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ABSTRACT AND CONCRETE TANGENT MODULES ON LIPSCHITZ

DIFFERENTIABILITY SPACES

TONI IKONEN, ENRICO PASQUALETTO, AND ELEFTERIOS SOULTANIS

Abstract. We construct an isometric embedding from Gigli’s abstract tangent module into

the concrete tangent module of a space admitting a (weak) Lipschitz differentiable structure,

and give two equivalent conditions which characterize when the embedding is an isomorphism.

Together with arguments from [3], this equivalence is used to show that the Lip − lip -type

condition lipf ≤ C|Df | self-improves to lipf = |Df |.

We also provide a direct proof of a result in [14] that, for a space with a strongly rectifi-

able decomposition, Gigli’s tangent module admits an isometric embedding into the so-called

Gromov–Hausdorff tangent module, without any a priori reflexivity assumptions.

1. Introduction

1.1. Overview. To study spaces with synthetic Ricci curvature bounds, Gigli [12] developed a

notion of abstract (normed) tangent module L2(TX) over a metric measure space X = (X, d,m),

that is, a complete separable metric space (X, d) equipped with a Radon measure m which is finite

on bounded sets. The tangent (and cotangent) module allows for a first order differential calculus

in this very general setting, at the cost of being highly abstract. Indeed, “vector fields” in L2(TX)

are defined as elements in the module dual of an abstract object spanned by formal differentials

of Sobolev functions (the cotangent module).

A level of concreteness can be recovered under some rectifiability conditions on X = (X, d,m).

In [14] the second author and Gigli considered spaces admitting a strongly rectifiable de-

composition (called m-rectifiable in [14]). Assuming that W 1,2(X) is reflexive, they prove that

L2(TX) isometrically embeds into the module L2(TGHX) of 2-integrable sections of the Gromov–

Hausdorff tangent bundle TGHX :=
⊔

k∈N
Ak × R

k, cf. [14, Theorem 5.1]. Here the Borel sets

Ak partition X , each m|Ak
is k-rectifiable, and each fiber is equipped with the standard Euclidean

norm. It follows that W 1,2(X) is a Hilbert space (i.e. X is infinitesimally Hilbertian) but, as

conjectured in [14], assuming that W 1,2(X) is reflexive is unnecessary and in fact already follows

from having a strongly rectifiable decomposition (see Corollary 1.4). We also mention [23], where

the authors show that a finitely generated normed module can be viewed as the space of sections

of a suitable measurable Banach bundle, but the latter is in general unrelated to the structure of

the underlying space.

More generally, the work of Cheeger [8] shows that the reflexivity of W 1,p(X) is implied by the

existence of chart maps on X for which a generalized Rademacher theorem holds. This naturally

leads to the notion of Lipschitz differentiability spaces (abbreviated LDS) which has been the

focus of extensive research over the recent decade [18, 2, 4, 25, 26, 27]. Lipschitz differentiability

spaces include non-rectifiable spaces (e.g. the Heisenberg groups), but a close connection with

rectifiability exists: a space is n-rectifiable if and only if it is a countable union of n-dimensional
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2 TONI IKONEN, ENRICO PASQUALETTO, AND ELEFTERIOS SOULTANIS

LDS’s, cf. [4]. The construction in [8] (see also [18]) can be carried out if the underlying space

decomposes into a countable union of Lipschitz differentiability spaces, producing a “concrete”

tangent bundle and differential. The subtle point here is that the countable union of LDS’s is not

generally an LDS, see the discussion in [4, Introduction] and in Section 5. In this paper we call

such spaces weak Lipschitz differentiability spaces (abbreviated weak LDS).

In this note we describe how the (adjoint of the) concrete differential on a weak LDS gives rise to

an isometric embedding from the abstract into the concrete tangent module, see Theorem 1.2. This

embedding is not always surjective (see the discussion after Theorem 1.1); sufficient conditions

include the Poincaré inequality [8] and its asymptotic forms, cf. Section 5. Theorem 1.3 gives two

equivalent conditions, in the spirit of Bate–Kangasniemi–Orponen’s work [3], which characterize

surjectivity. The equivalence of the two conditions yields a self-improvement phenomenon similar

to the self-improving of Keith’s Lip− lip condition [26]. Indeed, consider the condition

lipf ≤ C|Df |p, f ∈ LIPbs(X), (1.1)

adapted from [3]. Here LIPbs(X) is the space of Lipschitz functions with bounded support on

X , lipf is the pointwise Lipschitz constant and |Df |p the minimal p-weak upper gradient of f

(cf. Section 2). Note that condition (1.1) is reminiscent of, but stronger than, Keith’s Lip − lip

condition [18] and (up to technical assumptions) both conditions imply the existence of a Lipschitz

differentiable structure, see [3, Theorem 1.4] and [2, Corollary 10.5] respectively. We show that

(1.1) characterizes the surjectivity of the isometric embedding and consequently self-improves to

an equality, cf. Theorems 1.3 and 1.1.

1.2. Statement of results. Let X be a metric measure space. A pair (U,ϕ), consisting of a

Borel set U ⊂ X with m(U) > 0 and a Lipschitz function ϕ : X → R
k, is called a (strong)

chart of dimension k if, for every f ∈ LIP(X) and m-a.e. x ∈ U , there exists a unique linear map

dxf : R
k → R satisfying

lip(f − dxf ◦ ϕ)(x) = 0. (1.2)

A metric measure space is called a Lipschitz differentiability space (LDS) if it can be cov-

ered by a countable collection of charts (of arbitrary dimension). Our first result illustrates the

self-improving property of (1.1). In the statement, a modulus of continuity is a continuous

increasing function ω : [0,∞) → [0,∞) with ω(0) = 0.

Theorem 1.1. Let X be a metric measure space and ω = {ωx}x∈X a collection of moduli of

continuity with the following property for some 1 < p <∞: For every f ∈ LIPbs(X)

lip(f)(x) ≤ ωx(|Df |p(x)), for m-a.e. x ∈ X. (1.3)

Then X is a Lipschitz differentiability space, and

lip(f) = |Df |p′ m-a.e. in X (1.4)

for every f ∈ LIPbs(X) and every p′ ≥ p.

The conclusion that X is a Lipschitz differentiability space is essentially contained in [3, The-

orem 1.4]; in this regard, the only novelty is that the assumption of finite Hausdorff dimension is

superfluous. Nevertheless, the main contribution of Theorem 1.1 is the self-improvement of (1.3)

to (1.4). We point out that (1.4) does not necessarily extend to every 1 < p′ < p: for every n ∈ N

and α > 0, there exists a measure µ = ωLn on R
n such that X = (Rn, | · |, µ) satisfies (1.4) for

every p > 1 + α, but |Df |p′ ≡ 0 for every f ∈ LIPbs(X) and p′ ≤ 1 + α; see [9, Theorem 1.1].

The equality (1.4) was originally observed in PI spaces [8, Sections 5 and 6]. Note that (1.3) is

not valid in every LDS: if K ⊂ R
n is a Cantor set with Ln(K) > 0, then X = (K, | · |,Ln|K) is an
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LDS with |Df |p ≡ 0 for any f ∈ LIP(X) and p ≥ 1 (sinceX does not contain any rectifiable paths).

By comparison, Keith’s Lip−lip condition – which satisfies an analogous self-improvement property

stated in Theorem 1.1 – characterizes LDS’s (for pointwise doubling measures). This demonstrates

that (1.3) guarantees better connectivity properties (and also the pointwise doubling property of

measures). Some sufficient conditions for (1.3) are discussed in Section 5.

To obtain Theorem 1.1 we construct an isometric embedding from the abstract tangent module

into the concrete one. The construction is carried out on weak Lipschitz differentiability

spaces (weak LDS), that is, metric measure spaces which can be covered (up to a null-set)

by (weak) charts (U,ϕ) consisting of a Borel set U with m(U) > 0 and a Lipschitz function

ϕ : X → R
k such that, for any f ∈ LIP(X) and m-a.e. x ∈ U , there exists a unique linear map

dxf : Rk → R satisfying

lip(f |U − dxf ◦ ϕ|U )(x) = 0. (1.5)

A collection A = {(Un, ϕn)} of kn-dimensional (weak) charts partitioning X up to a null-set is

called an atlas of X , and gives rise to a concrete tangent bundle TAX =
⊔

n∈N
Un × R

kn where,

for m-a.e. x ∈ Un, {x} × R
kn is equipped with the dual norm of L 7→ lip(L ◦ ϕn|Un

), denoted

| · |A ,x. The associated space of q-integrable sections (1 < q < ∞) is independent of the chosen

atlas, up to isometric isomorphism, and we denote it Γq(TX); see Section 3.1.

We refer the reader to [12] for the construction of the Gigli tangent module Lq(TX), and mention

here that elements v ∈ Lq(TX) are in one-to-one correspondence with linear maps V : N1,p(X) →

L1(m) (1/p+1/q = 1) for which there exists ℓ ∈ Lq(m) with |V (f)| ≤ ℓ|Df |p for every f ∈ N1,p(X).

Here N1,p(X) refers to the Sobolev space on X with exponent 1 < p <∞, see Section 2.1.

Theorem 1.2. Let X = (X, d,m) be a weak Lipschitz differentiability space, and 1 < p, q < ∞,

1/p+1/q = 1. Then there exists an isometric embedding ι : Lq(TX) → Γq(TX) of normed modules

satisfying

dxf(ι(V )(x)) = V (f)(x) m-a.e. x ∈ X

for every f ∈ LIPbs(X) and V ∈ Lq(TX).

Theorem 1.3. The embedding ι in Theorem 1.2 is an isometric isomorphism if and only if one

of the following equivalent conditions hold.

(1) We have lip(f |U ) = |Df |p m-a.e. in U for each weak chart (U,ϕ) and every f ∈ LIPbs(X);

(2) There is a collection ω = {ωx}x∈X of moduli of continuity so that lip(f |U ) ≤ ω(|Df |p)

m-a.e. on U for each weak chart (U,ϕ) and every f ∈ LIPbs(X).

As the proof will show, conditions (1) and (2) are satisfied if and only if they are satisfied for

each chart in a given atlas. We point out the following corollary which, although implicitly well

known, seems to not have been explicitly stated in the literature.

Corollary 1.4. If X = (X, d,m) is a weak LDS metric measure space, then N1,p(X) is reflexive

for any 1 < p <∞.

Theorem 1.1 is obtained from the equivalence of (1) and (2) in Theorem 1.3 and the fact that

the pointwise Lipschitz constant satisfies the same locality properties as the minimal weak upper

gradient in an LDS:

lip(f) = 0 m-a.e. in U, (1.6)

for any Borel U ⊂ X and f ∈ LIP(X) vanishing on U (compare (2.2)). Indeed, a weak LDS whose

measure vanishes on porous sets is an LDS and this null-porosity yields (1.6). We refer to Section

5 for details, and formulate the following variant of Theorem 1.1 in the weak LDS setting.
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Theorem 1.5. Let X = (X, d,m) be a metric measure space and 1 < p < ∞. Suppose there is a

collection ω = {ωx} of moduli of continuity, and Borel sets {Uk} partitioning X up to a null-set,

such that lip(f |Uk
) ≤ ω(|Df |p) m-a.e. on Uk for every f ∈ LIPbs(X). Then X is a weak LDS

satisfying (1) in Theorem 1.3 for every p′ ≥ p.

We finish the introduction by briefly describing the starting point of this work: a proof of [14,

Theorem 5.1] without the a priori reflexivity of the Sobolev space. A (weak) k-dimensional chart

(U,ϕ) of a metric measure space X is rectifiable if m|U ≪ Hk|U and ϕ : U → R
k is a bi-Lipschitz

embedding. We say that X admits a strongly rectifiable decomposition if it can be covered

up to a null-set by (1 + ε)-bi-Lipschitz rectifiable charts (of arbitrary dimension) for every ε > 0.

Theorem 1.6. If a metric measure space X = (X, d,m) admits a strongly rectifiable decomposi-

tion, then Γ2(TX) is isometrically isomorphic to L2(TGHX) as normed modules.

As an immediate corollary of Theorems 1.2 and 1.6 we obtain [14, Theorem 5.1].

Corollary 1.7. If X = (X, d,m) admits a strongly rectifiable decomposition, then L2(TX) embeds

isometrically in L2(TGHX) as a normed module.

2. Preliminaries

Throughout the paper, a metric measure space is a triple (X, d,m), where (X, d) is a complete

separable metric space and m ≥ 0 is a Radon measure which is finite on bounded sets. We denote

by Lip(f) the Lipschitz constant of a function f : X → R and by LIP(X) (resp. LIPbs(X)) the

space of Lipschitz functions (resp. Lipschitz functions with bounded support). The pointwise

Lipschitz constant of f ∈ LIP(X) is given by

lipf(x) := lim
y→x

∣∣f(y)− f(x)
∣∣

d(y, x)
, for every accumulation point x ∈ X,

and lipf(x) := 0 elsewhere.

2.1. Sobolev spaces on metric measure spaces. Let X = (X, d,m) be a metric measure

space, and p ∈ [1,∞]. A family Γ ⊂ C([0, 1] , X) of paths is p-negligible if there exists a Borel

function g ∈ Lp(m) such that

∞ =

∫ 1

0

g(γt)|γ̇t| dt

for every absolutely continuous γ ∈ Γ.

Definition 2.1 (Sobolev space). A Borel function g : X → [0,∞] is an upper gradient of a

function f : X → R, if
∣∣f(γ1)− f(γ0)

∣∣ ≤
∫ 1

0

g(γt)|γ̇t| dt (2.1)

for every absolutely continuous γ : [0, 1] → X. We say that f ∈ N1,p(X) if f ∈ Lp(m) and there

exists an upper gradient g ∈ Lp(m) of f .

If (2.1) holds for all paths outside a p-negligible path family, g is said to be a p-weak upper

gradient of f . Every Newton–Sobolev function f ∈ N1,p(X) admits a minimal p-weak upper

gradient (see [17]), which we denote by |Df |p to emphasize its dependence on the exponent p. We

refer the reader to [17] for further details.

An important feature of minimal p-weak upper gradients is their locality property (cf. [17,

Proposition 6.3.22]): if f ∈ N1,p(X) and E ⊆ X is a Borel set such that f = 0 m-a.e. on E, then

|Df |p = 0 m-a.e. on E. (2.2)
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Here Newton–Sobolev functions are everywhere defined and ‖f‖1,p := (‖f‖pp + ‖|Df |p‖
p
p)

1/p is

only a seminorm on N1,p(X). The quotient, called the Newton–Sobolev space, is a Banach

space, but the equivalence classes of functions are determined by equality outside a set of zero

p-capacity rather than a.e. equality, cf. [17, Chapter 7]. The Newton–Sobolev space over a metric

measure space agrees with several other notions, in particular the one obtained by relaxation of

the p-integral of the pointwise Lipschitz constant.

Theorem 2.2 (Density in energy of Lipschitz functions [1]). Let 1 < p < ∞. For every f ∈

N1,p(X) there exists a sequence (fn)n ⊆ LIPbs(X) such that fn → f and lip(fn) → |Df |p in

Lp(m).

2.2. Abstract tangent and cotangent module. We assume the reader to be familiar with

the language of normed modules on a given metric measure space (X, d,m); cf. [12, 13] for a

detailed account on this theory.

Theorem 2.3 (Cotangent module). Let (X, d,m) be a metric measure space, and 1 < p < ∞.

Then there exist a Lp(m)-normed L∞(m)-module Lp(T ∗X) (called the abstract cotangent mod-

ule) and a linear map d: N1,p(X) → Lp(T ∗X) (called the differential) such that:

i) |df | = |Df |p holds m-a.e. on X for every f ∈ N1,p(X).

ii) The family of all elements of the form
∑n

i=1
χAi

dfi, where (Ai)i is a Borel partition of X

and (fi)i ⊆ N1,p(X), is dense in Lp(T ∗X).

Moreover, the couple
(
Lp(T ∗X), d

)
is uniquely determined, up to unique isometric isomorphism.

This result was originally proved in [12, Section 2.2.1] for p = 2. An easy adaptation to the

case of an arbitrary p ∈ (1,∞) (and to more general classes of Sobolev spaces) can be found in

[15, Theorem 3.2].

The abstract tangent module Lq(TX) is defined as the module dual of Lp(T ∗X). Observe

that q is the conjugate exponent of p and that Lq(TX) is a Lq(m)-normed L∞(m)-module.

2.3. Submetries and adjoints between normed modules. Let M ,N be Lp(m)-normed

L∞(m)-modules, for some exponent p ∈ (1,∞). We refer to continuous L∞(m)-linear maps

Φ: M → N as morphisms. A morphism Φ: M → N is said to be a submetry provided

for every element w ∈ N there exists v ∈ M such that Φ(v) = w and

|v| = |w| = ess inf
v′∈Φ−1(w)

|v′|, m-a.e. on X.

In particular, Φ is surjective and satisfies
∣∣Φ(v)

∣∣ ≤ |v| in the m-a.e. sense for every v ∈ M . Note

that an injective submetry is automatically an isometric isomorphism.

Proposition 2.4 (Adjoint operator). Let (X, d,m) be a metric measure space. Let M , N be

Lp(m)-normed L∞(m)-modules, for some p ∈ (1,∞). Let Φ: M → N be a given morphism.

Then there exists a unique morphism Ψ: N ∗ → M ∗, called the adjoint operator of Φ, such that

〈
Ψ(η), v

〉
=
〈
η,Φ(v)

〉
, for every v ∈ M and η ∈ N

∗. (2.3)

Moreover, if Φ is a submetry, then Ψ is an isometric embedding.

Proof. Define Ψ: N ∗ → M ∗ as in (2.3). Being Φ a morphism, there exists a constant C > 0 such

that
∣∣Φ(v)

∣∣ ≤ C|v| holds m-a.e. for every v ∈ M . Hence, for any η ∈ N ∗ and v ∈ M it holds
∣∣〈Ψ(η), v

〉∣∣ =
∣∣〈η,Φ(v)

〉∣∣ ≤ C|η||v|, m-a.e. on X,
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which shows that Ψ is a well-defined morphism. Observe that it is uniquely determined by (2.3).

Now suppose Φ is a submetry. Given any η ∈ N ∗, we know from (2.3) that
∣∣Ψ(η)

∣∣ = ess sup
v∈M :

|v|≤1 m-a.e.

〈
Ψ(η), v

〉
= ess sup

v∈M :
|v|≤1 m-a.e.

〈
η,Φ(v)

〉
≤ |η| ess sup

v∈M :
|v|≤1 m-a.e.

|v| ≤ |η|, m-a.e. on X, (2.4)

thus
∣∣Ψ(η)

∣∣ ≤ |η| holds m-a.e. on X . To prove the converse inequality, note that given w ∈ N

with |w| ≤ 1 in the m-a.e. sense, there exists v ∈ Φ−1(w) such that |v| = |w| ≤ 1 holds m-a.e., so

|η| = ess sup
w∈N :

|w|≤1 m-a.e.

〈η, w〉 ≤ ess sup
v∈M :

|v|≤1 m-a.e.

〈
η,Φ(v)

〉
≤ ess sup

v∈M :
|v|≤1 m-a.e.

〈
Ψ(η), v

〉
≤
∣∣Ψ(η)

∣∣, m-a.e. on X.

All in all, we have proven that
∣∣Ψ(η)

∣∣ = |η| holds m-a.e. on X , whence Ψ is an isometry. �

2.4. Measure theory. Let X = (X, d,m) be a metric measure space. Let S ⊂ U ⊂ X be sets.

We say that S is porous in U if for every x ∈ S, there exists a sequence (xn)
∞
n=1 ⊂ U converging

to x and η > 0 such that d(xn, S) > ηd(xn, x) for every n ∈ N. We say that S ⊂ X is porous if

S is porous in X .

Remark 2.5. Note that if S is porous and f(x) := d(x, S), then lipf(x) > 0 for every x ∈ S.

�

We say that m is infinitesimally doubling if lim supr→0
m(B(x,2r))
m(B(x,r)) <∞ m-a.e. x ∈ X .

Theorem 2.6 ([22, Theorem 3.6]). If porous sets have zero m-measure, then m is infinitesimally

doubling.

We recall that if m is infinitesimally doubling, then X is a Vitali space. In particular, the

Lebesgue differentiation theorem holds [17, Section 3.4].

Lemma 2.7 ([2, Lemma 8.3]). If m is infinitesimally doubling, then X can be covered up to a null

set by sets of finite Hausdorff dimension.

Note that the sets Y ∈ Dη in [2, Lemma 8.3] have dimH Y ≤ log2 η/5.

3. Concrete tangent module and existence of an isometric embedding

3.1. Concrete tangent and cotangent module. Throughout this section, we fix a weak LDS

X = (X, d,m). An atlas on X is a countable family of charts whose domains partition X up to a

null-set. Given an atlas A = {(Uk, ϕk)}k∈N on X , consider the measurable tangent and cotangent

bundles

T ∗
AX =

⊔

k∈N

Uk × (Rnk)∗, TAX =
⊔

k∈N

Uk × R
nk

where, for m-a.e. x ∈ Uk,

|L|∗A ,x := lip(L ◦ ϕk)(x), |ξ|A ,x := max{L(ξ) : |L|∗A ,x ≤ 1}

for every L ∈ (Rnk)∗ and ξ ∈ R
nk . Equip TAX with the σ-algebra to which S ⊂ TAX belongs

if and only if S ∩ (Uk × R
nk) is a Borel set for every k, and denote π : TAX → X , (x, v) 7→ x

the bundle projection. A measurable section of TAX is a measurable map v : X → TAX with

π ◦ v(x) = x for all x ∈
⋃

k Uk. We define the analogous notions on T ∗
A
X in the obvious manner.

Let Γ(TAX) and Γ(T ∗
A
X) denote the spaces of measurable sections of TAX and T ∗

A
X respec-

tively, considered up to m-a.e. equality. For 1 < p <∞, define

Γp(TAX) = {v ∈ Γ(TAX) : ‖|v|A ‖p <∞}, Γp(T
∗
AX) = {ω ∈ Γ(T ∗

AX) : ‖|ω|∗A ‖p <∞}.

Note that Γp(TAX) and Γp(T
∗
A
X) are Lp(m)-normed L∞(m)-modules over (X, d,m).
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Remark 3.1. The spaces Γp(TAX) and Γp(T
∗
A
X) are generated by “simple” sections. That is,

the subspace of sections taking only finitely many values is dense in each space. �

Let A ′ be another atlas. If (U,ϕ) ∈ A , (V, ψ) ∈ A ′ and m(U ∩ V ) > 0, then ϕ and ψ restrict

to charts on U ∩ V , and thus have the same dimension n. Moreover we have that

lip(g|U∩V ) = lip(g|U ) = lip(g|V ) m-a.e. on U ∩ V (3.1)

for every g ∈ LIP(X), see [6, Corollary 2.7]. Differentiating the components of one chart with

respect to the other chart we obtain, for m-a.e. x ∈ U ∩ V , a linear isomorphism Dx : R
n → R

n

satisfying

|L|∗A ′,x = |L ◦Dx|
∗
A ,x, |ξ|A ,x = |Dx(ξ)|A ′,x, L ∈ (Rn)∗, ξ ∈ R

n. (3.2)

Thus we have a measurable map D : TAX → TA ′X which is an isometry on a.e. fiber, and induces

isometric isomorphisms D : Γp(TAX) → Γp(TA ′X), D∗ : Γp(T
∗
A ′X) → Γp(T

∗
A
X). This gives rise

to the concrete tangent and cotangent modules, denoted by Γp(TX) and Γp(T
∗X), which

are unique up to isometric isomorphism.

Definition 3.2. For each f ∈ LIP(X), the measurable section

df : X → T ∗
AX, x 7→ (x, dxf)

given by (1.5), is called the concrete differential of f , and the map d: LIPbs(X) → Γp(T
∗X) is

called the concrete differential.

Note that for two atlases A ,A ′ the concrete differentials df, d′f satisfy df ◦D = d′f , where

D : TAX → TA ′X is the isometric isomorphism constructed above. In particular the concrete

differential is well-defined. Moreover it does not depend on p.

Remark 3.3. It is not difficult to see that the module duals of the concrete tangent and cotangent

modules satisfy

Γp(T
∗X)∗ = Γq(TX), Γq(TX)∗ = Γp(T

∗X)

if 1/p+ 1/q = 1. In particular, both spaces are reflexive. �

3.2. Submetry of cotangent modules. In this section we construct an isometric embedding

from the abstract tangent module into the concrete tangent module, and establish Theorem 1.2.

The embedding arises as the adjoint map of the L∞(m)-linear extension of the concrete differential.

The next theorem states that this extension defines a submetry.

Theorem 3.4. Let X = (X, d,m) be a weak LDS, and 1 < p <∞. Then there exists a submetry

P : Γp(T
∗X) → Lp(T ∗X) of normed modules, such that

P (df) = df m-a.e. (3.3)

for all f ∈ LIPbs(X). Consequently the adjoint map ι := P ∗ : Lq(TX) → Γq(TX), where 1/p+

1/q = 1, is an isometric embedding of normed modules.

Throughout this subsection, we fix an atlas A = {(Uk, ϕk)} of X and denote by nk the dimen-

sion of the chart (Uk, ϕk) ∈ A . Note that, for any f ∈ LIPbs(X), we have the equality

|df |∗A =
∑

k

χUk
lip(f |Uk

) m-a.e. (3.4)

by (1.5). For stating the next lemma, we say that an absolutely continuous path γ : [0, 1] → X

has positive length in a Borel set B ⊂ X if
∫ 1

0

χB(γt)|γ̇t| dt > 0.
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The collection Γ+
B of paths with positive length in B is p-negligible for all p, whenever m(B) = 0,

cf. [17, Lemma 5.2.15].

Lemma 3.5. Let N := X \
⋃

k Uk and f ∈ LIP(X). Then for every absolutely continuous γ /∈ Γ+
N

we have that
∣∣(f ◦ γ)′t

∣∣ ≤
∑

k

χUk
(γt) lip(f |Uk

)(γt) |γ̇t|, for L1-a.e. t ∈ [0, 1].

In particular, for any exponent p ∈ (1,∞) and any function f ∈ LIPbs(X) ⊆ N1,p(X) it holds

that

|Df |p ≤ |df |∗A ≤ lipf m-a.e. on X. (3.5)

Proof. Since Γ+
N is p-negligible, the second claim in the statement follows from the minimality of

|Df |p and (3.4), cf. [7]. To prove the first claim, we may assume that |γ̇t| > 0 for a.e. t since

|(f ◦ γ)′t| ≤ lipf(γt)|γ̇t| for a.e. t. Define Ik :=
{
t ∈ [0, 1] : γt ∈ Uk

}
for every k ∈ N. Observe that

L1
(
[0, 1] \

⋃
k Ik

)
= 0. Given any k ∈ N, fix a density point t ∈ Ik of Ik such that |γ̇t| and (f ◦ γ)′t

exist (almost every point of Ik has this property). Pick any sequence (tn)n ⊆ Ik such that tn → t.

Then it holds that

∣∣(f ◦ γ)′t
∣∣ = lim

n→∞

∣∣f(γtn)− f(γt)
∣∣

|tn − t|
≤ lim sup

n→∞

∣∣f(γtn)− f(γt)
∣∣

d(γtn , γt)
lim
n→∞

d(γtn , γt)

|tn − t|
≤ lip(f |Uk

)(γt) |γ̇t|.

Thus the claim follows. �

Proof of Theorem 3.4. The linear subspace

V :=

{ n∑

j=1

χAj
dfj

∣∣∣∣ n ∈ N, (Aj)
n
j=1 bounded pairwise disjoint Borel sets in X, (fj) ⊂ LIPbs(X)

}

is a dense linear subspace of Γp(T
∗X). Indeed, by Remark 3.1, we can choose the functions fj

to be Lipschitz extensions with bounded support of the functions Lj ◦ ϕk : Uk ∩ Aj → R, where

Lj ∈ (Rnk)∗. We define P : V → Lp(T ∗X) as

P (ω) :=

n∑

j=1

χAj
dfj ∈ Lp(T ∗X), for every ω =

n∑

j=1

χAj
dfj ∈ V .

Using (3.5), we see that
∣∣P (ω)

∣∣ ≤ |ω| holds m-a.e. for every ω ∈ V . This implies that P is well-

posed and can be uniquely extended to a linear map P : Γp(T
∗X) → Lp(T ∗X) satisfying the same

pointwise inequality for every ω ∈ Γp(T
∗X). In particular, the resulting map P is a morphism of

Lp(m)-normed L∞(m)-modules. Given that the family
{
df : f ∈ N1,p(X)

}
generates Lp(T ∗X),

in order to prove that P is a submetry, it suffices to show that

∀f ∈ N1,p(X) ∃ω ∈ P−1(df) : |ω| = |Df |p, m-a.e. on X. (3.6)

By Theorem 2.2 there is a sequence (fn)n ⊆ LIPbs(X) such that fn → f and lip(fn) → |Df |p
in Lp(m). By (3.5) (dfn)n is a bounded sequence. Since Γp(T

∗X) is reflexive there exists ω ∈

Γp(T
∗X) such that (up to a not relabelled subsequence) dfn ⇀ ω in the weak topology. The map

P is linear and continuous, thus dfn = P (dfn)⇀ P (ω) weakly in Lp(T ∗X). Since the differential

d is closed (see [12, Theorem 2.2.9]) it follows that P (ω) = df , which implies |Df |p =
∣∣P (ω)

∣∣ ≤ |ω|

m-a.e. on X . Observe also that the weak convergence dfn ⇀ ω yields
∫

|ω|p dm ≤ lim inf
n→∞

∫
|dfn|

p dm ≤ lim
n→∞

∫
lip(fn)

p dm =

∫
|Df |pp dm,

so that necessarily |ω| = |Df | holds m-a.e. on X . This proves (3.6) and accordingly the fact that

P is a submetry. It follows from Proposition 2.4 that ι := P ∗ is an isometric embedding of normed

modules. �
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Proof of Theorem 1.2. Theorem 3.4 yields the existence of a submetry P : Γp(T
∗X) → Lp(T ∗X)

of normed modules for which P (df) = df m-a.e. for every f ∈ LIPbs(X). Theorem 3.4 states that

the adjoint ι : Lq(TX) → Γq(TX) is an isometric embedding of normed modules.

Let f ∈ LIPbs(X) and v ∈ Lq(TX). Then 〈df, v〉(x) = 〈df, ι(v)〉(x) m-almost everywhere.

Here 〈df, ι(v)〉(x) = dxf(ι(v)(x)) m-almost everywhere, given Definition 3.2. The claim follows

from this. �

3.3. Isomorphism of tangent modules. We prove Theorem 1.3. Let X = (X, d,m) be a weak

LDS with an atlas A , and 1 < p < ∞. In the next statement, P : Γp(T
∗X) → Lp(T ∗X) is a

submetry satisfying (3.3).

Proposition 3.6. The following are equivalent.

(a) We have lip(f |U ) = |Df |p m-a.e. in U , for every chart (U,ϕ) ∈ A and f ∈ LIPbs(X).

(b) There is a collection ω = {ωx} of moduli of continuity, such that lip(f |U ) ≤ ω(|Df |p)

m-a.e. in U , for every chart (U,ϕ) ∈ A and f ∈ LIPbs(X).

(c) The submetry P is injective.

Proof. Clearly (a) implies (b). Assume (b), and let V be the dense subspace in the proof of

Theorem 3.4. Note that (b) implies |α| ≤ ω(|P (α)|) m-a.e. for every α ∈ V and, since V is dense

and P continuous, for every α ∈ Γp(T
∗X). Thus (b) implies (c).

Assuming (c), we have that P is an isometric isomorphism. Thus |Df |p = |P (df)| = |df |∗
A

=

lip(f |U ) m-a.e. in U ∈ A , cf. (3.4). �

Remark 3.7. Conditions (a)–(c) in Proposition 3.6 are also equivalent to the closability of d,

which implies that d has a unique extension to a bounded operator N1,p(X) → Γp(T
∗X). This

extension and its uniqueness have been studied for PI spaces [16, 11, 19]. Similar closability

property of d was applied in [25, Section 6] to prove that, in Lipschitz differentiability spaces, the

component functions of charts can be taken to be distance functions. �

Proof of Theorem 1.3. Consider the isometric embedding ι = P ∗ obtained in Theorem 3.4. Given

a chart (U,ϕ) of X , let A be an atlas containing (U,ϕ). Then by Proposition 3.6 conditions

(1) and (2) in the claim are both equivalent to the submetry P being injective, which in turn is

equivalent to ι being an isometric isomorphism. This completes the proof. �

Proof of Corollary 1.4. Since Lq(TX) →֒ Γq(TX) isometrically and Γq(TX) is reflexive — recall

Remark 3.3 — it follows that Lq(TX) is reflexive. Consequently, N1,p(X) is reflexive, see [12,

Proposition 2.2.10]. �

Remark 3.8. We note that the conclusion of Corollary 1.4 holds under slightly weaker assump-

tions. Indeed, it is sufficient to assume that the Borel set N = X \
⋃

k Uk is p-negligible. With

this relaxation, the inequality (3.5) is still valid since |Df |p = 0 m-a.e. in N . Then the proofs of

Theorem 1.3 and Corollary 1.4 go through unchanged. Examples of spaces that are weak LDS

up to a (non-trivial) p-negligible set appear in quasiconformal uniformization problems of metric

surfaces, see [24, Proposition 17.1] for details. �

For the proof of Theorem 1.5, given a Borel set Y ⊂ X we say that a bounded Borel function

ρ : Y → [0,∞) is a ∗-upper gradient of a Lipschitz function g : Y → R if, for all compact sets

K ⊂ R and Lipschitz maps γ : K → Y , we have

|(g ◦ γ)′|(t) ≤ ρ(γt)|γ
′|(t) for L1-a.e. t ∈ K. (3.7)
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Here |(g ◦ γ)′t| refers to the absolute value of the classical derivative of the Lipschitz function

g ◦ γ : K → R and |γ′|(t) to the metric derivative of γ, i.e. |γ′|(t) = limK∋s→t
d(γt,γs)
|t−s| , whenever

the limit exists (and set |γ′|(t) = 0 for isolated points t ∈ K).

Proof of Theorem 1.5. We first observe that, for each Uk, any set S ⊂ Uk porous in Uk has null

measure (recall Section 2.4). Indeed, if S is as claimed, then g(x) = d(x, S) satisfies lip(g|Uk
)(x) >

0 everywhere in S, but the given assumptions yield that lip(g|Uk
) ≤ ω(|Dg|p) = 0 m-a.e. in S by

the locality property (2.2). Thus m(S) = 0. Theorem 2.6 and Lemma 2.7 imply that Uk is the

union of sets of finite Hausdorff dimension (up to a null-set). Thus, by further decomposing each

Uk, we may assume that every Uk is bounded, closed, and has finite Hausdorff dimension.

Let k ∈ N and g ∈ LIP(Uk). We prove that

lip(g)(x) ≤ ωx(ρ(x)) for m-a.e. x ∈ Uk (3.8)

for any bounded ∗-upper gradient ρ of g.

Fix a Lipschitz extension f ∈ LIPbs(X) of g and a ∗-upper gradient ρ of g. Consider ρ̃(x) =
χUk

(x)ρ(x) + χUc
k
(x)lip(f)(x). Clearly ρ̃ ∈ Lp(m). Moreover ρ̃ is an upper gradient of f : for

any Lipschitz path γ : [a, b] → X , consider the compact set K = γ−1(Uk). For L1-a.e. t ∈ K,

|(f ◦ γ|K)′|(t) = |(f ◦ γ)′|(t) and |(γ|K)′|(t) = |γ′|(t). Hence (3.7) yields that

|(f ◦ γ)′|(t) ≤ ρ̃(γt)|γ
′|(t) for L1-a.e. t ∈ K.

On the other hand, since [a, b] \K is relatively open in [a, b] and X \ Uk is open, we see that

|(f ◦ γ)′|(t) ≤ lipf(γt)|γ
′|(t) for L1-a.e. t ∈ [a, b] \K,

proving that ρ̃ is an upper gradient of f . The minimality of |Df |p yields that |Df |p ≤ ρ̃ = ρ m-a.e.

on Uk. Therefore lip(g) = lip(f |Uk
) ≤ ω(|Df |p) ≤ ω(ρ) m-a.e. on Uk by the given assumptions, so

(3.8) holds. Now [3, Theorem 6.2, Remark 6.4] establishes the claim. �

4. Spaces with a strongly rectifiable decomposition

Here we prove Theorem 1.6 about the isometric isomorphism of the concrete and Gromov–

Hausdorff tangent modules. We say that (U,ϕ) is a rectifiable chart if U ⊂ X is Borel, ϕ : U →

R
n is a bi-Lipschitz embedding for some n ∈ N, and ϕ∗(m|U ) ≪ Ln|ϕ(U). A metric measure space

admits a rectifiable decomposition if there exists an atlas of rectifiable charts covering X up

to a null-set. We do not require an upper bound on the dimensions of the charts.

By further decomposing the domains of the bi-Lipschitz maps if needed, we may assume the

rectifiable charts (U,ϕ) to satisfy

1

C
Ln|ϕ(U) ≤ ϕ∗(m|U ) ≤ C Ln|ϕ(U), for some C ≥ 1, (4.1)

where n is the dimension of the chart, and C depends on the chart.

For the remainder of this section, we fix an isometric embedding ι : X → ℓ∞, where ℓ∞ denotes

the space of bounded sequences with the standard supremum norm ‖ · ‖, and identify X with its

image. Consider a rectifiable chart ϕ : U → R
n satisfying (4.1), and let ψ : Rn → ℓ∞ be a Lipschitz

extension of ϕ−1. For a.e. z ∈ ϕ(U) and v ∈ R
n, we denote by

mdz(ϕ
−1)(v) := lim

r→0+

‖ψ(z + rv) − ψ(z)‖

r
(4.2)

the seminorm on R
n which is the metric derivative of ψ at z, see [21, Proposition 1 and Theorem

2]. Note that, for a.e. z ∈ ϕ(U), mdz(ϕ
−1) is independent of the chosen Lipschitz extension, and

a norm (the latter fact follows from the bi-Lipschitz assumption on ϕ−1 = ψ|U ).
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If f : U → R is Lipschitz and g := f ◦ ϕ−1 : ϕ(U) → R, by Rademacher’s theorem there exists

a unique linear map Dzg : R
n → R, for a.e. z ∈ ϕ(U), such that

g(y) = g(z) +Dzg(y − z) + o(|y − z|) (4.3)

for every y ∈ ϕ(U).

One readily verifies from (4.2) and (4.3) that a space X admitting a rectifiable decomposition

is weak LDS. In fact, we obtain the following.

Lemma 4.1. Suppose that X admits a rectifiable decomposition and A is an atlas of rectifiable

charts (U,ϕ) that satisfy (4.1). If f ∈ LIP(X), then

dxf = Dϕ(x)(f ◦ ϕ−1) and |dxf |
∗
A ,x = sup

{
Dϕ(x)(f ◦ ϕ−1)(v) : mdϕ(x)ϕ

−1(v) ≤ 1
}

for m-a.e. x ∈ U .

In particular, X is weak LDS and the pointwise norm of the concrete cotangent module is given

by the dual norm of md(ϕ−1), for rectifiable chart maps ϕ.

Proof. For m-a.e. x ∈ U the differentials dxf , Dϕ(x)(f ◦ϕ
−1), and the norm mdϕ(x)ϕ

−1 exist, and

moreover ϕ(x) is a density point of ϕ(U), cf. (4.1). For such x we have

dxf(ϕ(y)− ϕ(x)) + o(d(y, x)) = f(y)− f(x) = Dϕ(x)(f ◦ ϕ−1)(ϕ(y) − ϕ(x)) + o(d(y, x))

for y ∈ U . By the uniqueness of the concrete differential we obtain dxf = Dϕ(x)(f ◦ϕ
−1). Observe

that d(y, x) = mdϕ(x)ϕ
−1(ϕ(y) − ϕ(x)) + o(d(y, x)), y ∈ U , and consequently

|dxf |
∗
A ,x = lip(f |U )(x) = lim sup

U∋y→x

∣∣Dϕ(x)(f ◦ ϕ−1)(ϕ(y)− ϕ(x))
∣∣ + o(d(y, x))

mdϕ(x)ϕ−1(ϕ(y)− ϕ(x)) + o(d(y, x))

≤ sup{|Dϕ(x)(f ◦ ϕ−1)(v) : mdϕ(x)ϕ
−1(v) ≤ 1}.

Since ϕ(x) is a density point of ϕ(U) we have that, for Hn−1-a.e. v ∈ {w : mdϕ(x)ϕ
−1(w) = 1},

there exists a positive sequence hi ↓ 0 with zi = ϕ(x) + hiv ∈ ϕ(U). Denoting yi := ϕ−1(zi) ∈ U

and observing that d(yi, x) = hi + o(d(yi, x)), we obtain

|Dϕ(x)(f ◦ ϕ−1)|(v) = lim
i→∞

|f(yi)− f(x)|

d(yi, x)
≤ lip(f |U )(x) = |dxf |

∗
A ,x,

completing the proof. �

Recall that a metric measure space admits a strongly rectifiable decomposition if for every

ε > 0 there exists an atlas Aε of rectifiable charts that are (1 + ε)-bi-Lipschitz.

Lemma 4.2. Suppose that X admits a rectifiable decomposition. Then X admits a strongly

rectifiable decomposition if and only if for some (and thus any) atlas A it holds that m-a.e. fiber

of T ∗
A
X is Hilbertian.

Proof. We first prove the “only if”-direction. For each ε > 0, consider a rectifiable atlas Aε of

(1 + ε)-bi-Lipschitz charts. The norm of m-a.e. fiber of T ∗
Aε
X is (1 + ε)-bi-Lipschitz to an inner

product norm. Since (the isometry classes) of the fiber norms are independent of the chosen atlas,

by sending ε→ 0 we obtain that the fiber norms must in fact be induced by inner products.

Next, we claim that the “if”-direction holds. We fix an atlas A and let δ > 0. Consider a

rectifiable chart (U,ϕ) ∈ A of dimension n.

By [21, Lemma 4] there exists a Borel decomposition (Ui)
∞
i=0 of U and norms (ni)

∞
i=1 on R

n such

that ϕ|Ui
: Ui → (Rn, ni) is a (1 + δ)-bi-Lipschitz embedding for every i ≥ 1 and Ln(ϕ(U0)) = 0.

Hence m(U0) = 0. Up to enlarging U0 and relabeling, we may also assume that m(Ui) > 0 for

every i ≥ 1. Then for every i ≥ 1 and Ln-almost every x ∈ ϕ(Ui), the metric differential of ϕ−1
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at x is (1 + δ)-comparable to the norm ni. Since m(Ui) > 0 and ϕ∗(m|U ) ≪ Ln|ϕ(U), the point

x can be chosen in such a way that the metric differential is induced by an inner product. After

replacing ni by the metric differential at such a point x, and relabeling the norm ni, the map

ϕ|Ui
: Ui → (ϕ(Ui), ni) is (1 + δ)2-bi-Lipschitz. Then there exists an isometry Ti : (R

n, ni) → R
n,

and it follows that ϕi = Ti ◦ ϕ|Ui
is a (1 + δ)2-bi-Lipschitz chart of X . Since m(U0) = 0 and

(U,ϕ) ∈ A was an arbitrary chart, we can construct this way a (1 + δ)2-bi-Lipschitz atlas for X

from A . The claim follows by arbitrariness of δ > 0. �

We recall from the introduction that given a rectifiable decomposition {Ak}
∞
k=1 up to a negligible

set, with each Ak k-rectifiable, we let TGHX =
⊔∞

k=1 Ak × R
k. We endow each Ak × R

k with the

Euclidean norm. Following [14, Definition 4.5], we introduce the following notion.

Definition 4.3 (Gromov–Hausdorff tangent module). Let (X, d,m) admit a strongly rectifiable

decomposition. We define the Gromov–Hausdorff tangent module L2(TGHX) as the space of

all those measurable sections v of TGHX (considered up to m-a.e. equality) that satisfy

∫ ∣∣v(x)
∣∣2 dm(x) < +∞.

The space L2(TGHX) is a L2(m)-normed L∞(m)-module if endowed with the pointwise norm

|v|(x) :=
∣∣v(x)

∣∣, for m-a.e. x ∈ X.

As a consequence of the previously discussed results, we can provide an alternative proof of

Theorem 1.6, which is one of the main results of [14] (namely [14, Theorem 5.1]).

Proof of Theorem 1.6. Let A =
{
(Uk, ϕk)

}
k∈N

be an atlas on (X, d,m). Without loss of generality

we may assume that each set Uk is compact. Given any k ∈ N, let us fix an orthonormal basis

vk1 , . . . , v
k
nk

for Γ2(TAX) on Uk, namely, for every j, ℓ = 1, . . . , nk it holds that 〈vkj , v
k
ℓ 〉 = δjℓ in

the m-a.e. sense on Uk. The elements vkj can be seen as m-a.e. defined maps vkj : Uk → R
nk . For

m-a.e. x ∈ Uk, we denote by φx : R
nk → R

nk the unique linear isomorphism with φx
(
vkj (x)

)
= ej

for all j = 1, . . . , nk, where {e1, . . . , enk
} stands for the canonical basis of Rnk . Let us define the

operator I : Γ2(TAX) → L2(TGHX) as follows: given any v ∈ Γ2(TAX), we set

I(v)(x) := φx
(
v(x)

)
∈ R

nk , for every k ∈ N and m-a.e. x ∈ Uk.

To check that I(v) is (the equivalence class of) a measurable section of TGHX , observe that

φx
(
v(x)

)
=
∑

k∈N

χUk
(x)φx

( nk∑

j=1

〈
v(x), vkj (x)

〉
vkj (x)

)
=
∑

k∈N

χUk
(x)

nk∑

j=1

〈
v(x), vkj (x)

〉
ej

holds for m-a.e. x ∈ X . Moreover, m-a.e. it holds that

∣∣I(v)
∣∣2 =

∑

k∈N

χUk

∣∣∣∣
nk∑

j=1

〈v, vkj 〉 v
k
j

∣∣∣∣
2

=
∑

k∈N

χUk

nk∑

j=1

〈v, vkj 〉
2 =

∑

k∈N

χUk

∣∣∣∣
nk∑

j=1

〈v, vkj 〉 ej

∣∣∣∣
2

= |v|2.

This grants that I maps Γ2(TAX) to L2(TGHX) and preserves the pointwise norm. Being φx
a linear isomorphism for m-a.e. x ∈ X , we deduce that I is an isometric isomorphism of L2(m)-

normed L∞(m)-modules. Therefore, calling ι : L2(TX) → Γ2(TAX) the isometric embedding

given by Theorem 1.2, we conclude that the composition I := I◦ ι is an isometric embedding. �
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5. Lipschitz differentiability spaces

In this section we prove Theorem 1.1. To this end, we note that in any metric measure space X

whose porous sets have zero measure, for every f ∈ LIP(X) and U ⊂ X Borel, lip(f |U ) = lip(f)

m-a.e. on U [6, Proposition 2.8]. In particular, Lipschitz extensions of weak charts self-improve to

strong charts (compare (1.2) and (1.5)). Since porous sets in Lipschitz differentiability spaces are

negligible by [6, Theorem 2.4], it follows that X is LDS if and only if it is weak LDS and porous

sets have null measure.

Proof of Theorem 1.1. By Theorem 1.5, X is weak LDS satisfying (1) in Theorem 1.3 for every

p′ ≥ p. The proof is complete after we verify that porous sets are negligible. To this end, let S ⊂ X

be porous in X . By Remark 2.5 we have lip(g)(x) > 0 for every x ∈ S, where g(y) := d(y, S),

while lip(g) ≤ ω(|Dg|p) yields lip(g) = 0 m-a.e. on S by (2.2). Hence m(S) = 0. �

We discuss some known conditions implying (1.3). Firstly, as noted in the introduction, being

a Lipschitz differentiability space does not imply (1.3). On the other hand, having a doubling

measure and p-Poincaré inequality does, by the results in [8].

In fact, the doubling condition and Poincaré inequality can be substantially weakened. A

suitable asymptotic version of the Poincaré inequality (with comparable notions introduced in [5]

and also [10]) imply (1.3). We say that X has an asymptotic non-homogeneous p-Poincaré

inequality (asymptotic p-NPI), if the measure m vanishes on porous sets, and X has a countable

partition {Bi} up to a null set, with constants λi > 0, moduli of continuity ωi, and ǫi : [0,∞) → R

satisfying limt→0 ǫi(t)/t = 0, so that

∫

B(x,r)

|f − fB(x,r)| dm ≤ r ωi




(∫

B(x,λir)

|Df |pp dm

)1/p


+ ǫi(r) (5.1)

for m-a.e. x ∈ Bi and f ∈ LIPbs(X). Here fB(x,r) stands for the average integral
∫
B(x,r) f dm.

Proposition 5.1. Let 1 < p <∞. Suppose X has an asymptotic p-Poincaré inequality. Then X

satisfies (1.3).

Proof. Assume X has an asymptotic p-NPI. Using [5, Lemma 4.10] and Lebesgue’s differentiation

theorem – both of which are applicable since porous sets have zero m-measure – we conclude from

(5.1) that lipf(x) ≤ Cxωi(|Df |p)(x) m-a.e. x ∈ Bi for any f ∈ LIPbs(X), for some Cx independent

of f , establishing (1.3). �

Remark 5.2. As we see from the proof, we can allow ωi, λi and ǫi in (5.1) to depend on the

point x ∈ X even within each Bi, as long as this is independent of f ∈ LIPbs(X). �
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