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Abstract

We study a question arising in inverse scattering theory: given a penetrable obstacle,
does there exist an incident wave that does not scatter? We show that every penetrable
obstacle with real-analytic boundary admits such an incident wave. At zero frequency,
we use quadrature domains to show that there are also obstacles with inward cusps
having this property. In the converse direction, under a nonvanishing condition for the
incident wave, we show that there is a dichotomy for boundary points of any
penetrable obstacle having this property: either the boundary is regular, or the
complement of the obstacle has to be very thin near the point. These facts are proved
by invoking results from the theory of free boundary problems.

1 Introduction
1.1 Motivation

In this article, we discuss some examples of non-scattering phenomena based onmethods
from free boundary problems. The connection between these fields was recently pointed
out in [18], and we invoke further ideas from free boundary problems to obtain stronger
results. Themethods are relevant both for inverse scattering problems and inverse bound-
ary value problems. We first describe the boundary case and state the main results in that
setting, and discuss the scattering case afterward. All functionswill be assumed real valued
unless mentioned otherwise.
Let � ⊂ R

n be a bounded domain with smooth boundary, and let q ∈ L∞(�) be a
potential in �. Assuming that 0 is not a Dirichlet eigenvalue for � + q in �, for any
f ∈ H1/2(∂�), there is a unique solution u ∈ H1(�) of the Dirichlet problem

(� + q)u = 0 in �, u|∂� = f.

We assume that we can fix a Dirichlet data f and measure the corresponding Neumann
data ∂νu|∂� (interpretedweakly as an element ofH−1/2(∂�)) on the boundary. This kindof
situation arises in diffuse optical tomography [5]. It is also relevant in electrical impedance
tomography, i.e., Calderón problem [51], where the underlying conductivity equation
div(γ∇v) = 0 can often be reduced to the equation (�+q)u = 0with q = −γ −1/2�(γ 1/2)
by using the Liouville transformation v = γ −1/2u.
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In inverse boundary value problems of this type, one often assumes the knowledge of
the full Dirichlet-to-Neumann map

�q : H1/2(∂�) → H−1/2(∂�), �qf = ∂νu|∂�.

This corresponds to an idealized case where we can perform infinitely many measure-
ments. However, in practice, only finitely many measurements are possible. Moreover,
the idealized problem is formally overdetermined when n ≥ 3, in the sense that the
unknown q is a function of n variables, whereas the measurements (Schwartz kernel of
�q) depend on 2n − 2 variables. This suggests that fewer measurements might be suffi-
cient. We are interested in the single measurement inverse problem: which properties of q
can be determined from the measurement ∂νu|∂� corresponding to a fixed Dirichlet data
f ∈ H1/2(∂�)?
In general, it is not possible to determine a potential q from a single measurement.

This is indicated by a heuristic dimension count argument: the measurement ∂νu|∂� is a
function of n − 1 variables, whereas the unknown potential is a function of n variables.
Thus the inverse problem of determining q from a single measurement is formally under-
determined. A related problem is to determine the shape of a penetrable obstacle from a
single measurement. This corresponds to potentials of the form

q = hχD, D ⊂ �,

where χD is the characteristic function of D (a bounded open set, i.e., the obstacle), and
h satisfies a nonvanishing condition at ∂D. We will sometimes assume the following
conditions for D and h.

Definition A bounded open set D ⊂ R
n is called a solid domain if D and R

n \ D are
connected, and int(D) = D. We say that h is a contrast for D if

h ∈ L∞(Rn), and |h| ≥ c > 0 a.e. in some neighborhood of ∂D.

Since the potential is q = hχD, the values of the contrast outsideDwill not play any role.
The inverse problem is to determine the shape of the obstacle, i.e., ∂D, or some properties
of ∂D from a single measurement ∂νu|∂�. If ∂D is (say) a Lipschitz domain, then it is
locally the graph of a function of n − 1 variables and thus the inverse problem is formally
well-determined.
There are various results in the literature for determining ∂D froma singlemeasurement.

For a related Calderón-type problem corresponding to the equation div(γ∇u) = 0 where
γ = 1 + hχD and h is a nonzero constant, there are partial results when D has special
geometry, such as D being a convex polygon or polyhedron, a ball, or a cylinder. There
are also local uniqueness results (if D and D′ are close enough in some sense then they
can be distinguished by a single measurement) and estimates for the size of D. See [1] for
a survey of classical results, and [37] and references therein for more recent results. The
results in [2,6] are of particular interest to us: they invoke methods from free boundary
problems to show that if D is, e.g., a Lipschitz domain and it is not determined by a single
measurement, then part of ∂D is necessarily real-analytic.We refer to [24,30,31] for recent
related results.
It turns out that such results are closely connected to a certain non-scattering phe-

nomenon in inverse scattering theory. These problems involve a fixed frequency λ ≥ 0.
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Given a bounded open set � ⊂ R
n, we ask if there exist nontrivial solutions of

(� + λ2 + q)uq = 0 in �, (� + λ2)u0 = 0 in � (1.1)

that satisfy

uq, u0 ∈ H1(�), uq − u0 ∈ H2
0 (�). (1.2)

This problem is rather similar to the interior transmission problem (see [16,17]) but note
that we require uq, u0 to beH1 instead of L2. The above problem can in fact be considered
as amatching problem as in [25]. One could also accommodate the conditionuq−u0−g ∈
H2
0 (�) for some smooth enough g , which would be close to the inhomogeneous interior

transmission problem.
If the boundary of � is smooth enough, the condition (1.2) can be written as

uq|∂� = u0|∂�, ∂νuq|∂� = ∂νu0|∂�.

Thus, if one fixes the Dirichlet data f = u0|∂� = uq|∂�, this would mean that the
measurement ∂νuq|∂� corresponding to q is identical to the measurement ∂νu0|∂� for
the zero potential. Thus the potential q is invisible for this particular measurement and
looks like empty space. In the terminology of scattering theory, if this happens we say that
“the incident wave u0 does not scatter.”
We specialize the above question to the case of an obstacleD. The following is the main

question studied in this article:

Given a bounded open set D ⊂ R
n with D ⊂ �, is there a contrast h for D such that

there exist nontrivial solutions uq and u0 with q = hχD satisfying (1.1)–(1.2)?

If the answer is positive, then there is some contrast h for D that admits an incident
wave that does not scatter (thusD will be invisible with respect to this measurement). On
the other hand, if the answer is negative, then the obstacle D scatters every incident wave
nontrivially.

1.2 Main results

There are various results stating that if ∂D is piecewise smooth and has a corner singu-
larity, then every incident wave will scatter nontrivially. We will give precise references in
Sect. 1.4. On the other hand, there seem to be few examples in the literature of penetrable
obstacles admitting incident waves that do not scatter. Balls have this property [19, Sec-
tions 10.3 and 8.4], and [26] gives examples of potentials q ∈ C∞

c (Rn) having this property
whose supports are unions of balls. See [53] for some related results.
Our first result states that any obstacle with real-analytic boundary admits incident

waves that do not scatter:

Theorem 1.1 Let � ⊂ R
n be a bounded open set, let λ ≥ 0, and let D ⊂ R

n be a bounded
open set with real-analytic boundary such that D ⊂ � and R

n \ D is connected. Suppose
that λ is not a Dirichlet eigenvalue for −� in D. Then, there is a contrast for D that admits
an incident wave that does not scatter.

While corner singularities typically scatter every incident wave, we show that at least
for λ = 0 there also exist obstacles with inward cusp singularities admitting incident
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waves that do not scatter. We say that a connected open set D ⊂ R
n is a quadrature

domain (for harmonic functions) if there is a compactly supported distribution μ in R
n

with supp(μ) ⊂ D such that

∫
D
H dx =

∫
D
H dμ (1.3)

whenever H ∈ L1(D) is harmonic in D. A basic example is a ball B(a, r) ⊂ R
n with

μ = |Br |δa, so that (1.3) holds by the mean value theorem. There exist many examples of
quadrature domains, and their boundaries can exhibit inward cusps (see [21, Chapter 14]
or [46] for examples). One example is the cardioid domainD = {w+ 1

2w
2 : w ∈ D} ⊂ R

2

that has an inward cusp, see [44, Figure 0.1] (though note that ∂D is the image of S1 by an
analytic map).

Theorem 1.2 Let � ⊂ R
n be a bounded open set, let λ = 0, and let D ⊂ R

n be a
quadrature domain such that D ⊂ �. Then there is a contrast for D that admits an
incident wave that does not scatter.

As non-scattering incident waves in Theorems 1.1 and 1.2, one can choose any solution
of

(� + λ2)u0 = 0 in � (1.4)

such that u0 is positive on ∂D. A nonvanishing condition for u0 on ∂D will be important
for many results in this article (with the exception of Theorem 1.6), and it is of interest to
determine if such solutions u0 exist. They always do when λ = 0 (take u0 ≡ 1) or when u0
is allowed to be complex valued (take u0 = eiλx1 ). However, by Lemma 3.1 any real-valued
solution of (1.4) has a zero in any ball of radius≥ cn/λ and the nonvanishing condition on
∂D is nontrivial in this case. In fact, if λ is a Dirichlet eigenvalue of−� inD then solutions
u0 satisfying the nonvanishing condition may not exist (see Remark 3.2). On the positive
side, we will show the following result.

Theorem 1.3 Let D be a bounded C1 domain, or Lipschitz domain when n = 2, 3, with
R
n \D connected. Suppose that λ > 0 is not a Dirichlet eigenvalue of −� in D. Then, there

is a real-valued solution u0 of (� + λ2)u0 = 0 in R
n such that u0 is positive on ∂D.

Theorems 1.1 and 1.2 are not difficult to prove, and they are analogous to certain facts in
the theory of free boundary problems. Asmentioned above, the connection between single
measurement inverse problems and free boundary methods is classical in the Calderón
problem [2,6]. Curiously, it seems that for non-scattering phenomena, this connection
was only pointed out very recently in [18]. The main point is the following: if an obstacle
D admits an incident wave that does not scatter, then ∂D can be understood as a free
boundary in a certain obstacle-type problem. This observation was used in [18] to show
that if D has Lipschitz boundary and the incident wave u0 is nonvanishing on ∂D, then
necessarily ∂D must be real-analytic (resp. Ck+1,α) if the contrast is real-analytic (resp.
Ck,α).
We prove a corresponding result where the a priori assumption that D has Lipschitz

boundary is removed. However, as indicated by Theorem 1.2, one must then allow for the
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possibility that D has inward cusps. We first need to introduce the concept of minimal
diameter.
For any set K , we define MD(K ) to be the minimal diameter of K , i.e., the infimum of

distances between pairs of parallel planes such thatK is contained in the strip determined
by the planes. For any ball B(z, r), we also define the thickness function

δr(K, z) := MD(K ∩ B(z, r))
r

.

To illustrate this notion, note that if D ⊂ R
n is a bounded Lipschitz domain, then there

are c, r0 > 0 such that

δr(Rn \ D, x0) ≥ c whenever x0 ∈ ∂D and 0 < r < r0.

On the other hand, if D ∩ B(0, 1) = {xn < |x′|1/γ } ∩ B(0, 1) where γ > 1, so that D has an
inward cusp at 0, one can check that

δr(Rn \ D, 0) ≤ Crγ−1, 0 < r < 1.

We first state the following result showing that if D admits an incident wave u0 that
does not scatter, and if both the contrast h and u0 are nonvanishing at a point x0 ∈ ∂D,
then there are two possibilities: eitherD is regular near x0, or the complement ofD is thin
near x0.

Theorem 1.4 Let� ⊂ R
n be a bounded open set, and suppose that uq, u0 ∈ H1(�) satisfy

(1.1)–(1.2) where q = hχD for some solid domain D with D ⊂ �. Assume that h is Dini
continuous (i.e., h has a modulus of continuity ω with

∫ 1
0 ω(r) d(log r) < ∞). For any

x0 ∈ ∂D such that

h(x0)u0(x0) �= 0,

one of the following conditions holds:

(a) lim supr→0 δr(� \ D, x0) > 0, and D is locally a C1 domain near x0; or
(b) � \ D is thin near x0 in the sense that limr→0 δr(� \ D, x0) = 0.

If h is additionally assumed to be Lipschitz (resp. Ck,α where k ≥ 1 and 0 < α < 1, or real-
analytic) near x0 and if (a) holds, then D is locally a C1,α (resp. Ck+1,α , or real-analytic)
domain near x0.

The case where h is Dini continuous is a consequence of the following more precise
result from [4, Theorem 1.3]:

Theorem 1.5 Retain the hypotheses of Theorem 1.4, with h being a Dini continuous func-
tion. Suppose for some r1 > 0, x0 ∈ ∂D, we have

h(x)u0(x) �= 0 for x ∈ B(x0, r1). (1.5)

Then, there exists a modulus of continuity σ (r), and a universal constant τ > 0, such that
if for some 0 < r0 < r1, we have σ (r0) < δr0 ({u0 = uq}, x0) then ∂D ∩ B(x0, τ r0) is a
C1-graph.

If h is Lipschitz, or if h is C1,1 and u0 vanishes on ∂D but ∇u0 is nonvanishing, we also
have the following result.
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Theorem 1.6 Retain the hypotheses of Theorem 1.4, and suppose that either of the follow-
ing conditions is satisfied:

1. h ∈ C0,1(B(x0, r)),
2. h ∈ C1,1(B(x0, r)) and condition (1.5) is replaced by

|h| > 0 and u0 = 0 and |∇u0| > 0 on ∂D ∩ B(x0, r). (1.6)

Then, there exists r0 > 0 such that one of the following holds:

(a) ∂D is a C1,α graph in B(x0, r0).
(b) In a translated and rotated system of coordinates

∂D ∩ B(x0, r0) ⊂ {x : |x1| < k(x′)},
where x′ = (x2, · · · , xn), and k(x′) ≥ 0 is a C1-function with k(0′) = 0.

It is noteworthy that Theorem 1.6 can be “calibrated” to the case where u0 vanishes to
a fixed higher order on some part of ∂D, by asking higher-order regularity for the right-
hand side. Notwithstanding this, it remains a tantalizing problem when the higher-order
vanishing of u0 takes place on isolated points of ∂D. This remains to be studied in the
future. See [56] for partial results in this direction.

1.3 Connection to free boundary problems

We now describe more precisely how the existence of an incident wave that does not
scatter leads to a free boundary problem. Let� ⊂ R

n be a bounded open set, and suppose
that uq, u0 ∈ H1(�) satisfy (1.1)–(1.2) where q = hχD for some solid domain D with
D ⊂ � and for h ∈ C(Rn). Then, u0 is real-analytic, and also uq ∈ W 2,p

loc (�) for any p < ∞
by elliptic regularity. We write u := uq − u0 ∈ H2

0 (�) and extend u by zero to R
n. Then,

u ∈ H2(Rn) satisfies

(� + λ2)u = f0χD in R
n (1.7)

where f0 = −huq near D. Note also that since u solves (� + λ2)u = 0 in R
n \ D and

u|
Rn\� = 0, unique continuation implies that u|

Rn\D = 0 using that Rn \ D is connected.
Suppose that

h(z)u0(z) �= 0 at some z ∈ ∂D. (1.8)

Since uq = u0 outside D and uq is continuous, we also have f0(z) �= 0. We claim that

D ∩ B(z, r) = supp(u) ∩ B(z, r) (1.9)

whenever r > 0 is such that |huq| > 0 in B(z, r). Since u|
Rn\D = 0, one always has

supp(u) ∩ B(z, r) ⊂ D ∩ B(z, r). Conversely, let x ∈ D ∩ B(z, r). If x /∈ supp(u), then u = 0
near x, which by (1.7) implies that f0 = 0 near x which is impossible since |f0| > 0 in
B(z, r). This proves (1.9).
Since D is a solid domain, it follows from (1.9) that

D ∩ B(z, r) = int(supp(u)) ∩ B(z, r).
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Thus, (1.7) implies that

(� + λ2)u = f0χint(supp(u)) in B(z, r), z ∈ ∂(int(supp(u))). (1.10)

Writing f = f0 − λ2u, so that f (z) = f0(z) �= 0, we may further write this as

�u = f χint(supp(u)) in B(z, r), z ∈ ∂(int(supp(u))). (1.11)

The last equation only involves u and not D. Thus, we have reduced our original problem
to an obstacle problem in free boundary theory, where locally near z the obstacle is the
set int(supp(u)) and its boundary ∂(int(supp(u))) can be understood as a free boundary.
In the free boundary literature, it is more customary to work with equations like

�u = f χ{u�=0} in B(z, r), z ∈ ∂({u = |∇u| = 0}). (1.12)

However, the methods for proving regularity of the free boundary in (1.12) also apply to
(1.11). See [44] for even more general equations when f is assumed Lipschitz, or [4] for f
Dini.
The standard obstacle problem corresponds to (1.12) for solutions u ≥ 0 (and f ≡ 1 in

the most classical case). In our case, u = uq − u0, and it is not possible to assume that
u is nonnegative. This means that (1.12) corresponds to a no-sign obstacle problem. The
no-sign assumption on umakes the analysis of this problem extremely hard, and one has
to resort to advanced tools such as monotonicity formulas along with strong geometric
analysis. On the other hand, if ∂D is Lipschitz close to z, then it follows by standard free
boundary techniques that u has a sign in a vicinity of z; see the beginning of the proof of
Theorem 1.3 in [4]. Thus, the case of Lipschitz domains falls back to the regularity theory
for the standard obstacle problem, which is rather classical [13].
There is by now also a well-developed theory for no-sign obstacle problems when f

is nonvanishing at the point z of interest, i.e., when (1.8) holds. We refer to [44] for an
account of this theory. After the reduction to (1.11), Theorems 1.4–1.6 follow rather
directly from this theory. One can also accommodate the possibility that f vanishes to
some fixed order at each point of ∂D ∩ B(z, r) (see Theorem 1.6 for an example result). If
f , or u0, only vanishes at z (or in a set of dimension ≤ n − 2), then the problem becomes
non-standard and is more or less untouched in the free boundary literature.

1.4 Inverse scattering

Finally, we discuss the case of inverse scattering problems where the bounded domain �

is replaced by Rn. In this subsection, we allow functions to be complex valued.
Let λ > 0 be a fixed frequency, and let u0 be a solution of (� + λ2)u0 = 0 in R

n.
We consider u0 as an incident wave that is used to probe a medium whose scattering
properties are described by a compactly supported potential q ∈ L∞(Rn). The incident
wave u0 induces a total wave uq = u0 + v that solves

(� + λ2 + q)uq = 0 in R
n.

The solution is unique if we require that the scattered wave v is outgoing in the sense that

v = (−� − (λ + i0)2 − q)−1(qu0)
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where (−�− (λ+ i0)2−q)−1 is the outgoing resolvent. Since qu0 is compactly supported,
v has the asymptotics

v(rθ ) = eiλrr− n−1
2 u∞

q (θ ) + o(r− n−1
2 ) as r → ∞,

where θ ∈ Sn−1. The function u∞
q on Sn−1 is called the far field pattern corresponding to

incident wave u0, and it can be measured from the knowledge of uq as |x| → ∞. We refer
to [19,55] for these basic facts.
A commonly used class of incident waves is given by the Herglotz waves, which are

solutions of (� + λ2)u0 = 0 having the form

u0(x) =
∫
Sn−1

eiλx·ωf (ω) dω, f ∈ L2(Sn−1). (1.13)

A scattering analogue of the Dirichlet-to-Neumann map is given by the far field operator

Aq(λ) : L2(Sn−1) → L2(Sn−1), Aq(λ)f = u∞
q .

A standard fixed frequency inverse problem is to determine q from the knowledge of
Aq(λ), which corresponds to infinitely many measurements. However, we wish consider
the single measurement problem in (fixed frequency) inverse scattering: determine some
properties ofq fromknowledgeof the far fieldpatternu∞

q corresponding to afixed incident
wave u0. If u∞

q ≡ 0, we say that the incident wave u0 does not scatter. Again, in order to
obtain a formally well-determined problem, we consider the case of penetrable obstacles,
so that

q = hχD,

where D ⊂ R
n is a bounded open set (the obstacle) and h is a contrast for D.

In the imaging community, it has been understood for a long time that if ∂D has cor-
ner singularities, one often has strong scattering effects. A rigorous analysis of this phe-
nomenon was initiated in the important work [11] which showed that if part of ∂D is part
of a cube, then every incident wave scatters nontrivially for every frequency λ > 0. In
two dimensions, this was extended to sectors with angle < 90◦ and single measurement
results in [27,43]. The analysis was based on studying Laplace transforms of characteristic
functions of cones via complex geometrical optics solutions as in the Calderón problem.
There are several related results including quantitative bounds even when corners are
replaced by high curvature points, see [7–10,12] and the survey [36] (which also discusses
results for electromagnetic and elastic scattering). Another important approach to non-
scattering problems, introduced in [23] (see [22,35] for related work), is based on the
theory of boundary value problems in corner domains and can be used to produce similar
results even for curvilinear polyhedra or when h vanishes to finite order at ∂D. We men-
tion that these results related to corner singularities are most complete for n = 2, and
even when n = 3 they become more limited and mostly apply to edge or circular cone
singularities. Finally, the results in [18], already discussed before, show regularity of the
free boundary if the obstacle is a Lipschitz domain, and the incident wave is nonvanishing
on its boundary.
In [11], a frequency λ > 0 was called a non-scattering wavenumber if there is some inci-

dent wave u0 that does not scatter. The results mentioned above show that if ∂D has cor-
ner singularities, then there are no non-scattering wavenumbers (i.e., every incident wave
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scatters nontrivially independent of the frequency). This notion is connected with interior
transmission eigenvalues (see [16,17]) in the sense that a non-scattering wavenumber is
also an interior transmission eigenvalue. The converse is not true: for a given potential,
there are typically infinitely many interior transmission eigenvalues whereas the set of
non-scattering frequencies may be empty.
The free boundary approach described above extends directly to the scattering case. If

u0 is an incident wave solving (� + λ2)u0 = 0 in R
n, let uq be the outgoing solution of

(�+λ2+q)uq = 0 inRn defined above where q = hχD, andD is a bounded solid domain.
Suppose that u0 does not scatter, i.e., u∞

q ≡ 0. Then, the Rellich uniqueness theorem and
unique continuation imply that uq = u0 in R

n \ D. We may thus take � to be some large
ball containingD, andwe are back in the situation of (1.1)–(1.2).Moreover, if h is assumed
to be real valued, and if for some z ∈ ∂D, one has h(z)u0(z) �= 0, then Re(u0)(z) �= 0 or
Im(u0)(z) �= 0. Thus by taking real or imaginary parts of the solutions, one can reduce to
a situation where the functions involved are real valued.
If the obstacle has real-analytic boundary, combining Theorem 2.1 (with � = R

n) and
Theorem 1.3 leads to an analogue of Theorem 1.1 in the scattering setting. This provides
examples of real-valued contrasts and incident Herglotz waves that do not scatter.

Structure of the article

In Sect. 2, we will prove Theorems 1.1 and 1.2 by using a simple extension argument, the
Cauchy–Kowalevski theorem and the defining property of quadrature domains. In Sect. 3,
we discuss Helmholtz solutions and prove Theorem 1.3, which follows by combining a
result in D with a Runge approximation argument. In Sect. 4, we discuss how Theorems
1.4–1.6 follow from arguments in the theory of free boundaries.

2 Examples of free boundaries
In this section,we show that any real-analytic boundary, or the boundary of anyquadrature
domain when λ = 0, can be realized as a free boundary. The following results are more
precise versions of Theorems 1.1 and 1.2, since they also give information on the kinds
of incident waves and contrasts for which one has no scattering. Note that Theorem 1.1
follows by combining Theorems 2.1 and 1.3, and 1.2 follows from Theorem 2.2 by taking
u0 ≡ 1.

Theorem 2.1 Let λ ≥ 0, let D ⊂ R
n be a bounded open set with real-analytic boundary,

let � ⊂ R
n be an open set with D ⊂ �, and let u0 be any solution of (� + λ2)u0 = 0 in

� that is positive on ∂D. Let also h0 be a real-analytic function near ∂D. Then, there is
h ∈ C∞(�) with h = h0 near ∂D so that with the choice q = hχD, the equation

(� + λ2 + q)uq = 0 in �

has a solution uq ∈ H2(�) satisfying uq = u0 in � \ D.

Theorem 2.2 Let D ⊂ R
n be a bounded quadrature domain, let � ⊂ R

n be an open set
with D ⊂ �, and let u0 be any solution of �u0 = 0 in � that is positive on ∂D. Then, there
is h ∈ L∞(�) with |h| ≥ c > 0 near ∂D so that with the choice q = hχD, the equation

(� + q)uq = 0 in �
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has a solution uq ∈ H2(�) satisfying uq = u0 in � \ D.

Wemention that the existence of solutions of (�+λ2)u0 = 0 inR
n that are positive on

∂D is proved later in Proposition 3.3. It follows from the proof that u0 can be chosen to
be a Herglotz wave, i.e., of the form (1.13), which is relevant for applications in scattering
theory.
The proofs of Theorems 2.1 and 2.2 involve the following simple result. It begins with

a solution of (� + λ2)u0 = 0 in � that is positive on ∂D and with a local solution v0,
for some potential h0 that extends u0 slightly inside D. The result gives a solution v that
extends u0 all the way intoD and corresponds to some potential hχD, where h extends h0
intoD. The point is that one first chooses a suitable extension v of v0, and then constructs
the potential h depending on v.

Lemma 2.3 Let � ⊂ R
n be open, let D ⊂ R

n be a bounded open set with D ⊂ �, let
λ ≥ 0, and assume that (� + λ2)u0 = 0 in � with u0 positive on ∂D. Suppose that U is a
neighborhood of ∂D in � and that h0 ∈ L∞(U ) and v0 ∈ C1,1(U ) satisfy

(� + λ2 + h0)v0 = 0 in D ∩ U, v0|U\D = u0|U\D.

Then, there are h ∈ L∞(�) and v ∈ C1,1(�), with h = h0 and v = v0 near ∂D, so that

(� + λ2 + hχD)v = 0 in �, v|�\D = u0|�\D.

If additionally h0 ∈ C∞(U ) and v0|D∩U ∈ C∞(D ∩ U ), then h ∈ C∞(�).

Proof Note that v0 is positive in some neighborhood U1 ⊂ U of ∂D, since v0 ∈ C1,1(U )
and v0|U\D = u0|U\D and u0 is positive on ∂D. Let ψ ∈ C∞

c (U1) satisfy 0 ≤ ψ ≤ 1 and
ψ = 1 near ∂D, and define

v =
{
v0ψ + (1 − ψ) in D,
u0 in � \ D.

Then, v ∈ C1,1(�) is positive near D and satisfies v = v0 near ∂D. One can now define a
function h ∈ L∞(�) by

h =
{

− (�+λ2)v
v in D,

ψh0 in � \ D.
The functions h and v will have the required properties.
If additionally h0 ∈ C∞(U ) and v0|D∩U ∈ C∞(D ∩U ), it follows that v|D ∈ C∞(D) and

h|D ∈ C∞(D). Since h = h0 near ∂D, we have h ∈ C∞(�).

By Lemma 2.3, the proofs of Theorems 2.1 and 2.2 are reduced to finding a local solution
v0 that extends u0 a little bit insideD. In the real-analytic case, this can be done by solving
a Cauchy problem using the Cauchy–Kowalevski theorem.

Proof of Theorem 2.1 Note that u0 is real-analytic in �. For any x ∈ ∂D, we may use the
Cauchy–Kowalevski theorem to find a real-analytic solution of

(� + λ2 + h0)vx = 0 in Ux, vx|Ux∩∂D = u0|Ux∩∂D, ∂νvx|Ux∩∂D = ∂νu0|Ux∩∂D,

whereUx is an open set of the form {z+ tν(z) : z ∈ Vx, |t| < εx}withVx a neighborhood
of x in ∂D and εx > 0. Any two solutions vx and vy agree on their overlap Ux ∩ Uy by
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the unique continuation principle. Thus, for some neighborhood U of ∂D in �, there is a
real-analytic function v0 in U so that

(� + λ2 + h0)v0 = 0 in U, v0|∂D = u0|∂D, ∂νv0|∂D = ∂νu0|∂D.
Wemay redefine v0 = u0 in U \ D, so that v0 ∈ C1,1(U ) will satisfy

(� + λ2 + h0)v0 = 0 in D ∩ U, v0|U\D = u0.

By Lemma 2.3, there are v ∈ C1,1(�) and h ∈ C∞(�) that satisfy v = v0 and h = h0
near ∂D, such that

(� + λ2 + hχD)v = 0 in �, v0|�\D = u0.

It remains to set uq = v in D and uq = u0 in � \ D. Then, uq ∈ H2(�) has the required
properties.

In the case of quadrature domains, we instead use (1.3) to produce the required local
solution.

Proof of Theorem 2.2 LetG be the fundamental solution for−� inRn, i.e.G(x) = c2 log |x|
when n = 2 andG(x) = cn|x|2−n when n ≥ 3. Letμ be the distribution with supp(μ) ⊂ D
appearing in the definition of the quadrature domain D, and define

u = G ∗ (χD − μ).

SinceχD−μ is a compactly supported distribution, u is a distribution inRn, and it satisfies

�u = χD − μ in R
n.

Moreover, if x ∈ R
n \ D, we may take H (y) = G(x − y) in (1.3) to obtain that

u|
Rn\D = 0.

In particular, since supp(μ) ⊂ D, there is a neighborhood U of ∂D in R
n such that

�u = χD in U, u|U\D = 0. (2.1)

Note that u ∈ C1,1(U ) using the C1,1 regularity results for the no-sign obstacle problem
[4].
Define v0 = u + u0 in U . We first claim that there is h0 near ∂D with |h0| ≥ c > 0 near

∂D so that

(� + h0χD)v0 = 0 near ∂D.

In fact, using the equations for u and u0, for any h0 one has

(� + h0χD)v0 = χD + h0χDv0 in U.

This quantity vanishes near ∂D, if we set

h0 = − 1
v0

near ∂D.

The denominator is nonvanishing near ∂D since u is continuous with u|∂D = 0, and since
u0 is positive on ∂D. We have thus found the required function h0 near ∂D.
By Lemma 2.3, there are h ∈ L∞(�) and v ∈ C1,1

loc (�), with h = h0 and v = v0 near ∂D,
so that

(� + hχD)v = 0 in �, v|�\D = u0|�\D.

Setting uq = v in D and uq = u0 in � \ D gives the required solution.
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Remark 2.4 The only property of quadrature domains needed in the proof of Theorem
2.2 was the existence of a function u satisfying (2.1). The conclusion of Theorem 2.2, also
with a frequency λ ≥ 0, would hold for any domain D that admits a function u satisfying

(� + λ2)u = f χD in U, u|U\D = 0,

where f is nonvanishing on ∂D. In Theorem 2.2, we produced such a function as u =
G ∗ (χD − μ), which can be understood as continuing the potential G ∗ χD smoothly a
little bit inside D as the function G ∗ μ.

3 Zero sets of Helmholtz solutions
We complement the previous results by showing that for any bounded open set D, there
is a solution u0 of (� + λ2)u0 = 0 in R

n which is positive on ∂D, under some restrictions
on D and λ. In the case λ = 0, one can take u0 ≡ 1, so we will assume λ > 0. If one
allows complex-valued solutions, the function u0 = eiλx1 is a nonvanishing solution in
R
n. However, real-valued solutions always have zeros. This is already seen in the casen = 1

where any solution of (� + λ2)u0 = 0 takes the form u0(x) = a sin(λx) + b cos(λx), and
such a function has a zero in any closed interval of length π/λ. A similar result holds for
Laplace eigenfunctions in compact manifolds (see the survey [38]). The following version
of this result shows that any real solution of (� + λ2)u0 = 0 in R

n has a zero in any ball
of radius ≥ cn/λ.

Lemma 3.1 Let λ > 0 and x0 ∈ R
n. There is a nonvanishing real function u ∈

C∞(B(x0, r)) solving (� + λ2)u = 0 in B(x0, r) if and only if r < cn/λ, where cn denotes the
first positive zero of the Bessel function J n−2

2
.

Proof By translation invariance, we may assume x0 = 0, and replacing u(x) by u(λx), we
may assume λ = 1. We consider radial solutions v = v(r) of (� + 1)v = 0 in R

n. Writing
the Laplacian in polar coordinates, we see that v should satisfy

v′′(r) + n − 1
r

v′(r) + v(r) = 0 in R+.

The substitution v(r) = r
2−n
2 w(r) leads to the Bessel equation

r2w′′(r) + rw′(r) +
(
r2 −

(
n − 2
2

)2
)
w(r) = 0 in R+.

Since v(r) should be bounded near r = 0, one must have v(r) = r
2−n
2 J n−2

2
(r) (up to a scalar

multiple). Thus, there is a positive solution in B(0, cn).
For the converse, we argue by contradiction and suppose that w ∈ C∞(Br) is positive

and solves (� + 1)w = 0 in Br for some r ≥ cn. We now use the fact that if a Schrödinger
equationhas a nonvanishing solution, then it canbe reduced to a divergence formequation
with no zero-order term. Writing γ = w2, we see that

(� + 1)u = 0 in Br ⇐⇒ div(γ∇(γ −1/2u)) = 0 in Br.

Now since r ≥ cn, taking u to be the radial solution v above shows that γ −1/2u is positive
in B(0, cn) but becomes zero on ∂B(0, cn). By the maximum principle for the equation
div(γ∇ · ) = 0, the maximum of γ −1/2u in B(0, cn) should be attained at the boundary.
This is a contradiction.
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We now turn to the question of determining if there is a real-valued solution of (� +
λ2)u0 = 0 in R

n that is nonvanishing on ∂D. The following remark shows that this may
be false when λ > 0 is an eigenvalue of −� in D.

Remark 3.2 Let D = B(0, cn) where cn is as in Lemma 3.1, and suppose u0 is real and
solves (� + λ2)u0 = 0 in R

n. Let v ∈ H1
0 (D) be the radial solution in the proof of Lemma

3.1 with v > 0 in D. Since v|∂D = 0, one has∫
∂D

u0∂νv dS =
∫
D
(u0�v − (�u0)v) dx = 0.

However, ∂νv < 0 on ∂D, which implies that u0 must change sign on ∂D. The same
argument works for any sufficiently regular D if λ is the first Dirichlet eigenvalue and ∂D
is connected.

The next result shows that if λ is not a Dirichlet eigenvalue in D, there is a solution u0
which is positive on ∂D.

Proposition 3.3 Let D ⊂ R
n be a bounded Lipschitz domain if n = 2, 3 (resp. C1 domain

if n ≥ 4) so that Rn \ D is connected. Suppose that λ > 0 is not a Dirichlet eigenvalue of
−� in D. Then, there is a real-valued u0 solving (�+λ2)u0 = 0 inRn so that u0 is positive
on ∂D.

We will prove the above result in two steps. First, we show that there is v ∈ W 1,p(D)
for some p > n such that (� + λ2)v = 0 in D and v|∂D is positive. Then, we apply a
Runge approximation property, showing that v can be approximated by functions u|D
where u solves (� + λ2)u = 0 in R

n. This kind of property is classical for second-order
elliptic equations, and it follows from the unique continuation property. See [34,39] for
the original results in bounded domains and [45] for further references.
Approximation by Helmholtz solutions inR

n has been used in scattering theory at least
with respect to L2 norms, see e.g., [54] and references therein. We need a corresponding
approximation result in the C(D) norm. This is more involved than approximation in L2

(for analytic functions this would correspond to Mergelyan’s theorem instead of Runge’s
theorem). In order to achieve this, we will assume some regularity on D and work with
Sobolev norms instead.
Below, we say that D is a C0 domain if it is locally the region above the graph of a

continuous function, and we define H1,p(D) = {u|D : u ∈ W 1,p(Rn)} with the quotient
norm ‖v‖H1,p(D) = inf{‖u‖W 1,p(Rn) : u|D = v}. The space H1,p(D), defined via restric-
tion, coincides with the standard Sobolev spaceW 1,p(D) whenever D is aW 1,p extension
domain. The following version of the Runge approximation property will be relevant for
us. In the rest of this section, we allow functions to be complex valued.

Proposition 3.4 Let 1 < p < ∞, let λ > 0, and let D ⊂ R
n be a bounded C0 domain

such that Rn \ D is connected. Given any v ∈ H1,p(D) (possibly complex valued) with
(� + λ2)v = 0 in D, there exist uj solving (� + λ2)uj = 0 in R

n so that

‖uj − v‖H1,p(D) → 0 as j → ∞.

If v is real valued, then so are uj.

The proof of Proposition 3.3 follows rather easily:
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Proof of Proposition 3.3 Since λ is not a Dirichlet eigenvalue in D, there is a real-valued
solution v = 1 + w of (� + λ2)v = 0 in D where w ∈ H1

0 (D) is the unique solution of

(� + λ2)w = −λ2 in D.

We claim that v ∈ W 1,p(D) for some p > n. Note that the W 1,p(D) and H1,p(D) norms
are equivalent since Lipschitz domains areW 1,p extension domains. Now, if v ∈ W 1,p(D)
for some p > n, then by Proposition 3.4, there are global solutions uj such that

‖uj − 1‖C(∂D) ≤ ‖uj − v‖C(D) ≤ C‖uj − v‖H1,p(D) → 0

where we used the Sobolev embedding. This shows the existence of a global solution that
is positive on ∂D.
To prove that v ∈ W 1,p(D) for some p > n, we note that w ∈ H1

0 (D) solves

�w = −λ2v in D. (3.1)

By Sobolev embedding, the right-hand side is in L
2n
n−2 (D) for n ≥ 3, and in Lr(D) for any

r < ∞ for n = 2. In particular, the right-hand side is in W−1,r(D) for any r < ∞ for
n = 2, 3, 4 and for r = 2n

n−4 for n ≥ 5. Since D is Lipschitz, by [29, Theorem 1.1], one
has w ∈ W 1,p(D) for some p > 3 if n = 2, 3. This proves the claim for Lipschitz domains
in dimensions n = 2, 3. For C1 domains in dimensions n ≥ 4, using [29, Theorem 1.1],
which holds with p0 = 1 in C1 domains, shows that w ∈ W 1, 2n

n−4 (D). Returning to (3.1),
noting that the right-hand side has more regularity, and iterating this argument shows
that v ∈ W 1,p(D) for all p < ∞ in the case of C1 domains.

To prove Proposition 3.4, it is convenient to introduce the operator

P(λ) : C∞(Sn−1) → C∞(Rn), P(λ)f (x) =
∫
Sn−1

eiλx·ωf (ω) dω.

Functions u = P(λ)f are called Herglotz waves, and they are particular solutions of
(� + λ2)u = 0 in R

n. One can think of f as a certain boundary value at infinity for u, and
of P(λ) as a Poisson integral that gives the solution of (� + λ2)u = 0 having boundary
value f at infinity.
The following proof,modeled after [42,52], will show that restrictions of Herglotz waves

to D are dense in the set of all Helmholtz solutions in H1,p(D).

Proof of Proposition 3.4 By the Hahn–Banach theorem, it is enough to prove that any
bounded linear functional � on H1,p(D) that vanishes on {P(λ)f |D ; f ∈ C∞(Sn−1)} must
also vanish on {v ∈ H1,p(D) ; (� + λ2)v = 0 in D}. We define a functional

�1 : W 1,p(Rn) → C, �1(u) = �(u|D).
Then, �1 is bounded onW 1,p(Rn), and by duality

�1(u) = (u,μ)

for some μ ∈ W−1,p′ (Rn), where 1
p + 1

p′ = 1 and ( · , · ) is the sesquilinear distributional
pairing in R

n. Clearly μ = 0 in R
n \ D, so μ is a compactly supported distribution. Thus,

the condition �(P(λ)f |D) = 0 for all f ∈ C∞(Sn−1) implies that

(P(λ)f,μ) = 0 for all f ∈ C∞(Sn−1). (3.2)
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Let Gλ be the outgoing fundamental solution of � + λ2, given by

Gλ(x) = cn,λ|x|− n−2
2 H (1)

n−2
2
(λ|x|)

where H (1)
ν is the Hankel function (see [55, Section 1.2.3]), and let w be the distribution

w = Gλ ∗ μ.

Then, w is a distributional solution of

(� + λ2)w = μ in R
n.

By elliptic regularity w ∈ W 1,p′
loc (Rn) and w is smooth outside D, with the expression

w(x) = (Gλ(x − · ),μ), x ∈ R
n \ D. (3.3)

Let f ∈ C∞(Sn−1) and u = P(λ)f ∈ C∞(Rn). By (3.2) and the fact that μ has compact
support, we have

0 = (u,μ) = lim
r→∞(u,μ)Br (3.4)

where ( · , · )Br is the sesquilinear distributional pairing in Br . We wish to use that μ =
(� + λ2)w. Since w is not smooth in D, we introduce a cutoff function χ ∈ C∞

c (Rn) with
0 ≤ χ ≤ 1 and χ = 1 near D. Writing u = χu + (1 − χ )u and using that everything is
smooth outside D, we obtain from (3.4) that

0 = lim
r→∞

(
(χu, (� + λ2)w)Br + ((1 − χ )u, (� + λ2)w)Br

]

= lim
r→∞

[
((� + λ2)(χu), w)Br + ((� + λ2)((1 − χ )u), w)Br

+
∫

∂Br
(u∂νw − (∂νu)w) dS

]
.

Since (� + λ2)u = 0, this reduces to

lim
r→∞

∫
∂Br

(u∂νw − (∂νu)w) dS = 0. (3.5)

Writing x = rθ where r ≥ 0 and θ ∈ Sn−1, the function u = P(λ)f has the asymptotics

u(rθ ) = c′n,λr− n−1
2

[
eiλr f (θ ) + in−1e−iλr f (−θ )

]
+ O(r− n+1

2 ),

∂ru(rθ ) = c′n,λr− n−1
2 iλ

[
eiλr f (θ ) − in−1e−iλr f (−θ )

]
+ O(r− n+1

2 ),

as r → ∞ (see [41, Section 1.3]). We wish to study similar asymptotics for the outgoing
function w. Using (3.3) and asymptotics for the Hankel function, we see that (as in [55,
Section 1.2.3])

w(rθ ) = c′′n,λr− n−1
2 eiλrμ̂(λθ ) + O(r− n+1

2 ),

∂rw(rθ ) = c′′n,λr− n−1
2 iλeiλrμ̂(λθ ) + O(r− n+1

2 )

where μ̂ ∈ C∞(Rn) is the Fourier transform of the compactly supported distribution μ.
Above cn,λ, c′n,λ and c′′n,λ are nonzero constants.
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Inserting the asymptotics for u and w into (3.5) and noting that the terms containing
f (−θ ) cancel yields that∫

Sn−1
f (θ )μ̂(λθ ) dθ = 0.

Since this is true for all f ∈ C∞(Sn−1), we must have μ̂(λθ ) = 0. In particular, w has the
asymptotics

w(rθ ) = O(r− n+1
2 ), ∂rw(rθ ) = O(r− n+1

2 ).

Sincew is outgoing and satisfies (�+λ2)w = 0 inR
n \D, the Rellich uniqueness theorem

(see e.g., [28]) implies thatw = 0 outside a large ball. SinceRn \D is connected, the unique
continuation principle gives that w = 0 in R

n \ D.
We have now proved that the condition (3.2) implies that

μ = (� + λ2)w in R
n

for some w ∈ W 1,p′ (Rn) vanishing in R
n \ D. Now let v ∈ H1,p(D) be any solution of

(� + λ2)v = 0 in D, and let ṽ ∈ W 1,p(Rn) be an extension of v. Then, we have

�(v) = �1(ṽ|D) = (ṽ,μ) = (ṽ, (� + λ2)w) = ((� + λ2)ṽ, w).

Since D is a bounded C0 domain and since w ∈ W 1,p′ (Rn) vanishes in R
n \ D, there are

wj ∈ C∞
c (D) withwj → w inW 1,p′ (Rn) (this is proved as in [40, Theorem 3.29]). It follows

that

�(v) = lim
j→∞((� + λ2)ṽ, wj) = 0

since (� + λ2)ṽ = 0 in D. This concludes the proof.

4 Free boundarymethods
By arguments from Sect. 1.3, we know that u = uq − u0 satisfies the equation (see (1.11)–
(1.12))

�u = f (x)χ{u�=0} in B(x0, r), (4.1)

where we may assume that f (x) > 0 in some neigborhood of x0 ∈ ∂{u �= 0}. The above
equation has been treated extensively in the literature, and all regularity aspects of the
problem are resolved and sorted out; see e.g., [4] and the references therein. Theorem 1.5
follows directly from [4, Theorem 1.3], and the proof of Theorem 1.6 is sketched below.
Theorem1.4 in the case where h is Dini or Lipschitz continuous follows from these results,
and the higher regularity results follow from themethod of [32] (see also [44, Section 6.4]).
We shall now give classical examples of singularities that can appear in the obstacle

problem.

Example ([32,47–49]) We recall from [32, page 387–390] an explicit example of cusps
appearing in the free boundary. These cusps are represented by the curves

x2 = ±xμ/2
1 , 0 ≤ x1 ≤ 1,

whereμ = 4k+1, (k = 1, 2, · · ·) gives nonnegative solutions andμ = 4k+3, (k = 0, 1, · · ·)
gives solutions that become negative on the negative x1-axis and near the origin. The
solution is defined locally by

u(x) = x22 − 2
1 + μ/2

ρ1+μ/2 sin(1 + μ/2)θ + · · · , x ∈ �, |x| < ε,
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for ε small. Here, we have used both real and complex notation

x = (x1, x2), z = ρeiθ , 0 ≤ θ ≤ 2π .

Also the domain � is the image of the set

{z : |z| < 1, Im z > 0}
under the conformal mapping f (z) = z2 + izμ.

Proof of Theorem 1.6 The proof of Theorem 1.6 when h ∈ C0,1(B(x0, r)) (i.e., case (1))
is somehow hidden in [15] (see their proof of Main Theorem), where it is proven that
the singular set of the free boundary lies in a C1-manifold. In particular, this means that
whenever we blow up a solution at a singular free boundary point through any sequence
u(rjx + x0)/r2j (here u = uq − u0 satisfies (4.1)), it will converge to a fixed polynomial
p(x), with the free boundary {p = ∇p = 0}, and regardless of the sequence {rj}. This in
particular implies that the limiting free boundary lies in a plane (or lower dimensional
plane) which after translation and rotation we assume it is {xn = 0}. From here, it follows
that the free boundary approaches this plane tangentially, whence the statement b) follows
whenever the free boundary has a cusp at x0.
In case x0 is not a cusp point, then by Theorem 1.5 in a vicinity of x0 the free boundary

is C1, and u ≥ 0, and obviously ∂eu ≥ 0 in a smaller neighbourhood of x0. By results of
[3] (see section 1.4.2), the free boundary is C1,α , and Theorem 1.6 is proved in case (1).
To prove Theorem 1.6 in the case (2), we work with v = ∂eu, where by the assumption

e = ∇u0(x0) �= 0. Since uq = u0 in Dc, we also have ∇uq(x0) �= 0. As before with
u = uq − u0, we have −(� + λ2)∂eu = ∂e(huq)χD = (∂ehuq + h∂euq)χD close to x0. Since
u0 = uq = 0 on ∂D ∩ Br(x0) and ∂euq(x0) > 0 and h(x0) �= 0, we have that ∂eu satisfies
the hypothesis of Theorem 1.6 case (1), and hence the result follows.
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