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Abstract.

The mean lifetimes of the lowest energy 2+, 8+ and 9− states in 166Os have

been measured using the recoil distance Doppler-shift method in conjunction with

a selective recoil-decay tagging technique. These measurements extend studies into

the most neutron-deficient mass region accessible to current experimental methods.

The B(E2; 2+ → 0+) = 7(2) W.u. extracted from these measurements is markedly

lower than those observed in the heavier even-mass Os isotopes. The 8+ and 9−

states yield reduced transition probabilities that are consistent with single-particle

transitions. While these values may indicate a departure from collective structure,

the level scheme and the underlying nuclear configurations can also be interpreted in

terms of a simple collective picture. This contrasting behaviour suggests an intriguing

dichotomy in the description of heavy transitional nuclei.
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single-particle states, electromagnetic transitions

1. Introduction

The systematic variation of nuclear properties across a complete shell can reveal the

development of collective behaviour arising from correlated nucleon motion. The

evolution of collectivity is reflected in the changes of low-lying excited states as a function

of nucleon number. For example, the excitation energy of the first 2+ state is correlated

with the proximity of an even-even nucleus to a closed shell. The excitations of the

nucleus are characterised by 2+ states with large excitation energies arising from single-

particle excitations near the shell closure, which fall gradually with the addition of

valence nucleons to a minimum at the mid shell. Nuclei are usually well deformed at

the mid shell and consequently excited states form rotational bands that are built on

top of their band-head configurations.

In osmium nuclei, excited states have been identified in the isotopes spanning the

range from 162Os86 [1] to 198Os122 [2], which covers almost all known osmium isotopes

and most of the 82 ≤ N ≤ 126 shell. Rotational excitations based on axially deformed

shapes dominate the yrast line at low spin in the Os nuclei around the neutron mid

shell at N = 104. The identification of excited states in the more neutron-deficient

transitional isotopes approaching the N = 82 closed shell has been made possible by

the exploitation of the selective recoil-decay tagging technique [3]. While the evolution

of excitation energies provide useful insights into the onset of collectivity, more detailed

information about the nuclear matrix elements can be obtained by measuring lifetimes

of excited states.

Recent lifetime measurements of the low-lying yrast states in the neutron-deficient

W, Os and Pt isotopes have revealed some anomalous features. Ratios of reduced

transition probabilities derived from mean lifetime measurements in the N = 94 isotones
172Pt [4] and 170Os [5], and the N = 92 isotones 168Os [6] and 166W [7] are found to be

significantly lower than the values predicted by collective models.

Recent measurements of odd-A nuclei suggest that the anomaly in the even-even

core may arise due to the soft triaxial shapes of these nuclei [8] but there are also

scenarios that can explain such anomalous ratios with B(E2; 4+ → 2+)/B(E2; 2+ →
0+) < 1 in terms of I = 0 seniority coupling [9, 10]. The intriguing dichotomy is that

such interpretations are typically reserved for nuclei near closed shells and are not usually

invoked for nuclei like the heavy N = 92 isotones, which have sufficient valence nucleons

to generate collective excitations. Low ratios of reduced transition probabilities have

been observed in other mass regions and a consistent explanation of this phenomenon

has not been determined.

It is desirable to obtain further information on the properties of the transitional Os

isotopes to help to understand this phenomenon. This paper reports the results of two

recoil-decay tagging experiments to probe the structure of the neutron-deficient nucleus
166Os90. The mean lifetimes τ have been extracted for the yrast 2+, 8+ and 9− states
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and the level scheme has been extended to high spin (I = 18).

2. Experimental details

The structure of 166Os was studied in two experiments carried out at the Accelerator

Laboratory of the University of Jyväskylä, Finland. The first experiment synthesised
166Os in an excited state via the 92Mo(78Kr,2p2n) reaction at beam energies of 357 MeV

and 368 MeV. The 92Mo target had a nominal thickness of 0.5 mg cm−2 in both

experiments. Gamma rays were detected at the target position with the Jurogam I

γ-ray spectrometer comprising a total of 43 Eurogam Phase 1 [11] type and GASP [12]

Compton-suppressed germanium detectors. The recoiling fusion-evaporation residues

were separated from the primary beam with the RITU gas-filled separator [13, 14]

and implanted into the double-sided silicon strip detectors (DSSD) of the GREAT

spectrometer [15] located at the RITU focal plane. The fusion-evaporation residues were

discriminated from scattered beam and target-like nuclei by their time of flight between

the multi-wire proportional counter (MWPC) and the DSSD and their energy-loss

characteristics in the MWPC. All of the detector channels were read out independently

and time-stamped relative to a 100 MHz clock signal in the Total Data Readout data

acquisition system [16]. The events were reconstructed offline in the Grain [17] software

package using spatial and temporal correlations. The γγ coincidence matrices were

analyzed with the Radware software package [18, 19].

The 92Mo(78Kr,2p2n) reaction at a bombarding energy of 380 MeV was used to

synthesise 166Os nuclei in the second experiment. This experiment used the Jurogam II

γ-ray spectrometer, which comprised 15 Eurogam Phase 1 type Compton-suppressed Ge

detectors [11] in two rings (with θ = 133◦ and 157◦ with respect to the beam axis) and

24 Eurogam Compton-suppressed clover detectors [20] positioned in two rings around

90◦. The segmentation of the clover detectors was used to form four rings with angles

θ = 71◦, 80◦, 100◦ and 109◦. The DPUNS differential plunger [21] was installed at the

target position. The stretched 92Mo target was used with a 1 mg cm−2 Mg degrader foil

slowing the velocity of the recoiling ions from v/c = 4.2% to 3.3%. The relative distance

between the target and degrader foils could be adjusted and measured precisely by a

capacitance measurement. A total of nine target-to-degrader distances ranging from

8 µm to 8000 µm were utilised to cover the region of sensitivity for the lowest excited

states.

3. Results

3.1. Level scheme

Gamma-ray transitions in 166Os were identified using the recoil-decay tagging

technique [3]. This method matches γ rays emitted at the target position to specific

nuclei implanted in the focal-plane DSSD and their subsequent radioactive decays using

spatial and temporal correlations. The ground-state α decay of 166Os (Eα = 6548 keV)
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with its short half-life (181 ms) and high α-decay branching ratio [22] is ideal for recoil-

decay tagging.

A total of 1.6 × 106 166Os α-decay correlated γγ-coincidences were detected in

the first experiment. The time for recoil-α(166Os) correlations within the same DSSD

pixel was limited to 600 ms corresponding to approximately three half-lives. This total

includes recoil-decay correlations with escaping 166Os α particles that deposit only a

fraction of their energy in the detector. Escaping 166Os α particles were selected by decay

correlations with the full-energy α decay of its decay product 162W, in the same DSSD

pixel within 2 s. Typical α-decay correlated γ-ray coincidence spectra are shown in

figure 1. The level scheme was extended and ordered on the basis of γ-ray coincidences,

energy sums and relative intensities.

The properties of γ rays assigned to 166Os are listed in table 1 and the extended level

scheme is shown in figure 2. Due to the presence of self-coincident γ-ray doublets and

insufficient counting statistics it has not been possible to determine the multipolarities

for all but the most intense transitions. Consequently, the spin assignments for most

levels are tentative.

Table 1: The energies and intensities (relative to the 2+

state) of the γ rays observed at the Jurogam I target

position. Due to the long lifetime of the 9− state at 2801

keV, the sum of the observed intensities of the transitions

feeding this state is higher than that of the de-exciting

442 keV transition.

Eγ (keV) Iγ (%) Ei (keV) Ii → If
169.6 (8) 9.1(1) 2971 (10−)→ (9−)

204.5(6) 2.1(2) 1929 (5−)→ (6+)

313.9(6) 3(3) 4585 (15)→ (14)

320.4(6) 1.5(2) 4905 (16)→ (15)

368.1(6) 18.2(8) 1929 (5−)→ (3−)

389.3(7) 1.2(2) 5295 (17)→ (16)

430.0(6) 16.5(8) 2359 (7−)→ (5−)

432.0(6) 100(5) 432 2+ → 0+

442.4(6) 12.8(5) 2801 (9−)→ (7−)

476.5(6) 2.8(3) 3707 (12)→ (10)

481.9(8) 18.6(11) 3453 (12−)→ (10−)

495.3(8) 12.5(3) 3397 (11−)→ (9−)

509.1(12) 6.5(10) 3310 (11−)→ (9−)

510.4(6) 14.6(7) 2861 (10+)→ (8+)

520.3(12) 0.5(3) 3400 (11−)→ (9−)

520.7(12) 10.2(6) 2880 (9−)→ (7−)

540.6(6) 13.4(8) 1561 (3−)→ 4+

543.6(12) 1.2(4) 3854 (13−)→ (11−)
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Eγ (keV) Iγ (%) Ei (keV) Ii → If
563.3(7) 0.8(2) 4271 (14)→ (12)

575.4(9) 0.5(3) 5284 (18−)→ (16−)

583.9(8) 7.9(6) 4037 (14−)→ (12−)

588.4(6) 86(4) 1020 4+ → 2+

597.9(8) 7.1(5) 3895 (13−)→ (11−)

610.4(8) 4(4) 4505 (15−)→ (13−)

615.8(8) 6.2(5) 4069 (14−)→ (12−)

625.2(8) 1.3(3) 5130 (17−)→ (15−)

626.1(6) 24.2(10) 2350 (8+)→ (6+)

657.4(6) 9(4) 3518 (12+)→ (10+)

672.1(8) 1.3(3) 4709 (16−)→ (14−)

697.5(8) 3.4(4) 4766 (16−)→ (14−)

703.8(6) 41(2) 1724 6+ → 4+

722.7(10) 0.8(3) 5489 (18−)→ (16−)

739.3(7) 1.8(3) 4257 (14+)→ (12+)

752.9(6) 1.8(2) 4271 (14)→ (12+)

780.3(6) 3.4(4) 2505 (8+)→ 6+

811.1(7) 2(3) 3316 (10+)→ (8+)

880.5(7) 0.8(3) 3231 (10)→ (8+)

909.3(6) 4.7(4) 1929 (5−)→ 4+

1128.5(6) 4.5(4) 1561 (3−)→ 2+

The ground-state band in 166Os (band 1) was first observed by King et al. [23]. In

the present work, the ground-state band has been extended to the non-yrast Iπ = (10+)

state and is displayed through coincidences with the 811 keV transition in figure 1(c).

Appelbe et al. [24] extended the yrast cascade to spin I = 14 and an excited band was

assigned firmly to 166Os. The assignment of γ rays to 166Os reported in reference [24]

is confirmed in the present work although the ordering of the 510 keV and 657 keV γ-

ray transitions has been exchanged and the tentative second excited band in reference

[24] is not observed in the present work. Gamma rays in coincidence with the 626 keV

transition highlighting the yrast band (band 2) are shown in figure 1(b). Figure 1(d)

shows γ rays in coincidence with the 314 keV transition indicating another band that has

parallel decay paths to the yrast (12+) and (8+) states of band 2. Figure 1(f) shows the

γ-ray spectrum obtained by demanding coincidences with the 442 keV γ-ray transition,

which shows the side band (band 4) identified in reference [24]. Several new high-spin

structures, notably bands 5, 6 and 7, are observed to feed into band 4. The γ-ray

spectra generated from coincidences with transitions from these cascades are shown in

figure 1(g) and figure 1(h).
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Figure 1. (a) The total projection of the 166Os α-decay correlated γγ matrix. A

search time of 600 ms was used to correlate the α particles and recoils detected in the

same DSSD pixel. In (b)-(h) same conditions are required. The most intense peaks

are labelled. (b) The γ rays in coincidence with the 626 keV γ ray. (c) The γ rays

in coincidence with the 811 keV γ ray. (d) The dipole band structure, in coincidence

with the 314 keV γ ray. (e) The γ rays in coincidence with the 368 keV γ ray showing

the feeding from the negative-parity band to the ground-state band. (f) The γ rays

in coincidence with the 442 keV γ ray depopulating the long-lived (9−) state. (g) The

continuation of the negative-parity band in coincidence with the 495 keV γ ray. The

origin of the 348 keV γ-ray could not be confirmed and thus it is not placed in the level

scheme. (h) The γ rays in bands 6 and 7 in coincidence with the connecting 170 keV

γ ray.
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Figure 2. The level scheme for 166Os. The transition energies are given in keV and

the widths of the arrows correspond to the relative intensities of the transitions. The

levels are labelled with their spin and parity and the excitation energy with respect to

the ground state is given in keV. The parentheses indicate tentative spin and parity

assignments. The new data are shown in red.

3.2. Mean Lifetime Measurements

The second experiment was dedicated to lifetime measurements of excited states with

the Recoil Distance Doppler-Shift (RDDS) technique. The lifetimes of the yrast 2+ and

8+ states were extracted using the Differential Decay Curve Method (DDCM) [25]. The

lifetimes of the 6+ and 4+ states could not be measured due to the feeding from the

2350 keV 8+ state, which is slow compared with the lifetimes of the 6+ and 4+ states.

In the DDCM, the lifetime is obtained from the intensity of the shifted (s) and degraded

(d) components of the depopulating transition (dep) and the feeding transition (feed)

according to

τ(x) =
1

v

Rd
dep(x)−Rd

feed(x)
d
dx
Rs

dep(x)
, (1)

where Rs
dep(x) = Isdep(x)/(Isdep(x)+Iddep(x)) is the fraction of the shifted component of the

depopulating transition from the level of interest and v is the velocity of the nucleus

after the target. The mean lifetime τ is analyzed separately for each target-to-degrader

distance x within the region of sensitivity, where both the numerator and the absolute

value of the denominator in equation (1) are significantly larger than zero.

The lifetime of the 2+ state was extracted using the α-decay correlated γ-ray
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coincidences. Summed coincidences of the 510, 626 or 704 keV γ-ray transitions in the

yrast band were demanded; both the depopulating transition of 432 keV and the feeding

transition of 588 keV were fitted in these spectra. These coincidences were chosen to

provide sufficient statistics for the peak fitting procedure and to reduce the influence of

the 430 keV (7−) → (5−) γ-ray transition on the 2+ lifetime measurement. It was not

possible to demand coincidences so that all the feeding from the negative-parity band

could be eliminated. Instead, coincidences with the 704 keV γ ray had to be included in

order to obtain sufficient statistics for peak fitting and so feeding via the 204 keV γ-ray

transition is possible. In addition, the feeding intensity originating from the (7−)→ (5−)

γ-ray transition, due to 510 and 626 keV being doublets with 509 and 625 keV, cannot be

completely excluded. The 1129 keV γ-ray transition bypasses the 4+ state and feeds the

2+ state directly. Nevertheless, this weak branch feeding directly the 2+ state does not

significantly modify the time structure of the total feeding intensity since the lifetime

of the 4+ state is short compared with its feeding transitions, especially that from the

9− state. The intensity of the 430 keV transition was determined to be less than 7%

compared with that of the 432 keV transition from the intensity of the 204, 541 and

909 keV γ-ray peaks. The 442 keV γ-ray peak, which has half of the intensity of the

430 keV peak, is fitted in figure 3 to give an indication of the level of contamination.

It is concluded that the overlapping 430 keV transition does not affect to the lifetime

determination of the 2+ state due to its weak intensity, which would limit the effect

within the statistical uncertainty of the 2+ state lifetime. The lifetimes were extracted

from the measured γ-ray intensities using equation (1) separately for the three rings

with θ = 71◦, θ = 109◦ and θ = 133◦. An example of the spectra for the 432 keV

2+ → 0+ transition recorded at θ = 71◦ is shown in the figure 3 with the resulting decay

curve according to DDCM and the measured mean lifetimes.

The lifetime of the 2350 keV 8+ state was analysed from the α-decay correlated

singles γ-ray spectra. Only the feeding intensity via the 510 keV γ-ray transition

was taken into account. The unobserved feeding was assumed to have a similar time

behaviour to that of the observed one. For the 510 keV transition the fully shifted

γ-ray intensity distribution is weighted to the shortest target-to-degrader distances.

Although no lifetime for the 10+ state can be extracted, one can conclude that the

510 keV transition is significantly faster than the 626 keV one. The feeding is extracted

from the intensity of the degraded component (see equation (1)) and the sensitive

target-to-degrader distances of the 510 keV and 626 keV transitions differ by an order of

magnitude. Therefore, one can conclude that the 509 keV γ-ray does not have an effect

on the lifetime of the 8+ state.

The lifetime of the 2801 keV (9−) state was too long to be determined precisely

with the plunger device and only an estimate in the range 0.5 − 2 ns was obtained. A

more precise value was obtained using the recoil shadow anisotropy method (RSAM)

[26]. In RSAM, the anisotropy Aγ extracted from the measured γ-ray intensities with

the clover crystals around θ = 90◦ and determined as
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Figure 3. Left hand panel: Alpha-decay correlated γ-ray spectra in coincidence with

the 510, 626 or 704 keV γ rays and the fits for the 432 keV 2+ → 0+ transition recorded

at θ = 71◦ are shown. The blue line marks the fit of the shifted component and the red

line that of the degraded component. Also the 442 keV peak is fitted to indicate the

intensity of the (9−) → (7−) transition. The spectra are Doppler corrected in energy

with the velocity of the nuclei after the target. The right hand panel shows the mean

lifetimes and the decay curves for the 432 keV 2+ → 0+ transition extracted using the

DDCM.

Aγ =
I(θ = 71◦)− I(θ = 80◦) + I(θ = 100◦)− I(θ = 109◦)

I(θ = 71◦) + I(θ = 80◦) + I(θ = 100◦) + I(θ = 109◦)
, (2)

is used to calculate the lifetime from

Aγ =

∫ ∞
0

Adet(x)ε(x)P (x)dx, (3)

where Adet is the detector asymmetry at a distance x after the target and ε(x) is

the relative efficiency of the γ-ray detection at the distance x, P (x) is the probability

of the nucleus emitting a γ ray at the distance x after the target and it is related to

the lifetime τ of the state and the velocity of the recoiling nucleus. Figure 4 compares

the α(166Os)-decay correlated γ rays detected in the Clover detectors with the measured

asymmetry spectrum. Only the experimental data with the shortest target-to-degrader

distance of 8 µm was used to determine the asymmetry. Gamma rays emitted promptly

at the target position should have zero asymmetry. The criterion was confirmed to

be valid with a test using the 170 keV (10− → 9−) γ-ray transition, which yielded

an asymmetry of Aγ(170 keV) = 0.009(2). The detector efficiency was simulated with
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Figure 4. (a) Gamma rays detected in the JUROGAM II clover detectors in

delayed coincidence with recoils implanted in the GREAT DSSD and followed by the

characteristic α decay of 166Os within the same pixel. The recoil-decay correlation time

was restricted to 600 ms and measurements are restricted to the target-to-degrader

distance of 5 µm. (b) The asymmetry spectrum defined by equation 2 for the 442 keV

(9− → 7−) transition. (c) The simulated relative efficiency as a function of distance

behind the target for the clover detectors at θ = 71◦ (purple), θ = 80◦ (black),

θ = 100◦ (blue), and θ = 109◦ (red) relative to the beam direction. (d) The calculated

asymmetry as a function recoil velocity and the state lifetime. The extracted value for

the (9−) state is marked.

GEANT4 as a function of the distance from the target position, see figure 4(c). For the

determination of the lifetime of the (9−) state, the 442 keV γ-ray transition was used,

as it depopulates the relatively long-lived (9−) state. Figure 4(d) shows the integrated

asymmetry according to equation 3 for different values of recoil velocity and lifetime (vτ).

The measured asymmetry of Aγ(442 keV) = 0.15(4) corresponds to a mean lifetime of

1100(200) ps.

The results of the lifetime measurements are presented in table 2.

Table 2. The mean lifetimes of the excited states and the reduced transition

probabilities for the depopulating E2 transitions measured in the present work. The

lifetimes of the 2+, 8+ states have been extracted with the RDDS method and the

lifetime of the (9−) state has been obtained with the RSAM analysis.

Level τ (ps) Eγ (keV) B(E2)(e2b2) B(E2)(W.u.)

2+ 130(30) 432.0 0.042(10) 7(2)

8+ 110(40) 626.1 0.008(3) 1.4(5)

(9−) 1100(200) 442.4 0.0042(8) 0.77(15)
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Figure 5. (a) Energies of the 2+, 4+, 6+, 8+ and 10+ states in osmium isotopes. (b)

The corresponding B(E2; 2+ → 0+) and B(E2; 4+ → 2+) values. Data taken from

[1, 23, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 2, 5].

4. Discussion

The excitation energies of the lowest-lying excited states and the B(E2) values of the

2+ → 0+ and 4+ → 2+ transitions in the Os nuclei are shown in figure 5. The excitation

energies reach their minimum values near the neutron mid shell (N = 104) while,

conversely, the B(E2) values reach their maximum values. These features reflect the

correlation between the number of valence neutrons and deformed nuclear shapes. The

Os nuclei remain moderately deformed until the level energies start to increase at 196Os,

which is interpreted as a transition from axially symmetric to γ-unstable/triaxial rotors

when approaching the N = 126 closed shell [40, 2].

The neutron-deficient Os isotopes have a different structure. The level energies
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increase towards N = 82 as the B(E2; I → I − 2) values decrease as the number

of valence nucleons is reduced outside the N = 82 closed shell. However, based on

the moderately low excitation energy of the 2+ state one would expect the 2+ → 0+

transition in 166Os to be collective with comparable B(E2; 2+ → 0+) values to that

in 168Os (B(E2; 2+ → 0+)=74(13) W.u.) [6]. The present data for 166Os yield value

of B(E2; 2+ → 0+) = 7(2) W.u, which approaches a typical value for a non-collective

single-particle transition. Similarly, low reduced transition probabilities of the order of

20 W.u. have been observed for the 4+ → 2+ and 12+ → 10+ transitions in 168Os [6],

and the 6+ → 4+ and 12+ → 10+ transitions in 166W [7].

These features are hard to reconcile with theoretical calculations, which often

predict higher B(E2; 2+ → 0+) and B(E2; 4+ → 2+) values. However, it is noted

that recent theoretical calculations employing the Skyrme Hartree-Fock-Bogoliubov

calculations with the Sly4 and UNEDF02 parameters in the transformed harmonic

oscillator basis appear to reproduce the low collectivity of the 2+ → 0+ transition

observed in the present work [41]. These predictions are promising albeit with the caveat

that the model predicts B(E2) values based on quadrupole deformation parameters

calculated using the collective rotational model.

The level scheme exhibits features that can be interpreted in terms of single-

particle excitations. The two 8+ states were observed at similar excitation energies.

The excitation energy systematics in figure 5 suggest that the 8+ states are associated

with different structures that cross at 166Os. The 2505 keV 8+ state is interpreted to be

the non-yrast continuation of the ground-state band. A similar interpretation is made

for the 3316 keV 10+ state. The yrast 2350 keV 8+ state marks the beginning of a trend

towards lower 8+ excitation energies towards 162Os, which is the lightest Os nucleus

where the excited states have been observed. The level spacing of the 6+ and 8+ states

starts to resemble that stemming from the seniority scheme [9]. Indeed, a possibility that

the 8+ states in lighter Os nuclei would be part of the ν(h9/2)
2 or ν(f7/2h9/2) multiplet is

discussed in Refs. [1, 23]. The observed transition rate B(E2; 8+ → 6+) = 1.4(5) W.u.

suggests this transition has a single-particle nature.

In marked contrast, the alignment properties deduced from the level scheme shown

in figure 6(a) suggest collective features for 166Os, which constitutes an apparent

contradiction with the low collectivity implied by the lifetime measurements. Figure 6

compares the behaviour of the high-spin structure of 166Os with 168Os in terms of the

angular momentum of the initial emitting state Ii, as a function of the γ-ray energy, Eγ.

This formulation is chosen over the familiar alignment plots as a function of rotational

frequency since it relies entirely on raw data and removes the need to specify the K

quantum number and reference, which is ill-defined in γ-soft triaxial nuclei like the

heavy N ∼ 90 nuclei.

Figure 6 shows that the ground-state band in 166Os is crossed by an excited

configuration. The angular momentum gain is smaller than observed in 168Os, which

is attributed to the rotational alignment of an i13/2 quasineutron pair [42]. The i13/2
quasineutrons have higher excitation energies relative to the Fermi surface at the lower
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Figure 6. Angular momentum of the initial emitting state Ii versus γ-ray energy

Eγ for bands in (a) 166Os and (b) 168Os. Filled circles correspond to the states with

the (+,0) parity-signature configurations. Open diamonds represent bands 4 and 5

in 166Os as a single sequence of parity-signature (−,+1), filled diamonds to band 6

(−,0) configuration, and the filled squares to the excited (+,0) configuration assigned

to band 3 in 166Os. The data for 168Os is taken from Ref. [6].

deformation measured for 166Os and alignments of the lowest negative-parity neutron

pair are favoured. Hence band 2 is assigned to be based on the mixed (h9/2)
2 and

(h9/2, f7/2) two-quasineutron configuration. Similar alignment properties are observed

in other nuclei in the N ∼ 90 mass region [43, 44, 45].

The lowest-lying negative-parity band in 166Os (band 4) resembles those in nearby

nuclei, which have been interpreted previously as structures arising from mixing with

low-spin octupole vibrational bands [6, 27, 46, 44]. The low collectivity measured in
166Os could also allow band 4 to be interpreted in terms of a ν(i13/2 ⊗ f7/2) multiplet

structure. This multiplet would produce the 3−, 5−, 7− and 9− states. The spin

assignments of the low-lying negative-parity states remain tentative due to unreliable

angular distributions due to dealigned states in the decay path from the (9−) isomer at

2801 keV.

Bands 4 and 5 in 166Os are treated as a single sequence of parity-signature (−,+1)

in figure 6(a). At higher angular momentum band 5 (−,+1) and band 6 (−,0) have

similar alignment properties to the low-lying negative-parity bands in 168Os. These are
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interpreted to be signature-partner bands formed by coupling a i13/2 quasineutron with

the lowest energy negative-parity (h9/2, f7/2) quasineutrons, respectively. Excited states

at similar excitation energies could be formed by other configurations involving i13/2⊗
(h9/2, f7/2) pairs.

The alignment for the band at 4271 keV (band 3) is marginally higher than the

(i13/2)
2 configuration that crosses the ground-state band in 168Os. It is possible that

this is a four-quasiparticle configuration formed by aligning the h11/2 quasiprotons with

the
(
νh9/2

)2
quasineutrons although other couplings cannot be ruled out.

While it is well known that single-particle and collective excitations cannot be

entirely decoupled from each other, the spectrum of excited states in the transitional

nucleus 166Os presents some intriguing features that can be interpreted in terms of both

regimes. There have been interpretations of high-angular momentum data in heavy

nuclei that suggest that the moments of inertia references used in rotational models vary

systematically across isotopic chains and may allow reasonable collective descriptions

for weakly deformed systems [47]. Further work from theoretical and experimental

perspectives are needed to fully understand these unusual features.

5. Summary

The level scheme of 166Os has been extended using recoil-decay tagged γ-ray

spectroscopy to moderately high angular momentum (I = 18). The mean lifetimes of

excited states have been measured with the RDDS and RSAM methods. The lifetime of

the first 2+ state was measured to be 130(30) ps and the corresponding reduced transition

probability for the 2+ → 0+ transition is determined to be B(E2; 2+ → 0+) = 7(2) W.u.

This value is markedly lower than the corresponding values for the heavier even-N

Os isotopes and approaches the single-particle limit. The lifetimes for the 8+ and 9−

states and the deduced reduced transition probabilities for their respective depopulating

transitions also indicate single-particle transitions. These results and the anomalous

ratios of reduced transition probabilities in the nearby even-even nuclei have been

suggested to arise from the seniority scheme, which would be exceedingly unusual given

the large number of valence nucleons in 166Os. It is possible that triaxial shape and γ

softness also have an effect on the unexpected B(E2) values. Indeed, the yrast spectra

have been shown to display characteristics that can be interpreted in terms of a simple

collective framework. These apparently contradictory manifestations of single-particle

and collective characteristics in the low-spin states of 166Os appear to be a feature of

the heavy transitional nuclei near N ∼ 90 and merit further investigation.

Combining the new results with the recent work for 168Os [6] and 166W [7], seniority-

like structures may be seen. This is unusual since these nuclei are not situated at the

shell closures and certainly warrants further investigations. Furthermore, in the recent

study of 172Pt [4], a phase transition between single-particle and collective regimes has

been proposed to generate B(E2; 4+ → 2+)/B(E2; 2+ → 0+) < 1.
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I, Kurz N, Montes F, Prokopowicz W, Saito T, Schaffner H, Tashenov S, Heinz A, Pfützner M,
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D T, Sayği B, McPeake C G, Grahn T, Greenlees P T, Jakobsson U, Jones P, Julin

R, Juutinen S, Ketelhut S, Leino M, Nieminen P, Pakarinen J, Peura P, Rahkila P,

Ruotsalainen P, Sandzelius M, Sarén J, Scholey C, Sorri J, Stolze S and Uusitalo

J 2013 Nuclear Instruments and Methods in Physics Research Section A: Accelerators,



Single-particle and collective excitations in the transitional nucleus 166Os 17

Spectrometers, Detectors and Associated Equipment 707 143 – 148 ISSN 0168-9002 URL

http://www.sciencedirect.com/science/article/pii/S0168900213000028

[22] Baglin C M 2008 Nuclear Data Sheets 109 1103 ISSN 0090-3752 URL

http://www.sciencedirect.com/science/article/pii/S009037520800029X

[23] King S L, Page R D, Simpson J, Keenan A, Amzal N, Chewter A J, Cocks J F C, Cullen D M,

Dorvaux O, Greenlees P T, Helariutta K, Jones P, Joss D T, Julin R, Juutinen S, Kankaanpää

H, Kettunen H, Kuusiniemi P, Leino M, Lemmon R C, Muikku M, Nieminen P, Savelius A,

Shepherd S L, Smith M B, Taylor M J and Uusitalo J 2000 Phys. Rev. C 62(6) 067301 URL

http://link.aps.org/doi/10.1103/PhysRevC.62.067301

[24] Appelbe D E, Simpson J, Muikku M, Boardman H J, Melarangi A, Page R D, Greenlees P T,

Jones P M, Julin R, Juutinen S, Keenan A, Kettunen H, Kuusiniemi P, Leino M, Nieminen

P, Pakarinen J, Rahkila P, Uusitalo J and Joss D T 2002 Phys. Rev. C 66(1) 014309 URL

http://link.aps.org/doi/10.1103/PhysRevC.66.014309

[25] Dewald A, Harissopulos S and von Brentano P 1989 Zeitschrift für Physik A Hadrons and Nuclei

334(2) 163–175

[26] Gueorguieva E, Kaci M, Schück C, Minkova A, Vieu C, Correia J J and Dionisio J S

2001 Nuclear Instruments and Methods in Physics Research Section A: Accelerators,

Spectrometers, Detectors and Associated Equipment 474 132 – 142 ISSN 0168-9002 URL

http://www.sciencedirect.com/science/article/pii/S0168900201008774

[27] Dracoulis G D, Bark R A, Stuchbery A E, Byrne A P, Baxter A M and

Riess F 1988 Nuclear Physics A 486 414 – 428 ISSN 0375-9474 URL

http://www.sciencedirect.com/science/article/pii/0375947488902448

[28] Davidson P M, Dracoulis G D, Kibedi T, Byrne A P, Anderssen S S, Baxter A M, Fabricius B,

Lane G J and Stuchbery A E 1994 Nuclear Physics A 568 90 – 106 ISSN 0375-9474

[29] Browne E and Junde H 1999 Nucl. Data Sheets 87 15

[30] Basunia M 2006 Nucl. Data Sheets 107 791

[31] Achterberg E, Capurro O and Marti G 2009 Nucl. Data Sheets 110 1473

[32] McCutchan E A 2015 Nucl. Data Sheets 126 151

[33] Singh B 2015 Nucl. Data Sheets 130 21

[34] Baglin C M 2010 Nucl. Data Sheets 111 275

[35] Baglin C M 2003 Nucl. Data Sheets 99 1

[36] Singh B 2002 Nucl. Data Sheets 95 387

[37] Singh B 2003 Nucl. Data Sheets 99 275

[38] Baglin C M 2012 Nucl. Data Sheets 113 1871

[39] Daniel T, Kisyov S, Regan P H, Marginean N, Podolyák Z, Marginean R, Nomura K, Rudigier

M, Mihai R, Werner V, Carroll R J, Gurgi L A, Oprea A, Berry T, Serban A, Nita C R, Sotty

C, Suvaila R, Turturica A, Costache C, Stan L, Olacel A, Boromiza M and Toma S 2017 Phys.

Rev. C 95(2) 024328 URL https://link.aps.org/doi/10.1103/PhysRevC.95.024328

[40] John P R, Modamio V, Valiente-Dobón J J, Mengoni D, Lunardi S, Rodŕıguez T R, Bazzacco D,
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Hornillos M B, Grahn T, Greenlees P T, Hadinia B, Jakobsson U, Jones P M, Julin R, Juutinen

S, Ketelhut S, Leino M, Nieminen P, Nyman M, Pakarinen J, Paul E S, Peura P, Rahkila P,

Ruotsalainen P, Sandzelius M, Sapple P J, Sarén J, Scholey C, Sorri J and Uusitalo J 2016 Phys.

Rev. C 93(2) 024307 URL https://link.aps.org/doi/10.1103/PhysRevC.93.024307

[45] Joss D T 2016 EPJ Web of Conferences 123 01006

[46] Joss D T, Simpson J, Appelbe D E, Lagergren K, Barton C J, Cederwall B, Eeckhaudt S, Grahn

T, Jones P M, Julin R, Juutinen S, Hadinia B, Kettunen H, Leino M, Leppänen A P, Nieminen

P, Page R D, Pakarinen J, Paul E S, Perkowski J, Rahkila P, Riley M A, Scholey C, Uusitalo J,

de Vel K V, Warner D D and Wiseman D R 2005 Journal of Physics G: Nuclear and Particle

Physics 31 S1715 URL http://stacks.iop.org/0954-3899/31/i=10/a=060

[47] Rowley N, Ollier J and Simpson J 2009 Phys. Rev. C 80 024323


