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UNBIASED INFERENCE FOR DISCRETELY OBSERVED HIDDEN
MARKOV MODEL DIFFUSIONS

NEIL K. CHADA, JORDAN FRANKS, AJAY JASRA, KODY J. H. LAW & MATTI VIHOLA

Abstract. We develop a Bayesian inference method for diffusions observed discretely
and with noise, which is free of discretisation bias. Unlike existing unbiased inference
methods, our method does not rely on exact simulation techniques. Instead, our method
uses standard time-discretised approximations of diffusions, such as the Euler-Maruyama
scheme. Our approach is based on particle marginal Metropolis-Hastings, a particle filter,
randomised multilevel Monte Carlo, and importance sampling type correction of approxi-
mate Markov chain Monte Carlo. The resulting estimator leads to inference without a bias
from the time-discretisation as the number of Markov chain iterations increases. We give
convergence results and recommend allocations for algorithm inputs. Our method admits
a straightforward parallelisation, and can be computationally efficient. The user-friendly
approach is illustrated on three examples, where the underlying diffusion is an Ornstein-
Uhlenbeck process, a geometric Brownian motion, and a 2d non-reversible Langevin equa-
tion.

1. Introduction

Hidden Markov models (HMMs) are widely used in real applications, for example, for
financial and physical systems modeling; see [6]. We focus on the case where the hidden
Markov chain arises from a diffusion process that is observed with noise at some number of
discrete points in time; see e.g. [31]. The parameters associated to the model are static and
assigned a prior density. Bayesian inference involves expectations with respect to (w.r.t.)
the joint posterior distribution of parameters and states, and is important in problems of
model calibration and uncertainty quantification. A difficult aspect of Bayesian inference
for these models is simulation or evaluation of the diffusion dynamics. Unless the transition
probability is explicitly known (see Section 4.4 of [25]), one often resorts to time discreti-
sation, leading to biased inference. If one is to seek inference where such discretisation is
avoided, there are broadly two schemes (an exception is [13], which we shall discuss below)
which one can follow, the first are the elegant exact simulation methods in [3, 4, 11, 34]
or the debiasing methods of [26, 28], which is the direction followed in this article. We
call inference when there is no time-discretisation error, unbiased inference and this is the
objective of this article.

Approaches to unbiased inference using the afore-mentioned exact simulation method-
ology apply for a certain class of diffusions. First, the existence of the Lamperti trans-
formation, after which the process has unit diffusion matrix, and second, the drift of the
transformed process has to be of gradient form. Although this includes some important
diffusion processes, often, these conditions do not hold for multivariate diffusion processes;
this limits the scope of the application of these novel schemes. A more recent and gen-
eral approach can be found in [13], which focuses on a type of continuous-time importance
sampling method for continuous-time Markov processes, including diffusion processes. The
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method is, in essence, a type of continuous-time sequential importance sampling algorithm
that produces a signed approximation of laws of diffusion processes. Whilst the methodol-
ogy applies to a reasonably wide class of diffusions, the signed approximation can introduce
several algorithmic issues. This includes a large cost associated to the final time of the
diffusion process, which at the very least can lead to linear-in-time errors. This latter issue
is problematic in our context, as if the methodology is used for HMMs, the time will relate
to the number of data and the errors reported in [13] will be prohibitive for our application.
It should also be noted that this methodology requires a good proposal based upon a pro-
cess which is analytically soluble. This limits the applicability of the method, which will
not be the case in our context. As the utility of the method has not been explored for the
problem of interest in this article, we have considered an alternative method. We proceed
with an Euler-Maruyama time-discretisation (see [25]), referred henceforth as Euler which
is generally applicable and is combined with the debiasing schemes of [26, 28].

Traditional inference approaches based on time-discretisations face a trade-off between
bias and computational cost. Once the user has decided on a suitably fine discretisation
size, one can run, for example, the particle marginal Metropolis-Hastings (PMMH) [2].
This algorithm uses a particle filter (PF) (see [8]), where proposals between time points are
generated by the approximation scheme, and ultimately accepted or rejected according to
a Metropolis-Hastings type acceptance ratio; see [19]. As the discretisation size adopted
must be quite fine, a PMMH algorithm can be computationally intensive.

To deal with the computational cost of PMMH, [22] develop a PMMH based method
which uses (deterministic) multilevel Monte Carlo (dMLMC) [17, 20]. The basic premise
of MLMC is to introduce a telescoping sum representation of the posterior expectation
associated to the most precise time discretisation. Then, given an appropriate coupling
of posteriors with ‘consecutive’ time discretisations, the cost associated to a target mean
square error is reduced, relative to exact sampling from the most precise (time-discretised)
posterior. In the HMM diffusion context, the standard MLMC method (for diffusions
without observations) is not applicable, so based upon a PF coupling approach and PMMH,
an MLMC method is devised in [22, 23], which achieves fine-level, though biased, inference.

1.1. Method. The unbiased and computationally efficient inference method suggested in
this paper is built firstly on PMMH, using Euler type discretisations, but using a PMMH
targeting a coarse-level model, which is less computationally expensive. This does not
yield unbiased inference yet, but it can be achieved by an importance sampling (IS) type
correction; see [33].

We suggest an IS type correction that is based on a single-term (randomised) MLMC
type estimator [26, 28] and the PF coupling approach of [22]. The rMLMC correction is
based on randomising the running level in the multilevel context of a certain PF, which we
refer to as the ‘delta PF (∆PF)’ (Algorithm 3). In short, the ∆PF uses the PF coupling
introduced in [22], but here an estimator is used for unbiased estimation of the difference
of unnormalised integrals corresponding to two consecutive discretisation levels, over the
latent states with parameter held fixed (see Section 2). In [22], each term in the difference
of PMMH averages is individually self-normalised (at each level) because of the unknown
normalising constants.

The resulting IS type estimator leads to unbiased inference over the joint posterior distri-
bution, and is highly parallelisable, as the more costly (randomised) ∆PF corrections may
be performed independently en masse given the PMMH base chain output. We are also
able to suggest optimal choices for algorithm inputs in a straightforward manner (Recom-
mendation 1 and Figure 1). This is because there is no bias, and therefore the difficult
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cost-variance-bias trade-off triangle associated with dMLMC is not present. Besides being
unbiased and efficient, our method is user-friendly, as it is a combination of well-known and
relatively straightforward components: PMMH, Euler approximations, PF, rMLMC, and
an IS type estimator. For more about the strengths of the method, see Remark 11 later,
as well as [15, 33] for more discussion about IS (type) estimators based on approximate
Markov chain Monte Carlo (MCMC).

Key to verifying consistency of the method is a finite variance assumption for the r∆PF
estimator. We verify a parameter-uniform bound for the variance under a simple set of
HMM diffusion conditions in Section 3. Note, however, that consistency of our method
is likely to hold more generally. This is in contradistinction to methods based on exact
simulation, which require analytically tractable transformations to unit covariance diffusion
term and computable bounds in the rejection sampler, in order to even apply the method
(see for example the review in the recent preprint [34]).

We consider a non-reversible Langevin equation in Section 6, where, to the authors’ best
knowledge, exact simulation is not applicable. If an exact simulation method is applicable,
the obvious question arises whether our method or the exact simulation method should
be applied. The efficiency of exact simulation type methods is dependent upon several
and different factors than our method. These factors for exact simulation include proper
tuning and tight computable bounds for the rejection sampler. In an ideal scenario for
exact simulation, a method based on exact simulation is likely to perform better than our
method. However, in the reverse case, our method can perform better, if the efficiency of
exact simulation is poor. For instance, the efficiency of exact simulation decreases to zero
as the analytically computed upper bound of the IS weight used in the rejection sampler
increases to infinity.

We remark that in principle our algorithm may require simulations with arbitrarily fine
discretisation sizes and corresponding arbitrarily large cost; this can be infeasible. However,
it should be noted that the user specifies the chance that this might occur, so one can ensure
that the probability of ’very expensive’ simulations is arbitrarily small. In addition, our
method typically has finite expected cost, or cost that is finite with high probability: we
give conditions (see Section 3), typical elsewhere in the context of HMM diffusions [8, 25],
which ensure this (see Section 5).

Although we have mostly in mind the case of Euler approximation schemes for the diffu-
sion dynamics approximation, which are generally implementable, other schemes could be
possibly be used as well; see [16]. However, suitable couplings for these schemes in dimen-
sions greater than one may not be trivial. For the sake of theory and proof of consistency,
ideally these would have also known weak and strong order convergence rates; see [25]. In-
deed, assuming a coupling exists, such higher-order schemes can improve convergence of our
method (see Sections 5 and 6). More generally, our approach based on PMMH or other ap-
proximate MCMC, increasingly fine families of approximations, MLMC, and IS correction,
could be applied beyond the HMM diffusion context, for example, to HMM jump-diffusions;
see [24].

1.2. Outline. Section 2 introduces the aforementioned ∆PF (Algorithm 2) and subse-
quently discusses some applications of randomisation techniques. The theoretical properties
of the ∆PF in the HMM diffusion context are summarised in Section 3. Section 4 presents
the suggested IS type estimator (Algorithm 4), based on PMMH with rMLMC (i.e. r∆PF)
correction, and details its consistency and a corresponding central limit theorem (CLT). Sec-
tion 5 suggests suitable allocations in the ∆PF based on rMLMC efficiency considerations.
The numerical experiments in Section 6 illustrate our method in practice in the setting of
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an Ornstein-Uhlenbeck process, geometric Brownian motion, and a non-reversible Langevin
equation. Proofs for the technical results of Sections 3, 4 and 5 are given in Appendix A,
B and C, respectively.

1.3. Notation. Let (E, E) be a measurable space. Functions ϕ : E → R will be assumed
measurable. We denote by P(E) the collection of probability measures on (E, E), and by
Bb(E) the set of ϕ : E → R with ‖ϕ‖ := supx∈E |ϕ(x)| <∞. For a measure µ on (E, E), we
set µ(ϕ) :=

∫
E
ϕ(x)µ(dx) whenever well-defined. For K : E × E → [0, 1] a Markov kernel

and µ ∈ P(E), we set µK(dy) :=
∫
E
µ(dx)K(x, dy), and K(ϕ)(x) :=

∫
E
ϕ(y)K(x, dy),

whenever well-defined. We use the convention
∏
∅ := 1, and p:q := {r ∈ Z : p ≤ r ≤ q}.

2. Delta particle filter for unbiased estimation of level differences

Consider the (Itô) diffusion process

dZt = aθ(Zt)dt+ bθ(Zt)dWt, t ≥ 0,(1)

with Zt ∈ X := Rd, model parameter θ ∈ T, a : X × T → X, b : X × T → X × X, {Wt}t≥0

a d−dimensional Brownian motion, and the initial value Z0 = z0 ∈ X a fixed value. We
suppose that there are data {Yp = yp}np=0, yp ∈ Rm, which are observed at equally spaced
discrete times, 1:(n + 1) for simplicity. We shall consider the discrete time skeleton of the
diffusion (1) Z1, . . . , Zn+1, where we shall set Xp = Zp+1, for p = 0:n. The Markov transition
between Xp−1 and Xp, p = 1:n, is given by the transition kernel M (θ,∞)(xp−1, dxp) of the

diffusion process over unit time, with initial distribution η
(θ,∞)
0 (dx0) = M (θ,∞)(z0, dx0). It is

assumed that conditional on Xp, Yp is independent of random variables {Xi, Yi}i 6=p and has

density gθ(yp|xp) =: G
(θ)
p (xp). Setting M

(θ,∞)
0 = η

(θ,∞)
0 and M

(θ,∞)
p = M (θ,∞), p = 1:n, the

resulting pair (M
(θ,∞)
p , G

(θ)
p ) defines the HMM diffusion, and is an example of a so-called

Feynman-Kac model (see [8]) described below. As the results of this section can just as
easily be stated in terms of Feynman-Kac models, we do so in the following, which shows
the generality of our approach.

Remark 1. In many situations of practical interest, M (θ,∞)(xp−1, dxp), p = 1:n exists, but
one cannot even simulate from it and/or evaluate a non-negative unbiased estimator of it.
One can often consider the HMM diffusion where one works with a time discretisation of
M (θ,∞)(xp−1, dxp). For instance for ` ∈ {0} × N, h` = 2−`, one could consider the Euler
approximation for t = p, p+ h`, . . . , p+ 1− h`, with Zp = xp−1 given

Z`
t+h`

= Z`
t + aθ(Z

`
t )h` + bθ(Z

`
t )δW

`
t+h`

,

where δW `
t+h`

i.i.d.∼ N (0, h`) (Gaussian distribution 0 mean, covariance h`I) and one will set

Xp = Z`
p+1. The induced transition kernel over unit time is written M (θ,`)(xp−1, dxp). A

similar remark can be made for η
(θ,∞)
0 with discretisation η

(θ,`)
0 .

2.1. Particle filters. A Feynman-Kac model (Mn, Gn) on spaces (En, En) arises when

(i) Mn(x0:n−1, dxn) are (regular) probability ‘transition’ kernels from E0:n−1 to En for
n ≥ 1, and M0(dx0) := η0(dx0) ∈P(E0), and

(ii) Gn(x0:n) are [0,∞)-valued (measurable) ‘potential’ functions for n ≥ 0.

The Particle filter (Algorithm 1) (see [8]) generates sets of samples and weights correspond-
ing to the Feynman-Kac model, which for ϕ : E0:n → R lead to an unbiased estimator for the
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(unnormalised) smoother γγγn(Gnϕ), defined here in terms of the (unnormalised) predictor

(2) γγγn(ϕ) :=

∫
ϕ(x0:n)

( n−1∏
t=0

Gt(x0:t)
)
η0(dx0)

n∏
t=1

Mt(x0:t−1, dxt).

We remark that Step iii of Algorithm 1 refers to the resampling step, which can be multi-
nomial, residual, stratified or systematic; see e.g. [6, 9].

Algorithm 1 Particle filter for a Feynman-Kac model.

Input: (M0:n, G0:n) := (Mt, Gt)t=0:n and N the number of particles.

(i) For i = 1:N sample x
(i)
0 ∼ η0( · ) and set xxx

(i)
0 := x

(i)
0 .

(ii) For i = 1:N compute ω
(i)
0 := G0(xxx

(i)
0 ) and set ω̄

(i)
0 := ω

(i)
0 /ω∗0 where ω∗0 =

∑N
j=1 ω

(j)
0 .

For t = 1:n, do:

(iii) Given ω̄
(1:N)
t−1 , sample A

(1:N)
t−1 ∈ {1, . . . , N}N satisfying E

[∑N
j=1 1{A(j)

t−1 = k}
]

= Nω̄
(k)
t−1

for all k ∈ 1:N .

(iv) For i = 1:N sample x
(i)
t ∼Mt(xxx

A
(i)
t−1

t−1 , · ) and set xxx
(i)
t = (xxx

(A
(i)
t−1)

t−1 , x
(i)
t ).

(v) For i = 1:N compute ω
(i)
t := Gt(xxx

(i)
t ) and set ω̄

(i)
t := ω

(i)
t /ω

∗
t where ω∗t :=

∑N
j=1 ω

(j)
t .

Set for i = 1:N , X(i) := xxx
(i)
n . If ω∗t > 0, for i = 1:N set V (i) := ω̄

(i)
n

∏n
t=0

1
N
ω∗t , otherwise,

for i = 1:N set V (i) = 0.
Output: (V (1:N),X(1:N)).

Proposition 2. Suppose that ϕ : E0:n → R is such that γγγn(Gnϕ) < ∞. Then, the output
of Algorithm 1 satisfies

E
[ N∑
i=1

V (i)ϕ(X(i))

]
= γγγn(Gnϕ).

Proposition 2 is a restatement of Theorem 7.4.2 of [8] in case A
(i)
t−1 are sampled in-

dependently (‘multinomial resampling’). The extension to the general unbiased case is
straightforward; see [33].

2.2. Level difference estimation. Suppose that we have two Feynman-Kac models (MF
n ,

GF
n ) and (MC

n , G
C
n ) defined on common spaces (En, En). The models correspond to ‘finer’

and ‘coarser’ Euler type discretised HMM diffusions. We are interested in estimating (un-
biasedly) the difference

(3) γγγFn (GF
nϕ)− γγγCn (GC

nϕ).

If the models are close to each other, as they will be in the multilevel (diffusion) context, we
would like the estimator also to be typically small. In many contexts, if one can estimate
the difference using a coupling, it is possible to obtain a variance reduction. The particular
coupling approach we use here is based on using a combined Feynman-Kac model as in [22],
which provides a simple, general and effective coupling of PFs, and which we will use to
estimate the level difference of unnormalised smoother 3.

Hereafter, we denote x̌n = (x̌Fn , x̌
C
n ) ∈ En×En, and for x̌0:n = (x̌0, . . . , x̌n) ∈ E2

0 × . . . E2
n,

we set x̌s0:n := (x̌s0, . . . , x̌
s
n) ∈ E0:n for s ∈ {F,C}.

Assumption 3. Suppose that (M̌t, Ǧt) is a Feynman-Kac model on the product spaces
(Et × Et, Et ⊗ Et), such that:
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(i) M̌t is a coupling of the probability measures MF
t and MC

t , i.e. for all
A ∈ Et, we have∫

A×Et
M̌t(x̌0:t−1, dx̌t) = MF

t (x̌F0:t−1, A),

∫
Et×A

M̌t(x̌0:t−1, dx̌t) = MC
t (x̌C0:t−1, A),

and for A ∈ E0, we have η̌0(A× E0) = ηF0 (A) and η̌0(E0 × A) = ηC0 (A).
(ii) Ǧt(x̌0:t) := 1

2

[
GF
t (x̌F0:t) +GC

t (x̌C0:t)
]
.

Algorithm 2 presents a methodology to unbiasedly estimate the level differences (3). In
the context of hidden Markov model diffusions, we explain in Remark 5 how to satisfy
Assumption 3.

Algorithm 2 Delta particle filter (∆PF) for unbiased estimation of level differences.

Input: (M̌0:n, Ǧ0:n) and N the number of particles.

(i) Run Algorithm 1 with (M̌0:n, Ǧ0:n, N), outputting (V̌ (1:N), X̌(1:N)).
(ii) Compute (V (1:2N),X(1:2N)) where

(
V (i), X(i)

)
:=


(
V̌ (i)wF (X̌(i)), X̌(i)F

)
i = 1:N,(

−V̌ (i−N)wC(X̌(i−N)), X̌(i−N)C
)

i = (N + 1):2N,

and wF (x̌0:n) :=
∏n
t=0G

F
t (x̌F0:t)∏n

t=0 Ǧt(x̌0:t)
and wC(x̌0:n) :=

∏n
t=0G

C
t (x̌C0:n)∏n

t=0 Ǧt(x̌0:t)
.

Output: (V (1:2N),X(1:2N)).

Proposition 4. Under Assumption 3, the output of Algorithm 2 satisfies

E
[ 2N∑
i=1

V (i)ϕ(X(i))

]
= γγγFn (GF

nϕ)− γγγCn (GC
nϕ),

whenever both integrals on the right are well-defined and finite.

Proof. Applying Assumption 3 one can use the unbiasedness property of PF in Algorithm
1, to yield

E
[ N∑
i=1

V (i)ϕ(X(i))

]
=

∫
wF (x̌0:n)ϕ(x̌F0:n)

( n∏
t=0

Ǧt(x̌0:t)
)
η̌(dx0)

n∏
t=1

M̌t(x̌0:t−1, dx̌t)

=

∫
ϕ(x̌F0:n)

( n∏
t=0

GF
t (x̌F0:t)

)
ηF0 (dx0)MF

t (x̌F0:t−1, dx̌
F
t ) = γγγFn (GF

nϕ),

where, specifically, Assumption 3ii guarantees Ǧt > 0 whenever GF
t > 0, and Assumption

i implies the marginal law of
∏n

t=0 M̌t is
∏n

t=0M
F
t . Similarly, E

[∑2N
i=N+1 V

(i)ϕ(X(i))
]

=

−γγγCn (GC
nϕ). �

Remark 5. Regarding Algorithm 2:

(i) In the hidden Markov model diffusion context, one could consider F to
correspond to an Euler discretisation at level ` step-size h` = 2−` and C
to correspond to an Euler discretisation at level ` − 1 step-size h`−1 =
2−(`−1). The couplings M̌p, p = 1:n, (of the two Euler transitions over
unit time - see Remark 1) could be based on using the same underlying
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Brownian motion; see [25]. That is, for t = p, p + 2h`, . . . , p + 1 − 2h`,
(Z`

p, Z
`−1
p ) = (x`p−1, x

`−1
p−1) given,

Z`
t+h`

= Z`
t + aθ(Z

`
t )h` + bθ(Z

`
t )δW

`
t+h`

Z`
t+2h`

= Z`
t+h`

+ aθ(Z
`
t+h`

)h` + bθ(Z
`
t+h`

)δW `
t+2h`

,

with δW `
t+kh`

i.i.d.∼ N (0, h`), k = 1 : 2, then we can use

Z`−1
t+h`−1

= Z`−1
t + aθ(Z

`−1
t )h`−1 + bθ(Z

`−1
t )

(
δW `

t+h`
+ δW `

t+2h`

)
,

for the coarser Euler discretisation. We set (X`
p, X

`−1
p ) = (z`p+1, z

`−1
p+1). A

similar remark can be made for the initialisation. The potentials G`
t and

G`−1
t are then simply the conditional likelihood functions G`

t = G`−1
t =

G
(θ)
t .

(ii) The choice of Ǧt in Assumption 3ii provides a safe ‘balance’ in between
the approximations, as wF and wC are upper bounded by 2n+1. Indeed,
the coupled Feynman-Kac model can be thought as an ‘average’ of the
two extreme cases–with the choice Ǧt(x0:t) = GF

t (x̌F0:t) the coupled PF
would coincide marginally with the Feynman-Kac model with dynamics
MF

t . What is the optimal choice for Ǧt is an interesting question.
(iii) Clearly, the choice of Ǧ0:t can be made also in other ways. It is suffi-

cient for unbiasedness to choose Ǧt(x̌0:t) such that it is strictly positive
whenever either the GF

t (x̌F0:t) or GC
t (x̌C0:t) product is positive, but choices

which make wF and wC bounded are safer, for instance Ǧ0:t(x̌0:t) =
max{GF

t (x̌F0:t), G
C
t (x̌C0:t)}. This was the original choice made in [22] for

approximation of normalised smoother differences. This PF coupling
approach based on change of measure and weight corrections wF and
wC , has been further used also, for example, in [23].

(iv) Later, in the HMM diffusion context, we set GF
t = GC

t , corresponding
to common observational densities, but the method is also of interest
with differing potentials.

2.3. Unbiased latent inference. We show here how the randomisation techniques of
[26, 28] can be used with the output of Algorithm 1 and 2 to provide an unbiased estimator
according to the true model, even though the PFs are only run according to approximate

models. Let us index the transitions M
(`)
p and potentials G

(`)
p by ` ≥ 0. They are assumed

throughout to be increasingly refined approximations, in the (weak) sense that

(4) γγγ(`)
n (G(`)

n ϕ) −→ γγγ(∞)
n (G(∞)

n ϕ), as `→∞,
for all ϕ ∈ Bb(E0:n), where

γγγ(`)
n (ϕ) :=

∫
ϕ(x0:n)

( n−1∏
t=0

G
(`)
t (x0:t)

)
η

(`)
0 (dx0)

n∏
t=1

M
(`)
t (x0:t−1, dxt).

In Assumption 3 we set symbols (F,C) to be (`, ` − 1) for ` ≥ 1. We will write the
potentials and kernels of the coupled Feynman-Kac model (in the sense of Assumption 3) as

(M̌
(`)
0:n, Ǧ

(`)
0:n). As a result of 7, Algorithm 3 can provide unbiased estimation of γγγ

(∞)
n (G

(∞)
n ϕ),

leading to unbiased inference w.r.t. the normalised smoother

ϕ 7→ γγγ
(∞)
n (Gnϕ)

γγγ
(∞)
n (Gn)

=: η̂ηη(∞)
n (ϕ),
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which is stated as Proposition 8 below.
We remark that in step (iii) of Algorithm 3, in principle, one may have to run Algorithm

2 for arbitrarily large L. However, it should be noted that the user specifies the probability
p = (p`)`∈N, so one can ensure the probability of simulating ‘very large’ values of L is
arbitrarily small.

Algorithm 3 Unbiased estimator based on PF and r∆PF.

Input:
(

(M
(`)
0:n, G

(`)
0:n)
)
`∈{0}∪N

, N the number of particles and probability p = (p`)`∈N.

(i) Run Algorithm 1 with (M
(0)
0:n, G

(0)
0:n, N), outputting (V (1:N)′ ,X(1:N)′).

(ii) Sample L ∼ p, independently from the other random variables.

(iii) Run Algorithm 2 with (M̌
(L)
0:n , Ǧ

(L)
0:n , N), outputting (V (1:2N),X(1:2N)).

Output:
(
(V (1:N)′ ,X(1:N)′), (V (1:2N),X(1:2N)), L

)
.

Assumption 6. Assumption 3 holds, p = (p`)`∈N is a probability on N := Z≥1 with p` > 0
for all ` ≥ 1, g : E0:n → R is a function, and

(5) sg :=
∑
`≥0

E∆2
`(g)

p`
<∞,

where

(6) ∆`(g) :=
2N∑
i=1

V (i)g(X(i)),

is formed from the output (V (1:2N),X(1:2N)) of Algorithm 2 with (M̌
(`)
0:n, Ǧ

(`)
0:n, N).

Lemma 7. Under Assumption 6, the estimator

(7) ζ(g) :=
N∑
i=1

V (i)′g(X(i)′) +
1

pL
∆L(g),

formed from the output of Algorithm 3 satisfies

E[ζ(g)] = γγγ(∞)
n (G(∞)

n g),

whenever γγγ
(0)
n (Gng) and γγγ

(∞)
n (Gng) are both finite.

Proof. Under Assumption 6, we have (see [28, 32])

E[p−1
L ∆L(g)] = γγγ(∞)

n (G(∞)
n g)− γγγ(0)

n (G(0)
n g),

so the result follows by Proposition 2 and linearity of the expectation. �

The following suggests a fully parallelisable algorithm for unbiased inference over the
normalised smoother, and is an unbiased alternative to the particle independent Metropolis-
Hastings (PIMH) [2] run at some fine level of discretisation.

Proposition 8. Suppose p on N satisfies Assumption 6 for functions g ∈ {1, ϕ}, with

γγγ
(0)
n (G

(0)
n g) and γγγ

(∞)
n (G

(∞)
n g) finite, and γγγ(∞)(G

(∞)
n ) > 0. For each k ∈ {1:m}, if one runs

independently Algorithm 3, forming ζk(g) from the output as in 7 for each k, then

Em,N,p(ϕ) :=

∑m
k=1 ζk(ϕ)∑m
k=1 ζk(1)

m→∞−−−→ η̂ηη(∞)
n (ϕ) almost surely.
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Moreover, with ϕ̄ := ϕ− η̂ηη(∞)
n (ϕ),

√
m[Em,N,p(ϕ)− η̂ηη(∞)

n (ϕ)]
m→∞−−−→ N (0, σ2) in distribution,

where

σ2 =
sϕ̄ −

(
γγγ(∞)(G

(∞)
n ϕ̄)− γγγ(0)(G

(0)
n ϕ̄)

)2

[γγγ(∞)(G
(∞)
n )]2

.

The above result follows directly from the results of Section 4. It can also be seen as
a multilevel version of Proposition 23 of [33], with straightforward estimators for σ2. See
Section 5 for suggested choices for p and number of particles run at each level.

3. A variance bound for the delta particle filter

In this section we give theoretical results for the ∆PF (Algorithm 2) in the setting of
HMM diffusions, which can be used to verify finite variance and therefore consistency of
related estimators. In particular, Corollary 10 below can be used to verify Assumption 6.

3.1. Hidden Markov model diffusions. We consider an HMM diffusion and correspond-
ing Feynman-Kac model as in Section 2. We omit θ from the notation in the following, which
is allowed as the remaining conditions and results in this Section 3 will hold uniformly in θ
(i.e. any constants are independent of θ). The following will be assumed throughout.

Condition (D). The coefficients aj, bj,k are twice differentiable for j, k = 1, . . . , d, and

(i) uniform ellipticity: b(x)b(x)T is uniformly positive definite;
(ii) globally Lipschitz: there is a C > 0 such that |a(x)− a(y)|+ |b(x)−

b(y)| ≤ C|x− y| for all x, y ∈ Rd;

Let M (∞)(x, dy) =: M
(∞)
p (x, dy) for p = 0:n denote the Markov transition of the unob-

served diffusion 1, i.e. the distribution of the solution X1 of 1 started at X0 = x. With
similar setup from Section 2, with E0:n := Xn+1, we have that 2 takes the form

γ(∞)
n (ϕ) =

∫
ϕ(x0:n)

( n−1∏
p=0

Gp(xp)
)
η0(dx0)

n∏
p=1

M (∞)(xp−1, dxp).

In practice one usually must approximate the true dynamics M (∞)(x, dy) of the underlying
diffusion with a simpler transition M (`)(x, dy), based on some Euler type scheme using a
discretisation parameter h` = 2−` for ` ≥ 0; see [25]. The scheme allows for a coupling of

the diffusions (X
(`)
t , X

(`−1)
t )t≥0 running at discretisation levels ` and ` − 1 (based on using

the same Brownian path Wt), such that for some β ∈ {1, 2}, we have

(8) E(x,y)[|X(`)
1 −X

(`−1)
1 |2] ≤M(|x− y|2 + hβ` ),

where M <∞ does not depend on ` ≥ 1. In particular, if the diffusion coefficient b(Xt) in
1 is constant or if a Milstein scheme can be applied otherwise, then β = 2; otherwise β = 1;
see Proposition D.1 of [21].

3.2. Variance bound. Assume we are in the above HMM diffusion setting, and that the
coupling of Assumption 3 holds, with symbols (F,C) equal to (`, ` − 1) for ` ≥ 1, and

G
(`)
p = G

(`−1)
p := Gp for p = 0:n. Running Algorithm 2, we recall that ∆`(ϕ), defined in 6,

satisfies, by Proposition 4,

E[∆`(ϕ)] = γ(`)
n (Gnϕ)− γ(`−1)

n (Gnϕ),

regardless of the number N ≥ 1 of particles.



10 N. K. CHADA, J. FRANKS, A. JASRA, K. J. H. LAW & M. VIHOLA

A (measurable) function ϕ : X→ R is Lipschitz, denoted ϕ ∈ Lip(X), if for some C ′ <∞,
|ϕ(x)− ϕ(y)| ≤ C ′|x− y| for all x, y ∈ X.

Condition (A). The following conditions hold for the model (Mn, Gn):

(A1) (i) ‖Gn‖ <∞ for each n ≥ 0.
(ii) Gn ∈ Lip(X) for each n ≥ 0.

(iii) infx∈XGn(x) > 0 for each n ≥ 0.
(A2) For every n ≥ 1, ϕ ∈ Lip(X) ∩ Bb(X) there exist a C ′ < ∞ such that

for s ∈ {F,C}, we have for every (x, y) ∈ X × X that |M s
n(ϕ)(x) −

M s
n(ϕ)(y)| ≤ C ′|x− y|.

In the following results for ∆`(ϕ), the constant M <∞ may change from line-to-line. It
will not depend upon N or ` (or θ), but may depend on the time-horizon n or the function
ϕ. E denotes expectation w.r.t. the law associated to the ∆PF started at (x, x), with x ∈ X.
Below we only consider multinomial resampling in the ∆PF for simplicity, though Theorem
9 and Corollary 10 can be proved also assuming other resampling schemes.

Theorem 9. Assume (A1-2). Then for any ϕ ∈ Bb(Xn+1) ∩ Lip(Xn+1), there exists a
M <∞ such that

E
[(

∆`(ϕ)− E[∆`(ϕ)]
)2]
≤ Mh2∧β

`

N
, with β as in 8.

Corollary 10. Assume (A1-2). Then for any ϕ ∈ Bb(Xn+1) ∩ Lip(Xn+1), there exists a
M <∞ such that

E
[(

∆`(ϕ)
)2]
≤M

(h2∧β
`

N
+ h2

`

)
, with β as in 8.

The proofs are given in Appendix A.
Based on Corollary 10, Recommendation 1 of Section 5 suggests allocations for p and N`

in the ∆PF (Algorithm 2) to optimally use resources and minimise variance 5.

4. Unbiased joint inference for hidden Markov model diffusions

We are interested in unbiased inference for the Bayesian model posterior

π(∞)(dθ, dx0:n) ∝ pr(dθ)G(θ)
n (xn)γ(θ,∞)

n (dx0:n),

where pr(dθ) = pr(θ)dθ is the prior on the model parameters, and

γ(θ,∞)
n (dx0:n) =

( n−1∏
t=0

G
(θ)
t (xt)

)
η

(θ)
0 (dx0)

n∏
t=1

M
(θ,∞)
t (xt−1, dxt).

Here, M
(θ,∞)
t corresponds to the transition density of the diffusion model of interest. The

dependence of the HMM on θ is made explicit in this section. As in Section 3, we assume

the transition densities M
(θ,∞)
t cannot be simulated, but that there are increasingly refined

discretisations M
(θ,`)
t approximating M

(θ,∞)
t in the sense of 4 (with E0:n := Xn+1).

4.1. Randomised MLMC IS type estimator based on coarse-model PMMH. We
now consider Algorithm 4 for joint inference w.r.t. the above Bayesian posterior. Algorithm
4 uses the following ingredients:

(i) M̌
(θ,`)
0:n satisfying Assumption 3i with MF

0:n = M
(θ,`)
0:n , and MC

0:n = M
(θ,`−1)
0:n .

(ii) Ǧ
(θ)
0:n defined as in Assumption 3ii, with GF

0:n = GC
0:n = G

(θ)
0:n.

(iii) Metropolis-Hastings proposal distribution q( · | θ) for parameters.
(iv) Algorithm constant ε ≥ 0 (e.g. ε = 10−10; see Remark 11i below).
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Algorithm 4 Randomised multilevel importance sampling type estimator.

Input:
(

(M
(θ,`)
0:n , G

(θ)
0:n)
)

(l,θ)∈({0}×N)×T
, prior pr(dθ), N the number of particles, miter the

number of iterations, q( · | θ) a proposal density for Metropolis-Hastings, ε ≥ 0,

probability p = (p`)`∈N and (Θ0, V
(1:N)

0 ,X
(1:N)
0 ) such that

∑N
i=1 V

(i)
0 > 0.

(P1) For k = 1:miter, iterate:

(i) Propose Θ̂k ∼ q( · | Θk−1).

(ii) Run Algorithm 1 with (M
(Θ̂k,0)
0:n , G

(Θ̂k)
0:n , N) and call the output (V̂

(1:N)
k , X̂

(1:N)
k ).

(iii) With probability

min

{
1,

pr(Θ̂k)q(Θk−1 | Θ̂k)
(∑N

i=1 V̂
(i)
k + ε

)
pr(Θk−1)q(Θ̂k | Θk−1)

(∑N
j=1 V

(j)
k−1 + ε

)},
accept and set (Θk, V

(1:N)
k ,X

(1:N)
k )← (Θ̂k, V̂

(1:N)
k , X̂

(1:N)
k ); otherwise set

(Θk, V
(1:N)
k ,X

(1:N)
k )← (Θk−1, V

(1:N)
k−1 ,X

(1:N)
k−1 ).

(P2) For every k ∈ {1:miter}, independently, conditional on (Θk, V
(1:N)
k ,X

(1:N)
k ):

(i) Set X
(1:N)
k,0 := X

(1:N)
k , and set W

(i)
k,0 := V

(i)
k /
(∑N

j=1 V
(j)
k + ε

)
.

(ii) Sample Lk ∼ p independently from the other random variables.

(iii) Run the ∆PF (Algorithm 2) with (M̌
(Θk,Lk)
0:n , Ǧ

(Θk)
0:n , N), and call the output

(V
(1:2N)
k,Lk

,X
(1:2N)
k,Lk

). Set W
(i)
k,Lk

:= V
(i)
k,Lk

/
[
pLk
(∑N

j=1 V
(j)
k + ε

)]
.

Output:

Emiter,N,p(f) :=

∑miter

k=1

[∑N
i=1W

(i)
k,0f(Θk,X

(i)
k,0) +

∑2N
i=1W

(i)
k,Lk

f(Θk,X
(i)
k,Lk

)
]∑miter

k=1

[∑N
i=1W

(i)
k,0 +

∑2N
i=1W

(i)
k,Lk

] .

(v) Number of MCMC iterations miter ∈ N and number of particles N ∈ N.
(vi) Probability mass p = (p`)`∈N on N with p` > 0 for all ` ∈ N.

Remark 11. Before stating consistency and central limit theorems, we briefly discuss various
aspects of this approach, which are appealing from a practical perspective, and we also
mention certain algorithmic modifications which could be further considered.

(i) The first phase (P1) of Algorithm 4 implements a PMMH type al-
gorithm [2]. If ε = 0, this is exactly PMMH targeting the model

π(0)(dθ, dx0:n) ∝ pr(dθ)G
(θ)
n (xn)γ

(θ,0)
n (dx0:n). It is generally safer to

choose ε > 0 [33], which ensures that the IS type correction in phase
(P2) will yield consistent inference for the ideal model

π(∞)(dθ, dx0:n) ∝ pr(dθ)G(θ)
n (xn)γ(θ,∞)

n (x0:n)

(Theorem 12). Setting ε > 0 may be helpful otherwise in terms of im-
proved mixing, as the PMMH will target marginally an averaged proba-
bility between a ‘flat’ prior and a ‘multimodal’ ` = 0 marginal posterior.

(ii) It is only necessary to implement PMMH for the coarsest level. This
is typically relatively cheap, and therefore allows for a relatively long
MCMC run. Consequently, relative cost of burn-in is small, and if the
proposal q is adapted (see [1]), it has time to converge.

(iii) The (potentially costly) r∆PFs are applied independently for each Θk,
which allows for efficient parallelisation.
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(iv) We suggest that the number of particles N , here referred to as ‘N0’, used
in the PMMH be chosen based on [10, 30], while the number of particles
‘N`’ (and p`) can be optimised for each level ` based on Recommendation
1 of Section 5, or kept constant. One can also afford to increase the
number of particles when a ‘jump chain’ representation is used (see the
following remark).

(v) The r∆PF corrections may be calculated only once for each accepted

state [33]. That is, suppose (Θ̃k, Ṽ
(1:N)
k , X̃

(1:N)
k )

mjump
iter

k=1 are the accepted

states, (Dk)
mjump

iter
k=1 are the corresponding holding times, and (Ṽ

(1:2NLk)
k,Lk

, X̃
(1:2NLk )

k,Lk
)
mjump

iter
k=1

are corresponding ∆PF outputs, then the estimator is formed as in

Algorithm 4 using (Θ̃k, Ṽ
(1:N)
k , X̃

(1:N)
k ), and accounting for the holding

times in the weights defined as W
(i)
k := DkṼ

(i)
k /
(∑N

j=1 Ṽ
(j)
k + ε

)
and

W
(i)
k,Lk

:= Ṽ
(i)
k,Lk

/
[
pLk
(∑N

j=1 Ṽ
(j)
k + ε

)]
.

(vi) In case the Markov chain in (P1) phase is slow mixing, (further) thinning
may be applied (to the jump chain) before the (P2) phase.

(vii) In practice, Algorithm 4 may be implemented in an on-line fashion
w.r.t. the number of iterations miter, and by progressively refining the
estimator Emiter,N,p(f). The r∆PF corrections may be calculated in par-
allel with the Markov chain.

(viii) In Algorithm 4, the r∆PFs depend only on Θk. They could depend also

on V
(i)
k and X

(i)
k , but it is not clear how such dependence could be used

in practice to achieve better performance. Likewise, the ‘zeroth level’
estimate in Algorithm 4 is based solely on particles in (P1), but it could
also be based on (additional) new particle filter output.

(ix) In order to save memory, it is possible also to ‘subsample’ only one tra-

jectory X∗k from X
(1:N)
k , such that P[X∗k = X

(i)
k ] ∝ V

(i)
k , and set W ∗

k,0 :=∑N
i=1 W

(i)
k,0, and similarly in Algorithm 2 find X̌∗ such that P[X̌∗ =

X̌(i)] ∝ V̌ (i), setting X
∗(1:2)
k,Lk

:= X̌∗, and defining from the usual output

of Algorithm 2, W
∗(1)
k,Lk

:=
∑N

i=1 W
(i)
k,Lk

and W
∗(2)
k,Lk

:=
∑2N

i=N+1 W
(i)
k,Lk

. The
subsampling output estimator then takes the form,

Esubsample
miter,N,p

(f) :=

∑miter

k=1

[
W ∗
k,0f(Θk,X

∗
k) +

∑2
i=1W

∗(i)
k,Lk

f(Θk,X
∗(i)
k,Lk

)
]∑miter

k=1

[
W ∗
k,0 +

∑2
i=1W

∗(i)
k,Lk

] .

Note, however, that the asymptotic variance of this estimator is higher,
because
Emiter,N,p(f) may be viewed as a Rao-Blackwellised version of Esubsample

miter,N,p
(f).

4.2. Consistency and central limit theorem.

Theorem 12. Assume that the algorithm constant ε ≥ 0 is chosen positive, and that the

Markov chain (Θk, X
(1:N)
k , V

(1:N))
k )k≥1 is ψ-irreducible, and that π(0)(f) and π(∞)(f) are

finite. For each θ ∈ T, suppose Assumption 6 holds for g ≡ 1 and g = f (θ) := f(θ, · ), with

M
(`)
0:n := M

(θ,`)
0:n and G

(`)
0:n := G

(θ)
0:n. Assume∫
pr(θ)

(√
s1(θ) +

√
sf (θ)(θ)

)
dθ <∞.
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Then, the estimator of Algorithm 4 is strongly consistent:

Emiter,N,p(f)
miter→∞−−−−−→

∫
π(∞)(dθ, dx0:n)f(θ, x0:n) (a.s.)

Remark 13. Regarding Theorem 12, whose proof is given in Appendix B:

(i) If all potentials Gt are strictly positive, the algorithm constant ε may be

taken to be zero. However, if ε = 0 and Algorithm 1 with (M
(Θ̂k,0)
0:n , G

(Θ̂k)
0:n , N)

can produce an estimate with
∑N

i=1 V
(i) = 0 with positive probability,

the consistency may be lost [33].

Proposition 14. Suppose that the conditions of Theorem 12 hold. Suppose additionally that

π(∞)(f 2) < ∞ and that the base chain (Θk, V
(1:N)
k ,X

(1:N)
k )k≥1 is aperiodic, with transition

probability denoted by P . Then,
√
miter

[
Emiter,N,p(f)− π(∞)(f)

] miter→∞−−−−−→ N (0, σ2), in distribution,

whenever the asymptotic variance

(9) σ2 =
var(P, µf̄ ) + Π(σ2

ξ )

c2
,

is finite. Here, f̄ := f − π(∞)(f), c > 0 is a constant (equal to Π(µ1)), and

σ2
ξ (θ, v

(1:N),x(1:N)) := var
(
ξk(f̄)

∣∣ Θk = θ, V
(1:N)
k = v(1:N),X

(1:N)
k = x(1:N)

)
=
sf̄ (θ)(θ)−

(
γ

(θ,∞)
n (Gnf̄

(θ))− γ(θ,0)
n (Gnf̄

(θ))
)2(∑N

i=1 v
(i) + ε

)2 .

Remark 15. Proposition 14 follows from Theorem 7 [33]. We suggest that N = N0 for (P1)
be chosen based on [10, 30] to minimise var(P, µf̄ ), and that (p`) and N = N` in (P2) for
the r∆PF be chosen as in Recommendation 1 of Section 5, to minimise σ2

ξ , subject to cost

constraints, in order to jointly minimise σ2. However, the question of the optimal choice
for N0 in the IS context is not yet settled.

Remark 16. Regarding ψ-irreducibility and aperiodicity in Theorem 12 and Proposition 14,
these are inherited by the coarse PMMH chain [2] if the corresponding idealised marginal
Metropolis-Hastings for the coarse model has these properties.

5. Asymptotic efficiency and randomised multilevel considerations

We summarise the results of this section by suggesting the following safe allocations
for probability p = (p`)`∈N and number N = N` of particles at level ` ≥ 1 in the ∆PF
(Algorithm 2) used in Algorithm 3 and Algorithm 4, and Proposition 8, with β given in 8 in
the HMM diffusion context of Section 3, or, indeed, with β given in the abstract framework
under Assumption 20 given later. See also Figure 1 for the recommended allocations.

Recommendation 1. With strong error convergence rate β given in 8, we suggest the
following for p = (p`)`∈N and N` ∈ N in ∆PF (Algorithm 2):

(β = 1) (e.g. Euler scheme). Choose p` = (1
2
)` and N` ∝ 1 constant.

(β = 2) (e.g. Milstein scheme). Choose p` ∝ 2−1.5` ≈ (1
3
)` and N` ∝ 1 constant.

The suggestions are based on Corollary 10 of Section 3, and Proposition 22 (β = 2) and
28 (β = 1) given below (with weak convergence rate α = 1; see Figure 1 for general α). In
the Euler case, although the theory below gives the same computational complexity order
by choosing any ρ ∈ [0, 1] and setting p` ∝ 2−(1+ρ)` and N` ∝ 2ρ`, the experiment in Section
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6 gave a better result using simply ρ = 0, corresponding to no scaling. However, this may
depend on the implementation.

5.1. Efficiency framework. The asymptotic efficiency of simulation-based estimators has
been considered theoretically in [18]; see [17] in the dMLMC context. The developments
of this section follow [28] for rMLMC (originally in the i.i.d. setting without observations),
while also giving some extensions (also applicable to that setting). We will see that the
basic rMLMC results carry over to our setting involving MCMC and randomised estimators
based on PF outputs, but also discover a novelty in the common Euler case (β = 1 in Figure
1). Proofs are given in Appendix C.

We are interested in modeling the computational costs involved in running Algorithm 4;
the algorithm of Proposition 8 is recovered with T = {θ}. Let τΘk,Lk represent the combined
cost at iteration k of the base Markov chain and weight calculation in Algorithm 4, so that
the total cost C (m) of Algorithm 4 with m iterations is

C (m) :=
m∑
k=1

τΘk,Lk .

The following assumption seems natural in our setting.

Assumption 17. For Θk ∈ T, a family {τΘk,`}k,`≥1 consists of positive-valued random
variables that are independent of {Lk}k≥1, where Lk ∼ p i.i.d., and that are conditionally
independent given {Θk}k≥1, such that τΘk,` depends only on Θk ∈ T and ` ∈ N.

Under a budget constraint κ > 0, the realised length of the chain is L (κ) iterations,
where

L (κ) := max{m ≥ 1 : C (m) ≤ κ}.
Under a budget constraint, the CLT of Proposition 14 takes the following altered form,
where here Πm(dθ) denotes the θ-marginal of the invariant probability measure (given as
27 in Appendix B) of the base Markov chain (equal to the θ-marginal posterior of the ` = 0
model).

Proposition 18. If the assumptions of Proposition 14 hold with σ2 < ∞, and if E[τττ ] :=
EΠm⊗p[τττ ] <∞ with τττ(θ, `) := E[τΘk,Lk |Θk = θ, Lk = `], then

(10)
√
κ
[
EL (κ),N,p(f)− π(∞)(f)

] κ→∞−−−→ N (0,E[τττ ]σ2), in distribution.

Remark 19. The quantity E[τττ ]σ2 is called the ‘inverse relative efficiency’ by [18], and is
considered a more accurate quantity than the asymptotic variance (σ2 here) for comparison
of Monte Carlo algorithms run on the same computer, as it takes into account also the
average computational time.

In the following we consider (possibly) variance reduced (if ρ > 0) versions of ∆`(g) of
Assumption 6, denoted ∆`, where g = f (θ), based on running the ∆PF (Algorithm 2) with
parameters θ, ` fixed. The constant C < ∞ may change line-to-line, but does not depend
on N , `, or θ, but may depend on the time-horizon n and function f .

Assumption 20. Assumption 17 holds, and constants 2α ≥ β > 0, γ > 0, and ρ ≥ 0 are
such that the following hold:

(i) (Mean cost) E[τθ,`] ≤ C2γ`(1+ρ)

(ii) (Strong order) E[∆2
` ] ≤ C2−`(β+ρ) + C2−2α`

(iii) (Weak order) |E∆`| ≤ C2−α`

Remark 21. Regarding Assumption 20:
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2α− β
ρ

1 + ρ

(1 + β)/2

2α

2α− 1

β

1 2α0

ρ = ρ(β)
r = r(β, ρ)

Figure 1. Recommendations for number of particles N` ∝ 2ρ` and prob-
ability p` ∝ 2−r`. Here, γ = 1 always, and ρ ∈ [0, 2α − 1] when β = 1
provides a line of choices with the same order of computational complexity.
In our particular experiment in Section 6, however, the simple choice ρ = 0,
corresponding to no scaling in the particles, will turn out to be optimal.

(i) We only assume bounded mean cost in Assumption i, rather than the
almost sure cost bound commonly used. This generalisation allows for
the setting where occasional algorithmic runs may take a long time.

(ii) In the original MLMC setting, the cost scaling γ in Assumption i is
taken to be γ = 1 [17, 28]. However, in settings involving uncertainty
quantification, and where the forward solver may involve non-sparse
matrix inversions, often γ ≥ 1 [7, 21, 23].

(iii) We assume in Assumption i that the mean cost to form ∆` is bounded by
the γ-scaled product of the number of samples or particles N` times the
number of Euler time steps 2`+2`−1 together with the O(N`)-resampling
cost, where there are N` ∝ 2ρ` particles at level `. Here, we recall
that the stratified, systematic, and residual resampling algorithms have
O(N`) cost, as does an improved implementation of multinomial resam-
pling; see [6, 9].

(iv) With ρ = 0, by Jensen’s inequality one sees why α ≥ β/2 can be
assumed, and that Assumption ii becomes E∆2

` ≤ C2−`β.
(v) ρ ≥ 0 in Assumption i and ii corresponds to using an average of N` :=

d2ρ`e i.i.d samples of ∆
(1)
` , i.e. ∆` = 1

N`

∑N`
i=1 ∆

(i)
` , or, of more present

interest to us, to increasing the number of particles used in a PF by a
factor of N` instead of the default lower number. The former leads to
E∆2

` = 1
N`

var(∆
(1)
` ) + E[∆

(1)
` ]2, justifying Assumption ii, as does Corol-

lary 10, with β ∈ {1, 2} and α = 1, for the ∆PF (Algorithm 2) in the
HMM diffusion context (Section 3).

Proposition 22. Suppose Assumption 20 and the assumptions of Proposition 14 hold, with
var(P, µf̄ ) <∞. If p` ∝ 2−r` for some r ∈

(
γ(1 + ρ),min(β + ρ, 2α)

)
, then 10 holds, i.e.

√
κ
[
EL (κ),N,p(f)− π(∞)(f)

] κ→∞−−−→ N (0,E[τττ ]σ2), in distribution.

Remark 23. Regarding Proposition 22, in the common case γ = 1 for simplicity:

(i) If β > 1 (‘canonical convergence regime’) and ρ = 0, then a choice for
r ∈ (1, β) exists. See also Theorem 4 of [28] for a discussion of the
theoretically optimal p.

(ii) If β ≤ 1 (‘subcanonical convergence regime’), then β+ ρ ≤ 1 + ρ and so
no choice for r exists.
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5.2. Subcanonical convergence. When β > 1, within the framework above we have seen
that a canonical convergence rate holds (Proposition 22) because E[τττ ] < ∞ and σ2 < ∞.
When β ≤ 1, this is no longer the case, and one must choose between a finite asymptotic
variance and infinite expected cost, or vice versa. Assuming the former, and that a CLT
holds (Proposition 14), for ε > 0 and 0 < δ < 1 the Chebyshev inequality implies that the
number of iterations of Algorithm 4 so that

(11) P[|Em,N,p(f)− π(∞)(f)| ≤ ε] ≥ 1− δ,
holds implies that m must be of the order O(ε−2). The question is then how to minimise the
total cost C (m), or computational complexity, involved in obtaining the m samples. This
will involve optimising for (p`) and N` to minimise C (m), while keeping the asymptotic
variance finite.

Proposition 24. Suppose that the assumptions of Proposition 14 hold with σ2 < ∞, and
Assumption 20 holds with E[τΘk0 ,Lk0

] =∞ for some k0 ≥ 1. If∑
k≥1

sup
j≥1

P[τΘj ,Lj > ak] <∞,

with ak = O
(
kc1(log2 k)c0

)
for some constants c0 > 0 and c1 ≥ 1, then 11 can be obtained

with computational complexity

O
(
ε−2c1 |log2 ε|c0

)
as ε→ 0.

Remark 25. The above result shows that even for costs with unbounded tails, reasonable
confidence intervals and complexity order may be possible. This may be the case for example
when a rejection sampler or adaptive resampling mechanism is used within Algorithm 1 or
4, which may lead to large costs for some Θk, for example a cost with a geometric tail.

The next results are as in Proposition 4 and 5 of [28] in the standard rMLMC setting,
and shows how one can choose p, assuming an additional almost sure cost bound, so that
σ2 <∞, with reasonable complexity.

Proposition 26. Suppose that the assumptions of Proposition 14 hold with var(P, µf̄ ) <∞,

and that Assumption 20 holds with β ≤ 1, where moreover τθ,` ≤ C2γ`(1+ρ) almost surely,
uniformly in Θk = θ ∈ T. For all q > 2 and η > 1, the choice of probability

p` ∝ 2−2b``[log2(`+ 1)]η,

where b := min((β + ρ)/2, α), leads to σ2 <∞, and 11 can be obtained with computational
complexity

O
(
ε−γ

(1+ρ)
b |log2 ε|qγ

(1+ρ)
2b

)
as ε→ 0.

Remark 27. Regarding Proposition 26, with γ = 1:

(i) Under Assumption 20 with ρ = 0, the usual setup in MLMC before
variance reduced estimators are used, the above proposition shows that
finite variance and 11 can be obtained without increasing the number of
particles at the higher levels, even in the subcanonical regime. We have

in this case b = β/2 ≤ α and complexity O
(
ε−

2
β |log2 ε|

q
β

)
. When β =

1 (borderline case), dMLMC gives complexity O(ε−2|log2 ε|2) [17, 21],
which is negligibly better (recall q > 2), but is biased inference.

(ii) When α > β/2, which is the usual case in the subcanonical regime
(β ≤ 1); see [25], a more efficient use of resources can be obtained by
increasing the number of particles (see Proposition 28 below).
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Proposition 28. Suppose the assumptions of Proposition 26 hold, where moreover ρ ≥ 0
may vary as a free parameter without changing the constant C > 0. Then, for all q > 2,
η > 1 constants, the choice ρ = 2α− β and probability

p` ∝ 2−2α``[log2(`+ 1)]η,

leads to σ2 <∞, and 11 can be obtained with computational complexity

O
(
εγ[−2− (1−β)

α
]|log2 ε|γ[q+

(1−β)
2α

]
)

as ε→ 0.

6. Numerical simulations

Now the theoretical results relating to the method herein introduced will be demonstrated
on three examples. We will consider one example in the canonical regime, and two in the
sub-canonical. In the first two experiments, the likelihoods can be computed exactly, so
that the ground truth π(∞)(f) can be easily calculated to arbitrary precision. We run each
example with 100 independent replications, and calculate the mean squared error (MSE)
when the chain is at length m as

MSE(m) =
1

100

100∑
i=1

∣∣E(i)
m,N,p(f)− π(∞)(f)

∣∣2,
which is depicted as the thick red line, average of the thin lines, in Figure 2 below. The
error decays with the optimal rate of cost−1 and log(cost)cost−1 in the canonical and sub-
canonical cases, respectively, where cost is the realised cost of the run, C (m) from Section
5, measured in seconds, with m iterations of the Markov chain.

Three examples will be considered. First we consider two models where the exact mar-
ginal likelihood can be computed. This way a reliable ground truth can be computed with
a long MCMC chain, providing a strong verification of the theoretical results. In Section
6.1 the Ornstein–Uhlenbeck (OU) process is considered, where Euler-Maruyama provides
the canonical convergence regime. In Section 6.2 the Geometric Brownian motion is con-
sidered, where Euler-Maruyama provides sub-canonical convergence regime. In Section 6.3
we consider a more complicated 2d model which does not allow exact computation of the
marginal likelihood.

It is of interest to compare our methodology to existing unbiased methods. The method
we consider for comparison is PMMH using the exact method introduced by Fearnhead
et al. [11]. In their work they provide a way to construct unbiased estimates without
approximating the transition density. The key idea is to assign to each particle a random
positive weight which is an unbiased estimator of the true weight. This method is referred
to as the random weight particle filter. It has been later extended to continuous-time
observations in [12]. The method of [11] is implemented when it is applicable (in particular,
for the models of Sections 6.1 and 6.2) and the corresponding MSE is plotted in comparison
to our method. That method is not amenable to the example of Section 6.3. In all the
examples, for the sake of comparison with the standard approach, we also implement a
finely-discretised PMMH. This shows the benefit of our alternative approach based on a
coarsely-discretised PMMH with multilevel IS correction.

6.1. Ornstein–Uhlenbeck process. Consider the OU process

(12) dZt = −aZtdt+ bdWt , t ≥ 0,

with initial condition Z0 = 0, model parameter θ = (θ1, θ2) ∼ N(0, σ2I), and a := aθ =
exp(θ1) and b := bθ = exp(θ2). The process is discretely observed for k = 1, . . . , n,

(13) Yp = Xp + ξp ,
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where ξp ∼ N(0, γ2) i.i.d. and recall that Xp = Zp+1. Therefore,

Gp(x) = exp(− 1

2γ2
|x− yp|2) .

The marginal likelihood is given by

P[y1:n|θ] =
n∏
p=1

P[yp|y1:p−1, θ] ,

and each factor can be computed as the marginal of the joint on the prediction and current
observation, i.e.

(14) P[yp|y1:p−1, θ] =

∫
R
P[yp|xp, θ]P[xp|y1:p−1, θ]dxp .

In this example the ground truth can be computed exactly via the Kalman filter. In
particular, the solution of 12 is given by

Z1 = e−aX0 +W1 , W1 ∼ N
(

0,
b2

2a
(1− e−2a)

)
.

The filter at time p is given by the following simple recursion

mp = cp

(
yp
γ2

+
m̂p

ĉp

)
, cp = (γ−2+ ĉ−1

p )−1 , m̂p = e−amp−1 , ĉp = e−2acp−1+
b2

2a
(1−e−2a) .

Additionally, the incremental marginal likelihoods 14 can be computed exactly

P[yp|y1:p−1, θ] =

√
cp

2πĉpγ2
exp

{
−1

2

[
y2
p

γ2
+
m̂2
p

ĉp
− cp

(
yp
γ2

+
m̂p

ĉp

)2
]}

.

The parameters are chosen as γ = 1, σ2 = 0.1, n = 5, and the data is generated with
θ = (0, 0)T . Our aim is to compute E(θ|y1:n) (or E[(a, b)T |y1:n], etc., but we will content
ourselves with the former). This is done via a brute force random walk MCMC for m = 108

steps using the exact likelihood P[y1:n|θ] as above. The IACT is around 10, so this gives a
healthy limit for MSE computations.

For the numerical experiment, we use Euler-Maruyama method at resolution h` = 2−` to
solve 12 as follows

(15) Zp+1 = (1− ah`)Zp + bBp+1 , Bp+1 ∼ N (0, h`) i.i.d.

for p = 1, . . . , K` = h−1
` . Levels ` and `− 1 are coupled in the simulation of ∆` by defining

BC
1:K`/2

= BF
1:2:K`−1 +BF

2:2:K`
Algorithm 2 is then run using the standard bootstrap particle

filter (Algorithm 1) with N = 20 particles and O(N)-complexity multinomial resampling;
see [6]. Theorem 9 provides a rate of β = 2 for Algorithm 2, because the diffusion coefficient
is constant, which implies we are essentially running a Milstein scheme (see 8 and [25]).
Recommendation 1 (or Proposition 22) of Section 5 suggests arbitrary precision can be
obtained by Algorithm 4 with p` ∝ 2−3`/2 and no scaling of particle numbers based on `
in this canonical β = 2 regime (with weak rate α = 1). We choose a positive PMMH
algorithm constant ε = 10−6 (see Remark 11i). We run Algorithm 4 for 104 steps, with
100 replications. For the finely-discretised PMMH experiment we run 104 steps, with 100
replications with a discretisation of h` = 2−5. The results are presented in Figure 2, where it
is clear that the theory holds and the MSE decays according to 1/cost. The variance of the
run-times is very small over replications. The method of [11], within PMMH, also converges
with the theoretically-predicted canonical rate, but with a slightly smaller constant. This
is not unexpected. The important point is that both methods achieve the same canonical
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Figure 2. The MSE of PMMH rMLMC IS (Algorithm 4) applied to the
problem of parameter inference for the discretely observed OU process (left
plot) and GBM process (middle plot with ρ = 0, right plot with ρ = 1).
Squared error replications are given by the thin curves, while the thick red
curves give the MSE over replications. The thick magenta curves show the
MSE of PMMH using [11] (denoted by MSE2 in the legend). The blue curve,
denoted by MSE3, depicts the MSE for the finely-discretised PMMH. The
black curves representing cost−1 (left plot) and log(cost)cost−1 (middle and
right plots) are there to guide the eye.

rate, while our method is quite generally applicable, in particular, to a wide range of models
inaccessible to methods of the type of [11]. Also with the finely discretised PMMH from
Figure 2, i.e. the curve titled as MSE3, we see the bias kicking in at the end. We also see
that for the same level of cost the MSE is higher than that of the other methodologies.

6.2. Geometric Brownian motion. We next consider the following stochastic differential
equation

(16) dZt = aZtdWt,

with initial condition Z0 = 1, and a := aθ = exp(θ) with θ ∼ N (0, σ2). This equation is
analytically tractable as well, and the solution of the transformed equation U = logZ is
given via Itô’s formula by

dUt = −a
2

2
dt+ a dWt.

Defining Wp ∼ N (0, 1) i.i.d., one has that

Up+1 = Up +−a
2

2
+ aWp , with U0 = log z0 = 0,

and the solution of 16 can be obtained via exponentiation: Zp = eUp . Moreover, noisy
observations are introduced on the form , with Xp = Zp+1,

Yp = log(Xp) + ξp,

where ξp ∼ N (0, γ2) i.i.d. as above. Therefore we have

(17) Gp(x) = exp(− 1

2γ2
| log(x)− yp|2).

Again P[y1:n|θ] can be computed analytically. The parameters γ = 1, σ2 = 0.1, n = 5 are
chosen the same as in the previous example and the true observations are generated again
with θ = 0.

In order to investigate the theoretical sub-canonical rate, we return to 16 and approximate
this directly using Euler-Maruyama method 15, which introduces artificial approximation
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error. This problem suffers from stability problems when X < 0, so we take h` = 2−6−`. Al-
gorithm 1 is then used along with the selection functions (17). Here the diffusion coefficient
is not constant, and Euler-Maruyama method yields a rate of β = 1 = α, the borderline
case, which is expected to give a logarithmic penalty. Based on Recommendation 1 (or
Proposition 28) of Section 5, we consider scaling the particles as 2ρ` with ρ = 2α − β = 1
and ρ = 0, with p` ∝ 2−2`` log(`)2 in both cases. Again we let ε = 10−6, and the standard
bootstrap particle filter is used, with N = 20 × 2ρ` particles. Algorithm 4 is run for 104

steps, with 100 replications. Again, for the finely-discretised PMMH, we run 104 steps, with
100 replications with a discretisation of h` = 2−4 For this sub-canonical case we impose an
artificial upper bound ` ≤ 10, corresponding to an induced bias of ≈ 10−5. The results are
presented in Figure 2, and they show good agreement with the theory, in terms of rate. On
the other hand, the cost for ρ = 0 is apparently smaller than that of ρ = 1 by a factor of ap-
proximately 100. The method of [11] is not expected to suffer from a logarithmic penalty on
the MSE convergence, i.e. it achieves canonical rate also in this example. This can be seen
in Figure 2, in addition to a slightly better constant, as before. For the finely-discretised
PMMH from Figure 2, with geometric Brownian motion, we again notice the effect of the
bias arising from the discretisation, and the overall higher MSE.

6.3. 2d Non-reversible Langevin equation. We now consider a 2d example which is
not amenable to approaches of the type [11]. Consider a target distribution of the type
ρ(z) ∝ exp(−Φ(z)/a2), a2 > 0, and the following non-reversible Langevin equation

(18) dZt = (A− I2)∇Φ(Zt)dt+
√

2a2dWt, t ≥ 0 ,

and noisy observations Yp ∼ N (Xp, γ
2I2), with γ = 1, n = 10 observations where A ∈ R2×2

is anti-symmetric and parameterised by a1 ≥ 0, I2 is the 2-dimensional identity matrix, and
Φ(z) = a3

2
(z2

1 + z2
2 − 1)2 is the ring potential, parameterised by a3 > 0. The initial condition

is specified as Z0 = [1, 1]T . It is easy to see that the right-hand side of the Fokker-Planck
equation vanishes for the invariant distribution ρ given above, so the dynamics are well-
behaved [27]. We let ai = exp(θi), for i = 1, . . . , 3, and the prior is given by θ ∼ N(0, ε2I3),
ε2 = 0.1. The resolution of the Euler–Maruyama scheme for this experiment is set as 2−`+1.
This problem is no longer analytically soluble, so a high-resolution simulation is used with
a large sample size as ground truth.

For our setup it follows similarly to that of the previous experiment for the OU process,
where we are working in a canonical regime. Again we run Algorithm 4 with 104 steps,
and 100 replications, and Algorithm 2 is run using the standard bootstrap particle filter
(Algorithm 1) with N = 20 particles. We compare our results to the single level PMMH,
with a similar setup where we specify its resolution as 2−4. As before we choose a positive
PMMH algorithm constant ε = 10−6. As we can see from Figure 3 the MSE of the pro-
posed methodology in the paper decays at the rate of 1/cost, which is as expected, which
outperforms that of the single-level PMHH.

Remark 29. For multidimensional diffusions, it is well known that the exact methodology
works only on specific diffusions, which require strong assumptions [3]. It is not so clear how
the exact methodology can be applied to our non-reversible diffusion (due to the difficult
drift term) [4]. An alternative to this is the work of Blanchet el al. [5], which does not rely
on the assumption of drift term equal to the gradient of a suitable potential function, or
on Lamperti’s transformation for that matter. However, despite this, the major drawback
is that the running time of their methodology, although finite with probability one, has
infinite mean. As a result, the comparison would not be practical due to the cost of the
experiment.
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Figure 3. The MSE of PMMH rMLMC IS Algorithm 4 applied to the prob-
lem of parameter inference for the discretely observed non-reversible Langevin
equation. Squared error replications are given by the thin curves, while the
thick red curves give the MSE over replications. The thick blue curve shows
the MSE over replications of the finely-discretised PMMH, which we denote
as MSE2. The black curve represents cost−1.
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Appendix A. Analysis of the delta particle filter

We now give our analysis that is required for the proofs of Theorem 9 and Corollary 10
of Section 3 regarding the ∆PF (Algorithm 2) for HMM diffusions. The structure of the
appendix is as follows. In Section A.1 we introduce some more Feynman–Kac notations,
following [8, 21], emphasising that here we consider standard HMMs that can be coupled.
In Section A.2 we recall the ∆PF stated earlier. A general variance bound for quantities
such as ∆`(ϕ) is given in Section A.3. This is particularised to the HMM diffusion case in
Section A.4, where we supply the proofs for the results of Section 3.

A.1. Models. Let (X,X ) be a measurable space and {Gn}n≥0 a sequence of non-negative,
bounded and measurable functions such that Gn : X → R+. Let ηF0 , η

C
0 ∈ P(X) and

{MF
n }n≥1, {MC

n }n≥1 be two sequences of Markov kernels, i.e. MF
n : X→P(X), MC

n : X→
P(X). Set En := Xn+1 for n ≥ 0, and for x0:n ∈ En,

GGGn(x0:n) = Gn(xn)

and for n ≥ 1, s ∈ {F,C}, x0:n−1 ∈ En−1

MMM s
n(x0:n−1, dx

′
0:n) = δ{x0:n−1}(dx

′
0:n−1)M s

n(x′n−1, dx
′
n).
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Define for s ∈ {F,C}, ϕ ∈ Bb(En), un ∈ En

γγγsn(ϕ) =

∫
E0×···×En

ϕ(un)
( n−1∏
p=0

GGGs
p(up)

)
ηs0(du0)

n∏
p=1

MMM s
p(up−1, dup)

and

ηηηsn(ϕ) =
γγγsn(ϕ)

γγγsn(1)
.

Throughout this appendix, we assume Assumption (D), and that Assumption 3(i) holds,
i.e. there exists η̌0 ∈P(X× X) such that for any A ∈ X

η̌0(A× X) = ηF0 (A) η̌0(X× A) = ηC0 (A)

and moreover for any n ≥ 1 there exists Markov kernels {M̌n}, M̌n : X × X → P(X × X)
such that for any A ∈ X , (x, x′) ∈ X× X:

(19) M̌n(A× X)(x, x′) = MF
n (A)(x) M̌n(X× A)(x, x′) = MC

n (A)(x′).

A.2. Delta particle filter. Define xp = (xFp , x
C
p ) ∈ X× X and

Ǧp(xp) =
1

2
(Gp(x

F
p ) +Gp(x

C
p )),

as in Assumption 3(ii). Set, for n ≥ 0, x0:n ∈ X2(n+1)

Ǧ̌ǦGn(x0:n) = Ǧn(xn)

and for n ≥ 1, x0:n−1 ∈ X2n

M̌̌M̌Mn(x0:n−1, dx
′
0:n) = δ{x0:n−1}(dx

′
0:n−1)M̌n(x′n−1, dx

′
n), .

Note that coupling assumption (19) for M̌n can be equivalently formulated for M̌̌M̌Mn.
For n ≥ 0, ϕ ∈ Bb(En × En), un ∈ En × En, we have

γ̌̌γ̌γn(ϕ) =

∫
E2
0×···×E2

n

ϕ(un)
( n−1∏
p=0

Ǧ̌ǦGp(up)
)
η̌0(du0)

n∏
p=1

M̌̌M̌Mp(up−1, dup)

and

η̌̌η̌ηn(ϕ) =
γ̌̌γ̌γn(ϕ)

γ̌̌γ̌γn(1)
.

As noted in [22] it is simple to establish that for ϕ ∈ Bb(En), if

(20) ψ(x0:n) = Ǧ̌ǦGn(x0:n)
(
ϕ(xF0:n)

n∏
p=0

GGGp(x
F
0:p)

Ǧ̌ǦGp(x0:p)
− ϕ(xC0:n)

n∏
p=0

GGGp(x
C
0:p)

Ǧ̌ǦGp(x0:p)

)
then

(21) γ̌̌γ̌γn(ψ) = γ̌̌γ̌γn(1)η̌̌η̌ηn(ψ) = γFn (Gnϕ)− γCn (Gnϕ).

Note

γ̌̌γ̌γn(1) =
n−1∏
p=0

η̌̌η̌ηp(Ǧ̌ǦGp).

In order to approximate γ̌̌γ̌γn(ψ) one can run the following abstract version of Algorithm 2
(recall from Section 3 that we will only consider multinomial resampling). Define for n ≥ 1,
µ ∈P(En−1 × En−1), ϕ ∈ Bb(En × En)

φ̌̌φ̌φn(µ)(ϕ) =
µ(Ǧ̌ǦGn−1M̌̌M̌Mn(ϕ))

µ(Ǧ̌ǦGn−1)
.
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The algorithm begins by generating ui0 ∈ E0 × E0, i ∈ {1, . . . , N} with joint law

N∏
i=1

η̌0(dui0) =
N∏
i=1

η̌̌η̌η0(dui0).

Defining

η̌̌η̌ηN0 (du0) =
1

N

N∑
i=1

δui0(du0)

we then generate ui1 ∈ E1 × E1, i ∈ {1, . . . , N} with joint law

N∏
i=1

φ̌̌φ̌φ1(η̌̌η̌ηN0 )(dui1).

This proceeds recursively, so the joint law of the particles up to time n is( N∏
i=1

η̌̌η̌η0(dui0)
)( n∏

p=1

N∏
i=1

φ̌̌φ̌φp(η̌̌η̌η
N
p−1)(duip)

)
.

Hence we have the estimate

γ̌̌γ̌γNn (ψ) =
( n−1∏
p=0

η̌̌η̌ηNp (Ǧ̌ǦGp)
)
η̌̌η̌ηNn (ψ).

Remark 30. Note that γ̌̌γ̌γNn (ψ) corresponds to the quantity ∆`(ϕ) in (6) from the ∆PF output
(Algorithm 2).

A.3. General hidden Markov model case. Define for p ≥ 1 the semigroup

Q̌̌Q̌Qp(x0:p−1, dx
′
0:p) = Ǧ̌ǦGp−1(x0:p−1)M̌̌M̌Mp(x0:p−1, dx

′
0:p)

with the definition for 0 ≤ p ≤ n, ϕ ∈ Bb(En × En)

Q̌̌Q̌Qp,n(ϕ)(up) =

∫
ϕ(un)

n∏
j=p+1

Q̌̌Q̌Qj(uj−1, duj)

if p = n clearly Q̌̌Q̌Qn,n is the identity operator. For any 0 ≤ n, ϕ ∈ Bb(En × En) we set

Q̌̌Q̌Q−1,n(ϕ)(u−1) = 0.
Now following [8, Chapter 7] we have the following martingale (w.r.t. the natural filtration

of the particle system), ϕ ∈ Bb(En × En):

(22) γ̌̌γ̌γNn (ϕ)− γ̌̌γ̌γn(ϕ) =
n∑
p=0

γ̌̌γ̌γNp (1)[η̌̌η̌ηNp − φ̌̌φ̌φp(η̌̌η̌ηNp−1)](Q̌̌Q̌Qp,n(ϕ))

with the convention that φ̌̌φ̌φp(η̌̌η̌η
N
p−1) = η̌̌η̌η0 if p = 0. The representation immediately establishes

that
E[γ̌̌γ̌γNn (ϕ)] = γ̌̌γ̌γn(ϕ)

where the expectation is w.r.t. the law associated to the particle system. We will use the
following convention that C ′ is a finite positive constant that does not depend upon n,N or
any of the Gn, M s

n (s ∈ {F,C}, M̌n. The value of C ′ may change from line-to-line. Define
for 0 ≤ p ≤ n <∞

Gp,n =
n∏
q=p

‖Gq‖

with the convention that if p = 0 we write Gn. We have the following result.
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Proposition 31. Suppose that ‖Gn‖ <∞ for each n ≥ 0. Then there exist a C ′ <∞ such
that for any n ≥ 0, ϕ ∈ Bb(En × En)

E
[(
γ̌̌γ̌γNn (ϕ)− γ̌̌γ̌γn(ϕ)

)2]
≤ C ′

N

n∑
p=0

G
2

p−1E[Q̌̌Q̌Qp,n(ϕ)(u1
p)

2].

Proof. Set

Š̌ŠSNp,n(ϕ) = γ̌̌γ̌γNp (1)[η̌̌η̌ηNp − φ̌̌φ̌φp(η̌̌η̌ηNp−1)](Q̌̌Q̌Qp,n(ϕ))

By (22), one can apply the Burkholder-Gundy-Davis inequality to obtain

(23) E
[(
γ̌̌γ̌γNn (ϕ)− γ̌̌γ̌γn(ϕ)

)2]
≤ C ′

n∑
p=0

E[Š̌ŠSNp,n(ϕ)2].

Now, we have that

E[Š̌ŠSNp,n(ϕ)2] ≤ G
2

p−1E[[η̌̌η̌ηNp − φ̌̌φ̌φp(η̌̌η̌ηNp−1)](Q̌̌Q̌Qp,n(ϕ))2].

Application of the (conditional) Marcinkiewicz-Zygmund inequality yields

E[Š̌ŠSNp,n(ϕ)2] ≤
C ′G

2

p−1

N
E
[(
Q̌̌Q̌Qp,n(ϕ)(u1

p)− φ̌̌φ̌φp(η̌̌η̌ηNp−1)(Q̌̌Q̌Qp,n(ϕ))
)2]

.

After applying C2 and Jensen inequalities, we then conclude by (23). �

A.4. Diffusion case. We now consider the model of Section 3, where we recall that θ is
omitted from the notation. A series of technical results are given and the proofs for Theorem
9 and Corollary 10 are given at the end of this section.

We recall that the joint probability density of the observations and the unobserved dif-
fusion at the observation times is given by

n∏
p=0

Gp(xp)Q
(∞)(xp−1, xp).

As the true dynamics can not be simulated, in practice we work with

n∏
p=0

Gp(xp)Q
(`)(xp−1, xp).

Recall an (Euler) approximation scheme with discretisation h` = 2−`, ` ≥ 0. In our context
then, MF

n corresponds Q(`) (` ≥ 1) and MC
n corresponds Q(`−1). The initial distribution η0

is simply the (Euler) kernel started at some given x0. As noted earlier in Remark 5(i), a
natural coupling of MF

n and MC
n (and hence of η0) exists. As established in [21, eq. (32)]

one has (uniformly in θ as Assumption (D) holds with θ independent constants) for C ′ <∞

(24) sup
A

sup
x∈X
|MF

n (ϕ)(x)−MC
n (ϕ)(x)| ≤ C ′h`

whereA = {ϕ ∈ Bb(X)∩Lip(X) : ‖ϕ‖ ≤ 1|}. We also recall that (8) holds (recall Assumption
(D) is assumed).

We will use M < ∞ to denote a constant that may change from line-to-line. It will
not depend upon θ nor N , `, but may depend on the time parameter or a function. The
following result will be needed later on. The proof is given after the proof of Lemma 33
below.
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Proposition 32. Assume (A1 (i)-(ii),2). Then for any n ≥ 0 and ϕ ∈ Bb(Xn+1)∩Lip(Xn+1)
there exists a M <∞ such that

|γFn (Gnϕ)− γCn (Gnϕ)| ≤Mh`

We write expectations w.r.t. the time-inhomogeneous Markov chain associated to the
sequence of kernels (MF

p )p≥1 (resp. (MC
p )p≥1) as EF , (resp. EC).

Lemma 33. Assume (A1(i)-(ii),2). Let s ∈ {F,C} and ϕ ∈ Bb(Xn+1) ∩ Lip(Xn+1), then,
define the function for 0 ≤ p ≤ n

ϕsp,n(x0:p) := Es[ϕ(x0:p, Xp+1:n)
n∏

q=p+1

Gq(Xq)|xp].

Then we have that ϕsp,n ∈ Bb(Xp+1) ∩ Lip(Xp+1).

Proof. The case p = n follows immediately from ϕ ∈ Bb(Xn+1) ∩ Lip(Xn+1). We will use a
backward inductive argument on p. Suppose p = n−1 then we have for any (x0:n−1, x

′
0:n−1) ∈

Xn × Xn

|ϕsn−1,n(x0:n−1)− ϕsn−1,n(x′0:n−1)| =

|Es[ϕ(x0:n−1, Xn)Gn(Xn)|xn−1]− Es[ϕ(x′0:n−1, Xn)Gn(Xn)|x′n−1]| ≤

|Es[ϕ(x0:n−1, Xn)Gn(Xn)|xn−1]− Es[ϕ(x′0:n−1, Xn)Gn(Xn)|xn−1]|+

|Es[ϕ(x′0:n−1, Xn)Gn(Xn)|xn−1]− Es[ϕ(x′0:n−1, Xn)Gn(Xn)|x′n−1]|
By ϕ ∈ Lip(Xn+1) it easily follows via (A1(i)) that

|Es[ϕ(x0:n−1, Xn)Gn(Xn)|xn−1]− Es[ϕ(x′0:n−1, Xn)Gn(Xn)|xn−1]| ≤M
n−1∑
j=0

|xj − x′j|.

By (A1(ii)) and ϕ ∈ Lip(Xn+1), ϕ(x0:n)Gn(xn) is Lipschitz in xn and hence by (A2)

(25) |Es[ϕ(x′0:n−1, Xn)Gn(Xn)|xn−1]− Es[ϕ(x′0:n−1, Xn)Gn(Xn)|x′n−1]| ≤M |xn−1 − x′n−1|.

Hence it follows

|ϕsn−1,n(x0:n−1)− ϕsn−1,n(x′0:n−1)| ≤M

n−1∑
j=0

|xj − x′j|.

The induction step follows by almost the same argument as above and is hence omitted. �

Proof of Proposition 32. We have the following standard collapsing sum representation:

γFn (Gnϕ)− γCn (Gnϕ) =
n∑
p=0

(
EF [

p∏
q=0

Gq(Xq)EC [ϕ(X0:n)
n∏

q=p+1

Gq(Xq)|Xp]]−

EF [

p−1∏
q=0

Gq(Xq)EC [ϕ(X0:n)
n∏
q=p

Gq(Xq)|Xp−1]]

)
The summand is

Tp := EF
[( p−1∏

q=0

Gq(Xq)
)

(EF − EC)
(
EC [ϕ(X0:n)

n∏
q=p+1

Gq(Xq)|Xp]Gp(Xp)
∣∣∣Xp−1

)]
.
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By Lemma 33, EC [ϕ(x0:p, Xp+1:n)
∏n

q=p+1Gq(Xq)|xp] ∈ Bb(Xp+1) ∩ Lip(Xp+1) and by (A1)

(i) and (ii) Gp ∈ Bb(X) ∩ Lip(X). So by (24)∣∣∣(EF − EC)
(
EC [ϕ(X0:n)

n∏
q=p+1

Gq(Xq)|Xp]Gp(Xp)
∣∣∣Xp−1

)∣∣∣ ≤
Mh` sup

x0:p∈Xp+1

|EC [ϕ(x0:p, Xp+1:n)
n∏

q=p+1

Gq(Xq)|

and hence

|Tp| ≤Mh`EF [

p−1∏
q=0

Gq(Xq)] sup
x0:p∈Xp+1

|EC [ϕ(x0:p, Xp+1:n)
n∏

q=p+1

Gq(Xq)|xp]Gp(xp)|.

Application of (A1) (i) gives |Tp| ≤Mh` and the proof is hence concluded. �

Lemma 34. Assume (A1). Then for any n ≥ 0 there exists a M < ∞ such that for any
x0:n ∈ X2(n+1) ∣∣∣ n∏

p=0

Gp(x
F
p )

Ǧp(xp)
−

n∏
p=0

Gp(x
C
p )

Ǧp(xp)

∣∣∣ ≤M

n∑
p=0

|xFp − xCp |.

Proof. The is proof by induction. The case n = 0:∣∣∣G0(xF0 )

Ǧ0(x0)
− G0(xC0 )

Ǧ0(x0)

∣∣∣ =
1

Ǧ0(x0)
|G0(xF0 )−G0(xC0 )|.

Application of (A1) (ii) and (iii) yield that∣∣∣G0(xF0 )

Ǧ0(x0)
− G0(xC0 )

Ǧ0(x0)

∣∣∣ ≤M |xF0 − xC0 |.

The result is assumed to hold at rank n− 1, then∣∣∣ n∏
p=0

Gp(x
F
p )

Ǧp(xp)
−

n∏
p=0

Gp(x
C
p )

Ǧp(xp)

∣∣∣ ≤
∣∣∣Gn(xFn )

Ǧn(xn)
− Gn(xCn )

Ǧn(xn)

∣∣∣ · n−1∏
p=0

Gp(x
F
p )

Ǧp(xp)
+
∣∣∣ n−1∏
p=0

Gp(x
F
p )

Ǧp(xp)
−

n−1∏
p=0

Gp(x
C
p )

Ǧp(xp)

∣∣∣ · Gn(xCn )

Ǧn(xn)
.

For the first term of the R.H.S. one can follow the argument at the initialisation and apply
(A1) (i) and (iii). For the second term of the R.H.S., the induction hypothesis and (A1) (i)
and (iii) can be used. That is one can deduce that∣∣∣ n∏

p=0

Gp(x
F
p )

Ǧp(xp)
−

n∏
p=0

Gp(x
C
p )

Ǧp(xp)

∣∣∣ ≤M

n∑
p=0

|xFp − xCp |.

�

Recall (20) for the definition of ψ and that xp = (xFp , x
C
p ) ∈ X× X.

Lemma 35. Assume (A1-2). Then for any 0 ≤ p < n, ϕ ∈ Bb(Xn+1) ∩ Lip(Xn+1) there
exists a M <∞ such that for any x0:p ∈ Ep × Ep

|Q̌̌Q̌Qp,n(ψ)(x0:p)| ≤M
( p∑
j=0

|xFj − xCj |+ h`

)
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Proof. We have

Q̌̌Q̌Qp,n(ψ)(x0:p) = Ǧp(xp)×
( p∏
q=0

Gq(x
F
q )

Ǧq(xq)
EF [ϕ(xF0:p, Yp+1:n)

n∏
s=p+1

Gs(X
F
s )|xFp ]

−
p∏
q=0

Gq(x
C
q )

Ǧq(xq)
EC [ϕ(xC0:p, Yp+1:n)

n∏
s=p+1

Gs(X
C
s )|xCp ]

)
.

It then follows that Q̌̌Q̌Qp,n(ψ)(x0:p) = Ǧp(xp)(T1 + T2) where

T1 =
( p∏
q=0

Gq(x
F
q )

Ǧq(xq)
−

p∏
q=0

Gq(x
C
q )

Ǧq(xq)

)
EF [ϕ(xF0:p, Yp+1:n)

n∏
s=p+1

Gs(X
F
s )|xFp ]

T2 =

p∏
q=0

Gq(x
C
q )

Ǧq(xq)

(
EF [ϕ(xF0:p, Yp+1:n)

n∏
s=p+1

Gs(X
F
s )|xFp ]− EC [ϕ(xC0:p, Yp+1:n)

n∏
s=p+1

Gs(X
C
s )|xCp ]

)
.

By Lemma 34, ϕ ∈ Bb(Xn+1) ∩ Lip(Xn+1) and (A1) (i)

|T1| ≤M

p∑
j=0

|xFj − xCj |.

Now T2 = T3 + T4 where

T3 =

p∏
q=0

Gq(x
C
q )

Ǧq(xq)

(
EF [ϕ(xF0:p, Yp+1:n)

n∏
q=p+1

Gs(X
F
s )|xFp ]− EF [ϕ(xF0:p, Yp+1:n)

n∏
s=p+1

Gs(X
F
s )|xCp ]

)
T4 =

p∏
q=0

Gq(x
C
q )

Ǧq(xq)

(
EF [ϕ(xF0:p, Yp+1:n)

n∏
s=p+1

Gs(X
F
s )|xCp ]− EC [ϕ(xC0:p, Yp+1:n)

n∏
s=p+1

Gs(X
C
s )|xCp ]

)
.

For T3 one can use Lemma 33 (along with (A1) (i) and (iii)) to get that

|T3| ≤M

p∑
j=0

|xFj − xCj |.

For T4 a similar collapsing sum argument that is used in the proof of Proposition 32 can be
used to deduce that

|T4| ≤Mh`.

One can then conclude the proof via the above bounds (along with (A1) (i)). �

Below E denotes expectation w.r.t. the particle system described in Section A.2 started at
position (x, x) at time n = 0 with x ∈ X, in the diffusion case of Section A.4. Recall the parti-
cle U i

n ∈ En×En at time n ≥ 0 in path space. We denote by U i,s
n (j) ∈ X as the j ∈ {0, . . . , n}

component of particle i ∈ {1, . . . , N} at time n ≥ 0 of s ∈ {F,C} component. Recall

(U i,F
n (n), U i,C

n (n)) for n ≥ 1 is sampled from the kernel M̌n((ūi,Fn−1(n − 1), ūi,Cn−1(n − 1)), · )
where the ū denotes post-resampling and the component (U i,F

n (j), U i,C
n (j)) = (ūi,Fn−1(j), ūi,Cn−1(j))

for j ∈ {0, . . . , n− 1} is kept the same for the earlier components of the particle.

Lemma 36. Assume (A1 (i) (iii), 2). Then for any n ≥ 0 there exists a M <∞ such that

E[
n∑
j=0

|U1,F
n (j)− U1,C

n (j)|2] ≤Mhβ` .

where β is as in (8).
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Proof. Our proof is by induction, the case n = 0 following by (8). Assuming the result at
n− 1 we have

E[
n∑
j=0

|U1,F
n (j)− U1,C

n (j)|2] = E[
n−1∑
j=0

|Ū1,F
n−1(j)− Ū1,C

n−1(j)|2 + |U1,F
n (n)− U1,C

n (n)|2].

Now

E[
n−1∑
j=0

|Ū1,F
n−1(j)− Ū1,C

n−1(j)|2] = N

n−1∑
j=0

E
[ Ǧn−1(U1,F

n−1(n− 1), U1,C
n−1(n− 1))∑N

j=1 Ǧn−1(U j,F
n−1(n− 1), U j,C

n−1(n− 1))
×

|U1,F
n−1(j)− U1,C

n−1(j)|2
]

≤ ME[
n−1∑
j=0

|U1,F
n−1(j)− U1,C

n−1(j)|2]

where we have used (A1) (i) and (iii). Applying the induction hypothesis along with (8)
yields

E[
n∑
j=0

|U1,F
n (j)− U1,C

n (j)|2] ≤M
(
hβ` + E[|Ū1,F

n−1(n− 1)− Ū1,C
n−1(n− 1)|2]

)
Now

E[|Ū1,F
n−1(n− 1)− Ū1,C

n−1(n− 1)|2] =

NE
[ Ǧn−1(U1,F

n−1(n− 1), U1,C
n−1(n− 1))∑N

j=1 Ǧn−1(U j,F
n−1(n− 1), U j,C

n−1(n− 1))
|U1,F

n−1(n− 1)− U1,C
n−1(n− 1)|2

]
Then by (A1) (i) and (iii)

E
[ Ǧn−1(U1,F

n−1(n− 1), U1,C
n−1(n− 1))∑N

j=1 Ǧn−1(U j,F
n−1(n− 1), U j,C

n−1(n− 1))
|U1,F

n−1(n− 1)− U1,C
n−1(n− 1)|2

]
≤

M

N
E[|U1,F

n−1(n− 1)− U1,C
n−1(n− 1)|2] ≤ M

N
E[

n−1∑
j=0

|U1,F
n−1(j)− U1,C

n−1(j)|2].

Hence via the induction hypothesis, one has

E[|Ū1,F
n−1(n− 1)− Ū1,C

n−1(n− 1)|2] ≤Mhβ`

and the proof is concluded. �

Recall Remark 30.

Proof of Theorem 9. This follows first by applying Proposition 31, followed by Lemma 35
and then some standard calculations followed by Lemma 36. �

Proof of Corollary 10. Easily follows by adding and subtracting γ̌̌γ̌γn(ψ) the C2 inequality
along with Theorem 9, and then using (21) combined with Proposition 32. �
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Appendix B. Proof of consistency of the Markov chain Monte Carlo

Proof of Theorem 12. Denote

(26) ξk(g) :=
( N∑
i=1

V
(i)
k + ε

)−1[ N∑
i=1

V
(i)
k g(Θk, X

(i)
k ) + ∆̃k(g

(Θk))
]
,

where g(θ)(x) := g(θ, x) and ∆̃k(g
(θ)) := p−1

Lk

∑2N
i=1 V

(i)
k,Lk

g(θ)(X
(i)
k,Lk

). Then Emiter,N,p(f) =∑miter
k=1 ξk(f)∑miter
j=1 ξk(1)

. Furthermore, by Assumption 6 [cf. 28, 32], we have

E[∆̃2
k(g) | Θk = θ] = sg(θ),

E[∆̃k(g) | Θk = θ] = γ(θ,∞)
n (Gng)− γ(θ,0)

n (Gng)

for g = 1 and g = f (θ). This implies for g = f and g = 1,

µg(θ, v
(1:N), x(1:N)) := E[ξk(g) | (Θk, V

(1:N)
k ,X

(1:N)
k ) = (θ, v(1:N),x(1:N))]

=
1∑N

j=1 v
(j) + ε

[ N∑
i=1

v(i)g(θ, x(i))− γ(θ,0)
n (Gng) + γ(θ,∞)

n (Gng)

]
,

m(1)
g (θ, v(1:N), x(1:N)) := E[|ξk(g)| | (Θk, V

(1:N)
k ,X

(1:N)
k ) = (θ, v(1:N),x(1:N))]

≤ 1∑N
j=1 v

(j) + ε

[ N∑
i=1

v(i)|g(θ, x(i))|+
√
sg(θ)(θ)

]
.

It is direct to check that the PMMH type chain (Θk, X
(1:N)
k , V

(1:N))
k ) is reversible with respect

to the probability

(27) Π(dθ, dx(1:N), dv(1:N)) = c0pr(θ)dθR
(0)
θ (dx(1:N), dv(1:N))

( N∑
i=1

v(i) + ε
)
,

where c0 > 0 is a normalisation constant and R
(0)
θ ( · ) stands for the law of the output of

Algorithm 1 with (M
(θ,0)
0:n , G

(θ,0)
0:n , N), and therefore is Harris recurrent as a full-dimensional

Metropolis–Hastings that is ψ-irreducible [cf. 29, Theorem 8]. It is direct to check that

Π(m
(1)
f ) < ∞, Π(m

(1)
1 ) < ∞, Π(µf ) = cπ(∞)(f) and Π(µ1) = c, where c > 0 is a constant,

so the result follows from [33, Theorem 3]. �

Appendix C. Proofs about asymptotic efficiency and allocations

Proof of Proposition 18. By Harris ergodicity, m−1C (m) → E[τττ ] almost surely. Dividing
the inequality

C (L (κ)) ≤ κ < C (L (κ) + 1)

by L (κ) and taking the limit κ → ∞, which implies L (κ) → ∞, we get that κ/L (κ) →
E[τττ ] almost surely. Also, by Proposition 14,√

L (κ)
[
EL (κ),N,p(f)− π(∞)(f)

] κ→∞−−−→ N (0, σ2), in distribution,

so the result follows by Slutsky’s theorem. �

Proof of Proposition 22. We have that

E[C (m)] =
m∑
k=1

E[τΘk,Lk ] =
m∑
k=1

∞∑
`=1

E[τΘk,`]p`. ≤ Cm
∞∑
k=1

p`2
γ`(1+ρ),
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by Assumption 20(i), which is finite if r > γ(1 + ρ). Also,

sg(θ) = E[∆̃2
k(g)|Θk = θ] =

∑
`≥1

E∆2
`

p`
≤ C

∑(
2−`(β+ρ−r) + 2−`(2α−r)

)
,

which is finite if r < min(β+ρ, 2α). Therefore, σ2 <∞, and the CLT follows by Proposition
18. �

Lemma 37. Let {Xk}k≥1 be a sequence of independent random variables with E[Xk0 ] =∞
for at least one k0, and let {ak}k≥1 be a sequence of monotonically increasing real numbers
with ak/k −→∞. Suppose one of the following assumptions holds:

(i)
∑

k≥1 P[Xk > ak] <∞, and {Xk}k≥1 are also identically distributed, or
(ii)

∑
k≥1 supm≥1 P[Xm > ak] <∞.

Then

P[
m∑
k=1

Xk > am infinitely many m ∈ N] = 0.

Proof. (i) is [14, Theorem 2] since E[Xk0 ] =∞ implies E[Xk] =∞ for all k ≥ 1 as {Xk}k≥1

are i.i.d. For (ii), note that if Xk has c.d.f. denoted Fk, then it is straightforward to check
that

F ∗(x) := inf
k≥1

Fk(x)

is a c.d.f. also. With X∗k ∼ F ∗ i.i.d. for k ≥ 1, we have

P[X∗k > ak] = 1− F ∗(ak) = sup
m≥1

1− Fm(ak) = sup
m≥1

P [Xm > ak].

Summing over k ≥ 1, we obtain
∑

k≥1 P[X∗k > ak] <∞. In addition,

E[X∗k ] =

∫
P[X∗k > x]dx ≥

∫
P[Xk0 > x]dx =∞,

for all k ≥ 1. Hence, we can apply (i) for i.i.d. random variables, obtaining

0 = P[
m∑
k=1

X∗k > am infinitely many m] ≥ P[
m∑
k=1

Xk > am infinitely many m],

where the first equality comes from (i), and so we conclude. �

Proof of Proposition 24. Conditional on output {Θk}k≥1 of Algorithm 4, {τΘk,Lk}k≥1 are
independent random variables. Our assumptions imply Lemma 37(ii) holds, so

P[C (m) > am infinitely many m] = 0,

which means that C (m) is asymptotically bounded by am. Setting m = O(ε−2) allows us
to conclude. �

The proofs below of Proposition 26 and 28 are similar to that of [28, Proposition 4 and
5].

Proof of Proposition 26. With the prescribed choice of p` we have finite variance, as

sg(θ) =
∑
`≥1

E∆2
`

p`
≤ C

∑
`≥1

1

`[log2(`+ 1)]η
<∞,
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uniformly in θ ∈ T. To determine the order of complexity, we would like to apply Lemma
37(i) to the i.i.d sequence {τ ∗Lk}k≥1, where τ ∗` := C2γ`(1+ρ). For any k ≥ 1, where ak > 0 is
some positive real number, we have,

(28) P[τ ∗Lk > ak] =
∑
`≥1

P[τ ∗` > ak]p` =
∑
`≥1

1

{
` >

1

γ(1 + ρ)
log2

ak
C

}
p`.

Because
∑

`≥1 p` = 1 and p` is monotonically decreasing, we have
∑

`≥`∗ p` is O(p`∗). Setting

`∗ = b 1
γ(1+ρ)

log2
ak
C
c, we therefore obtain that (28) is of order

a
− 2b
γ(1+ρ)

k

(
log2 ak

)(
log2 log2 ak

)η
.

Setting

(29) ak := [k(log2 k)q]
γ(1+ρ)

2b

then ensures that
∑

k≥1 P[τ ∗Lk > ak] < ∞. As β ≤ 1, it is easy to check that E[τ ∗Lk ] = ∞.
We then apply Lemma 37(i), obtaining

0 = P[
m∑
k=1

τ ∗Lk > am infinitely many m] ≥ P[
m∑
k=1

τΘk,Lk > am infinitely many m].

and conclude as before, by using that C (m) is asymptotically bounded by am and setting
m = O(ε−2). �

Proof of Proposition 28. We are in the basic setting of Proposition 26 as before, but ad-
ditionally may choose ρ ≥ 0 as we please. The growth of ak given in (29) is essentially
determined by γ(1 +ρ)/2b, which can be made small when ρ = 2α−β, implying b = α. �
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