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Abstract. We consider an inverse problem of recovering the non-
linearity in the one dimensional variable exponent p(x)-Laplace equa-
tion from the Dirichlet-to-Neumann map. The variable exponent can
be recovered up to the natural obstruction of rearrangements. The
main technique is using the properties of a moment problem after
reducing the inverse problem to determining a function from its Lp-
norms.
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1 Introduction

Calderón’s fundamental inverse problem [11, 21] asks if a weight function γ can
be recovered from Dirichlet and Neumann measurements on the boundary of a
domain, when the data come from the weighted Laplace equation

− div (γ∇u) = 0.

The weight function γ is considered as conductivity of electricity or heat, the
Dirichlet boundary values as voltage or temperature, and the Neumann bound-
ary values as current flux or heat flux through the boundary. The equation is
derived from Ohm’s law

−γ∇u = I

Documenta Mathematica 26 (2021) 713–731



714 T. Brander, J. Siltakoski

and Kirchhoff’s law
div I = 0,

or corresponding laws for heat conduction.
The problem has been generalized to many other equations, of which we are
interested in non-linear and singular or degenerate elliptic ones. The physical
motivation for these is that Ohm’s law is only an approximation and many
real-world systems exhibit highly non-linear IV (or current-voltage) patterns.
Power law -type patterns lead to the p-conductivity equation

− div
(

γ |∇u|p−2 ∇u
)

= 0

first introduced by Salo and Zhong [33] and investigated further by Salo and
others [2, 8, 4, 6, 22, 23, 26], with the triviality of the one-dimensional case
explicitly treated in [3]. In these works the exponent 1 < p < ∞ is assumed
to be a known constant, whilst the linear factor in the conductivity γ is the
unknown. Cârstea and Kar [14] investigate a combination of linear and power
law type conductivity. Corbo Esposito and others [16] consider the widely used
monotonicity principle for conductivities a(x,∇u), which cover p-Laplace type
problems among a wider class.
On the other hand, general, but typically non-degenerate, A-harmonic equa-
tions

− div (a(x, u,∇u)∇u) = 0

have also been researched. A typical method is linearizing the equation or us-
ing Carleman estimates, hence relying on completely different techniques when
compared to the present work. Quasilinearities depending on the solution,
with a(u), have been investigated first by Cannon [13] and then many others;
we mention some more recent works [31, 18, 19]. Sun and Uhlmann [35] con-
sidered non-degenerate and fairly smooth dependence on u and x. A problem
with similar dependency has also been studied by Chen, Chen and Wei [15].
Hervas and Sun [24] considered smooth coefficients a(∇u). Muñoz and Uhl-
mann [32] considered non-degenerate elliptic a(u,∇u). Lassas, Liimatainen
and Salo considered general non-degenerate real-analytic conductivities [30],
while Shankar [34] considered a non-degenerate and very smooth a(x, u,∇u).
In the present work we consider the variable exponent p(·)-Laplace equation

− div
(

γ(x) |∇u|p(x)−2 ∇u
)

= 0,

which can be both singular and degenerate at the same time. Also, we make
no smoothness assumptions. The mathematical issues raised by the variable
exponent in the forward problem have been covered in a monograph [17]. One
physical motivation for such problems is the conductivity of electricity in cer-
tain almost-superconductive materials, where the exponent p(·) is a function
of temperature [10, 25], which should not be assumed constant and might very
well be unknown. Former work on inverse problems for the equation consists
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Recovering a Variable Exponent 715

of a boundary determination result with interior data [7], which does not make
essential use of the variable exponent, and of a characterization of conductiv-
ities γ that can be recovered when the exponent p(·) is known [9].
In the present paper our aim is to recover the exponent p(·) from the Dirichlet-
to-Neumann map. We use the results of Brander and Winterrose [9]; some
basic facts about the problem are summarized as preliminaries in section 2,
together with an unrelated lemma. Before the preliminaries we present the
problem and our main results. In section 3, we investigate the behaviour of the
Dirichlet-to-Neumann map as the difference of Dirichlet data goes to zero or
infinity. This gives explicit information about the maximum and minimum of p
with very few assumptions. Finally, in section 4, we prove the main injectivity
result by reducing it to a moment problem.

1.1 The problem

As a forward model we consider the equation

−
(

γ(x) |u′(x)|
p(x)−2

u′(x)
)′

= 0, (1)

with Dirichlet boundary data u(a) = A and u(b) = B. We assume, for con-
venience, that A ≤ B, so that the absolute value can be removed from the
equation, and write m = B − A. We often neglect to write the argument x in
γ(x) and u′(x), but, for emphasis, keep it in p(x).
Brander and Winterrose [9, Section 3] observed that the Dirichlet-problem (1)
can be solved almost explicitly in terms of an intermediate function. More
precisely, the problem has a unique solution u which satisfies the equation

u(x) = u(a) +

ˆ x

a

(Km/γ)1/(p(s)−1) ds

for some non-negative constant Km. By substituting x = b and using that
m = u(b) − u(a), we obtain an implicit definition for Km by the formula

m =

ˆ b

a

(Km/γ)1/(p(s)−1) ds. (2)

Defined this way, the function m 7→ Km is a well-defined continuous bijection
from R+ to itself with a continuous inverse [9, Lemma 7]. The Dirichlet-to-
Neumann map (hereafter DN map) can then be defined as

Λp
γ(m) =

ˆ b

a

γ−1/(p(x)−1)Kp(x)/(p(x)−1)
m dx = mKm. (3)

We provide additional details on this formulation and the setting in section 2.

Question: Assuming that m 7→ Λp
γ(m) is known and that γ is fixed, can one

recover p?
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716 T. Brander, J. Siltakoski

1.2 Results

Let f : (X,µ) → [0,∞] be a measurable function defined on a σ-finite measure
space. Define the distribution function of f by

µf (t) := µ ({x ∈ X ; f(x) > t}) for all t ∈ [0,∞]. (4)

We say two functions are equimeasurable if and only if their distribution func-
tions are equal. In the case of constant conductivity, we obtain the following
theorem whose proof is postponed to Section 4.

Theorem 1. Let γ > 0 be a constant, and the exponents p1 and p2 Lebesgue
measurable and bounded away from one and infinity. Then Λp1

γ = Λp2
γ if and

only if p1 and p2 are equimeasurable with respect to the Lebesgue measure.

A similar result should be reachable in one-dimensional multifrequency SPECT
imaging [5]. There the corresponding question would be recovering the atten-
uation, given knowledge of the source term.
Theorem 1 gives a uniqueness result, but we also have a reconstruction proced-
ure when γ ≡ 1. This procedure is described at the end of this article.

Theorem 2. Let γ ≡ 1. Suppose that the variable exponent p is Lebesgue meas-
urable and bounded away from one and infinity. Then a function equimeasur-
able with p can be obtained in a constructive way from the DN map and its
derivatives with respect to m.

The next theorem contains less information, but is computationally straight-
forward and assumes no a priori knowledge on γ. It is proven in section 3.
Write p− = ess infa≤x≤b p(x) and p+ = ess supa≤x≤b p(x).

Theorem 3. Let γ ∈ L∞
+ ([a, b]). The DN map determines the quantities p+,

p−, and if these are reached in sets of positive measure also the integrals

ˆ

{x∈[a,b];p(x)=p−}

γ−1/(p−−1) dx and

ˆ

{x∈[a,b];p(x)=p+}

γ−1/(p+−1) dx

in a constructive way.

This theorem can be used to estimate the sizes of the sets where the vari-
able exponent reaches its maximum or minimum. More precisely, we have the
following corollary.

Corollary 4. Suppose that c ≤ γ(x) ≤ C for some known constants c, C > 0.
Suppose moreover that the set {x ∈ [a, b]; p(x) = p±} has a positive measure.
Then this measure can be estimated in a constructive way via the DN map. In
particular, the measure can be recovered if γ is a constant.
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Proof. By Theorem 3 the quantities p− and

λ :=

ˆ

{x∈[a,b];p(x)=p−}

γ−1/(p−−1) dx

can be constructively determined from the DN map. In particular, the quant-
ities

l := min
c≤t≤C

t−1/(p−−1) and L := max
c≤t≤C

t−1/(p−−1)

are known. Then by the assumption c ≤ γ(x) ≤ C we have

l
∣

∣

{

x ∈ [a, b]; p(x) = p−
}∣

∣ ≤ λ ≤ L
∣

∣

{

x ∈ [a, b]; p(x) = p−
}∣

∣

Consequently we obtain the following estimate, where both the upper and lower
bound can be recovered

λ

L
≤
∣

∣

{

x ∈ [a, b]; p(x) = p−
}∣

∣ ≤
λ

l
.

In particular, if γ is a constant, then the precise measure of the set can be
constructed.

2 Preliminaries

We give some results from the article of Brander and Winterrose [9], which
build on known results for the variable exponent equation [17].
The present paper assumes the following standing assumptions, which guaran-
tee that there are no undue complications in understanding the existence and
uniqueness of solutions for the forward problem.

Assumption 5 (Standing assumptions). We consider a one-dimensional inter-
val of positive, but finite, length, i.e. −∞ < a < b < ∞.
There exists ε > 0 with the following holding almost everywhere on the interval
[a, b]: 0 < ε < γ(x) < 1/ε and 1 + ε < p(x) < 1/ε. We write the assumption
that γ is essentially bounded and essentially bounded from below as γ ∈ L∞

+ .

We then have:

1. The equation (1) has a unique solution u(x) [9, p8, Lemma 5].

2. The map m 7→ Km defined by equation (2) is well-defined, strictly increas-
ing, continuous bijection (from R+ to itself) with a continuous inverse [9,
p9, Lemma 7].

3. The DN map defined by equation (3) generalizes the usual DN map in
Calderón’s problem and Calderón’s problem for p-Laplace equation with
constant p – the DN maps are equal if p(x) is a constant outside of a null
set [9, p11, Lemma 8].
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718 T. Brander, J. Siltakoski

The paper [9] did not use the observation Λp
γ = mKm; the observation would

likely simplify the arguments therein.
We also use the notation

p+ = ess sup
a≤x≤b

p(x) and

p− = ess inf
a≤x≤b

p(x).

From the standing assumptions it follows that 1 < p− ≤ p+ < ∞.
The following lemma states that if two functions are equimeasurable, and the
same bijection acts on both of them, the composed functions are still equimeas-
urable. It is needed when proving some of our main results.

Lemma 6. Suppose that f, g : X → [0,∞) are equimeasurable with respect to
the measures µ1 and µ2 in the sense that

µ1({x ∈ X ; f(x) > t}) = µ2({x ∈ X ; g(x) > t}) for all t ∈ [0,∞).

Suppose also that µ1(X) = µ2(X). Let h : I → [0,∞) be strictly monotonous
and continuous, where I is an interval that contains the images of f and g.
Then h ◦ f and h ◦ g are also equimeasurable with respect to the measures µ1

and µ2 (in the above sense).

Proof. Suppose first that h is strictly increasing. Let τ ≥ 0. If τ is in the image
of h, there is t such that τ = h(t). Then, since h is strictly increasing, we have
by the equimeasurability assumption

µ1({x ∈ X ;h ◦ f(x) > τ}) =µ1({x ∈ X ;h(f(x)) > h(t)})

=µ1({x ∈ X ; f(x) > t})

=µ2({x ∈ X ; g(x) > t})

=µ2({x ∈ X ;h ◦ g(x) > τ}).

If τ is not in the image of h, then, since the image is a connected set, we have
either τ > h(t) for all t ∈ I or τ < h(t) for all t ∈ I. Consequently we have
either

µ1({x ∈ X ;h ◦ f(x) > τ}) = µ1(X) = µ2(X) = µ2({x ∈ X ;h ◦ g(x) > τ})

or

µ1({x ∈ X ;h ◦ f(x) > τ}) = µ1(∅) = µ2(∅) = µ2({x ∈ X ;h ◦ g(x) > τ}).

This completes the proof for strictly increasing h.
Suppose now that h is strictly decreasing. Then, by the same argument as
above, for all τ ≥ 0,

µ1 ({x ∈ X ;h ◦ f(x) < τ}) = µ2 ({x ∈ X ;h ◦ g(x) < τ}) . (5)
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But now, by dominated convergence and for all τ ≥ 0,

µ1 ({x ∈ X ;h ◦ f(x) > τ}) = µ1 (X) − µ1 ({x ∈ X ;h ◦ f(x) ≤ τ})

= µ1 (X) − lim
ε→0

µ1 ({x ∈ X ;h ◦ f(x) < τ + ε}) .

The same reasoning applies to g with µ2, and by equation (5), this finishes the
proof.

3 Limits of voltage difference

In this section we consider the situation where the difference of Dirichlet val-
ues m approaches zero or infinity. In this case we can learn something about
the maximum or minimum of p, respectively. Recall that m 7→ Km is a con-
tinuous bijection from [0,∞) to itself. Therefore by considering small or large
enough m, we are able to assume that Km ≤ 1 or Km ≥ 1.

Proposition 7. Suppose that γ ∈ L∞
+ . Assume that m ≤ 1 is so small that

Km ≤ 1. Then for any ε > 0 there is a constant C = C(γ, p, b− a, ε) such that

1

C
mp+−1 ≤ Km ≤ Cmp+−1−ε

and
1

C
mp+

≤ Λp
γ(m) ≤ Cmp+−ε.

Moreover, if p(x) reaches its essential supremum in a set of positive measure,
then these estimates hold for ε = 0.

Proof. Since γ is bounded away from zero and m ≤ 1 is so small that Km ≤ 1,
the definition of Km in (2) implies

m =

ˆ b

a

γ−1/(p(x)−1)(x)K
1

p(x)−1
m dx

≤ C(γ, p)

ˆ b

a

K
1

p+−1
m dx

≤ C(γ, p)(b− a)K
1

p+−1
m ,

so that
Km ≥ C(γ, p)(b− a)mp+−1. (6)

For the other direction, let ε > 0. Then, since γ is bounded and Km is non-
negative, we have

m ≥ C(γ, p)

ˆ b

a

K
1

p(x)−1
m dx

≥ C(γ, p)

ˆ

{x∈[a,b];p(x)≥p+−ε}

K
1

p+−1−ε
m dx

= C(γ, p)
∣

∣

{

x ∈ [a, b]; p(x) ≥ p+ − ε
}∣

∣K
1

p+−1−ε
m .

Documenta Mathematica 26 (2021) 713–731



720 T. Brander, J. Siltakoski

By the definition of p+, the set {x ∈ [a, b]; p(x) ≥ p+ − ε} has a positive meas-
ure for all ε > 0. Hence the above implies that

Km ≤ C(γ, p, ε)mp+−1−ε. (7)

Combining (6) and (7) we arrive at the first estimate of the proposition.

The second estimate follows immediately from the identity Λp
γ(m) = mKm. To

prove the final claim, simply repeat the above proof with ε = 0.

Lemma 8. Assume that γ ∈ L∞
+ . Then

p+ = sup
{

q > 0; lim
m→0

m−qΛp
γ = 0

}

= inf
{

q > 0; lim
m→0

m−qΛp
γ(m) = ∞

}

.

Proof. If q > p+, then q = p+ + ε for some ε > 0, and so by proposition 7 we
have

m−qΛp
γ(m) ≥ Cm−p+−εmp+

= Cm−ε → ∞ as m → 0.

If q < p+, then q = p+ − ε for some ε > 0, and so by Proposition 7 we have

m−qΛp
γ(m) ≤ Cm−p++εmp+−ε/2 = Cmε/2 → 0 as m → 0.

We get similar results with m large, but with p−.

Proposition 9. Suppose that γ ∈ L∞
+ . Assume that m ≥ 1 is so big that

Km ≥ 1. Then for any ε > 0 there is a constant C = C(γ, p, b− a, ε) such that

1

C
mp−−1 ≤ Km ≤ Cmp−−1+ε

and
1

C
mp−

≤ Λp
γ(m) ≤ Cmp−+ε.

Moreover, if p(x) reaches its essential infimum in a set of positive measure,
then these estimates hold for ε = 0.

Proof. As the proof of proposition 7, but with m large and p estimated by p−.

The proof of the following lemma, too, is similar to previous proofs.

Lemma 10. Assume that γ ∈ L∞
+ . Then

p− = inf
{

q > 0; lim
m→∞

m−qΛp
γ = 0

}

= sup
{

q > 0; lim
m→∞

m−qΛp
γ(m) = ∞

}

.

Now we can prove one of the inverse problem theorems.
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Proof of theorem 3. Lemmas 10 and 8 provide p− and p+.
Suppose now {x ∈ [a, b]; p(x) = p−} has positive measure, with the intention of
taking m → ∞. The other case is similar.

m−p−

Λp
γ(m) = m−p−+1Km

= Km

(

ˆ b

a

γ−1/(p(x)−1)K1/(p(x)−1)
m dx

)−p−+1

=

(

ˆ b

a

γ−1/(p(x)−1)K−1/(p−−1)+1/(p(x)−1)
m dx

)−p−+1

=

(

ˆ

{x∈[a,b];p(x)=p−}

γ−1/(p−−1) dx

)−p−+1

+

(

ˆ

{x∈[a,b];p(x)>p−}

γ−1/(p(x)−1)K−1/(p−−1)+1/(p(x)−1)
m dx

)−p−+1

.

The second integral vanishes by dominated convergence as m → ∞, since then
also Km → ∞.

4 Proof of the main theorem

We know [9, proposition 26] that, for n ∈ N ∪ {0}, the quantities

ˆ b

a

γ−1/(p(x)−1)

(

1

p(x) − 1

)n

dx,

can be recovered constructively from the DN map and its derivatives with
respect to m. Suppose γ ≡ 1. Then what can be recovered are essentially the

Ln-norms
∥

∥

∥

1
p(x)−1

∥

∥

∥

n

Ln([a,b])
. We write the weighted Ln-space with weight f as

Ln([a, b], f(x) dx), and omit the weight when f ≡ 1 almost everywhere.

Proposition 11. The following Ln-norms are determined constructively by
the DN map:

∥

∥

∥

∥

1

p(x) − 1

∥

∥

∥

∥

n

Ln([a,b],γ−1/(p(x)−1) dx)

. (8)

If γ ≡ 1, we get instead
∥

∥

∥

∥

1

p(x) − 1

∥

∥

∥

∥

n

Ln([a,b])

.

In lemma 13, we show that the Ln-norms of a function uniquely determine its
distribution function with respect to the underlying measure. Combined with
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the previous proposition, this allows us to recover the distribution function
of p(x), given a constant γ. If γ is not constant, then the previous result is
still true, but the distribution function will be with respect to a measure that
depends on the unknown power p. This still gives a restatement of the original
problem, but not a satisfactory characterization of the exponents p which give
the same DN map.
Recently Klun [27] and Erdélyi [20] proved that the equality of Ln norms
implies the equimeasurability of the functions. However, if γ is not identically
one, then we only know the weighted Ln norms (8), where the weight depends
on the unknown power p. For this reason we need the slightly more general
statement of lemma 11 with the two different weights. Moreover, since Klun
makes use of a Müntz-Szász theorem, he is able to prove that one only needs
suitably many Lebesgue norms to characterize a function. Since we know all
the Lebesgue norms, we can avoid the Müntz-Szász theorem and instead rely
on the properties of a moment problem. Our proof resembles Klun’s, but we
have nevertheless included it for the benefit of the reader.
To prove lemma 13 we use the following theorem about the uniqueness of
solutions to a moment problem [37, p61, Corollary 6.1b].

Theorem 12. Suppose that h is Lebesgue integrable in (0,M), M > 0, and
ˆ M

0

tnh(t) dt = 0 for all n ∈ N ∪ {0}.

Then h(t) = 0 almost everywhere in (0,M).

Lemma 13. Let f, g : X → [0,∞) be µ1 and µ2 measurable, respectively, where
µi are finite measures on X. Suppose also that f and g are bounded, and

ˆ

X

fn dµ1(x) =

ˆ

X

gn dµ2(x) for all n ∈ N.

Then µf
1 = µg

2 in [0,∞], where µf
1 and µg

2 denote distribution functions as
defined in (4).

Proof. Let M := max(‖f‖L∞ , ‖g‖L∞). Then by Tonelli’s theorem and a change
of variables we have

ˆ

X

fn dµ1(x) =

ˆ ∞

0

µ1 ({x ∈ X ; f(x)n > t}) dt

=

ˆ ∞

0

µ1

({

x ∈ X ; f(x) > t
1
n

})

dt

=

ˆ ∞

0

µf
1 (t

1
n ) dt

= n

ˆ ∞

0

tn−1µf
1 (t) dt

= n

ˆ M

0

tn−1µf
1 (t) dt
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Recovering a Variable Exponent 723

and similarly for g. Thus

0 =

ˆ

X

(fn − gn) dx = n

ˆ M

0

tn−1
(

µf
1 (t) − µg

2(t)
)

dt

for all n ∈ N. Hence, denoting h(t) := µf
1 (t) − µg

2(t), we have h integrable on
(0,M) and

ˆ M

0

tn−1h(t) dt = 0 for all n ∈ N.

It follows now from theorem 12 that h(t) = 0 for almost every t ∈ (0,M). Since
µf and µg are continuous from the right [1, p37], so is h, and consequently h ≡ 0

on [0,M ]. It follows that µf
1 = µg

2 in [0,∞).

Define weighted measures on [a, b] by

µi(E) =

ˆ

E

γ−1/(pi(x)−1) dx for all E ⊂ [a, b].

Theorem 14. Under the standing assumptions, if Λp1
γ = Λp2

γ , then µp1

1 = µp2

2 .

Proof. Since γ and p are suitably bounded, γ−1/(pi(x)−1) are bounded from
below and above by positive numbers. Hence, ([a, b], µi) are finite measure
spaces. By proposition 11 we get

ˆ b

a

(

1

pi(x) − 1

)n

dµi(x)

for all n ∈ N from the DN map. The functions 1/(pi(x)−1) are bounded. Now
lemma 13 gives

µ
1/(p1−1)
1 (t) = µ

1/(p2−1)
2 (t) for all t ∈ [0,∞). (9)

Using this with t = 0 and noticing that [a, b] = {x ∈ [a, b] : 1/(pi − 1) > 0}, we
obtain

µ1([a, b]) = µ
1/(p1−1)
1 (0) = µ

1/(p2−1)
2 (0) = µ2([a, b]). (10)

Let h(t) = 1+1/t. Then h : (0,∞) → (1,∞) is strictly decreasing and we have
h ◦ (1/(pi − 1)) = pi. It now follows from (9), (10) and Lemma 6 that

µp1

1 (t) = µ
h◦(1/(p1−1))
1 (t) = µ

h◦(1/(p2−1))
2 (t) = µp2

2 (t) for all t ∈ [0,∞).

If γ ≡ 1, then the previous theorem immediately yields the equimeasurability
of p1 and p2 in the Lebesgue measure. If γ is some other constant, then the
statement is seemingly different, but below we show that this is only apparent.
This is natural as a constant γ 6= 0 plays no role in equation (1), though it
affects the DN map.
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724 T. Brander, J. Siltakoski

Theorem 15. Suppose that γ > 0 is a constant and that the assumptions
of theorem 14 hold. Then p1 and p2 are equimeasurable with respect to the
Lebesgue measure.

Proof. We begin with the case γ < 1. By lemma 6 it suffices to show the
equimeasurability of the functions f := 1/(p1 − 1) and g := 1/(p2 − 1). By (9)
we have

ˆ

{x∈[a,b];f(x)>t}

γ−f(x) dx =

ˆ

{x∈[a,b];g(x)>t}

γ−g(x) dx for all t ∈ R. (11)

By denoting f̃ := f log γ−1 and g̃ := g log γ−1, this implies that

ˆ

{x∈[a,b];f̃(x)≤t}
ef̃(x) dx =

ˆ

{x∈[a,b];g̃(x)≤t}

eg̃(x) dx for all t ∈ R. (12)

We compute for t ≥ 0

ˆ

{x∈[a,b];f̃(x)≤t}
ef̃(x) dx =

ˆ ∞

0

∣

∣

∣

{

x ∈ [a, b]; f̃(x) ≤ t and ef̃(x) > s
}∣

∣

∣
ds

=

ˆ ∞

0

∣

∣

∣

{

x ∈ [a, b]; log s < f̃(x) ≤ t
}
∣

∣

∣
ds

=

ˆ ∞

−∞

∣

∣

∣

{

x ∈ [a, b];u < f̃(x) ≤ t
}∣

∣

∣
eu du, (13)

where in the last identity we did a change of variables s = eu. We define for all

u ∈ R the function F (u) :=
∣

∣

∣

{

x ∈ [a, b]; f̃(x) ≤ u
}
∣

∣

∣
. Since F is non-decreasing,

continuous from the right and F (0) = 0, there exists an associated Stieltjes
measure [28, chapter 6, section 8] (still denoted by F ) such that

F (c, d] = F (d) − F (c) whenever c < d.

Then for any u ∈ R we have

∣

∣

∣

{

x ∈ [a, b];u < f̃(x) ≤ t
}∣

∣

∣
=χ{u<t}(F (t) − F (u)) = χ{u<t}

ˆ

(u,t]

dF (y).

We combine this with (13) and continue the computation by using Tonelli’s
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theorem to obtain
ˆ

{x∈[a,b];f̃(x)≤t}
ef̃(x) dx =

ˆ ∞

−∞

χ{u<t}e
u

ˆ

(u,t]

dF (y) du

=

ˆ ∞

−∞

ˆ

(u,t]

eu dF (y) du

=

ˆ ∞

−∞

ˆ

R

χ{u<y≤t}e
u dF (y) du

=

ˆ

R

ˆ ∞

−∞

χ{u<y≤t}e
u du dF (y)

=

ˆ

(0,t]

ˆ y

−∞

eu du dF (y)

=

ˆ

(0,t]

ey dF (y). (14)

Integrating by parts (see e.g. [28, p344]), we obtain

ˆ

(0,t]

ey dF (y) = etF (t) − e0F (0)−

ˆ t

0

eyF (y) dy.

Combining this with (14), we have

ˆ

{x∈[a,b];f̃(x)≤t}
ef̃(x) dx = etF (t) − F (0) −

ˆ t

0

eyF (y) dy for all t ≥ 0.

Of course, an analogical identity holds for g̃. Thus by applying (12) and using
that F (0) = 0 = G(0), we obtain

et(F (t) −G(t)) =

ˆ t

0

ey(F (y) −G(y)) dy for all t ≥ 0.

Denoting h(t) = et |F (t) −G(t)|, this implies

h(t) ≤

ˆ t

0

h(y) dy for all t ≥ 0.

By iterating the above inequality or applying Grönwall’s lemma, it follows that
h ≡ 0, which implies the equimeasurability of f̃ and g̃, and thereby of f and g.
Next we consider the case γ > 1. The outline of the proof is similar to above,
but there are some technical differences. By dominated convergence, it follows
from (11) that

ˆ

{x∈[a,b];f(x)≥t}

γ−f(x) dx =

ˆ

{x∈[a,b];g(x)≥t}

γ−g(x) dx for all t ∈ R.
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Denoting f̃ := f log γ−1 and g̃ := g log γ−1, where now log γ−1 < 0, we have

ˆ

{x∈[a,b];f(x)≥t}

ef̃(x) dx =

ˆ

{x∈[a,b];g(x)≥t}

eg̃(x) dx for all t ∈ R. (15)

We compute for t ≥ 0 (denote t̃ := t log γ−1 ≤ 0)

ˆ

{x∈[a,b];f(x)≥t}

ef̃(x) dx =

ˆ ∞

0

∣

∣

∣

{

x ∈ [a, b]; f(x) ≥ t and ef̃(x) > s
}∣

∣

∣
ds

=

ˆ ∞

0

∣

∣

∣

{

x ∈ [a, b]; f̃(x) ≤ t̃ and f̃(x) > log s
}∣

∣

∣
ds

=

ˆ ∞

−∞

∣

∣

∣

{

x ∈ [a, b];u < f̃(x) ≤ t̃
}
∣

∣

∣
eu du. (16)

We define for all u ∈ R the function F (u) :=
∣

∣

∣

{

x ∈ [a, b]; f̃(x) ≤ u
}∣

∣

∣
− (b− a).

Since F is non-decreasing, continuous from the right and F (0) = 0, there exists
an associated Stieltjes measure. Then

∣

∣

∣

{

x ∈ [a, b];u < f̃(x) ≤ t̃
}∣

∣

∣
= χ{u<t̃}(F (t̃) − F (u)) = χ{u<t̃}F (u, t̃ ].

Using this and continuing the computation (16), we get

ˆ

{x∈[a,b];f(x)≥t}

ef̃(x) dx =

ˆ ∞

−∞

χ{u<t̃}F (u, t̃ ]eu du

=

ˆ ∞

−∞

χ{u<t̃}e
u

ˆ

(u,t̃ ]

dF (y) du

=

ˆ t̃

−∞

ˆ

R

χ{u<y≤t̃}e
u dF (y) du

=

ˆ

R

ˆ t̃

−∞

χ{u<y}χ{y≤t̃}e
u du dF (y)

=

ˆ

(−∞,t̃ ]

ˆ y

−∞

eu du dF (y)

=

ˆ

(−∞,t̃ ]

ey dF (y).
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Writing M := ess inf [a,b] f̃ = ess inf [a,b] g̃ and integrating by parts we obtain
ˆ

(−∞,t̃ ]

ey dF (y) = lim
k→−∞

ˆ

(k,t̃ ]

ey dF (y)

= lim
k→−∞

et̃F (t̃) − ekF (k) −

ˆ t̃

k

eyF (y) dy

= et̃F (t̃) −

ˆ t̃

M

eyF (y) dy −

ˆ M

−∞

ey(a− b) dy.

= et̃F (t̃) −

ˆ t̃

M

eyF (y) dy + (b − a)eM .

Combining the last two displays and recalling that t̃ = t log γ−1, we obtain for
any t̃ ∈ [M, 0]

ˆ

{x∈[a,b];f(x)≥t}

ef̃(x) dx = et̃F (t̃) −

ˆ t̃

M

eyF (y) dy + (b− a)eM

and a similar identity for g. Since the left-hand side is by (15) the same for f
and g, we get

et̃(F (t̃) −G(t̃)) =

ˆ t̃

M

ey(F (y) −G(y)) dy for all t̃ ∈ [M, 0].

Grönwall’s lemma now implies that F (t̃)−G(t̃) ≡ 0 and the equimeasurability
of f and g follows.

If γ were not constant, we could try following the same proof, but the sets
in equations (12) and (13) would have additional x-dependencies, making the
next step infeasible.
With theorem 15 at hand, we are ready to finish the proof of our main theorem.

Proof of Theorem 1. Suppose first that Λp1
γ = Λp2

γ . Then theorem 15 implies
that that the exponents p1 and p2 are equimeasurable.
Suppose then that p1 and p2 are equimeasurable and consider the definition of
Km in equation (2). Since γ is constant, the functions x 7→ (K/γ)1/(pi(x)−1)

are equimeasurable by lemma 6, given any fixed constant K/γ 6= 1, and in case
of K/γ = 1 they are equal. But then their integrals agree by Tonelli’s theorem,
whence Km takes the same value for p1 and p2 for every m > 0 (note that
m 7→ Km is injective, given any fixed γ and p [9, lemma 7]).
We now consider equation (3) written as

Λpi
γ (m) = Km

ˆ b

a

(Km/γ)
1/(pi(x)−1)

dx.

Consider a fixed m > 0, whence Km takes the same value for p1 and p2. It
was already established that the integrals take the same value independent of i,
which gives the equality of the DN maps.
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Finally, we describe a procedure that can be used to obtain a rearrangement
of the variable exponent, as stated in theorem 2. We begin with the recon-
struction of the distribution function µf , where f(x) = 1/(p(x)− 1). First, the
maximum M of f can be obtained from lemma 10. Thus by proposition 11
and the proof of lemma 13 we know that the moments

λn =

ˆ 1

0

tnµf (tM) dt, n ∈ N,

can be constructively recovered. It is now possible to obtain µf (tM) (and
thus also µf ) using λn. One such way has been described for example in
[36] where the function is recovered as the L2(0, 1) limit of a series of certain
polynomials depending on λn. The numerics of the reconstruction are also
considered therein.

With the distribution function µf recovered, we can obtain one special re-
arrangement of f by the formula

f∗(x) = inf{t ∈ [0,∞];µf (t) ≤ x}.

The function f∗ is called the non-symmetric decreasing rearrangement of f . It
is equimeasurable with f and continuous from the right [1, 29]. Consequently,
by lemma 6, also the functions 1 + 1/f and 1 + 1/f∗ are equimeasurable. Since
1 + 1/f(x) = p(x), it follows that a rearrangement r of the variable exponent
can be recovered from µf by the formula

r(x) = 1 + 1/f∗(x).
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Jyväskylä
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