The crystal data and structure refinement details are depicted in Table 1. The compound crystallized in the triclinic system and the $P\overline{1}$ space group with unit cell parameters of a = 12.71740(10) Å, b = 15.72830(10) Å, c = 19.3853(2) Å, and $\beta = 105.9640(10)^{\circ}$. The unit cell volume is 3727.97(6) Å³ with Z = 4. The asymmetric unit comprised one molecule and two chloroform molecules as the crystal solvent. The selected bond distances and angles are listed in Table S1 (Supporting Information).

The molecular packing in 8c is controlled by strong N– H...O and N–H...N hydrogen bonds as well as weak C––H...X interactions (X=Cl, Br, N, or O). The corresponding hydrogen bond parameters are listed in Table S2 (Supporting Information) and are shown in the left part of Figure 3. The hydrogen bond network is shown in the right part of the same figure.

Acetylcholine Esterase Inhibitory Activity. The ability of the synthesized compounds to inhibit acetylcholine esterase (AChE) was evaluated using Ellman's method.³⁹ Compounds 8i and 8y showed the strongest acetylcholine esterase inhibition (AChEI) with IC₅₀ values of 24.1 and 27.8 μ M, respectively.

Four Compounds; 8c, 8d, 8f, 8h, 8j, 8w, and 8x showed moderate activity inhibitory activity (with $IC_{50} \leq 50 \ \mu M$). Compounds 8m, 8o, 8p, 8q, and 8s had weak activity (with

Table 1. Crystal Data

		8c
	CCDC	2105913
	empirical formula	C34H28BrCl6N5O2S
	fw	863.28
	temp (K)	120(2)
	λ (Å)	1.54184
	cryst syst	monoclinic
	space group	P21/n
	a (Å)	12.71740(10)
	b (Å)	15.72830(10)
	c (Å)	19.3853(2)
	β (deg)	105.9640(10)
	V (Å ³)	3727.97(6)
	Z	4
	$ ho_{\rm calc}~({ m Mg/m^3})$	1.538
	μ (Mo K α) (mm ⁻¹)	6.305
	no. reflns.	38891
	unique reflns.	7824
	completeness to θ = 67.684°	100.0%
	GOOF (F^2)	1.024
	R _{int}	0.0352
	$R_1^{a} (I \ge 2\sigma)$	0.0354
	$wR_2^b \ (I \ge 2\sigma)$	0.0861
${}^{a}R_{1} =$	$\Sigma F_{o} - F_{c} / \Sigma F_{o} $. ${}^{b}wR_{2} = [\Sigma [w(F_{o}^{2} - $	$F_{\rm c}^{2})^{2}]/\Sigma[w(F_{\rm o}^{2})^{2}]]^{1/2}$

IC₅₀ values 65–90 μ M), while compounds **8b**, **8e**, **8q**, **8k**, **8e**, **9r**, **8r**, **8t**, **8u**, and **8v** were in active with IC₅₀ > 100 μ M (Table 2).

Molecular Docking Study. Molecular docking has been used extensively to identify and explain the molecular mechanism of several lead compounds in drug discovery.⁴⁰ The software validation revealed that it was able to reproduce the experimental pose with root-mean-square deviation (RMSD) equal to 0.39 (Figure 4). Since *in vitro* enzyme inhibition showed that compounds **8i**, **8h**, and **8y** are the most active among the synthesized compounds with moderate inhibition activity, we used molecular docking to gain insights into the molecular interaction of the compound with the active site of hACHE.

In the context of the total energy required for binding, the cocrystallized ligand achieved much better binding affinity than the 3 compounds, yet their binding energy was found to be reasonable with respect to their moderate activity in the enzyme inhibition assay, as presented in Table 3. Post docking analysis showed that compound 8i has different binding modes rather than compounds 8h and 8y, as the first one tends to bind in the middle of the gorge of hACHE. On the other hand, compounds 8h and 8y showed most of their interactions with amino acids located at the entrance of the gorge. For example, compound 8i was able to interact with amino acids in diverse sites in the enzyme such as TRP-86 and TYR-337 in the anionic site, Ser-203 and HIS-447 in the catalytic site, PHE-295 and PHE-297 in the acyl binding site, and formed 2 hydrogen bonds with SER-125 and GLU-202, as depicted in Figure 5, these interactions are well reported to be important for achieving good inhibitory activity.⁴

On the other hand, compound **8y** showed interactions only with TYR-337 and PHE-295 from the anionic and acyl binding sites, respectively, but with less hydrophobic interaction than **8i**. Nevertheless, they were able to access the peripheral anionic site by interacting with amino acids, such as TYR-124,

Figure 3. Hydrogen bond contacts (left) and packing of molecular units via hydrogen bonding interactions (right).

TRY-341, and TRP-286, as shown in Figures 6 and 7, which might explain their ability to achieve the moderate inhibitory effect as observed in the enzyme inhibition assay.

CONCLUSIONS

We summarized in this paper that we had synthesized 25 hits based on a spirooxindole scaffold engrafted with two other pharmacophores, including indole and pyrazole moieties. The results of the AChE assay show that compounds **8i** and **8y** show the strongest acetylcholine esterase inhibition (AChEI) with IC₅₀ values of 24.1 and 27.8 μ M, respectively. The AChE activity exhibited promising results, which make them candidates for further research.

EXPERIMENTAL SECTION

General information. Phenylhydrazine, acetylacetone, N,N-dimethylformamide-dimethyl acetal (DMF-DMA), Piperidine, and NaOH were purchased from Aldrich and used as received. All of the indole derivatives were purchased from Aldrich and used as is. All bases were used as received (in air) or dried under vacuum at 100 °C (under an inert atmosphere). All solvents were used as received when experiments were conducted in air. Flash chromatography was performed on 100-200 mesh silica gel. ¹H- and ¹³C-nuclear magnetic resonance (NMR) spectra were recorded on JEOL-700 MHz spectrometers at ambient temperature in CDCl₃ & DMSO-d₆, which were purchased from Sigma-Aldrich. Chemical shifts (ppm) are referenced to the residual solvent peak. Coupling constants, *I*, are given in hertz. Abbreviations used in the designation of the signals: s = singlet, d = doublet, dd =doublet of doublets, ddd = doublet of doublets, dt = doublet of triplets, t = triplet, td = triplet of doublets, and m = multiplet. All melting points were measured on a Gallenkamp melting point apparatus in open glass capillaries and are uncorrected. IR Spectra were measured as KBr pellets on a Nicolet 6700 FT-IR spectrophotometer. Specific rotations were recorded in 'A KRÜSS Optronic GmbH P8000 polarimeter.

Synthesis of 1-(5-Methyl-1-phenyl-1H-pyrazol-4-yl)ethanone (3). N,N-Dimethylformamide-dimethyl acetal (DMF-DMA) (17.85 g, 0.15 mol) was added to acetylacetone 1 (0.1 mol) and stirred for 10 min at ambient temperature, followed by the addition of phenylhydrazine derivative 2 (0.1 mol), and the reaction mixture was heated at 70-80 °C for 24 h. The completion of the reaction was monitored by thin-layer chromatography (TLC) (20% EA/*n*-hexane). The reaction mixture was then allowed to cool and kept in a fridge for 24 h and a white solid precipitated out, which was isolated by simple filtration and washed with diethyl ether to afford pure white product 3 (5 g, 25 mmol, 25% yield). The MLs part was concentrated and purified using a column to afford another 6 g of pure white product 3 (30 mmol, 30%). The overall yield of acetyl-pyrazole-3 (11.0 g, 55%).⁴²

m.p.: 88–90 °C; ¹H NMR (400 MHz, CDCl₃): δ (ppm) = 7.99 (s, 1H, pyrazole-<u>H</u>), 7.52–7.46 (m, 2H, Ar-<u>H</u>), 7.44 (d, *J* = 6.8 Hz, 1H, Ar-<u>H</u>), 7.41–7.36 (m, 2H, Ar-<u>H</u>), 2.56 (s, 3H, COC<u>H₃</u>), 2.47 (s, 3H, C<u>H₃</u>); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) = 193.56 (<u>C</u>O), 143.05, 141.97, 138.58, 129.36, 128.89, 125.61, 121.16, 28.75 (<u>C</u>OCH₃), 12.44 (<u>C</u>H₃); IR (KBr, cm⁻¹): 3060, 3001, 1660, 1597, 1545, 1502, 1457, 1399, 1382, 1363, 1276, 1238, 1196, 1171, 1011, 937, 884, 866, 769, 718, 690, 662, 637, 558; [anal. calcd. for C₁₂H₁₂N₂O: C, 71.98; H, 6.04; N, 13.99; found: C, 72.07; H, 6.01; N, 13.94]; LC/MS (ESI, *m*/*z*): found 201 [M + H]⁺; exact mass 200.09 for C₁₂H₁₂N₂O. All of the analytical data are in accordance with the reported literature.⁴²

Synthesis of Chalcones (5a-d) from Acetyl-pyrazole (3) and Substituted Indole-3-Carboxyaldehyde (4a-d) (GP1). Compound 3 (1 g, 5 mmol) and substituted indole-3carboxyaldehyde 4a-d (5 mmol) were dissolved in ethanol (20 mL) in a 100 mL round bottom flask. Piperidine (950 mg, 2 equiv) was added to the reaction mixture and refluxed at 80 °C 48-72 h. The completion of the reaction was monitored by TLC (30% EA/*n*-hexane). Then, the solid precipitated out, which was isolated by simple filtration and washed with ethanol to afford pure white/yellow product 5a-d (70-80% yield).

Synthesis of (E)-3-(1H-Indol-3-yl)-1-(5-methyl-1-phenyl-1H-pyrazol-4-yl)prop-2-en-1-one (**5a**). Following the general procedure (GP1), acetyl-pyrazole 3 (1.0 g, 5.0 mmol) and indole-3-carboxyaldehyde **4a** (0.87 g, 6.0 mmol) produce pyrazolenone-**5a** (yield 0.9 g, 55%); m.p.: 222–224; ¹H NMR (400 MHz, DMSO-*d*₆): δ (ppm) = δ 11.85 (s, 1H, N<u>H</u>), 8.59 (s, 1H, Ar-<u>H</u>), 8.17–8.11 (m, 1H, Ar-<u>H</u>), 8.08 (s, 1H, Ar-<u>H</u>), 8.00 (d, *J* = 15.4 Hz, 1H, C<u>H</u>=CH), 7.58 (d, *J* = 4.3 Hz, 4H, Ar-<u>H</u>), 7.54–7.41 (m, 3H, Ar-<u>H</u> & CH=C<u>H</u>), 7.29–7.17 (m, 2H, Ar-<u>H</u>), 2.62 (s, 3H, C<u>H</u>₃); ¹³C NMR (100 MHz, DMSO*d*₆): δ (ppm) = δ 184.19 (<u>C</u>O), 142.69, 141.53, 138.53, 137.47, Table 2. AChE Inhibitory Activity of the Synthesized Spirooxindole Analogues Engrafted with Indole and Pyrazole Scaffolds 8a-y

Table 2. continued

136.61, 132.48, 129.30, 128.56, 125.41, 125.20, 122.58, 121.61, 121.00, 120.51, 118.15, 112.55, 112.33, 12.20 (\underline{CH}_3); IR (KBr, cm⁻¹) ν_{max} = 3158, 3106, 3047, 2877, 1649, 1638, 1581, 1521, 1502, 1453, 1384, 1347, 1279, 1255, 1229, 1217, 1190, 1140, 1115, 1072, 1064, 1036, 1034, 1004, 974, 945, 893, 879, 852, 834, 762, 734, 714, 696, 656, 641, 603, 593, 558, 507; LC/MS (ESI, *m*/*z*): 328.2 [M + H]⁺, exact mass 327.14 for C₂₁H₁₇N₃O.

Synthesis of (E)-1-(5-Methyl-1-phenyl-1H-pyrazol-4-yl)-3-(1-methyl-1H-indol-3-yl)prop-2-en-1-one (**5b**). Following the general procedure (GP1), acetyl-pyrazole **3** (1.0 g, 5.0 mmol) and indole-1-methyl-3-carboxyaldehyde **4b** (0.95 g, 6.0 mmol) produce pyrazolenone-**5b** (yield 1.0 g, 56%); m.p.: 182–183; ¹H NMR (400 MHz, DMSO- d_{δ}): δ (ppm) = δ 8.58 (s, 1H, Ar-<u>H</u>), 8.15 (d, *J* = 7.8 Hz, 1H, Ar-<u>H</u>), 8.04 (s, 1H, Ar-<u>H</u>), 7.95 (d, J = 15.5 Hz, 1H, C<u>H</u>=CH), 7.58 (d, J = 4.4 Hz, 3H, Ar-<u>H</u>), 7.57–7.49 (m, 3H, Ar-<u>H</u>), 7.46 (d, J = 15.5 Hz, 1H, CH=C<u>H</u>), 7.33–7.25 (m, 2H, Ar-<u>H</u>), 3.85 (s, 3H, C<u>H</u>₃), 2.62 (s, 3H, C<u>H</u>₃); ¹³C NMR (100 MHz, DMSO- d_6): δ (ppm) = δ 184.09 (<u>C</u>O), 142.71, 141.53, 141.49, 138.51, 137.93, 135.98, 135.89, 129.30, 128.56, 125.63, 125.40, 122.66, 121.59, 121.26, 120.67, 120.61, 118.17, 118.10, 111.56, 110.75, 110.66, 32.97 (<u>C</u>H₃), 12.15 (<u>C</u>H₃); IR (KBr, cm⁻¹) ν_{max} = 3108, 3045, 1643, 1569, 1524, 1501, 1472, 1464, 1386, 1373, 1341, 1281, 1259, 1219, 1187, 1178, 1157, 1132, 1075, 1039, 1003, 937, 855, 841, 821, 771, 751, 699, 681, 654, 540; LC/MS (ESI, *m*/*z*): found 342.2 [M + H]⁺, exact mass 341.15 for C₂₂H₁₉N₃O.

Synthesis of (E)-3-(5-Bromo-1H-indol-3-yl)-1-(5-methyl-1phenyl-1H-pyrazol-4-yl)prop-2-en-1-one (**5c**). Following the general procedure (GP1), acetyl-pyrazole 3 (1.0 g, 5.0 mmol) Figure 4. Donepezil (Red) docked in the active site of ACHE (4EY7) and overlaid with cocrystallized ligand (Green) RMSD = 0.39.

TYR72

Table 3. Binding Energy of Compound Docked in the	
Binding Site of the hACHE Active Site ^a	

	compound	total energy	VDW	H-bond		
1.	8i	-127.335	-121.335	-6		
2.	8y	-126.589	-118.253	-8.336		
3.	8h	-123.962	-118.983	-4.979		
4.	cocrystallized ligand	-149.55	-139.4	-10.15		
^{<i>a</i>} VDW = Van der Waals force and H-Bond = Hydrogen bond.						

and 5-bromoindole-3-carboxyaldehyde 4c (1.34 g, 6.0 mmol) produce pyrazolenone-5c (yield 0.85 g, 42%); m.p.: 214–215; ¹H NMR (400 MHz, DMSO- d_6): δ (ppm) = δ 12.02 (s, 1H, N<u>H</u>), 8.63 (s, 1H, Ar-<u>H</u>), 8.26 (d, *J* = 1.9 Hz, 1H, Ar-<u>H</u>), 8.14 (s, 1H, Ar-<u>H</u>), 7.95 (d, J = 15.5 Hz, 1H, C<u>H</u>==CH), 7.60–7.55 (m, 4H, Ar-<u>H</u> + CH==C<u>H</u>), 7.53–7.49 (m, 1H, Ar-<u>H</u>), 7.46 (d, J = 3.9 Hz, 1H, Ar-<u>H</u>), 7.45 (d, J = 3.1 Hz, 1H, Ar-<u>H</u>), 7.35 (dd, J = 8.6, 1.9 Hz, 1H, Ar-<u>H</u>), 2.61 (s, 3H, C<u>H</u>₃); ¹³C NMR (100 MHz, DMSO- d_6): δ (ppm) = δ 184.22 (<u>CO</u>), 142.77, 141.76, 138.50, 136.07, 135.67, 132.99, 129.30, 128.56, 127.02, 125.39, 125.18, 122.39, 121.52, 119.03, 114.25, 113.74, 112.17, 12.19 (<u>C</u>H₃); IR (KBr, cm⁻¹) $\nu_{max} = 3153$, 3077, 3030, 2934, 2900, 1643, 1559, 1500, 1454, 1433, 1394, 1370, 1299, 1273, 1243, 1223, 1182, 1136, 1095, 1038, 1022, 1007, 956, 938, 881, 851, 824, 789, 758, 689, 660, 636, 609, 554; LC/MS (ESI, m/z): found 406.6 [M(₇₉Br) + H]⁺, 408.1 [M(₈₁Br) + H]⁺; exact mass 405.05 for C₂₁H₁₆BrN₃O.

Figure 5. 8i docked in the active site of ACHE (4EY7) and corresponding two-dimensional (2D) presentation. The H-bond is represented by green dotted lines, hydrophobic interactions are represented by magenta dotted lines, and Pi-sulfur interaction is represented by orange dotted lines.

Н

Article

Figure 6. 8y docked in the active site of ACHE (4EY7) and corresponding 2D presentation. The H-bond is represented by green dotted lines, hydrophobic interactions are represented by magenta dotted lines, and Pi-sulfur interaction is represented by orange dotted lines.

Figure 7. 8h docked in the active site of ACHE (4EY7) and corresponding 2D presentation. The H-bond is represented by green dotted lines, hydrophobic interactions are represented by magenta dotted lines, and Pi-sulfur interaction is represented by orange dotted lines.

Synthesis of (E)-3-(5-Chloro-1H-indol-3-yl)-1-(5-methyl-1phenyl-1H-pyrazol-4-yl) prop-2-en-1-one (5d). Following the general procedure (GP1), acetyl-pyrazole 3 (1.0 g, 5.0 mmol) and 5-chloroindole-3-carboxyaldehyde 4d (1.07 g, 6.0 mmol) produce pyrazolenone-5d (yield 0.9 g, 50%); m.p.: 237-238; ¹H NMR (400 MHz, DMSO- d_6): δ (ppm) = δ 11.95 (bs, 1H, NH), 8.65 (s, 1H, Ar-H), 8.20-8.05 (m, 2H, Ar-H), 7.95 (d, J = 15.4 Hz, 1H, CH=CH), 7.57 (d, J = 4.4 Hz, 4H, Ar-H), 7.50 (dd, J = 8.7, 4.6 Hz, 2H, Ar-<u>H</u>), 7.46 (d, J = 15.7 Hz, 1H, CH=CH), 7.23 (dd, J = 8.2, 2.1 Hz, 1H, Ar-H), 2.61 (s, 3H, CH_{3} ; ¹³C NMR (100 MHz, DMSO- d_{6}): δ (ppm) = δ 184.24 (<u>C</u>O), 142.78, 141.80, 138.52, 135.86, 135.76, 133.34, 129.30, 128.56, 126.35, 125.73, 125.40, 122.60, 121.53, 119.55, 118.92, 113.81, 112.30, 12.19 (<u>C</u>H₃); IR (KBr, cm⁻¹) $\nu_{max} = 3107$, 2896, 1648, 1637, 1576, 1518, 1500, 1453, 1395, 1383, 1373, 1314, 1251, 1212, 1142, 1123, 1072, 1047, 1005, 973, 944, 897, 863, 837, 794, 765, 740, 697, 651, 643, 609, 594, 575; LC/MS (ESI, m/z): found 362.1 [M(₃₅Cl) + H]⁺, 364.1 [M(₃₇Cl) + H]⁺; exact mass 361.09 for C₂₁H₁₆ClN₃O.

Synthesis of Spirooxindole Derivatives 8a-y. General Procedure (GP2). Chalcones 5a-d (0.25 mmol), isatin derivatives 6a-c (0.25 mmol), and amino acids 7a-d (1.5 equiv, 0.37 mmol) were dissolved in methanol (20 mL), and the reaction mixture was refluxed for 2–4 h. Finally, the products were isolated by flash column chromatography, using 1–3% MeOH/DCM to afford pyrazole spirooxindole 8a-y.

(3R,6'S,7'R,7a'S)-7'-(1H-Indol-3-yl)-6'-(5-methyl-1-phenyl-1H-pyrazole-4-carbonyl)-1',6',7',7a'-tetrahydro-3'Hspiro[indoline-3,5'-pyrrolo[1,2-c]thiazol]-2-one (**8a**). Following the general procedure (GP2), chalcone**5a**(82 mg, 0.25mmol), isatin**6a**(37 mg, 0.25 mmol), and thioproline 7a (50mg, 0.37 mmol) in methanol (20 mL) were refluxed for 3 hand purified by column chromatography 100–200 mesh silicagel and MeOH/CH₂Cl₂ (3:97) to yield light yellow solidcompound**8a** $; yield (85 mg, 62%); m.p.: 138–139 °C; <math>[\alpha]_{25}^{25} =$

 -16.19° (c 0.13, MeOH); ¹H NMR (700 MHz, CDCl₃) δ (ppm) = 8.59 (s, 1H, NH), 8.33 (s, 1H, NH), 8.10 (d, I = 7.1Hz, 1H, Ar-<u>H</u>), 7.92 (s, 1H, Ar-<u>H</u>), 7.72 (d, J = 7.6 Hz, 1H, Ar-<u>H</u>), 7.40–7.33 (m, 4H, Ar-<u>H</u>), 7.28 (d, J = 2.5 Hz, 1H, Ar-<u>H</u>), 7.20-7.17 (m, 2H, Ar-H), 7.17-7.14 (m, 3H, Ar-H), 7.04-7.01 (m, 1H, Ar-<u>H</u>), 6.64 (d, J = 7.7 Hz, 1H, Ar-<u>H</u>), 4.79 (d, J= 11.8 Hz, 1H, CHCO), 4.66–4.61 (m, 1H, NCH), 4.25 (dd, J = 11.8, 9.7 Hz, 1H, NCHC<u>H</u>), 3.94 (d, J = 10.5 Hz, 1H, NCH_2), 3.61 (d, J = 10.5 Hz, 1H, NCH_2), 3.11–3.03 (m, 2H, SCH₂), 1.92 (s, 3H, CH₃); ¹³C NMR (176 MHz, CDCl₃) δ (ppm) = 191.09 (<u>C</u>O), 180.75 (<u>C</u>O), 143.50, 141.28, 141.03, 138.31, 136.74, 129.76, 129.29, 129.15, 128.88, 126.46, 125.47, 124.08, 123.02, 122.28, 122.27, 121.00, 119.93, 119.84, 113.65, 111.58, 109.65, 75.12, 73.75, 63.86, 55.16, 43.58, 37.41, 11.75 (<u>C</u>H₃); IR (KBr, cm⁻¹) ν_{max} = 3288, 3058, 2921, 1733, 1722, 1717, 1699, 1694, 1682, 1674, 1668, 1661, 1652, 1619, 1615, 1597, 1538, 1532, 1504, 1470, 1456, 1393, 1337, 1222, 1119, 935, 875, 807, 749, 695; [anal. calcd. for $C_{32}H_{27}N_5O_2S$: C, 70.44; H, 4.99; N, 12.83; found: C, 70.31; H, 5.05; N, 12.91]; LC/MS (ESI, m/z): found 546.4 [M + H]⁺, exact mass 545.19 for C₃₂H₂₇N₅O₂S.

(3R,6'S,7'R,7a'S)-6'-(5-Methyl-1-phenyl-1H-pyrazole-4carbonyl)-7'-(1-methyl-1H-indol-3-yl)-1',6',7',7a'-tetrahydro-3'H-spiro[indoline-3,5'-pyrrolo[1,2-c]thiazol]-2-one (8b). Following the general procedure (GP2), chalcone 5b (85 mg, 0.25 mmol), isatin 6a (37 mg, 0.25 mmol), and thioproline 7a (50 mg, 0.37 mmol) in methanol (20 mL) were refluxed for 3 h and purified by column chromatography 100-200 mesh silica gel and MeOH/CH₂Cl₂ (3:97) to yield light yellow solid compound **8b**; yield (101 mg, 72%); m.p.: 186–187 °C; $[\alpha]_{D}^{25}$ $= -12.53^{\circ}$ (c 0.13, MeOH); ¹H NMR (700 MHz, CDCl₃) δ (ppm) = 8.80 (s, 1H, NH), 8.09 (d, J = 7.24 Hz, 1H, Ar-H),7.92 (s, 1H, Ar-<u>H</u>), 7.72 (d, J = 7.63 Hz, 1H, Ar-<u>H</u>), 7.39–7.35 (m, 3H, Ar-<u>H</u>), 7.29 (ddd, J = 8.1, 1.4, 0.7 Hz, 1H, Ar-<u>H</u>), 7.25 (dd, J = 6.9, 1.3 Hz, 1H, Ar-H), 7.21 (dd, J = 5.0, 1.4 Hz, 1H)Ar-H), 7.19 (s, 1H, Ar-H), 7.19–7.16 (m, 2H, Ar-H), 7.16– 7.12 (m, 2H, Ar-<u>H</u>), 7.03 (td, J = 7.6, 1.1 Hz, 1H, Ar-<u>H</u>), 6.65 (d, J = 7.73 Hz, 1H, Ar-<u>H</u>), 4.77 (d, J = 11.8 Hz, 1H, C<u>H</u>CO), 4.67-4.61 (m, 1H, NCH), 4.22 (dd, J = 11.8, 9.8 Hz, 1H, NCHC<u>H</u>), 3.94 (d, J = 10.6 Hz, 1H, NC<u>H</u>₂), 3.74 (s, 3H, CH_3), 3.61 (d, J = 10.5 Hz, 1H, NCH_2), 3.07 (d, J = 4.3 Hz, 2H, SCH₂), 1.92 (s, 3H, CH₃); ¹³C NMR (176 MHz, CDCl₃) δ (ppm) = 191.09 (<u>C</u>O), 180.96 (<u>C</u>O), 143.43, 141.25, 141.21, 138.27, 137.40, 129.70, 129.23, 129.03, 128.81, 127.60, 126.88, 125.45, 124.02, 122.13, 121.80, 120.97, 119.90, 119.38, 112.03, 109.75, 109.58, 75.20, 73.86, 63.89, 55.20, 43.45, 37.35, 32.80 (<u>CH</u>₃), 11.67 (<u>CH</u>₃); IR (KBr, cm⁻¹) $\nu_{\text{max}} =$ 3237, 2923, 1738, 1733, 1722, 1699, 1694, 1682, 1674, 1668, 1661, 1652, 1645, 1634, 1622, 1615, 1597, 1557, 1538, 1532, 1505, 1470, 1456, 1398, 1329, 1229, 1180, 1156, 1115, 1069, 1013, 934, 801, 741, 695; [anal. calcd. for C₃₃H₂₉N₅O₂S: C, 70.82; H, 5.22; N, 12.51; found: C, 71.01; H, 5.15; N, 12.39]; LC/MS (ESI, m/z): found 560.4 [M + H]⁺, exact mass 559.14 for C₃₃H₂₉N₅O₂S.

(3R,6'S,7'R,7a'S)-7'-(5-Bromo-1H-indol-3-yl)-6'-(5-methyl-1-phenyl-1H-pyrazole-4-carbonyl)-1',6',7',7a'-tetrahydro-3'H-spiro[indoline-3,5'-pyrrolo[1,2-c]thiazol]-2-one (**8c**). Following the general procedure (GP2), chalcone **5c** (102 mg, 0.25 mmol), isatin **6a** (37 mg, 0.25 mmol), and thioproline **7a** (50 mg, 0.37 mmol) in methanol (20 mL) were refluxed for 3 h and purified by column chromatography 100–200 mesh silica gel and MeOH/CH₂Cl₂ (3:97) to yield light yellow solid compound **8c**; yield (59 mg, 38%); m.p.: 180–181 °C; $[\alpha]_{D}^{25} =$

 -12.53° (c 0.11, MeOH); ¹H NMR (700 MHz, CDCl₂) δ (ppm) = 9.05 (s, 1H, NH), 8.66 (s, 1H, NH), 8.18 (s, 1H, Ar-<u>H</u>), 7.98 (s, 1H, Ar-<u>H</u>), 7.69 (d, J = 7.5 Hz, 1H, Ar-<u>H</u>), 7.38– 7.35 (m, 4H, Ar-H), 7.20-7.18 (m, 1H, Ar-H), 7.15-7.13 (m, 2H, Ar-<u>H</u>), 7.03 (d, J = 7.6 Hz, 1H, Ar-<u>H</u>), 6.62 (d, J = 7.7 Hz, 1H, Ar-<u>H</u>), 4.63 (d, J = 11.6 Hz, 1H, CHCO), 4.50–4.49 (ddd, J = 9.4, 6.2, 2.5 Hz, 1H, NCH), 4.21 (m, 1H, NCHCH),3.92 (d, J = 10.4 Hz, 1H, NCH₂), 3.60 (d, J = 10.4 Hz, 1H, NCH₂), 3.08-3.04 (m, 1H, SCH₂), 3.03-3.98 (m, 1H, SCH₂), 1.91 (s, 3H, CH₃); ¹³C NMR (176 MHz, CDCl₃) δ (ppm) = 191.02 (<u>C</u>O), 180.91 (<u>C</u>O), 143.59, 141.14, 138.23, 135.18, 129.84, 129.33, 128.96, 128.58, 127.75, 127.12, 125.47, 125.19, 124.00, 123.78, 122.33, 122.04, 120.91, 113.74, 113.18, 113.03, 109.80, 75.06, 74.25, 65.41, 54.90, 42.63, 37.28, 11.70 (<u>C</u>H₃); IR (KBr, cm⁻¹) ν_{max} = 3273, 2924, 1721, 1668, 1617, 1597, 1537, 1503, 1470, 1455, 1396, 1331, 1283, 1223, 1179, 1099, 934, 884, 807, 795, 762, 752, 694, 656, 604; [anal. calcd. for C₃₂H₂₆BrN₅O₂S: C, 61.54; H, 4.20; N, 11.21; found: C, 61.43; H, 4.35; N, 11.27]; LC/MS (ESI, m/z): found 624.7 $[M(_{79}Br) + H]^+$, 626.1 $[M(_{81}Br) + H]^+$; exact mass 623.10 for $C_{32}H_{26}BrN_5O_2S.$

(3R,6'S,7'R,7a'S)-7'-(5-Chloro-1H-indol-3-yl)-6'-(5-methyl-1-phenyl-1H-pyrazole-4-carbonyl)-1',6',7',7a'-tetrahydro-3'H-spiro[indoline-3,5'-pyrrolo[1,2-c]thiazol]-2-one (8d). Following the general procedure (GP2), chalcone 5d (91 mg, 0.25 mmol), isatin 6a (37 mg, 0.25 mmol), and thioproline 7a (50 mg, 0.37 mmol) in methanol (20 mL) were refluxed for 3 h and purified by column chromatography 100-200 mesh silica gel and MeOH/CH₂Cl₂ (3:97) to yield light yellow solid compound 8d; yield (76 mg, 52%); m.p.: 210–212 °C; $[\alpha]_{D}^{25}$ = -12.03° (c 0.11, MeOH); ¹H NMR (700 MHz, CDCl₃) δ (ppm) = 8.61 (s, 1H, N<u>H</u>), 8.38 (s, 1H, N<u>H</u>), 8.00 (s, 1H, Ar-<u>H</u>), 7.86 (s, 1H, Ar-<u>H</u>), 7.64 (d, J = 7.6 Hz, 1H, Ar-<u>H</u>), 7.33 (dd, J = 10.7, 7.0 Hz, 3H, Ar-H), 7.23-7.18 (m, 2H, Ar-H),7.09 (dd, J = 15.4, 8.3 Hz, 4H, Ar-<u>H</u>), 7.00–6.96 (m, 1H, Ar-H), 6.60 (d, I = 7.8 Hz, 1H, Ar-H), 4.58 (d, I = 11.6 Hz, 1H, CHCO), 4.50–4.42 (m, 1H, NCH), 4.16 (t, J = 10.6 Hz, 1H, NCHC<u>H</u>), 3.88 (d, J = 10.4 Hz, 1H, NC<u>H</u>₂), 3.55 (d, J = 10.4 Hz, 1H, NCH2), 3.06-2.94 (m, 2H, SCH2), 1.86 (s, 3H, CH_3); ¹³C NMR (176 MHz, CDCl₃) δ (ppm) = 190.95 (<u>C</u>O), 180.78 (<u>C</u>O), 143.60, 141.17, 141.01, 138.27, 134.95, 129.88, 129.35, 129.06, 128.97, 127.87, 125.71, 125.50, 124.00, 122.75, 122.40, 120.91, 119.13, 113.90, 112.54, 109.76, 74.12, 64.53, 54.95, 42.77, 37.30, 11.72 (CH₃); IR (KBr, cm⁻¹) ν_{max} = 3284, 2926, 1720, 1668, 1652, 1616, 1597, 1538, 1504, 1470, 1397, 1329, 1283, 1268, 1223, 1180, 1103, 934, 893, 806, 796, 763, 752, 694, 683, 658, 605; [anal. calcd. for C₃₂H₂₆ClN₅O₂S: C, 66.26; H, 4.52; N, 12.07; found: C, 66.14; H, 4.63; N, 12.15]; LC/MS (ESI, m/z): found 580.6 [M(₃₅Cl) + H]⁺, 582.3 $[M(_{37}Cl) + H]^+$; exact mass 579.15 for $C_{32}H_{26}ClN_5O_2S$.

(3*R*,6'S,7'*R*,7*a*'S)-6-Chloro-7'-(1H-indol-3-yl)-6'-(5-methyl-1-phenyl-1H-pyrazole-4-carbonyl)-3',6',7',7*a*'-tetrahydro-1'H-spiro[indoline-3,5'-pyrrolo[1,2-c]thiazol]-2-one (**8e**). Following the general procedure (GP2), chalcone **5a** (82 mg, 0.25 mmol), 6-chloroisatin **6b** (46 mg, 0.25 mmol), and thioproline **7a** (50 mg, 0.37 mmol) in methanol (20 mL) were refluxed for 3 h and purified by column chromatography 100– 200 mesh silica gel and MeOH/CH₂Cl₂ (3:97) to yield light yellow solid compound **8e**; yield (44 mg, 30%); m.p.: 188– 190 °C; $[\alpha]_{D}^{25} = -18.78^{\circ}$ (c 0.11, MeOH); ¹H NMR (700 MHz, DMSO-*d*₆): δ (ppm) = 11.00 (s, 1H, N<u>H</u>), 10.68 (s, 1H, N<u>H</u>), 7.87 (d, *J* = 7.8 Hz, 1H, Ar-<u>H</u>), 7.84 (d, *J* = 2.5 Hz, 1H, Ar-<u>H</u>), 7.54 (d, *J* = 8.2 Hz, 1H, Ar-<u>H</u>), 7.51–7.45 (m, 4H, Ar-

Article

<u>H</u>), 7.38–7.32 (m, 3H, Ar-<u>H</u>), 7.11–7.06 (m, 2H, Ar-<u>H</u>), 7.04 (d, J = 8.2 Hz, 1H, Ar-H), 6.67 (s, 1H, Ar-H), 4.73 (d, J = 11.8)Hz, 1H, CHCO), 4.33-4.29 (m, 1H, NCH), 4.13-4.09 (m, 1H, NCHC<u>H</u>), 3.78 (d, J = 10.3 Hz, 1H, NC<u>H_{2(a)}</u>), 3.43 (d, J= 8.2 Hz, 1H, NC<u>H₂(b)</u>), 3.07–2.99 (m, 2H, SC<u>H</u>₂), 1.92 (s, 3H, CH₃); ¹³C NMR (176 MHz, DMSO- d_6): δ (ppm) =190.34 (<u>C</u>O), 178.87 (<u>C</u>O), 143.68, 142.64, 140.80, 137.91, 136.59, 133.90, 129.93, 129.31, 128.87, 128.07, 126.65, 126.45, 126.21, 125.26, 123.43, 122.45, 121.19, 120.54, 118.77, 112.02, 109.44, 73.87, 73.77, 62.86, 54.93, 53.92, 43.19, 36.70, 11.22 (<u>C</u>H₃); IR (KBr, cm⁻¹) ν_{max} = 3295, 2928, 1723, 1717, 1699, 1668, 1645, 1615, 1598, 1538, 1533, 1504, 1483, 1456, 1398, 1379, 1338, 1325, 1282, 1244, 1224, 1183, 1125, 1096, 1072, 926, 852, 811, 764, 743, 694, 658, 594, 529; [anal. calcd. for C₃₂H₂₆ClN₅O₂S: C, 66.26; H, 4.52; N, 12.07; found: C, 66.12; H, 4.67; N, 12.22]; LC/MS (ESI, m/z): found 580.5 [M($_{35}$ Cl) + H]⁺, 582.3 $[M(_{37}Cl) + H]^+$; exact mass 579.15 for C32H26ClN5O2S.

(3R,6'S,7'R,7a'S)-7'-(1H-Indol-3-yl)-6'-(5-methyl-1-phenyl-1H-pyrazole-4-carbonyl)-5-nitro-1',6',7',7a'-tetrahydro-3'H-spiro[indoline-3,5'-pyrrolo[1,2-c]thiazol]-2-one (8f). Following the general procedure (GP2), chalcone 5a (82 mg, 0.25 mmol), 5-nitroisatin 6c (48 mg, 0.25 mmol), and thioproline 7a (50 mg, 0.37 mmol) in methanol (20 mL) were refluxed for 3 h and purified by column chromatography 100-200 mesh silica gel and MeOH/CH2Cl2 (3:97) to yield yellow solid compound 8f; yield (49 mg, 33%); m.p.: 213–214 °C; $[\alpha]_{D}^{25}$ = -36.24° (c 0.15, MeOH); ¹H NMR (700 MHz, DMSO- d_6) δ (ppm) = 11.26 (s, 1H, NH), 11.04 (s, 1H, NH), 8.46 (s, 1H, NH)Ar-<u>H</u>), 8.17 (d, J = 8.2 Hz, 1H, Ar-<u>H</u>), 7.89–7.84 (m, 2H, Ar-<u>H</u>), 7.55 (s, 1H, Ar-<u>H</u>), 7.50–7.47 (m, 2H, Ar-<u>H</u>), 7.46 (d, J =7.5 Hz, 1H, Ar-<u>H</u>), 7.36 (d, J = 6.9 Hz, 1H, Ar-<u>H</u>), 7.32–7.30 (m, 2H, Ar-<u>H</u>), 7.09–7.10 (m, 2H, Ar-<u>H</u>), 6.88 (d, J = 8.6 Hz, 1H, Ar-<u>H</u>), 4.79 (d, J = 12.0 Hz, 1H, C<u>H</u>CO), 4.41–4.36 (m, 1H, NC<u>H</u>), 4.14-4.09 (m, 1H, NCHC<u>H</u>), 3.80 (d, J = 10.8Hz, 1H, NC<u>H_{2(a)}</u>), 3.50 (d, J = 10.8 Hz, 1H, NC<u>H_{2(b)}</u>), 3.08 (t, $J = 3.6 \text{ Hz}, 2\text{H}, \text{SCH}_2$, 1.86 (s, 3H, CH₃); ¹³C NMR (176 MHz, DMSO- d_6) δ (ppm) = 190.24 (<u>C</u>O), 179.44 (<u>C</u>O), 148.63, 142.79, 141.34, 140.76, 137.81, 136.64, 129.34, 128.93, 128.08, 126.92, 126.46, 126.07, 125.26, 124.34, 123.83, 121.25, 120.47, 118.89, 118.54, 111.42, 109.90, 74.15, 73.58, 62.93, 54.48, 43.59, 36.77, 11.25 (<u>CH</u>₃); IR (KBr, cm⁻¹) $\nu_{max} = 3252$, 2924, 2853, 1736, 1729, 1665, 1652, 1626, 1598, 1526, 1504, 1478, 1455, 1398, 1338, 1300, 1248, 1223, 1198, 1180, 1124, 1098, 1069, 932, 907, 828, 807, 763, 743, 694, 557; [anal. calcd. for C₃₂H₂₆N₆O₄S: C, 65.07; H, 4.44; N, 14.23; found: C, 64.91; H, 4.56; N, 14.04]; LC/MS (ESI, m/z): found 591.7 [M + H], exact mass 590.17 for $C_{32}H_{26}N_6O_4S$.

(3*R*,6'*S*,7'*R*,7*a*'*S*)-6-*C*hloro-6'-(5-methyl-1-phenyl-1H-pyrazole-4-carbonyl)-7'-(1-methyl-1H-indol-3-yl)-1',6',7',7*a*'tetrahydro-3'H-spiro[indoline-3,5'-pyrrolo[1,2-c]thiazol]-2one (**8***g*). Following the general procedure (GP2), chalcone **5**b (85 mg, 0.25 mmol), 6-chloroisatin **6**b (46 mg, 0.25 mmol), and thioproline 7a (50 mg, 0.37 mmol) in methanol (20 mL) were refluxed for 3 h and purified by column chromatography 100–200 mesh silica gel and MeOH/CH₂Cl₂ (3:97) to yield light yellow solid compound **8***g*; yield (55 mg, 37%); m.p.: 164–165 °C; $[\alpha]_{D}^{25} = -41.94^{\circ}$ (c 0.12, MeOH); ¹H NMR (700 MHz, CDCl₃) δ (ppm) = 9.23 (s, 1H, N<u>H</u>), 8.07 (d, *J* = 7.9 Hz, 1H, Ar-<u>H</u>), 7.94 (s, 1H, Ar-<u>H</u>), 7.64 (d, *J* = 8.1 Hz, 1H, Ar-<u>H</u>), 7.40 (d, *J* = 6.2 Hz, 2H, Ar-<u>H</u>), 7.36 (s, 1H, Ar-<u>H</u>), 7.21– 7.18 (m, 2H, Ar-<u>H</u>), 7.16 (d, *J* = 8.1 Hz, 2H, Ar-<u>H</u>), 7.00 (d, *J* 37.44, 32.85 (N<u>C</u>H₃), 11.71 (<u>C</u>H₃); IR (KBr, cm⁻¹) ν_{max} = 3234, 2922, 2849, 1733, 1717, 1699, 1667, 1652, 1612, 1598, 1544, 1537, 1532, 1503, 1483, 1454, 1401, 1377, 1327, 1261, 1223, 1182, 157, 1123, 1071, 1012, 925, 808, 765, 738, 694, 612, 529; [anal. calcd. for C₃₃H₂₈ClN₅O₂S: C, 66.71; H, 4.75; N, 11.79; found: C, 66.85; H, 4.62; N, 12.03]; LC/MS (ESI, m/z): found 594.5 [M(₃₅Cl) + H]⁺, 596.0 [M(₃₇Cl) + H]⁺; exact mass 593.17 for C₃₃H₂₈ClN₅O₂S. (3R,6'S,7'R,7a'S)-6'-(5-Methyl-1-phenyl-1H-pyrazole-4carbonyl)-7'-(1-methyl-1H-indol-3-yl)-5-nitro-3',6',7',7a'tetrahydro-1'H-spiro[indoline-3,5'-pyrrolo[1,2-c]thiazol]-2one (8h). Following the general procedure (GP2), chalcone 5b (85 mg, 0.25 mmol), 5-nitroisatin 6c (48 mg, 0.25 mmol), and thioproline 7a (50 mg, 0.37 mmol) in methanol (20 mL) were refluxed for 16 h and purified by column chromatography 100-200 mesh silica gel and MeOH/CH₂Cl₂ (3:97) to yield yellow solid compound 8h; yield (41 mg, 27%); m.p.: 172-173 °C; $[\alpha]_D^{25} = -22.87^\circ$ (c 0.13, MeOH); ¹H NMR (700 MHz, CDCl₃) δ (ppm) = 9.78 (s, 1H, N<u>H</u>), 8.73 (s, 1H, Ar-H), 8.14 (dd, J = 27.8, 8.4 Hz, 2H, Ar-H), 7.99 (s, 1H, Ar-H), 7.47 - 7.41 (m, 3H, Ar-<u>H</u>), 7.40 (d, I = 4.3 Hz, 1H, Ar-<u>H</u>), 7.35 $(d, J = 8.2 \text{ Hz}, 1\text{H}, \text{Ar}-\underline{\text{H}}), 7.30 (d, J = 8.2 \text{ Hz}, 1\text{H}, \text{Ar}-\underline{\text{H}}),$ 7.23–7.19 (m, 1H, Ar-<u>H</u>), 7.16 (dd, J = 6.7, 3.1 Hz, 2H, Ar-<u>H</u>), 6.69 (d, J = 9.2 Hz, 1H, Ar-<u>H</u>), 4.89 (d, J = 11.5 Hz, 1H C<u>H</u>CO), 4.73 (m, 1H NC<u>H</u>), 4.30 (t, J = 10.7 Hz, 1H, NCHC<u>H</u>), 3.99 (d, J = 10.4 Hz, 1H, NC<u>H₂(a)</u>), 3.79 (s, 3H,

= 8.1 Hz, 1H, Ar-<u>H</u>), 6.51 (s, 1H, Ar-<u>H</u>), 4.75 (d, J = 11.8 Hz,

1H, C<u>H</u>CO), 4.63–4.60 (m, 1H, NC<u>H</u>), 4.21–4.15 (m, 1H,

NCHC<u>H</u>), 3.93 (d, J = 10.6 Hz, 1H, NC<u>H_{2(a)}</u>), 3.74 (s, 3H,

NC<u>H₃</u>), 3.56 (d, J = 10.7 Hz, 1H, NC<u>H_{2(b)}</u>), 3.09–3.02 (m, 2H, SC<u>H₂</u>), 1.99 (s, 3H, C<u>H₃</u>); ¹³C NMR (176 MHz, CDCl₃)

 δ (ppm) = 190.90 (<u>C</u>O), 180.77 (<u>C</u>O), 143.66, 141.19,

138.14, 137.42, 135.36, 130.05, 129.39, 129.11, 128.65, 127.59,

127.10, 126.86, 125.53, 122.49, 121.90, 120.90, 119.84, 119.50, 111.84, 110.17, 109.63, 74.78, 73.80, 63.95, 55.17, 43.58,

NCHC<u>H</u>), 3.99 (d, J = 10.4 H2, 1H, NC<u>H</u>₂(a)), 3.79 (s, 5H, C<u>H</u>₃), 3.51 (d, J = 10.5 Hz, 1H, NC<u>H</u>₂(b)), 3.16 (d, J = 4.4 Hz, 2H, SC<u>H</u>₂), 2.01 (s, 3H, C<u>H</u>₃); ¹³C NMR (176 MHz, CDCl₃) δ (ppm) = 190.04 (<u>C</u>O), 180.99 (<u>C</u>O), 146.95, 143.91, 142.89, 141.14, 137.92, 137.52, 129.47, 129.26, 128.66, 128.04, 127.74, 127.12, 126.55, 125.38, 125.06, 124.92, 121.96, 120.90, 119.75, 111.02, 109.77, 73.37, 63.71, 55.11, 44.29, 37.47, 32.86 (<u>C</u>H₃), 11.86 (<u>C</u>H₃); IR (KBr, cm⁻¹) $\nu_{max} = 3208, 2926, 2859,$ 1736, 1716, 1699, 1682, 1678, 1668, 1652, 1622, 1615, 1598, 1524, 1504, 1475, 1455, 1404, 1337, 1221, 1177, 1123, 1103, 932, 833, 805, 765, 741, 694, 556; [anal. calcd. for C₃₃H₂₈N₆O₄S: C, 65.55; H, 4.67; N, 13.90; found: C, 65.67; H, 4.81; N, 14.04]; LC/MS (ESI, *m*/*z*): found 605.6 [M + H], exact mass 604.19 for C₃₃H₂₈N₆O₄S.

(3R,6'S,7'R,7a'S)-7'-(5-Bromo-1H-indol-3-yl)-6'-(5-methyl-1-phenyl-1H-pyrazole-4-carbonyl)-5-nitro-3',6',7',7a'-tetrahydro-1'H-spiro[indoline-3,5'-pyrrolo[1,2-c]thiazol]-2-one (**8***i*). Following the general procedure (GP2), chalcone 5c (102 mg, 0.25 mmol), 5-nitroisatin **6c** (48 mg, 0.25 mmol), and thioproline 7a (50 mg, 0.37 mmol) in methanol (20 mL) were refluxed for 16 h and purified by column chromatography 100–200 mesh silica gel and MeOH/CH₂Cl₂ (3:97) to yield yellow solid compound **8***i*; yield (82 mg, 49%); m.p.: 250–251 °C; $[\alpha]_{D}^{25} = -126.29^{\circ}$ (c 0.19, MeOH); ¹H NMR (700 MHz, DMSO- d_6) δ (ppm) = 11.30 (d, J = 2.6 Hz, 1H, N<u>H</u>), 11.25 (s, 1H, N<u>H</u>), 8.45 (d, J = 2.4 Hz, 1H, Ar-<u>H</u>), 8.17 (dd, J = 8.6, 2.4 Hz, 1H, Ar-<u>H</u>), 7.98 (d, J = 1.9 Hz, 1H, Ar-<u>H</u>), 7.84 (s, 1H, Ar-<u>H</u>), 7.67 (d, J = 2.6 Hz, 1H, Ar-<u>H</u>), 7.51–7.48 (m, 2H, Ar-<u>H</u>), 7.48–7.45 (m, 1H, Ar-<u>H</u>), 7.35–7.31 (m, 3H, Ar-<u>H</u>), 7.21

(dd, J = 8.5, 1.9 Hz, 1H, Ar-H), 6.87 (d, J = 8.6 Hz, 1H, Ar-H),4.67 (d, J = 11.9 Hz, 1H, CHCO), 4.37–4.33 (m, 1H, NCH), 4.10 (dd, J = 11.8, 9.5 Hz, 1H, NCHC<u>H</u>), 3.79 (d, J = 10.7 Hz, 1H, NC $\underline{H}_{2(a)}$), 3.50 (d, J = 10.6 Hz, 1H, NC $\underline{H}_{2(b)}$), 3.09–3.04 (m, 2H, SCH_2), 1.86 (s, 3H, CH_3); ¹³C NMR (176 MHz, DMSO- d_6) δ (ppm) = 190.22 (<u>C</u>O), 179.25 (<u>C</u>O), 148.59, 142.75, 141.34, 140.74, 137.77, 135.16, 129.31, 128.90, 128.07, 126.90, 125.42, 125.21, 124.29, 123.85, 123.69, 120.73, 120.38, 113.84, 111.50, 111.42, 109.86, 73.95, 73.48, 63.46, 54.14, 42.83, 36.56, 11.21 (<u>C</u>H₃); IR (KBr, cm⁻¹) ν_{max} = 3383, 3101, 2855, 1747, 1729, 1649, 1622, 1598, 1530, 1504, 1463, 1454, 1412, 1337, 1290, 1253, 1222, 1199, 1173, 1097, 933, 880, 830, 799, 753, 693, 607; [anal. calcd. for C₃₂H₂₅BrN₆O₄S: C, 57.40; H, 3.76; N, 12.55; found: C, 57.36; H, 3.84; N, 12.59]; LC/MS (ESI, m/z): found 669.6 $[M(_{70}Br) + H]^+$, 671.5 $[M(_{s_1}Br) + H]^+$; exact mass 668.08 for $C_{32}H_{25}BrN_6O_4S$.

(3R,6'S,7'R,7a'S)-7'-(5-Chloro-1H-indol-3-yl)-6'-(5-methyl-1-phenyl-1H-pyrazole-4-carbonyl)-5-nitro-3',6',7',7a'-tetrahydro-1'H-spiro[indoline-3,5'-pyrrolo[1,2-c]thiazol]-2-one (8j). Following the general procedure (GP2), chalcone 5d (91 mg, 0.25 mmol), 5-nitroisatin 6c (48 mg, 0.25 mmol), and thioproline 7a (50 mg, 0.37 mmol) in methanol (20 mL) were refluxed for 3 h and purified by column chromatography 100-200 mesh silica gel and MeOH/CH₂Cl₂ (3:97) to yield yellow solid compound 8j; yield (53 mg, 40%); m.p.: 196-197 °C; $[\alpha]_D^{25} = -53.73^\circ$ (c 0.10, MeOH); ¹H NMR (700 MHz, DMSO- d_6) δ (ppm) = 11.30 (s, 1H, N<u>H</u>), 11.27 (s, 1H, N<u>H</u>), 8.46 (s, 1H, Ar-<u>H</u>), 8.18 (d, J = 8.6 Hz, 1H, Ar-<u>H</u>), 7.85 (s, 1H, Ar-<u>H</u>), 7.69 (s, 1H, Ar-<u>H</u>), 7.53–7.46 (m, 2H, Ar-<u>H</u>), 7.48 (d, I = 5.5 Hz, 1H, Ar-<u>H</u>), 7.39 (d, I = 8.6 Hz, 1H, Ar-<u>H</u>), 7.34– 7.31 (m, 3H, Ar-<u>H</u>), 7.12 (d, J = 8.6 Hz, 1H, Ar-<u>H</u>), 6.88 (d, J= 8.7 Hz, 1H, Ar-<u>H</u>), 4.68 (d, J = 11.7 Hz, 1H, C<u>H</u>CO), 4.39-4.35 (m, 1H, NC<u>H</u>), 4.12 (t, J = 12.1 Hz, 1H, NCHC<u>H</u>), 3.80 $(d, J = 10.9 \text{ Hz}, 1\text{H}, \text{NCH}_{2(a)}), 3.51 (d, J = 10.9 \text{ Hz}, 1\text{H},$ NC<u>H_{2(b)}</u>), 3.11–3.05 (m, 2H, SC<u>H₂</u>), 1.87 (s, 3H, C<u>H₃</u>); 13 C NMR (176 MHz, DMSO- d_6) δ (ppm) = 190.27 (<u>C</u>O), 179.33 (<u>C</u>O), 148.63, 142.79, 141.39, 140.77, 137.80, 134.98, 129.35, 128.94, 127.38, 126.94, 126.66, 126.45, 125.62, 124.33, 123.50, 121.22, 120.41, 117.74, 113.42, 111.62, 109.90, 74.00, 73.49, 62.93, 54.94, 42.87, 36.62, 11.23 (<u>CH</u>₃); IR (KBr, cm⁻¹) ν_{max} = 3344, 3270, 2932, 2861, 1725, 1657, 1623, 1598, 1530, 1503, 1477, 1454, 1339, 1296, 1224, 1180, 1101, 931, 892, 797, 764, 693, 614, 553; [Anal. Calcd. for C₃₂H₂₅ClN₆O₄S: C, 61.49; H, 4.03; N, 13.44; found: C, 61.35; H, 3.91; N, 13.62]; LC/MS (ESI, m/z): found 625.8 [M ($_{35}$ Cl) + H]⁺, 627.2 [M ($_{37}$ Cl) + H]⁺; exact mass 624.13 for $C_{32}H_{25}ClN_6O_4S$.

(1'R,2'S,3R,9a'R)-1'-(1H-Indol-3-yl)-2'-(5-methyl-1-phenyl-1H-pyrazole-4-carbonyl)-1',2',4a',5',6',7',8',8a',9',9a'decahydrospiro[indoline-3,3'-pyrrolo[1,2-a]indol]-2-one (8k). Following the general procedure (GP2), chalcone 5a (82 mg, 0.25 mmol), isatin 6a (37 mg, 0.25 mmol), and octahydro-1H-indole-2-carboxylic acid 7b (64 mg, 0.37 mmol) in methanol (20 mL) were refluxed for 3 h and purified by column chromatography 100-200 mesh silica gel and MeOH/ CH_2Cl_2 (3:97) to yield light yellow solid compound 8k; yield (125 mg, 86%); m.p.: 200–201 °C; $[\alpha]_D^{25} = -18.76^\circ$ (c 0.12, MeOH); ¹H NMR (700 MHz, CDCl₃) δ (ppm) = 8.33 (s, 1H, N<u>H</u>), 8.04 (d, J = 1.2 Hz, 1H, Ar-<u>H</u>), 8.04–8.02 (m, 1H, Ar-<u>H</u>), 7.95 (s, 1H, N<u>H</u>), 7.42 (d, J = 7.4 Hz, 1H, Ar-<u>H</u>), 7.40-7.34 (m, 3H, Ar-<u>H</u>), 7.33-7.29 (m, 1H, Ar-<u>H</u>), 7.20-7.14 (m, 5H, Ar-H), 7.13-7.09 (m, 1H, Ar-H), 7.06-7.02 (m, 1H, Ar-<u>H</u>), 6.57 (d, J = 7.7 Hz, 1H, Ar-<u>H</u>), 4.96 (d, J = 11.9 Hz, 1H, CHCO), 4.57-4.52 (m, 1H, NCH), 4.20 (dd, J = 12.0, 10.0 Hz, 1H, NCHC<u>H</u>), 3.27 (q, J = 3.8 Hz, 1H, NC<u>H</u>), 2.19–2.14 (m, 1H, NCHC<u>H</u>), 1.93 (s, 3H, C<u>H</u>₃), 1.85–1.78 (m, 2H, CH_2), 1.59–1.44 (m, 4H, CH_2), 1.20–1.15 (m, 1H, CH_2), 1.07–1.01 (m, 1H, CH₂), 1.01–0.95 (m, 2H, CH₂); ¹³C NMR $(176 \text{ MHz}, \text{ CDCl}_3) \delta (\text{ppm}) = 191.46 (\underline{CO}), 181.76 (\underline{CO}),$ 143.42, 141.62, 140.65, 138.43, 136.60, 129.25, 128.94, 128.74, 128.53, 127.06, 125.41, 125.10, 121.99, 121.78, 121.74, 121.26, 120.04, 119.48, 114.40, 111.35, 109.61, 72.74, 70.23, 66.94, 57.75, 45.57, 41.98, 38.40, 28.59, 27.78, 24.86, 20.13, 11.88 (<u>C</u>H₃); IR (KBr, cm⁻¹) ν_{max} = 3291, 2926, 2854, 1716, 1699, 1694, 1683, 1668, 1660, 1652, 1617, 1597, 1557, 1538, 1505, 1475, 1456, 1398, 1373, 1330, 1221, 1179, 1099, 1011, 934, 870, 790, 741, 694; [anal. calcd. for C₃₇H₃₅N₅O₂: C, 76.40; H, 6.06; N, 12.04; found: C, 76.28; H, 6.14; N, 12.11]; LC/MS (ESI, m/z): found 582.5 [M + H]⁺, exact mass 581.28 for $C_{37}H_{35}N_5O_{2}$

(1'R,2'S,3R,9a'R)-6-Chloro-1'-(1H-indol-3-yl)-2'-(5-methyl-1-phenyl-1H-pyrazole-4-carbonyl)-1',2',4a',5',6',7',8',8a',9',9a'-decahydrospiro[indoline-3,3'pyrrolo[1,2-a]indol]-2-one (81). Following the general procedure (GP2), chalcone 5a (82 mg, 0.25 mmol), 6-chloroisatin **6b** (46 mg, 0.25 mmol), and octahydro-1*H*-indole-2-carboxylic acid 7b (64 mg, 0.37 mmol) in methanol (20 mL) were refluxed for 3 h and purified by column chromatography 100-200 mesh silica gel and MeOH/CH₂Cl₂ (3:97) to yield light yellow solid compound 81; yield (131 mg, 85%); m.p.: 205-206 °C; $[\alpha]_D^{25} = -20.56^\circ$ (c 0.11, MeOH); ¹H NMR (700 MHz, CDCl₃) δ (ppm) = 8.55 (s, 1H, N<u>H</u>), 8.32 (s, 1H, N<u>H</u>), 8.10 (d, J = 2.8 Hz, 1H, Ar-<u>H</u>), 8.00 (d, J = 7.6 Hz, 1H, Ar-<u>H</u>), 7.42–7.38 (m, 3H, Ar-<u>H</u>), 7.32 (d, J = 8.4 Hz, 2H, Ar-<u>H</u>), 7.19–7.11 (m, 5H, Ar-<u>H</u>), 7.01 (d, J = 8.0 Hz, 1H, Ar-<u>H</u>), 6.41 $(d, J = 2.3 \text{ Hz}, 1\text{H}, \text{Ar-}\underline{H}), 4.96 (d, J = 12.0 \text{ Hz}, 1\text{H}, C\underline{H}CO),$ 4.56-4.52 (m, 1H, NCH), 4.15 (dd, J = 12.0, 10.0 Hz, 1H, NCHC<u>H</u>), 3.22 (q, *J* = 3.8 Hz, 1H, NC<u>H</u>), 2.19–2.14 (m, 1H, NCHC<u>H</u>), 2.00 (s, 3H, C<u>H₃</u>), 1.82–1.76 (m, 2H, C<u>H₂</u>), 1.59-1.55 (m, 1H, C<u>H</u>₂), 1.54-1.46 (m, 3H, C<u>H</u>₂), 1.20-1.16(m, 1H, C<u>H₂</u>), 1.07–0.96 (m, 3H, C<u>H₂</u>); ¹³C NMR (176 MHz, CDCl_3): δ (ppm) = 191.36 (<u>C</u>O), 181.77 (<u>C</u>O), 143.61, 142.07, 141.60, 138.28, 136.59, 134.55, 129.39, 129.03, 128.68, 126.99, 125.46, 123.59, 122.06, 121.81, 121.56, 121.16, 119.95, 119.55, 114.15, 111.40, 110.13, 72.39, 70.19, 67.06, 57.81, 45.69, 41.98, 38.35, 28.65, 27.77, 24.81, 20.14, 11.86 (<u>CH</u>₃); IR (KBr, cm⁻¹) ν_{max} = 3298, 2926, 2851, 1725, 1668, 1652, 1614, 1598, 1538, 1532, 1504, 1484, 1455, 1447, 1398, 1373, 1323, 1284, 1243, 1222, 1179, 1130, 1072, 1011, 937, 924, 869, 795, 764, 741, 694, 660, 597, 584, 524; anal. calcd. for C₃₇H₃₄ClN₅O₂: C, 72.12; H, 5.56; N, 11.37; found: C, 71.96; H, 5.63; N, 11.28]; LC/MS (ESI, m/z): found 616.6 [M($_{35}$ Cl) + H]⁺, 618.3 $[M(_{37}Cl) + H]^+$; exact mass 615.24 for C37H34ClN5O2.

(1'R,2'S,3R,9a'R)-1'-(1H-Indol-3-yl)-2'-(5-methyl-1-phen y l - 1 H - p y r a z o l e - 4 - c a r b o n y l) - 5 - n i t r o -1',2',4a',5',6',7',8',8a',9',9a'-decahydrospiro[indoline-3,3'pyrrolo[1,2-a]indol]-2-one (8m). Following the general procedure (GP2), chalcone 5a (82 mg, 0.25 mmol), 5nitroisatin 6c (48 mg, 0.25 mmol), and octahydro-1H-indole-2-carboxylic acid 7b (64 mg, 0.37 mmol) in methanol (20 mL) were refluxed for 4 h and purified by column chromatography 100-200 mesh silica gel and MeOH/CH₂Cl₂ (3:97) to yield yellow solid compound 8m; yield (103 mg, 66%); m.p.: 210-211 °C; $[a]_D^{25} = -15.63^\circ$ (c 0.13, MeOH); ¹H NMR (700 MHz, CDCl₃) δ (ppm) = 9.19 (s, 1H, N<u>H</u>), 8.27–8.22 (m, 2H, Ar-<u>H</u>), 8.11 (s, 1H, N<u>H</u>), 8.06 (d, J = 8.6 Hz, 1H, Ar-<u>H</u>), 8.02 (d, *I* = 7.9 Hz, 1H, Ar-H), 7.42–7.37 (m, 3H, Ar-H), 7.34 (d, I = 7.0 Hz, 1H, Ar-H), 7.20 (s, 1H, Ar-H), 7.18-7.14 (m, 10.13)2H, Ar-<u>H</u>), 7.10 (d, J = 7.5 Hz, 2H, Ar-<u>H</u>), 6.42 (d, J = 8.7 Hz, 1H, Ar-<u>H</u>), 5.03 (d, J = 12.0 Hz, 1H, CHCO), 4.63-4.58 (m, 1H, NC<u>H</u>), 4.21 (t, J = 11.0 Hz, 1H, NCHC<u>H</u>), 3.24 (q, J = 3.7 Hz, 1H, NCH), 2.23-2.18 (m, 1H, NCHCH), 1.95 (s, 3H, CH_3 , 1.90–1.86 (m, 1H, CH_2), 1.84–1.81 (m, 1H, CH_2), 1.61-1.56 (m, 1H, CH₂), 1.53-1.46 (m, 3H, CH₂), 1.22-1.17 (m, 1H, CH₂), 1.08–0.98 (m, 2H, CH₂), 0.93–0.89 (m, 1H, CH_2); ¹³C NMR (176 MHz, CDCl₃): δ (ppm) = 190.53 (<u>C</u>O), 182.11 (<u>C</u>O), 146.67, 143.82, 142.71, 141.51, 138.12, 136.64, 129.48, 129.20, 127.14, 126.80, 126.02, 125.38, 123.96, 122.21, 121.96, 121.13, 120.02, 119.71, 113.58, 111.43, 109.26, 72.52, 70.05, 67.02, 57.95, 46.02, 42.11, 38.27, 28.56, 27.72, 24.77, 20.05, 11.95 (<u>C</u>H₃); IR (KBr, cm⁻¹) ν_{max} = 3341, 2926, 2854, 1733, 1668, 1653, 1623, 1598, 1533, 1503, 1477, 1455, 1397, 1338, 1221, 1178, 1125, 1096, 1072, 1011, 930, 833, 764, 742, 695, 660, 555; [anal. calcd. for C₃₇H₃₄N₆O₄: C, 70.91; H, 5.47; N, 13.41; found: C, 71.06; H, 5.39; N, 13.49]; LC/MS (ESI, m/z): found 627.5 [M + H]⁺; exact mass 626.26 for C₃₇H₃₄N₆O₄.

(1'R,2'S,3R,9a'R)-6-Chloro-2'-(5-methyl-1-phenyl-1H-pyrazole-4-carbonyl)-1'-(1-methyl-1H-indol-3-yl)-1',2',4a',5',6',7',8',8a',9',9a'-decahydrospiro[indoline-3,3'pyrrolo[1,2-a]indol]-2-one (8n). Following the general procedure (GP2), chalcone 5b (85 mg, 0.25 mmol), 6chloroisatin 6b (46 mg, 0.25 mmol), and octahydro-1H-indole-2-carboxylic acid 7b (64 mg, 0.37 mmol) in methanol (20 mL) were refluxed for 3 h and purified by column chromatography 100-200 mesh silica gel and MeOH/CH2Cl2 (3:97) to vield light yellow solid compound 8n; yield (134 mg, 85%); m.p.: 172–173 °C; $[\alpha]_{\rm D}^{25} = -19.29^{\circ}$ (c 0.10, MeOH); ¹H NMR $(700 \text{ MHz}, \text{CDCl}_3) \delta (\text{ppm}) = 8.06 \text{ (s, 1H, NH}), 8.01 \text{ (d, } J =$ 7.9 Hz, 1H, Ar-<u>H</u>), 7.44–7.40 (m, 3H, Ar-<u>H</u>), 7.31 (d, J = 8.0Hz, 1H, Ar-<u>H</u>), 7.27 (s, 1H, Ar-<u>H</u>), 7.23–7.20 (m, 1H, Ar-<u>H</u>), 7.17 (d, J = 7.7 Hz, 3H, Ar-H), 7.10 (s, 1H, Ar-H), 7.02 (d, J =8.0 Hz, 1H, Ar-<u>H</u>), 6.43 (s, 1H, Ar-<u>H</u>), 4.93 (d, J = 12.0 Hz, 1H, CHCO), 4.56-4.52 (m, 1H, NCH), 4.16-4.11 (m, 1H, NCHC<u>H</u>), 3.73 (s, 3H, NC<u>H₃</u>), 3.23 (q, J = 3.8 Hz, 1H, NC<u>H</u>), 2.20–2.15 (m, 1H, NCHC<u>H</u>), 2.02 (s, 3H, C<u>H</u>₃), 1.84–1.79 (m, 2H, C<u>H</u>₂), 1.60–1.56 (m, 1H, C<u>H</u>₂), 1.55–1.48 $(m, 3H, CH_2), 1.21-1.17 (m, 1H, CH_2), 1.08-0.96 (m, 3H, CH_2), 1.08$ CH_2 ; ¹³C NMR (176 MHz, CDCl₃): δ (ppm) = 191.30 (<u>C</u>O), 181.64 (<u>C</u>O), 143.59, 142.02, 141.57, 138.33, 137.27, 134.52, 129.38, 128.99, 127.44, 127.12, 126.40, 125.46, 123.59, 121.66, 121.56, 121.16, 120.13, 119.09, 112.69, 110.05, 109.36, 72.29, 70.32, 67.20, 57.79, 45.60, 42.00, 38.38, 32.83 (N<u>C</u>H₃), 28.64, 27.78, 24.84, 20.11, 11.88 (<u>CH</u>₃); IR (KBr, cm⁻¹) ν_{max} = 3057, 2926, 2849, 1733, 1668, 1652, 1615, 1538, 1532, 1504, 1484, 1455, 1404, 1373, 1328, 1282, 1224, 1179, 1130, 1071, 1012, 935, 924, 869, 796, 764, 740, 694; anal. calcd. for C₃₈H₃₆ClN₅O₂: C, 72.43; H, 5.76; N, 11.11; found: C, 72.52; H, 5.71; N, 11.03]; LC/MS (ESI, m/z): found 630.6 [M($_{35}$ Cl) + H]⁺, 632.3 $[M(_{37}Cl) + H]^+$; exact mass 629.26 for C₃₈H₃₆ClN₅O₂.

(1'R,2'S,3R,9a'R)-2'-(5-Methyl-1-phenyl-1H-pyrazole-4carbonyl)-1'-(1-methyl-1H-indol-3-yl)-5-nitro-1',2',4a',5',6',7',8',8a',9',9a'-decahydrospiro[indoline-3,3'pyrrolo[1,2-a]indol]-2-one (**8o**). Following the general procedure (GP2), chalcone **5b** (85 mg, 0.25 mmol), 5nitroisatin **6c** (48 mg, 0.25 mmol), and octahydro-1H-indole-2-carboxylic acid **7b** (64 mg, 0.37 mmol) in methanol (20 mL) were refluxed for 4 h and purified by column chromatography

100-200 mesh silica gel and MeOH/CH₂Cl₂ (3:97) to yield vellow solid compound 80; yield (119 mg, 74%); m.p.: 185-186 °C; $[\alpha]_{D}^{25} = -32.74^{\circ}$ (c 0.14, MeOH); ¹H NMR (700 MHz, CDCl₃) δ (ppm) = 11.03 (s, 1H, N<u>H</u>), 8.16 (d, J = 7.6 Hz, 2H, Ar-<u>H</u>), 7.98 (s, 1H, Ar-<u>H</u>), 7.86 (d, J = 7.9 Hz, 1H, Ar-<u>H</u>), 7.52–7.50 (m, 2H, Ar-<u>H</u>), 7.49–7.45 (m, 2H, Ar-<u>H</u>), 7.38–7.33 (m, 3H, Ar-<u>H</u>), 7.16–7.13 (m, 1H, Ar-<u>H</u>), 7.10– 7.07 (m, 1H, Ar-<u>H</u>), 6.85 (d, J = 9.1 Hz, 1H, Ar-<u>H</u>), 4.92 (d, J= 12.1 Hz, 1H, CHCO), 4.25-4.12 (m, 1H, NCH), 4.13 (dd, J = 12.1, 9.9 Hz, 1H, NCHC<u>H</u>), 3.71 (s, 3H, NC<u>H₃</u>), 3.22 (q, J = 3.5 Hz, 1H, NCH), 2.19-2.13 (m, 1H, NCHCH), 2.05-1.99 (m, 1H, CH₂), 1.81 (s, 3H, CH₃), 1.65-1.61 (m, 1H, CH_2 , 1.55–1.50 (m, 1H, CH_2), 1.48–1.43 (m, 1H, CH_2), 1.39–1.27 (m, 2H, CH₂), 1.15–1.10 (m, 1H, CH₂), 1.04–0.97 (m, 1H, CH₂), 0.96–0.90 (m, 1H, CH₂), 0.80–0.74 (m, 1H, CH_2); ¹³C NMR (176 MHz, CDCl₃): δ (ppm) = 190.37 (<u>C</u>O), 181.03 (<u>C</u>O), 148.21, 142.53, 141.42, 141.08, 137.89, 136.71, 129.31, 128.82, 128.03, 127.10, 126.54, 126.41, 125.20, 125.07, 123.11, 121.17, 120.49, 119.19, 118.56, 111.66, 109.68, 71.51, 70.53, 66.16, 56.87, 44.37, 41.52, 37.53, 32.33 (N<u>C</u>H₃), 27.69, 27.27, 24.37, 19.27, 11.08 (<u>CH₃</u>); IR (KBr, cm⁻¹) ν_{max} = 3056, 2927, 2854, 1738, 1733, 1716, 1699, 1694, 1682, 1674, 1668, 1661, 1652, 1645, 1634, 1622, 1615, 1598, 1557, 1538, 1524, 1519, 1505, 1475, 1464, 1456, 1436, 1427, 1398, 1373, 1338, 1223, 1178, 1127, 1072, 1011, 930, 833, 795; [anal. calcd. for C38H36N6O4: C, 71.23; H, 5.66; N, 13.12; found: C, 71.31; H, 5.74; N, 13.27]; LC/MS (ESI, m/z): found 641.5 $[M + H]^+$; exact mass 640.26 for $C_{38}H_{36}N_6O_4$.

(1'R,2'S,3R,9a'R)-1'-(5-Bromo-1H-indol-3-yl)-6-chloro-2'-(5-methyl-1-phenyl-1H-pyrazole-4-carbonyl)-1',2',4a',5',6',7',8',8a',9',9a'-decahydrospiro[indoline-3,3'pyrrolo[1,2-a]indol]-2-one (8p). Following the general procedure (GP2), chalcone 5c (102 mg, 0.25 mmol), 6chloroisatin 6b (46 mg, 0.25 mmol), and octahydro-1H-indole-2-carboxylic acid 7b (64 mg, 0.37 mmol) in methanol (20 mL) were refluxed for 3 h and purified by column chromatography 100-200 mesh silica gel and MeOH/CH₂Cl₂ (3:97) to yield light yellow solid compound 8p; yield (155 mg, 89%); m.p.: 199–200 °C; $[\alpha]_{\rm D}^{25} = -26.47^{\circ}$ (c 0.12, MeOH); ¹H NMR $(700 \text{ MHz}, \text{CDCl}_3) \delta (\text{ppm}) = 8.72 \text{ (s, 1H, NH)}, 8.63 \text{ (s, 1H, NH)}$ NH), 8.12 (s, 1H, Ar-H), 8.05 (s, 1H, Ar-H), 7.43-7.39 (m, 3H, Ar-<u>H</u>), 7.31 (d, J = 8.0 Hz, 1H, Ar-<u>H</u>), 7.23 (d, J = 1.5 Hz, 2H, Ar-<u>H</u>), 7.15–7.12 (m, 2H, Ar-<u>H</u>), 7.11 (d, J = 2.5 Hz, 1H, Ar-<u>H</u>), 7.02 (dd, J = 8.0, 1.9 Hz, 1H, Ar-<u>H</u>), 6.35 (s, 1H, Ar-<u>H</u>), 4.79 (d, J = 12.0 Hz, 1H, C<u>H</u>CO), 4.38–4.33 (m, 1H, NC<u>H</u>), 4.09 (dd, *J* = 12.1, 10.1 Hz, 1H, NCHC<u>H</u>), 3.21 (q, *J* = 3.7 Hz, 1H, NC<u>H</u>), 2.22–2.17 (m, 1H, NCHC<u>H</u>), 1.98 (s, 3H, CH_3), 1.85–1.78 (m, 2H, CH_2), 1.60–1.56 (m, 1H, CH_2), 1.54–1.45 (m, 3H, CH₂), 1.22–1.17 (m, 1H, CH₂), 1.09–0.97 (m, 3H, C<u>H</u>₂); ¹³C NMR (176 MHz, CDCl₃): δ (ppm) = 191.05 (CO), 181.83 (CO), 143.75, 142.03, 141.48, 138.22, 135.08, 134.65, 129.46, 129.36, 129.17, 129.15, 128.70, 127.14, 125.45, 125.03, 123.42, 122.38, 122.12, 121.67, 121.05, 114.32, 112.87, 110.15, 72.37, 70.86, 67.65, 57.77, 44.84, 41.96, 38.35, 28.57, 27.77, 24.77, 20.11, 11.80 (<u>C</u>H₃); IR (KBr, cm⁻¹) ν_{max} = 3273, 2926, 2853, 1733, 1699, 1674, 1652, 1615, 1557, 1538, 1532, 1504, 1483, 1456, 1398, 1373, 1322, 1278, 1220, 1179, 1130, 1102, 1072, 936, 932, 884, 869, 797, 765, 693, 670, 595, 525; [anal. calcd. for C₃₇H₃₃BrClN₅O₂: C, 63.94; H, 4.79; N, 10.08; found: C, 64.09; H, 4.86; N, 10.13]; LC/MS (ESI, m/ z): found 695.0 $[M(_{35}Cl/_{79}Br) + H]^+$, 696.3 $[M(_{37}Cl/_{81}Br) +$ H_{37}^{+} , 698.1 $[M_{37}Cl + {}_{81}Br) + H_{37}^{+}$; exact mass 693.15 for $C_{37}H_{33}BrClN_5O_2$.

м

(1'R,2'S,3R,9a'R)-1'-(5-Bromo-1H-indol-3-yl)-6-chloro-2'-(5-methyl-1-phenyl-1H-pyrazole-4-carbonyl)-1',2',4a',5',6',7',8',8a',9',9a'-decahydrospiro[indoline-3,3'pyrrolo[1,2-a]indol]-2-one (8q). Following the general procedure (GP2), chalcone 5c (102 mg, 0.25 mmol), 5nitroisatin 6c (48 mg, 0.25 mmol), and octahydro-1H-indole-2-carboxylic acid 7b (64 mg, 0.37 mmol) in methanol (20 mL) were refluxed for 4 h and purified by column chromatography 100-200 mesh silica gel and MeOH/CH₂Cl₂ (3:97) to yield yellow solid compound 8q; yield (120 mg, 68%); m.p.: 190-199 °C; $[\alpha]_D^{25} = -167.95^\circ$ (c 0.10, MeOH); ¹H NMR (700 MHz, DMSO- d_6): δ (ppm) = 11.17 (d, J = 2.7 Hz, 1H, N<u>H</u>), 11.01 (s, 1H, N<u>H</u>), 8.26 (d, J = 2.3 Hz, 1H, Ar-<u>H</u>), 8.15 (dd, J = 8.6, 2.4 Hz, 1H, Ar-<u>H</u>), 8.04 (s, 1H, Ar-<u>H</u>), 8.03 (d, J = 1.9 Hz, 1H, Ar-<u>H</u>), 7.57 (d, J = 2.6 Hz, 1H, Ar-<u>H</u>), 7.53–7.50 (m, 2H, Ar-<u>H</u>), 7.48–7.45 (m, 1H, Ar-<u>H</u>), 7.36 (d, J = 7.1 Hz, 2H, Ar-<u>H</u>), 7.29 (d, J = 8.6 Hz, 1H, Ar-<u>H</u>), 7.18 (dd, J = 8.5, 1.9 Hz, 1H, Ar-<u>H</u>), 6.84 (d, J = 8.6 Hz, 1H, Ar-<u>H</u>), 4.88 (d, J =12.0 Hz, 1H, CHCO), 4.17–4.11 (m, 2H, NCH + NCHCH), 3.23 (q, J = 3.4 Hz, 1H, NCH), 2.18-2.10 (m, 2H NCHCH₂),1.81 (s, 3H, CH_3), 1.63–1.58 (m, 1H, CH_2), 1.54–150 (m, 1H, CH₂), 1.49–1.45 (m, 1H, CH₂), 1.38–1.28 (m, 2H, CH_2), 1.15–1.10 (m, 1H, CH_2), 1.03–0.97 (m, 1H, CH_2), 0.96-0.90 (m, 1H, CH₂), 0.77-0.72 (m, 1H, CH₂); ¹³C NMR $(176 \text{ MHz}, \text{ DMSO-}d_6): \delta \text{ (ppm)} = 190.50 \text{ (<u>C</u>O)}, 180.99$ (<u>C</u>O), 148.17, 142.49, 141.54, 141.20, 137.91, 134.91, 129.31, 128.92, 128.81, 128.03, 126.51, 126.40, 125.20, 125.06, 123.62, 123.52, 123.33, 121.21, 120.55, 113.43, 112.57, 111.14, 109.61, 71.50, 70.72, 66.35, 56.77, 43.80, 41.56, 37.06, 27.65, 27.29, 24.42, 19.25, 11.08 (<u>C</u>H₃); IR (KBr, cm⁻¹) ν_{max} = 3363, 2930, 2854, 1734, 1762, 1621, 1599, 1528, 1503, 1478, 1454, 1398, 1337, 1221, 1178, 1126, 1098, 1081, 928, 884, 866, 831, 795, 765, 753, 693, 659, 598, 553; [anal. calcd. for C₃₇H₃₃BrN₆O₄: C, 63.94; H, 4.79; N, 10.08; found: C, 64.09; H, 4.86; N, 10.13]; LC/MS (ESI, m/z): found 705.8 $[M(_{79}Br) + H]^+$, 707.5 $[M(_{s_1}Br) + H]^+$, exact mass 704.17 for $C_{37}H_{33}BrN_6O_4$.

(1'R,2'S,3R,9a'R)-6-Chloro-1'-(5-chloro-1H-indol-3-yl)-2'-(5-methyl-1-phenyl-1H-pyrazole-4-carbonyl)-1',2',4a',5',6',7',8',8a',9',9a'-decahydrospiro[indoline-3,3'pyrrolo[1,2-a]indol]-2-one (8r). Following the general procedure (GP2), chalcone 5d (91 mg, 0.25 mmol), 6-chloroisatin **6b** (46 mg, 0.25 mmol), and octahydro-1*H*-indole-2-carboxylic acid 7b (64 mg, 0.37 mmol) in methanol (20 mL) were refluxed for 3 h and purified by column chromatography 100-200 mesh silica gel and MeOH/CH₂Cl₂ (3:97) to yield light yellow solid compound 8r; yield (148 mg, 91%); m.p.: 168-169 °C; $[\alpha]_{D}^{25} = -121.51^{\circ}$ (c 0.12, MeOH); ¹H NMR (700 MHz, CDCl₃) δ (ppm) = 8.77 (d, J = 11.7 Hz, 1H, N<u>H</u>), 8.63 (s, 1H, N<u>H</u>), 8.13 (d, J = 2.0 Hz, 1H, Ar-<u>H</u>), 7.91 (d, J = 2.0Hz, 1H, Ar-<u>H</u>), 7.45–7.39 (m, 3H, Ar-<u>H</u>), 7.31 (d, J = 8.0 Hz, 1H, Ar-H), 7.28–7.26 (m, 1H, Ar-H), 7.15–7.12 (m, 3H, Ar-H), 7.11 (dd, J = 8.6, 2.0 Hz, 1H, Ar-H), 7.02 (dd, J = 8.0, 1.9 Hz, 1H, Ar-<u>H</u>), 6.35 (s, 1H, Ar-<u>H</u>), 4.81 (d, J = 12.0 Hz, 1H, CHCO), 4.39-4.36 (m, 1H, NCH), 4.10 (dd, J = 11.9, 10.0 Hz, 1H, NCHC<u>H</u>), 3.22 (q, J = 3.7 Hz, 1H, NC<u>H</u>), 2.19–2.14 (m, 1H, NCHC<u>H</u>), 1.99 (s, 3H), 1.83–1.76 (m, 2H, C<u>H</u>₂), 1.58-1.53 (m, 1H, CH₂), 1.52-1.44 (m, 3H, CH₂), 1.19-1.15(m, 1H, C<u>H</u>₂), 1.07–0.95 (m, 3H, C<u>H</u>₂); 13 C NMR (176 MHz, CDCl₃): δ (ppm) = 191.10 (<u>C</u>O), 181.85 (<u>C</u>O), 143.75, 142.06, 141.49, 138.22, 134.82, 134.65, 129.46, 129.16, 128.69, 128.47, 127.14, 125.45, 123.43, 122.60, 122.47, 121.65, 121.05, 119.07, 114.34, 112.48, 110.16, 72.39, 70.79, 67.65, 57.78, 44.90, 41.96, 38.35, 28.58, 27.77, 24.77, 20.12, 11.79 (<u>CH₃</u>);

IR (KBr, cm⁻¹) ν_{max} = 3287,2925, 2854, 1723, 1661, 1652, 1615, 1538, 1533, 1504, 1484, 1398, 1373, 1320, 1277, 1221, 1178, 1131, 1104, 1072, 736, 926, 893, 869, 796, 763, 694, 606, 525; [anal. calcd. for C₃₇H₃₃Cl₂N₅O₂: C, 68.31; H, 5.11; N, 10.76; found: C, 68.25; H, 5.07; N, 10.84]; LC/MS (ESI, *m/z*): found 650.8 [M(₃₅Cl) + H]⁺, 652.0 [M(₃₇Cl) + H]⁺, 654.0 [M(₃₇Cl + ₃₇Cl) + H]⁺; exact mass 649.2 for C₃₇H₃₃Cl₂N₅O₂.

(1'R,2'S,3R,9a'R)-1'-(5-Chloro-1H-indol-3-yl)-2'-(5-methyl-1-phenyl-1H-pyrazole-4-carbonyl)-5-nitro-1',2',4a',5',6',7',8',8a',9',9a'-decahydrospiro[indoline-3,3'pyrrolo[1,2-a]indol]-2-one (8s). Following the general procedure (GP2), chalcone 5d (91 mg, 0.25 mmol), 5-nitroisatin 6c (48 mg, 0.25 mmol), and octahydro-1H-indole-2-carboxylic acid 7b (64 mg, 0.37 mmol) in methanol (20 mL) were refluxed for 4 h and purified by column chromatography 100-200 mesh silica gel and MeOH/CH₂Cl₂ (3:97) to yield yellow solid compound 8s; yield (132 mg, 80%); m.p.: 172-173 °C; $[\alpha]_{D}^{25} = -11.15^{\circ}$ (c 0.10, MeOH); ¹H NMR (700 MHz, DMSO- d_6): δ (ppm) = 11.15 (d, J = 2.6 Hz, 1H, N<u>H</u>), 11.01 (s, 1H, NH), 8.25 (d, J = 2.3 Hz, 1H, Ar-H), 8.15 (dd, J = 8.6)2.3 Hz, 1H, Ar-<u>H</u>), 8.03 (s, 1H, Ar-<u>H</u>), 7.89 (d, J = 2.1 Hz, 1H, Ar-<u>H</u>), 7.58 (d, J = 2.5 Hz, 1H, Ar-<u>H</u>), 7.53–7.49 (m, 2H, Ar-<u>H</u>), 7.49–7.45 (m, 1H, Ar-<u>H</u>), 7.38–7.35 (m, 2H, Ar-<u>H</u>), 7.33 $(d, J = 8.6 \text{ Hz}, 1\text{H}, \text{Ar}-\underline{\text{H}}), 7.07 (dd, J = 8.6, 2.0 \text{ Hz}, 1\text{H}, \text{Ar}-\underline{\text{H}}),$ 6.84 (d, J = 8.6 Hz, 1H, Ar-<u>H</u>), 4.88 (d, J = 12.0 Hz, 1H, C<u>H</u>CO), 4.15 (m, 2H, NC<u>H</u> + NCHC<u>H</u>), 3.23 (q, J = 3.4 Hz, 1H, NC<u>H</u>), 2.19–2.09 (m, 2H, C<u>H</u>₂), 1.81 (s, 3H, C<u>H</u>₃), $1.62-1.59 (m, 1H, CH_2), 1.55-1.50 (m, 1H, CH_2), 1.49-1.44$ (m, 1H, CH₂), 1.39–1.27 (m, 2H, CH₂), 1.14–1.10 (m, 1H, CH₂), 1.03-0.97 (m, 1H, CH₂), 0.97-0.91 (m, 1H, CH₂), 0.77–0.72 (m, 1H, C<u>H</u>₂); ¹³C NMR (176 MHz, DMSO- d_6): δ (ppm) = 190.50 (<u>C</u>O), 180.99 (<u>C</u>O), 148.17, 142.49, 141.53, 141.20, 137.91, 134.69, 129.31, 128.81, 128.18, 128.03, 126.51, 126.40, 125.20, 123.81, 123.15, 121.00, 120.54, 118.20, 112.96, 112.64, 109.61, 71.51, 70.67, 66.34, 56.78, 43.83, 41.56, 37.09, 27.65, 27.29, 24.42, 19.25, 11.07 (<u>CH₃</u>); IR (KBr, cm⁻¹) ν_{max} = 3349, 2928, 2853, 1732, 1661, 1623, 1598, 1537, 1525, 1504, 1455, 1398, 1337, 1220, 1178, 1128, 1099, 1078, 931, 892, 867, 833, 798, 766, 755, 694, 552; [anal. calcd. for C₃₇H₃₃ClN₆O₄: C, 67.22; H, 5.03; N, 12.71; found: C, 67.34; H, 12.63; N, 12.56]; LC/MS (ESI, m/z): found 661.6 $[M(_{35}Cl) + H]^+$, 663.3 $[M(_{37}Cl) + H]^+$, exact mass 660.23 for C37H33ClN6O4.

(1'R,2'S,3R,7a'R)-6-Chloro-1'-(1H-indol-3-yl)-2'-(5-methyl-1-phenyl-1H-pyrazole-4-carbonyl)-1',2',5',6',7',7a'hexahydrospiro[indoline-3,3'-pyrrolizin]-2-one (8t). Following the general procedure (GP2), chalcone 5a (82 mg, 0.25 mmol), 6-chloroisatin 6b (46 mg, 0.25 mmol), and L-proline 7c (43 mg, 0.37 mmol) in methanol (20 mL) were refluxed for 3 h and purified by column chromatography 100-200 mesh silica gel and MeOH/CH₂Cl₂ (3:97) to yield light yellow solid compound 8t; yield (103 mg, 73%); m.p.: 165–166 °C; $[\alpha]_{D}^{25}$ = -32.67° (c 0.12, MeOH); ¹H NMR (700 MHz, CDCl₃): δ (ppm) = 9.13 (s, 1H, NH), 8.33 (s, 1H, NH), 8.09-8.04 (m, 100)1H, Ar-H), 7.93 (s, 1H, Ar-H), 7.41-7.35 (m, 3H, Ar-H), 7.32-7.30 (m, 1H, Ar-<u>H</u>), 7.29 (d, J = 8.1 Hz, 1H, Ar-<u>H</u>), 7.23 $(d, J = 2.4 \text{ Hz}, 1\text{H}, \text{Ar}-\underline{\text{H}}), 7.19-7.13 (m, 4\text{H}, \text{Ar}-\underline{\text{H}}), 6.99 (dd, J)$ *J* = 8.0, 1.9 Hz, 1H, Ar-<u>H</u>), 6.63 (d, *J* = 1.9 Hz, 1H, Ar-<u>H</u>), 4.89 (d, J = 11.4 Hz, 1H, CHCO), 4.49–4.46 (m, 1H, NCH), 4.19 (dd, J = 11.5, 9.9 Hz, 1H, NCHCH), 2.80-2.75 (m, 1H, $NCH_{2(a)}$, 2.70–2.66 (m, 1H, $NCH_{2(b)}$), 2.09 (s, 3H, CH_{3}), 2.06–2.02 (m, 1H, CH₂), 1.97–1.91 (m, 1H CH₂), 1.90–1.85 (m, 1H C<u>H</u>₂), 1.79–1.73 (m, 1H C<u>H</u>₂); ¹³C NMR (176 MHz, CDCl₃): δ (ppm) =191.91 (<u>C</u>O), 181.47 (<u>C</u>O), 143.56, 142.53, 141.27, 138.24, 136.68, 134.93, 129.33, 128.97, 128.86, 126.77, 125.58, 124.44, 122.32, 122.10, 121.88, 121.27, 119.90, 119.67, 114.21, 111.44, 110.70, 73.77, 70.74, 65.90, 48.38, 44.74, 31.06, 27.28, 12.00 (<u>C</u>H₃); IR (KBr, cm⁻¹) ν_{max} = 3273, 3056, 2962, 2867, 1733, 1661, 1653, 1613, 1536, 1531, 1502, 1486, 1453, 1396, 1324, 1285, 1244, 1222, 1185, 1131, 1072, 936, 922, 813, 794, 763, 741, 694, 526; [anal. calcd. for C₃₃H₂₈ClN₅O₂: C, 70.52; H, 5.02; N, 12.46; found: C, 70.66; H, 4.91; N, 12.53]; LC/MS (ESI, *m/z*): found 562.4 [M(₃₅Cl) + H]⁺, 564.1 [M(₃₇Cl) + H]⁺; exact mass 561.19 for C₃₃H₂₈ClN₅O₂.

(1'R,2'S,3R,7a'R)-6-Chloro-2'-(5-methyl-1-phenyl-1H-pyrazole-4-carbonyl)-1'-(1-methyl-1H-indol-3-yl)-1',2',5',6',7',7a'-hexahydrospiro[indoline-3,3'-pyrrolizin]-2one (8u). Following the general procedure (GP2), chalcone 5b (85 mg, 0.25 mmol), 6-chloroisatin 6b (46 mg, 0.25 mmol), and L-proline 7c (43 mg, 0.37 mmol) in methanol (20 mL) were refluxed for 3 h and purified by column chromatography 100–200 mesh silica gel and MeOH/CH₂Cl₂ (3:97) to yield light yellow solid compound 8u; yield (124 mg, 87%); m.p.: 150–151 °C; $[\alpha]_{D}^{25} = -23.35^{\circ}$ (c 0.11, MeOH); ¹H NMR $(700 \text{ MHz}, \text{CDCl}_3): \delta (\text{ppm}) = 9.02 (\text{s}, 1\text{H}, \text{NH}), 8.07 (\text{d}, J =$ 7.9 Hz, 1H, Ar-H), 7.89 (s, 1H, Ar-H), 7.41-7.35 (m, 3H, Ar-<u>H</u>), 7.30–7.26 (m, 2H, Ar-<u>H</u>), 7.23–7.20 (m, 1H, Ar-<u>H</u>), 7.17 (dd, J = 16.0, 7.6 Hz, 3H, Ar-<u>H</u>), 7.13 (s, 1H, Ar-<u>H</u>), 6.99 (dd,*J* = 8.0, 1.9 Hz, 1H, Ar-<u>H</u>), 6.65 (d, *J* = 1.9 Hz, 1H, Ar-<u>H</u>), 4.85 (d, J = 11.5 Hz, 1H, CHCO), 4.50-4.45 (m, 1H, NCH), 4.16 $(dd, J = 11.5, 10.0 \text{ Hz}, 1H, \text{ NCHCH}), 3.73 (s, 3H, \text{ NCH}_3),$ 2.82–2.76 (m, 1H, NC $\underline{H}_{2(a)}$), 2.70–2.65 (m, 1H, NC $\underline{H}_{2(b)}$), 2.09 (s, 3H, CH₃), 2.07-2.01 (m, 1H, CH₂), 1.98-1.92 (m, 1H, CH₂), 1.90-1.86 (m, 1H, CH₂), 1.78-1.73 (m, 1H, CH_2); ¹³C NMR (176 MHz, CDCl₃): δ (ppm) = 191.89 (\underline{CO}) , 181.46 (\underline{CO}) , 143.51, 142.51, 141.24, 138.29, 137.38, 134.91, 129.32, 128.93, 128.86, 127.21, 126.92, 125.58, 124.47, 121.86, 121.71, 121.29, 120.07, 119.21, 112.71, 110.64, 109.44, 73.67, 70.80, 66.02, 48.43, 44.66, 32.82 (NCH₃), 30.96, 27.19, 12.01 (<u>C</u>H₃); IR (KBr, cm⁻¹) ν_{max} = 3216, 3058, 2958, 2872, 1733, 1662, 1614, 1536, 1503, 1484, 1455, 1398, 1326, 1285, 1227, 1184, 1130, 1172, 1012, 935, 922, 815, 795, 765, 740, 694; [anal. calcd. for C₃₄H₃₀ClN₅O₂: C, 70.89; H, 5.25; N, 12.16; found: C, 71.11; H, 5.16; N, 12.01]; LC/MS (ESI, m/ z): found 576.5 $[M(_{35}Cl) + H]^+$, 578.2 $[M(_{37}Cl) + H]^+$; exact mass 575.21 for C₃₄H₃₀ClN₅O₂.

(1'R,2'S,3R,7a'R)-1'-(5-Bromo-1H-indol-3-yl)-2'-(5-methyl-1-phenyl-1H-pyrazole-4-carbonyl)-1',2',5',6',7',7a'hexahydrospiro[indoline-3,3'-pyrrolizin]-2-one (8v). Following the general procedure (GP2), chalcone 5c (102 mg, 0.25 mmol), isatin 6a (37 mg, 0.25 mmol), and L-proline 7c (43 mg, 0.37 mmol) in methanol (20 mL) were refluxed for 3 h and purified by column chromatography 100-200 mesh silica gel and MeOH/CH₂Cl₂ (3:97) to yield light yellow solid compound 8v; yield (136 mg, 90%); m.p.: 178–179 °C; $[\alpha]_{D}^{25}$ $= -37.86^{\circ}$ (c 0.10, MeOH); ¹H NMR (700 MHz, DMSO- d_6) δ (ppm) = 11.16 (s, 1H, N<u>H</u>), 10.35 (s, 1H, N<u>H</u>), 8.10 (s, 1H, Ar-<u>H</u>), 7.85 (d, J = 3.0 Hz, 1H, Ar-<u>H</u>), 7.51–7.46 (m, 3H, Ar-<u>H</u>), 7.44 (d, J = 9.1 Hz, 1H, Ar-<u>H</u>), 7.39 (d, J = 7.9 Hz, 1H, Ar-<u>H</u>), 7.34–7.29 (m, 3H, Ar-<u>H</u>), 7.19 (d, J = 10.5 Hz, 1H, Ar-<u>H</u>), 7.14–7.10 (m, 1H, Ar-<u>H</u>), 6.98–6.94 (m, 1H, Ar-<u>H</u>), 6.65 (d, J = 10.3 Hz, 1H, Ar-<u>H</u>), 4.68 (d, J = 11.7 Hz, 1H, C<u>H</u>CO), 4.09 (t, J = 12.0 Hz, 1H, NCHC<u>H</u>), 4.05–4.01 (m, 1H, NC<u>H</u>), 2.62–2.57 (m, 1H, NC<u>H_{2(a)}</u>), 2.39–2.35 (m, 1H,

NC<u>H</u>_{2(b)}), 1.94–1.90 (m, 1H, C<u>H</u>₂), 1.89 (s, 3H, C<u>H</u>₃), 1.87– 1.84 (m, 1H, C<u>H</u>₂), 1.80–1.75 (m, 1H, C<u>H</u>₂), 1.75–1.69 (m, 1H, C<u>H</u>₂); ¹³C NMR (176 MHz, DMSO-*d*₆) δ (ppm) = 191.33 (<u>C</u>O), 179.87 (<u>C</u>O), 142.37, 141.96, 140.86, 138.03, 135.10, 129.29, 129.08, 128.74, 128.70, 127.85, 125.27, 125.23, 123.96, 123.53, 121.32, 120.99, 120.78, 113.57, 113.33, 111.21, 109.43, 73.20, 71.04, 65.39, 47.42, 43.25, 30.49, 27.08, 11.21 (<u>C</u>H₃); IR (KBr, cm⁻¹) ν_{max} = 3270, 2958, 2928, 2869, 1717, 1662, 1653, 1616, 1597, 1538, 1504, 1470, 1457, 1397, 1330, 1268, 1221, 1190, 1104, 936, 884, 793, 754, 694, 678, 659, 610; [anal. calcd. for C₃₃H₂₈BrN₅O₂: C, 65.35; H, 4.65; N, 11.55; found: C, 65.24; H, 4.77; N, 11.49]; LC/MS (ESI, *m*/ *z*): found 606.7 [M(₇₉Br) + H]⁺, 608.4 [M(₈₁Br) + H]⁺; exact mass 605.14 for C₃₃H₂₈BrN₅O₂.

(1'R,2'S,3R,7a'R)-1'-(5-Chloro-1H-indol-3-yl)-2'-(5-methyl-1-phenyl-1H-pyrazole-4-carbonyl)-5-nitro-1',2',5',6',7',7a'-hexahydrospiro[indoline-3,3'-pyrrolizin]-2one (8w). Following the general procedure (GP2), chalcone 5d (91 mg, 0.25 mmol), 5-nitroisatin 6c (48 mg, 0.25 mmol), and L-proline 7c (43 mg, 0.37 mmol) in methanol (20 mL) were refluxed for 6 h and purified by column chromatography 100-200 mesh silica gel and MeOH/CH₂Cl₂ (3:97) to yield yellow solid compound 8w; yield (74 mg, 49%); m.p.: 225-226 °C; $[\alpha]_{D}^{25} = -67.91^{\circ}$ (c 0.13, MeOH); ¹H NMR (700 MHz, DMSO- d_6) δ (ppm) = 11.18 (s, 1H, N<u>H</u>), 11.16 (s, 1H, N<u>H</u>), 8.14 (dd, J = 8.6, 2.3 Hz, 1H, Ar-<u>H</u>), 8.12 (d, J = 2.3 Hz, 1H, Ar-<u>H</u>), 7.93 (d, J = 2.1 Hz, 1H, Ar-<u>H</u>), 7.84 (s, 1H), 7.55 $(d, J = 2.5 \text{ Hz}, 1\text{H}, \text{Ar}-\underline{H}), 7.51-7.48 (m, 2\text{H}, \text{Ar}-\underline{H}), 7.47-$ 7.44 (m, 1H, Ar-H), 7.36 (d, I = 8.6 Hz, 1H, Ar-H), 7.31 (d, I= 8.6 Hz, 2H, Ar-<u>H</u>), 7.08 (dd, *J* = 8.6, 2.0 Hz, 1H, Ar-<u>H</u>), 6.88 $(d, J = 8.6 \text{ Hz}, 1\text{H}, \text{Ar}-\underline{\text{H}}), 4.75 (d, J = 11.4 \text{ Hz}, 1\text{H}, C\underline{\text{H}}CO),$ 4.15-4.09 (m, 2H, NCH + NCHCH), 2.70-2.65 (m, 1H, NCH_{2(a)}), 2.46-2.42 (m, 1H, NCH_{2(b)}), 1.99-1.94 (m, 1H, CH_2), 1.92 (s, 3H, CH_3) 1.90–1.88 (m, 1H, CH_2), 1.84–1.76 (m, 2H, C<u>H</u>₂); ¹³C NMR (176 MHz, DMSO- d_6) δ (ppm) = 191.15 (CO), 180.27 (CO), 148.48, 142.63, 141.67, 140.69, 137.82, 134.92, 129.30, 128.86, 127.70, 126.56, 126.22, 125.19, 124.53, 123.23, 122.78, 121.03, 120.59, 118.14, 113.15, 112.52, 109.86, 72.44, 70.67, 65.39, 47.41, 43.52, 30.02, 27.09, 11.21 (<u>C</u>H₃); IR (KBr, cm⁻¹) ν_{max} = 3408, 3378, 3111, 3058, 2973, 2861, 2836, 1748, 1645, 1622, 1598, 1525, 1503, 1479, 1455, 1417, 1392, 1373, 1338, 1293, 1253, 1221, 1188, 1174, 1137, 1100, 1076, 986, 938, 930, 887, 860, 850, 832, 798, 763, 755, 694, 655, 610, 554; [anal. calcd. for C₃₃H₂₇ClN₆O₄: C, 65.29; H, 4.48; N, 13.84; found: C, 65.39; H, 4.56; N, 13.87]; LC/ MS (ESI, m/z): found 607.5 [M ($_{35}$ Cl) + H]⁺, 609.2 [M $(_{35}Cl) + H^{+};$ exact mass 606.18 for $C_{33}H_{27}ClN_6O_4$.

(2'R,3'S,4'R)-6-Chloro-4'-(1H-indol-3-yl)-1'-methyl-3'-(5methyl-1-phenyl-1H-pyrazole-4-carbonyl)spiro[indoline-3,2'-pyrrolidin]-2-one (8x). Following the general procedure (GP2), chalcone 5a (82 mg, 0.25 mmol), 6-chloroisatin 6b (46 mg, 0.25 mmol), and sacrosine 7d (34 mg, 0.37 mmol) in methanol (20 mL) were refluxed for 3 h and purified by column chromatography 100-200 mesh silica gel and MeOH/ CH_2Cl_2 (3:97) to yield light yellow solid compound 8x; yield (48 mg, 35%); m.p.: 140–141 °C; $[\alpha]_{D}^{25} = -19.37^{\circ}$ (c 0.10, MeOH); ¹H NMR (700 MHz, CDCl₃): δ (ppm) = 8.51 (s, 1H, N<u>H</u>), 8.19 (s, 1H, N<u>H</u>), 8.08 (d, J = 9.5 Hz, 1H, Ar-<u>H</u>), 7.73 (s, 1H, Ar-H), 7.45-7.38 (m, 3H, Ar-H), 7.33-7.30 (m, 1H, Ar-<u>H</u>), 7.26 (d, J = 1.2 Hz, 1H, Ar-<u>H</u>), 7.20–7.14 (m, 5H, Ar-<u>H</u>), 6.92 (dd, J = 8.0, 1.9 Hz, 1H, Ar-<u>H</u>), 6.49 (d, J = 1.8Hz, 1H, Ar-<u>H</u>), 4.80–4.73 (m, 1H, NCH₂C<u>H</u>), 4.45 (d, J = 9.6Hz, 1H, CHCO), 3.86-3.81 (m, 1H, NCH_{2(a)}), 3.49-3.45 (m, 1H, NC<u>H₂(b)</u>), 2.29 (s, 3H, NC<u>H₃</u>), 2.17 (s, 3H, C<u>H₃</u>); ¹³C NMR (176 MHz, CDCl₃): δ (ppm) = 192.45 (<u>C</u>O), 180.34 (<u>C</u>O), 143.46, 142.23, 140.55, 138.20, 136.60, 134.48, 129.44, 129.18, 127.71, 126.87, 126.77, 125.71, 122.53, 122.21, 122.16, 121.44, 120.04, 119.75, 115.62, 111.30, 109.77, 73.69, 64.47, 59.54, 35.99, 35.30 (N<u>C</u>H₃), 11.91 (<u>C</u>H₃); IR (KBr, cm⁻¹) ν_{max} = 3278, 3072, 2934, 2826, 2797, 1726, 1666, 1654, 1612, 1597, 1534, 1503, 1485, 1552, 1398, 1322, 1284, 1240, 1216, 1179, 1119, 1094, 1069, 936, 910, 882, 814, 798, 766, 718, 693, 592; [anal. calcd. for C₃₁H₂₆ClN₅O₂: C, 69.46; H, 4.89; N, 13.07; found: C, 69.31; H, 4.97; N, 12.93]; LC/MS (ESI, *m*/*z*): found 536.4 [M(₃₅Cl) + H]⁺, 538.2 [M(₃₇Cl) + H]⁺; exact mass 535.18 for C₃₁H₂₆ClN₅O₂.

(2'R,3'S,4'R)-4'-(5-Bromo-1H-indol-3-yl)-6-chloro-1'methyl-3'-(5-methyl-1-phenyl-1H-pyrazole-4-carbonyl)spiro[indoline-3,2'-pyrrolidin]-2-one (8y). Following the general procedure (GP2), chalcone 5c (102 mg, 0.25 mmol), 6-chloroisatin 6b (46 mg, 0.25 mmol), and sacrosine 7d (34 mg, 0.37 mmol) in methanol (20 mL) were refluxed for 3 h and purified by column chromatography 100-200 mesh silica gel and MeOH/CH2Cl2 (3:97) to yield light yellow solid compound 8y; yield (73 mg, 47%); m.p.: 158–159 °C; $[\alpha]_{D}^{25}$ = -35.63° (c 0.12, MeOH); ¹H NMR (700 MHz, CDCl₃): δ (ppm) = 8.99 (s, 1H, N<u>H</u>), 8.42 (s, 1H, N<u>H</u>), 8.18 (s, 1H, Ar-<u>H</u>), 7.77 (s, 1H, Ar-<u>H</u>), 7.44–7.38 (m, 3H, Ar-<u>H</u>), 7.22 (dd, J = 8.7, 2.0 Hz, 2H, Ar-<u>H</u>), 7.18-7.11 (m, 4H, Ar-<u>H</u>), 6.92 (dd, *J* = 8.0, 1.8 Hz, 1H, Ar-<u>H</u>), 6.54 (d, *J* = 1.8 Hz, 1H, Ar-<u>H</u>), 4.70 $(q, J = 9.8 \text{ Hz}, 1\text{H}, \text{NCH}_2\text{CH}), 4.36 (d, J = 9.4 \text{ Hz}, 1\text{H},$ C<u>H</u>CO), 3.75 (t, J = 9.5 Hz, 1H, NC<u>H_{2(a)}</u>), 3.46 (t, J = 9.5 Hz, 1H, NCH_{2(b)}), 2.27 (s, 3H, NCH₃), 2.19 (s, 3H, CH₃); 13 C NMR (176 MHz, CDCl₃): δ (ppm) = 192.35 (<u>C</u>O), 180.67 (CO), 143.63, 142.34, 140.51, 138.14, 135.16, 134.58, 129.47, 129.24, 128.70, 127.64, 126.53, 125.71, 125.00, 123.27, 122.55, 122.51, 121.38, 115.62, 113.00, 112.75, 110.02, 73.75, 64.57, 59.54, 35.58, 35.26 (N<u>C</u>H₃), 11.93 (<u>C</u>H₃); IR (KBr, cm⁻¹) $\nu_{\rm max} = 3276,\, 3071,\, 2936,\, 2843,\, 2795,\, 1722,\, 1668,\, 1652,\, 1613,$ 1598, 1537, 1504, 1484, 1554, 1397, 1321, 1280, 1244, 1219, 1181, 1115, 1096, 1068, 938, 916, 883, 813, 793, 765, 714, 694, 593; [anal. calcd. for C₃₁H₂₅BrClN₅O₂: C, 60.55; H, 4.10; N, 11.39; found: C, 60.41; H, 4.15; N, 11.47]; LC/MS (ESI, m/z): found 614.8 $[M(_{35}Cl/_{79}Br) + H]^+$, 616.1 $[M(_{37}Cl/_{81}Br)$ $(+ H)^+$, 618.0 $[M(_{37}Cl + _{81}Br) + H]^+$, exact mass 613.09 for $C_{31}H_{25}BrClN_5O_2$.

Acetylcholine Esterase (AChE) Inhibitory Assay (AChEI). AChEI activity was measured using Ellman's method as previously described and provided in the Supporting Information.^{39b,c}

Molecular Docking Study. The protocol for the molecular docking study to investigate the binding mode of the most active compounds are provided in the Supporting Information.⁴³

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsomega.1c03978.

AChE assay; molecular docking study protocol; copies of NMR and MS spectrum; and also X-ray single-crystal analysis of compound **8c** (PDF)

AUTHOR INFORMATION

Corresponding Authors

- Ved Prakash Verma Department of Chemistry, Banasthali Vidyapith, Banasthali 304022 Rajasthan, India;
 orcid.org/0000-0003-2142-2459; Email: vedprakash079@gmail.com
- Assem Barakat Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; Department of Chemistry, Faculty of Science, Alexandria University, Ibrahimia, Alexandria 21321, Egypt;
 orcid.org/0000-0002-7885-3201; Email: ambarakat@ ksu.edu.sa

Authors

- Mohammad Shahidul Islam Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; Department of Chemistry, Banasthali Vidyapith, Banasthali 304022 Rajasthan, India
- Abdullah Mohammed Al-Majid Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
- Mohammad Azam Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; orcid.org/0000-0002-4274-2796
- Matti Haukka Department of Chemistry, University of Jyväskylä, FI-40014 Jyväskylä, Finland; [©] orcid.org/0000-0002-6744-7208
- **Abdullah A. Elgazar** Department of Pharmacognosy, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
- Amira Mira Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
- Farid A. Badria Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt

Complete contact information is available at: https://pubs.acs.org/10.1021/acsomega.1c03978

Notes

The authors declare no competing financial interest. $^{\nabla}$ The current research was carried out in the current affiliation.

ACKNOWLEDGMENTS

The authors would like to extend their sincere appreciation to the Deanship of Scientific Research at King Saud University for providing funding to this Research group NO (RGP-257). The authors thank the Deanship of Scientific Research and RSSU at King Saud University for their technical support.

REFERENCES

(1) Hardy, J. A.; Higgins, G. A. Alzheimer's disease: the amyloid cascade hypothesis. *Science* **1992**, 256, 184–186.

(2) Mohandas, E.; Rajmohan, V.; Raghunath, B. Neurobiology of Alzheimer's disease. *Indian J. Psychiatry* **2009**, *51*, 55.

(3) Swerdlow, R. H.; Burns, J. M.; Khan, S. M. The Alzheimer's disease mitochondrial cascade hypothesis. *J. Alzheimer's Dis.* **2010**, *20*, S265–S279.

(4) Maccioni, R. B.; Farías, G.; Morales, I.; Navarrete, L. The revitalized tau hypothesis on Alzheimer's disease. *Arch. Med. Res.* **2010**, *41*, 226–231.

(5) Wood, W. G.; Li, L.; Müller, W. E.; Eckert, G. P. Cholesterol as a causative factor in Alzheimer's disease: a debatable hypothesis. *J. Neurochem.* **2014**, *129*, 559–572.

Ρ

(6) Zotova, E.; Nicoll, J. A.; Kalaria, R.; Holmes, C.; Boche, D. Inflammation in Alzheimer's disease: relevance to pathogenesis and therapy. *Alzheimer's Res. Ther.* **2010**, *2*, 1–9.

(7) Markesbery, W. R. Oxidative stress hypothesis in Alzheimer's disease. *Free Radical Biol. Med.* **1997**, *23*, 134–147.

(8) Bush, A. I.; Tanzi, R. E. Therapeutics for Alzheimer's disease based on the metal hypothesis. *Neurotherapeutics* **2008**, *5*, 421–432.

(9) de la Torre, J. C. The vascular hypothesis of Alzheimer's disease: bench to bedside and beyond. *Neurodegener. Dis.* **2010**, *7*, 116–121. (10) Neve, R. L.; McPhie, D. L. The cell cycle as a therapeutic target for Alzheimer's disease. *Pharmacol. Ther.* **2006**, *111*, 99–113.

(11) (a) de Oliveira Viana, J.; Monteiro, A. F. M.; Filho, J. M. B.; Scotti, L.; Scotti, M. T. The Azoles in Pharmacochemistry: Perspectives on the Synthesis of New Compounds and Chemoinformatic Contributions. *Curr. Pharm. Des.* 2020, 25, 4702–4716.
(b) Teleb, M.; Rizk, O. H.; Zhang, F.-X.; Fronczek, F. R.; Zamponi, G. W.; Fahmy, H. Design, synthesis and pharmacological evaluation of some substituted dihydropyrimidines with L-/T-type calcium channel blocking activities. *Bioorg. Chem.* 2019, 83, 354–366.

(12) Radi, S.; El Massaoudi, M.; Bacquet, M.; Degoutin, S.; Adarsh, N.; Robeyns, K.; Garcia, Y. A novel environment-friendly hybrid material based on a modified silica gel with a bispyrazole derivative for the removal of Zn II, Pb II, Cd II and Cu II traces from aqueous solutions. *Inorg. Chem. Front.* **2017**, *4*, 1821–1831.

(13) Ouyang, G.; Cai, X.-J.; Chen, Z.; Song, B.-A.; Bhadury, P. S.; Yang, S.; Jin, L.-H.; Xue, W.; Hu, D.-Y.; Zeng, S. Synthesis and antiviral activities of pyrazole derivatives containing an oxime moiety. *J. Agric. Food Chem.* **2008**, *56*, 10160–10167.

(14) Keter, F. K.; Darkwa, J. Perspective: the potential of pyrazolebased compounds in medicine. *BioMetals* **2012**, *25*, 9–21.

(15) Ramesh, B.; Bhalgat, C. M. Novel dihydropyrimidines and its pyrazole derivatives: Synthesis and pharmacological screening. *Eur. J. Med. Chem.* **2011**, *46*, 1882–1891.

(16) Kumar, V.; Kaur, K.; Gupta, G. K.; Sharma, A. K. Pyrazole containing natural products: synthetic preview and biological significance. *Eur. J. Med. Chem.* **2013**, *69*, 735–753.

(17) Diculescu, V. C.; Chiorcea-Paquim, A.-M.; Oliveira-Brett, A. M. Applications of a DNA-electrochemical biosensor. *TrAC, Trends Anal. Chem.* **2016**, *79*, 23–36.

(18) Graillot, V.; Tomasetig, F.; Cravedi, J.-P.; Audebert, M. Evidence of the in vitro genotoxicity of methyl-pyrazole pesticides in human cells. *Mutat. Res., Genet. Toxicol. Environ. Mutagen.* **2012**, 748, 8–16.

(19) Çetin, A.; Bildirici, I. A study on synthesis and antimicrobial activity of 4-acyl-pyrazoles. J. Saudi Chem. Soc. 2018, 22, 279–296.

(20) Ramírez–Prada, J.; Robledo, S. M.; Vélez, I. D.; del Pilar Crespo, M.; Quiroga, J.; Abonia, R.; Montoya, A.; Svetaz, L.; Zacchino, S.; Insuasty, B. Synthesis of novel quinoline–based 4, 5– dihydro–1H–pyrazoles as potential anticancer, antifungal, antibacterial and antiprotozoal agents. *Eur. J. Med. Chem.* **201**7, *131*, 237–254.

(21) El-Sabbagh, O. I.; Baraka, M. M.; Ibrahim, S. M.; Pannecouque, C.; Andrei, G.; Snoeck, R.; Balzarini, J.; Rashad, A. A. Synthesis and antiviral activity of new pyrazole and thiazole derivatives. *Eur. J. Med. Chem.* **2009**, *44*, 3746–3753.

(22) Insuasty, B.; Tigreros, A.; Orozco, F.; Quiroga, J.; Abonía, R.; Nogueras, M.; Sanchez, A.; Cobo, J. Synthesis of novel pyrazolic analogues of chalcones and their 3-aryl-4-(3-aryl-4, 5-dihydro-1Hpyrazol-5-yl)-1-phenyl-1H-pyrazole derivatives as potential antitumor agents. *Bioorg. Med. Chem.* **2010**, *18*, 4965–4974.

(23) Bandgar, B. P.; Gawande, S. S.; Bodade, R. G.; Gawande, N. M.; Khobragade, C. N. Synthesis and biological evaluation of a novel series of pyrazole chalcones as anti-inflammatory, antioxidant and antimicrobial agents. *Bioorg. Med. Chem.* **2009**, *17*, 8168–8173.

(24) Pérez-Fernández, R.; Goya, P.; Elguero, J. A review of recent progress (2002-2012) on the biological activities of pyrazoles. *Arkivoc* **2014**, 2014, 233–293.

(25) Özdemir, A.; Altıntop, M. D.; Kaplancıklı, Z. A.; Can, Ö. D.; Demir Özkay, Ü.; Turan-Zitouni, G. Synthesis and Evaluation of New 1, 5-Diaryl-3-[4-(methyl-sulfonyl) phenyl]-4, 5-dihydro-1H-pyrazole Derivatives as Potential Antidepressant Agents. *Molecules* 2015, 20, 2668–2684.

(26) Kling, A.; Jantos, K.; Mack, H.; Hornberger, W.; Drescher, K.; Nimmrich, V.; Relo, A.; Wicke, K.; Hutchins, C. W.; Lao, Y.; et al. Discovery of Novel and Highly Selective Inhibitors of Calpain for the Treatment of Alzheimer's Disease: 2-(3-Phenyl-1 H-pyrazol-1-yl)nicotinamides. *J. Med. Chem.* **2017**, *60*, 7123–7138.

(27) (a) Ahsan, N.; Mishra, S.; Jain, M. K.; Surolia, A.; Gupta, S. Curcumin Pyrazole and its derivative (N-(3-Nitrophenylpyrazole) Curcumin inhibit aggregation, disrupt fibrils and modulate toxicity of Wild type and Mutant α -Synuclein. *Sci. Rep.* **2015**, *5*, No. 9862. (b) Estrada, A. A.; Chan, B. K.; Baker-Glenn, C.; Beresford, A.; Burdick, D. J.; Chambers, M.; Chen, H.; Dominguez, S. L.; Dotson, J.; Drummond, J.; et al. Discovery of highly potent, selective, and brain-penetrant aminopyrazole leucine-rich repeat kinase 2 (LRRK2) small molecule inhibitors. *J. Med. Chem.* **2014**, *57*, 921–936.

(28) Neelarapu, R.; Holzle, D. L.; Velaparthi, S.; Bai, H.; Brunsteiner, M.; Blond, S. Y.; Petukhov, P. A. Design, synthesis, docking, and biological evaluation of novel diazide-containing isoxazole-and pyrazole-based histone deacetylase probes. *J. Med. Chem.* **2011**, *54*, 4350–4364.

(29) Han, Y. T.; Kim, K.; Choi, G.-I.; An, H.; Son, D.; Kim, H.; Ha, H.-J.; Son, J.-H.; Chung, S.-J.; Park, H.-J.; et al. Pyrazole-5-carboxamides, novel inhibitors of receptor for advanced glycation end products (RAGE). *Eur. J. Med. Chem.* **2014**, *79*, 128–142.

(30) (a) Turkan, F.; Cetin, A.; Taslimi, P.; Gulçin, İ. Some pyrazoles derivatives: Potent carbonic anhydrase, α -glycosidase, and cholinesterase enzymes inhibitors. *Arch. Pharm.* **2018**, 351, No. 1800200. (b) Turkan, F.; Çetin, A.; Taslimi, P.; Karaman, M.; Gulçin, İ. Synthesis, biological evaluation and molecular docking of novel pyrazole derivatives as potent carbonic anhydrase and acetylcholinesterase inhibitors. *Bioorg. Chem.* **2019**, 86, 420–427.

(31) (a) Brandão, P.; Marques, C.; Burke, A. J.; Pineiro, M. The application of isatin-based multicomponent-reactions in the quest for new bioactive and druglike molecules. *Eur. J. Med. Chem.* **2021**, *211*, 113102. (b) Lotfy, G.; Aziz, Y. M. A.; Said, M. M.; El Sayed, H.; El Sayed, H.; Abu-Serie, M. M.; Teleb, M.; Dömling, A.; Barakat, A. Molecular hybridization design and synthesis of novel spirooxindole-based MDM2 inhibitors endowed with BCL2 signaling attenuation; a step towards the next generation p53 activators. *Bioorg. Chem.* **2021**, No. 105427. (c) Aziz, Y. M. A.; Lotfy, G.; Said, M. M.; El Ashry, E. S. H.; El Tamany, E. S. H.; Soliman, S.; Abu-Serie, M. M.; Teleb, M.; Yousuf, S.; Dömling, A. Design, Synthesis, Chemical and Biochemical Insights on to Novel Hybrid Spirooxindoles-Based p53-MDM2 Inhibitors with Potential Bcl2 Signaling Attenuation. *Front. Chem.* **2021**, 915.

(32) (a) Choi, S. S.; Lee, S.-R.; Kim, S. U.; Lee, H. J. Alzheimer's disease and stem cell therapy. Exp. Neurobiol. 2014, 23, 45. (b) Giacobini, E. Selective inhibitors of butyrylcholinesterase. Drugs Aging 2001, 18, 891-898. (c) Kia, Y.; Osman, H.; Kumar, R. S.; Murugaiyah, V.; Basiri, A.; Perumal, S.; Razak, I. A. A facile chemo-, regio-and stereoselective synthesis and cholinesterase inhibitory activity of spirooxindole-pyrrolizine-piperidine hybrids. Bioorg. Med. Chem. Lett. 2013, 23, 2979-2983. (d) Kia, Y.; Osman, H.; Kumar, R. S.; Basiri, A.; Murugaiyah, V. Synthesis and discovery of highly functionalized mono-and bis-spiro-pyrrolidines as potent cholinesterase enzyme inhibitors. Bioorg. Med. Chem. Lett. 2014, 24, 1815-1819. (e) Kia, Y.; Osman, H.; Kumar, R. S.; Murugaiyah, V.; Basiri, A.; Perumal, S.; Wahab, H. A.; Bing, C. S. Synthesis and discovery of novel piperidone-grafted mono-and bis-spirooxindolehexahydropyrrolizines as potent cholinesterase inhibitors. Bioorg. Med. Chem. 2013, 21, 1696-1707. (f) kia, Y.; Osman, H.; Kumar, R. S.; Basiri, A.; Murugaiyah, V. Ionic liquid mediated synthesis of monoand bis-spirooxindole-hexahydropyrrolidines as cholinesterase inhibitors and their molecular docking studies. Bioorg. Med. Chem. 2014, 22, 1318-1328. (g) Arumugam, N.; Almansour, A. I.; Kumar, R. S.; Kotresha, D.; Saiswaroop, R.; Venketesh, S. Dispiropyrrolidinylpiperidone embedded indeno [1, 2-b] quinoxaline heterocyclic hybrids: Synthesis, cholinesterase inhibitory activity and their

molecular docking simulation. *Bioorg. Med. Chem.* **2019**, *27*, 2621–2628. (h) Barakat, A.; Soliman, S. M.; Alshahrani, S.; Islam, M. S.; Ali, M.; Al-Majid, A. M.; Yousuf, S. Synthesis, X-ray Single Crystal, Conformational Analysis and Cholinesterase Inhibitory Activity of a New Spiropyrrolidine Scaffold Tethered Benzo [b] Thiophene Analogue. *Crystals* **2020**, *10*, 120. (i) Goyal, D.; Kaur, A.; Goyal, B. Benzofuran and indole: promising scaffolds for drug development in Alzheimer's disease. *ChemMedChem* **2018**, *13*, 1275–1299. (j) Kumar, R. S.; Ali, M. A.; Osman, H.; Ismail, R.; Choon, T. S.; Yoon, Y. K.; Wei, A. C.; Pandian, S.; Manogaran, E. Synthesis and discovery of novel hexacyclic cage compounds as inhibitors of acetylcholinesterase. *Bioorg. Med. Chem. Lett.* **2011**, *21*, 3997–4000.

(33) Chigurupati, S.; Selvaraj, M.; Mani, V.; Selvarajan, K. K.; Mohammad, J. I.; Kaveti, B.; Bera, H.; Palanimuthu, V. R.; Teh, L. K.; Salleh, M. Z. Identification of novel acetylcholinesterase inhibitors: Indolopyrazoline derivatives and molecular docking studies. *Bioorg. Chem.* **2016**, *67*, 9–17.

(34) Barakat, A.; Alshahrani, S.; Al-Majid, A. M.; Ali, M.; Altowyan, M. S.; Islam, M. S.; Alamary, A. S.; Ashraf, S.; Ul-Haq, Z. Synthesis of a New Class of Spirooxindole–Benzo [b] Thiophene-Based Molecules as Acetylcholinesterase Inhibitors. *Molecules* **2020**, *25*, 4671.

(35) (a) Mei, G.-J.; Shi, F. Catalytic asymmetric synthesis of spirooxindoles: recent developments. *Chem. Commun.* 2018, 54, 6607–6621. (b) Saranya, P.; Neetha, M.; Aneeja, T.; Anilkumar, G. Transition metal-catalyzed synthesis of spirooxindoles. *RSC Adv.* 2021, 11, 7146–7179.

(36) (a) Wang, C.-S.; Zhu, R.-Y.; Zheng, J.; Shi, F.; Tu, S.-J. Enantioselective construction of spiro [indoline-3, 2'-pyrrole] framework via catalytic asymmetric 1, 3-dipolar cycloadditions using allenes as equivalents of alkynes. J. Org. Chem. 2015, 80, 512–520. (b) Dai, W.; Jiang, X.-L.; Wu, Q.; Shi, F.; Tu, S.-J. Diastereo-and enantioselective construction of 3, 3'-pyrrolidinyldispirooxindole framework via catalytic asymmetric 1, 3-dipolar cycloadditions. J. Org. Chem. 2015, 80, 5737–5744. (c) Wang, Y.-M.; Zhang, H.-H.; Li, C.; Fan, T.; Shi, F. Catalytic asymmetric chemoselective 1, 3-dipolar cycloadditions of an azomethine ylide with isatin-derived imines: diastereo-and enantioselective construction of a spiro [imidazolidine-2, 3'-oxindole] framework. Chem. Commun. 2016, 52, 1804–1807.

(37) (a) Altowyan, M. S.; Barakat, A.; Al-Majid, A. M.; Al-Ghulikah, H. Spiroindolone Analogues as Potential Hypoglycemic with Dual Inhibitory Activity on α -Amylase and α -Glucosidase. Molecules 2019, 24, 2342. (b) Altowyan, M. S.; Barakat, A.; Al-Majid, A. M.; Al-Ghulikah, H. Spiroindolone analogues bearing benzofuran moiety as a selective cyclooxygenase COX-1 with TNF- α and IL-6 inhibitors. Saudi J. Biol. Sci. 2020, 27, 1208-1216. (c) Barakat, A.; Islam, M. S.; Ghawas, H. M.; Al-Majid, A. M.; El-Senduny, F. F.; Badria, F. A.; Elshaier, Y. A. M.; Ghabbour, H. A. Substituted spirooxindole derivatives as potent anticancer agents through inhibition of phosphodiesterase 1. RSC Adv. 2018, 8, 14335-14346. (d) Islam, M. S.; Ghawas, H. M.; El-Senduny, F. F.; Al-Majid, A. M.; Elshaier, Y. A.; Badria, F. A.; Barakat, A. Synthesis of new thiazolo-pyrrolidine-(spirooxindole) tethered to 3-acylindole as anticancer agents. Bioorg. Chem. 2019, 82, 423-430. (e) Al-Majid, A. M.; Soliman, S. M.; Haukka, M.; Ali, M.; Islam, M. S.; Shaik, M. R.; Barakat, A. Design, Construction, and Characterization of a New Regioisomer and Diastereomer Material Based on the Spirooxindole Scaffold Incorporating a Sulphone Function. Symmetry 2020, 12, 1337. (f) Aziz, y. a.; Lotfy, G.; Said, M. M.; El Sayed, H.; El Ashry, H.; El Tamany, H.; Soliman, S. M.; Haukka, M.; Barakat, A. A.; et al. Synthesis and characterization of a new spirooxindole grafted pyrrolidino/piperidine moiety. Record. Pharm. Biomed. Sci. 2021, 5, 1-7. (g) Islam, M. S.; Haukka, M.; Soliman, S. M.; Al-Majid, A. M.; Rahman, A. M.; Bari, A.; Barakat, A. Regio-and Stereoselective Synthesis of Spiro-heterocycles Bearing the Pyrazole Scaffold via [3+ 2] Cycloaddition Reaction. J. Mol. Struct. 2021, 1250, No. 131711. (38) (a) Ríos-Gutiérrez, M.; Domingo, L. R. Unravelling the mysteries of the [3+ 2] cycloaddition reactions. Eur. J. Org. Chem. 2019, 2019, 267-282. (b) R Domingo, L.; Chamorro, E.; Perez, P.

Understanding the high reactivity of the azomethine ylides in [3 + 2] cycloaddition reactions. *Lett. Org. Chem.* **2010**, 7, 432–439. (c) Domingo, L. R.; Kula, K.; Ríos-Gutiérrez, M. Unveiling the reactivity of cyclic azomethine ylides in [3+2] cycloaddition reactions within the molecular electron density theory. *Eur. J. Org. Chem.* **2020**, 2020, 5938–5948. (d) Domingo, L. R.; Ríos-Gutiérrez, M.; Pérez, P. A molecular electron density theory study of the role of the copper metalation of azomethine ylides in [3+2] cycloaddition reactions. *J. Org. Chem.* **2018**, 83, 10959–10973.

(39) (a) Ellman, G. L.; Courtney, K. D.; Andres, V.; Featherstone, R. A new and rapid colorimetric determination of acetylcholinesterase activity. *Biochem. Pharmacol.* **1961**, *7*, 88–95. (b) Mira, A.; Yamashita, S.; Katakura, Y.; Shimizu, K. In vitro neuroprotective activities of compounds from Angelica shikokiana Makino. *Molecules* **2015**, *20*, 4813–4832. (c) Abdel Bar, F. M.; Elimam, D. M.; Mira, A. S.; El-Senduny, F. F.; Badria, F. A. Derivatization, molecular docking and in vitro acetylcholinesterase inhibitory activity of glycyrrhizin as a selective anti-Alzheimer agent. *Nat. Prod. Res.* **2019**, *33*, 2591–2599. (40) Elgazar, A. A.; Knany, H. R.; Ali, M. S. Insights on the molecular mechanism of anti-inflammatory effect of formula from Islamic traditional medicine: An in-silico study. J. Tradit. Complementary Med. **2019**, *9*, 353–363.

(41) (a) Cheung, J.; Rudolph, M. J.; Burshteyn, F.; Cassidy, M. S.; Gary, E. N.; Love, J.; Franklin, M. C.; Height, J. J. Structures of human acetylcholinesterase in complex with pharmacologically important ligands. J. Med. Chem. 2012, 55, 10282–10286. (b) Bacalhau, P.; San Juan, A. A.; Marques, C. S.; Peixoto, D.; Goth, A.; Guarda, C.; Silva, M.; Arantes, S.; Caldeira, A. T.; Martins, R.; Burke, A. J. New cholinesterase inhibitors for Alzheimer's disease: Structure Activity Studies (SARs) and molecular docking of isoquinolone and azepanone derivatives. *Bioorg. Chem.* 2016, 67, 1–8. (42) Alinezhad, H.; Tajbakhsh, M.; Zare, M. Catalyst-free one-pot synthesis of 1, 4, 5-trisubstituted pyrazoles in 2, 2, 2-trifluoroethanol. J. Fluorine Chem. 2011, 132, 995–1000.

(43) (a) Inc., C. C. G. C. M. O. E. M. S. S. W., Suite #910, Montreal, QC, Canada, H3A 2R7. (b) Hsu, K.-C.; Chen, Y.-F.; Lin, S.-R.; Yang, J.-M. iGEMDOCK: a graphical environment of enhancing GEMDOCK using pharmacological interactions and post-screening analysis. *BMC Bioinf.* **2011**, *12*, 1–11. (c) Studio, D. J. A. I. S. D., CA, USA (2009). "version 2.5".