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ABSTRACT 

Liu, Wenya 
Dysconnectivity of Oscillatory Networks in Major Depression Disorder 
Jyväskylä: University of Jyväskylä, 2021, 70 p. (+included articles) 
(JYU Dissertations 
ISSN 2489-9003; 450) 
ISBN 978-951-39-8903-3 (PDF) 

Major depression disorder (MDD) is a prevalent psychiatric disorder globally, af-
fecting one in six people. From the view of theoretical models, the dysconnectiv-
ity of functional networks is considered a critical cause in the cognitive and emo-
tional dysfunctions of MDD. However, the pathophysiology of MDD remains 
unclear due to the non-replicability in terms of methodologies and datasets. Both 
of the causes of MDD and the human connectome are incredibly complex, and 
novel experimental paradigms and advanced methodologies are needed to ex-
plore the pathophysiological mechanisms of MDD. 

In this thesis, we explored the altered oscillatory functional connectivity in 
MDD during music listening conditions and resting states. In the frst study, we 
investigated the frequency-specifc static functional connectivity (FC) in MDD 
during music listening at the sensor level. We found altered FC networks and 
the non-lateralized effect in the delta and beta bands, and we got the best clas-
sifcation performance in the beta band by the support vector machine classi-
fer. In the second study, we proposed a comprehensive framework to identify 
the dysconnectivity of oscillatory networks in MDD during resting states at the 
cortical source level. Fully considering the incomplete consistency in the adja-
cency and spectral modes between the healthy group and the MDD group and 
the multiway structure of the constructed data, we frst introduced the coupled 
tensor decomposition (CTD) model for EEG signals recorded during music listen-
ing. We identifed three hyperconnectivity networks and three hypoconnectiv-
ity networks characterizing the dysconnectivity networks in MDD under music 
perception. Based on the CTD model, we also explored the hyper- and hypo-
connectivity networks in MDD during resting states. In the third study, we ex-
amined the dysfunction of sensor-level networks in the alpha band. In the fourth 
study, we explored the source-level dysconnectivity networks characterized by 
spatio-temporal-spectral modes of covariation in MDD. 

In conclusion, this thesis investigated potential biomarkers of oscillatory 
networks and provided promising references to reveal the pathoconnectomics in 
MDD. The proposed analysis pipeline based on the CTD model can be extended 
to other psychiatric disorders. 

Keywords: Major depression disorder, functional connectivity, coupled tensor de-
composition, dynamic functional connectivity, oscillatory networks 



TIIVISTELMÄ (ABSTRACT IN FINNISH) 

Liu, Wenya 
Värähtelyverkkojen merkitys vakavan masennuksen häiriössä 
Jyväskylä: University of Jyväskylä, 2021, 70 s. (+artikkelit) 
(JYU Dissertations 
ISSN 2489-9003; 450) 
ISBN 978-951-39-8903-3 (PDF) 

Suuri masennushäiriö (MDD, Major Depression Disorder) on yksi yleisimmistä 
psykiatrisista häiriöistä maailmanlaajuisesti, ja se vaikuttaa joka kuudenteen ih-
miseen. Teoreettisten mallien näkökulmasta toiminnallisten verkostojen yhteys-
häiriöitä pidetään kriittisenä syynä MDD:n kognitiivisiin ja emotionaalisiin toi-
mintahäiriöihin. MDD:n patofysiologia on kuitenkin epäselvä, koska menetel-
miä ja tietojoukkoja ei voida toistaa. MDD:n syyt ja ihmisen rakenne ovat moni-
mutkaisia, ja uusia kokeellisia paradigmoja ja kehittyneitä menetelmiä tarvitaan 
MDD:n patofysiologisten mekanismien tutkimiseksi. 

Tässä väitöskirjassa tutkitaan MDD:n muuttunutta värähtelevää toiminnal-
lista yhteyttä (FC, Functional Connectivity) musiikin kuuntelu- ja lepotilassa. En-
simmäisessä tutkimuksessa tutkitaan taajuuskohtaista staattista toiminnallista yh-
teyttä MDD:ssä musiikin kuuntelun aikana anturitasolla. Löysimme muuttuneita 
FC-verkkoja ja ei-lateralisoidun vaikutuksen delta- ja beeta-kaistoilta, ja saimme 
parhaan luokittelun suorituskyvyn beeta-kaistalla tukivektorikoneiden luokitte-
lijan avulla. Toisessa tutkimuksessa ehdotimme kattavaa kehystä MDD:n väräh-
telyverkkojen epäyhteyden tunnistamiseksi lepotilassa aivokuoren lähteen tasol-
la. Ottaen täysin huomioon terveen ryhmän ja MDD -ryhmän välisen vierekkäi-
syyden ja spektritilojen epätäydellisen johdonmukaisuuden ja konstruoidun da-
tan monisuuntaisen rakenteen, esittelimme ensin kytketyn tensorin hajoamismal-
lin (CTD, Coupled Tensor Decomposition) musiikin kuuntelun aikana tallenne-
tuille EEG -signaaleille. Tunnistimme kolme hyperyhteysverkkoa ja kolme hy-
poyhteysverkkoa, jotka luonnehtivat MDD:n häiriöverkkoja musiikin havaitse-
misessa. CTD-mallin perusteella tutkimme myös MDD:n hyper- ja hypoyhteys-
verkkoja lepotilassa. Kolmannessa tutkimuksessa tutkimme anturitason verkko-
jen toimintahäiriöitä alfa-kaistalla. Neljännessä tutkimuksessa tutkimme lähde-
tason häiriöverkkoja, joille on tunnusomaista tila-ajallinen-spektrinen kovariaa-
tiomuoto MDD:ssä. 

Yhteenvetona voidaan todeta, että tämä opinnäytetyö tutki värähtelyverk-
kojen mahdollisia biomarkkereita ja tarjosi lupaavia viitteitä MDD:n patokonek-
tomian paljastamiseksi. Ehdotettu CTD -malliin perustuva analyysiputki voidaan 
laajentaa koskemaan myös muita psykiatrisia häiriöitä. 

Avainsanat: vakava masennushäiriö, toiminnallinen liitettävyys, kytketty tenso-
rin hajoaminen, dynaaminen toiminnallinen yhteys, värähtelevät ver-
kot 
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1 INTRODUCTION 

Major depression disorder (MDD) is a multifactorial disorder, and it has become 
one of the most prevalent psychiatric disorders in the world. Almost one in six 
people will experience depression at some time in their life. Despite a large num-
ber of neurobiological studies, the precise etiology of MDD still remains poorly 
understood. Noninvasive neuroimaging techniques, like electroencephalogram 
(EEG), electroencephalogram (MEG), and functional magnetic resonance imag-
ing (fMRI) are urgently needed tools to study the pathoconnectomics of MDD. 
Among the noninvasive neuroimaging techniques, EEG is an inexpensive tech-
nique with high temporal resolution and fne spatial resolution. EEG is able to 
directly record the electrical activity of neural populations and capture the dy-
namic changes at a millisecond scale. These advantages make EEG effective in 
exploring the pathological mechanism of MDD and promising to be applied to 
clinical diagnosis. 

Noninvasive neuroimaging studies have presented rich evidences that the 
behavioral defcits in MDD are related to structural and functional abnormalities 
in some brain regions and the connectivity between them, defning depression as 
a ”network disease”. The dysfunction of large-scale brain networks in MDD has 
been widely investigated, including the abnormal intrinsic connectivity networks 
(ICNs), which support specifc cognitive propcesses. The disrupted topological 
organization of functional brain networks is further quantifed through graph 
theory, which enables to study the correlation with genetic and environmental 
factors. Existing researches have provided an integrative perspective on mood 
and cognitive defcits in MDD and potential biomarkers for the diagnosis and 
treatment of MDD. 

However, so far, it is still hard to make the existing fndings into clinical use 
due to many practical problems, such as poor test-retest reliability and sample 
heterogeneity of data, methodological inconsistency, and so on. Therefore, it is 
still urgent and necessary to develop novel methods in accordance with the data 
characteristics. 

In this section, we will frstly give a basic introduction to MDD. Then, we 
will introduce the basic concept of functional connectivity (FC) and its associa-
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tion with MDD. Followed we will present the disrupted connectomics in MDD 
based on graph theory. Finally, we will illustrate the motivation of the conducted 
research. 

1.1 Major depression disorder 

In the 1860s, the term depression appeared in the medical dictionary to refer to a 
physiological and metaphorical lowering of emotional functions (Berrios, 1988). 
In the mid-1970s, to propose diagnostic criteria according to the categories of 
symptoms, the term major depression disorder was introduced by some US clin-
icians. MDD is a mental disorder characterized by pervasive low mood. The 
diagnosis of MDD requires at least two weeks of distinct change of mood, char-
acterized by sadness and low energy, low self-esteem, loss of interest in normally 
enjoyable activities, crying, suicidal thoughts, slowing of speech and action, and 
pain without a clear cause (Fava and Kendler, 2000; Otte et al., 2016). The exact 
causes of MDD are not yet understood despite many years’ study. It has been 
demonstrated that the cause of MDD is multifactorial, and it is a comprehensive 
account of genetic, biochemical, and neurophysiological, and social factors (Bel-
maker and Agam, 2008; Gotlib and Joormann, 2010). For the clinical diagnosis 
of MDD, there are two most widely used criteria, including the Diagnostic and 
Statistical Manual of Mental Disorders V (DSM-5) and the International Statisti-
cal Classifcation of Diseases and Related Health Problems (ICD-10). However, 
the clinical diagnosis is pretty subjective due to human factors (Gruenberg et al., 
2005). MDD is widespread and recurrent. Almost 20% of the population will 
experience at least one episode of depression during their lifetime, and the re-
lapse rate is over 80% (Gotlib and Hamilton, 2008). Therefore, it is urgent and 
important to further investigate the pathogenesis and diagnostic tools of MDD. 

Over the past decades, researchers have examined the neural mechanisms 
of MDD using neuroimaging techniques. Some remarkable brain regions have 
been demonstrated to be related to MDD, such as the amygdala, subgenual an-
terior cingulate cortex, dorsolateral prefrontal cortex, and so on, which are mainly 
related to memory, attention, and emotion regulation (Gotlib and Hamilton, 2008). 
In the 2000s, researchers started to examine the FC of MDD from a neural systems 
perspective, and they intended to explore the depressive neural network defned 
by spatially remoted brain regions that are inter-connected at rest or during task 
(Mayberg et al., 2005; Siegle et al., 2002). Of particular relevance are brain net-
works related to attention and emotion, such as default mode network (DMN), 
frontoparietal network(FN), dorsal attention network(DAN), and so on (Kaiser 
et al., 2015). 

However, the correlation of MDD with human connectomics is still a rapidly 
evolving and highly complex feld of study, and this is also an interdisciplinary 
research area demanding the cooperation of researchers from clinical medicine, 
cognitive neuroscience, and computational science. 
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1.2 Functional connectivity 

The human brain is a complex network that synchronizes spatially distributed 
brain regions for collaborative functioning and facilitates the effective segrega-
tion and integration during information processing. Cognitive functions build 
on brain connectivity within large-scale neuronal networks (Varela et al., 2001; 
Petersen and Sporns, 2015). There are rich evidences from neuropsychological 
researches that MDD is associated with impairments in executive function, mem-
ory, and emotional processing (Gotlib and Joormann, 2010; Gong and He, 2015). 
Neuroimaging studies demonstrate that those impairments relate to functional 
and structural abnormalities in many brain regions and the FC between them. 
MDD involves alterations of functional and structural connectivity in multiple 
neuronal circuits, and those fndings correspond to the current understanding of 
MDD as a network-based disorder (Gong and He, 2015; Mulders et al., 2015). In 
this section, we frstly introduce the basic concepts of FC, and then we will in-
troduce the dynamic functional connectivity. Finally, we will review the current 
fndings of the dysconnectivity of large-scale FC of MDD. 

1.2.1 Basic concepts of functional connectivity 

The human brain contains about one hundred billion neurons interconnected by 
synapses, establishing a highly intricate brain network. The human brain in-
cludes two principles of the functional organization, functional segregation and 
functional integration. Functional segregation relates to the localization of brain 
functions which are also , which implies that the brain functions are also anatom-
ically segregated within the cortex, and a specifc cortical regions is particularly 
related to some aspects of perceptual or motor processing (Friston, 2011). Func-
tional integration can mediate the union of specialized brain areas, which de-
scribes the cooperative activation of functionally specialized areas during a cog-
nitive process (Friston, 1994). Over the past decades, there is a shift in emphasis 
from functional segregation to integration. The concept of functional connectiv-
ity was introduced from functional integration in the 1990s, which is defned as 
statistical dependencies among remote neurophysiological events (Friston, 1994). 

The brain activity is intrinsic and constantly active. Even in a resting state or 
task-negative state, the brain will show a high level of spontaneous activity, and 
different brain regions will communicate by FC. Functional neuroimaging studies 
propose this kind of spontaneous activity acts as the neuronal baseline activity in 
the brain, and it plays an essential role by providing important endogenous regu-
lations to sensory-, cognitive-, or motor-driven activities (Damoiseaux et al., 2006; 
Mantini et al., 2007). One crucial research feld initially studied by Prof. Bharat 
Biswal is resting state networks (RSNs), a group of functional networks which are 
well reproducible over different subjects and also stable over time within subjects 
during resting state (Biswal et al., 1995; Damoiseaux et al., 2006; Fukunaga et al., 
2006; Fox et al., 2005; Beckmann et al., 2005). The RSNs are mostly identifed by 
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multivariate decompositions of fMRI blood oxygen level dependent (BOLD) sig-
nals using the independent component analysis (ICA) method. Each of the RSNs 
is organized with functionally connected brain regions and is specifcally related 
to some cognitive processes. Both previous EEG and MEG studies have shown 
that these RSNs also have an electrophysiological basis, and this is a critical step 
toward understanding the functional role of spontaneous activity (Mantini et al., 
2007; Chang et al., 2013; Brookes et al., 2014; Baker et al., 2014; De Pasquale et al., 
2010). 

Since RSNs occur both during tasks and rest, the term intrinsic connectiv-
ity networks expands upon the concept of RSNs, which describe a set of large-
scale functionally connected brain networks identifed both during tasks and rest 
(Smith et al., 2009; Duyn, 2011). Each of the ICNs owns characteristic spatial sig-
natures to support specifc cognitive functions Laird et al. (2011); Seeley et al. 
(2009). The ICNs include sensory networks, like the visual network and the au-
ditory network, and higher-order networks, like DMN, FN, and DAN. Most of 
the previous researches focus on identifying the segregated brain functional net-
works that may serve specialized functions. 

1.2.2 Examining the dynamics of functional connectivity 

An emerging and hot topic since the 2010s is dynamic functional connectivity 
(dFC), which considers the brain as a dynamic system. To support ongoing cog-
nition both during tasks and rest, the brain will dynamically integrate and coor-
dinate through the rapid formation and dissolution of a lot of functionally mean-
ingful networks at different time scales (Hutchison et al., 2013; O’Neill et al., 
2017). Most of previous researches assume that the FC is static and stationary 
during the long period of data recording for many minutes or even hours, as 
refected in the analysis tools and metrics that are commonly applied (Hutchi-
son et al., 2013). Until recent ten years, researchers started to examine the non-
stationarity and dynamic changes over time of resting state and task-specifc 
functional networks, which has provided greater insight into fundamental prop-
erties of brain networks and mechanisms of neuronal communications. A land-
markable study to frstly examine the dFC is from Chang and Glover (Chang 
and Glover, 2010). The resting state consists of different levels of attention, emo-
tion, memory, arousal, and mind-wandering due to the wakefulness of the brain, 
and under this foundamental fact, they hypothesized that the FC between and 
within resting state networks will continuously keep changing to support cogni-
tive functions. This study frstly illustrated the dynamics of resting state FC using 
predefned region of interest (ROI) and proposed the worth to measure the vari-
ability of FC. Another landmarkable study to examine dFC using resting state 
fMRI is from Allen and her colleagues (Allen et al., 2014). They applied group 
independent component analysis (ICA) and obtained 50 FC components and the 
corresponding time courses. Then, the dFC is estimated by computing corre-
lations between time courses segmented by sliding time windows. Finally, the 
clustering method was applied to identify the repeatedly occurred FC patterns. 
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They demonstrated that some FC patterns were highly replicable over time. 
The fMRI studies have provided signifcant evidence of non-stationary con-

nectivity. However, the fMRI is based on the BOLD fuctuations, which are de-
layed to neural activity for several seconds due to the latency and longevity of the 
hemodynamic response. Also, the time difference between different scans only 
allows examining the FC dynamics at a second timescale. The limited temporal 
resolution of fMRI makes it unsuitable for imaging dynamic brain activity in the 
time frame in which these processes occur (He et al., 2019). What’s more, it is 
possible that network dynamics or neural synchrony do not require changes in 
energy consumption and do not produce a BOLD signal in fMRI (Rossini et al., 
2019). In contrast, EEG and MEG techniques can directly record the brain neu-
ronal activities at a millisecond timescale. This temporal richness facilitates inves-
tigating the rapid change of FC patterns and captures transiently active networks 
(Rossini et al., 2019; O’Neill et al., 2017; Mantini et al., 2007). What’s more, some 
studies have already reported that the EEG powers and simultaneously recorded 
BOLD signals within specifc brain networks are signifcantly correlated in the 
fuctuations (Mantini et al., 2007). Several studies also demonstrated that most 
of the fMRI networks could be replicated in EEG and MEG networks(Hipp et al., 
2012; Brookes et al., 2011b,a; De Pasquale et al., 2010). 

Overall, the dFC has come to dominate the feld, and the time-varying as-
pects of FC are challenging previous descriptions of static interactions within and 
between large-scale networks. The dFC can reveal the fexibility of functional co-
ordinations between different neural networks and improve our understanding 
of behavioral shifts and adaptive processes (Allen et al., 2014; Hutchison et al., 
2013). 

1.2.3 Dysconnectivity networks in major depression disorder 

Accumulating neuroimaging studies have concluded that MDD is linked to the 
dysregulation of multiple distributed functional networks, including cortical and 
limbic brain regions, but not the aberrant response of a single discrete brain re-
gion (Liu et al., 2021; Drevets et al., 2008; Seminowicz et al., 2004; Mayberg, 2003; 
Zeng et al., 2012; Mulders et al., 2015). However, there are not unifying fnd-
ings due to the variability across studies in multiple aspects, such as different 
datasets recorded, different methods applied, different ROIs selected, and so on. 
The resting-state FC is the most widely used tool to investigate the imbalanced 
communication among cortical brain networks in MDD. Here, based on the most 
commonly consistent fndings in resting-state studies, we introduce some core 
networks of particular relevance to MDD, including DMN, central executive net-
work (CEN), and salience network (SN). The SN is theorized to mediate switch-
ing between the DMN and CEN, and a triple network model constructed by 
DMN, CEN, and SN has exhibited an explanatory power for psychiatric disor-
ders (Menon, 2011; Sridharan et al., 2008; Goulden et al., 2014). 

(1) Default mode network: The DMN is also known as a task-negative network, 
because it is prominently activated during rest (Raichle et al., 2001). There 
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are two sub-networks of DMN including anterior and posterior DMN. The 
key region of the anterior DMN is the medial prefrontal cortex, and the pos-
terior DMN centers on the posterior cingulate cortex and the precuneus cor-
tex (Andrews-Hanna et al., 2010; Buckner et al., 2008). The DMN is related 
to internally oriented attention, self-referential processing, emotion regula-
tion, and memory processing (Andrews-Hanna et al., 2014; Cavanna and 
Trimble, 2006; Leech and Sharp, 2014; Mulders et al., 2015). The hypercon-
nectivity within DMN is commonly identifed during resting state using 
both seed-based method and ICA method (Kaiser et al., 2015; Mulders et al., 
2015). 

(2) Central executive network: The CEN, generally known as the FN, is primar-
ily composed of the dorsolateral prefrontal cortex and the lateral posterior 
parietal cortex. Contrary to the DMN, the CEN is a task-positive network 
due to strong activation during cognitive tasks. The CEN involves the top-
down regulation of attention and emotion (Kaiser et al., 2015; Gong et al., 
2016). The aberrant connectivity of the CEN may indicate the defcits in 
concentrating or regulating emotions (Snyder, 2013). 

(3) Salience network: The SN is primarily composed of the anterior insula and 
dorsal anterior cingulate cortex, and it is activated in detecting various salient 
stimuli and recruiting relevant functional networks (Menon and Uddin, 2010; 
Peters et al., 2016). It is demonstrated that the SN contributes to emotional 
control and processing, social behavior, and self-awareness (Mulders et al., 
2015; Menon, 2011; Menon and Toga, 2015). For the MDD group, increased 
conenctivity within the SN is commonly concluded using both seed-based 
method and ICA method (Mulders et al., 2015). 

Besides the abnormal connectivity within each core network, the changed con-
nectivity between different networks is also widely identifed to be related to 
MDD, which may refect the disability in altering the interaction between net-
works (Abbott et al., 2013). For example, the increased connectivity between the 
anterior DMN and the SN in MDD is commonly reported across different meth-
ods, and the decreased connectivity between the posterior DMN and the CEN is 
also regarded as an important biomarker of MDD (Manoliu et al., 2014; Mulders 
et al., 2015). 

1.3 Graph theory 

Over the past 20 years, the topological description of the brain network, well 
known as the human connectome, is an emerging and hot topic (Sporns et al., 
2005, 2004). Attempts to characterize these networks have led to the emergence 
of a new, multidisciplinary approach, called complex network analysis, which 
origins from the realm of graph theory born in 1736 (Rubinov and Sporns, 2010). 
Graph theory facilitates the quantifcation of brain topology and provides a pow-
erful mathematical framework to characterize or compare the topological orga-
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nization of brain networks from different groups. Combined with neuroimag-
ing, graph-based network analysis revealed many nontrivial topological proper-
ties that are disrupted in various brain disorders, including MDD, like disrupted 
global integrity and regional connectivity (Gong and He, 2015). The topological 
disruption may provide valuable diagnosis biomarkers and new insights into the 
neuropsychopathology of MDD. In this section, we frstly introduce the basic con-
cepts of graph theory and then summarize the current fndings of the disrupted 
topology of MDD. 

1.3.1 Introduction of graph theory 

The brain network can be modeled as a graph that comprises nodes (neural ele-
ments) connected by edges (connections). The representation of nodes depends 
on the modality of the collected signals (Stam and Reijneveld, 2007). For electro-
physiological techniques, like EEG and MEG, there are two kinds of defnitions 
of the nodes according to the modeling space. In the sensor space, the nodes 
can be the electrodes, and in the source space, the nodes represent the vertices or 
brain regions according to the anatomical atlas. For the fMRI modality, the nodes 
denote the voxels or brain regions according to the parcellation atlas. The edges 
represent the connection existence (binary graph) or strength (weighted graph) 
between pairs of nodes measured as structural, functional, or effective connectiv-
ity. For different measures of connectivity, the brain network can also be modeled 
as an undirected graph for FC and a directed graph for effective and structural 
connectivity. 

Gong and He concluded that for both binarized or weighted brain net-
works, the topological architectures of the brain networks can be depicted at 
three levels: global properties, regional nodal properties, and modularity (Gong 
and He, 2015). The global properties, such as clustering coeffcient, shortest path 
length, and global effciency, represent the ability to rapidly integrate special-
ized information from distributed brain regions and the capacity of the overall 
information processing. The regional nodal properties, such as degree and be-
tweenness centralities, refect the local information processing within the brain 
regions. The identifying of hubs and communities through local properties can 
effciently transfer regional information and facilitate global information integra-
tion (Sporns, 2013; He and Evans, 2010; Bullmore and Sporns, 2012, 2009). Mod-
ularity indicates a set of non-overlapping modules from the subdivision of brain 
networks, which can support specifc functions (van den Heuvel and Sporns, 
2013; Newman, 2006). Modularity is also an important metric to reveal the dy-
namics of brain organizaiton (Boccaletti et al., 2006). 

Graph theory has provided a topological view of network organizations to 
further reveal and understand the human cognitive function, performance, and 
behavior (Barrat et al., 2008; Sporns, 2010; Bullmore and Sporns, 2012). The com-
plex anatomical and functional architecture of the brain, such as rich hubs, mod-
ular structure, and small-worldness, have provided strong support and evidence 
that the human brain is an economic system. The brain organization can dy-
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namically balance the trade-off between wiring cost and topological value from 
millisecond to hour timescales. To support different cognitive demands, the brain 
network will dynamically evolve and adapt by changing the strength of connec-
tions and community membership of nodes (Kabbara et al., 2017; Bullmore and 
Sporns, 2012; Hutchison et al., 2013). 

In the view of clinical applications, the topological analysis of brain net-
works has helped to reconceptualize the pathogenesis and present potential biomark-
ers of neuropsychiatric disorders, like MDD, schizophrenia, and autism (Bassett 
and Sporns, 2017; Fornito et al., 2015; Gong and He, 2015; Fornito et al., 2012). 

1.3.2 Disrupted topology of major depression disorder 

The human brain is a complex network, which is structurally and functionally 
connected to support information segregation and integration during cognitive 
tasks. The topological properties have demonstrated that the network resilience 
of healthy brains can resist various neuropathological lesions. MDD is related 
to the disrupted topological organization of functional and structural brain net-
works, which is demonstrated by global, modular, and nodal properties. Dif-
ferent neuroimaging techniques have been applied to investigate the disrupted 
network topology in MDD, including fMRI, structural magnetic resonance imag-
ing (sMRI), diffusion tensor imaging (DTI), and EEG (Zhang et al., 2011; Meng 
et al., 2014; Bohr et al., 2013; Tao et al., 2013; Singh et al., 2013; Ajilore et al., 2014; 
Korgaonkar et al., 2014; Sun et al., 2019; Hasanzadeh et al., 2020). Those previ-
ous fndings have provided valuable topological biomarkers in the diagnosis and 
treatment of MDD. 

Two remarkable review studies have summarized fndings regarding the 
structural and functional brain connectome for MDD in the duration of 2011-2014 
and 2015-2020, respectively (Gong and He, 2015; Yun and Kim, 2021). Summa-
rizing the previous studies, some consistent fndings can be concluded. First, the 
ability of global integrity is lower in MDD compared with healthy controls. Sec-
ond, brain networks in MDD have a trend to changing to random networks, while 
the healthy controls have small-world networks. Third, the depressive symptom, 
illness duration, and treatment response of MDD can affect local network prop-
erties. 

However, the existing studies on disrupted connectomics in MDD are still 
limited and urgently needed. The previous results are often inconsistent or even 
contradictory (Zhi et al., 2018). For example, Zhang et al. reported a increased 
global effciency in the MDD group, while Meng et al. showed that the global 
effciency is decreased in the MDD group (Zhang et al., 2011; Meng et al., 2014). 
The inconsistency of current fndings can result from multiple factors (Hallquist 
and Hillary, 2018). From the technical perspective, it could be different modali-
ties (fMRI or sMRI), different defnitions of nodes and edges, or different graph 
metrics. For the clinical reason, it could be different and unbalanced age and 
gender distribution of MDD patients, different symptoms, different durations of 
MDD, or different medication statuses. Therefore, it is still a long way to go to 
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obtain a unifed theory of the topological mechanism of MDD, and make it into 
use for the clinical diagnosis and treatment. 

1.4 Research motivations 

The motivations of our studies can be concluded from two aspects. 
(1) From the view of experimental design, there is a challenge to conven-

tional paradigms with sparsely and abstract stimuli, called naturalistic paradigms. 
Naturalistic paradigms are also called ecologically valid paradigms, which aim 
to approximating real-life experiences using naturalistic and continuous stimuli, 
such as movies, music, and spoken stories. The well-controlled laboratory-style 
experiments have yielded a fundamental understanding of specialized functions 
in the brain, but they are always debatable. Because our daily life are dynami-
cally mixed with multimodal information, and the traditional paradigms can not 
answer how the brains resemble different types of stimuli and integrate the infor-
mation in the brain. To answer this question, starting from two memorable stud-
ies conducted by Hasson and Bartels, increasingly neuroscientists have shifted 
their focus on naturalistic paradigms (Hasson et al., 2004; Bartels and Zeki, 2004). 
The landmark achievements on naturalistic paradigms include three reviews and 
the special issue in journal Neuroimage, Naturalistic Imaging: The use of ecologically 
valid conditions to study brain function (Sonkusare et al., 2019; Vanderwal et al., 
2019; Jääskeläinen et al., 2020). 

Naturalistic paradigms have shown a clinical potential in mental disorders, 
such as MDD, autism-spectrum disorder, paranoia, borderline personality disor-
der (Sonkusare et al., 2019). However, to the best of our knowledge, no studies 
have investigated the dysconnectivity of large-scale functional networks in MDD 
during music listening conditions. In Study I, using EEG recorded during listen-
ing to modern tango, we studied the sensor-level functional connectivity in MDD, 
applied graph theory-based methods to measure the topology of brain networks, 
and tested the potential biomarker of MDD diagnosis (Liu et al., 2020b). 

(2) From the view of methodological applications, there is a challenge re-
garding the multiway and multimodal structure of data. The constructed data by 
brain networks characterize a multiway structure with the dimension of time × 
frequency × connectivity × subject. The time domain can examine the tempo-
ral dynamics of brain networks, which is well-described in the introduction part 
(Hutchison et al., 2013). The frequency domain can explore the oscillatory signa-
tures of brain networks. It has been demonstrated that neuronal synchronization 
and communication between different brain regions is regulated by oscillations, 
and it is necessary to explore the oscillatory networks. The connectivity domain 
represents the phase couplings between pairs of brain regions, and the commu-
nication of brain regions or neural populations depends on phase interactions 
(Palva and Palva, 2012). A well-designed experiment always collects data from 
multiple subjects, constituting an important dimension of the constructed data. 
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The multimodal structure means the data can be collected from different groups, 
e.g., the healthy group and the patient group, or different modalities, e.g., fMRI 
and EEG. Different modalities of data will share common features and also retain 
individual features (Wang et al., 2020; Wang, 2020; Acar et al., 2017). However, 
few studies considered the multiway and multimodal structure of data simulta-
neously. 

MDD is associated with abnormal dFC and impaired coordination of oscil-
latory FC (Kaiser et al., 2016; Demirtaş et al., 2016; Yao et al., 2019; Zhao et al., 
2021; Fingelkurts et al., 2007; Whitton et al., 2018). Non-invasive EEG has been 
demonstrated to be a potentially valuable and reliable tool to study and detect 
MDD (de Aguiar Neto and Rosa, 2019; Leuchter et al., 2012). Considering the 
multiway and multimodal nature of constructed data, we proposed a compre-
hensive and novel framework based on coupled tensor decomposition. In Study 
II, using the same data in Study I, we proposed a comprehensive framework to 
explore the source-level dynamic functional connectivity characterized by spatio-
temporal-spectral modes of covariation (Liu et al., 2021), which are also hyper-
or hypo-connectivity networks in MDD. The extracted dFC networks are taks-
relatd, frequency-specifc, and music-modulated. In study III, referring study II, 
we proposed a framework based on coupled tensor decomposition using alpha 
band resting EEG to explore the sensor-level dysconnectivity networks of MDD. 
In study IV, we applied the same framework as study III to source-level resting 
EEG and identifed the hyper- or hypo-connectivity networks in MDD during 
resting state. Studies II, III, and IV have primarily demonstrated the effciency 
and feasibility of a coupled tensor decomposition model applied in MDD using 
EEG. The proposed model and pipeline can be easily applied to other psychiatric 
disorders. 

1.5 Structure of the dissertation 

The structure of this dissertation is listed as follows: 
Chapter 1 introduces the basic concepts of major depression, functional con-

nectivity, and graph theory, as well as the current fndings of previous studies on 
abnormal large-scale brain networks and disrupted topology in major depression 
disorder. The motivation of the research is also presented. 

Chapter 2 describes the commonly used methods of functional connectivity 
and the metrics of graph theory. 

Chapter 3 briefy summarizes the included articles and lists the contribu-
tions of authors to the articles. 

Chapter 4 presents the discussion and conclusion of this dissertation, as well 
as the research limitations and future directions. 



2 METHODS 

The human brain is organized as a complex network at micro-meso-macro-scale 
levels. From the view of large-scale functional connectivity, the brain can be mod-
eled by a set of nodes (brain regions) and interconnecting edges (statistical inde-
pendence). The measurement of statistical independence is a fundamental step 
to reveal topological architectures and network dynamics. The brain connectome 
can further provide neuromarkers of mental diseases and task-specifc cognitive 
functions. Figure 1 shows the whole pipeline for functional brain networks mod-
elling and analysis (This fgure is cited from (de Vico Fallani et al., 2014)). In this 
chapter, frst, we will introduce the measurements of FC with different kinds of 
metrics, and then present the topological properties of brain networks measured 
by graph theory. Finally, we will summarize the commonly used methods to as-
sess the dynamics of functional networks. 

2.1 Metrics of functional connectivity 

For measuring the connections between predefned network nodes, there are 
many kinds of hypothesis-free methods, which are suitable as exploratory tech-
niques (Rossini et al., 2019). For example, correlation and coherence are linear 
methods, which determine the extent to which two variables covary in time space 
and frequency space, respectively. Information-based methods, like mutual infor-
mation and transfer entropy, can measure the linear and non-linear interdepen-
dence between two signals. Phase synchronization methods, including imagi-
nary part of coherency (ImC), phase locking value (PLV), phase lag index (PLI), 
and weighted phase lag index (WPLI), measure the phase couplings between two 
signals also without a linearity assumption. Those metrics can be used as whole-
brain approaches, and do not necessarily need the preselected ROI as hypothesis-
driven methods, like dynamic causal modeling (Rossini et al., 2019). 

The theory has been demonstrated that neural oscillations play a key role 
in coordinating the activity of spatially remote brain regions. The oscillation 



28 

sensors

electrodes

voxels

nodes

brain activity

recorded signals

connectivity
matrix

network
properties

graph

nodes
links

global

metrics

stats

statistical

topological

threshold

links
undirected

directed

intermediate

eff
ici

en
cy

m
odules

deg
re

es

local

diseased/task

healthy/rest

neuromarkers
hypothesis test

models

classification

FIGURE 1 Pipeline for functional brain networks modelling and analysis (Cited from 
(de Vico Fallani et al., 2014)). 

can connect different brain regions with resonant communication to construct 
a functional network. The oscillatory changing can regulate dynamics of neu-
ronal networks, forming the mechanism for creating a fexible and hierarchical 
communication structure and causing qualitative transitions between different 
modes of information processing (Fries, 2005; Buzsáki and Draguhn, 2004; Engel 
et al., 2001; Varela et al., 2001; Salinas and Sejnowski, 2001). Supported by this 
theory, phase synchronization methods are widely and successfully applied for 
electrophysiological data (e.g., EEG and MEG). From this point and the EEG sig-
nals used in the thesis, in this section, we introduce the phase-based metrics of 
functional connectivity. For the other metrics, please refer to the review studies 
(Rossini et al., 2019; He et al., 2019; Engel et al., 2013). 

Electrophysiological techniques all suffer from a common problem that the 
calculating relation between two time series is infuenced by the time series espe-
cially recorded from nearby electrodes. The recording sensors are not placed in 
direct contact with the nerve cells generating the signal, and the electric or mag-
netic felds from an electric primary current source will be transmitted through 
biological tissue towards measurement sensors. Therefore, the signal collected 
from one electrode is mixed with the signals from the whole brain, and there 
are always common sources for two electrodes, which will cause spurious inter-
actions. This effect is called volume conduction (feld spread or signal leakage) 
(Rutkove, 2007; van den Broek et al., 1998; Brunner et al., 2016). It is always 
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possible that two selected brain regions, presenting a high value of interactions, 
are not truly connected at all. This phenomenon commonly exists, especially for 
amplitude-based connectivity metrics. One promising and appealing solution 
is selecting the measures that are not sensitive to the volume conduction effect, 
such as ImC, PLI, and WPLI (Nolte et al., 2004; Stam et al., 2007; Vinck et al., 
2011). This kind of metrics is based on the theory that volume conduction can 
cause the instantaneous phase lags of 0 or π, and it can affect the amplitude but 
not the non-zero phase. 

In this section, we will describe phase-based metrics used to quantify con-
nectivity, including metrics that are sensitive (coherence and PLV) and insensitive 
(ImC, PLI, and WPLI) to the volume conduction effect. We also conclude the ad-
vantages and disadvantages of each method. First, we need to defne some com-
monly used representations among those fve methods. For time series x1(t) and 
x2(t) from two spatially separated brain regions, there analytical signals z1(t) and 
z2(t) can be obtained through Hilbert transform (or wavelet transform) (Bruns, 
2004), as follows: 

iφ1(t)z1(t) = x1(t) + ix̃1(t) = A1(t)e (1) 

and 
iφ2(t)z2(t) = x2(t) + ix̃2(t) = A2(t)e , (2) q

2 2where x̃i(t), i = 1, 2 is the imaginary part, Ai(t) = xi(t) + x̃i(t) , i = 1, 2 is 
x̃i(t)the instantaneous amplitude, and φi(t) = arctan , i = 1, 2 is the instantaneous xi(t) 

phase. 

2.1.1 Coherence 

Coherence is a traditional method to measure the linear relationship of phase 
synchronization in the spectral domain for electrophysiological signals. The co-
herence is defned as the cross spectrum Sx1x2 divided by the product of the two 
power spectra Sx1x1 and Sx2x2 at frequency bin f , as follows: 

2|Sx1x2( f )|Coh( f ) = . (3)
Sx1x1( f )Sx2x2( f ) 

We can also compute the mean over time of the analytical signals z1 and z2 instead 
of the mean of coherence over all frequencies, which is represented as follows: 

iΔφ
�

A1A2e
Coh = , (4) 

������ 
q 

A2 A2 

������� �
1 2

whereh·i represents the mean value and Δφ = φ1 − φ2 represents the instanta-
neous phase difference. Coherence varies from 0 to 1, representing no coupling 
and perfect coupling respectively. 

Coherence is easy to understand and compute. However, it only refects the 
linear correlation between two signals with intermingling phase and amplitude 
correlations, and it can be easily affected by common inputs due to using the 
amplitude information (i.e., the volume conduction effect). 
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2.1.2 Phase locking value 

Because coherence mixes amplitude and phase contributions, Lachaux et al. pro-
posed phase locking value (PLV) to quantify the phase relationship by phase-
locking statistics, thus excluding the amplitude information (Lachaux et al., 1999). 
Perfect phase synchronization will produce constant phase differences. After pro-
jecting the instantaneous phase differences on the unit circle, PLV measures the 
consistency of phase differences by phase-locking statistics. The PLV can be com-
puted as follows: 

PLV = 
D

eiΔφ
E 

. (5) 

The PLV is also bounded between 0 and 1. The PLV can avoid the mixing 
of amplitude and phase correlations, and it is less affected by the amplitude vari-
ability of the power spectrum. However, PLV can also be infuenced by zero-lag 
phases, and volume-conducted activities can result in a non-zero PLV value. 

2.1.3 Imaginary part of coherency 

To overcome the infuence of volume conduction effect, Nolte et al. proposed the 
imaginary part of coherency (ImC) index, which can measure the true interac-
tion of two signals even with common sources (Nolte et al., 2004). The ImC is 
calculated as follows: 

hA1A2sinΔφi
ImC = , (6) 
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from which we can see a 0 or π phase lag will cause a zero ImC. Therefore, the 
linear mixing of uncorrelated sources will not result in a non-zero ImC, thus mak-
ing it insensitive to the volume conduction effect. However, ImC is affected by 
the value of the phase difference, which makes it failed to accurately measure the 
consistency of phase differences. It is suitable with a phase lag corresponding to 
a quarter cycle (Stam et al., 2007; Vinck et al., 2011). 

2.1.4 Phase lag index 

Regarding the disadvantages of ImC, Stam et al. proposed the phase lag index 
(PLI) method. The PLI measures the asymmetry of phase difference distribution 
between two signals. The basic idea is that if two signals do not contain com-
mon sources due to volume conduction, the consistent and non-zero phase lag 
or phase lead will preserve, and if two signals are volume-conducted by com-
mon sources, the phase difference distribution will be centered around 0 or π. 
That is to say, a perfect phase coupling represents that the phase difference is dis-
tributed in the interval −π < Δφ < 0 for consistent phase lag or in the interval 
0 < Δφ < π for consistent phase lead. No coupling means the phase difference 
distribution is symmetrical. We can calculate the PLI value by 

PLI = |hsign [Δφ]i| . (7) 
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The PLI is normally taken as the absolute value, making it bounded between 
0 and 1. A value of 1 means perfect coupling, and a value of 0 means no coupling 
or a result from volume conduction (phase differences are centered around 0 or 
π). We can also remove the absolute operation, and measure the directed interac-
tions or information fow (effective connectivity) regarding the phase lag or phase 
lead. However, the main disadvantage of PLI is its sensitivity to noise. Phase lag 
can be easily turned into phase lead by small perturbations from noise, and vice 
versa. Due to this, the volume conduction effect may not be effectively reduced. 

2.1.5 Weighted phase lag index 

Considering the disadvantages of ImC and PLI, Vinck et al. proposed a new 
method, called weight phase lag index (WPLI), which is insensitive to volume 
conduction, small noise perturbations, and the value of phase differences (Vinck 

h|Im(Sx1x2)|i 

et al., 2011). The WPLI is shown as follows: 

WPLI = ,
|hIm(Sx1x2)i| 
h|Im(Sx1x2)|i

(8) 

and it can also be presented as 

WPLI = ,
|h|Im(Sx1x2)| signΔφi| 

(9) 

where Sx1x2 is the the cross-spectrum of two signals. The WPLI ranges between 0 
and 1. We can see that compared with PLI, WPLI uses the magnitude of the imag-
inary part of the cross-spectrum as the weights of phase differences. Therefore, a 
phase difference near 0 or π will get a smaller weight, thus being insensitive to 
small noise perturbations. 

There are two points that we should clarify. First, ImC, PLI, and WPLI can 
reduce spurious interactions due to volume conduction to some extent, but the 
volume conduction can not be entirely eliminated. Second, from the view of sta-
tistical meaning, all the fve metrics described above should be calculated over a 
fne number of data points (i.e., signals x1 and x2 should have a suffcient length 
of data points). If we calculate the metrics over time points within a time window, 
we can get an averaged connectivity value for each time window, and this type 
of calculation is suitable for EEG or MEG data collected in naturalistic paradigms 
or resting state. If we calculate the metrics over trials, then we can measure the 
inter-trial variability of the phase differences and this condition can be applied to 
event-related EEG or MEG data (Aydore et al., 2013; Rossini et al., 2019; Liu et al., 
2020a). 

2.2 Metrics of graph theory 

The brain network topology based on graph theory has been widely applied to 
reveal the segregation and integration of neural information in cognition and 
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explore the mechanism of mental diseases (de Vico Fallani et al., 2014; Sporns, 
2013; Yun and Kim, 2021; Park and Friston, 2013). As described by (de Vico Fal-
lani et al., 2014), the topological properties of brain networks can be divided into 
three categories according to the scales of the brain network. The frst category 
is large-scale metrics of the brain network, which includes the metrics on the en-
tire graph and describes the whole brain network properties. The second one is 
intermediate-scale metrics, which measure the communities or modules of sub-
graphs consisted of densely connected nodes. The third category is small-scale 
metrics, which quantifes the properties of single nodes. The topological metrics 
selection primarily depends on the research question, like which level of brain 
network properties fts the research interests. The calculation of the metrics is 
different according to the constructed networks, such as binary or weighted net-
works, and directed or undirected networks. For simplicity, we only presented 
some commonly used metrics for weighted and undirected networks in this sec-
tion. Please refer to the review studies for exhaustive explanations and mathe-
matical descriptions of all the existing metrics (de Vico Fallani et al., 2014; Ru-
binov and Sporns, 2010). Figure 2 shows some network metrics for an intuitive 
understanding of the network topology. 

FIGURE 2 Measures of network topology for a weighted and undirected graph. 

For a weighted and undirected graph G with N nodes, its edge between 
node i and node j is represented as wij, which is bounded between 0 and 1. Please 
note that the self-connection wii, i = 1, 2, ..., N is zero. 

2.2.1 Small-scale metrics 

2.2.1.1 Degree 

Degree can refect the importance of a node and represent the number of links 
connected to a node. It is a fundamental concept based on which many metrics 
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are defned. The degree of node i is defned as: 

N 
ki = ∑ wij. (10) 

j=1 

2.2.1.2 Betweenness centrality 

Betweenness centrality of a node measures its participation in many short paths 
within a network. It is defned as the fraction of all shortest paths in the network 
that pass through it (Brandes, 2001; Kintali, 2008; Rubinov and Sporns, 2010), as 
follows: 

(i)N ρhj 
N 

∑
1

BCi = ∑ , (11)
(N − 1)(N − 2) ρhj h=1,h 6=i j=1,j 6=i,h 

where ρhj represents the number of shortest paths between node h and node j, 
(i)and ρ means the number of shortest paths between node h and node j whichhj 

pass through node i. 

2.2.2 Intermediate-scale metrics 

2.2.2.1 Community 

The communities or modules are important indexes of the functional segregation 
of the network. The human brain have a modular structure with nodes inte-
grated locally through strong short-range edges (Park and Friston, 2013). The 
modular organization of the brain network indicates segregated neural process-
ing and specialized cognitive functions and enables effcient global communica-
tion among modules. 

Different from other metrics, the detection of modular structure or commu-
nity structure typically needs effcient optimization algorithms. There are many 
methods for community detection, such as the Louvain community detection al-
gorithm, Newman’s spectral community detection algorithm, link-based com-
munity detection algorithm, clique-percolation community-detection algorithm, 
and so on (Blondel et al., 2008; Newman, 2006; Ahn et al., 2010; Palla et al., 2005; 
Rubinov and Sporns, 2010). For the realization of different community detec-
tion algorithms, please refer to Brain Connectivity Toolbox (http://www.brain-
connectivity-toolbox.net) (Rubinov and Sporns, 2010). 

2.2.3 Large-scale metrics 

2.2.3.1 Clustering coeffcient 

Clustering coeffcient of the network measures the fraction of triangles around 
a node. It can refect functional segregation by depicting the node tendency of 

http:connectivity-toolbox.net
http://www.brain
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forming local triangles. The Clustering coeffcient is defned as: 

N1 2tiCC = 
N ∑ 

i=1 ki(ki − 1))
, (12) 

1where ti = 2 ∑
N
j=1 ∑h

N 
=1(wijwihwjh) 3

1 
means the geometric mean of triangles around 

node i. 

2.2.3.2 Characteristic path length 

Characteristic path length is a measure of functional integration of the network. 
It is defned as the average of the shortest weighted path length between all pairs 
of nodes, as follows: 

N ∑N
1 j=1,j 6=i dij 

CPL ∑ 
1i= 

(13)= ,
N N − 1 

where dij is the shortest weighted path length between node i and j. 

2.2.3.3 Small-worldness 

Small-worldness measures the balance between functional segregation and func-
tional integration of the network (Humphries and Gurney, 2008). Different from 
the random network and the regular network, the small-world network is simul-
taneously highly segregated and integrated, exhibiting low characteristic path 
length and high clustering coeffcient. Both structural connectivity and func-
tional connectivity have reported that the human brain network showed a small-
worldness property, which ensures the high effciency of information transfer 
with low-wire cost (Hallquist and Hillary, 2018). The small-worldness of the net-
work is calculated as: 

CC/CCrand SW = , (14)
CPL/CPLrand 

where CCrand and CPLrand are the clustering coeffcient and the characteristic path 
length of a random network. A small-world network often has SW > 1. 

2.3 Dynamic functional connectivity 

To start, let’s take a step back to the evolving hot topic during the recent ten years. 
Brain functional connectivity is dynamic at different timescales, ranging from the 
sub-second to the lifespan (Kopell et al., 2014; Calhoun et al., 2014; Di Martino 
et al., 2014; Betzel and Bassett, 2017; Zalesky et al., 2014). These dynamics of 
brain network organization have provided new insights into the mechanisms of 
human cognition and behavior. How do we study the dynamics of brain net-
works changing over time? 

In this section, we introduce some popular and commonly used methods 
to track the dynamics of brain networks, including clustering-based methods, 
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decomposition-based methods, and graph-based methods. The frst two types 
of methods aim to fnd reproducible and transient patterns of FC. The graph-
based methods aim to track time-varying changes of FC graphs from the view of 
topology. 

2.3.1 Clustering-based methods 

To fnd the repeated spatial patterns of functional networks along time, a network-
level cluster-based approach was proposed as a temporal decomposition proce-
dure. With the FC patterns calculated on windowed segments or at each time 
point, the cluster-based approach aims to divid them into a number of tran-
siently synchronizing networks. Figure 3 demonstrates the analysis pipeline of 
the cluster-based method. The most frequently used clustering method is k-
means, which is widely applied to extracting repeated FC patterns in fMRI, EEG, 
andMEG studies (Liu and Duyn, 2013; Allen et al., 2014; Hassan et al., 2015; 
De Pasquale et al., 2016; O’Neill et al., 2015). For example, in a resting state fMRI 
study, Liu et al. used k-means clustering analysis to examine the replication of 
RSN patterns, and the identifed multiple spatial patterns may suggest a poten-
tial functional relevance (Liu and Duyn, 2013). However, the main diffculties of 
clustering-based methods are the selection of algorithms (e.g., distance or phase 
based) and the corresponding parameters (e.g., distance threshold and the cluster 
number) (Hutchison et al., 2013). 

Window 4 Window n

Cluster 3

Window 3Window 1 Window 2

......

Cluster 1 Cluster 2

FIGURE 3 The analysis pipeline of the cluster-based method for extracting repeated 
functional networks. 

2.3.2 Decomposition-based methods 

According to the structure of the constructed data, the decomposition-based meth-
ods can be referred to matrix decomposition or tensor decomposition. This kind 
of method aims to extract the segregated FC patterns that may serve specialized 
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functions, like the functional network in ICNs (Gao et al., 2021). Decomposition-
based methods will decompose the adjacency matrix/tensor to some network 
components and corresponding temporal profles (as well as the subject contri-
bution or spectral modulation according to the structure of the data). The ba-
sic assumption of matrix/tensor decomposition-based methods is that for every 
time point or each time window, the functional connectivity network is a linear 
combination or coactivation of several network components, which represent the 
repeating FC patterns. 

2.3.2.1 Matrix decomposition 
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FIGURE 4 The analysis pipeline of matrix decomposition methods for extracting re-
peated functional networks. 

Matrix decomposition methods, like PCA, ICA, and nonnegative matrix 
factorization, have been widely and successfully applied to identify repeating 
and meaningful functional networks (Leonardi et al., 2013; Brookes et al., 2012; 
O’Neill et al., 2017; Zhu et al., 2020b; Brookes et al., 2011b; Koelewijn et al., 2017; 
Nugent et al., 2017; Zhou et al., 2020; Smitha et al., 2017; O’Neill, 2016). The anal-
ysis pipeline of the matrix decomposition method is shown in Figure 4. The func-
tional connectivity is frst computed using a sliding window method (time point 
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to time point connectivity is also possible), and then matrix decomposition meth-
ods can be applied on this temporally concatenated adjacency matrix. Finally, 
we can get a set of time-dependent network components. Please note that group 
analysis is also possible if we fold the time and subject dimensions. However, 
this “artifcially fatten” operation will remove the specifc information endorsed 
by higher-order structure and make it diffcult in results interpretation (Cichocki, 
2013). What’s more, the ICA and PCA will impose independent or uncorrelated 
constraints on the network components, which also makes it diffcult to explain 
the results. 

2.3.2.2 Tensor decomposition 
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FIGURE 5 The analysis pipeline of tensor decomposition methods for extracting re-
peated functional networks. (a) The construction of a 4-D adjacency tensor 
with the dimension of time × frequency × connectivity × subject. (b) The CP 
decomposition of the adjacency tensor. 

Tensor decomposition is an extension of matrix decomposition regarding 
the multiway or multidimensional structure of data. In recent years, tensor de-
composition has been widely used in brain imaging data. Please refer (Cichocki, 
2013; Cong et al., 2015; Zhou et al., 2016) for reviews. For electrophysiological 
data (EEG or MEG), the data can be constructed to a high-order tensor, which 
may include the dimension of time, space, frequency, subject, group/condition, 
trials. This multi-dimensional nature points to the adoption of tensor decomposi-
tion models instead of matrix decomposition models (Mørup, 2011; Mørup et al., 
2007, 2006; Cong et al., 2015; Wang et al., 2018). 

For the application of tensor decomposition in revealing functional network 
dynamics, considering the temporal dynamics and spectral modulations of spa-
tial couplings (e.g., functional connectivity) for multiple participants from differ-
ent groups in a cognitive task, a multi-way dataset structure is naturally formed. 
Recently, the tensor decomposition method based on the CP or PARAFAC2 model 
has been applied to dynamic functional connectivity using fMRI, EEG, and MEG 
data (Spyrou et al., 2018; Zhu et al., 2020a, 2019; Pester et al., 2015; Hu et al., 
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2021b,a; Roald et al., 2020; Escudero et al., 2015). Those models can extract mean-
ingful components and reveal the interactions between different modes. For ex-
ample, Figure 5 shows the analysis pipeline of tensor decomposition methods 
for extracting repeated functional networks using resting EEG data. First, the 
time-frequency representation is performed on the windowed segment of corti-
cal signals, and then metrics, like PLI, can be applied to calculate the functional 
connectivity in each time window and at each frequency bin. Therefore, a 4-D ad-
jacency tensor can be formed. Next, the CP decomposition can be performed to 
decompose the tensor into four factor matrices, representing the temporal, spec-
tral, adjacency, and subject components that are intercorrelated. That is to say, the 
extracted functional networks are time-varying, frequency-specifc, and subject-
contributed. 

However, in previous studies, the CP model is applied under the assump-
tion of spatial, temporal, and spectral consistency, potentially indicating that all 
the subjects have the same frequency-specifc brain networks with the same tem-
poral dynamics, and this assumption is irrational, expecially for signals recorded 
from resting state (Wang et al., 2020; Wang, 2020; Liu et al., 2021; Zhou et al., 2016; 
Jonmohamadi et al., 2020). Regarding this problem, a coupled CP decomposition 
model for linked component analysis is applied (Liu et al., 2021). This model is 
fexible to assume the incomplete consistency in different modes and extract the 
shared and unshared information between data blocks. Figure 6 shows the il-
lustration of a mode-1 coupled CP decomposition model for a set of third-order 
tensors. 

FIGURE 6 Illustration of the mode-1 coupled CP decomposition model for a set of third-
order tensors (cited from (Wang, 2020)). 
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2.3.3 Graph-based methods 

Modeling the complex brain networks as graphs where nodes are connected by 
edges has provided new insights into the organization, development, and func-
tion of the brain (Bullmore and Bassett, 2011; Sporns et al., 2004). A promising 
approach to assess network variations is the multi-layer network model, which 
is fexible enough to deal with networks varying along different dimensions. For 
example, if the layers represent FC in different frequency bands, cross-frequency 
interactions during integration and segregation of brain activities could be inves-
tigated (Guillon et al., 2017; de Vico Fallani et al., 2014; De Domenico, 2017). The 
most popular application of the multi-layer network model is studying the tem-
poral dynamics of functional networks, where a layer is defned as the network at 
a time point or with a time window, and then some metrics of the network’s topol-
ogy are used to represent the network dynamics between layers (De Domenico, 
2017; Sizemore and Bassett, 2018). 

After establishing the multi-layer structure of multiple brain networks from 
different time points or windows, how can we evaluate the spatiotemporal dy-
namics based on graph metrics? According to a review study, we summarize 
some measures, including time-respecting paths, latency, centrality, and temporal 
community structure (Sizemore and Bassett, 2018). The time-respecting path is a 
set of collections of time-resolved connections of nodes. This measure is particu-
larly useful to study the dynamic information fow due to the time-dependence 
of the path. The latency and centrality is a measure of the effciency of reacha-
bility between two nodes. The temporal community structure method is based 
on community detection algorithms. One node can dynamically travel through 
different communities by changing the membership, and the temporal commu-
nity structure method can be evaluated by node fexibility (the frequency of one 
node changing communities), node promiscuity (the switching rate of one node 
participating communities), and node cohesion (the number of times one node 
changing communities mutually with another node). 



3 OVERVIEW OF INCLUDED ARTICLES 

3.1 Article I: "Functional Connectivity of Major Depression Disor-
der Using Ongoing EEG during Music Perception" 

Wenya Liu, Chi Zhang, Xiaoyu Wang, Jing Xu, Yi Chang, Tapani Ristaniemi, and 
Fengyu Cong. (2020). Functional connectivity of major depression disorder using 
ongoing EEG during music perception. Clinical Neurophysiology, 131(10), 2413-
2422. 

3.1.1 Methods 

The 64-channel EEG data were collected from 19 healthy participants and 20 
MDD participants when they were listening to a piece of 512-second modern 
tango. First, we preprocessed the data and fltered the data into fve typically 
analyzed frequency bands, including delta (0.5–4 Hz), theta (4–8 Hz), alpha (8–13 
Hz), beta(13–30 Hz), and gamma (30–80 Hz) bands. Second, for each frequency 
band, we segmented the data using non-overlapping sliding windows with the 
length of 10 seconds and applied PLI method to calculate FC within each time 
window. Three graph theory-based measures, including degree, clustering coeff-
cient, and characteristic path length, were also calculated to measure the topolgi-
cal properties of FC within each time window. Third, the network-based statistic 
method was applied to fnd the statistically signifcant difference of FC connec-
tions between the healthy group and the MDD group for each frequency band, 
and the t-test was used to examine the lateralization effect with the degree values. 
Forth, we validated the discriminate ability of delta and beta frequency bands by 
six classifers, including decision tree, Gaussian mixture model, k-nearest neigh-
bor, naïve Bayes, random forest, and support vector machine. 
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3.1.2 Results 

During listening to music, MDD patients showed a decreased connectivity pat-
tern in the delta band ( p = 0.045), and 13 signifcant connections were found 
with distribution within right central brain areas and between right temporal 
and left parietal brain regions. In the beta band, the MDD group showed an in-
creased connectivity pattern (p = 0.0344), and there were 43 long-distance connec-
tions showed signifcant differences between two groups, which were distributed 
mostly within frontal brain areas and between frontal and parieta-occipital brain 
area, as shown in Figure 7. The healthy group exhibited a left hemisphere-dominant 
phenomenon, but the MDD group did not have such a lateralization effect. The 
beta band showed the best discriminate ability using the support vector machine 
classifer, and obtained the classifcation performance of the accuracy of 89.7 %, 
sensitivity of 89.4 %, and specifcity of 89.9 %. 
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FIGURE 7 The signifcant brain network connections in delta and beta frequency bands 
of the healthy group and the MDD group. 

3.1.3 Contribution 

Wenya Liu proposed the ideas of the whole study, analyzed the data, and wrote 
and revised the manuscript. Xiaoyu Wang preprocessed the data. Jing Xu and 
Yi Chang helped to collect the data and discussed the results. Fengyu Cong, 
Tapani Ristaniemi, and Chi Zhang supervised the whole study and revised the 
manuscript. 
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3.2 Article II: "Identifying Oscillatory Hyperconnectivity and Hypocon-
nectivity Networks in Major Depression Using Coupled Ten-
sor Decomposition" 

Wenya Liu, Xiulin Wang, Jing Xu, Yi Chang, Timo Hämäläinen, and Fengyu 
Cong. (2021). Identifying Oscillatory Hyperconnectivity and Hypoconnectivity 
Networks in Major Depression Using Coupled Tensor Decomposition. Accepted 
by IEEE Transactions on Neural Systems & Rehabilitation Engineering. 
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FIGURE 8 Diagram of the analysis pipeline. (a) Adjacency matrix construction in each 
time window and each frequency bin. (b) Adjacency tensor construction and 
decomposition. (c) The identifcation of hyperconnectivity and hypoconnec-
tivity networks by music modulation. 

3.2.1 Methods 

The 64-channel EEG data were collected from 19 healthy participants and 20 
MDD participants when they were listening to a piece of 512-second modern 
tango, as the same in study I. First, the data were preprocessed and fltered to 
a frequency band of 1-30 Hz. Second, we applied the minimum norm estimate 
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FIGURE 9 Three oscillatory hyperconnectivity networks. (a) Adjacency matrix repre-
sentation of the network. (b) The spectral component of the network. (c) 
Cortical space representation of the network in Lateral, medial and dorsal 
view. 

method for source reconstruction, and parcellate the cortical surface into 68 brain 
regions with the DesikanKilliany anatomical atlas. Third, we segmented the data 
by a sliding window with the window length of 3 s and the overlap of 2 s, and cal-
culated the time-frequency representation within each time window by wavelet 
transform. The PLI method was applied to measure the pairwise functional con-
nectivity within each sliding window and at each frequency bin. Fourth, we con-
structed two fourth-order adjacency tensors with the dimension of time × fre-
quency × connectivity × subject, and applied a low-rank double-coupled non-
negative tensor decomposition method to extract functional networks charac-
terized by spatio-temporal-spectral modes of covariation. Fifth, the correlation 
analysis based on the permutation test was used to identify the music-induced 
functional networks and the hyper- and hypo-connectivity networks in MDD. 
The analysis pipeline is shown in Figure 8. 

3.2.2 Results 

We concluded three oscillatory hyperconnectivity networks and three oscillatory 
hypoconnectivity networks in MDD, as shown in Figure 9 and Figure 10. The hy-
perconnectivity networks include the DMN related network modulated by alpha 
and beta (10-16 Hz) bands, a left auditory related network modulated by the delta 
band, and a prefrontal network modulated by the delta band. The hyperconnec-
tivity networks include two fronto-parietal networks modulated by oscillations 
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FIGURE 10 Three oscillatory hypoconnectivity networks. (a) Adjacency matrix repre-
sentation of the network. (b) The spectral component of the network. (c) 
Cortical space representation of the network in Lateral, medial and dorsal 
view. 

of 8-14 Hz and 10-19 Hz and a prefrontal network modulated by the delta band. 

3.2.3 Contribution 

Wenya Liu proposed the ideas of the whole study, analyzed the data, and wrote 
and revised the manuscript. Xiulin Wang provided the code of coupled tensor 
decomposition, wrote the section of coupled tensor decomposition, and revised 
the manuscript. Jing Xu and Yi Chang helped to collect the data and discussed 
the results. Fengyu Cong and Timo Hämäläinen supervised the whole study and 
revised the manuscript. 

3.3 Article III: "Alpha Band Dysconnectivity Networks in Major 
Depression during Resting State" 

Wenya Liu, Xiulin Wang, Fengyu Cong, and Timo Hämäläinen. (2021). Alpha 
Band Dysconnectivity Networks in Major Depression during Resting State. 29th 
European Signal Processing Conference (EUSIPCO), Dublin, Ireland. Accepted. 
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3.3.1 Methods 

In this study, we used an open access dataset, called Multi-modal Open Dataset 
for Mental-disorder Analysis (MODMA) dataset with 128-channel resting state 
EEG data. First, we preprocessed the data and fltered the data to the alpha band 
(8-13 Hz). Second, PLI was applied to calculate the sensor-level pairwise func-
tional connectivity within each sliding window (window length: 3 s, overlap: 2 s 
). Third, we constructed two third-order adjacency tensors with the dimension of 
time × connectivity × subject, and applied a low-rank double-coupled nonneg-
ative tensor decomposition method to extract dynamic brain networks. Fourth, 
we used the k-means clustering method to identify the individual networks char-
acterized with MDD. 
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FIGURE 11 The two clusters of dysconnectivity networks in MDD during resting state. 

3.3.2 Results 

We summarized two alpha-band time-varying networks, which represent the hy-
perconnectivity networks in MDD during resting state, as shown in Figure 11. 
Figure 11(I) showed a fronto-parietal network which was related to attention and 
emotion regulation, and Figure 11(II) showed a frontal-occipital dysconnectivity 
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network which also has been demonstrated to be associate with attention. 

3.3.3 Contribution 

Wenya Liu proposed the ideas of the whole study, analyzed the data, and wrote 
and revised the manuscript. Xiulin Wang provided the code of coupled tensor 
decomposition and revised the manuscript. Fengyu Cong and Timo Hämäläinen 
supervised the whole study and revised the manuscript. 

3.4 Article IV: "Exploring Oscillatory Dysconnectivity Networks in 
Major Depression during Resting State Using Coupled Tensor 
Decomposition" 

Wenya Liu, Xiulin Wang, Timo Hämäläinen, and Fengyu Cong. (2021). Alpha 
Band Dysconnectivity Networks in Major Depression during Resting State. sub-
mitted to IEEE Transactions on Biomedical Engineering. 
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FIGURE 13 Four oscillatory networks specifed in the HC group. (a) Adjacency matrix 
representation of the network. (b) The spectral component of the network. 
(c) Cortical space representation of the network in lateral, medial and dorsal 
view. 

3.4.1 Methods 

In this study, we used an open access dataset, called Multi-modal Open Dataset 
for Mental-disorder Analysis (MODMA) dataset with 128-channel resting state 
EEG data, as the same in study III. First, the data were preprocessed using the 
EEGLAB toolbox and then fltered to 1-40 Hz with the FIR band-pass flter. Sec-
ond, we performed source localization using the weighted minimum norm esti-
mate method, and segmented the cortical surface into 68 brain regions with the 
DesikanKilliany anatomical atlas. Third, the cortical source data were segmented 
by a sliding window with a window length of 3 s and an overlap of 2 s, and 
wavelet transform was applied to obtain the time-frequency representation in 
each window. Then, we applied the PLI method to measure the phase-coupling 
between all pairs of brain regions in each time window and at each frequency bin. 
Fourth, two fourth-order adjacency tensors was constructed with the dimension 
of time × frequency × connectivity × subject, and we applied a low-rank cou-
pled tensor decomposition method with nonnegative constraints on all modes 
and double-coupled constraints on spectral and adjacency modes. Fifth, k-means 
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FIGURE 14 Four oscillatory networks specifed in the MDD group. (a) Adjacency ma-
trix representation of the network. (b) The spectral component of the net-
work. (c) Cortical space representation of the network in lateral, medial and 
dorsal view. 

clustering analysis was conducted to cluster the oscillatory networks that char-
acterize individual networks in the healthy group and the MDD group, respec-
tively. The analysis pipeline is shown in Figure 12. 

3.4.2 Results 

We clustered four oscillatory networks that characterized the individual networks 
in the HC group and the hypoconnectivity networks in MDD, as shown in Figure 
13. Figure 13I-III were alpha rhythm modulated networks. Figure 13I showed 
a right visual network, Figure 13II showed a left hemisphere dominated tem-
poroparietal network, and Figure 13III showed a sensorimotor network. A bi-
lateral frontotemporal network was identifed to be modulated by delta band, as 
shown in Figure 13IV. We clustered four oscillatory networks, which are specifed 
and overactive in the MDD group, as shown in Figure 14. Figure 14I and Figure 
14II indicated delta oscillatory networks. Figure 14I showed a left prefrontal and 
right auditory network, and Figure 14II showed a right frontotemporal network. 
The networks shown in Figure 14III and Figure 14IV were modulated by late al-
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pha oscillations. Figure 14III showed a posterior network, which involved key 
areas of DMN, and Figure 14IV represented a DAN-related network that also in-
cludes functionally connected visual cortex. 

3.4.3 Contribution 

Wenya Liu proposed the ideas of the whole study, analyzed the data, and wrote 
and revised the manuscript. Xiulin Wang provided the code of coupled tensor 
decomposition and revised the manuscript. Fengyu Cong and Timo Hämäläinen 
supervised the whole study and revised the manuscript. 



4 DISCUSSION 

This thesis investigated the dysconnectivity of oscillatory networks in MDD dur-
ing music listening and resting state at both source-level and sensor-level. This 
chapter will conclude our fndings of MDD, and discuss some limitations in the 
view of methodology. We will also point out some future directions of current 
research. 

4.1 Summarization of fndings of major depression disorder 

Study I and Study II investigated the abnormal oscillatory networks in MDD dur-
ing music listening in sensor space and cortical source space, respectively. Study 
III and Study IV studied the altered oscillatory networks during resting state in 
sensor space and cortical source space, respectively. The fndings of those stud-
ies point to the altered functional connectivity that is related to sensory networks 
and higher-order cognitive networks. The related sensory networks include the 
auditory network and the visual network. This dysfunction of sensory networks 
may indicate that the MDD patients are less involved in the surrounding envi-
ronments, which may refect the loss of interest in the outside world. The altered 
higher-order cognitive networks mainly include the DMN, the FN, the prefrontal 
network. The dysconnectivity of those higher-order cognitive networks is re-
lated to the function of attention, memory, and emotion, which are commonly 
reported in previous researches. Those network dysfunctions are associated with 
many MDD symptoms, including feelings of sadness, anxiety, and disability in 
concentrating and remembering things. 

Although there are already many years of multidisciplinary studies of MDD, 
there are no unifying results among those studies due to the different research 
problems, techniques, and applied methodologies. From the view of neuroscience, 
the neural dysfunction of MDD is too complex, and it does not cohere to write 
a straightforward story about MDD. One urgent task is developing advanced 
methodologies to reveal the MDD mechanisms from data as accurately as possi-
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ble. Another pressing task is to specify the neural dysfunctions with depression 
subtypes and symptom profles. 

4.2 Limitations of methodological applications 

The results depend on many steps of methodological applications, such as the se-
lection of sliding windows and phase synchronization metrics. The sliding win-
dow technique is typically applied in naturalistic paradigms and resting state 
when analyzing the dynamic brain networks. However, the selection of the win-
dow length and overlapping intrinsically affects the timescales of the dynamic 
fuctuations of the FC, thus limiting the explanation of the results. Different phase 
synchronization metrics can result in different connectivity maps. It is unknown 
how much the volume conduction effect can confound the true interactions and 
how much different phase synchronization metrics can correct the spurious con-
nections. Although the zero-lag insensitive metrics can reduce the volume con-
duction effect, one should never expect the complete elimination of ghost interac-
tions. Therefore, the results should be carefully explained particularly for sensor-
level analysis. 

One highlighted contribution of this thesis is that we introduced the coupled 
tensor decomposition model regarding the multiway and multiset data structure. 
Under the assumption that there are partially neural dysfunctions partially al-
tered functional networks in MDD compared with healthy controls, we identifed 
the time-varying and frequency-specifc networks in MDD at the group level. At 
this point, we clarify some limitations of the proposed method. First, further 
studies should address the stabilities of the algorithm. Our results are summa-
rized from many times’ runs of the coupled tensor decomposition method, and 
the results may be confounded from various local optimal solutions. Therefore, 
more accurate optimization algorithms should be tested and developed. Second, 
the selection of the number of coupled components is a key issue that directly 
affects the results, and there is not enough prior information to be utilized. In 
our study, we frstly decomposed the individual tensor and then correlated the 
components between blocks. This is one potential solution to determine the cou-
pled components, but the selection is still very subjective. Third, the proposed 
framework enables the exploration of group-featured information in MDD, but 
we ignored the subject differences within each group. However, the subject dif-
ferences are crucial for the development of new diagnostics and personalized 
interventions for neuropsychiatric disorders. Our proposed method can realize 
the identifying of subject differences, but this will bring more challenges to pa-
rameter selections and result explanations. This unsolved issue should be taken 
into consideration for future extension of our work. 
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4.3 Future directions 

As described above, individual differences are important for clinical use. Previ-
ous studies have investigated the network dysfunction of MDD between hetero-
geneous clinical groups. Recently, increasing interests focus on characterizing the 
individual-specifc brain networks and topological features (Satterthwaite et al., 
2018; Finn et al., 2017; Scheinost et al., 2019). Advanced methodologies and ex-
perimental design should be developed to explicitly explore the group features 
that are consistent across individuals and individual features that are specifc for 
each subject. 

For electrophysiological techniques, like EEG and MEG, the spatial resolu-
tion is relatively poor, and the source modeling is somehow controversial due to 
the non-uniqueness in inverse problem, and the recorded signals from the scalp 
are not sensitive to the neuronal activities in the deep brain (Rossini et al., 2019). 
While fMRI has perfect spatial resolution but poor temporal resolution due to 
the hemodynamic response, and this limited the studies of dynamic brain net-
works. Therefore, combining different brain techniques and fully making use of 
their advantages are promising research directions. The coupled tensor decom-
position applied in our studies is a potentially powerful method for the fusion of 
different modalities, because the coupled tensor decomposition model is fexible 
enough to jointly analyze multiset data with coupling information and different 
data structures. 

Differences in functional connectivity during task and rest should also be 
further studied, especially between the naturalistic stimuli and resting state. The 
energy consumption during ongoing tasks only increases 5% compared with rest-
ing conditions, and there is a high similarity of functional networks between 
rest and task (Gonzalez-Castillo and Bandettini, 2018). How the task-related 
networks are modulated by the resting-state networks is a promising direction 
to study. What’s more, for the high-resolution EEG and MEG techniques, the 
recorded signals are very similar to those of resting state. Further studies should 
also focus on the separation of task-related brain activities and spontaneous ac-
tivities, and fnd the dissimilarities and underpinning of the dynamic networks 
in naturalistic tasks. 

The network communication is regulated by neuronal oscillations. The cross-
frequency coupling serves as a systems-level neuronal mechanism to temporally 
coordinate network transitions and communications (Palva and Palva, 2012). It is 
suggested that different neuronal processes carried out concurrently in multiple 
frequency bands are integrated to support coherent cognitive functions (Palva 
and Palva, 2018). Cross-frequency phase synchrony, phase-amplitude coupling, 
and cross-frequency amplitude–amplitude correlations are three forms of cross-
frequency coupling. However, a clear mechanism of cross-frequency coupling 
still remains unknown. Abnormal cross-frequency network communications may 
lead to cognitive disorders. This thesis investigated within-frequency-synchronized 
networks. Further researches could explore the cross-frequency interaction of 
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different brain networks and their dysfunction in MDD, and the corresponding 
methodologies should also be developed. 



5 CONCLUSION 

This thesis investigated the oscillatory networks in MDD using EEG recorded 
during music listening conditions and resting state. Study I is the frst attempt to 
examine the altered functional connectivity using EEG during music perception. 
The results of beta-band dysconnectivity have provided potential and promis-
ing biomarkers for the clinical diagnosis of MDD. Regarding the multiway and 
multimodal nature of the EEG brain networks, we frstly applied a coupled ten-
sor decomposition model to extract the brain networks, which are time-varying, 
frequency-specifc, and group-featured. We validated the effciency and feasibil-
ity of this model by synthetic data and applied this model to EEG data recorded 
in the naturalistic paradigm and resting state (study II-IV). The altered func-
tional networks of MDD include sensory networks and higher-order cognitive 
networks, such as the auditory network, the DMN, the FN, and so on. Those 
brain networks are mostly related to emotional regulation, attention, and mem-
ory, and the associated dysfunctions in MDD are also commonly demonstrated 
in the literature. The dysconnectivity networks identifed in our studies are no-
table in delta, alpha, and beta oscillations, which are well supported by previous 
researches. The dysconnectivity of oscillatory networks reported in our stud-
ies may provide new insights into the pathoconnectomics of MDD and potential 
biomarkers of MDD diagnosis. 

As stated in our thesis, there have been mixed or even contradictory results 
about the network dysfunctions of MDD due to many aspects of limitations. Un-
doubtedly, it would be of great interest to draw a comprehensive picture of the 
altered connectomes of MDD and make practical contributions to the clinical di-
agnosis and treatment. 



YHTEENVETO (SUMMARY IN FINNISH) 

Tässä opinnäytetyössä tutkittiin suuren masennushäiriön (MDD:n Major Depres-
sion Disorder) värähtelyverkkoja käyttämällä musiikin kuuntelu- ja lepotilassa 
tallennettua EEG:tä. Tutkimus on ensimmäinen yritys tutkia muuttunutta toi-
minnallista yhteyttä EEG:llä musiikin havaitsemisen aikana. Beeta-kaistan toi-
mintahäiriön tulokset ovat tarjonneet potentiaalisia ja lupaavia biomarkkereita 
MDD:n kliiniseen diagnosointiin. Mitä tulee EEG-aivoverkkojen monisuuntai-
seen ja multimodaaliseen luonteeseen, käytimme ensin kytkettyä tensorin hajoa-
mismallia aivoverkkojen poimimiseksi, jotka ovat ajoittain vaihtelevia, taajuus-
kohtaisia ja ryhmäkohtaisia. Vahvistimme tämän mallin tehokkuuden ja toteu-
tettavuuden synteettisillä tiedoilla ja sovelsimme tätä mallia EEG-tietoihin, jot-
ka on tallennettu naturalistiseen paradigmaan ja lepotilaan. MDD:n muuttuneet 
toiminnalliset verkot sisältävät aistiverkkoja ja korkeamman asteen kognitiivi-
sia verkkoja, kuten kuuloverkko, DMN, FN ja niin edelleen. Nämä aivoverkot 
liittyvät enimmäkseen emotionaaliseen säätelyyn, huomioon ja muistiin, ja nii-
hin liittyvät MDD -toimintahäiriöt ovat myös yleisesti osoitettu kirjallisuudessa. 
Tutkimuksissamme tunnistetut häiriöverkot ovat merkittäviä delta-, alfa- ja bee-
ta -värähtelyissä, joita aiemmat tutkimukset tukevat hyvin. Tutkimuksissamme 
raportoitu värähtelyverkkojen epäyhteysyhteys antaa uutta tietoa MDD:n pato-
konnektomiasta ja MDD -diagnoosin mahdollisista biomarkkereista. 

Kuten väitöskirjassa todettiin, MDD:n verkkohäiriöistä on saatu ristiriitai-
sia tuloksia monien rajoitusten vuoksi. Olisi erittäin mielenkiintoista piirtää kat-
tava kuva MDD:n muuttuneista yhteyksistä ja antaa sitä kautta käytännön apua 
kliiniseen diagnosointiin ja hoitoon. 



REFERENCES 

Abbott, C. C., Lemke, N. T., Gopal, S., Thoma, R. J., Bustillo, J., Calhoun, V. D., 
and Turner, J. A. (2013). Electroconvulsive therapy response in major depres-
sive disorder: a pilot functional network connectivity resting state fmri inves-
tigation. Frontiers in psychiatry, 4:10. 

Acar, E., Levin-Schwartz, Y., Calhoun, V. D., and Adali, T. (2017). Tensor-based 
fusion of eeg and fmri to understand neurological changes in schizophrenia. In 
2017 IEEE International Symposium on Circuits and Systems (ISCAS), pages 1–4. 
IEEE. 

Ahn, Y.-Y., Bagrow, J. P., and Lehmann, S. (2010). Link communities reveal multi-
scale complexity in networks. nature, 466(7307):761–764. 

Ajilore, O., Lamar, M., Leow, A., Zhang, A., Yang, S., and Kumar, A. (2014). 
Graph theory analysis of cortical-subcortical networks in late-life depression. 
The American Journal of Geriatric Psychiatry, 22(2):195–206. 

Allen, E. A., Damaraju, E., Plis, S. M., Erhardt, E. B., Eichele, T., and Calhoun, 
V. D. (2014). Tracking whole-brain connectivity dynamics in the resting state. 
Cerebral cortex, 24(3):663–676. 

Andrews-Hanna, J. R., Reidler, J. S., Sepulcre, J., Poulin, R., and Buckner, R. L. 
(2010). Functional-anatomic fractionation of the brain’s default network. Neu-
ron, 65(4):550–562. 

Andrews-Hanna, J. R., Smallwood, J., and Spreng, R. N. (2014). The default net-
work and self-generated thought: component processes, dynamic control, and 
clinical relevance. Annals of the New York Academy of Sciences, 1316(1):29. 

Aydore, S., Pantazis, D., and Leahy, R. M. (2013). A note on the phase locking 
value and its properties. Neuroimage, 74:231–244. 

Baker, A. P., Brookes, M. J., Rezek, I. A., Smith, S. M., Behrens, T., Smith, P. J. P., 
and Woolrich, M. (2014). Fast transient networks in spontaneous human brain 
activity. Elife, 3:e01867. 

Barrat, A., Barthelemy, M., and Vespignani, A. (2008). Dynamical processes on com-
plex networks. Cambridge university press. 

Bartels, A. and Zeki, S. (2004). Functional brain mapping during free viewing of 
natural scenes. Human brain mapping, 21(2):75–85. 

Bassett, D. S. and Sporns, O. (2017). Network neuroscience. Nature neuroscience, 
20(3):353–364. 



57 

Beckmann, C. F., DeLuca, M., Devlin, J. T., and Smith, S. M. (2005). Investigations 
into resting-state connectivity using independent component analysis. Philo-
sophical Transactions of the Royal Society B: Biological Sciences, 360(1457):1001– 
1013. 

Belmaker, R. and Agam, G. (2008). Major depressive disorder. New England Jour-
nal of Medicine, 358(1):55–68. 

Berrios, G. E. (1988). Melancholia and depression during the 19th century: a 
conceptual history. The British Journal of Psychiatry, 153(3):298–304. 

Betzel, R. F. and Bassett, D. S. (2017). Multi-scale brain networks. Neuroimage, 
160:73–83. 

Biswal, B., Zerrin Yetkin, F., Haughton, V. M., and Hyde, J. S. (1995). Functional 
connectivity in the motor cortex of resting human brain using echo-planar mri. 
Magnetic resonance in medicine, 34(4):537–541. 

Blondel, V. D., Guillaume, J.-L., Lambiotte, R., and Lefebvre, E. (2008). Fast un-
folding of communities in large networks. Journal of statistical mechanics: theory 
and experiment, 2008(10):P10008. 

Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., and Hwang, D.-U. (2006). Com-
plex networks: Structure and dynamics. Physics reports, 424(4-5):175–308. 

Bohr, I. J., Kenny, E., Blamire, A., O’Brien, J. T., Thomas, A., Richardson, J., and 
Kaiser, M. (2013). Resting-state functional connectivity in late-life depression: 
higher global connectivity and more long distance connections. Frontiers in 
psychiatry, 3:116. 

Brandes, U. (2001). A faster algorithm for betweenness centrality. Journal of math-
ematical sociology, 25(2):163–177. 

Brookes, M. J., Hale, J. R., Zumer, J. M., Stevenson, C. M., Francis, S. T., Barnes, 
G. R., Owen, J. P., Morris, P. G., and Nagarajan, S. S. (2011a). Measuring func-
tional connectivity using meg: methodology and comparison with fcmri. Neu-
roimage, 56(3):1082–1104. 

Brookes, M. J., Liddle, E. B., Hale, J. R., Woolrich, M. W., Luckhoo, H., Liddle, 
P. F., and Morris, P. G. (2012). Task induced modulation of neural oscillations 
in electrophysiological brain networks. Neuroimage, 63(4):1918–1930. 

Brookes, M. J., O’Neill, G. C., Hall, E. L., Woolrich, M. W., Baker, A., Corner, 
S. P., Robson, S. E., Morris, P. G., and Barnes, G. R. (2014). Measuring temporal, 
spectral and spatial changes in electrophysiological brain network connectivity. 
Neuroimage, 91:282–299. 



58 

Brookes, M. J., Woolrich, M., Luckhoo, H., Price, D., Hale, J. R., Stephenson, M. C., 
Barnes, G. R., Smith, S. M., and Morris, P. G. (2011b). Investigating the electro-
physiological basis of resting state networks using magnetoencephalography. 
Proceedings of the National Academy of Sciences, 108(40):16783–16788. 

Brunner, C., Billinger, M., Seeber, M., Mullen, T. R., and Makeig, S. (2016). Volume 
conduction infuences scalp-based connectivity estimates. Frontiers in computa-
tional neuroscience, 10:121. 

Bruns, A. (2004). Fourier-, hilbert-and wavelet-based signal analysis: are they 
really different approaches? Journal of neuroscience methods, 137(2):321–332. 

Buckner, R. L., Andrews-Hanna, J. R., and Schacter, D. L. (2008). The brain’s 
default network: anatomy, function, and relevance to disease. 

Bullmore, E. and Sporns, O. (2009). Complex brain networks: graph theoreti-
cal analysis of structural and functional systems. Nature reviews neuroscience, 
10(3):186–198. 

Bullmore, E. and Sporns, O. (2012). The economy of brain network organization. 
Nature Reviews Neuroscience, 13(5):336–349. 

Bullmore, E. T. and Bassett, D. S. (2011). Brain graphs: graphical models of the 
human brain connectome. Annual review of clinical psychology, 7:113–140. 

Buzsáki, G. and Draguhn, A. (2004). Neuronal oscillations in cortical networks. 
science, 304(5679):1926–1929. 

Calhoun, V. D., Miller, R., Pearlson, G., and Adalı, T. (2014). The chronnectome: 
time-varying connectivity networks as the next frontier in fmri data discovery. 
Neuron, 84(2):262–274. 

Cavanna, A. E. and Trimble, M. R. (2006). The precuneus: a review of its func-
tional anatomy and behavioural correlates. Brain, 129(3):564–583. 

Chang, C. and Glover, G. H. (2010). Time–frequency dynamics of resting-state 
brain connectivity measured with fmri. Neuroimage, 50(1):81–98. 

Chang, C., Liu, Z., Chen, M. C., Liu, X., and Duyn, J. H. (2013). Eeg correlates of 
time-varying bold functional connectivity. Neuroimage, 72:227–236. 

Cichocki, A. (2013). Tensor decompositions: a new concept in brain data analysis? 
arXiv preprint arXiv:1305.0395. 

Cong, F., Lin, Q.-H., Kuang, L.-D., Gong, X.-F., Astikainen, P., and Ristaniemi, T. 
(2015). Tensor decomposition of eeg signals: a brief review. Journal of neuro-
science methods, 248:59–69. 

Damoiseaux, J. S., Rombouts, S., Barkhof, F., Scheltens, P., Stam, C. J., Smith, S. M., 
and Beckmann, C. F. (2006). Consistent resting-state networks across healthy 
subjects. Proceedings of the national academy of sciences, 103(37):13848–13853. 



59 

de Aguiar Neto, F. S. and Rosa, J. L. G. (2019). Depression biomarkers using 
non-invasive eeg: A review. Neuroscience & Biobehavioral Reviews, 105:83–93. 

De Domenico, M. (2017). Multilayer modeling and analysis of human brain net-
works. Giga Science, 6(5):gix004. 

De Pasquale, F., Della Penna, S., Snyder, A. Z., Lewis, C., Mantini, D., Marzetti, L., 
Belardinelli, P., Ciancetta, L., Pizzella, V., Romani, G. L., et al. (2010). Temporal 
dynamics of spontaneous meg activity in brain networks. Proceedings of the 
National Academy of Sciences, 107(13):6040–6045. 

De Pasquale, F., Della Penna, S., Sporns, O., Romani, G., and Corbetta, M. (2016). 
A dynamic core network and global effciency in the resting human brain. Cere-
bral Cortex, 26(10):4015–4033. 

de Vico Fallani, F., Richiardi, J., Chavez, M., and Achard, S. (2014). Graph 
analysis of functional brain networks: practical issues in translational neu-
roscience. Philosophical Transactions of the Royal Society B: Biological Sciences, 
369(1653):20130521. 
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h i g h l i g h t s

� Major depression causes altered connectivity in delta and beta bands during music perception.
� Beta band connectivity is a promising biomarker for the diagnosis of major depression disorder.
� Naturalistic music stimuli lead to frequency-specific functional connectivity.

a b s t r a c t

Objective: The functional connectivity (FC) of major depression disorder (MDD) has not been well studied
under naturalistic and continuous stimuli conditions. In this study, we investigated the frequency-
specific FC of MDD patients exposed to conditions of music perception using ongoing electroencephalo-
gram (EEG).
Methods: First, we applied the phase lag index (PLI) method to calculate the connectivity matrices and
graph theory-based methods to measure the topology of brain networks across different frequency
bands. Then, classification methods were adopted to identify the most discriminate frequency band for
the diagnosis of MDD.
Results: During music perception, MDD patients exhibited a decreased connectivity pattern in the delta
band but an increased connectivity pattern in the beta band. Healthy people showed a left hemisphere-
dominant phenomenon, but MDD patients did not show such a lateralized effect. Support vector machine
(SVM) achieved the best classification performance in the beta frequency band with an accuracy of 89.7%,
sensitivity of 89.4% and specificity of 89.9%.
Conclusions: MDD patients exhibited an altered FC in delta and beta bands, and the beta band showed a
superiority in the diagnosis of MDD.
Significance: Our study provided a promising reference for the diagnosis of MDD, and revealed a new per-
spective for understanding the topology of MDD brain networks during music perception.

� 2020 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights
reserved.

1. Introduction

Major depression disorder (MDD) is currently one of the most
prevalent psychiatric disorders, and it substantially disrupts

patients’ lives. MDD patients are usually characterized by deficits
of affective and cognitive functions (Kaiser, 2015; Li et al., 2018;
Xia et al., 2018). Although many researchers have dedicated them-
selves to the exploration of the pathophysiology of MDD, the neu-
ral mechanisms of its etiology and pathogenesis are still not fully
understood. Currently, there are no biomarkers for the clinical
diagnosis of MDD (Fingelkurts and Fingelkurts, 2015; Gao et al.,
2018; Nugent et al., 2019). Conventionally, the clinical diagnosis
of MDD frequently depends on some public criteria, such as Diag-
nostic and Statistical Manual of Mental Disorders V (DSM-5),
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which makes the diagnosis of MDD very subjective due to human
factors and causes faulty diagnostic results (Mumtaz et al., 2015;
Nugent et al., 2019). For this reason, noninvasive neuroimaging
techniques, such as electroencephalogram (EEG), magnetoen-
cephalography (MEG) and functional magnetic resonance imaging
(fMRI), are urgently needed as more effective and intelligent diag-
nostic tools. EEG is an inexpensive technique that benefits from
high temporal resolution. EEG is able to record electrical activity
at frequencies related to neuronal activity and to capture the
dynamic changes at a millisecond scale. These advantages make
EEG a very promising technique for commonly use in the diagnosis
of MDD (Baskaran et al., 2012; Mumtaz et al., 2015, 2017).

Many fMRI studies have demonstrated that the pathogenesis of
MDD is the abnormality of large-scale brain networks, such as
default mode network (DMN) (Zhu et al., 2012; Wu et al., et al.,
2013) and affective network (AN) (Avery et al., 2014), or the
dysconnectivity of some brain regions, such as corticolimbic path-
ways (Nugent et al., 2019), rather than the dysfunction of an indi-
vidual brain region. So, functional connectivity (FC) has proven to
be effective to investigate network dysfunction in MDD. FC pro-
vides a new line of thought for the diagnosis of MDD patients,
and many studies, especially fMRI and EEG studies, have focused
on the classification of MDD based on FC analysis (Wang et al.,
2017; Gao et al., 2018; Sakai and Yamada, 2019). However, FC anal-
ysis and MDD classification always focus on resting-state or highly
controlled and repeated stimuli, but the differences in FC under
naturalistic and continuous stimuli between healthy people and
MDD patients have not been well studied. Compared with resting
state, listening to continuous music is more closely related to
real-world experience (Wang et al., 2020), and emotional arousal
can be induced for affective processing (Mikutta et al., 2012).
Music therapy has become an attractive tool for MDD treatment,
so understanding the mechanism of the brain response during lis-
tening to music is the basis for the diagnosis and treatment of MDD
(Michael et al., 2005; Maratos et al., 2008). An increasing amount
of literature has demonstrated that human brain networks are dif-
ferent across frequency bands in both resting-state and task condi-
tions, and networks in specific frequency bands may reveal
different brain functions (Brookes et al., 2012, 2016; Hillebrand
et al., 2012, 2016). Previous studies have demonstrated altered
FC in MDD in different frequency bands, so FC analysis across dif-
ferent frequency bands is important to the diagnosis of MDD
(Mumtaz et al., 2015; Knott et al., 2001; Whitton et al., 2018).
Some studies have found that frequency-specific and large-scale
brain networks will emerge during music perception to sustain
ongoing cognitive tasks (Alluri et al., 2012; Cong et al., 2013;
Wang et al., 2020). A review by Maratos et al., emphasized that
music therapy was associated with improvements in mood to treat
depression (Maratos et al., 2008). Some researchers have already
focused on frequency-specific brain responses to music in depres-
sion patients and other psychiatric disorders and have found that
music therapy can alter FC and modulate brain responses
(Michael et al., 2005; Ramirez et al., 2015; Dharmadhikari et al.,
2018). These previous studies support our assumption that altered
FC exists in different frequency bands during music perception in
MDD patients. However, few studies have investigated the mecha-
nism of dysconnectivity and brain responses of MDD patients dur-
ing music perception.

For electrophysiological neuroimaging techniques, like EEG, the
collected signals from one scalp sensor are actually from the whole
brain due to the volume conduction effect (Van Den Broek et al.,
1998; Schoffelen and Gross, 2009; Brunner et al., 2016). Brain con-
nectivity in sensor space is usually confounded by volume conduc-
tion, and even with the conduction of source reconstruction
methods, source leakage still exists due to the ill-posed nature of
the inverse problem (O’Neill et al., 2018). An increasing number

of studies have demonstrated that the communication of brain
regions or neural populations depends on phase interactions
(Womelsdorf et al., 2007; Palva and Palva, 2012; He et al., 2019).
A zero-lag interaction is considered to be the consequence of vol-
ume conduction because signal leakage is instantaneous. Among
the phase synchronization methods, phase lag index (PLI) discards
the interactions resulting from phase differences of zero, so PLI is
not sensitive to the volume conduction effect; thus, it is commonly
used in the FC analysis of EEG and MEG studies (Stam et al., 2007;
Vinck et al., 2011; Wu et al., 2012). Ruiz-Gómez et al have demon-
strated that PLI could reduce the bias introduced by the spurious
influence of volume conduction and was superior to the other
seven FC synchronization measures (Ruiz-Gómez et al., 2019).

Network analysis methods based on graph theory are widely
used to reveal the topology of brain networks (Sporns, 2018; Ren
et al., 2019). In EEG sensor space, the brain networks are constituted
by nodes representing electrodes and edges representing FC
strength between every pair of nodes. The various network proper-
ties are efficient measures used to quantify brain functional inte-
gration and functional segregation (Rubinov and Sporns, 2010;
Liao et al., 2017). Degree, which is ameasure of influence, clustering
coefficient, which is a measure of functional segregation, and char-
acteristic path length, which is a measure of functional integration,
are network properties that are commonly used to quantify the effi-
ciency of information processing (Achard et al., 2006; He et al.,
2007; Gong and He, 2015). In this study, we applied degree, cluster-
ing coefficient and characteristic path length to quantify the differ-
ences between healthy people and MDD patients.

In this study, we collected EEG data from healthy people and
MDD patients under conditions of music perception, and used
the PLI method to calculate FC across five typically analyzed fre-
quency bands: delta, theta, alpha, beta and gamma bands. After
statistical analysis using the network-based-statistic (NBS)
method, we compared the two groups through connectivity matri-
ces and graph-theory based network properties in delta and beta
frequency bands, which exhibited significant differences. Finally,
machine learning methods were used to perform the classification.

2. Methods

2.1. Data acquisition

Nineteen healthy adults (fourteen females and five males) aged
24–65 years in the control (CON) group and twenty adults (four-
teen females and six males) with MDD aged 23–58 years in the
MDD group were recruited for this experiment. All the patients
were from the First Affiliated Hospital of Dalian Medical University
in China. This study was approved by the ethics committee of the
hospital, and all the participants signed the informed consent
before their enrollment. None of the participants reported hearing
loss or formal training in music. MDD patients were primarily diag-
nosed by a clinical expert, and the course of the disease varied from
2 and 36 months. All the participants were tested according to
Hamilton Rating Scale for Depression (HRSD), Hamilton Anxiety
Rating Scale (HAMA) and Mini-Mental State Examination (MMSE).
The means and standard deviations (SD) of age, gender, education
and clinical measures for both groups are listed in Table 1. During
the experiment, participants were told to sit comfortably in a chair
and listen to a piece of music. An 8.5-minute long musical piece of
modern tango by Astor Piazzolla was used as the stimulus due to
its rich musical structure and high range of variation in musical
features, such as dynamics, timbre, tonality and rhythm (Alluri
et al., 2012, 2013).

The EEG data were recorded by the Neuroscan Quik-cap device
with 64 electrodes arranged according to the international 10–20
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system. Electrodes placed at the left and right earlobes were used
as the references. The data were down-sampled to 256 Hz for fur-
ther processing and visually checked to remove obvious artifacts
from head movements. Eye movements artifacts were rejected by
independent component analysis (ICA), and 50-Hz artifacts were
removed by short time Fourier transform (STFT). STFT was applied
to filter the data into five typically analyzed frequency bands,
namely, the delta (0.5–4 Hz), theta (4–8 Hz), alpha (8–13 Hz), beta
(13–30 Hz) and gamma (30–80 Hz) bands, for further analysis.

2.2. Phase synchronization

In this study, phase synchronization was measured between all
the pairs of channels by the PLI method, which is an asymmetry
index that measures the distribution of phase differences (Stam
et al., 2007; Vinck et al., 2011). Due to the instantaneous spread
of current, the same sources collected by two electrodes are con-
sidered to cause a zero-lag phase difference, which is rejected by
PLI. Therefore, PLI is less sensitive to the volume conduction effect,
and it can reveal the true coupling strength between pairs of
channels.

For an EEG signal x tð Þ; t ¼ 1;2;3; � � � ; T from one channel, the
analytical signal zðtÞ can be constructed by Hilbert transform,

z tð Þ ¼ x tð Þ þ i x
�ðtÞ ¼ 1

p
PV

Z 1

�x

x sð Þ
t � s

ds; ð1Þ

where x
�ðtÞ is the imaginary part, and PV refers to the Cauchy prin-

cipal value. Then, the instantaneous amplitudeAðtÞ and the instanta-
neous phaseuðtÞ can be computed as follows:

A tð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x
�ðtÞ
h i2

þ x tð Þ½ �2
r

u tð Þ ¼ arctan x
�ðtÞ
x tð Þ :

8><
>: ð2Þ

Therefore, the phase difference DuðtÞ of two signals xaðtÞ and
xbðtÞ at time t can be formulated as:

Du tð Þ ¼ ua tð Þ �ub tð Þ: ð3Þ
Then, the PLI index can be defined via

PLI ¼ jhsign½DuðtÞ�ij; t ¼ 1 � � � T: ð4Þ
The value of PLI index varies between 0 and 1. A value of 0 indi-

cates no coupling or coupling with a phase difference centered
around 0 mod p, and a value of 1 indicates perfect phase synchro-
nization between two signals at a constant lag except 0 or p.

In this study, for the 8.5-minute EEG data with a sampling fre-
quency of 256 Hz, we first removed four unusable electrodes. Then,
we removed the first and last 10 seconds of the EEG data to avoid
transition effects, and we segmented the EEG data into non-
overlapping epochs by a time window of 10 seconds, so there were

a total of 49 epochs. Then, an adjacency matrix of 60� 60 was cal-
culated by PLI for each epoch and each frequency band.

2.3. Network analysis

Graph theory is normally used after the calculation of the adja-
cency matrix to quantify the topology of brain networks. In this
study, we used three commonly used network measures to quan-
tify influence, functional segregation and functional integration,
including degree, clustering coefficient and characteristic path
length. All the network measures mentioned above were computed
using the Brain Connectivity Toolbox (Rubinov and Sporns, 2010)
(http://www.brain-connectivity-toolbox.net).

For an adjacency matrix G, with N nodes, wij represents the con-
nection strength between node i and node j, where 0 � wij � 1. The
diagonal elements mean self-connections of nodes, so
wii ¼ 0; i ¼ 1;2; � � � ;N.

2.3.1. Degree
Degree is considered an important marker of network develop-

ment and resilience, and for a weighted network, the degree of
node i can be defined as follows:

ki ¼
X

j2Nwij ð5Þ

2.3.2. Clustering coefficient
Clustering coefficient is a measure of functional segregation

which is a reflection of the local organization of a network by
depicting the tendency of a node forming local triangles (Rubinov
and Sporns, 2010), and its definition for a weighted network of
node i is described as follows:

Ci ¼ 2ti
ki ki � 1ð Þ ; ð6Þ

where ti ¼ 1
2

P
j;h2N wijwihwjh

� �1
3 is the geometric mean of triangles

around i. The clustering coefficient for the whole network is defined
as the mean of clustering coefficient for all nodes,

C ¼ 1
N

X
i2NCi ð7Þ

2.3.3. Characteristic path length
Characteristic path length is the average of shortest path length

between all pairs of nodes and is commonly used to measure func-
tional integration. Characteristic path length is a reflection of the
efficiency of a network (Bullmore and Sporns, 2009). The definition
is described as follows:

L ¼ 1
N

X
i2N

P
j2N;j–idij

N � 1
; ð8Þ

Table 1
Means and standard deviations of age, gender, education and clinical measures of the CON group and MDD group.

CON group MDD group Analysis

Mean SD(Range) Mean SD(Range) p-value

Age 38.4 11.8(24–65) 42.9 11.0(23–58) >0.05
Education 13.6 3.8(6–20) 12.8 3.4(6–16) >0.05
HRSD 2.4 1.3(0–4) 23.3 3.6(16–28) <0.01
HAMA 2.4 1.3(0–5) 19.2 3.0(15–25) <0.01
MMSE 28.2 0.9(27–30) 28.1 1.1(26–30) >0.05
Duration 0 0 12.8 8.5(2–36) –
Gender 14 females, 5 males 14 females, 6 males –

Abbreviations: CON, control; MDD, major depression disorder; SD, standard deviations; HRSD, Hamilton Rating Scale for Depression; HAMA, Hamilton Anxiety Rating Scale;
MMSE, Mini-Mental State Examination.
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where dij ¼
P

auv2gwi$j

1
wuv

is the shortest path length between node i and

node j, and gw
i$j is the shortest weighted path between i and j.

2.4. Statistical analysis

To determine in which frequency band a significant difference
exists between the CON group and MDD group, Network Based
Statistic Toolbox was applied in this study (Zalesky et al., 2010).
The NBS method can control the family-wise error when multiple
univariate testing is performed at each connection of a network.
NBS method is used to identify significant brain network substruc-
tures formed by some suprathreshold links but not to identify indi-
vidual links as being significant. The threshold is used on the test
statistic computed for each pairwise connection, and different
thresholds can construct different level of sparse graphs. After
averaging the adjacency matrices across time windows for each
subject, statistical analysis was performed between the CON group
and MDD group for each frequency band. A significance level of
corrected P < 0:05 and a nonparametric permutation test of 5000
permutations were used in this study. T-test was selected for the
statistical test, and different test statistic thresholds (t-statistic)
were tested to identify the most significant brain network
substructures.

2.5. Classification

Considering the limitations of using sliding windows without
overlapping, which will lead to the problem that FC topology
may not been well described within one fixed time window
(Liuzzi et al., 2019), we averaged every six time windows (the con-
nectivity matrices within one minute) to generate one classifica-
tion sample to highlight the main connectivity patterns during
music perception. To improve classification performances, we con-
structed sparse networks based on the notion of connected graphs
to remove redundant information, which can ensure that every
node has a connection to another node for a sparse network. The
detailed method for threshold selection can be found in reference
(Atay and Biyikoǧlu, 2005).

In this study, we used the adjacency matrices obtained by PLI to
perform classification, and we compared the classification perfor-
mance using original networks and sparse networks between delta
and beta frequency bands and six classifiers, including decision
tree (DT), Gaussian mixture model (GMM), k-nearest neighbor
(KNN), naïve Bayes (NB), random forest (RF) and support vector
machine (SVM). We unfolded the adjacency matrix to a vector as
one sample. Because of the symmetry property of the adjacency
matrix, we can obtain NðN � 1Þ=2 ¼ 60ð60� 1Þ=2 ¼ 1770 variables
for each sample. Therefore, we can get 152 samples for the CON
group and 160 samples for the MDD group. To avoid overfitting,
principal component analysis (PCA) was applied for dimension
reduction before classification.

To assess the performance of classification, we calculated some
statistical evaluation measurements including accuracy, sensitiv-
ity, and specificity (Yan et al., 2019), which can be calculated by:

accuracy ¼ TP þ TN
TP þ FP þ TN þ FN

; ð9Þ

sensitivity ¼ TP
TP þ FN

; ð10Þ

specificity ¼ TN
TN þ FP

; ð11Þ

where TP, TN, FP and FN represent true positive, true negative, false
positive and false negative, respectively. To obtain a reliable

classification result, we shuffled the data order, used 10-fold cross
validation, and ran 10 times for each classifier. Then, we averaged
the classification results to calculate the final performance for each
classifier and each frequency band.

3. Results

3.1. Phase synchronization

After statistical analysis by NBS for each frequency band, a sig-
nificant difference only existed in two frequency bands: delta and
beta bands (delta: P ¼ 0:0450, theta: P ¼ 0:2386, alpha:
P ¼ 0:3447, beta: P ¼ 0:0344, gamma: P ¼ 0:0649). The adjacency
matrices for these two frequency bands of the CON group and
MDD group are shown in Fig. 1. For the delta frequency band,
the connectivity strength increased in the MDD group (delta:
mean ¼ 0:0867, SD ¼ 0:0197) compared to the CON group (delta:
mean ¼ 0:0853, SD ¼ 0:0178;). However, for the beta frequency
band, the connectivity strength of the MDD group
(mean ¼ 0:0408, SD ¼ 0:0133) decreased compared with that of
the CON group (mean ¼ 0:0485, SD ¼ 0:0143). From Fig. 1, we
can see that short-distance synchronization was stronger than
long-distance synchronization, and the whole brain connectivity
was formed by many small modules.

The significant brain network connections between the CON
group and the MDD group in delta and beta frequency bands are
shown in Fig. 2. We can see that there were 13 significant connec-
tions in the delta band distributed within right central brain areas
and between right temporal and left parietal brain regions. While
in the beta band, there were 43 significant connections character-
ized mostly by long-distance edges, which were distributed mostly
within frontal brain areas and between frontal and parieta-
occipital brain areas. The substructures were considered to be
important indicators of the differences between the two groups,
which can be promising biomarkers for MDD under conditions of
music perception.

3.2. Network analysis

We calculated the degree of each node in delta and beta fre-
quency bands for both groups, as shown in Fig. 3. We obtained
the lateralization index (LI) by the formula: LI ¼ ðL� RÞ=ðLþ RÞ,
where L and R represented the degree of left and right hemisphere,
respectively (Desmond et al., 1995). Then, we performed t-test for
both delta and beta bands, and we obtained P ¼ 0:0114 for the
delta band and P < 0:0001 for the beta band. For the CON group,
there was a lateralization effect to the left hemisphere, but for
the MDD group, there was no such lateralization effect. From
Fig. 3, we can conclude that the degree increased in the delta fre-
quency band for the MDD group (delta: mean ¼ 0:0867,
SD ¼ 0:0040;) compared with the CON group (delta:
mean ¼ 0:0854, SD ¼ 0:0022), but it decreased in the beta fre-
quency band for the MDD group (mean ¼ 0:0402, SD ¼ 0:0032)
compared with the CON group (mean ¼ 0:0480, SD ¼ 0:0031); this
finding was consistent with the results from the adjacency matri-
ces as shown in Fig. 1. Fig. 4 shows a boxplot of clustering coeffi-
cient and characteristic path length in delta and beta frequency
bands of both the CON group and the MDD group. From this find-
ing, we can see that the beta frequency band was the most discrim-
inate for classifying the CON group and the MDD group; therefore,
next, we will test the classification performance of each frequency
band.
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Fig. 1. Averaged adjacency matrices of the CON group and MDD group across time windows for delta and beta frequency bands. Each adjacency matrix is formed by a 60� 60
matrix with zero values in the diagonal. CON, control; MDD, major depression disorder.

Fig. 2. The significant brain network connections in delta and beta frequency bands of the CON group and MDD group. The results were conducted by the NBS method using
5000 permutations, corrected p value of p < 0:05, and maximum component threshold t > 3:1 for the delta band and t > 2:3 for the beta band. There are 13 significant
connections in the delta band and 43 significant connections in the beta band. CON, control; MDD, major depression disorder; NBS, network based statistic.
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Fig. 3. The degree of each node in delta and beta frequency bands for the CON group and MDD group. CON, control; MDD, major depression disorder.

Fig. 4. Boxplot of clustering coefficient and characteristic path length for the CON group and MDD group in delta and beta frequency bands. The upper and lower black lines
represent the maximum value and the minimum value, respectively, and the red cross indicates outliers. The bottom and top edges of the blue box indicate the 25th and 75th
percentiles, and the red line and rhombus in the box indicate the median value and the mean value, respectively. CON, control; MDD, major depression disorder. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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3.3. Classification results

We tested six classifiers on delta and beta frequency bands, and
the classification results are listed in Table 2. The top three classi-
fication accuracy results are marked in bold font. From Table 2, we
can see that SVM demonstrated the best classification perfor-
mance, with a classification accuracy of 89.7% among the six clas-
sifiers in the beta frequency band using sparse adjacency matrices.
Therefore, we can conclude that the beta frequency band was the
most discriminate for distinguishing the CON group and MDD
group, which was in agreement with the results in Fig. 4. For the
best classification performance, we obtained accuracy ¼ 89:7%,
sensitivity ¼ 89:4%, and specificity ¼ 89:9%.

The classification performance of sparse networks was better
than that of original networks for all the six classifiers and both
delta and beta bands. The top three classification performances
were all from sparse networks, which meant that adding a thresh-
old to remove some redundant information can efficiently improve
the classification performance. In network analysis, it is reasonable
to remove weak connections, which are considered to result from
the effect of noise and not to represent the true connections
between brain regions.

4. Discussion

To the best of our knowledge, this study is the first attempt to
investigate the differences in connectivity between healthy people
and MDD patients using frequency-specific ongoing EEG FC analy-
sis under conditions of music perception and then to apply classi-
fication methods for diagnosis. First, we calculated FC by PLI, which
can efficiently decrease the volume conduction effect for each time
window and each frequency band. Then, NBS analysis was applied
to identify the significant brain network substructures for each fre-
quency band, and we found that significant substructures only
existed in delta and beta frequency bands. Then, network proper-
ties, including degree, clustering coefficient and characteristic path
length, were calculated for delta and beta bands to explore the dif-
ferences of in the topology between CON and MDD groups. Based
on the network analysis, we found that the beta frequency band
was the most discriminate for MDD diagnosis. Therefore, we com-
pared the classification performance with six classifiers between
those two frequency bands, and the beta band reached the highest
classification accuracy through the SVM classifier after construct-
ing sparse networks.

Some previous EEG studies have demonstrated that the percep-
tion of music was associated with the synchronization of different
frequency bands (Bhattacharya et al., 2001; Ruiz et al., 2009; Wu
et al., 2012; Cong et al., 2013). After statistical analysis of connec-
tivity matrices for each frequency band, we found significant brain
network connections in delta and beta bands. From the perspective
of music, both the delta and beta bands are associated with music
perception. An MEG study has demonstrated that beta rhythms
coupled with entrained delta-theta oscillations underpin accuracy
in musical processing (Doelling and Poeppel, 2015). Arnal et al.,
also found that delta-beta coupled oscillations were associated

with temporal processing (Arnal et al., 2015). Regarding the impor-
tance of delta and beta bands during music perception, an altered
FC in those two frequency bands may provide an efficient tool for
the diagnosis of MDD.

The delta band exhibited increased connectivity in the MDD
group with 13 significant connections, and the beta band exhibited
decreased connectivity in the MDD group with 43 significant con-
nections, which were mostly constructed by long-distance edges.
This contrast between delta and beta bands was also reported in
Leuchter’s research, which reported that in a resting-state EEG
study, the delta band exhibited increased connectivity in the
MDD group in fewer highly significant and shorter-distance edges,
and the beta band exhibited more significant connections with
longer-distance edges (Leuchter et al., 2012). We found that the
increased significant connections in the delta band mainly dis-
tributed within right central brain areas and between right tempo-
ral and left parietal brain regions. The delta band was
demonstrated to have a substantial influence on the identification
of natural speech fragments in an MEG study (Koskinen et al.,
2013). The delta band was already found to be more prominent
in the right hemisphere than in the left hemisphere of depressed
patients (Kwon et al., 1996), and the delta inter-hemispheric
coherence contributed to the classification of MDD patients and
healthy controls (Knott et al., 2001). Those findings were consis-
tent with our results that the significant connections in the delta
band distributed mostly in the right hemisphere. We also found
decreased connectivity distributed mostly within frontal brain
areas and between frontal and parietal-occipital brain areas in
the beta band in MDD patients. The beta band has been demon-
strated to be the predominant frequency band for music percep-
tion (Jäncke and Alahmadi, 2016), and Alavash et al., found that
networks of the listening brain showed higher segregation of fron-
tal control regions relative to those under task-free resting states,
which may support that MDD patients were less involved in listen-
ing in our study (Alavash et al., 2019). Many fMRI (Veer et al., 2010;
Kaiser et al., 2015) and EEG (Fingelkurts et al., 2007; Fingelkurts
and Fingelkurts, 2015) studies have demonstrated that some brain
regions and some specific brain networks indicated decreased FC in
the MDD group. Olbrich et al., have demonstrated that MDD was
characterized by altered EEG FC within frontal brain areas
(Olbrich et al., 2014). With hierarchical brain architectures, global
integration indicates higher cognition mediated by long-distance
connections. Music perception is a high cognition process in the
brain, and global integration is needed. Global integration by mod-
ulating long-distance connectivity is crucial for task-dependent
functions (Markov et al., 2011; Park and Friston, 2013). The
decreased long-distance connectivity in the beta band reported
in our results, which suggests less communication between remote
brain regions, may provide an important biomarker in MDD
diagnosis.

The properties based on the graph theory are the quantification
of network comparisons. In this study, we compared two network
properties, including clustering coefficient and characteristic path
length, in delta and beta bands between CON and MDD groups,
and those measures have been used in previous studies to identify

Table 2
The classification accuracy of six classifiers in delta and beta frequency bands.

Network DT GMM KNN NB RF SVM

Delta Original 54.7% 49.7% 65.7% 61.2% 62.0% 66.9%
Sparse 60.9% 53.2% 68.7% 62.5% 69.7% 72.9%

Beta Original 61.4% 49.5% 77.4% 55.2% 70.9% 78.2%
Sparse 68.5% 54.8% 85.6% 56.7% 82.3% 89.7%

Abbreviations: DT, decision tree; GMM, Gaussian mixture model; KNN, k-nearest neighbor; NB, naïve Bayes; RF, random forest; SVM, support vector machine.
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altered network organizations in MDD patients (Ajilore et al., 2014;
Ye et al., 2015). From Fig. 4, we can see that more differences
appeared in the beta band, which was identical to our results
showing that the beta band exhibited more significant connections
than the delta band. In the delta band, the MDD group was charac-
terized by higher clustering coefficient and longer characteristic
path length, which meant that MDD patients had lower informa-
tion transfer efficiency and a tendency of regular networks in the
delta band. The MDD group showed higher local efficiency in the
delta band, and a fMRI study obtained the same findings in MDD
patients (Ye et al., 2015). Differently in the beta band, the MDD
group presented smaller clustering coefficient and shorter charac-
teristic path length, indicating that the MDD group had a poor local
organization ability and a trend toward random networks. Singh
et al., also found that depressed patients displayed smaller cluster-
ing coefficient in gray matter networks (Singh et al., 2013). There-
fore, the topological changes in brain connectome were significant
reflections of patients with MDD (Ye et al., 2015).

Music perception has been demonstrated to have a cortical lat-
eralization effect in the human brain, but based on the literature,
different sounds appeared about which hemisphere of the brain
does music processing more lateralize to (Ohnishi, 2001; Kay
et al., 2012). Toiviainen et al., found in a fMRI study that different
musical features can cause different hemispheric asymmetry
effects (Toiviainen et al., 2014). In the present study, we revealed
a left hemispheric lateralization effect in healthy people, and no
lateralization effect in MDD patients under naturalistic music lis-
tening condition. Alluri et al., demonstrated that left hemispheric
primary and supplementary motor areas were more activated than
those of the right hemisphere when listening to purely instrumen-
tal music (Alluri et al., 2013). The results supported our findings of
left hemisphere lateralization in the CON group because we also
used a piece of music without lyrics. Furthermore, the left inferior
frontal area was reported to be related to the memory of music
(Watanabe et al., 2008), which also supported to the reliability of
our results. Many studies have reported a lateralized hemispheric
dysfunction in major depression (Uytdenhoef et al., 1983; Bench
et al., 1993), and this dysfunction was well demonstrated by our
results that no hemispheric lateralization effect exists in MDD
patients during music perception. Music is capable of inducing
emotional arousal (Mikutta et al., 2012), and the left hemisphere
predominates during states of low arousal and positive affect
(Craig, 2005). EEG studies have found that depressed participants
showed a hypoactivation in the left frontal lobe, which was related
to the elicitation and recognition of emotions and caused dimin-
ished positive affect (Wheeler et al., 1993; Punkanen et al.,
2011). This may cause the deficiency of affective processing in
depressed patients during music processing.

We tested the classification accuracy of delta and beta bands by
six classifiers, and the most commonly used SVM classifier exhib-
ited the best performance in the beta band, which was consistent
with the results in Fig. 4. After eliminating weak connections, the
classification performance improved for all the classifiers accord-
ing to Table 2 because applying feature selection to remove redun-
dant information was necessary for classification. An EEG study on
male depression by Knott et al., also showed that the beta fre-
quency band was the most discriminate for classification (Knott
et al., 2001). Gao et al., conducted a comprehensive review of stud-
ies related to the classification of MDD based on magnetic reso-
nance imaging data and compared the methods and classification
accuracies of 66 representative studies (Gao et al., 2018). The clas-
sification performance in our study was better than that of 76% of
the studies mentioned in Gao’s work. EEG was more suitable for
clinical applications in MDD diagnosis due to its higher temporal
resolution and lower cost than fMRI and MEG (Mumtaz et al.,
2017). Furthermore, compared with that recorded under resting

state conditions, EEG data recorded under naturalistic and contin-
uous stimuli, such as listening to music, is more close to simulate
real-world conditions (Wang et al., 2020), and music can induce
emotional arousal, which is related to affective processing in
MDD patients (Mikutta et al., 2012; Toiviainen et al., 2014). There-
fore, music perception tasks may be superior for use in MDD diag-
nosis. However, it is still a long way to go for the clinical usability,
because current studies are mostly based on small datasets (22–90
recordings) acquired under non-naturalistic conditions and highly
controlled research settings, and the non-replicability of the
research with different methods and experimental conditions also
make it challenging for the generalization to clinical diagnosis.

Taken together, when exposed to music listening conditions,
both healthy controls and MDD patients exhibited different FC pat-
terns across different frequency bands, and MDD patients were
characterized by altered FC in delta and beta bands. Our results,
shown above, were well supported by previous studies and can
provide a promising perspective for the clinical diagnosis of MDD
in the future.

Some important limitations of this study should be declared.
First, the analysis was based on the sensor-space level, and the lack
of a source reconstruction procedure limited further explanation of
the results. Second, the neural correlates and dynamic neural pro-
cessing of musical emotions are still not well understood
(Toiviainen et al., 2014), and the selection of control stimuli, such
as music type and duration, still needs further investigation. Fur-
thermore, in the music processing task, how to extract the
music-induced activity from ongoing EEG data is quite challenging
and still remains an open question (Wang et al., 2020), which is
directly related to the reliability of the explanation of the results.
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Abstract— Previous researches demonstrate that major
depression disorder (MDD) is associated with widespread
network dysconnectivity, and the dynamics of functional
connectivity networks are important to delineate the neural
mechanisms of MDD. Neural oscillations exert a key role
in coordinating the activity of remote brain regions, and
various assemblies of oscillations can modulate differ-
ent networks to support different cognitive tasks. Studies
have demonstrated that the dysconnectivity of electroen-
cephalography (EEG) oscillatory networks is related with
MDD. In this study, we investigated the oscillatory hyper-
connectivity and hypoconnectivity networks in MDD under
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a naturalistic and continuous stimuli condition of music
listening. With the assumption that the healthy group and
the MDD group share similar brain topology from the same
stimuli and also retain individual brain topology for group
differences, we applied the coupled nonnegative tensor
decomposition algorithm on two adjacency tensors with the
dimension of time × frequency × connectivity × subject,
and imposed double-coupled constraints on spatial and
spectral modes. The music-induced oscillatory networks
were identified by a correlation analysis approach based
on the permutation test between extracted temporal factors
and musical features. We obtained three hyperconnectivity
networks from the individual features of MDD and three
hypoconnectivity networks from common features. The
results demonstrated that the dysfunction of oscillatory
networks could affect the involvement in music percep-
tion for MDD patients. Those oscillatory dysconnectivity
networks may provide promising references to reveal the
pathoconnectomicsof MDD and potentialbiomarkers for the
diagnosis of MDD.

Index Terms— Dynamic functional connectivity, coupled
tensor decomposition, major depression disorder, natural-
istic music stimuli, oscillatory networks.

I. INTRODUCTION

MAJOR depression disorder (MDD) is a globally com-
mon psychiatric disorder characterized by deficits of

affective and cognitive functions [1]–[3]. It is almost a con-
sensus to researchers that MDD is accompanied by abnormal
functional connectivity (FC) between some brain regions, like
cortical regions in the default mode network (DMN), rather
than the aberrant response of individual brain regions [3]–[6].
Music therapy is associated with improvements in mood,
which has made it an attractive tool for MDD treatment [7].
Previous studies have suggested that the oscillatory asymmetry
and dysconnectivity could be the potential biomarkers of MDD
during music perception [8]–[10].

An increasing amount of researches have demonstrated that
FC presents the potential of temporal variability across differ-
ent time-scales (from milliseconds to minutes) to support con-
tinuous cognitive tasks. This is termed as dynamic functional
connectivity (dFC), and it represents the processes by which
networks and subnetworks coalesce and dissolve over time, or
cross-talk between networks [11]–[13]. Recently, researches
have reported abnormal dFC of specific brain regions and

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
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neural networks in MDD using resting-state functional Mag-
netic Resonance Imaging (RS-fMRI) [3], [5], [13], [14]. For
example, Demirtas et al. found a decreased variability of FC
in the connections between the DMN and the frontoparietal
network [5]. Kaiser et al. showed that MDD patients presented
decreased dFC between medial prefrontal cortical (MPFC)
regions and regions of parahippocampal gyrus within the
DMN, but increased dFC between MPFC regions and regions
of insula. They showed that MDD was related to abnormal
patterns of fluctuating communication among brain systems
involved in regulating attention and self-referential thinking
[13]. The decreased dFC variability was reported between
anterior DMN and right central executive network (CEN) in
MDD, which indicated a decreased information processing and
communication ability [14]. Existing researches about dFC
in MDD mostly focus on resting-state conditions. However,
little is known about the abnormalities of dFC during music
listening conditions.

Benefiting from the high temporal resolution, electroen-
cephalography (EEG) can record electrical brain activity
dynamics at a millisecond scale with rich frequency contents.
The oscillation acts as a bridge to connect different brain
regions with resonant communication, which can regulate
changes of neuronal networks and cause qualitative transitions
between modes of information processing [15]–[17]. Impaired
coordination of brain activity associated with abnormal elec-
trophysiological oscillations contributes to the generation of
psychaitric disorders [18]. Numerous studies have investigated
EEG oscillatory FC of MDD in resting-state, and dyscon-
nectivity networks are mostly notable in theta, alpha and
beta oscillations [16], [19], [20]. However, most previous
studies filter EEG signals into a range of frequency bands
(e.g., 8-13 Hz for the alpha band), and ignore the exhaus-
tive spectral dynamics in FC [19], [20]. Music perception
is a complex cognitive task, which is characterized with
dynamics of frequency-specific brain networks for musical
features processing [21]–[25]. To the best of our knowledge,
the oscillatory dFC in MDD during music perception has not
been well investigated yet.

Considering the temporal dynamics and spectral modula-
tions of spatial couplings (e.g., functional connectivity) for
multiple participants in a cognitive task, a multi-way dataset
structure is naturally formed. This multi-dimensional nature
points to the adoption of tensor decomposition models instead
of matrix decomposition models, which normally fold some
dimensions and ignore the hidden interactions across different
modes [24], [26]–[29]. Canonical Polyadic (CP) decompo-
sition is derived in terms of the sum of multiple rank-one
tensors, and each rank-one tensor represents the covariation
of the corresponding components from each mode [30], [31].
The CP decomposition is well implemented into the extrac-
tion of multi-mode EEG features from the multiway dataset
(e.g., channel × frequency × time × subject) [31]–[34].
Recently, Zhu et al. applied CP decomposition to explore
the task-related dFC characterized by spatio-temporal-
spectral modes of covariation from the adjacency tensor
(connectivity × time-subject × frequency) [23], [35]. How-
ever, those applications only focus on the decomposition of

one single tensor, which are based on the assumption that
the underlying spatio-spectral features are consistent among
subjects or groups [25], [29]. Coupled tensor decomposition
(CTD), the extension of tensor decomposition to multiple
block tensors, enables the simultaneous extraction of common
features shared among tensors and individual features specified
for each tensor. For biomedical data, the coupled matrix,
matrix-tensor or tensor decomposition (also known as linked
component analysis) are mostly used for data fusion [36]–[38].
However, to the best of our knowledge, no studies have used
CTD to investigate the pathologic networks of MDD or other
psychiatric disorders.

In our study, we applied a low-rank double-coupled non-
negative tensor decomposition (DC-NTD) model to explore
the temporal and spectral dynamics of spatial couplings in
MDD during music listening. The proposed analysis pipeline
is totally data-driven. We analyzed the whole-brain FC to avoid
prior knowledge about regions of interest, and we investigated
the exhaustive assemblies of oscillations to avoid the selection
of the frequency range. Figure 1 shows the diagram of the
analysis pipeline of this study.

In this paper, scalars, vectors, matrices and tensors are
denoted by lowercase, boldface lowercase, boldface upper-
case and boldface script letters, respectively, e.g., x , x,
X , X . Indices range from 1 to their capital version,
e.g., i = 1, · · · , I .

II. MATERIALS AND METHODS

A. Simulated Data

To validate the feasibility of the proposed method, we firstly
applied it on the simulated data. Two tensors with the size
of 500 × 59 × 2278, representing time × frequency ×
connectivity, were created as follows:

X 1 = X̃ 1 + N 1

= t1 ◦ f1 ◦ c1 + t2 ◦ f2 ◦ c2 + t3 ◦ f3 ◦ c3 + N 1, (1)

X 2 = X̃ 2 + N 2

= t4 ◦ f1 ◦ c1 + t5 ◦ f2 ◦ c2 + t6 ◦ f4 ◦ c4 + N 2, (2)

where X̃m, m = 1, 2 represented the ground truth networks,
and N n, n = 1, 2 were the nonnegative noise created by
the absolute values of white noise with the size of 500 ×
59 × 2278. In the time domain, each temporal component
ti , i = 1, 2, · · · , 6 was simulated by the absolute value of
white noise to ensure the nonnegativity of the synthetic tensor
X , and no coupled temporal component existed between two
tensors. In the frequency domain, four spectral components
f j , j = 1, 2, · · · , 4 were constructed by Hanning windows
and white noise with bandwidth centered at 5 Hz, 10 Hz,
15 Hz and 20 Hz, and two spectral components were set to
be coupled between two tensors. In the adjacency domain,
four adjacency components ck, k = 1, 2, · · · , 4, representing
auditory network (AUD), visual network (VIS), salience net-
work (SAN), and dorsal attentional network (DAN), were con-
structed with the Desikan-Killiany anatomical atlas according
to Kabbara’s work [39], and two adjacency components were
coupled between two tensors. The synthetic data were shown
in Figure 2(a).
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Fig. 1. Diagram of the analysis pipeline. (a) Adjcency matrix construction in each time window and each frequency bin. After source reconstruction,
the cortical signals were segmented by overlapping time windows, and wavelet transform was applied for each time course within each time window.
Phase lag index was used to obtain the adjacency matrix for each time window and each frequency bin. (b) Adjacency tensor construction and
decomposition. A 4-D adjacency tensor was constructed for each group with the dimension of time × frequency × connectivity × subject, and
coupled tensor decomposition was implemented with coupled constraints in spectral and adjacency modes. The 4-D core tensor is superdiagonal
with values of 1. (c) The identification of hyperconnectivity and hypoconnectivity networks by music modulation. Five musical features were extracted
with MIR toolbox from tango music, and correlation analysis was conducted between musical features and decomposed temporal factors to identify
music-induced brain networks. Hyperconnectivity and hypoconnectivity networks were summarized from the results of music modulation.

B. EEG Data Description

1) Participants: Twenty MDD patients and nineteen healthy
controls (HC) participated in this experiment. All the patients
were from the First Affiliated Hospital of Dalian Medical
University in China. This study has been approved by the
ethics committee of the hospital, and all participants signed
the informed consent before their enrollment. None of the
participants has reported hearing loss and formal training in
music. All the MDD patients were primarily diagnosed by
a clinical expert and tested according to Hamilton Rating
Scale for Depression (HRSD), Hamilton Anxiety Rating Scale
(HAMA) and Mini-Mental State Examination (MMSE). The
means and standard deviations (SD) of age, education, clinical
measures, duration of illness and gender for both groups were
listed in Table I.

2) EEG Data: During the experiment, participants were told
to sit comfortably in the chair and listen to a piece of music.
A 512-second musical piece of modern tango Adios Nonino by
Astor Piazzolla was used as the stimulus due to its rich musical
structure and high range of variation in musical features such
as dynamics, timbre, tonality and rhythm [21], [40]. The
EEG data were recorded by the Neuroscan Quik-cap device
with 64 electrodes arranged according to the international
10-20 system at the sampling frequency of 1000 Hz. The
electrodes placed at the left and right earlobes were used as
the references.

TABLE I
MEANS AND STANDARD DEVIATIONS OF AGE, EDUCATION, CLINICAL

MEASURES, DURATION OF ILLNESS AND GENDER FOR THE

HC GROUP AND THE MDD GROUP

The data were visually checked to remove obvious artifacts
from head movement and down-sampled to f s = 256 Hz
for further processing. Then 50 Hz notch filter and high-
pass and low-pass filters with 1 Hz and 30 Hz cutoff were
applied. We interpolated the bad intervals of one channel by
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the mean values of their spherical adjacent channels. Eye
movements artifacts were rejected by independent component
analysis (ICA).

3) Musical Features: In this study, two tonal and three
rhythmic features were extracted by a frame-by-frame analysis
approach using MIR toolbox [41]. The duration of each frame
was 3 seconds, and the overlap between two adjacency frames
was 2 seconds. Therefore, we got 510 samples for the time
courses of each musical feature at a sampling frequency
of 1 Hz. In this study, we only used the first T = 500 samples
of each musical feature due to the length of recorded EEG
data. Tonal features include Mode and Key Clarity, which
represent the strength of major of minor mode and the mea-
sure of tonal clarity, respectively. Rhythmic features include
Fluctuation Centroid, Fluctuation Entropy, and Pulse Clarity.
Fluctuation centroid is the geometric mean of the fluctuation
spectrum representing the global repartition of rhythm period-
icities within the range of 0–10 Hz. Fluctuation Entropy is the
Shannon entropy of the fluctuation spectrum representing the
global repartition of rhythm periodicities. Pulse Clarity is an
estimate of clarity of the pulse.

C. Source Reconstruction

Source reconstruction procedure was performed with open-
source Brainstorm software [42]. For forward modeling, we
used the symmetric boundary element method (BEM) to
compute the volume-conductor model with the MNI-ICBM152
template corresponding to a grid of 15000 cortical sources. For
source modeling, minimum norm estimate (MNE) was applied
with a measure of the current density map and constrained
dipole orientations (normal to cortex). Then, the Desikan-
Killiany anatomical atlas was used to parcellate the cortical
surface into C = 68 regions, and the principal component
analysis (PCA) method was performed to construct the time
course for each brain region.

D. Dynamic Functional Connectivity

Many studies have reported that the communication of brain
regions or neural populations depends on phase interactions
for electrophysiological neuroimaging techniques, like EEG
[43]. To avoid source leakage, the pairwise synchronization
was estimated by PLI to map the whole-brain FC [44]. In
this study, to assess the dFC across both time and frequency,
we segmented the source-space data into W = 500 windows
by the sliding window technique with a window length of 3 s
and an overlap of 2 s according to the extraction framework of
musical features. Then, we computed the time-frequency (TF)
decomposition within each time window by the continuous
wavelet transform with Morlet wavelets as basis function .
We set the frequency bins as 0.5 Hz, and obtained F = 59
samples in frequency domain in the range of 1-30 Hz.

For the time window w, we can get the complex TF
representation Pw ∈ RTw×F from wavelet transform, where
Tw = 3 f s, and the time and frequency-dependent phase at
time tw and frequency f can be obtained by

ϕ(tw, f ) = arctan
imag(Pw(tw, f ))

real(Pw(tw, f ))
, (3)

where imag() and real() represent the imaginary part and the
real part of a complex value, respectively. For brain regions i
and j , PLI can be computed as

P L Ii, j (w, f ) = 1

Tw

∣∣∣∣∣∣

Tw∑

tw=1

sign(�ϕi, j (tw, f ))

∣∣∣∣∣∣
, (4)

where �ϕi, j (tw, f )) = ϕi (tw, f ) − ϕ j (tw, f ) is the phase
difference of brain regions i and j at time tw and frequency f
in time window w. Therefore, for each time window and each
frequency point, we can form an adjacency matrix A ∈ RC×C ,
where C means the number of brain regions. Because of the
symmetry of FC matrix, we took the upper triangle of A and
vectorized it to a ∈ RN×1, where N = C(C − 1)/2 = 2278
represents the number of unique connections. Then, we can
construct two adjacency tensors with the dimension of time ×
frequency × connectivity × subject, XHC ∈ RW×F×N×SHC

(500 × 59 × 2278 × 19) for the HC group and XMDD ∈
RW×F×N×SMDD (500 × 59 × 2278 × 20) for the MDD group,
where SHC = 19 and SMDD = 20 mean the number of subjects
in the HC group and the MDD group, respectively.

E. The Application of Low-Rank Coupled Tensor
Decomposition

Considering the high computation load, the nonnegativity
of the tensors (constrained to [0,1] due to PLI index) and high
correlations in spatial and spectral modes, we applied a low-
rank DC-NTD model which was more flexible to add desired
constraints.

1) Low-Rank Coupled Tensor Decomposition: With the con-
structed tensors XHC ∈ RW×F×N×SHC and XMDD ∈
RW×F×N×SMDD , the corresponding CP decomposition can be
represented as XHC � ∑RHC

r=1 u(1)
r ◦ u(2)

r ◦ u(3)
r ◦ u(4)

r =
[[U(1), U(2), U(3), U (4)]] and XMDD � ∑RMDD

r=1 v
(1)
r ◦ v

(2)
r ◦

v
(3)
r ◦ v

(4)
r = [[V (1), V (2), V (3), V (4)]], where ◦ denotes the

vector outer product. u(n)
r and v

(n)
r denote the r th component

of factor matrices U (n) and V (n), n = 1, 2, 3, 4, in the
modes of time, frequency, connectivity and subject for two
groups. RHC and RMDD are the ranks of XHC and XMDD,
respectively. Considering the nonnegativity of constructed
tensors and the coupled constraints in spectral and adjacency
modes, we formulate it as a double-coupled nonnegative tensor
decomposition (DC-NTD) model, where XHC and XMDD can
be jointly analyzed by minimizing the following objective
function:

J (u(n)
r , v(n)

r )

= ‖XHC −
RHC∑

r=1

u(1)
r ◦ u(2)

r ◦ u(3)
r ◦ u(4)

r ‖2
F

+‖XMDD −
RMDD∑

r=1

v(1)
r ◦ v(2)

r ◦ v(3)
r ◦ v(4)

r ‖2
F

s.t. u(2)
r = v(2)

r (r ≤ L f ), u(3)
r = v(3)

r (r ≤ Lc). (5)

‖ · ‖F denotes the Frobenius norm. L f and Lc denote the
number of components coupled in spectral and adjacency
modes, and L f,c ≤ min(RHC, RMDD). The fast hierarchical
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alternative least squares (FHALS), an accelerated version of
the hierarchical alternative least squares (HALS) algorithm,
has been effectively applied to a number of (coupled) tensor
decomposition problems [25], [45], [46]. In this study, we
apply the FHALS algorithm to optimize the DC-NTD problem
in (5), and introduce the low-rank approximation to reduce
computational complexity [47], [48].

Through the FHALS algorithm, the minimization problem
in (5) can be converted into max(RHC, RMDD) rank-1 subprob-
lems, which can be solved sequentially and iteratively. We take
the r th subproblem as an example:

min Jr = ‖YHC
r − u(1)

r ◦ u(2)
r ◦ u(3)

r ◦ u(4)
r ‖2

F

+‖YMDD
r − v(1)

r ◦ v(2)
r ◦ v(3)

r ◦ v(4)
r ‖2

F , (6)

where YHC
r

.= XHC−∑RHC
k �=r u(1)

k ◦u(2)
k ◦u(3)

k ◦u(4)
k and YMDD

r
.=

XMDD − ∑RMDD
k �=r v

(1)
k ◦ v

(2)
k ◦ v

(3)
k ◦ v

(4)
k . When calculating one

of the variables, we need to fix the other variables and let the
corresponding derivative be zero. For example, to determine
u(n)

r , we let ∂Jr/∂u(n)
r be zero, and then we can obtain the

following solution:

u(n)
r = Y HC

r,(n)

[
ur

]	−n /
[
ur

T ur
]�−n , (7)

where Y HC
r,(n) is the mode-n matricization of YHC

r . 	 and �
denote the Khatri-Rao product and Hadamard (element-wise)

product.
[
ur

]	−n = u(4)
r 	· · ·	u(n+1

r )	u(n−1
r )	· · ·	u(1)

r and
[
ur

T ur
]�−n = ([ur ]	−n

)T [ur ]	−n . Taking Y HC
r,(n) = XHC

(n) −
U (n)[U	−n ]T + u(n)

r [u	−n
r ]T into (7), we can get

u(n)
r = u(n)

r +
[

XHC
(n) u	−n

r − U(n)�(n)
r

]
/�

(n)
(r,r), (8)

where XHC
(n) is the mode-n matricization of XHC and

�(n) = [
UT U

]�−n . Suppose that the rank-R̃HC approxima-
tion of XHC obtained by unconstrained tensor factorization
is expressed as [[Ũ(1)

, Ũ
(2)

, Ũ
(3)

, Ũ
(4)]], R̃HC ≤ RHC, thus

the mode-n unfolding of XHC can be written as XHC
(n) =

Ũ
(n)

[
Ũ

	−n
]T

. Therefore, the learning rule of u(n)
r can be

reformulated as follows:

u(n)
r = u(n)

r +
[
Ũ

(n)
�̃

(n)
r − U (n)�(n)

r

]
/�(r,r), (9)

where �̃
(n) = [ŨT

U]�−n . Analogously, we can obtain the
learning rule of v

(n)
r as follows:

v(n)
r = v(n)

r +
[

Ṽ
(n)

�̃
(n)
r − V (n)�(n)

r

]
/�

(n)
(r,r), (10)

where �(n) = [
V T V

]�−n and �̃
(n) = [Ṽ T

V ]�−n .
The rank-R̃MDD approximation of XMDD is expressed as

[[Ṽ (1)
, Ṽ

(2)
, Ṽ

(3)
, Ṽ

(4)]], R̃MDD ≤ RMDD. Specially, if r ≤
L f , u(2)

r = v
(2)
r and if r ≤ Lc, u(3)

r = v
(3)
r , thus their solutions

should be calculated as:

u(2)
r = v(2)

r

= u(2)
r +

[
Ũ

(2)
�̃

(2)
r −U (2)�(2)

r +Ṽ
(2)

�̃
(2)
r −V (2)�(2)

r

]

/
[
�

(2)
(r,r)+�

(2)
(r,r)

]
, (11)

and

u(3)
r = v(3)

r

= u(3)
r +

[
Ũ

(3)
�̃

(3)
r −U (3)�(3)

r +Ṽ
(3)

�̃
(3)
r −V (3)�(3)

r

]

/
[
�

(3)
(r,r)+�

(3)
(r,r)

]
, (12)

In order to obtain the nonnegative components, a simple
“half-rectifying” nonlinear projection is applied. We update
u(n)

r and v
(n)
r successively in each subproblem, and the

max(RHC, RMDD) subproblems are optimized alternatively one
after another until convergence. In this study, we adopt alter-
nating least squares (ALS, [49]) algorithm to perform low-
rank approximation. The FHALS-based DC-NTD algorithm
is summarized in Algorithm 1.

Algorithm 1 DC-NTD-FHALS Algorithm

Input: XHC, XMDD, L f , Lc, RHC, RMDD, R̃HC, R̃MDD
1 Initialization: U (n), V (n), n = 1, 2, 3, 4

2 Calculate Ũ
(n)

, Ṽ
(n)

, n = 1, 2, 3, 4 via unconstrained
ALS

3 while unconvergence do
4 for n = 1, 2, · · · , 4 do
5 for r = 1, 2, · · · max(RHC, RMDD) do
6 Update u(n)

r , u(n)
r via (9), (10), (11) and (12)

7 end
8 end
9 end

Output: U (n), V (n), n = 1, 2, 3, 4

2) Selection of Components: In this section, we will describe
how to determine the number of totally extracted components
RHC and RM D D , which refers to the hidden information in
low-dimensional space for each block data, and the number
of coupled components L f and Lc, which reveal the common
features between two-block data. For the selection of RHC and
RM D D, we performed PCA on the matricization data X(3) ∈
RF×W N S unfolded along frequency mode for each block data,
and kept the number of components with 95% explained
variance. The selection of the number of coupled components
is a key issue for the conduction of the DC-NTD-FHALS algo-
rithm and the explanation of results, and it always becomes
an open issue depending on practical applications. In this
study, we performed the fourth-order CP tensor decomposition
based on the FHALS algorithm on two-block data separately,
and calculated the correlation maps of extracted components
between two-block data in spectral and adjacency modes,
respectively. According to the correlation maps, we will select
the number of highly correlated (coupled) components. The
detailed implication procedure will be described in the results
section.

F. Identification of Music-Induced Hyperconnectivity and
Hypoconnectivity Networks

After the conduction of the low-rank DC-NTD-FHALS
algorithm, we need to identify the music-induced oscillatory
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Fig. 2. Simulation illustration. (a) Three spatio-temporal-spectral patterns were simulated for two groups, and the first two patterns were identical
in adjacency and spectral modes. (b) The reconstructed spatio-temporal-spectral patterns.

networks that are abnormal involved in the MDD group. We
conducted a correlation analysis approach between temporal
factors and five musical features with Pearson correlation
based on the permutation test method. To ensure the statistical
significance of the correlation and consider the problem of
multiple comparison, the Monte Carlo method and permu-
tation test were applied to compute a significant threshold
of correlation for each musical feature [21]–[23], [25]. For
the time course of each musical feature, we kept the real
part and replaced the imaginary part with random uniformly
distributed phases, and performed Pearson correlation with
the time courses of the extracted temporal components. Then,
we repeated this procedure 100000 times, and obtained the
threshold for each musical feature at a significant level of
pcorrected < 0.05.

The coupled spectral and adjacency components are com-
mon features between CON and MDD groups, and the
remaining components are individual features of each group.
The oscillatory networks among common features that are
involved in music perception in the HC group but not in the
MDD group are identified as hypoconnectivity networks, and
the oscillatory networks among individual features that are
involved in music perception in the MDD group are identified
as hyperconnectivity.

III. RESULTS

A. Results of Simulated Data

We implemented the low-rank DC-NTD-FHALS algorithm
on the synthetic data, and we set SN R = 15, L f = Lc = 2,

Fig. 3. Correlation analysis of the spectral factor and the adjacency
factor extracted from the 4-D tensor decomposition for each block data.

and RHC = RMDD = 3. The extracted temporal, spectral and
adjacency factors were shown in Figure 2(b). We ran 10 times
of the low-rank DC-NTD-FHALS algorithm, and we obtained
stable decomposition results with an averaged tensor fit of
0.864 and an averaged running time of 113.27 seconds.

B. Results of EEG Data

Through PCA analysis on the unfolded data along the spec-
tral mode for two-block data, we extracted RHC = RM D D =
27 components for both HC group and MDD group. Then we
performed the fourth-order CP tensor decomposition on each
block data, and computed the correlation maps of spectral and
adjacency factors between two groups, as shown in Figure 3.
According to the correlation maps, we set the number of
coupled components in the spectral mode L f = 25 and the
number of coupled components in the adjacency mode Lc = 7.
We ran 20 times of the low-rank DC-NTF-FHALS algorithm,
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Fig. 4. Three oscillatory hyperconnectivity networks. (a) Adjacency matrix representation of the network. The 68 brain regions are ordered from the
left hemisphere to the right hemisphere. Within each hemisphere, the brain regions are arranged in the order of frontal lobe, temporal lobe, parietal
lobe, and occipital lobe, as indicated in red, yellow, green, and blue color, respectively. Within each lobe, the brain regions are ordered according
to their y-location from anterior regions to posterior regions. (b) The spectral component of the network. (c) Cortical space representation of the
network in Lateral, medial and dorsal view. The networks I, II, and III are related to the musical features of Fluctuation Centroid, Fluctuation Centroid,
and Key Clarity, respectively.

and the averaged running time was 12616 seconds. The
running time was 63819 seconds by one implementation of the
DC-NTF-FHALS algorithm without the low-rank approxima-
tion, which indicated that the low-rank approximation could
greatly reduce the computational load.

After applying the low-rank DC-NTF-FHALS algorithm
and correlation analysis with musical features, we summarized
the results of 20 times of implementation and obtained three
oscillatory hyperconnectivity networks, as shown in Figure 4,
and three oscillatory hypoconnectivity networks, as shown in
Figure 5. For hyperconnectivity networks, Figure 4I shows a
right hemisphere dominated network modulated by oscillations
of alpha and beta (10-16 Hz) bands and the musical feature
of Fluctuation Centroid. The strong connections of this net-
work connect the core regions of DMN, including medial
prefrontal cortex (mPFC), precuneus cortex, and posterior
cingulate cortex (PCC). Figure 4II indicates a left auditory-
related network modulated by delta oscillations and the Fluc-
tuation Centroid feature. An aberrant delta-specific prefrontal
network is identified, which is related to the musical feature
of Key Clarity, as shown in Figure 4III. For hypoconnectiv-
ity networks, Figure 5I and Figure 5II exhibit fronto-parietal
networks which are mainly related to attention control. The
fronto-parietal networks are modulated by oscillations of 8-
14 Hz and 10-19 Hz and musical features of Mode and

Fluctuation Entropy, respectively. Figure 5III shows a low-
frequency (delta oscillations) modulated prefrontal network
which is significantly related to the musical feature of Mode,
and this network is implicated in complex cognitive functions.

IV. DISCUSSION

As far as we know, this study is the first attempt to
investigate the aberrant dFC across temporal evolution and
spectral modulation in MDD during music listening based on
a coupled tensor decomposition approach. This study proposed
a comprehensive framework to extract the FC networks charac-
terized by spatio-temporal-spectral modes of covariation. We
summarized three overactive oscillatory networks and three
underactive oscillatory networks according to the analysis of
musical modulations.

MDD is characterized with imbalanced communica-
tions among large-scale functional networks, including
hyperconnectivity and hypoconnectivity within specific brain
networks or between distinct brain networks during resting-
state, see a meta-analysis in study [6]. In our study, we
also found hyperconnectivity and hypoconnectivity func-
tional networks in naturalistic music perception. We identi-
fied a right hemisphere dominated hyperconnectivity network
which involved the essential regions of DMN, including
mPFC, PCC and precuneus cortex, as shown in Figure 4I.
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Fig. 5. Three oscillatory hypoconnectivity networks. (a) Adjacency matrix representation of the network. The 68 brain regions are ordered from left
hemisphere to right hemisphere. Within each hemisphere, the brain regions are arranged in the order of frontal lobe, temporal lobe, parietal lobe,
and occipital lobe, as indicated in red, yellow, green, and blue color, respectively. Within each lobe, the brain regions are ordered according to their
y-location from anterior regions to posterior regions. (b) The spectral component of the network. (c) Cortical space representation of the network in
Lateral, medial and dorsal view. The networks I, II, and III are related to the musical features of Mode, Fluctuation Entropy, and Fluctuation Entropy,
respectively.

The hyperconnectivity in DMN are often considered as reflect-
ing rumination, where MDD patients perseverate on neg-
ative, self-referential thoughts [50], [51]. Many researches
have reported the hyperconnectivity within DMN in MDD,
which supports that within-DMN hyperconnectivity is related
to enhanced the positive connectivity in MDD [6], [51].
Figure 4II shows a delta band-modulated and left auditory-
related network, which is activated by a rhythmic feature of
Fluctuation Centroid. The delta band was demonstrated to
have a substantial influence on the identification of natural
speech fragments in a MEG study [52], and the decoding
of rhythmic features was found to be significantly correlated
with the auditory cortex during music perception [21], [53].
The abnormal delta band-modulated and left auditory-related
network identified in our study might indicate that MDD
patients were less involved in music perception. We identified
two delta band modulated prefrontal networks, both of which
were related to tonal features, Key Clarity and Mode, as
shown in Figure 4III and Figure 5III. However, the prefrontal
network in Figure 4III was hyperactive and right hemisphere
lateralized, and the prefrontal network in Figure 5III was
hypoactive and left hemisphere lateralized. The prefrontal
cortex has been implicated in planning complex cognitive
behavior, decision making and working memory. There are

numerous lines of evidence demonstrating that prefrontal
cortex is dysregulated in depression, and both increased and
decreased functional connections in the prefrontal network
may lead to the failure of inhibitory control in depression
[54]–[57]. Those two prefrontal networks also have abnormal
connections with temporal poles, which may indicate the
dysfunction in semantic integration during music listening
[58], [59]. Our findings are well supported by those litera-
tures that the dysconnectivity in the prefrontal network can
influence the high-order cognitive functions and information
integration during music perception in MDD. Figure 5I and
Figure 5II indicate hypoconnectivity fronto-parietal networks
modulated by different oscillations and musical features. The
abnormal development of the fronto-parietal network is a
common feature across many psychiatric disorders with the
deficit in cognitive control. Previous studies have demonstrated
that MDD is characterized by hypoconnectivity within the
frontoparietal network, which is involved in the top-down
modulation of attention and emotion [6], [19], [60].

In our study, the key issue of applying coupled tensor
decomposition is the selection of the number of all the
extracted components and the number of coupled components.
There are several methods for the selection of the number of
extracted components in tensor/matrix decomposition, such as
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PCA, the difference of fit (DIFFIT), model order selection,
and so on [31]. In our study, due to that the spectral mode
retains the minimum samples compared with temporal and
adjacency modes, we applied PCA on the unfolded data
along the spectral mode to determine the number of extracted
components. We believe this unfolding format can help to
approach the true underlying low-dimensional space. However,
the selection of the number of coupled components and the
coupled modes mainly relys on the data characteristics. Refer
to our previous study, we use a correlation analysis in the
spectral and adjacency modes in our study [25].

The scales of the reconstructed spatial, temporal and spectral
factors are different from those in the synthetic data, see
Figure 2. The scale indeterminacy will not change the topol-
ogy of networks, the evolution of time courses and the modu-
lation of oscillations. However, the addition of the constraints
on scales will increase the model complexity and computa-
tional cost. In the present study, we only consider the group
differences between HC and MDD groups by extracting the
common features and individual features. Subject differences
are omitted and covered in the residuals of the coupled tensor
decomposition, and we assume that the extracted components
are shared by all the subjects within each group. The problem
of subject differences may bring more challenges, but it is also
a crucial and realistic issue, especially in clinical applications.

We clarify two important limitations in this study. First, we
do not have the anatomical images from the individual partic-
ipant, and we use the MNI-ICBM152 template in forwarding
modeling. Using the same anatomical MRI will influence the
accuracy of source reconstruction. Second, the results have
limited explanations due to the music type we selected. Further
studies should investigate different music types, and we also
need to consider the music preferences of participants.

V. CONCLUSION

In this study, we investigated the oscillatory hyperconnectiv-
ity and hypoconnectivity networks elicited by musical stimuli
in MDD. Considering the high-dimensional structure of the
datasets and group differences between HC and MDD groups,
a comprehensive framework was proposed based on coupled
tensor decomposition, and six abnormal connectivity networks
with spatio-temporal-spectral modes of covariation were iden-
tified in MDD during music listening. Our findings are well
supported and verified by previous literatures. Our research
may serve as a signature of the brain’s functional topography
characterizing MDD, and provide novel biomarkers for the
clinical diagnosis and treatment in MDD. The spectral profiles
and spatial networks are usually characterized with sparsity,
and the sparse regularization will be considered in the coupled
tensor decomposition model in the future work. The neural
correlates and dynamic neural processing of musical emotions
have not been well studied, and the future work will also focus
on the selection of control stimuli.
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