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Abstract

The main subject of this dissertation is mean curvature type of flows, in particular the volume
preserving mean curvature flow. A classical flow in this context is seen as a smooth time evolution
of n-dimensional sets. An important question is when a given mean curvature type of flow exists at
all times, and thus does not form singularities. A singularity of a flow is a time where one cannot
continue the flow, and usually the evolving set experiences topological changes. The work consists
of three articles.

In the first article [A], the focus lies on a behavior of a volume preserving mean curvature
flow starting nearby a so-called strictly stable set in a three- or four-dimensional flat torus. The
contribution of the first article is to show that if the previous flow starts sufficiently close to
the strictly stable set in the H3-sense, then the flow exists at all times and converges, up to a
small translation, to the set at an exponential rate. In particular, such a flow does not experience
singularities.

The second article [B] and the third article [C] concern generalizations of mean curvature type
of flows, so-called flat flows, obtained via the minimizing movement method. Advantages of such a
generalization are that it is defined at all times and requires less regularity for a given initial set
compared to a mean curvature type of flow. In [B], it is shown that a flat flow of volume preserving
mean curvature flow, starting from a bounded set of finite perimeter, has a shape of a finite union
of equisized balls with mutually disjoint interiors in the asymptotical sense. The previous result
relies on a new quantitative Alexandrov’s theorem, also proven in [B]. This theorem says that
if a bounded C2-regular set, with a fixed upper bound on perimeter and a fixed lower bound on
volume in an n-dimensional Euclidean space, has a boundary mean curvature close to a constant
value in the Ln−1-sense, then the set is close to a finite union of equisized balls, with mutually
disjoint interiors, in the Hausdorff-sense.

In [C], it is shown that finite unions of n-dimensional tangent balls are not invariant under
flat flows of any mean curvature flow with a bounded forcing. This is already proven in the
two-dimensional case, so the third article generalizes this result to the higher dimensions.



Tiivistelmä

Tämän väitöksen pääaiheena ovat keskikaarevuustyyppiset virtaukset, erityisesti tilavuuden
säilyttävä keskikaarevuusvirtaus. Klassinen virtaus nähdään tässä kontekstissa sileänä n-ulotteisten
joukkojen aikaevoluutiona. Tärkeä kysymys on, milloin annettu keskikaarevuustyyppinen virtaus
on olemassa kaikkina ajanhetkinä ja ei täten muodosta singulariteetteja. Virtauksen singulariteetti
on ajanhetki, josta kyseistä virtausta ei voida jatkaa, ja tavallisesti kehittyvä joukko muuttuu
topologisesti. Työ koostuu kolmesta artikkelista.

Ensimmäisessä artikkelissa [A] tarkastelun kohteena on tilavuuden säilyttävän keskikaarevu-
usvirtauksen käytös ns. ehdottomasti vakaan joukon lähellä kolmi- tai neliulotteisessa litteässä
toruksessa. Ensimmäisen artikkelin panos on osoittaa, että jos edellinen virtaus alkaa tarpeeksi
läheltä kyseistä joukkoa H3-mielessä, niin virtaus on olemassa kaiken aikaa ja pientä siirtoa
lukuunottamatta lähestyy eksponentiaalisella vauhdilla kohti samaa joukkoa. Erityisesti tällainen
virtaus ei muodosta singulariteetteja.

Toinen ja kolmas artikkeli käsittelevät keskikaarevuustyyppisten virtausten yleistyksiä, ns.
litteitä virtauksia, jotka saadaan liikkeiden-minimointi-menetelmällä. Tällaisen yleistyksen etuina
ovat, että se on määritelty kaikkina ajanhetkinä ja vaatii vähemmän säännöllisyyttä lähtöjoukolta
verrattuna keskikaarevuustyyppiseen virtaukseen. Artikkelissa [B] osoitetaan, että litteä virtaus
tilavuuden säilyttävälle keskikaarevuusvirtaukselle alkaen rajoitetusta äärellisen perimetrin joukosta
muistuttaa asymptoottisesti äärellisen monen samankokoisen pallon yhdistettä siten, että pallojen
sisukset ovat pistevieraat. Edellinen tulos nojaa uuteen kvantitatiiviseen Alexandrovin lauseeseen,
joka myöskin todistetaan artikkelissa [B]. Tämä lause sanoo, että jos C2-säännöllisellä joukolla,
jolle perimetrillä on kiinnitetty yläraja ja tilavuudelle kiinnitetty alaraja n-ulotteisessa euklidisessa
avaruudessa, reunan keskikaarevuus on Ln−1-mielessä lähellä vakiota, niin joukko on Hausdorff-
mielessä lähellä äärellisen monen samankokoisen pallon yhdistettä siten, että pallojen sisukset ovat
pistevieraat.

Artikkelissa [C] osoitetaan, että äärellisen monen toisiaan sivuavan n-ulotteisen pallon yhdiste ei
ole invariantti minkään pakotetun keskikaarevuusvirtauksen litteän virtauksen suhteen. Tämä on
jo valmiiksi todistettu kaksiulotteisessa tapauksessa, joten kolmas artikkeli yleistää tämän tuloksen
korkeampiin ulottuvuuksiin.



INTRODUCTION

This dissertation focuses on certain perturbations of mean curvature flow (MCF) in the n-
dimensional Euclidean space Rn and in the n-dimensional flat torus Tn. By a smooth flow we
always mean a smooth evolution of smooth sets t 7→ Et with t ∈ [0, a). An initial set E0 of a given
flow is called an initial datum and we say that the flow starts from E0. A (classical) MCF is a
smooth flow, for which the motion of the boundary is described by the equation

(0.1) Vt = −Ht,

where Vt is the normal velocity of the flow on ∂Et at time t and Ht is the scalar mean curvature
field on ∂Et associated with the inside-out orientation. MCF and its perturbations are widely used
to model different phenomena in material science such as an evolution of grain boundaries in a
metal sheet [44]. The perturbation of mean curvature flow we are mainly interested in here is
volume preserving mean curvature flow (VMCF), sometimes called surface tension flow. We say
that a smooth flow with finite perimeter P (Et) = Hn−1(∂Et) is a VMCF, if the normal velocity
Vt at time t obeys the law

(0.2) Vt = Ht −Ht.

Here Ht =
�
∂Et

Ht dHn−1 is the integral average of Ht over ∂Et. As the name suggests, the

volume |Et| is preserved under VMCF. Both MCF and VMCF decrease perimeter and they are
considered to be gradient flows of the perimeter functional. In fact, such flows can be seen as an
evolutionary counterpart of the classical Euclidean isoperimetric problem.

In study of MCF and its perturbations, singularities are a great matter of interest. By a
singularity, we mean a moment in time, beyond which one cannot smoothly extend a given flow.
In such a situation, topological changes usually occur. Thus, it is natural to ask under which
conditions there are no singularities at all. For instance, Gage [21] (in the planar case) and Huisken
[27] (in the higher dimensions) prove that a VMCF with a bounded, convex and smooth initial
datum does not experience singularities.

The structure of the dissertation can be divided into two separate parts. The first part concerns
the stability of VMCF near stationary sets. A set is called stationary, if a VMCF starting from
it preserves the set unchanged. These sets turn out to be bounded smooth sets with constant
boundary mean curvature, such as balls in Rn or cylinders in Tn. By stability near a stationary
set E, we broadly understand that any VMCF evolution starting from a set “sufficiently” close
to E and of volume |E| exists at all times and stays arbitrarily close to E in some Ck,α-sense.
In particular, such a VMCF does not experience singularities. It follows from the article [18]
by Escher-Simonett that stable and stationary sets for VMCF in Rn are exactly the single balls.
Moreover, they prove that a VMCF with an initial datum E0 of volume |B| sufficiently close to a
ball B converges to a small translate of the ball at an exponential rate. Such balls are asymptotically
stable with respect to VMCF. The main result of [A] states that in the flat torus Tn, with n = 3, 4,
there are essentially more asymptotically stable and stationary sets besides trivial ones such as
balls and cylinders.

One way to work around singularities is to introduce a notion of a weak solution, see [4], [10],
[12], [15], [18] and [35]. The second part of the dissertation considers flat solutions for perturbations
of MCF constructed via the minimizing movement scheme. These are weak solutions to (0.1)
and its perturbations such as (0.2). The main advantages of flat solutions are that they exist
at all times and have lower regularity requirements for initial data. Indeed, a bounded set of
finite perimeter suffices. It is well-known that if a VMCF converges to a bounded limit set in
the C2-sense, then the limit must be bounded and have a constant boundary mean curvature. It
follows from Alexandrov’s theorem [8], that such sets in Rn are exactly finite unions of equisized
balls, where the balls have a positive distance to each other. In the second article [B] we generalize
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6 INTRODUCTION

this result, in a weakened form, to concern flat solutions to (0.2) in Rn with n = 2, 3. We show that
a flat solution always converges asymptotically to a finite union of equisized balls with mutually
disjoint interiors. A new quantitative Alexandrov’s theorem, also proven in [B], is instrumental in
proving the previous result. This result roughly quantifies the following fact for a given bounded
C2-regular set E ⊂ Rn with a fixed lower bound on volume and an upper bound on perimeter. If
the quantity ∥HE −HE∥Ln−1(∂E) tends to zero, then E becomes arbitrarily close to a tangential
union of equisized balls with mutually disjoint interiors. In the last article [C] we extend the result
proven in [20] from the planar case to the higher dimensions. The main result in [C] says that a
flat solution to MCF with a bounded forcing term, see (5.6), starting from two tangential balls
“welds” the balls together for a short time period. From this and [16], one may conclude that a
stationary set for a MCF with a positive constant forcing term must always be a finite union of
equisized balls with a positive distance to each other.

1. Notations and preliminaries

Our working space is Rn or the n-dimensional flat torus Tn. We denote them by Kn, if there is
no need to make a distinction. Also, our standing assumption through the presentation is that the
dimension n is at least two.

Flat torus. We consider the n-dimensional flat torus Tn as the quotient space Rn/Zn. It should
be noted that many authors mean by this any quotient space Rn/L, where L is a discrete subgroup
of Rn isomorphic to Zn. The corresponding quotient map is denoted by q. If x ∈ Tn and v ∈ Rn,
then the sum x+ v in Tn is defined as q(u+ v), where u is any element from the lattice q−1(v).

For a function f : Tn → Rk its lift is f̃ = f ◦ q : Rn → Rk, which is a unique expression. On
the other hand, every Zn-periodic function Rn → Rk induces a unique function Tn → Rk via
the quotient map. Again, for a map ϕ : Tn → Tn its lift is any function ϕ̃ : Rn → Rn satisfying
ϕ ◦ q = q ◦ ϕ̃. The topology and smooth structure on Tn are induced by q. Then Tn is a smooth
and compact manifold (without boundary) and q : Rn → Tn is a smooth universal cover. The
topology is metrizable with a compatible metric dTn given by the rule

dTn(x, y) = min{|u− v| : u ∈ q−1(x), v ∈ q−1(y)}.
The Riemannian metric we consider on Tn is the pullback of the Euclidean inner product ⟨ · , · ⟩
via the quotient map. Then q is a local isometry and hence Tn can be locally seen just Rn. That is
why Tn is called flat. In particular, the volume element in Tn is the Euclidean one dx. Then for a
Borel set A ⊂ Tn its n-dimensional volume |A| is given by |A| = |q−1(A)∩Dn|, where Dn = [0, 1)n

is the fundamental domain of q. Similarly, integration with respect to n-dimensional volume dx
can be defined via lifts in the fundamental domain.

In the quotient topology, f : Tn → Rk is continuous if and only its lift is continuous and
ϕ : Tn → Tn is continuous if and only if it admits a continuous lift ϕ̃. Such a ϕ̃ is exactly
of the form ϕ̃ = Lϕ + u, where Lϕ ∈ Mn(Z) is a unique and u : Rn → Rn is a continuous
and Zn-periodic function, unique modulo the Zn-valuable translations. Again, f : Tn → Rk
is Ck,α-regular, with k ∈ N ∪ {∞} and 0 ≤ α ≤ 1, exactly when its lift f̃ is Ck,α-regular and

ϕ : Tn → Tn is Ck,α-regular (diffeomorphic) exactly when its continuous lifts ϕ̃ are Ck,α-regular

(diffeomorphic). Then the differentials Df and Dϕ can be seen as the derivatives Df̃ and Dϕ̃
respectively. If a diffeomorphism Φ : Tn → Tn is close enough to the identity map idTn in the
sense that supTn dTn(Φ, idTn) sufficiently small, then there is a unique diffeomorphic lift Φ̃ such

that Φ̃ = id + u and supTn dTn(Φ, idTn) = supRn |u|. In such a case, we set for every l ∈ N and
0 ≤ α ≤ 1 for which Φ is Cl,α-regular

∥Φ− idTn∥Cl,α(Tn;Tn) = ∥Φ̃− idRn∥Cl,α(Rn;Rn).
Regular sets and mean curvature. For a given non-empty set A, its signed distance function
d̄A : Kn → [0,∞) is defined by setting

d̄A(x) =

{
dist(x,A), x ∈ Rn \A
−dist(x,Rn \A), x ∈ A.
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In the case Kn = Tn, we use the previous metric dTn to define pointwise distance to a set. Then
the lift of d̄A is the signed distance function of the Zn-periodic extension q−1(A) in Rn.

We say that an non-empty open set E ⊂ Kn is Ck,α-regular, if int(E) = E and ∂E is a
Ck,α-hypersurface. In this discussion, by a Ck,α-hypersurface we mean an embedded Ck,α-regular
submanifold (without boundary) of codimension one. We say that E is smooth, if k = ∞. Note
that E ⊂ Tn is Ck,α-regular exactly when its Zn-periodic extension q−1(E) is a Ck,α-regular set.
Thus, regular sets in Tn can be (canonically) seen as Zn-periodic regular sets in Rn. In the case
Kn = Tn, the n− 1-dimensional volume element at x ∈ ∂E can be seen as the volume element at
u ∈ ∂(q−1(E)), where u ∈ q−1(x). Thus, an integration of an integrable Borel function f on ∂E
with respect to the volume element is effectively integration over the n− 1-dimensional Hausdorff
measure dHn−1 restricted to ∂E and we denote it by

�
∂E

f dHn−1 just like in Rn. When there is

no danger of confusion we denote by f̄ an integral average of an integrable Borel function on ∂E.
For a Ck,α-regular set we use the inside-out orientation νE on ∂E. Further, we identify the

tangent space Tx∂E of ∂E at x as the orthogonal complement ⟨νE(x)⟩⊥. If f ∈ C1(∂E;Rk), its
tangential derivative Dτf(x) at x ∈ ∂E is given by Dτf(x) = Df(x)(I − νE(x)⊗ νE(x)), where f
is any local C1-extension of f . In the case k = 1, the tangential gradient ∇τf(x) is given as the
dual of Dτf(x) and if k = n, then the tangential divergence is given by divτf(x) = tr(Dτf(x)).
For φ ∈ C2(∂E) its tangential Hessian and tangential Laplace are defined as D2

τφ(x) = Dτ∇τφ(x)
and ∆τφ(x) = divτ∇τφ(x) respectively.

If k ≥ 2, then ∂E admits an open tubular neighborhood N = ∂E + B(0, r), called regular
neighborhood, such that d̄E ∈ Ck,α(N ), every y ∈ N admits a unique distance minimizer or
projection π∂E(y) on ∂E and the decomposition idKn = π∂E + d̄EνE holds in N . Moreover,
∇d̄E = νE on ∂E. The second fundamental form BE(x) at x ∈ ∂E is now a symmetric bilinear
form Tx∂E × Tx∂E → R given by the rule

BE(x)(u, v) = ⟨u,DτνE(x)v⟩.
and the mean curvature of HE(x) is the trace of the previous operator, that is, HE(x) = divτνE(x).
Equivalently, BE(x) can be associated with the Hessian D2d̄E(x) and it holds HE(x) = ∆dE(x).
While the scalar field HE on ∂E depends on the choice of orientation (which is in this case the
inside-out), the mean curvature vector field HE = −HEνE : ∂E → Rn is invariant. With help of
mean curvature we may write the tangential divergence formula

(1.1)

�
∂E

divτT dHn−1 =

�
∂E

HE⟨T, νE⟩ dHn−1

for every compactly supported and C1-regular vector field T : Kn → Rn. If HE is a constant, then
E is called a critical set.

If ∂E is smooth, then the space of smooth vector fields T(∂E) on ∂E can be identified as the
collection {X ∈ C∞(∂E,Rn) : ⟨X, νE⟩ = 0}. Again, we consider ∂E as an embededded Riemannian
manifold in Kn equipped with the induced metric. Keeping the previous identifications in mind,
we may regard the metric tensor g on ∂E as the restriction of Euclidean inner product to ⟨νE(x)⟩⊥
for every x ∈ ∂E. Then for every φ ∈ C∞(∂E) the tangential gradient ∇τφ corresponds to the
gradient grad(φ) induced by the metric g. Further, for φ its covariant derivatives ∇k

coψ are defined
via the Riemannian connection which, in this case, is the tangential connection. Pointwise tensor
norms are given as usual and further every Sobolev space W k,p(∂E) is just the Lp(∂E)-norm
completions of the space of the k-tuples (φ,∇coφ, . . . ,∇k

coφ), where φ ∈ C∞(∂E). Recall, the
standard notation Hk =W 2,k.

We say that (Ek)k∈N converges to E in the Ck,α-sense (k <∞) in Kn, if there is a sequence of
Ck,α-diffeomorphisms (Φk)k∈N such that ϕk(E) = Ek and ∥Φk − idKn∥Ck,α(Tn;Tn) → 0 as k → ∞.

Again, if E is smooth, then there is δ ∈ R+ such that if Φ : Kn → Kn is a Ck,α-diffeomorphism
(k ∈ N∪ {∞}) satisfying ∥Φk − idKn∥C1(Tn;Tn) < δ, then there is a unique ψ ∈ Ck,α(∂E) for which

(1.2) ∂(Φ(E)) = {x+ ψ(x)νE(x) : x ∈ ∂E} ⊂ N ,

where N = ∂E + B(0, r) is a fixed regular neighborhood of ∂E. In particular, it holds π∂E(x+
ψ(x)νE(x)) = x and d̄E(x + ψ(x)νE(x)) = ψ(x). Moreover, for every l ∈ N there is a constant
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C ∈ R+ such that ∥ψ∥Cl(∂E) ≤ C∥Φ − idKn∥Cl(Tn;Tn) provided that l ≤ k. Conversely, if

ψ ∈ Ck,α(∂E) and sup |ψ| < r, then ψ induces an orientation preserving Ck,α-diffeomorphism Φ
such that Φ = id∂E + ψνE on ∂E and (1.2) holds. We use the notation Eψ = Φ(E). We call
(1.2) a graph representation in the normal direction of ∂E and ψ the height function of Eψ. The
orientation νEψ reads as

(1.3) νEψ (id + ψνE) =
νE −AE(ψ)∇τψ√
1 + |AE(ψ)∇τψ|2

on ∂E,

where AE(ψ) = (I + ψBE)
−1 on ∂E. If (Φt)t∈I is a smoothly parametrized family of smooth

diffeomorphisms satisfying ∥Φt − idKn∥C1(Tn;Tn) < δ, then the corresponding height functions of
∂E are smoothly paramterized in t.

On embedded smooth flows. Rather than seeing smooth flows as smooth evolutions of smoothly
immersed manifolds in Kn we consider them as smooth evolution of smooth (and bounded) sets
and their boundaries. One may imagine how a given initial set smoothly deformes along time while
topology is preserved. Then, an obvious way to describe such an evolution is to consider smooth
deformations of an initial set under a smoothly parametrized family of diffeomorphisms. By an
admissible family (Φt)t∈I , with a non-degenerate interval I, we mean a map Φ ∈ C∞(Kn × I;Kn)
such that

- Φt := Φ( · , t) is a (smooth) diffeomorphism for every t ∈ I and Φt0 is the identity map
with some t0 ∈ I.

- For every compact set K ⊂ I the set of exceptional values {(x, t) ∈ Kn×K : Φ(x, t) ̸= x} is
pre-compact, that is, every slice Φt belongs to Diff0(Kn), the space of compactly supported
diffeomomorphisms isotopic to idKn .

An admissible family Φ can be seen as a smooth path in the space Diff0(Kn). Note that the
corresponding family of inverses t 7→ [Φ( · t)]−1 is also admissible. In the case Kn = Tn, the latter
requirement is redundant. We come up with the following definition.

Definition 1.1. For a given bounded and smooth initial set E0 ⊂ Kn and 0 < a ≤ ∞ a map
[0, a) → P(Kn), t 7→ Et, is a smooth flow starting from E0, also denoted by (Et)t∈[0,a), if for
every t ∈ [0, a) there exist an interval t ∈ I ⊂ [0, a), I open in [0, a), and an admissible family
(Φs)s∈I , with Φt = id, such that Φs(Et) = Es for every s ∈ I. Then we say that (Φs)s∈I is a
local parametrization of the flow at t. If (Φt)t∈[0,a) is an admissible family, with Φ0 = id and
Φt(E0) = Et for every t ∈ [0, a), then we say that (Φt)t∈[0,a) is a global parametrization of the flow.

It turns out that every smooth flow (Et)t∈[0,a) admits a global parametrization (Φt)t∈[0,a). A
smooth flow in Tn can be canonically lifted to a smooth evolution of Zn-periodic sets in Rn. We say
that a smooth flow (Et)t∈[0,a) is autonomous, if it admits an autonomous global parametrization
(Φt)t∈[0,a) meaning that there is a smooth vector field X : Kn → Rn satisfying ∂tΦt = X ◦ Φt for
every t ∈ [0, a). Since (Φt)t∈[0,a) is admissible, it follows that X must be compactly supported.

Usually, the parameter a is not emphasized and hence one simply denotes (Φt)t≥0 and (Et)t≥0.
Note that we also use abbreviations νt = νEt , Bt = BEt , Ht = HEt and so forth. For each t ∈ [0, a)
we define a map Φt ∈ C∞(Kn × [0, a− t);Kn) by setting Φt(x, s) = Φ(Φ−1

t (x), t+ s). Then Φt is
an admissible family and defines a smooth flow Ets := Φts(Et), 0 ≤ s < a − t, starting from Et.
This expression has the following semi-group property

Ets = Et+s for every 0 ≤ t < a and for every 0 ≤ s < a− t,

which means that we can stop the flow (Et)t≥0 at the time t and start it again by using the local
parametrization (Ets)s≥0.

Obviously, there is no unique parametrization via admissible families of diffeomorphisms for
a smooth flow and, on the other hand, we are interested in an evolution of set in whole rather
than trajectories of single points. This motivates us to search an intrinsic way to describe such an
evolution. A natural approach to the issue is to consider how the boundaries evolve over time. For
fixed time t let us consider the behavior ∂Es nearby ∂Et when s is close to t. Let (Φs)s∈I be any local
parametrization of the flow at t. Since now ∥Φs− id∥C1(Kn;Kn) → 0 as s→ t and Es = Φs(Et), then
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there are an interval t ∈ I ′ ⊂ I, I ′ open in [0, a), and ψ ∈ C∞(∂Et×I ′) such that ∂Es ⊂ N for every
s ∈ I ′, where N is a regular neighborhood of ∂Et, and ψ provides a unique graph representation
for ∂Es in the normal direction of ∂Et. Recall, this means ∂Es = {x+ ψs(x)νt(x) : x ∈ ∂Et} for
every s ∈ I ′, where ψs = ψ( · , s), and π∂E(x+ ψs(x)νt(x)) = x for every x ∈ ∂Et. Therefore, the
evolution of the height function ψs on ∂Et purely determines the evolution of the flow nearby time
t. Now ψt = 0, so at a given point x ∈ ∂Et the quantity Vt(x) = ∂sψs(x)

∣∣
s=t

tells us the rate of
evolution of the boundary in the normal direction νt(x) at time t. That is, the normal velocity of
the flow at the spatial-time coordinate (x, t). On the other hand, we have

ψs ◦ π∂Et ◦ Φs = d̄Et ◦ Φs on ∂Et

so differentiating the identity with respect to s and evaluating it at s = t yields

Vt = ∂sψs
∣∣
s=t

= ⟨∂sΦs
∣∣
s=t

, νt⟩ on ∂Et.

This expression is clearly independent of the choice of local parametrization. Thus, if (Φt)t∈I is
any local parametrization of the flow, then using the re-parametrization (Φ(Φ−1

t , s))s∈I for time
t ∈ I gives us

(1.4) Vt = ⟨∂sΦs
∣∣
s=t

◦ Φ−1
t , νt⟩ on ∂Et.

The quantity Vt tells us the speed of ∂Et to its normal direction at time t and, further, the
knowledge of a vector field Vtνt on ∂Et at every time t entirely determines the evolution of the
flow. For a given flow (Et)t≥0 we call V0 the initial normal velocity of the flow.

Usually, a typical application, where the notion of normal velocity appears, is computing how
energy integrals, associated with potentials varies, along a given flow. If η ∈ C1(Kn × [0, a))
describes a (possibly time dependent) potential, then the energy

�
Et
η( · , t) dx varies at the rate

(1.5)
d

dt

�
Et

η( · , t) dx =

�
Et

∂tη( · , t) dx+

�
∂Et

η( · , t)Vt dHn−1.

The special case η ≡ 1 gives us the formula of the first variation of volume along the flow

(1.6)
d

dt
|Et| =

�
∂Et

Vt dHn−1.

Therefore, (Et)t≥0 is volume preserving exactly when Vt has a vanishing integral over ∂Et at every
time. Further, for the surface energy

�
∂Et

η( · , t) dHn−1, with η ∈ C1(Kn × [0, a)), one may
compute

(1.7)
d

dt

�
∂Et

η( · , t) dHn−1 =

�
∂Et

∂tη( · , t) + ⟨∇η( · , t), νt⟩Vt + η( · , t)HtVt dHn−1.

Again, substituting η ≡ 1 yields the formula for the first variation of perimeter along the flow,
that is

(1.8)
d

dt
P (Et) =

�
∂Et

VtHt dHn−1.

Sets of finite perimeter. In this case, we consider the setting only in Rn and generally refer to
[36]. Recall that a measurable set E ⊂ Rn is a set of finite perimeter provided that

P (E) = sup

{�
E

div T dx : T ∈ C1
0 (Rn;Rn), |T | ≤ 1

}
<∞.

Then there exists a unique, finite and Rn-valued Radon measure µE , called the Gauss-Green measure
of E, such that

�
E
div T dx =

�
E
⟨T,dµE⟩ for every T ∈ C1

0 (Rn;Rn). Here P (E) is the total
variation of µE called the perimeter of E. De Giorgi’s structure theorem gives us the representation
µE = νEHn−1 ∂∗E, where ∂∗E is the reduced boundary of E and νE : ∂∗E → ∂B(0, 1) the
measure theoretical outer unit normal. Then P (E) = Hn−1(∂∗E) and the divergence theorem takes
the form �

E

div T dx =

�
∂E

⟨T, νE⟩ dHn−1.



10 INTRODUCTION

Naturally, if E is C1-regular, then the reduced boundary agrees with the topological one and the
measure theoretical outer unit normal coincides with the classical inside-out orientation. Motivated
by (1.1) we say that HE ∈ L1(∂∗E;Hn−1) is a distributional or weak mean curvature of E, if for
every T ∈ C1

0 (Rn;Rn)

(1.9)

�
∂∗E

divτT dHn−1 =

�
∂∗E

HE⟨T, νE⟩ dHn−1,

where the tangential divergence divτT is given similarly as earlier, now in terms of the measure
theoretical outer unit normal. Again, if HE is constant, we say that E is weakly critical.

The notion of flows via admissible families can be generalized to the bounded set of finite
perimeters. In this case, Definition 1.1 makes perfectly sense. The notion of normal velocity is
defined as in (1.4), now in terms of reduced boundary and measure theoretic outer unit normal, and
the equations (1.5) and (1.6) remain valid. Again, if E ⊂ Rn is a bounded set of finite perimeter
and (Φt)t≥0 is an admissible family with Φ0 = id, then it holds

(1.10)
d

dt
P (Φt(E)) =

�
∂∗Et

divτ
(
∂tΦt

∣∣
t=0

)
dHn−1.

2. Existence and gradient flow structure

We shortly cover familiar existence results for MCF and VMCF over a short time period in
the case of a smooth and bounded initial datum. This is usually known as short time existence,
Furthermore, we introduce formal gradient flow structure these flows posses and also take a quick
look at stationary sets, i.e., the sets which are invariant under the flows.

Short time existence. In the case of MCF, short time existence is well-known in broader context
of immersed manifolds without boundary, see for instance [30] or [37, Theorem 1.5.1] for more
careful discussion. The short time existence for VMCF is also proven in the case of smooth, compact
and connected hypersurfaces of Rn without boundary, see [18]. Naturally, the same methods can
be applied in proving a short time existence for MCF/VMCF as an evolution of bounded and
smooth sets in Kn.

The general strategy is to employ graph representation to reduce an evolution of a smooth flow
locally as a PDE of a height function on a fixed refence boundary. Let us consider a smooth flow
(Et)t≥0 and a smooth and bounded set E in Kn. Suppose that the set E0 is sufficiently close to E
in the C1-sense. Then, by the earlier discussion, there is a > 0 such that we may write Et = Eψt
with a unique height parametrization ψ ∈ C∞(∂E × [0, a)), recall the shorthand ψt = ψ( · , t).
Moreover, we may assume that ψ induces a smooth family of smooth diffeomorphism (Φ̃t)t∈[0,a)

from Kn to Kn such that Et = Φ̃t(E), Φt = id+ψtνE on ∂E and {(x, t) ∈ Kn× [0, a) : Φ̃t(x) ̸= x}
is bounded. Then Φt = Φ̃t ◦ Φ̃−1

0 , t ∈ [0, a), is a local parametrization of the flow so by substituting
this into (1.4), recalling (1.3) and denoting ψ0 = φ we have ψ satisfying the initial value problem

(2.1)

{
∂tψ(x, t) =

√
1 + |AE(x, ψt)∇τψt|2 Vt(x+ ψtνE(x)),

ψ(x, 0) = φ(x),

where AE(x, ψt) = (I + ψtBE(x))
−1. Conversely, if ψ ∈ C∞(∂E × [0, a)) satisfies ψ0 = φ and

sup |ψ| < r, where r ∈ R+ is a maximal radius such that ∂E +B(0, r) is a regular neighborhood of
∂E, then ψ induces a smooth flow (Eψt)t∈[0,a) with a parametrization (Φt)t∈[0,a) as before and ψ
satisfies (2.1). Thus, (2.1) describes completely the dynamics of the flow, starting nearby E, as
a motion of a graph surface over ∂E for a short time period. When dealing with a flow driven
by curvature, i.e., the normal velocity depends on the curvature of evolving boundary, the term
Vt(x+ ψ(x, t)νE(x)) contains higher order covariant derivatives of φ.
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Assume that the previous flow (Et)t≥0 is a MCF. We have for sufficiently small t sup |ψt| < r,
where r is given as before, so starting from the graph representation and local level set characteri-
zation for mean curvature, see [1, p.10], one may compute

Vt(x+ ψνE(x)) = −HEψt
(x+ ψtνE(x))

= −⟨QE(x, ψt,∇coψt),∇2
coψt⟩ − SE(x, ψt,∇coψt),

where QE : ∂E× (−r, r)×Rn → T 2
0 (∂E) is a symmetric smooth section, i.e. QE(x, b, z) ∈ T 2

0 (TxΣ)
is a symmetric bilinear form for every (x, b, z) ∈ ∂E × R× Rn, with QE being locally elliptic and
QE(x, 0, 0) = −g∂E(x), and SE : ∂E × (−r, r)× Rn → R is a smooth function with SE(x, 0, 0) =
HE(x). This turns (2.1) into a quasilinear parabolic PDE on ∂E, which admits a unique smooth
solution for a short time ε. For a detailed discussion, see [37, Appendix A]. The key idea here is to
linearize the PDE locally. The complexity of the problem increases in the case of VMCF, where

Vt(x+ ψtνE(x)) = HEψt
−HEψt

(x+ ψt(x)νE(x))

Hence, the corresponding PDE has an integral term in its principal part, which requires an extra
work in [18]. Note that when ∥ψt∥C1(∂E) → 0, then ∂tψt asymptotically resembles ∆τψt −HE

for MCF and ∆τψt for VMCF. Thus, these flows are heat equation like evolutions. Recalling the
semi-group property we obtain the following well-known existence result.

Theorem 2.1 (Short time existence). Let E ⊂ Kn be a smooth and bounded set. There is
a unique (Et)t∈[0,T ) MCF (respectively VMCF) starting from E such that if (Ft)t∈[0,a) a MCF
(resp. VMCF) starting from E, then a ≤ T and Ft = Et for every t ∈ [0, a). We call T a maximal
lifetime of the flow.

Unless otherwise stated, we mean by a MCF (resp. VMCF) (Et)t≥0 a corresponding maximal
evolution and by a lifetime its maximal lifetime. These solutions are locally stable in sense of
local perturbations of an initial set E ⊂ Kn meaning that a small and continuous perturbation
of the initial set varies the flow continuously in a short time interval. In terms of graph surface
representation, a small perturbation means a smooth initial datum φ on ∂E sufficiently close to 0
in some norm. To be more precise, we have the following for a smooth and bounded set E ⊂ Kn,
see [37, Theorem A.3.1.] and [18]. For 0 < α < 1 there are positive constants δ = δ(E,α) ∈ R+

and ε = ε(E,α) ∈ R+ such that if φ ∈ C∞(∂E), with ∥φ∥C1,α(∂E) ≤ δ, then there is a MCF (resp.
VMCF) (Et)t≥0 starting from Eφ, with a lifetime at least ε, and (φ, t) 7→ ∂Et is continuous in the
C1,α-sense in (BC1,α(∂E)(0, δ) ∩ C∞(∂E))× [0, ε).

Of course, MCF and VMCF can be treated similarly in lower regularity settings such as for
C2-sets or C1,α-sets, see for instance [18]. The parabolic nature of these flows provides instant
smoothing. In certain cases, it is possible to start a MCF evolution from an unbounded set in Rn.
For instance, a MCF evolution starting from a smooth set in Tn corresponds a Zn-periodic MCF
evolution in Rn.

Gradient flow structure. One motivation for the notion of MCF can be seen coming from an
attempt to decrease perimeter in a smooth and local way. Our starting point is a classical problem
where we want to decrease energy in a C1-potential field u : Rn → R starting from a point x by
using a local minimizing strategy. This leads to the following gradient flow

(2.2)

{
γ(0) = x,

γ′(t) = −∇u(γ(t)).
We would like consider a similar problem for the perimeter functional P on the set of smooth

and bounded sets of Kn. While it is possible to make a rigorous approach by introducing so called
shape spaces, see [9], we keep our discussion at heuristic level for sake of presentation. If we consider
smooth and bounded sets of Kn, which are mutually diffeomorphich with diffeomorphisms from
the class Diff0(Kn), as elements of an abstract configuration space, then smooth flows are a natural
choice to represent admissible paths here.

Now (1.5) and (1.7) give us a vague analogy between normal velocity and “time derivative” of a
path as well as between the function space C∞(∂E) and a “tangent space” at given element E.
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Further, if we regard the L2-inner product of C∞(∂E) as a “metric tensor” gE on the tangent
space we may (formally) write

(dP )E(V0) =
d

dt
P (Et)

∣∣∣∣
t=0

=

�
∂E

V0HE dHn−1 = gE(V0, HE)

for every smooth flow (Et)t≥0 starting from E. Now for every φ ∈ C∞(∂E) it is easy to construct
a smooth flow starting from E, with the initial velocity φ, so we have (dP )E(φ) = gE(φ,HE) for
every φ ∈ C∞(∂E). From this we infer that ∇P (E) = HE at E with respect to the “metric”.
Thus, a VMCF starting from E can bee seen solving the problem

(2.3)

{
E0 = E,
d
dtEt = −∇P (Et).

This heuristics motivates why MCFs are usually said to be gradient flows of perimeter.
We may also consider the same problem with a volume constraint

(2.4)





E0 = E,

|Et| = |E|,
d
dtEt = −∇P (Et),

in a similar setting. Now, a MCF starting from E does not generally preserve volume and hence
is not a solution. Let (Et)t≥0 be a volume preserving flow starting from E. Recalling that the
condition |Et| = |E| for every t implies

�
∂Et

Vt dHn−1 = 0 we obtain from (1.8)

(2.5)
d

dt
P (Et) =

�
∂Et

Vt(Ht −Ht) dHn−1,

where Ht =
�
∂Et

Ht dHn−1. Then we consider the bounded smooth sets diffeomorphich to each

other (via the class Diff0(Kn)), with a fixed volume, as a submanifold of the previous setting, where
the smooth volume preserving flows are the admissible paths and a tangent space at each element
E is identified as the space C̃∞(∂E). Since now for every φ ∈ C̃∞(∂E) there is a smooth volume
preserving flow (Et)t≥0 starting from E with the initial velocity φ, then ∇P (E) = HE −HE in
this submanifold and a VMCF starting from E is a solution to (2.4) in this configuration. Thus,
VMCFs are formally gradient flows of perimeter in the context of stationary volume.

While the previous discussion is heuristic, both MCF and VMCF do satisfy the dissipation
equation

(2.6)
d

dt
P (Et) = −

�
∂Et

V 2
t dHn−1,

when they exist. This follows directly from (1.8) and (2.5). Note an analogy to a solution γ of
(2.2) satisfying (u ◦ γ)′ = −⟨γ′, γ′⟩. We see later that (2.6) or rather its weak notions turn out to
be useful tools when analyzing global behavior of these flows. Note that Theorem 2.1 and the
stability property for a short time period can be seen saying that the problems (2.3) and (2.4)
are well-posed in a local sense. By comparison, (2.2) is locally well-posed, if we require u to be

C1,1
loc -regular. That is, for every x there is an open neighborhood U of x and ε ∈ R+ such that for

every y ∈ U there is a unique maximal solution θy : [0, ty) → Rn to (2.2), with ty ≥ ε, and the
local flow (not to be confused with Definition 1.1) U × [0, ε) → Rn, (y, t) 7→ θy(t), is continuous.

Stationary sets. In the context of gradient systems equilibrium points are naturally an essential
topic. We say that a smooth and bounded E ⊂ Kn is stationary with respect to MCF (resp.
VMCF), if a corresponding solution (Et)t≥0 starting from E is a constant solution, i.e. Et = E.
This is equivalent with the corresponding normal velocity Vt being identically zero at every time
and hence the semi-group property and uniqueness imply that the solution has an infinite lifetime.
Then E is stationary if and only if the corresponding gradient of perimeter related to the problem
vanishes at E, which is analogous to the equlibrium points of (2.2) being exactly the critical
points of ∇u. On the other hand, if for every admissible flow (Et)t≥0 starting from E it holds

that d
dtP (Et)|t=0 = 0 in the sense of the setting (2.3) or (2.4), then the corresponding gradient
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of perimeter must vanish at E. For MCF the set E is stationary if and only if its boundary has
zero mean curvature, that is, ∂E is a minimal surface (we call it a minimal boundary). Again, for
VMCF the condition is equivalent to E having a constant boundary mean curvature, i.e., E being
critical. Now, a stationary set with respect to MCF is always stationary with respect to VMCF.

It is easy to see that there is no bounded set of Rn with a minimal boundary. Therefore, MCF
does not have bounded stationary sets in Rn and (2.6) is always negative. Thus, it follows from the
already mentioned Alexandrov’s theorem [8] (see also [49]) that the only bounded and critical sets
in Rn are the finite unions of balls of equal size with a positive distance to each other. In the flat
torus Tn there are more (bounded) sets, with a constant boundary mean curvature, besides balls
such as cylinders and lamellae (regions between parallel hyperplanes) to mention the most trivial
structures. In particular, lamellae are the simplest stationary sets for MCF in Tn. A suitable solid
of revolution having an unduloid as a boundary, when n ≥ 3, is a simple example of a non-trivial
set, with a constant boundary mean curvature, in Tn. Interesting examples of sets with a minimal
boundary in T3 provide sets which are the Z3-quotients of smooth sets of R3 with a triply periodic
minimal surface as boundary. For instance, the classical Schwarz P surface and the lidinoid [33] are
examples of such boundaries. Overall, minimal hypersurfaces in the ambient dimension n = 3 are
a well-studied subject [39]. Although there are quite few concrete examples of nontrivial embedded
minimal hypersurfaces in the higher dimensions n ≥ 4, we remark that a generalization of Schwarz
P surface can be constructed in the dimension n = 4, see [13].

Figure 1. A fundamental part of Schwarz P surface

3. Global-in-time behavior and singularities

In this section, we make a short survey of the most fundamental results concerning global
behavior of MCF and VMCF, mainly in the context of Rn. In particular, we are looking for cases
when such flows exist at all times. We say that a MCF or a VMCF with a finite lifetime has a
singularity at the end of its lifetime. Topological changes usually take place at such a moment. As
already discussed, the both flows behave stable for a short time period. Now we are interested in
stability (in a global sense) and vaguely say a smooth and bounded set E to be stable with respect
to MCF, if the corresponding solution, starting from any slight perturbation of E, has an infinite
lifetime and stays near E. In the case of VMCF, we also assume that an initial datum is of volume
|E|.

Mean curvature flow. Global behavior and analysis of singularities of MCF are extensively
studied. Besides a smoothing effect, MCF has other properties known for general parabolic solutions
such as a comparison principle, see [37, Thm 2.2.1]. This says that if E,F ⊂ Kn are bounded
and smooth sets with dist(∂E, ∂F ) > 0 and (Et)t≥0 and (Ft)t≥0 are MCFs starting from E and
F respectively, then the function t 7→ dist(∂Et, ∂Ft) is non-decreasing as long as it is defined. In
particular, E ⊂⊂ F implies Et ⊂⊂ Ft. If we purely consider an evolution of a (compact) embedded
hypersurface under MCF, then embeddedness is preserved [37, Prop. 2.2.7]. Together with the



14 INTRODUCTION

comparison principle, the previous property allows us quite freely to apply many properties of
MCF, stated for immersed surfaces, in the context of bounded and smooth sets.

A standard example of MCF is to consider how a ball B0 = B(x0, r0) ⊂ Rn behaviors under such a
motion. In this case, the corresponding MCF evolution consists of concentric balls Et = B(x0, r(t)),

where the radius evolves according to r(t) =
√
r20 − 2(n− 1)t with the lifetime T = r20/(2(n− 1)).

Thus, we have that a MCF evolution starting from a ball B(x0, r) eventually collapses to x0 just
by (strictly) decreasing the radius within a finite time. Therefore, it follows from the comparison
principle that for every smooth and bounded set E ⊂ Rn a maximal MCF starting from E has a
finite lifetime and hence expreriences a singularity. This is in line with the observation that there
is no (bounded) stationary set for MCF in Rn.

Although a ball collapses to its center under MCF, the evolution is just a smooth evolution of
concentric balls. Hence rescaling them around the center, in a way that perimeter is preserved,
yields the original ball. This kind of behviour generalizes to the category of convex sets. Huisken
proves in [27] that a bounded, smooth and uniformly convex set in Rn, n ≥ 3, shrinks under
MCF smoothly to a single point within a finite time and the rescaled flow (boundary area is kept
constant) converges to a ball in the Ck-sense with any k ∈ N. Result by Gage-Hamilton [22] states
the same result for a bounded, convex and smooth planar set. Further, Grayson in [23] generalizes
[22] to cover every bounded planar set with a closed and smooth curve as a boundary. These results
translates directly to the same dimensional flat torus Tn and correspond Zn-periodic MCFs in Rn.

In the previous cases, evolving boundary asymptotically converges to a sphere until collapsing
to a single point. It is also possible that something more complex happens. Indeed, there are
dumbbell shaped sets in R3 such that a MCF starting from a such dumbbell eventually pinches
the neck of the dumbbell into two cusps with their tips touching each other, see [24]. Again, an
Angenent’s torus is an example of a toroidal set in R3 which shrinks homothetically under MCF
before collapsing to a point, see [5]. The singularities of MCF are further classified as Type I and
Type II singularities, see [37, Def. 3.2.1]. Fundamental tools in analyzing singularities of MCF are
Huisken’s monotonicity formula [29] and its generalizations.

In the case of unbounded sets of Rn, a lifetime of a corresponding MCF evolution may be
infinite. For instance, Ecker-Huisken [17] prove that for a Lipschitz function u : Rn−1 → R there is
a MCF, with an infinite lifetime, starting from the subgraph of u. Moreover, if the solution does
not diverge to infinity, then it must converge to a half-space. A simple example of a self-similar set
under planar MCF is the epigraph of a function (−π/2, π/2) → R, x 7→ − log(cos(x)). In this case,
the corresponding MCF is just a vertical motion at a constant speed. This example introduced in
[44] is called Grim Reaper by Grayson [23].

Since a MCF starting from a bounded and smooth set always experiences a singularity in Rn,
the stability does not make sense here. On the contrary, the notion becomes relevant in Tn. For
instance, by combining [17] with the comparison principle we obtain the following stability result
in Tn. If E ⊂ Tn is a lamella and ψ0 ∈ C∞(∂E) has sup∂E |ψ0| small enough, then the MCF
starting from Eψ0 has an infinite lifetime and converges to a lamella E∞. Moreover, E∞ → E in
the Hausdorff-sense as sup∂E |ψ0| → 0.

Volume preserving mean curvature flow. Compared to MCF, a VMCF evolution too decreases
perimeter but additionally preserves volume. Thus, such an evolution cannot collapse to a single
point. Again, a VMCF evolution in Tn corresponds a smooth Zn-periodic evolution in Rn, where
the integral average in (0.2) is taken over the intersection of the boundary and the fundamental
domain Dn. As we discussed in the previous section, VMCF has (bounded) stationary sets also in
Rn and those sets are exactly a finite unions of equisized balls, where the balls have a mutually
positive distance. On the other hand, if a VMCF evolution (Et)t≥0 converges to a limit set
E∞ ⊂ Kn in the C2-sense, one may show that the flow has an infinite lifetime and E∞ is stationary.
If we replace the C2-convergence with mere Hausdorff-convergence, then the limit set may fail to
be even C1-regular, see [20, Thm 1.4].

Although a VMCF evolution may exist at all times, there is a trade-off between the volume
preserving property and non-local characteristics induced by the integral average in (0.2). This
makes VMCF somewhat more rigid compared to a MCF evolution. To elaborate this, let us consider
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behavior of a VMCF evolution when an initial set is a finite union balls E = ∪Ni=1B(xi, ri,0),
where the balls have mutually a positive distance, that is, |xi − xj | > ri,0 + rj,0 whenever i ̸= j.
Then the VMCF (Et)t≥0 starting from E is of the form Et = ∪Ni=1B(xi, ri(t)), where ri(0) = ri,0,
|xi − xj | > ri + rj for i ̸= j and ris evolve according to the system

r′i =
n− 1

ri

∑
j ̸=i r

n−2
j (ri − rj)∑
j r

n−1
j

.

If the balls are equisized, nothing happens and E is stationary with respect to VMCF. If N ≥ 2
and the balls are not of equal size, then a minimal radius start shrinking to zero within a finite time.
Correspondingly, the maximal radius increases constantly. The evolution reaches its singularity,
when the minimal radius reaches zero or possibly before that two balls with increasing radius
touch each other. Besides the fact that singularities are possible for VMCF, we make the following
observations from the previous example. First, VMCF enjoys no comparison principle in general.
Second, neither embeddedness is necessarily preserved in the context of compact (and embedded)
hypersurfaces. This means that it is possible for a VMCF evolution to drive boundary self-
intersecting and after that to exist as an evolution of immersed boundary. The phenomenon
may occur even when an initial boundary is connected, see [38]. Third, a stationary set may be
“unstable” in small perturbations, as in the previous example, where even a slight disparity between
the size of balls results the corresponding VMCF experiencing a singularity.

Naturally, this raises a question: When does a VMCF evolution not experience a singularity and
have a limit? As in the case of MCF, a behavior of VMCF in the convex setting is settled. Gage
proves in [21] that a VMCF starting from a bounded, convex and smooth planar set, has an infinite
lifetime, preserves convexity and converges to a ball of the initial volume (area) in the Ck-sense
with any k ∈ N. Again, Huisken proves in [27] the same result for any VMCF starting from a
bounded, smooth and uniformly convex set in Rn with n ≥ 3. In the both cases, the convergence of
the corresponding VMCF (Et)t≥0 has an exponential rate in the Ck-topology with any k ∈ N and,

in particular, the absolute value of the normal velocity |Ht −Ht| on ∂Et decays exponentially fast.
Escher-Simonett prove in [18] (see also [6]), using center manifold analysis, that a single ball is

always stable in the C1,α-sense. To be more precise, suppose that a reference ball B ⊂ Rn and
0 < α < 1 are given. Then for any ψ0 ∈ C∞(∂B) with a sufficiently small C1,α(∂B)-norm the
VMCF starting from Bψ0

has an infinite lifetime and converges exponentially fast to some ball B∞
in the Ck-sense with any k ∈ N. Moreover, the limit ball B∞ converges to the reference ball B
as the C1,α(∂B)-norm of ψ tends to zero. Note that here the initial set is not even assumed to
share the same volume with B. Recalling our earlier example, we see that single balls are only
stationary sets such that VMCF behaviors stable nearby them. We also note that Li gives in [34]
an alternative condition for a compact and immersed hypersurface such that the VMCF starting
from it converges to a sphere in Rn. Like in the case of MCF, the previous results hold also in Tn.

4. Perimeter minimizers and asymptotical stability of VMCF

We continue to investigate the notion of stability given heuristically in the previous section and
restrict our focus on VMCF asking how it behaves near a stationary set. In other words, we want
to understand how the system (2.4) behaves near an equilibrium point. For instance, a union of
multiple equisized balls in Rn as we discussed earlier gives us an example of “unstable” stationary
set with respect to VMCF. On the contrary, the main result of [18] roughly says that a single ball
in Rn is a stable set under VMCF. Again, if a VMCF starts sufficiently close to a ball B and the
flow is of volume |B|, then the corresponding convergence to a translate of B always happens at
an exponential rate. Hence, one may regard B as an asymptotically stable set for VMCF. Thus,
we want to find a reasonable condition for a stationary set E ⊂ Kn such that a VMCF starting
close to E behaves similarly to [18].

For a moment, let us consider the system (2.2). If u : Rn → R is a C2-regular potential and
x0 is a critical point of u with D2u(x0) > 0, i.e., the corresponding Hessian is positive-definite,
then x0 is a strict local minimum point of u and any solution of (2.2) starting sufficiently close to
x0 converges to x0 at an exponential rate. In particular, x0 is an asymptotically stable point of
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u. Motivated by this simple example, we would like to find an analogous condition D2P (E) > 0
for a stationary set E ⊂ Kn. The first problem is how to express a heuristic notion D2P (E) in
rigorous terms. If u : R2 → R is a C2-regular function and x0 is a critical point of u, then for every
autonomous and smooth path γ : [0, a) → Rn, that is to say γ′ = X ◦ γ with some smooth vector
field X, starting from x0 it holds

(4.1) (u ◦ γ)′′(0) = ⟨γ′(0),D2u(x0)γ
′(0)⟩.

If E ⊂ Kn is a stationary set, then for any autonomous, smooth and volume preserving flow
(Et)t≥0 starting from E the corresponding second variation of the perimeter reads as

(4.2)
d2

dt2
P (Et)

∣∣∣∣
t=0

=

�
∂E

|∇τV0|2 − ∥BE∥2V 2
0 dHn−1,

where V0 is the initial normal velocity of the flow on ∂E. This gives rise to a symmetric form
QP (E) : C̃∞(∂E)× C̃∞(∂E) → R by setting

QP (E)[φ1, φ2] =

�
∂E

⟨∇τφ1,∇τφ1⟩ − ∥BE∥2φ1φ2 dHn−1.

We further consider the quadratic form ∂2P (E) : C̃∞(∂E) → R associated with perimeter given by
∂2P (E)[φ] = Q(E)[φ,φ]. Comparing to (4.1), ∂2P (E) can be heuristically seen as the functional
φ 7→ ⟨φ,D2P (E)φ⟩. Again, (4.1) gives us hint how to define a positive semi-definite condition for
D2P (E), i.e., D2P (E) ≥ 0. Indeed, a stationary set E ⊂ Kn is called volume preserving stable, or

shortly v.p. stable, if ∂2P (E)[φ] ≥ 0 for every φ ∈ C̃∞(∂E). Simple examples of such sets are
lamellae and single balls and cylinders in Tn as well as single balls in Rn. It is easy to see that
lamellae are only possible v.p. stable sets with multiple boundary components. Thus, single balls
are only v.p. stable sets of Rn in the category bounded and smooth sets. In T3, there are v.p.
stable sets with a triply periodic minimal surface such as the Schwarz P-surface [46] as a boundary.
In fact, the v.p. stable sets are completely classified in T3, see [45].

While the heuristic notion D2P (E) ≥ 0 directly translates to ∂2P (E) being non-negative,
defining the condition D2P (E) > 0 has some obstacles, mainly due to a fact that ∂2P (E) cannot

be strictly positive in C̃∞(∂E) \ {0}. Namely, if we consider the finite dimensional subspace

T (∂E) = {⟨νE , p⟩ : p ∈ Rn} of C̃∞(∂E), called the infinitesimal translations of ∂E then, recalling
that HE is constant it is straightforward to compute that every element φ ∈ T (∂E) satisfies

(4.3) −∆τφ = ∥BE∥2φ on ∂E.

Thus, ∂2P (E) vanishes on this subspace. The space T (∂E) consists of the normal velocities of the
local translates of E along a vector, that is Et = E + tp with p ∈ Rn for a short time period. Since
perimeter is invariant under such operations, then (4.3) can be also seen valid via (4.2). Hence, we
want to neglect these directions. Taking into account this issue the following definition arises.

Definition 4.1 (Strictly stable set). Let E ⊂ Kn be a bounded and v.p. critical set. We say
that E is v.p. strictly stable, if there is c ∈ R+ such that

(4.4) ∂2P (E)[φ] ≥ c∥φ∥2L2(∂E) for every φ ∈ C̃∞(∂E) ∩ T⊥,L2

(∂E),

where T⊥,L2

(∂E) is the L2-orthogonal complement of T (∂E) on ∂E.

Note that (4.4) in the definition can be relaxed to the condition ∂2P (E)[u] > 0 for every

u ∈ H̃1(∂E)\T⊥,L2

(∂E), where H̃1(∂E) = {u ∈ H1(∂E) :
�
∂E

u dHn−1 = 0} is the H1-completion

of C̃∞(∂E) and ∂2P (E) is considered to be a functional on it, see the proof of [2, Lemma 3.6]. By
the definition every v.p. strictly stable set is also v.p. stable. Conversely, using standard elliptic
estimates one may argue that a v.p. stable set E ⊂ Kn is v.p. strictly stable if and only if the
infinitesimal translations are the only classical solutions to (4.3) in C̃∞(∂E), i.e., the kernel of the

operator −(∆τ + ∥BE∥) on C̃∞(∂E) is T (∂E). This is trivially true for lamellae and well-known
for single balls and cylinders. Again, this also holds true for a set having the Schwarz P-surface as
boundary in T3, see [46] and [25, Lemma 17].
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If Definition 4.1 can be seen as a formalization of the notion D2P (E) > 0, then does it behave
analogously to a situation D2u(x0) > 0? By the previous, we mean whether a v.p. strictly stable
set is a unique (strict) local minimizer of perimeter, up to translates, when volume is unchanged.
In the case of Rn, a v.p. strictly stable set E must be a single ball which is, up to translates, a
strict global minimizer of P among the set of finite perimeter of volume |E|. In the case of Tn, [2]
generalizes the result in [41] by showing that in Tn a v.p. strictly stable set E is, up to translates,
an isolated local minimizer in the L1-sense among the set of finite perimeter of the same volume.
To be more precise, there are C, δ ∈ R+ such that

P (F ) ≥ P (E) + Cα2(E,F )

for every set of finite perimeter F ⊂ Tn satisfying |F | = |E| and α(E,F ) < δ, where the translates
neglecting “distance” α is given by α(E,F ) = minp∈Rn |E∆(F + p)|.

In this light, the main result of [18] says that up to translates the v.p. strictly stable sets in
Rn, i.e., the single balls, are asymptotically stable points for VMCF in the C1,α-sense with an
exponential convergence rate. The main result of [A] says that the v.p. strictly stable sets in low
dimensional flat tori are asymptotically stable in the H3-sense. The result reads as follows.

Theorem 4.2 (Main result A). Let n = 3, 4 and E ⊂ Tn be a v.p. strictly stable set. There
exists a positive constant δ = δ(E) ∈ R+ such that the following hold. If a smooth set E0 ⊂ Tn
satisfies |E0| = |E| and E0 = Eψ0

, where ψ0 ∈ C∞(∂E) and ∥ψ0∥H3(∂F ) ≤ δ0, then the VMCF
(Et)≥0 starting from E0 has an infinite lifetime and converges to a translate F+p of F exponentially
fast in the W 2,5(∂(F + p))-sense with uniform constants. Moreover, |p| → 0 as ∥ψ0∥H3(∂E) → 0.

Note that the result well-known in T2, since only admissible sets are lamellae and single balls.
As we discussed previously, there are non-trivial v.p. strictly stable sets in T3. The proof of
Theorem 4.2 draws extensively upon the methods from [3]. This is also why the result is carried
out only in low dimensions, mainly due to heavy dependency on Sobolev interpolations. Thus, an
open question is whether it is possible to prove a similar result in higher dimensions n ≥ 5. The
mentioned paper [3] is interesting in its own right. Here it is shown that the v.p. strictly stable
sets in T3 are asymptotically stable with respect to the surface diffusion flow and the modified
Mullins-Sekerka flow in a similar manner as in Theorem 4.2. These flows can also be seen as
gradient flows of perimeter.

5. Minimizing movement scheme and flat solutions

As we observed, MCF and VMCF evolutions have two major issues. First, an initial datum of
a classical solution must have rather high regularity. The second issue is possible occurrence of
singularities, although for a MCF it is possible to do surgery to bypass singularities (before a final
termination) when an initial boundary is for instance two-convex [31]. We would like to find a
generalized notion of a solution which is well-defined for initial sets with low regularity, such as
sets of finite perimeter, and is defined at all-times. We call such generalizations weak solutions.
Now our framework is purely restricted to Rn.

Weak solutions for MCF and its perturbations have gathered lot of attention in recent years.
The first step is due to Brakke in [10], where a weak solution to (0.1) is developed in the context
of varifolds. Again, a weak solution to (0.1) can be obtained by using so called minimial barriers
introduced by De Giorgi [15]. Since MCF satisfies a comparison principle, a viscosity type or level-set
solution to (0.1) is also possible, see independent works of Evans-Spruck [19] and Chen-Giga-Goto
[12]. The previous viscosity solutions are unique, exist at all times and agree with classical MCF
evolutions when latter exist. However, their regularity may be very rough. For instance, a level set
of such a solution may have a positive volume. This phenomenon is called fattening. While a level
set method in the spirit of the previous works is not directly applicable for VMCF due to lack of a
reasonable comparison principle, a modified notion of viscosity solution to (0.2) is possible, see [32].

There is yet another alternative which is so called minimizing movement method developed
independently by Almgren-Taylor-Wang [4] and Luckhaus-Sturzenhecker [35]. This method for
solids based on discretization of time and selection principle provides a viable approach from our
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perspective, since we are interested in an evolution of n-Hausdorff dimensional sets. In particular,
this approach yields weak solutions to (0.2), as we will see later.

To motivate the minimizing movement approach, let us again consider the problem (2.2) and
assume that u : Rn → R is C1-regular and bounded from below. For a discrete time h ∈ R+ we
define an approximative solution γh : [0,∞) → Rn by the following recursive method. We set
first γh(t) = x for 0 ≤ t < h and assuming γh is defined in [kh, (k + 1)h) for k = 0, 1, 2, . . . we set
γh(t) = γh((k + 1)h), for t ∈ [(k + 1)h, (k + 2)h), where γh((k + 1)h) minimizes the functional

(5.1) Rn → R, y 7→ u(y) +
1

2h
|y − γh(kh)|2.

Here the assumption inf u > −∞ is needed to find a minimizer. For any sequence (hi)i∈N of
discrete times converging to zero, the sequence (γhi)i∈N converges, up to extracting a subsequence,
to a classical solution of (2.2) and the convergence is uniform on the compact intervals [0, T ]. The
method resembles the classical Euler’s method used to approximate gradient descent (2.2), since
now for every t ≥ 0

(5.2)
γh(t+ h)− γh(t)

h
= −∇u(γh(t+ h)).

This is kind of approach is used widely when one wants to generalize gradient flows to metric
context, see [7] for a basic reference. Once we have understood the gradient flow structure of MCF,
the minimizing movement method for MCF resembles the previous example.

5.1. Minimizing movement method for MCF. Now we consider a heuristic problem given
by (2.3) and want to imitate the previous method. The potential u is naturally replaced with
the perimeter functional P but how to take account of the distance penalization term in (5.1)? If
E ⊂ Rn is a smooth and bounded set and (Et)t≥0 is a smooth flow starting from E, then for a
short time period we may write Et = Eψt with a smooth height parametrization ψt = ψ( · , t) on
∂E and for every x ∈ ∂E we have d̄E(x+ ψt(x)νE(x)) = ψ(x, t)− ψ(x, 0). If y = ψ(x, h) ∈ ∂Eh is
a displacement of x ∈ ∂E after small time period h ∈ R+, then recalling (2.1) and using uniform
convergence on compact sets we may approximately write

y − x

h
= Vh(y)νEh(y) and Vh(y) =

d̄E(y)

h
.

Again, if (Et)t≥0 is a MCF evolution, then recalling the heuristical interpretation Vh = −∇P (Et)
and comparing to (5.2) leads one to replace the time penalization term in (5.1) with the degenerate
L2-distance 1

h

�
E∆Eh

|d̄E | dx. Thus, we minimize the functional

(5.3) Ph(E)[F ] = P (F ) +
1

h

�
E∆F

|d̄E | dx.

From now on, we assume that E is a bounded set of finite perimeter and Ph(E) acts on the bounded
sets of finite perimeter. In general, we base our discussion on the papers [11], [20], [35] and [43].
Since modifications of E (even in a L1-negligible set) may lead to drastic value changes of the
functional F 7→

�
E∆F

|d̄E | dx, we have to use a suitable convention for the sets. For instance, one
may always assume that ∂E agrees with the closure of the reduced boundary ∂∗E, see [36, Prop
12.19]. We denote the collection of such admissible sets by A. Now, we define for a small fixed
h ∈ R+ an approximative solution (Eht )t∈[0,∞) ⊂ A to (0.1), with a given initial datum E ∈ A, by
using a recursive procedure as in the previous example.

- We set Eht = E for every 0 ≤ t < h.
- Assuming that Eht is defined in the interval [kh, (k + 1)h) for a given k = 0, 1, 2, . . . we set
Eht = Eh(k+1)h, for t ∈ [(k + 1)h, (k + 2)h), where Eh(k+1)h is any minimizer of Ph(Ehkh).

If Eht0 is empty, it is natural to assume every set Eht to be empty for every t ≥ t0. Thus, we use

the convention d̄E = ∞ in (5.3), whenever E is empty, to ensure such a behavior. Then we take
a quick look at some properties of approximative sequences. First, the procedure is well-posed,
i.e., there is a minimizer in A for each Ph(Ehkh), although it remains an open question whether
such a selection is unique. Since for each t ≥ h the set Eht is a minimizer of Ph(Eht−h), the set Eht
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enjoys higher regularity. Namely, one can show that Eht is so called (Λ0, r)-minimizer, see [36].
Hence it follows from [36, Thm 26.5 and Thm 28.1] that ∂∗Eht is a relatively open and C1,α-regular
part of ∂E, with any 0 < α < 1/2, and the dimension of the singular part ∂Eht \ ∂∗Eht is at most
n− 8. Moreover, if Eht is non-empty, it has a distributional mean curvature HEht

satisfying the
Euler-Lagrange equation

(5.4) HEht
= −

d̄Eht−h
h

on ∂∗Eht in the distributional sense. This is analogous to (5.2). Since the right hand side is
Lipschitz-continuous, then by the standard elliptic estimates we obtain C2,α-regularity for ∂∗Eht .
In particular, (Eht )t≥h consists of C2,α-regular set when n ≤ 7. Moreover, the perimeter P (Eht )
is non-increasing in time and (Eht )t≥0 satisfies a weak notion of the dissipation equality (2.6) for
MCF. To be more precise, for every h ≤ t ≤ T − h we have the dissipation inequality

(5.5)

� T

t

�
∂∗Eht

H2
Eht

dHn−1dt ≤ C
(
P (Eht−h)− P (EhT )

)

with some uniform C ∈ R+ provided that h is sufficiently small.
Now, like in the motivating example, we are looking for a convergence of approximative solutions.

If ((Ehit )t≥0)i∈N with hi → 0 is a sequence of approximative solutions, then there is indeed a

parametrized family (Et)t≥0 ⊂ A such that, by possibly passing to subsequence, Ehit → Et in the
L1-sense as i→ ∞. Moreover, (Et)t≥0 satisfies the following properties.

(i) Boundedness: there is a ball B(0, R) containing the solution (Et)t≥0.
(ii) Uniform Hölder continuity in the L1-sense with respect to time: there is C ∈ R+ such that

|Et∆Es| ≤ C|t− s| 12 for every t, s > 0. If E is open or closed, then the previous holds for
every t, s ≥ 0.

(iii) Perimeter P (Et) is bounded by the perimeter of the initial set E.

We call a family (Et)t≥0, obtained via the previous procedure, a flat solution to (0.1) (or (2.3))
starting from E. Note that it always hold E0 = E. Thus, we have covered a simple minimizing
movement procedure for MCF among the bounded sets of finite perimeter. Further, it can be
shown that, like a MCF evolution, a flat solution to (0.1) terminates within a finite time meaning
that Et = ∅ after some time t0 ∈ R+. Also, if a classical solution exists, then a corresponding flat
solution agrees with it. However, in general, there are many open questions concerning the flat
solutions. We list a couple of them.

- Is a flat solution (Et)t≥0 to (0.1) starting from E ∈ A unique? This is closely related to
the selection procedure.

- Does there exist any partial regularity for (Et)t≥0? In particular, does each set Et have a
distributional mean curvature at almost every time t?

5.2. Flat MCF with a forcing term and stationary sets. The previous procedure can be
generalized for vast amount of perturbations of MCF. In [20] authors consider flat solutions of
MCF with a time-dependent forcing term. That is, a smooth flow (Et)t≥0 driven by a motion of
the form

(5.6) Vt = −Ht + f(t),

where f : [0,∞) → R is a smooth and bounded function called a forcing term. The function f
represents an external time-dependent force. Note that in [35] authors already consider a similar
setting where a forcing term is a spatial function. Now a flat solution to (5.6) with a given initial
datum E ∈ A is essentially obtained by the same procedure as earlier. Also, smoothness of f can
be relaxed to mere measurability. The major difference is that, when defining the approximating
sequence, the set Ehk+1 in the recursive step is now taken as a minimizer of the functional

(5.7) F 7→ Ph(Ehkh)[F ]−
�
[kh,(k+1)h]

f dt |F |.
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Note that this procedure is a generalization of the previous minimizing movement method for MCF.
The approximative solutions share same regularity results and (5.4) transfroms into

HEht
= −

d̄Eht−h
h

+

�
[kh,(k+1)h]

f dt.

Again, a flat solution to (5.6) starting from E is obtained as earlier via approximative solutions
and it satisfies the properties (i) - (iii) though in a weakened form, see [20, Prop 2.3].

In particular, a flat solution to (5.6) with a bounded and measurable forcing term f starting
from E ∈ A exists at all times. Thus, one may ask how such a solution behaviors globally. In R2,
it is proven that if the forcing term f is asymptotical to a positive constant in the L2-sense, then a
flat solution converges, up to a translation, to a finite union of equisized balls with mutually disjoint
interiors, see [20, Thm 1.3]. In the previous case, the convergence means that Et is arbitrarily
Hausdorff-close to such a union of balls provided that t is big enough, and the unions of balls may
be time-dependent but the number and size of balls are not. To make the setting more interesting,
the generalization Alexandrov’s theorem proved in [16] states that the sets of finite perimeter with
a distributional constant mean curvature, i.e., weakly critical sets are exactly the finite union
of equisized balls with the interiors being disjoint to each other. Then the distributional mean
curvature is (n− 1)/r, where r is the shared radius. In this light, the previous convergence result is
weakly analogous to limit behavior of VMCF although it remains an open question whether there
is a real convergence to a fixed union of balls. Also, a higher dimensional version of [20, Thm 1.3]
is an open question.

An important special case of (5.6) is obtained, when f = Λ with Λ ∈ R+. That is, we consider
a motion with a constant forcing

(5.8) Vt = −Ht + Λ,

Recalling (1.6) and (1.8), such a flow can be seen as a gradient flow of the energy EΛ on the bounded
and smooth sets of Rn given by EΛ(E) = P (E)− Λ|E|. We say that a bounded and smooth set
is a critical point of the energy EΛ, if d

dtEΛ(Et)
∣∣
t=0

= 0 for every smooth flow starting from E.
Compare the previous to equilibrium points of (2.3). Then the critical points of the energy are
exactly the stationary sets of (5.8), i.e., the bounded and critical set with the mean curvature Λ.
Again, by Alexandrov’s theorem, these are exactly the finite unions of ball, where balls have radius
(n− 1)/Λ and a positive distance to each other.

The energy EΛ can be directly extended to the class A. Then we analogously say that E ∈ A is
an critical point of the energy EΛ, if for every admissible family (Φt)t≥0 it holds

(5.9)
d

dt
EΛ(Φt(E))

∣∣∣∣
t=0

= 0.

Using (1.9) and (2.5) this is equivant to E having Λ as a distributional mean curvature. By the
earlier discussion such sets are exactly the finite union of balls, where balls have radius (n− 1)/Λ
and their interiors are disjoint to each other. Now one may ask how such sets are related to the
stationary sets under the flat solutions to (5.8). To be more precise, we say that set E ∈ A is
stationary under the flat solutions to (5.8), if for every flat solution (Et)t≥0 to (5.8), with the
initial datum E, it holds supt≥0 |E∆Et| = 0, see [20, Def 3.1]. First with help of [16, Cor 2] (see
[C, Lemma 3.6] for clarity) one may show that such stationary sets are critical in the sense of
(5.9). On the other hand, it is quite straightforward to check that a union of balls, having radius
(n− 1)/Λ and a positive distance to each other, i.e., the stationary sets of (5.8) in the classical
sense is always stationary under the flat solutions to (5.8). This leaves us to consider the finite
unions of balls of radius (n− 1)/Λ, where the interiors are disjoint to each other and at least two
balls are tangential. The answer is that such unions are not stationary under the flat solutions.
Thus, a set E ∈ A is stationary under the flat solutions to (5.8) if and only if it is critical in the
classical sense with the mean curvature Λ and the previous question is closed.

How is the negative answer concluded? We first restrict ourselves to consider a union of two
tangential balls of equal radius E = B(x1, r) ∪ B(x2, r). In the dimension n = 2, [20, Thm 1.1]
states that any flat solution (Et)t≥0 to (5.6) with a bounded and measurable forcing term f
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starting from E immediately “welds” the balls together. To be more precise, there are concentric
balls B(x1, ηr) and B(x2, ηr), 0 < η < 1, such that for a short time period Et contains a simply
connected and dumbbell-shaped set which, in turn, contains the shrunk balls. Moreover, we have a
lower estimate for the excess |Et \ E| ≥ ct3. The third article [C] of this dissertation generalizes
[20, Thm 1.1] to any dimension n ≥ 2.

Theorem 5.1 (Main result C). Let E ⊂ Rn, n ≥ 2 , be a union of two tangential balls B(x1, r)
and B(x2, r). Let (Et)t≥0 be a flat solution to (5.6) with a measurable forcing term f bounded
by C0 ∈ R+, starting from E. There exist positive numbers δ, c1 and c2 depending only on n, r
and C0 such that for every t ∈ (0, δ) the set Et contains a dumbbell shaped simply connected set
which, in turn, contains the balls B(x1, r − c1t), B(x2, r − c1t) and B((x1 + x2)/2, c2t).

Now using a weak comparison principle for approximative solutions, see [20, Prop 2.1], the same
phenomenon can be seen true for any E ∈ A containing a union of two tangential balls. This
closes the question concerning relation between the weakly critical (with the constant Λ) sets and
the stationary sets under the flat solutions to (5.8). We remark that a similar kind of fattening
phenomenon for viscosity solutions to (5.6) with f = f(x, t) in Rn is already established in [26].

5.3. Flat solutions for VMCF and quantitative Alexandrov’s theorem. In this last
subsection, we investigate how minimizing movement scheme is carried out in the case of VMCF.
While the term involving integral average in (0.2) is time-dependent, it is not a prescribed function
and hence we cannot use the previous approach for (5.6). We focus on the presentation of [43].
Now for a given non-empty initial set E ∈ A and Λ ∈ R+ the approximative solutions to (0.2) with
a sufficiently small h ∈ R+ are defined in the same way as for (0.1), except now a set Ek(k+1)h in

the recursive step is chosen as a minimizer of the functional

F 7→ Ph(Ehkh) +
Λ√
h
||F | − |E||,

where Ph(Ehkh) is defined as in (5.3). The weak volume penalization term here emulates the integral
average in (0.2).

Note that in [43] authors use fixed choice Λ = |E| = 1 but clearly the same arguments hold in
the general case. Again, such approximative solutions (Eht )t≥0 to (0.2) share the same regularity
results as previously and satisfy a similar Euler-Lagrange equation compared to (5.4), see [43].
Moreover, the perimeter in the family (Eht )t≥0 is non-increasing and the dissipation inequality

(5.10)

� T

t

�
∂∗Eht

|HEht
−HEht

|2 dHn−1dt ≤ C
(
P (Eht−h)− P (EhT )

)

holds for every h ≤ t ≤ T − h with a uniform constant C ∈ R+. The flat solutions to (0.2) are
obtained similarly as clusters of the approximative solutions. According to [43, Thm 2.2] a flat
solution (Et)t≥0 ⊂ A to (0.2) starting from E ∈ A has a constant volume |E| (so it preserves
volume like its classical counterpart) and satisfies the properties (ii) and (iii) listed for the flat
solutions to (0.1). Again, for every T ∈ R+ the subfamily (Et)t∈[0,T ] is bounded. Further, if we

assume that n ≤ 7 and P (Ehkt ) → P (Et) in the distributional sense, i.e,

(5.11) lim
k

� T

0

P (Ehkt ) dt =

� T

0

P (Et) dt for every T ∈ R+,

then t 7→ P (Et) is non-increasing beyond a negligible set, almost every Et has a distributional
mean curvature and (Et)t≥0 satisfies (0.2) in a distributional sense, see [43, Thm 2.3]. This of
course gives rise to many new questions, not least whether the condition (5.11) can be relaxed.

Since a flat solution to (0.2) exists at all times and preserves volume, its behavior at infinity
becomes a matter of interest. Recalling the asymptotical convergence result [20, Thm 1.3] in the
planar case, we expect a similar kind of asymptotical behavior. Indeed, the second article [B] of
this dissertation provides such a result for the flat solutions to (0.2) in the dimensions n = 2, 3.

Theorem 5.2 (Main result B1). Assume that E ⊂ Rn with n = 2, 3 is in the class A of
volume |B1| and let (Et)t≥0 be a flat solution to (0.2) starting from E. There is N ∈ N such that
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the following holds: for every ε > 0 there is Tε > 0 such that for every t ≥ Tε there are points
x1, . . . , xN , which may depend on time with |xi − xj | ≥ 2r for i ̸= j, and r = N− 1

n such that for

Ft =
⋃N
i=1Br(xi) it holds

sup
x∈Et∆Ft

d∂Ft(x) ≤ ε.

The assumption |E| = |B1| is purely for convenience, in the general case we have r =

(|E|/|B1|)
1
nN− 1

n . Again, one may ask if the flat solution convergences to a fixed union of balls. In
fact, the result established in [42] states that any approximative solution (Eht )t≥0 to (0.2) converges
to a finite union of equisized balls with a positive distance to each other. Further, the convergence
happens at an exponential rate in any Ck-sense. Since now there is no known control on the limit
set in the parameter h and, on the other hand, a classical VMCF may converge to tangential balls,
the previous convergence result is not at least directly applicable in the case of the flat solutions.

Obviously, the proof of Theorem 5.2 involves approximative solutions due to low known regularity
for the flat solutions themselves. The proof relies on the dissipation inequality (5.10) and a new
quantitative Alexandrov’s theorem also established in the second article. With help of (5.10), one
may conclude that if (Eht )t≥0 is an approximative solution to (0.2) starting from E and h ∈ R+ is
sufficiently small, then there is a sequence (Eh

thl
)l∈N such that thl ∈ [l2, (l + 1)2] and

(5.12)

�
∂∗Eh

th
l

|HEh
th
l

−HEh
th
l

|2 dHn−1dt ≤ Cl−
1
2 .

This is where the new quantitative Alexandrov’s theorem from [B] comes into play.

Theorem 5.3 (Main result B2). Let E ⊂ Rn be a C2-regular set such that P (E) ≤ C0 and
|E| ≥ 1/C0. There are positive constants q = q(n) ∈ (0, 1], C = C(C0, n) and δ = δ(C0, n) such
that if ∥HE − λ∥Ln−1(∂E) ≤ δ for some λ ∈ R, then 1/C ≤ λ ≤ C and there are points x1, . . . , xN

with |xi − xj | ≥ 2R, where R = n/λ, such that for F =
⋃N
i=1BR(xi) it holds

sup
x∈E∆F

d∂F (x) ≤ C∥HE − λ∥qLn−1(∂E).

Moreover, by denoting ωn = Hn−1(∂B1), it holds∣∣∣P (E)−NnωnR
n−1

∣∣∣ ≤ C∥HE − λ∥qLn−1(∂E).

While there are many generalization of Alexandrov’s theorem, see for instance the survey [14],
the strength of Theorem 5.3 lies in the fact that it does not set any geometric requirements for
a given set, such as mean convexity. In the statement, the Ln−1-norm is the optimal choice in
order to get the first estimate works. For a finer analysis, it would be interesting to know what is
optimal value for the exponent q. The proof of Theorem 5.3 is based on the diameter control by
mean curvature provided by [47] and [48] and a modification of the Montiel-Ros argument used to
prove the Heinze-Karcher inequality, see [40]. We also remark that in the planar case Theorem 5.3
can be proven in a strengthened form, see [20, Lemma 3.2], although this argument works only in
the dimension n = 2.

Theorem 5.2 essentially follows from (5.12) and Theorem 5.3 via a suitable comparison argument.
This also shows us the limiting factor of the proof why it is only carried out in the dimensions
n = 2, 3. The dissipation inequality provides only the L2-control over the quantity HE −HE . A
new approach and probably a new quantitative version of Alexandrov’s theorem are needed to
generalize Theorem 5.2 to higher dimensions.
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Abstract

In this paper we establish a new stability result for smooth volume preserving mean curvature flows in 
flat torus Tn in dimensions n = 3, 4. The result says roughly that if an initial set is near to a strictly stable 
set in Tn in H 3-sense, then the corresponding flow has infinite lifetime and converges exponentially fast to 
a translate of the strictly stable (critical) set in W2,5-sense.
© 2020 Elsevier Inc. All rights reserved.
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1. Introduction

A smooth evolution of sets (Et)t , that is, a smooth flow in Rn is a volume preserving mean 
curvature flow (VMCF), if for every time t the (outer) normal velocity of the flow on ∂Et obeys 
the law

Vt = H̄t − Ht,

where Ht is the (scalar) mean curvature on ∂Et and H̄t its integral average over ∂Et . As the name 
suggests, a VMCF preserves the volume, which is in the contrast to a classical mean curvature 
flow with a smooth and bounded initial set. Such a flow shrinks the initial volume to zero in finite 
time.

The short time existence for a smooth VMCF in Rn is well-known. For any smooth (a closed 
set with a smooth boundary) and compact set E ⊂ Rn with n ≥ 2 there is a unique VMCF 
starting from E. However, a VMCF (Et)t may develop singularities such as self-intersections 
of the boundary ∂Et within a finite time, see [16]. Another type of singularities of VMCF 
in a free boundary setting is studied in [5], where it is shown that certain thin necks have 
to pinch-off under VMCF. A natural problem is to find a sufficient condition for the initial 
set such that the VMCF starting from the set does not form singularities and has infinite life-
time.

Several contributions concerning the previous question have been made over the years. The 
classical result of Huisken [14] says that for any smooth, compact and convex set E ⊂ Rn there 
is a unique VMCF (Et)t starting from E such that the flow has infinite lifetime and converges 
exponentially fast to a closed ball of the volume |E| in C∞-topology. Second, Li [15] has for-
mulated in Rn an alternative condition for a connected initial boundary based on a certain energy 
such that the corresponding VMCF has infinite lifetime and converges exponentially fast to a ball, 
when the dimension is at least three. Notice that if VMCF converges in C2-sense, then the limit 
set is a finite union of balls with mutually positive distance. This follows from the Alexandrov 
theorem.

This naturally raises questions about the stability of VMCF near stable sets, in this case the 
closed Euclidean balls. Such problems are often called stability problems. Escher and Simonett 
[9] used to center manifold analysis to prove that if E ⊂Rn is a smooth compact set and B̄(x, r)
is a closed ball with the same volume such that ∂E is C1,α-close to ∂B(x, r), then the VMCF 
starting from E has infinite lifetime and converges to a translate of B̄(x, r) exponentially fast in 
Ck-sense for any k ∈ N .

Instead of having generic smooth sets in Rn, we may focus on periodic smooth sets, that is, 
the smooth sets in Rn invariant under the lattice translations. This again leads us to consider the 
flat torus Tn in place of Rn. One motivation for this is that there then are more different types 
of compact and critical sets than in Rn. Also, the notion of VMCF generalizes to the flat torus 
and corresponds to the periodic VMCFs in Rn. We are interested in the subclass of compact 
and critical sets in Tn called strictly stable sets (with respect to perimeter), see Definition 2.12. 
Examples of strictly stable sets (besides single balls, cylinders and strips) in T 3 are those sets 
having a Schwarz surface as a boundary, see [17]. Acerbi, Fusco and Morini prove that strictly 
stable sets in Tn are always isolated local perimeter minimizers (under the notion of volume in 
Tn), see [2, Theorem 1.1]. In contrast, the only smooth local perimeter minimizers in Rn are just 
the single balls. This essentially follows from [7], see also [18].
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Our goal is to prove the following stability result for VMCFs near strictly stable sets in the 
flat torus Tn with n = 3, 4 using the notion of graph surface representation in normal direction
and Sobolev spaces on smooth compact hypersurfaces.

Theorem (Main result). Let F ⊂Tn, where n = 3, 4, be a strictly stable set and let νF be the unit 
normal of ∂F with the inside-out orientation. There exists a positive constant δ0 ∈ R+ depending 
on F such that the following hold.

If E0 is a smooth set in Tn with the same volume as F and having a boundary of the form

∂E0 = {x + ψ0(x)νF (x) : x ∈ ∂F },
where ψ0 ∈ C∞(∂F ) and ‖ψ0‖H 3(∂F ) ≤ δ0, then the VMCF (Et )t starting from E0 has infinite 
lifetime and converges to a translate F + p of F exponentially fast in W 2,5-sense from the point 
of view of the boundary ∂(F + p). Moreover, |p| → 0 as ‖ψ0‖H 3(∂F ) → 0.

Remarks. Of course, using the same arguments we obtain a similar result in T 2. Since the con-
vergence happens exponentially fast in time, the flow is also said to be exponentially stable near 
strictly stable set.

In terms of methods we are motivated by the paper Acerbi, Fusco, Julin and Morini [1], 
where they prove similar kinds of stability results for other volume preserving flows, namely the 
modified Mullins-Sekerka flow and the surface diffusion flow in the three dimensional flat torus 
T 3. The cornerstone of our analysis (see Section 3) is to prove that H 3-closeness to a strictly 
stable set implies for the VMCF (Et)t that the L2-norm of the normal velocity over ∂Et , that is 
‖H̄t − Ht‖L2(∂Et )

, is decaying exponentially in time while the L2-norm of its tangential gradient 
over ∂Et is bounded in time. In proving this we are heavily dependent on Sobolev interpolation 
inequalities, which is the reason we have to restrict ourselves to low dimensions.

2. Preliminaries

Flat torus. Recall that for given n ≥ 2 the (unit) flat torus Tn is defined as the quotient space 
Rn/ Zn. Here the equivalence relation is given in the obvious way: x ∼ y exactly when x −
y ∈ Zn. Functions f : Tn → Rd (for d ∈ N) can be (canonically) identified with the class of 
Dn-periodic maps Rn → Rd , where Dn = [0, 1[n is the dyadic unit cube. Again, the functions 
from Tn to itself are naturally identified with the maps f : Rn → Rn for which f − id are Dn-
periodic. Further, the sets in Tn can be identified with Dn-periodic sets in Rn. If x ∈ Tn, then 
for any p ∈ Rn the notation x + p means the element q(x̃ + p) ∈ Tn, where x̃ ∈ q−1(x) and 
q :Rn → Tn is the quotient map.

We consider Tn as a smooth and compact manifold where the smooth structure is given via 
the quotient map Rn → Rn/ Zn. The natural flat Riemannian metric on Tn is induced by the 
standard Euclidean inner product 〈 · , · 〉 of Rn via the quotient map. Indeed, one can think Tn

is “locally” the Euclidean Rn. The compatible distance function Tn ×Tn → [0, ∞[ is given by

|x − y|Tn = min{|x̃ − ỹ| : x̃ ∈ x, ỹ ∈ y}.
A function f : Tn → Rd is locally a Ck-map at x ∈ Tn exactly when its periodic extension f̃
to Rn is locally Ck at every representative x̃ of x. Thus we set the j -th derivative Dj f (x) at 
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x to be Dj f̃ (x̃) for every 1 ≤ j ≤ k. This is done similarly in the case f : Tn → Tn. Other 
familiar function classes such as the Hölder spaces Ck,α(Tn) are defined by similar means. For 
every Borel set in A in Tn its s-dimensional Hausdorff measure Hs(A) is defined to be the 
corresponding Hausdorff-measure of the intersection of the periodic extension and Dn.

Smooth hypersurfaces. A set � ⊂ Tn is a smooth hypersurface (a smooth embedded subman-
ifold with codimension 1) exactly when its Dn-periodic extension is a smooth hypersurface in 
Rn. Other classes such as Ck,α-hypersurfaces are defined similarly. From now on, we assume a 
given hypersurface � (not necessarily smooth) to be compact and connected in our discussion. 
The shorthand notation |�| = Hn−1(�) is used time to time without any further mention.

A function f belongs to Ck(�; Rd) if and only if it admits a Ck-extension to some open 
neighborhood of �. For every x ∈ � the geometric tangent space Gx� is defined as a unique n −
1-dimensional subspace of Rn such that x +Gx� is the tangent plane of � at x. Equivalently we 
can set Gx� = Dφ(Rn−1), where φ : U → Tn is any local parametrization of � at x. Moreover, 
the orthogonal projection from Rn onto Gx� is denoted by P�(x). Then P� : � → L(Rn; Rn)

is a smooth map.
For any x ∈ �, open neighborhood U of x in Tn and f ∈ C1(U ; Rk) the tangential differen-

tial Dτ f (x) : Rn → Rk of f with respect to � at x is given by

Dτ f (x) = Df (x)P�(x).

The definition does not depend on how f is extended beyond �. In the case k = 1 the dual 
of Dτ f (x) is called the tangential gradient of f with respect to � at x denoted by ∇τ f (x). 
Then we can write ∇τ f (x) = P�(x)∇f (x) so ∇τ f (x) ∈ Gx�. Further, in the case k = n the 
tangential divergence divτ f (x) of f with respect to � at x is defined as the trace of Dτ f (x). 
These operations behave as their ordinary counterparts in Tn.

Since � is compact and connected, then it is also orientable, i.e., it admits a smooth unit 
normal field ν : � → Rn, where ν(x) ∈ Nx� := Gx�

⊥ for every x ∈ �. The pair (�, ν) is called 
an oriented hypersurface � with an orientation ν. If �′ is a C1-hypersurface and 
 : � → �′ is 
a C1 diffeomorphism, then we have the change of variable formula. For any h ∈ L1(�′, Hn−1)

∫
�′

h dHn−1 =
∫
�

(h ◦ 
)Jτ
 dHn−1,

where the tangential Jacobian Jτ
 is given by Jτ
 = | det D
̃||(D
̃)−Tν| and 
̃ is any diffeo-
morphic extension of 
. This is independent of the choice of orientation.

The second fundamental form B(x) of � associated with the orientation ν at x can be seen as 
the linear operator from Gx� to itself or equivalently Rn → Rn given by

B(x) = Dτ ν̃(x),

where ν̃ is any smooth extension of ν. We use both of these conventions interchangeably. If we 
use the latter one, then Nx� ⊂ kerB(x) and Im B(x) ⊂ Gx�. The operator is symmetric and 
its eigenvalues and corresponding eigenspaces on Gx� are called principal values and principal 
directions. The mean curvature H(x) of � associated with the orientation at x is now defined 
as the trace of B(x) or equivalently the sum of principal values on Gx�. Again, the maps B :
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� → L(Rn; Rn) and H : � → R are smooth. If H is constant, then � is said to be critical. The 
Frobenius norm |B| on � does not depend on the used orientation. We define also the mean 
curvature vector field H : � → Rn by setting H = −Hν. Notice that H is independent of the 
choice of orientation. Since � is compact, then the divergence theorem for hypersurfaces says 
that for any f ∈ C1(Tn, Rn)

∫
�

divτ f dHn−1 = −
∫
�

〈f,H〉 dHn−1 =
∫
�

H 〈f, ν〉 dHn−1.

If f (x) ∈ Gx� for every x ∈ �, then the previous formula yields the integration by parts formula

∫
�

ϕ divτ f dHn−1 = −
∫
�

〈∇τ ϕ, f 〉 dHn−1

for every ϕ ∈ C1(�), in particular 
∫
�

divτ f dHn−1 = 0.
While the concept of tangential derivative can be defined similarly on compact C1-

hypersurfaces, the classical notion of mean curvature is not generally possible for such surfaces 
due to lack of regularity. However, the following generalization is possible. We say that a C1-
hypersurface � ⊂Tn with orientation ν has mean curvature in weak sense, if there exists a Borel 
function h ∈ L1(�) such that for every f ∈ C∞(Tn; Rn)

∫
�

divτ f dHn−1
∫
�

h〈f, ν〉 dHn−1.

In such case h is called a weak or distributional mean curvature of �. Moreover, if h is constant, 
then � is called stationary. By writing � locally as a graph surface in an orthonormal coordinates 
and applying the elliptic regularity results [4, Proposition 7.56] and [11, Theorem 9.19] we obtain 
the following well-known result.

Lemma 2.1. Let � ⊂Tn be a C1,α-hypersurface with 0 < α < 1. Then � is smooth and critical 
if and only if it is stationary.

Vector fields, tensors and covariant derivatives on hypersurfaces. Since now for every ϕ ∈
C∞(�) there is a smooth extension ϕ̃ to some open neighborhood of � and tangential differential 
is independent of the way an ambient function is extended beyond �, we may define a tangential 
gradient ∇τ ϕ(x) of ϕ at x by setting ∇τ ϕ(x) = ∇τ ϕ̃(x). Let Tx� be the tangent space of � at x. 
Then for every v ∈ Tx�

v(ϕ) = 〈zv,∇τ ϕ(x)〉

with some unique zv ∈ Gx�. Thus the geometric tangent space Gx� can be canonically iden-
tified with the tangent space Tx� and, from now on, we just use the notation Tx�. The tangent 
bundle T � is then the union of ordered pair (x, Tx�) equipped with the corresponding smooth 
structure. Further, we may canonically identify the set of smooth vector fields X(�) on �, that 
is, the smooth sections � → T �, with the collection
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X(�) = {X ∈ C∞(�;Rn) : X(x) ∈ Tx� for every x ∈ �},
and for X ∈ X(�) its action on ϕ ∈ C∞(�) can be seen as Xϕ = 〈X, ∇τ ϕ〉 on �. As usual, for 
X, Y ∈ X(�) the vector field XY is determined by the rule XYϕ = X(Yϕ).

The Riemannian metric g on � is the naturally induced flat metric. Keeping the previous 
identifications in mind this is just the restriction of the standard Euclidean inner product to the 
hyperspace Tx�. The usual flat and sharp operations induced by g for smooth vector and covector
fields on � are denoted by 
 and � correspondingly. Then for ϕ ∈ C∞(�) the gradient vector field 
is grad ϕ = dϕ� = ∇τ ϕ.

Slightly abusing the notations we define for a vector field X ∈ X(�) the (geometric) tangential 
differential DτX(x) at x as the linear map Rn →Rn (or equivalently Tx� → Tx�) by setting

DτX(x) = P�(x)Dτ X̃(x),

where X̃ is any smooth extension of X beyond �. The tangential divergence divτX(x) of X at x
is the trace of previous operator and divτX(x) = divτ X̃(x). Now the mappings � → L(Rn; Rn), 
x �→ DτX(x) and � →R, x �→ divτX(x), are smooth. Again, for any ϕ ∈ C∞(�) the tangential 
Hessian is given by D2

τ ϕ = Dτ∇τ ϕ, which is a symmetric operator. Further, the Laplace-Beltrami 
operator or the tangential Laplacian �τ (of �) acting on ϕ can be seen as �τϕ = tr D2

τ ϕ =
divτ∇τ ϕ.

The compatible Riemannian connection on � is the tangential connection ∇� : X(�) →
X(�) given by the rule

∇�
XY = (Dτ Y )X.

Recall that this is a symmetric connection, i.e., ∇�
XY −∇�

Y X = [X, Y ], where [X, Y ] = XY −YX

is the corresponding commutator.
As usual, for every m ∈N ∪ {0} and x ∈ � we denote the space of m-multilinear mappings or 

m-covariant tensors Tx� × · · · × Tx� → R by T m
0 (Tx�). Recall the special cases T 1

0 (Tx�) =
(Tx�)∗ and T 0

0 (Tx�) =R. If m > 0, for given L, G ∈ T m
0 (Tx�) the inner product is given by

〈L,G〉 =
∑

i1...im

L(vi1, . . . , vim)G(vi1 , . . . , vim),

where v1, . . . , vn−1 is any orthonormal basis of Tx�. Thus the corresponding tensor norm for 
L ∈ T m

0 (Tx�) is |L| = 〈L, L〉 1
2 . If L ∈ T 2

0 (Tx�), then with help of any orthonormal basis 
v1, . . . , vn−1 of Tx� we may define the trace of L by setting

tr L =
∑

i

L(vi, vi).

The m-covariant tensor bundle T m
0 (�) is defined by similar means as T �. A covariant m-

tensor field or section T : � → T m
0 (�) is smooth exactly when T (X1, . . . , Xm) ∈ C∞(�) for 

every X1, . . . , Xm ∈ X(�). We denote them by Tm(�). Recall that T1(�) is the collection of the 
smooth covector fields or 1-forms and T0(�) = C∞(�).

Now for any (smooth) covariant m-tensor field T ∈ Tm(�) the covariant derivative of T , 
denoted by ∇coT , is defined as the element of Tm+1(�) for which
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∇coT (X1, . . . ,Xm,Xm+1) = Xm+1T (X1, . . . ,Xm) −
m∑

k=1

T (X1, . . . ,∇�
Xm+1

Xk, . . . ,Xm).

For ϕ ∈ C∞(�) this simply means that ∇coϕ = dϕ and again for T ∈ Tm(�) the k + 1-th co-
variant derivative is defined recursively by setting ∇k+1

co T = ∇co(∇k
coT ). It is straightforward to 

compute that for ϕ ∈ C∞(�) the covariant Hessian ∇2
coϕ is now the symmetric 2-tensor field 

obtained by

∇2
coϕ(X,Y ) = 〈X,D2

τ ϕY 〉 for every X,Y ∈ X(�),

�coϕ := tr ∇2
coϕ = �τϕ and |∇2

coϕ| = |D2
τ ϕ|, where |D2

τ ϕ| is the standard Frobenius norm of 
D2

τ ϕ.
For any T ∈ Tm(�) the Ck-norm on � is given in the obvious way

‖T ‖Ck(�) =
m∑

i=0

sup
�

|∇ i
coT |

and further we set ‖X‖Ck(�) = ‖X
‖Ck(�) for every X ∈ X(�).

Sobolev and Hölder spaces on hypersurfaces. Recall that the Riemannian measure on � in-
duced by the flat metric g is the restriction of the n − 1-dimensional Hausdorff measure Hn−1

to �. Then the corresponding p-Lebesgue space is Lp(�, Hn−1) for any 1 ≤ p ≤ ∞. For every 
smooth covariant tensor field T on � the Lp-norm is now given by

‖T ‖Lp(�) =
⎛
⎝∫

�

|T |p dHn−1

⎞
⎠

1
p

.

For a ϕ ∈ C∞(�) the Sobolev Wk,p-norm with k ∈N ∪ {0} and 1 ≤ p ≤ ∞ is given as usual

‖ϕ‖Wk,p(�) =
⎛
⎝ k∑

j=0

‖∇j
coϕ‖p

Lp(�)

⎞
⎠

1
p

.

Here ∇0
coϕ = ϕ. For any 1 ≤ p < ∞ the space Wk,p(�) is now the norm completion of C∞(�), 

where any of its element ϕ is considered as the k + 1-tuple (ϕ, ∇1
coϕ, . . . , ∇k

coϕ). Again, we use 
the conventional notation Hk(�) for a Hilbert space Wk,2(�), where the inner product is given 
in the obvious way

〈ϕ1, ϕ2〉Hk =
k∑

j=0

∫
�

〈∇j
coϕ1,∇j

coϕ2〉 dHn−1.

We have the standard Sobolev interpolation for Lp-norms of covariant derivatives of smooth 
maps, see [6, Theorem 3.70]. From now on, we denote the space of C∞(�)-maps with vanishing 
integrals by C̃∞(�).
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Lemma 2.2 (Basic interpolation). Let � ⊂Tn be a smooth hypersurface and suppose that there 
are 1 ≤ p, q < ∞, 1 ≤ p ≤ ∞ and integers 0 ≤ j < m such that

1

p
= j

n − 1
+

(
1

r
− m

n − 1

)
α + 1 − α

q
, (2.1)

where j
m

≤ α ≤ 1 and the condition r = n−1
m−j

�= 1 = α does not hold. Then there exists a constant 

C depending on the previous numbers and � such that for every ϕ ∈ C̃∞(�)

‖∇j
coϕ‖Lp(�) ≤ C‖∇m

coϕ‖α
Lr (�)‖ϕ‖1−α

Lq(�). (2.2)

If j ≥ 1, the estimate holds for every ϕ ∈ C∞(�).

Remark 2.3. It follows from the previous theorem that in the case n ≤ 4 there is a constant C
depending on � such that ‖ψ‖C1(�), ‖ψ‖W 2,p(�) ≤ C‖ψ‖H 3(�) for every 1 ≤ p ≤ 6 and ϕ ∈
C∞(�).

We also recall the following interpolation inequality for covariant tensor fields, see [12, The-
orem 12.1].

Lemma 2.4 (Second order tensor interpolation). Let � ⊂ Tn be a smooth hypersurface and 
suppose that

1

p
= 1

q
+ 1

r
(2.3)

for 1 ≤ p, q, r ≤ ∞. Then for every smooth covariant k-tensor field T on � it holds

‖∇coT ‖2
L2p(�)

≤ (2p − 2 + n − 1)‖∇2
coT ‖Lr(�)‖T ‖Lq(�). (2.4)

Moreover, we need the following estimates, see [10, Lemma 2.3 and Remark 2.4].

Lemma 2.5. Let � ⊂ Tn be a smooth hypersurface. There are constants Cn, depending only on 
n, and C�, depending on �, such that for every ϕ ∈ C∞(�)

‖∇2
coϕ‖2

L2(�)
≤ ‖�coϕ‖2

L2(�)
+ Cn

∫
�

|B|2|∇coϕ|2 dHn−1 (2.5)

‖∇3
coϕ‖2

L2(�)
≤ ‖∇co(�coϕ)‖2

L2(�)
+ C�‖ϕ‖2

H 2(�)
. (2.6)

For a continuous map f : � → R and 0 < α < 1 the Cα(�)-Hölder semi-norm is given by

[f ]Cα(�) = sup
x,y∈�
x �=y

|f (x) − f (y)|
dg(x, y)α

,
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where dg is the length metric induced by g. For every ϕ ∈ C∞(�) we define C1,α(�)-norm by 
setting

‖f ‖C1,α(�) = ‖ϕ‖C1(�) + sup
X∈X(�)

‖X‖
C1(�)

≤1

[∇coϕ(X)]Cα(�)

and set the space C1,α(�) to be the norm completion of the set of C∞(�)-maps with finite 
C1,α(�)-norm. Then C1,α(�) is the space of continuous maps on � with C1,α-extension to some 
open neighborhood of �. Note that there is several equivalent ways to define C1,α(�)-norm.

The higher order Hölder spaces are defined similarly, but we do not need them. By using 
the Rellich-Kondarchov theorem, see [13, Thm 2.9] and Lemma 2.2 one obtains the following 
embedding result.

Lemma 2.6. Let � ⊂ Tn be a smooth hypersurface and suppose that k ≥ 3 is an integer and 
1 < p < ∞. If for given 0 < α < 1 the condition

α < 2 − n − 1

p

is true, then the embedding W 3,p(�) ⊂ C1,α(�) is compact.

In particular, Lemma 2.6 says that for n ≤ 4 and 0 < α < 1
2 the embedding H 3(�) ⊂ C1,α(�)

is compact.

Smooth sets. A closed E ⊂Tn is called a smooth set, if the boundary ∂E is a smooth hypersur-
face. Then ∂E is always a finite disjoint union of compact and connected smooth hypersurfaces 
in Tn so the previous results can be applied on ∂E. For the boundary ∂E we always use the 
natural inside-out orientation denoted by νE . The classical divergence theorem takes now the 
following form in Tn. For any Lipschitz function f :Tn → Rn

∫
E

div f dHn =
∫
∂E

〈f, νE〉 dHn−1.

Further, we denote by BE the second fundamental form on ∂E associated with νE and by HE the 
corresponding boundary mean curvature. We use also the shorthand notation |E| for the volume 
Hn(E). We recall that there exists a regular neighborhood of ∂E say UE such that the signed 
distance function d̄E :Tn → R

d̄E(x) =
{

dist(x, ∂E), x ∈ Tn \ E

−dist(x, ∂E), x ∈ E

and the projection mapping π∂E onto ∂E are smooth on ŪE (in particular the latter is well-
defined). Again, we may write νE = ∇d̄E and BE = D2d̄E on ∂E. The Ck,α-sets are defined 
similarly.
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For any Ck-sets E and E′ in Tn the Ck-distance is given by

‖E,E′‖Ck = inf{‖
 − id‖Ck(Tn;Tn) : 
 is a Ck-diffeomorphism with 
(E) = E′}.

For a smooth set E and an open set E′ we denote E′ = Eψ for some ψ ∈ C(∂E), if we may 
write ∂E′ as a graph of ψ in normal direction over ∂E, that is,

∂E′ = {x + ψ(x)νE(x) : x ∈ ∂E} (2.7)

and x + (s + ψ(x))νE(x) ∈ Tn \ E′ with a small positive s for every x ∈ ∂E. Now small C1-
distance between E and a Ck,α-set E′ is equivalent to the graph representation E′ = Eψ with a 
Ck,α(∂E)-map ψ having a small C1-norm.

Lemma 2.7. Let E ⊂Tn be a smooth set. There exist positive constants C ≥ 1 and δ depending 
on E such that the set {y ∈ Tn : |d̄E(y)| ≤ δ} belongs to a regular neighborhood of ∂E and the 
following hold for any k ∈N ∪ {∞} and 0 ≤ α < 1.

(i) For any ψ ∈ Ck,α(∂E) with ‖ψ‖C1(∂E) ≤ δ the set Eψ is defined as a Ck,α-set, the map 

ψ : ∂E → ∂Eψ , given by


ψ(x) = x + ψ(x)νE(x),

is Ck,α-diffeomorphism and ‖E, Eψ‖C1 ≤ C‖ψ‖C1(∂E).
(ii) If E′ ⊂ Tn is a Ck,α-set with ‖E, E′‖C1 ≤ δ, then there is a unique map ψ ∈ Ck,α(∂E) for 

which E′ = Eψ and ‖ψ‖C1(∂E) ≤ C‖E, E′‖C1 .

When for ψ ∈ C∞(∂E) its C1-norm is small enough, we may control BEψ and represent HEψ

via 
ψ on ∂E in the following way.

Lemma 2.8. Let E ⊂ Tn be a smooth set. There are constants δ = δ(E) and C = C(E) and 
smooth maps

A : ∂E × [−δ, δ] × [−δ, δ]n → T 2
0 (∂E),

Z : ∂E × [−δ, δ] × [−δ, δ]n → T (∂E) and

P : ∂E × [−δ, δ] × [−δ, δ]n → R

depending on E with A( · , 0, 0) = 0 such that the following hold. If ψ ∈ C∞(∂E) and 
‖ψ‖C1(∂E) ≤ δ, then

HEψ ◦ 
ψ = −�τψ + 〈A( · ,ψ,∇τψ),∇2
coψ〉

+ ∇coψ (Z( · ,ψ,∇τψ)) + ψP( · ,ψ,∇τψ) + HE and (2.8)

|BEψ ◦ 
ψ | ≤ C(1 + |D2
τψ |) (2.9)

on ∂E.
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Moreover, with the same δ and C we may assume that the following holds. If ψ ∈ C∞(∂E)

with ‖ψ‖C1(∂E) ≤ δ, then for every 1 ≤ p < ∞, h ∈ Lp(∂Eψ) and ϕ ∈ C∞(∂Eψ)

C−1‖h ◦ 
ψ‖Lp(∂E) ≤ ‖h‖Lp(∂Eψ) ≤ C‖h ◦ 
ψ‖Lp(∂E) and (2.10)

C−1‖∇τ (ϕ ◦ 
ψ)‖Lp(∂E) ≤ ‖∇τ ϕ‖Lp(∂Eψ) ≤ C‖∇τ (ϕ ◦ 
ψ)‖Lp(∂E). (2.11)

Finally we need the following uniform estimates for low dimensions. The first one says that a 
Poincaré-type estimate holds with a uniform constant when slightly varying a reference boundary 
in C1-sense.

Lemma 2.9. Let E ⊂ Tn, n = 3, 4, be a smooth set. There exist positive constants δ and C
depending on E such that if ψ ∈ C∞(∂E) with ‖ψ‖H 3(∂E) ≤ δ, then for every 1 ≤ p ≤ 6 and 
ϕ ∈ C̃∞(∂Eψ)

‖ϕ‖Lp(∂Eψ) ≤ C‖ϕ‖H 1(∂Eψ).

The second one says that we can control uniformly Lp-norm of ∇τ ϕ (up to p ≤ 6) by the L2-
norm of ∇τ ϕ and the H 1-norm of ϕ when slightly varying a reference boundary in H 3-sense.

Lemma 2.10. Let E ⊂Tn, n = 3, 4, be a smooth set. There are constants δ and C depending on 
E such that if ψ ∈ C∞(∂E) and ‖ψ‖C1(∂E) ≤ δ, then for every 1 ≤ p ≤ 6 and ϕ ∈ C∞(∂Eψ)

‖∇τ ϕ‖Lp(∂Eψ) ≤ C
(
‖�τϕ‖L2(∂Eψ) + ‖ϕ‖H 1(∂Eψ)

)
.

Lemma 2.9 and Lemma 2.10 hold also in the case n > 4, if we replace the upper bound 6 with 
smaller number depending on n. This number converges to 2 by above as n tends to infinity. We 
will prove these results except Lemma 2.7 in Appendix.

Volume preserving mean curvature flow and strictly stable sets. Let us first give the formal 
definition of smooth flow in this setting.

Definition 2.11 (Smooth flow). The parametrized family (Et)t∈[0,T [ of smooth sets in Tn with 
0 < T ≤ ∞ is a smooth flow with an initial set or initial datum E0, if there exists a smooth map 

 : Tn × [0, T [ → Tn such that 
0 = idTn , 
t := 
( ·, t) is a (smooth) diffeomorphism and 
Et = 
t(E0) for every t ∈ [0, T [. Again, for every 0 ≤ t < T , the (outer) normal velocity of the 
flow on ∂Et at the time t is defined by setting

Vt = 〈∂s
s+t

∣∣∣
s=0

◦ 
−1
t , νEt 〉.

The normal velocity V0 on ∂E0 is called an initial velocity. If we do not emphasize the time 
interval [0, T [, we write (Et )t for short. Also, for the unit normal field νEt the corresponding 
second fundamental form BEt and the boundary mean curvature HEt we use the shorthand no-
tations νt , Bt and Ht , when there is no possibility of confusion. In the previous definition 
 is 
called a smoothly parametrized family of diffeomorphisms and we may suggestively denote it 
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by (
t )t∈[0,T [ or (
t )t . The normal velocity Vt on ∂Et does not depend on the choice of the 
parametrization 
. Recall the first variation of volume under the flow

d

dt
|Et | =

∫
∂Et

Vt dHn−1 (2.12)

and again the first variation of perimeter

d

dt
|∂Et | =

∫
∂Et

VtHt dHn−1. (2.13)

We say that (Et )t is volume preserving, if |Et | is a constant function in time. According to 
(2.12) this is possible exactly when Vt has a vanishing integral over ∂Et for every t . Conversely, 
one may show that if E is a smooth set in Tn and ϕ ∈ C̃∞(∂E), there is a smooth volume 
preserving flow (Et )t starting from E such that initial velocity on ∂E is ϕ and moreover there 
is a parametrization 
 of the flow autonomous with respect to time, i.e., ∂t
 = X(
) with a 
X ∈ C∞(Tn; Rn), see the proof of [2, Corollary 3.4]. Then, by using a simple approximation 
argument, it follows from (2.13) that a smooth set E is critical if and only if for every smooth 
volume preserving flow (Et)t starting from E

d

dt
|∂Et |

∣∣∣
t=0

= 0.

Further, if in the previous setting the flow admits a parametrization autonomous with respect 
to time, then the second variation of perimeter at t = 0 is

d2

dt2 |∂Et |
∣∣∣
t=0

=
∫
∂E

|∇τV0|2 − |BE |2V 2
0 dHn−1,

see [2, Remark 3.3]. This motivates us to define for every smooth E in Tn the quadratic form 
∂2P(E) : H̃ 1(∂E) → R, where H̃ 1(∂E) is the space of H 1(∂E)-maps with vanishing integral 
over ∂E, by setting first for every ϕ ∈ C̃∞(∂E)

∂2P(E)[ϕ] =
∫
∂E

|∇τ ϕ|2 − |BE |2ϕ2 dHn−1

and then extending ∂2P(E) to H̃ 1(∂E) in the obvious way. We say that a smooth and critical set 
E in Tn is stable, if ∂2P(E)(ϕ) ≥ 0 for every ϕ ∈ H̃ 1(∂E).

For every smooth set E in Tn the space of infinitesimal translations on ∂E is given by

T (∂E) = {〈νE,p〉 : p ∈Rn}.

Notice that T (∂E) ⊂ C∞(∂̃E). These maps correspond to the initial velocities of the linear 
translations along a vector. It follows from [2, Theorem 3.1] that if Et = E + tp, then the second 
variation at t = 0 of perimeter under this translation is ∂2P(E)[〈νE, p〉]. Since translations do not 
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change perimeter, then ∂2P(E)[〈νE, p〉] = 0. Thus ∂P 2(∂E) is always zero on T (∂E), which 
is also easy to compute directly by using the definition. This leads us to define the strictly stable 
sets in the following way, see [2].

Definition 2.12 (Strictly stable set). A smooth and critical set F in Tn is strictly stable, if 
∂2P(E)[ϕ] > 0 for every nonzero map ϕ ∈ H̃ 1(∂F ) ∩ T ⊥,L2

(∂F ), where T ⊥,L2
(∂F ) is the 

orthogonal complement of T (∂F ) in L2(∂F ).

In the previous definition, we may replace the condition ∂2P(E)[ϕ] > 0 for every nonzero 
map ϕ ∈ H̃ 1(∂F ) ∩ T ⊥,L2

(∂F ) with ∂2P(E)[ϕ] > 0 for every map ϕ ∈ H̃ 1(∂F ) \ T (∂F ) due 
to the fact that �τ 〈νF , p〉 = −|BF |2〈νF , p〉 for every p ∈ Rn. As mentioned already in the 
Introduction such sets are always isolated local perimeter minimizers. For a strictly stable set F
any critical set with the same volume being close enough to F in H 3-sense is a translate of F .

Lemma 2.13. Let F ⊂Tn, n = 3, 4, be a strictly stable set. There exists a positive δ = δ(F ) such 
that if Fψ is critical, |Fψ | = |F | and ‖ψ‖H 3(∂F ) ≤ δ1 for ψ ∈ C∞(∂F ), then Fψ is a translate 
of F .

This result follows from the proof of [2, Theorem 3.9] (for clarity see the proof of [1, Propo-
sition 2.7] although it concerns only the case n = 3) and Remark 2.3. Moreover, being near to 
a strictly stable set in H 3-sense implies that the quadratic form controls H 1-norm for the C̃∞-
functions orthogonal to the infinitesimal translations in L2-sense, see [1, Lemma 2.6].

Lemma 2.14. Let F ⊂Tn, n = 3, 4, be a strictly stable set. Then there exist σ1 = σ1(F ) and δ =
δ(F ) such that if ‖ψ‖H 3(∂F ) ≤ δ1 for ψ ∈ C∞(∂F ), then for every ϕ ∈ C̃∞(∂Fψ) ∩T ⊥,L2

(∂Fψ)

σ1‖ϕ‖2
H 1(∂Fψ)

≤ ∂2P(Fψ)[ϕ].

The authors prove the previous result in the case n = 3 and H 3-closeness being replaced by 
W 2,p-closeness with any p > 2, but clearly the same arguments go through for any n ≥ 2, if we 
use the condition p > max{n −1, 2} instead of p > 2. Hence the result follows from Remark 2.3.

As already presented in the Introduction, a volume preserving mean curvature flow (Et)t in 
Tn is a smooth flow obeying the rule

Vt = H̄t − Ht,

where H̄t is the integral average of Ht over ∂Et . Then by (2.12) and (2.13) we see that

d

dt
|Et | = 0 and

d

dt
|∂Et | = −

∫
Et

(H̄t − Ht)
2 dHn−1 ≤ 0,

so the flow is volume preserving and decreases boundary area. The existence and uniqueness of 
such flow for a given smooth initial datum is well-known. This is usually known as short time 
existence. Also, the maximal lifetime of the flow is bounded by below when slightly varying the 
initial set in C1,α-topology with α > 0.
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Theorem 2.15 (Short time existence). Let E ⊂ Tn be a smooth set and 0 < α < 1. There are 
positive constants δ and T depending on E and α such that if E0 is a smooth set in Tn of the 
form ∂E0 = Eψ0 , where ψ0 ∈ C∞(∂E) and ‖ψ0‖C1,α(∂E) ≤ δ, then there exists a unique volume 
preserving mean curvature flow in Tn with the initial datum E0 and the maximal lifetime of flow 
is at least T .

The above result has been proved for bounded smooth sets in Rn, see [9, Main Theorem]
and clearly it is similar to prove it in the setting of the flat torus Tn. From now on, when there 
is no danger of confusion, we denote the maximal lifetime of a given volume preserving mean 
curvature flow (Et )t by T ∗.

3. L2-monotonicity

In this section we prove a monotonicity result, which is the basis of our analysis. It states that 
if (Et )t is a volume preserving mean curvature flow with a smooth initial datum near enough 
to a strictly stable set F in H 3-sense, then it stays near F in H 3-sense for the whole lifespan 
of the flow, the initial velocity of flow decreases exponentially in L2-sense and the quantity 
‖∇τHt‖2

L2(∂Et )
+ C0‖H̄t − Ht‖2

L2(∂Et )
is decreasing in time with sufficiently large C0. More 

precisely we have the following result.

Theorem 3.1 (Monotonicity near strictly stable set). Let F ⊂ Tn (n = 3, 4) be a strictly stable 
set. There are positive constants C0 and ε0 depending on F such that for every 0 < ε ≤ ε0 there 
is a positive γε < ε such that if (Et)t is a volume preserving mean curvature flow starting from 
a smooth set E0 = Fψ0 , where ψ0 ∈ C∞(∂F ) and ‖ψ0‖H 3(∂F ) ≤ γε , then for every t ∈ [0, T ∗[
(where T ∗ > 0 is the maximal lifetime of flow) we may write Et = Fψt with ψt ∈ C∞(∂F ), 
‖ψt‖H 3(∂F ) ≤ ε,

‖H̄t − Ht‖2
L2(∂Et )

≤ ‖ψ0‖H 3(∂F )e
−σ1t and (3.1)

d

dt

[
‖∇τHt‖2

L2(∂Et )
+ C0‖H̄t − Ht‖2

L2(∂Et )

]
≤ 0, (3.2)

where σ1 is as in Lemma 2.14.

Remark 3.2. As a byproduct of the proof of Theorem 3.1 we may replace zero with
− 1

2‖�τHt‖2
L2(∂Et )

on the right-hand side of (3.2). However, we do not need that fact.

Before proving Theorem 3.1 we introduce the following useful geometric quantity employed, 
for instance, in [1]. For any open set E ⊂ Tn we define the map DE from the collection of the 
open subsets of Tn to [0, ∞[ by setting for any open E′ ⊂Tn

DE(E′) :=
∫

E′�E

dist∂E dHn =
∫
E′

d̄E dHn−1 −
∫
E

d̄E dHn−1. (3.3)

In case of any smooth set E ⊂ Tn this concept of “weak distance” turns out to be very useful in 
terms of controlling the L2(∂E)-norm of the corresponding function of given C1-graph in normal 
direction over ∂E, when the corresponding C1(∂F )-norm is sufficiently small. To observe this, 
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choose δ = δ(E) so small that by Lemma 2.7 for any ψ ∈ C1(∂E) with ‖ψ‖C1(∂E) ≤ δ the 
set Eψ is defined as a C1-set. Moreover, we may assume that for every s ∈ [−δ, δ] the map 

s = id + s∇d̄E is defined as a smooth diffeomorphism from some tubular neighborhood of ∂E

to its image. With help of the coarea formula one may compute

DE(Eψ) =
∫

[
0,‖ψ‖L∞(∂E)

] s

⎡
⎢⎣ ∫

{x∈∂E:ψ(x)>s}
Jτ
s dHn−1 +

∫
{x∈∂E:ψ(x)<−s}

Jτ
−s dHn−1

⎤
⎥⎦ ds.

Since now Jτ
s → 1 uniformly on ∂E as s → 0, then by decreasing δ, if necessary, it follows 
from the Cavalieri’s principle that there exists C ≥ 1 depending on δ such that for every ψ ∈
C1(∂E) with ‖ψ‖C1(∂E) ≤ δ

C−1‖ψ‖2
L2(∂E)

≤ DE(Eψ) ≤ C‖ψ‖2
L2(∂E)

. (3.4)

Again, for any open subset E ⊂Tn the map DE behaves well under any smooth flow. If (Et)t
is a smooth flow in Tn with a normal velocity Vt , then DE(Et ) is differentiable in time and it is 
straightforward to calculate

d

dt
DE(Et ) =

∫
∂Et

d̄EVt dHn−1. (3.5)

Now the importance of this quantity D lies on the fact, that for any smooth critical set F ⊂
Tn and ψ ∈ C∞(∂F ) with sufficiently small C1-norm, ‖∇τHFψ ‖L2(∂F ) and DF (Fψ) together 
control the H 3-norm of ψ .

Lemma 3.3. Let F ⊂ Tn be a smooth critical set. There are positive constants K = K(F) ≥ 1
and δ = δ(F ) such that whenever ψ ∈ C∞(F ) satisfies ‖ψ‖C1(∂F ) ≤ δ, then

K−1
(
‖∇τHFψ ‖L2(∂Fψ) +

√
DF (Fψ)

)
≤ ‖ψ‖H 3(∂F ) ≤ K

(
‖∇τHFψ ‖L2(∂Fψ) +

√
DF (Fψ)

)
.

Proof. We prove only the inequality

‖ψ‖H 3(∂F ) ≤ K
(
‖∇τHFψ ‖L2(∂Fψ) +

√
DF (Fψ)

)
.

The another one is easier to show. Again, it follows from (2.11) and (3.4), that it suffices to find 
positive δ and K such that for every ψ ∈ C∞(∂F ) with ‖ψ‖C1(∂E) ≤ δ

‖ψ‖H 3(∂F ) ≤ K
(‖∇τ

(
HFψ ◦ 
ψ

)‖L2(∂F ) + ‖ψ‖L2(∂F )

)
, (3.6)

where 
ψ : ∂F → ∂Fψ is defined as in Lemma 2.7. To this end we will prove the following 
auxiliary result. For suitable positive constants δ′ and K ′ the estimate
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∣∣∇τ

(
HFψ ◦ 
ψ

)∣∣2 ≥ |∇co(�coψ)|2
2

− |∇3
coψ |2
4

− K ′ (|ψ |2 + |∇coψ |2 + |∇2
coψ |2 + |∇2

coψ |4
)

(3.7)

holds on ∂F for every ψ ∈ C∞(∂F ) with ‖ψ‖C1(∂E) ≤ δ′. Due to the compactness of ∂F we 
have only to show this holds locally. Let δ′′ be the constant for F as in Lemma 2.8. Then for 
every ψ ∈ C∞(∂F ) with ‖ψ‖C1(∂F ) ≤ δ′′

HFψ ◦ 
ψ = −�τψ + 〈A( · ,ψ,∇τψ),∇2
coψ〉

+ ∇coψ (Z( · ,ψ,∇τψ)) + ψP( · ,ψ,∇τψ) + HF , (3.8)

where

A : ∂F × [−δ′′, δ′′] × [−δ′′, δ′′]n → T 2
0 (∂F ),

Z : ∂F × [−δ′′, δ′′] × [−δ′′, δ′′]n → T (∂F ) and

P : ∂F × [−δ′′, δ′′] × [−δ′′, δ′′]n → R

are smooth maps depending on F and A( · , 0, 0) : ∂F → T 2
0 (∂F ) is the zero tensor field. For 

a fixed point x0 ∈ ∂F choose a local orthonormal vector frame (E1, . . . , En−1) in some open 
neighborhood Ux0 ⊂ ∂F of x0. Then we may write for every ψ ∈ C∞(∂F ) with ‖ψ‖C1(∂E) ≤ δ′′

〈A( · ,ψ,∇τψ),∇2
coψ〉 =

∑
ij

aij ( · ,ψ,∇τψ)∇2
coψ(Ei,Ej ) and (3.9)

∇coψ (Z( · ,ψ,∇τψ)) =
∑

i

zi( · ,ψ,∇τψ)∇coψ(Ei), (3.10)

where aij , zi : Ux0 × [−δ′′, δ′′] × [−δ′′, δ′′]n → R are the smooth functions given by

aij (x, t, z) = A(x, t, z)(Ei(x),Ej (x)) and

zi(x, t, z) = 〈Ei(x),Z(x, t, z)〉

for every (x, t, z) ∈ Ux0 × [−δ′′, δ′′] × [−δ′′, δ′′]n. Notice that then |(aij (x, t, z)| ≤ |A(x, t, z)|
and |zi(x, t, z)| ≤ |Z(x, t, z)|. By taking tangential gradient over (3.8) (notice that for every 
ϕ ∈ C∞(∂F ) we may write ∇τ ϕ = ∑

i (∇Ei
ϕ)Ei in Up0 ) and using the expressions (3.9) and 

(3.10) we obtain

∇τ (HFψ ◦ 
ψ) = −∇τ (�coψ) +
∑
ijk

aij ( · ,ψ,∇τψ)∇3
coψ(Ei,Ej ,Ek)Ek

+
∑
ijk

aij ( · ,ψ,∇τψ)
(
∇2

coψ(∇Ek
Ei,Ej ) + ∇2

coψ(Ei,∇Ek
Ej )

)
Ek

+
∑
ij

∇2
coψ(Ei,Ej )∇τ

(
aij ( · ,ψ,∇τψ)

)
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+
∑
ik

zi( · ,ψ,∇τψ)
(
∇2

coψ(Ei,Ek) + ∇coψ(∇Ek
Ei)

)
Ek

+
∑

i

∇coψ(Ei)∇τ (zi( · ,ψ,∇τψ))

+ P( · ,ψ,∇τψ)∇τψ + ψ∇τ (P ( · ,ψ,∇τψ)) . (3.11)

Recall that �coψ = �τψ and HF is a constant thus vanishing after taking gradient over (3.8). 
Again, for any smooth map u : Ux0 × [−δ′′, δ′′] × [−δ′′, δ′′]n → R one computes

∇τ (u( · ,ψ,∇τψ)) = ∇τ u( · ,ψ,∇τψ) + ∂tu( · ,ψ,∇τψ)∇τψ

+ D2
τψ∇nu( · ,ψ,∇τψ) − 〈νF ,∇nu( · ,ψ,∇τψ)〉B∂F ∇τψ. (3.12)

It follows from A( · , 0, 0) being the zero tensor field on ∂F and uniform continuity on compact 
sets, that there exist 0 < δ′ < δ′′ and C ≥ 1 such that for every (x, t, z) ∈ ∂F × [−δ′, δ′] ×
[−δ′, δ′]n

|A(x, t, z)| ≤ 1

64(n − 1)3 and (3.13)

|Z(x, t, z)|, |P(x, t, z)| ≤ C. (3.14)

By shrinking Ux0 and increasing C, if necessary, we may assume that each |∇Ek
Ei | is bounded by 

C in Ux0 . Since |∇τψ | = |∇coψ | and |D2
τψ | = |∇2

coψ | on ∂F for every ψ ∈ C∞(∂F ), then again 
by shrinking Ux0 and increasing C, if needed, it follows from (3.12) that for every ψ ∈ C∞(∂F )

with ‖ψ‖C1(∂F ) ≤ δ′

|∇τ

(
aij ( · ,ψ,∇τψ)

) |, |∇τ (zi( · ,ψ,∇τψ)) |, |∇τ (P ( · ,ψ,∇τψ)) | ≤ C(1 + |∇2
coψ |) (3.15)

in Ux0 . Recalling expression (3.11) for such ψ we denote

aψ =
∑
ijk

aij ( · ,ψ,∇τψ)∇3
coψ(Ei,Ej ,Ek)Ek

and the sum of the lower order terms by bψ . Thus we may write shortly in Ux0

∇τ (HFψ ◦ 
ψ) = −∇τ (�coψ) + aψ + bψ .

Now by using (3.13) we have

|aψ | ≤ |∇3
coψ |
64

(3.16)

in Up . Again, by applying the estimates (3.14) and (3.15) on bψ we find a positive constant C′
depending on C, δ′ and n such that in Ux0

|bψ | ≤ C′ (|ψ | + |∇coψ | + |∇2
coψ | + |∇2

coψ |2
)

. (3.17)
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Thus by using (3.16) and (3.17) as well as the Cauchy-Schwarz and Young’s inequalities, we 
have in Ux0

|∇τ (HFψ ◦ 
ψ)|2 = | − ∇τ (�coψ) + aψ + bψ |2
≥ |∇τ (�coψ)|2 − 2|∇τ (�coψ)||aψ + bψ |

≥ 1

2
|∇τ (�coψ)|2 − 8|aψ + bψ |2

≥ 1

2
|∇τ (�coψ)|2 − 16|aψ |2 − 16|bψ |2

≥ 1

2
|∇τ (�coψ)|2

− 1

4
|∇3

coψ |2 − 64(C′)2
(
|ψ |2 + |∇coψ |2 + |∇2

coψ |2 + |∇2
coψ |4

)

= 1

2
|∇co(�coψ)|2

− 1

4
|∇3

coψ |2 − 64(C′)2
(
|ψ |2 + |∇coψ |2 + |∇2

coψ |2 + |∇2
coψ |4

)
.

This implies (3.7). By integrating the both sides of (3.7) over ∂F and applying (2.6) with the 
associated constant C∂F we obtain

‖∇τ (HFψ ◦ 
ψ)‖2
L2(∂F )

≥ 1

2
‖∇co(�coψ)‖2

L2(∂F )
− 1

4
‖∇3

coψ‖2
L2(∂F )

− K ′ (‖ψ‖2
H 2(∂F )

+ ‖∇2
coψ‖4

L4(∂F )

)

≥ 1

4
‖∇3

coψ‖2
L2(∂F )

− (C∂F + K ′)
(
‖ψ‖2

H 2(∂F )
+ ‖∇2

coψ‖4
L4(∂F )

)

≥ 1

16
‖ψ‖2

H 3(∂F )
+ 3

16
‖∇3

coψ‖2
L2(∂F )

− (
C∂F + K ′ + 1

)(‖ψ‖2
H 2(∂F )

+ ‖∇2
coψ‖4

L4(∂F )

)
. (3.18)

Next we interpolate the last terms in (3.18). By using Lemma 2.2 and Lemma 2.4 (recall that 
∇co(∇coψ) = ∇2

coψ , ∇2
co(∇coψ) = ∇3

coψ and ‖∇coψ‖L∞(∂F ≤ ‖ψ‖C1(∂F )) we find a positive M
depending on F such that

‖∇coψ‖2
L2(∂F )

≤ M‖∇3
coψ‖

2
3
L2(∂F )

‖ψ‖
4
3
L2(∂F )

, (3.19)

‖∇2
coψ‖2

L2(∂F )
≤ M‖∇3

coψ‖
4
3
L2(∂F )

‖ψ‖
2
3
L2(∂F )

and (3.20)

‖∇2
coψ‖4

L4(∂F )
≤ M‖∇3

coψ‖2
L2(∂F )

‖ψ‖2
C1(∂F )

. (3.21)

By applying Young’s inequality on (3.19) and (3.20) we find K ′′ = K ′′(K ′, M, C∂F ) such that
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(
C∂F + K ′ + 1

)‖ψ‖2
H 2(∂F )

≤ 1

8
‖∇3

coψ‖2
L2(∂F )

+ K ′′‖ψ‖2
L2(∂F )

. (3.22)

Finally by choosing 0 < δ ≤ δ′ with 
(
C∂F + K ′ + 1

)
Mδ2 ≤ 1

16 it follows from (3.18), (3.21) and 
(3.22), that for every ψ ∈ C∞(∂F ) with ‖ψ‖C1(∂F ) ≤ δ

‖∇τ (HFψ ◦ 
ψ)‖2
L2(∂F )

≥ 1

16
‖ψ‖2

H 3(∂F )
+ K ′′‖ψ‖2

L2(∂F )
,

which implies (3.6). �
The previous lemma and Lemma 2.8 together yield, that for every smooth critical set F ⊂Tn

there are δ = δ(F ) and K = K(F) such that for every ψ ∈ C∞(∂F ) with ‖ψ‖C1(∂F ) ≤ δ

‖H̄Fψ − HFψ ‖H 1(∂Fψ) ≤ K‖ψ‖H 3(∂F ) (3.23)

‖HFψ ‖H 1(∂Fψ) ≤ K
(‖ψ‖H 3(∂F ) + |HF |) . (3.24)

We will also use the following identities for the time derivatives of the L2-norms of H̄t − Ht

and ∇τHt . For the proof see Appendix.

Lemma 3.4. Let (Et )t be a volume preserving mean curvature flow in Tn. Then for every 0 ≤
t < T ∗

d

dt
‖H̄t − Ht‖2

L2(∂Et )
= − 2∂2P(Et)[H̄t − Ht ] +

∫
∂Et

Ht (H̄t − Ht)
3 dHn−1 and (3.25)

d

dt
‖∇τHt‖2

L2(∂Et )
= − 2

∫
∂Et

(�τHt)
2 − (H̄t − Ht)|Bt |2�τHt dHn−1

− 2
∫

∂Et

(H̄t − Ht)〈∇τHt ,Bt∇τHt 〉 dHn−1

+
∫

∂Et

|∇τHt |2(H̄t − Ht)Ht dHn−1. (3.26)

We are now ready to prove Theorem 3.1. We divide it into four steps.

Proof of Theorem 3.1. Step 1. We want first to utilize several lemmas and estimates we have 
gathered by controlling C1- and W 2,p-norms for 1 ≤ p ≤ 6. Indeed, by Remark 2.3 there is a 
constant K0 ∈ R+ depending on F , such that for every ψ ∈ C∞(∂F ) and 1 ≤ p ≤ 6

‖ψ‖C1(∂F ),‖ψ‖W 2,p(∂F ) ≤ K0‖ψ‖H 3(∂F ). (3.27)

Notice that the assumption n ≤ 4 is really needed for this conclusion. Using the estimate (3.27)
we find 0 < δ < 1 and 1 < K < ∞ so that for any ψ ∈ C∞(∂F ) with ‖ψ‖H 3(∂F ) ≤ δ the norm 
‖ψ‖C1(∂F ) is so small that the following four conditions hold.
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(i) Lemma 2.7 is satisfied, i.e., Fψ is a well-defined smooth set. Moreover, we may assume

‖Eψ,F‖C1(Tn) ≤ δF

2
, (3.28)

where δF is as in the lemma.
(ii) The inequalities (2.10) (for d̄F , then d̄F ◦ 
ψ = ψ ) and (3.4) are satisfied with K , i.e.,

K−1‖ψ‖L2(∂F ) ≤ ‖d̄F ‖L2(∂Fψ),

√
DF (Fψ) ≤ K‖ψ‖L2(∂F ). (3.29)

(iii) Lemma 3.3 and (3.23) are satisfied with K , i.e.,

‖ψ‖H 3(∂F ) ≤ K
(
‖∇τHFψ ‖L2(∂Fψ) +

√
DF (Fψ)

)
(3.30)

‖H̄Fψ − HFψ ‖H 1(∂Fψ) ≤ K‖ψ‖H 3(∂F ). (3.31)

(iv) Lemma 2.9 is satisfied for H̄Fψ − HFψ and 1 ≤ p ≤ 6 with K , i.e.,

‖H̄Fψ − HFψ ‖Lp(∂Fψ) ≤ K‖H̄Fψ − HFψ ‖H 1(∂Fψ). (3.32)

Moreover, we may assume δ to be so small and K to be so large that by (3.27), (2.9), 
Lemma 2.10 and Lemma 2.14

‖∇τHFψ ‖L4(∂Fψ) ≤ K
(
‖�τHFψ ‖L2(∂Fψ) + ‖H̄Fψ − HFψ ‖H 1(∂Fψ)

)
, (3.33)

‖HFψ ‖Lp(∂Fψ),‖BFψ ‖Lp(∂Fψ) ≤ K for 1 ≤ p ≤ 6 and (3.34)

σ1‖H̄Fψ − HFψ ‖2
H 1(∂Fψ)

≤ ∂2P(Fψ)[H̄Fψ − HFψ ]. (3.35)

Next we fix the constants C0 and ε0 by setting

C0 = 4K6 + 1

σ1
(3.36)

ε0 = min

{
δ,

min{σ1,1}
16K6

}
. (3.37)

Again, for given 0 < ε ≤ ε0 set γε to be the maximal 0 < s ≤ ε
2 satisfying

2

σ1

√
s + K2s2 ≤ ε2

16K2 and K2 (1 + C0) s ≤ ε

4
. (3.38)

Step 2. Suppose that (Et )t is the volume preserving mean curvature flow with a smooth initial 
datum E0 = Fψ0 , where ψ0 ∈ C∞(∂F ) and ‖ψ0‖H 3(∂F ) ≤ γε . Since t �→ ‖Et, F‖C1 is contin-
uous on [0, T ∗[ (recall T ∗ is the maximal lifetime), then it follows from Lemma 2.7 and (3.28)
that we may write Et = Fψt for unique ψt ∈ C∞(∂F ) with continuous t �→ ‖ψt‖H 3(∂F ) over a 
short time period. Hence
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Tε = sup
{
s ∈ [0, T ∗[ : Et = Fψt for ψt ∈ C∞(∂F ), ‖ψt‖H 3(∂F ) ≤ ε ∀t ∈ [0, s]}

must be a positive number. The key idea is to show that the claim of theorem is satisfied for ε on 
the time interval [0, Tε[ and by virtue of the choice of γε we have in fact

‖ψt‖H 3(∂F ) ≤ ε

2
on [0, Tε[. (3.39)

By using a similar continuity argument as before one shows that the condition (3.39) implies 
Tε = T ∗.

Step 3. For every t ∈ [0, Tε[

d

dt
‖H̄t − Ht‖2

L2(∂Et )

(3.25)= −2∂2P(Et)[H̄t − Ht ] +
∫

∂Et

Ht (H̄t − Ht)
3 dHn−1

(3.35)≤ −2σ1‖H̄t − Ht‖2
H 1(∂Et )

+
∫

∂Et

Ht (H̄t − Ht)
3 dHn−1

≤ −2σ1‖H̄t − Ht‖2
H 1(∂Et )

+ ‖Ht‖L4(∂Et )
‖H̄t − Ht‖3

L4(∂Et )

(3.34)≤ −2σ1‖H̄t − Ht‖2
H 1(∂Et )

+ K‖H̄t − Ht‖3
L4(∂Et )

(3.32)≤ −2σ1‖H̄t − Ht‖2
H 1(∂Et )

+ K4‖H̄t − Ht‖3
H 1(∂Et )

(3.31)≤
(
−2σ1 + K5‖ψt‖H 3(∂F )

)
‖H̄t − Ht‖2

H 1(∂Et )

≤
(
−2σ1 + K5ε

)
‖H̄t − Ht‖2

H 1(∂Et )

(3.37)≤ −σ1‖H̄t − Ht‖2
H 1(∂Et )

. (3.40)

Since −σ1‖H̄t − Ht‖2
H 1(∂Et )

≤ −σ1‖H̄t − Ht‖2
L2(∂Et )

, by using Grönwall’s lemma we obtain

‖H̄t − Ht‖2
L2(∂Et )

≤ ‖H̄0 − H0‖2
L2(∂Et )

e−σ1t

(3.31)≤ K2‖ψ0‖2
H 3(∂F )

e−σ1t

(3.37)≤ ‖ψ0‖H 3(∂F )e
−σ1t (3.41)

so (3.1) holds on [0, Tε[. Next we estimate DF (Et) on [0, Tε[. For the time derivative
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d

dt
DF (Et )

(3.5)=
∫

∂Et

d̄F (H̄t − Ht)dHn−1

≤ ‖d̄F ‖L2(∂Et )
‖H̄t − Ht‖L2(∂Et )

(3.29)≤ K‖ψt‖L2(∂F )‖H̄t − Ht‖L2(∂Et )

≤ Kε‖H̄t − Ht‖L2(∂Et )

(3.41)≤ Kε‖ψ0‖
1
2
H 3(∂F )

e− 1
2 σ1t

(3.37)≤ ‖ψ0‖
1
2
H 3(∂F )

e− 1
2 σ1t .

Thus integrating over time yields

DF (Et) ≤ 2

σ1
‖ψ0‖

1
2
H 3(∂F )

(
1 − e− σ1

2

)
+ DF (E0)

(3.29)≤ 2

σ1
‖ψ0‖

1
2
H 3(∂F )

+ K2‖ψ0‖2
L2(∂F )

(3.38)≤ ε2

16K2 . (3.42)

Step 4. In this last step we finish the proof by showing that (3.2) and (3.39) are satisfied on 
[0, Tε[. To this end we have to estimate d

dt
‖∇τHt‖2

L2(∂Et )
on [0, Tε[. Recall that by (3.26) we 

have

d

dt
‖∇τHt‖2

L2(∂Et )
= −2

∫
∂Et

(�τHt )
2 − (H̄t − Ht)|Bt |2�τHt dHn−1

− 2
∫

∂Et

(H̄t − Ht)〈∇τHt ,Bt∇τHt 〉 dHn−1 +
∫

∂Et

|∇τHt |2(H̄t − Ht)Ht dHn−1

= T1 + T2 + T3.

Next we estimate the terms T1, T2 and T3. First we have

T1
Young≤ −‖�τHt‖2

L2(∂Et )
+ 4

∫
∂Et

|H̄t − Ht |2|Bt |4 dHn−1

≤ −‖�τHt‖2
L2(∂Et )

+ 4‖H̄t − Ht‖2
L6(∂Et )

‖Bt‖4
L6(∂Et )

(3.34)≤ −‖�τHt‖2
L2(∂Et )

+ 4K4‖H̄t − Ht‖2
L6(∂Et )

(3.32)≤ −‖�τHt‖2
L2(∂Et )

+ 4K6‖H̄t − Ht‖2
H 1(∂Et )

. (3.43)

Second
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T2 ≤ 2
∫

∂Et

|H̄t − Ht ||∇τHt |2|Bt | dHn−1

≤ 2‖∇τHt‖2
L4(∂Et )

‖H̄t − Ht‖L4(∂Et )
‖Bt‖L4(∂Et )

(3.34)≤ 2K‖∇τHt‖2
L4(∂Et )

‖H̄t − Ht‖L4(∂Et )

(3.33)≤ 2K3 (‖�τHt‖L2(∂Et )
+ ‖H̄t − Ht‖H 1(∂Et )

)2 ‖H̄t − Ht‖L4(∂Et )

(3.32)≤ 2K4‖H̄t − Ht‖H 1(∂Et )

(‖�τHt‖L2(∂Et )
+ ‖H̄t − Ht‖H 1(∂Et )

)2

(3.31)≤ 2K5‖ψt‖H 3(∂F )

(‖�τHt‖L2(∂Et )
+ ‖H̄t − Ht‖H 1(∂Et )

)2

≤ 4K5‖ψt‖H 3(∂F )‖�τHt‖2
L2(∂Et )

+ 4K5‖ψt‖H 3(∂F )‖H̄t − Ht‖2
H 1(∂Et )

≤ 4K5ε‖�τHt‖2
L2(∂Et )

+ 4K5ε‖H̄t − Ht‖2
H 1(∂Et )

(3.37)≤ 1

4
‖�τHt‖2

L2(∂Et )
+ 1

2
‖H̄t − Ht‖2

H 1(∂Et )
. (3.44)

Finally by estimating in a similar way as above we obtain

T3 ≤ 1

8
‖�τHt‖2

L2(∂Et )
+ 1

4
‖H̄t − Ht‖2

H 1(∂Et )
. (3.45)

Hence (3.43), (3.44) and (3.45) together yield

d

dt
‖∇τHt‖2

L2(∂Et )
≤ −1

2
‖�τHt‖2

L2(∂Et )
+

(
4K6 + 1

)
‖H̄t − Ht‖2

H 1(∂Et )

(3.36)= −1

2
‖�τHt‖2

L2(∂Et )
+ σ1C0‖H̄t − Ht‖2

H 1(∂Et )

on [0, Tε[. Then the previous estimate with (3.40) yields that for every t ∈ [0, Tε[

d

dt

[
‖∇τHt‖2

L2(∂Et )
+ C0‖H̄t − Ht‖2

L2(∂Et )

]
≤ −1

2
‖�τHt‖2

L2(∂Et )
,

which implies (3.2). In particular

t �→ ‖∇τHt‖2
L2(∂Et )

+ C0‖H̄t − Ht‖2
L2(∂Et )

is decreasing map on [0, Tε[ and therefore

‖∇τHt‖L2(∂Et )
≤ ‖∇τH0‖L2(∂E0)

+ C0‖H̄0 − H0‖L2(∂E0)
. (3.46)

Finally for every t ∈ [0, Tε[
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‖ψt‖H 3(∂Et )

(3.30)≤ K
(
‖∇τHt‖L2(∂Et )

+√
DF (Et)

)
(3.46)≤ K

(‖∇τH0‖L2(∂E0)
+ C0‖H̄0 − H0‖L2(∂E0)

)+ K
√

DF (Et )

(3.42)≤ K (1 + C0)‖H̄0 − H0‖H 1(∂E0)
+ ε

4
(3.31)≤ K2 (1 + C0)‖ψ0‖H 3(∂Et )

+ ε

4
(3.38)≤ ε

2
. �

4. The main result

In this section we will prove the main result. We give first the technical statement of the 
theorem in contrast to the heuristical one we presented in the Introduction.

Theorem 4.1 (Main Theorem). Let Tn be a flat torus with n = 3, 4 and assume that F ⊂ Tn

is a strictly stable set. There exist positive constants δ0, σ0 ∈ R+ depending on F such that the 
following hold.

If E0 is a smooth set in Tn with |E0| = |F | of the form E0 = Fψ0 , where ψ0 ∈ C∞(∂F ) and 
‖ψ0‖H 3(∂F ) ≤ δ0, then the volume preserving mean curvature flow (Et)t in Tn with the initial 
datum E0 satisfies the following conditions.

(i) The flow has infinite lifetime.
(ii) There exist p = p(F, E0) ∈ Rn and C = C(F, E0) ∈ R+ such that the flow converges to 

F + p exponentially fast in W 2,5-sense, that is, Et = (F + p)ϕt for ϕt ∈ C∞(∂(F + p))

and ‖ϕt‖W 2,5 ≤ Ce−σ0t .
(iii) |p| → 0 and C → 0 as ‖ψ0‖H 3(∂F ) → 0.

Remark 4.2. In the statement of the main theorem the W 2,5-convergence can be replaced by 
W 2,q -convergence, where 1 ≤ q < ∞, if n = 3, and 1 ≤ q < 6, if n = 4. In this case the proof 
would be similar to the original proof.

The main idea of the proof is obviously to employ the short time existence (Theorem 2.15) 
and the monotonicity result (Theorem 3.1).

Proof of the Main Theorem. Let F ⊂ Tn be a strictly stable set and let us fix the constants δ0
and σ0 for F as in the statement of the main theorem. Let ε0, σ1 ∈ R+ and 0 < γε < ε (for every 
0 < ε ≤ ε0) for F be as in Theorem 3.1. Choose first a positive c so small that the following hold.

(i) The condition ‖ψ‖C1(∂F ) ≤ c for ψ ∈ C1, 1
4 (∂F ) implies via Lemma 2.7 that the set Eψ is 

defined as a C1, 1
4 -set, the map 
ψ defined as in the same lemma is a C1, 1

4 -diffeomorphism 
from ∂F to ∂Fψ and

K−1|∂F | ≤ |∂Fψ | ≤ K|∂F | (4.1)
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for some real number K ≥ 1 depending on c and F .
(ii) Further, if ψ is smooth, the same condition implies via (3.24) that by increasing K , if 

necessary,

‖HFψ ‖H 1(Fψ ) ≤ K
(‖ψ‖H 3(∂F ) + |HF |) . (4.2)

(iii) Since a translate of F satisfies Lemma 3.3 and (3.4) with the same bounds as F , then by 
using the previous lemmas and Lemma 2.7, possibly decreasing c and increasing K , we 
obtain the following. Assume F + p = Fg with g ∈ C∞(∂F ) and ‖g‖C1(∂F ) ≤ c. Then for 
every ψ ∈ C∞(∂F ) with ‖ψ‖C1(∂F ) ≤ c there is a unique ϕ ∈ C∞(∂(F + p)) such that 
Fψ = (F + p)ϕ and we have the following uniform estimates

K−1
√

DF+p(Fψ) ≤ ‖ϕ‖L2(∂(F+p)) ≤ K

√
DF+p(Fψ) and (4.3)

K−1‖∇τHFψ ‖L2(∂Fψ) ≤ ‖ϕ‖H 3(∂(F+p)) ≤ K
(
‖∇τHFψ ‖L2(∂Fψ) +

√
DF+p(Fψ)

)
.

(4.4)

(iv) Finally the condition ‖ψ‖
C

1, 1
4 (∂F )

≤ c for ψ ∈ C∞(∂F ) means that Theorem 2.15 (in the 

case β = 1
4 ) is satisfied for the initial set Eψ .

Next choose 0 < ε1 ≤ ε0 such that the condition ‖ψ‖H 3(∂F ) ≤ ε1 for ψ ∈ C∞(∂F ) means 
that first Lemma 2.13 is satisfied, provided that Fψ is critical with |Fψ | = |F |, and second via 
Lemma 2.6 ‖ψ‖C1(∂F ) ≤ ‖ψ‖

C
1, 1

4 (∂F )
≤ c (here we really need the assumption n ≤ 4). At this 

point we set

δ0 = γε1 and σ0 = −σ1

2

(
1

3
− n − 1

10

)
. (4.5)

Fix an arbitrary ψ0 ∈ C∞(∂F ) with ‖ψ0‖H 3(∂F ) ≤ δ0 and |Fψ0 | = |F |. Then by Theorem 2.15
there exists a unique volume preserving mean curvature flow (Et)t starting from E0 = Fψ0 and 
the maximal lifetime T ∗ is bounded from below by T = T (F, 14 ) > 0 as in Theorem 2.15. Again, 
by Theorem 3.1 we may write Et = Fψt , where ψt ∈ C∞(∂F ) with ‖ψt‖H 3(∂F ) ≤ ε1, and the 
inequalities (3.1) and (3.2) are satisfied for every t ∈ [0, T ∗[. We divide the proof into three steps, 
whose statements are listed below.

Step 1. The flow (Et )t has infinite lifetime and there exists ψ∞ ∈ H 3(∂F ) with ‖ψ∞‖H 3(∂F ) ≤
ε such that ψt → ψ∞ in C1, 1

4 (∂F ). Further, there exist a positive constant CF indepen-
dent of the choice of ψ0 and a decreasing ρ : [0, δ0] → [0, ∞[ with lims→0+ ρ(s) = 0
such that every t ∈ [0, ∞[

DE∞(Et ) ≤ CF ‖ψ0‖H 3(∂F )e
−σ1t and (4.6)

‖ψ∞‖L∞(∂F ) ≤ ρ
(‖ψ0‖H 3(∂F )

)
, (4.7)

where E∞ = Fψ∞ is the corresponding C1, 1
4 -limit set.
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Step 2. The limit set is of the form E∞ = F + p, where p → 0 as ‖ψ0‖H 3(∂F ) → 0.
Step 3. The W 2,5-convergence of the flow: For each t ∈ [0, ∞[ there is ϕt ∈ C∞(∂E∞) with 

Et = (E∞)ϕt and ‖ϕt‖W 2,5(∂F ) ≤ Ce−σ0t , where C → 0 as ‖ψ0‖H 3(∂F ) → 0.

Since ψ0 ∈ C∞(∂F ) with ‖ψ0‖H 3(∂F ) ≤ δ0 was arbitrarily chosen, the claim of theorem fol-
lows immediately from these statements. Let us prove them in order as listed.

Proof of Step 1. Assume by contradiction T ∗ < ∞ and choose t̂ ∈ [0, T ∗[ such that T ∗ − t̂ < T , 
where T = T (F, 14 ) as in Theorem 2.15. Now ‖ψt̂‖H 3(∂F ) ≤ ε1 so ‖ψt̂‖

C
1, 1

4 (∂F )
≤ c and hence 

by Theorem 2.15 there exists a unique volume preserving mean curvature flow (Êt )t starting 
from Et̂ with a maximal lifetime at least T . It follows from the uniqueness and from the semi-
group property of (Et )t that Et = Êt−t̂ for every t ∈ [t̂ , T ∗[. This means that the flow (Et )t can 
be extended beyond T ∗, which contradicts its maximality. Therefore it holds T ∗ = ∞.

Take a sequence (tk)∞k=1 ⊂ R+ with tk → ∞. Since ‖ψtk‖H 3(∂F ) ≤ ε1 for every k and 
H 3(∂F ) is weakly compact, then, up to a subsequence, there is a weak limit ψ∞ ∈ H 3(∂F )

with ‖ψ∞‖H 3(∂F ) ≤ ε1. Further, it follows from Lemma 2.6 that the sequence converges to ψ∞
in C1, 1

4 (∂F ). Now C1-convergence implies that ‖ψ∞‖C1(∂F ) ≤ c so E∞ := Fψ∞ is defined as a 

C1, 1
4 -set and the map 
ψ∞ is a C1, 1

4 -diffeomorphism from ∂F to ∂E∞.
Next we check that (4.6) holds for every t . Notice first that |Etk�E∞| → 0, which implies 

DE∞(Etk ) → 0. For a fixed t ∈ [0, ∞[ and every tk > t we may estimate

|DE∞(Etk ) − DE∞(Et )| =
∣∣∣∣∣∣

tk∫
t

d

ds
DE∞(Es) ds

∣∣∣∣∣∣
(3.5)=

∣∣∣∣∣∣∣
tk∫

t

∫
∂Es

d̄E∞(H̄s − Hs) dHn−1ds

∣∣∣∣∣∣∣
≤

tk∫
t

‖d̄E∞‖L2(∂Es)
‖H̄s − Hs‖L2(∂Es)

ds

≤ √
n

tk∫
t

|∂Es |‖H̄s − Hs‖L2(∂Es)
ds

(4.1)≤ √
nK|∂F |

tk∫
t

‖H̄s − Hs‖L2(∂Es)
ds

(3.1)≤ √
nK|∂F |‖ψ0‖H 3(∂F )

tk∫
t

e−σ1s ds

≤
√

nK|∂F |
σ1

‖ψ0‖H 3(∂F )e
−σ1t .
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Since DE∞(Etk ) → 0, then the previous estimate implies (4.6) for t . By doing a similar estimate 
for DF (Etk ) − DF (E0), using (4.3) for F and Lemma (4.7) and recalling that ‖ψtk‖H 3(∂F ) ≤ ε1

we find a constant C̃F not depending on the choice of ψ0 such that

‖ψtk‖L∞(∂F ) ≤ C̃F ‖ψ0‖
1
2 (1− n−1

6 )

H 3(∂F )
.

Thus by passing to limit we see that (4.7) holds for ψ∞. Finally we check that the full C1, 1
4 -

convergence in time holds. To this end, it suffices to show that every sequence (t̃k)∞k=1 ⊂ R+
with t̃k → ∞ has a subsequence converging to ψ∞ in C1, 1

4 (∂F ). Indeed, by arguing as previ-
ously in a case of such sequence (t̃k)∞k=1 ⊂ R+, we find a subsequence converging to some limit 

ψ̃∞ ∈ H 3(∂F ) in C1, 1
4 (∂F ) and Fψ̃∞ is defined as a C1, 1

4 -set. We may again assume that the 
subsequence is the whole sequence and hence |Et̃k

�Fψ̃∞| → 0, which implies together (4.6) and 

the boundedness of d̄E∞ that

DE∞
(
Fψ̃∞

)
= lim

k
DE∞

(
Et̃k

) = 0.

This implies that E∞ = Fψ∞ and further ψ∞ = ψ̃∞. Thus the first step has been concluded.

Proof of Step 2. First we show that E∞ is a smooth and critical set. Since E∞ is a C1, 1
4 -set, then 

thanks to Lemma 2.1 it suffices to show it to be stationary. We need to find λ∞ ∈R such that for 
every f ∈ C∞(Tn; Rn)

∫
∂E∞

divτ f dHn−1 = λ∞
∫

∂E∞

〈f, ν∞〉 dHn−1, (4.8)

where ν∞ is the corresponding unit normal field of ∂E∞ with inside-out orientation. Since ψt →
ψ∞ in C1(∂F ), then 
ψt → 
ψ∞ , νt ◦ 
ψt → ν∞ ◦ 
ψ∞ and Jτ
ψt → Jτ
ψ∞ uniformly on 
∂F . Thus by using the change of variables formula we obtain for every f ∈ C∞(Tn; Rn)

∫
∂Et

divτ f dHn−1 −→
∫

∂E∞

divτ f dHn−1 and (4.9)

∫
∂Et

〈f, νt 〉 dHn−1 −→
∫

∂E∞

〈f, ν∞〉 dHn−1. (4.10)

By using (4.1), (4.2) and Hölder’s inequality we see that H̄t is bounded in time and hence we 
find a sequence (H̄tk )k , tk → ∞, converging to some real number say λ∞. By the divergence 
theorem ∫

∂Etk

divτ f dHn−1 =
∫

∂Etk

Htk 〈f, νt 〉 dHn−1
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= H̄tk

∫
∂Etk

〈f, νtk 〉 dHn−1 +
∫

∂Etk

(Htk − H̄tk )〈f, νt 〉 dHn−1

and thus by letting tk → ∞ and recalling (4.9) and (4.10) we obtain (4.8), since

∣∣∣∣∣∣∣
∫

∂Etk

(Htk − H̄tk )〈f, νtk 〉 dHn−1

∣∣∣∣∣∣∣ ≤ sup
Tn

|f ||∂Etk |
1
2 ‖(Htk − H̄tk )‖L2(∂Etk

)

(4.1)≤ sup
Tn

|f | (K|∂F |) 1
2 ‖(Htk − H̄tk )‖L2(∂Etk

)

(3.1)≤ sup
Tn

|f | (K|∂F |‖ψ0‖H 3(∂F )e
−σ1tk

) 1
2 .

Thus E∞ is a smooth and critical set and since ‖ψ∞‖H 3(∂F ) ≤ ε1 (recall the choice of ε1) and 
|E∞| = |F | (by (4.4)), it follows from Lemma 2.13 that E∞ = F + p for some p ∈ Rn. Since 
now dH (F, E∞) ≤ ‖ψ∞‖L∞(∂F ), then it follows from (4.7) that dH (F, E∞) → 0 as ‖ψ0‖H 3(∂F )

tends to zero. This implies that we may choose p in such a way that simultaneously p → 0.

Proof of Step 3. Since now E + p = F∞ and ‖ψ∞‖C1(∂E), ‖ψt‖C1(∂E) ≤ c, then by (iii) we may 
write ∂Et as a smooth graph in normal direction over ∂(F + p), i.e., for every t ∈ [0, ∞[ there 
is a unique ϕt ∈ C∞(∂E∞) for which Et = (E∞)ϕt . Again, for every t ∈ [0, ∞[

‖ϕt‖L2(∂E∞)

(4.3)≤ K
√

DE∞(Et )
(4.6)≤ KC

1
2
F e− σ1

2 t

and

‖ϕt‖H 3(∂E∞)

(4.4)≤ K
(
‖∇τHt‖L2(∂Et )

+√
DE∞(Et )

)
(3.2)≤ K

(
‖∇τH0‖L2(∂E0)

+ C
1
2
0 ‖H̄0 − H0‖L2(∂E0)

+√
DE∞(Et )

)
(4.4)≤ K

(
K‖ψ0‖H 3(∂F ) + C

1
2
0 ‖H̄0 − H0‖L2(∂E0)

+√
DE∞(Et )

)
(3.1)≤ K

(
K‖ψ0‖H 3(∂F ) + C

1
2
0 ‖ψ0‖

1
2
H 3(∂F )

+√
DE∞(Et )

)
(4.6)≤ K

(
K‖ψ0‖H 3(∂F ) + C

1
2
0 ‖ψ0‖

1
2
H 3(∂F )

+ C
1
2
F ‖ψ0‖

1
2
H 3(∂F )

)

≤ K

(
Kε

1
2
1 + C

1
2
0 + C

1
2
F

)
‖ψ0‖H 3(∂F )

This means that there exists a positive constant C′
F independent of the choice of ψ0 such that 

‖ϕt‖L2(∂E∞) ≤ C′
F ‖ψ0‖

1
2
H 3(∂F )

e− σ1
2 t and ‖ϕt‖H 3(∂E∞) ≤ C′

F ‖ψ0‖
1
2
H 3(∂F )

for every t ∈ [0, ∞[. 
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Since ∂(F + p) shares same interpolation bounds than ∂F , then by using the previous estimates 
and Lemma 2.2 in the case

1

5
= j

n − 1
+

(
1

2
− 3

n − 1

)
α + 1 − α

2
(4.11)

with α = j
3 + n−1

10 , j = 0, 1, 2 and a corresponding interpolation constant (which we may assume 
to be the same C ′

F ) we obtain

‖∇j
coϕt‖L5(∂E∞) ≤ C′

F ‖∇3
coϕt‖

j
3 + n−1

10
L2(∂E∞)

‖ϕt‖
3−j

3 − n−1
10

L2(∂E∞)

≤ C′
F ‖ϕt‖

j
3 + n−1

10
H 3(∂E∞)

‖ϕt‖
3−j

3 − n−1
10

L2(∂E∞)

≤ (C′
F )2‖ψ0‖

1
2
H 3(∂F )

e
− σ1

2

(
3−j

3 − n−1
10

)
t

≤ (C′
F )2‖ψ0‖

1
2
H 3(∂F )

e
− σ1

2

(
1
3 − n−1

10

)
t

(4.5)= (C′
F )2‖ψ0‖

1
2
H 3(∂F )

e−σ0t ,

which implies that there exists such C as claimed. �
Let us finally recall Remark 4.2. In the last step of the previous proof we may replace 5 in 

the left hand side of (4.11) with any q ≥ 1 as long as the corresponding α is strictly less than 1, 
because σ0 = η0

2 (1 −α) would then be strictly positive. In the case n = 3 by replacing 5 with any 
1 ≤ q < ∞ we obtain

α = 1 − 2

3q
,

so we see that any such q will do. Whereas in the case n = 4 doing so yields

α = 7

6
− 1

q

and hence q may take any values in the interval [1, 6[.

5. Appendix

C1- and H 3-bounds. In this subsection we prove the estimates (2.10) and (2.11), Lemma 2.8, 
Lemma 2.9 and Lemma 2.10. We will use the same notation as earlier without any further men-
tion. For sake of simplicity, we use the generic symbol C for a constant which may change line 
to line in the estimates.

Let us first fix a smooth set E and let U be a regular neighborhood of ∂E. Recall that d̄E and 
π∂E are Ck-bounded in U for every k ∈ N . For every ψ ∈ C∞(∂E) we set the smooth extension 
ψE = ψ ◦ π∂E . Then ∇ψE = ∇τψ on ∂E and moreover the following decomposition holds on 
∂E
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D2ψE = −νE ⊗ BE∇τψ − BE∇τψ ⊗ νE + D2
τψ. (5.1)

For every ψ ∈ C∞(∂E) we set 
ψ : ∂E → Tn, 
ψ(x) = x + ψνE(x), as in Lemma 2.7. We 
extend 
ψ to be the smooth map U → Tn given by 
ψ(x) = x + ψE(x)∇d̄E(x). Then

D
ψ =
{

I + ψED2d̄F + ∇d̄F ⊗ ∇ψπ in U and

I + ψBE + νE ⊗ ∇τψ on ∂E.

Now D
ψ → I uniformly in U as ‖ψ‖C1(∂E) → 0. Thus 
ψ is an orientation preserving diffeo-
morphism from U to its image and the set Eψ is well-defined, when ‖ψ‖C1(∂E) is small enough.1

The inverse matrix on ∂E is then

(D
ψ)−1 = (I − νE ⊗ ∇τψ) (I + ψBE)−1 .

From now on, we assume ‖ψ‖C1(∂E) ≤ δ with δ small enough so that the previous hold. Further, 
we use the shorthand notation Aψ = (I + ψBE)−1 on ∂E. Set uψ : 
ψ(U) → R, uψ = d̄E ◦

−1

ψ . Then ∂Eψ = u−1
ψ (0) and νEψ = ∇uψ/|∇uψ | on ∂Eψ . Again

∇uψ ◦ 
ψ = (D
ψ)−TνE = νE − Aψ∇τψ −→ νE

uniformly on ∂E as ‖ψ‖C1(∂E) → 0. Thus νEψ ◦ 
ψ also converges uniformly to νE as ψ goes 
to zero in C1-sense. The second fundamental form on ∂Eψ can be written, with help of uψ , as

BEψ = P∂Eψ Dτ

( ∇uψ

|∇uψ |
)

= 1

|∇uψ | (I − νEψ ⊗ νEψ )D2uψ(I − νEψ ⊗ νEψ ). (5.2)

Omitting the details we may further compute that

D2uψ ◦ 
ψ = Aψ

[
BE − ψ

(
n∑

k=1

〈ν� − Aψ∇τψ, vk〉∂vk
D2d̄E

)
− D2ψE

]
Aψ (5.3)

on ∂E, where v1, . . . , vn is any orthonormal base of Rn. Hence (5.1), (5.2) and (5.3) and the 
C1-bound δ imply that |D2uψ ◦ 
ψ | ≤ C(1 + |D2

τψ |) on ∂E with some constant C and so (2.9)
holds. Again, by combining the expressions (5.2) and (5.3) we may write on ∂E

HEψ ◦ 
ψ = tr

(
Q( · ,ψ,∇τψ)

[
BE − ψ

(
n∑

k=1

〈ν� − Aψ∇τψ, vk〉∂vk
D2d̄E

)
− D2ψE

])
,

(5.4)
where Q : ∂E × [−δ, δ] × [−δ, δ] → L(Rn; Rn) is a smooth map with Q( · , 0, 0) = P∂E . Thus 
by using Taylor’s expansion we may write on ∂E

Q( · ,ψ,∇τψ) = P∂E + ψS( · ,ψ,∇τψ) + [〈∇τψ, rij ( · ,ψ,∇τψ)〉]ij (5.5)

1 This implies the first part of Lemma 2.7 for smooth functions (the other cases are similar to check). The details of 
second part are left to the reader.
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with some smooth S and rij . Thus by substituting (5.5) and (5.1) to (5.4) we obtain the expression 
(2.8) after regrouping the terms and Lemma 2.8 is clear.

Suppose that h ∈ Lp(∂Eψ) with 1 ≤ p < ∞ and ϕ ∈ C∞(∂Eψ). By using the change of 
variable formula we have∫

∂Eψ

|h|p dHn−1 =
∫
E

|h ◦ 
ψ |pJτ
ψ dHn−1 and

∫
∂Eψ

|∇τ ϕ|p dHn−1 =
∫

∂Eψ

|P∂Eψ ∇
(
(ϕ ◦ 
ψ)E ◦ 
−1

ψ

)
|p dHn−1

=
∫

∂Eψ

|P∂Eψ (D
−1
ψ )T∇(ϕ ◦ 
ψ)E ◦ 
−1

ψ |p dHn−1

=
∫
∂E

|(I − νEψ ◦ 
ψ ⊗ νEψ ◦ 
ψ)(D
ψ)−T∇τ (ϕ ◦ 
ψ)|pJτ
ψ dHn−1.

Since now (I − νEψ ◦ 
ψ ⊗ νEψ ◦ 
ψ)(D
ψ)−T → P∂E and Jτ
ψ → 1 uniformly on ∂E as 
‖ψ‖C1(∂E) tends to zero, then by decreasing δ, if necessary, we find a uniform constant C such 
that

C−1‖h ◦ 
ψ‖p

Lp(∂E)
≤ ‖h‖p

Lp(∂Eψ)
≤ C‖h ◦ 
ψ‖p

Lp(∂E)
and

C−1−p‖∇τ (ϕ ◦ 
ψ)‖p

Lp(∂E) ≤ ‖∇τ ϕ‖p

Lp(∂Eψ) ≤ C1+p‖∇τ (ϕ ◦ 
ψ)‖p

Lp(∂E),

whenever ‖ψ‖C1(∂E) ≤ δ. This establishes (2.10) and (2.11).
It follows from (2.10) that for every h ∈ L6(∂Eψ) the norm ‖h‖L6(∂Eψ) controls uniformly 

every ‖h‖Lp(∂Eψ) norm with 1 ≤ p ≤ 6. Hence it is sufficient to check Lemma 2.9 in the case 
p = 6. Suppose that ϕ ∈ C̃∞(∂Eψ) (so ϕ = ∫

∂Eψ
ϕ dHn−1 = 0). Now Lemma 2.2 is satisfied 

with p = 6, r = q = 2, j = 0, m = 1 and n = 3, 4. In the case n = 3 the interpolation exponent 
is α6 = 2

3 whereas for n = 4 we have α6 = 1. Now we estimate

‖ϕ‖L6(∂Eψ)

(2.10)≤ C‖ϕ ◦ 
ψ‖L6(∂E)

≤ C‖ϕ ◦ 
ψ − ϕ ◦ 
ψ‖L6(∂E) + C|∂E|− 5
6

∣∣∣∣∣∣
∫
∂E

ϕ ◦ 
ψ dHn−1

∣∣∣∣∣∣
= C‖ϕ ◦ 
ψ − ϕ ◦ 
ψ‖L6(∂E) + C|∂E|− 5

6

∣∣∣∣∣∣
∫
∂E

(1 − Jτ
ψ)ϕ ◦ 
ψ dHn−1

∣∣∣∣∣∣
≤ C‖ϕ ◦ 
ψ − ϕ ◦ 
ψ‖L6(∂E) + C max

∂E
|1 − Jτ
ψ |‖ϕ ◦ 
ψ‖L6(∂E)

2.2≤ C‖∇τ (ϕ ◦ 
ψ − ϕ ◦ 
ψ)‖α6
L2(∂E)

‖ϕ ◦ 
ψ − ϕ ◦ 
ψ‖1−α6
L2(∂E)
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+ C max
∂E

|1 − Jτ
ψ |‖ϕ ◦ 
ψ‖L6(∂E)

≤ C‖∇τ (ϕ ◦ 
ψ)‖α6
L2(∂E)

‖ϕ ◦ 
ψ‖1−α6
L2(∂E)

+ C max
∂E

|1 − Jτ
ψ |‖ϕ ◦ 
ψ‖L6(∂E)

(2.10)≤ C‖∇τ ϕ‖α6
L2(∂Eψ)

‖ϕ‖1−α6
L2(∂Eψ)

+ C max
∂E

|1 − Jτ
ψ |‖ϕ‖L6(∂Eψ)

≤ C‖ϕ‖H 1(∂Eψ) + C max
∂E

|1 − Jτ
ψ |‖ϕ‖L6(∂Eψ).

Thus by decreasing δ, if necessary, we obtain

‖ϕ‖L6(∂Eψ) ≤ C‖ϕ‖L2(∂Eψ)

with some constant C and Lemma 2.9 follows. Again, it is enough to prove Lemma 2.10 for p =
6. For that choose an arbitrary ϕ ∈ C∞(∂Eψ). We define the smooth extension ϕEψ = ϕ ◦ π∂Eψ

to some regular neighborhood of ∂Eψ as before. A straightforward but rather long computation 
yields

D2
τ (ϕ ◦ 
ψ) = P∂E(D2ϕEψ ◦ 
ψ)D
ψP∂E + 〈νE,∇τ ϕ ◦ 
ψ 〉(D2

τψ − BE)

+ ψ

n∑
i=1

P∂Eei ⊗ P∂E

(
(∂iDd̄E)(∇τ ϕ ◦ 
ψ) + (D
ψ)TD2ϕEψ ∂i∇d̄E

)

+ BE(∇τ ϕ ◦ 
ψ) ⊗ ∇τψ + ∇τψ ⊗ BE(∇τ ϕ ◦ 
ψ)

+ ∇τψ ⊗ P∂E(D
ψ)T(D2ϕEψ ◦ 
ψ)νE.

Hence with help of the previous identity

|D2
τ (ϕ ◦ 
ψ)| ≤ C|D2ϕEψ ◦ 
ψ | + (C + |D2

τψ |)|∇τ ϕ ◦ 
ψ |
(5.1)≤ C|D2

τ ϕ ◦ 
ψ | + C
(

1 + |BEψ ◦ 
ψ | + |D2
τψ |

)
|∇τ ϕ ◦ 
ψ |

(2.9)≤ C|D2
τ ϕ ◦ 
ψ | + C

(
1 + |D2

τψ |
)

|∇τ ϕ ◦ 
ψ |. (5.6)

Again, Lemma 2.2 is satisfied for ϕ with p = 6, r = q = 2, j = 1, m = 1 and n = 3, 4, where 
α6 = 5

6 for n = 3 and α6 = 1 for n = 4. Then

‖∇τ ϕ‖L6(∂Eψ)

(2.11)≤ C‖∇τ (ϕ ◦ 
ψ)‖L6(∂E)

Lemma 2.2≤ C‖D2
τ (ϕ ◦ 
ψ)‖α6

L2(∂E)
‖ϕ ◦ 
ψ‖1−α6

L2(∂E)

≤ C‖D2
τ (ϕ ◦ 
ψ)‖L2(∂E) + C‖ϕ ◦ 
ψ‖L2(∂E)

(5.6)≤ C‖D2
τ ϕ ◦ 
ψ‖L2(∂E) + C‖∇τ ϕ ◦ 
ψ‖L2(∂E) + C‖ϕ ◦ 
ψ‖L2(∂E)
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+ C

⎛
⎝∫

∂E

|D2
τψ |2|∇τ ϕ ◦ 
ψ |2 dHn−1

⎞
⎠

1
2

(2.10)+(2.11)≤ C‖D2
τ ϕ‖L2(∂Eψ) + C‖ϕ‖H 1(∂Eψ)

+ C

⎛
⎝∫

∂E

|D2
τψ |2|∇τ ϕ ◦ 
ψ |2 dHn−1

⎞
⎠

1
2

≤ C‖D2
τ ϕ‖L2(∂Eψ) + C‖ϕ‖H 1(∂Eψ) + C‖D2

τψ‖L3(∂E)‖∇τ ϕ ◦ 
ψ‖L6(∂E)

(2.10)≤ C‖D2
τ ϕ‖L2(∂Eψ) + C‖ϕ‖H 1(∂Eψ) + C‖D2

τψ‖L3(∂E)‖∇τ ϕ‖L6(∂Eψ)

(2.5)≤ C‖�τϕ‖L2(∂Eψ) + C‖ϕ‖H 1(∂Eψ) + C‖D2
τψ‖L3(∂E)‖∇τ ϕ‖L6(∂Eψ)

+ C

⎛
⎜⎝ ∫

∂Eψ

|BEψ |2|∇τ ϕ|2 dHn−1

⎞
⎟⎠

1
2

(2.10)≤ C‖�τϕ‖L2(∂Eψ) + C‖ϕ‖H 1(∂Eψ) + C‖D2
τψ‖L3(∂E)‖∇τ ϕ‖L6(∂Eψ)

+ C

⎛
⎝∫

∂E

|BE ◦ 
ψ |2|∇τ ϕ ◦ 
ψ |2 dHn−1

⎞
⎠

1
2

(2.9)≤ C‖�τϕ‖L2(∂Eψ) + C‖ϕ‖H 1(∂Eψ) + C‖D2
τψ‖L3(∂E)‖∇τ ϕ‖L6(∂Eψ)

+ C

⎛
⎝∫

∂E

|D2
τψ |2|∇τ ϕ ◦ 
ψ |2 dHn−1

⎞
⎠

1
2

+ C‖∇τ ϕ ◦ 
ψ‖L2(∂E)

≤ C‖�τϕ‖L2(∂Eψ) + C‖ϕ‖H 1(∂Eψ) + C‖D2
τψ‖L3(∂E)‖∇τ ϕ‖L6(∂Eψ)

+ C‖D2
τψ‖L3(∂E)‖∇τ ϕ ◦ 
ψ‖L6(∂E) + C‖∇τ ϕ ◦ 
ψ‖L2(∂E)

(2.11)≤ C‖�τϕ‖L2(∂Eψ) + C‖ϕ‖H 1(∂Eψ) + C‖D2
τψ‖L3(∂E)‖∇τ ϕ‖L6(∂Eψ).

Again, by Remark 2.3 ‖ψ‖C1(∂Eψ), ‖D2
τψ‖L3(∂E) ≤ C‖ψ‖H 3(∂Eψ), when n is 3 or 4, so the 

previous estimate implies Lemma 2.10 in the case p = 6.

Time derivatives. In this subsection we derive the formulas (3.25) and (3.26) of Lemma 3.4. In 
particular, (3.25) is probably well-known, but for sake of completeness we compute it too.

It follows from the semi-group property that we need to check (3.25) and (3.26) at the time 
t = 0. At first we list some facts. For that let (Et )t∈[0,T [ be any smooth flow in Tn with a cor-
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responding smoothly parametrized family of diffeomorphism (
t)t∈[0,T [. Set the initial velocity 
vector field

X0 = ∂t
t

∣∣∣
t=0

.

Then V0 = 〈X0, ν0〉 and the following hold on the initial boundary ∂E0.

∂

∂t
νt ◦ 
t

∣∣∣
t=0

= −(DτX)Tν0, (5.7)

∂

∂t
Jτ
t

∣∣∣
t=0

= divτX and (5.8)

∂

∂t
Ht ◦ 
t

∣∣∣
t=0

= −divτ

(
(DτX)Tν0

)− tr (B0DτX) . (5.9)

For instance, (5.7) is directly computed in [8]. There are also an open neighborhood U of ⋃
t∈[0,T [ ∂Et × {t} and a smooth map H : U → Tn such that H( · , t) = Ht on ∂Et for ev-

ery t ∈ [0, T [. Again, we recall that every smooth flow admits a unique normal parametrization, 
for a compact setting in Rn see [3, Theorem 8] (the corresponding periodic case goes similarly), 
so we may assume (
t)t∈[0,T [ to be such a parametrization. That is,

∂s
t+s

∣∣∣
s=0

= (Vt ◦ 
t)(νt ◦ 
t)

on ∂E0 for every t ∈ [0, T [, in particular X0 = V0ν0 on ∂E0. Suppose from now on that (Et)t is 
a volume preserving mean curvature flow, so we may write X0 = (H̄0 − H0)ν0 and

DτX0 = (H̄0 − H0)B0 − ν0 ⊗ ∇τH0 (5.10)

on ∂E0. Hence (5.7), (5.8) and (5.9) can be rewritten as

∂

∂t
νt ◦ 
t

∣∣∣
t=0

= ∇τH0, (5.11)

∂

∂t
Jτ
t

∣∣∣
t=0

= (H̄0 − H0)H0 and (5.12)

∂

∂t
Ht ◦ 
t

∣∣∣
t=0

= �τH0 − (H̄0 − H0)|B0|2. (5.13)

The identity (5.13) can be also obtained in a more elegant way using the results from [8]. By 
using the change of variables formula and integration by parts we compute first

d

dt
‖H̄t − Ht‖2

L2(∂Et )

∣∣∣
t=0

= d

dt

∫
∂E0

(
H̄t ◦ 
t − Ht ◦ 
t

)2
Jτ
t dHn−1

∣∣∣
t=0

=
∫

∂E0

2
(
H̄0 − H0

)( ∂

∂t
H̄t ◦ 
t

∣∣∣
t=0

− ∂

∂t
Ht ◦ 
t

∣∣∣
t=0

)
dHn−1
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+
∫

∂E0

(
H̄0 − H0

)2 ∂

∂t
Jτ
t

∣∣∣
t=0

dHn−1

= −2
∫

∂E0

∂

∂t
Ht ◦ 
t

∣∣∣
t=0

(
H̄0 − H0

)
dHn−1

+
∫

∂E0

(
H̄0 − H0

)2 ∂

∂t
Jτ
t

∣∣∣
t=0

dHn−1

(5.12)+(5.13)= −2
∫

∂E0

(
�τH0 − (H̄0 − H0)|B0|2

)(
H̄0 − H0

)
dHn−1

+
∫

∂E0

H0
(
H̄0 − H0

)3
dHn−1

= −2
∫

∂E0

|∇τH0|2 − |B0|2
(
H̄0 − H0

)2
dHn−1

+
∫

∂E0

H0
(
H̄0 − H0

)3
dHn−1

= −2∂2P(∂E0)[H̄0 − H0] +
∫

∂E0

H0
(
H̄0 − H0

)3
dHn−1.

To compute (3.26) at t = 0, we evaluate the term ∂
∂t

(∇τHt ◦ 
t)

∣∣∣
t=0

on ∂E0. We use the notation 

∇ for the spatial gradient. Now

∂

∂t
(∇τHt ◦ 
t)

∣∣∣
t=0

= ∂

∂t
(I − νt ◦ 
t ⊗ νt ◦ 
t)∇H( · , t) ◦ 
t

∣∣∣
t=0

= −
(

∂

∂t
νt ◦ 
t

∣∣∣
t=0

⊗ ν0 + ν0 ⊗ ∂

∂t
νt ◦ 
t

∣∣∣
t=0

)
∇H( · ,0)

+ (I − ν0 ⊗ ν0)
∂

∂t
∇H( · , t) ◦ 
t

∣∣∣
t=0

(5.11)= −〈ν0,∇H( · ,0)〉∇τH0 − |∇τH0|2ν0

+ (I − ν0 ⊗ ν0)
∂

∂t
∇H( · , t) ◦ 
t

∣∣∣
t=0

and

∂

∂t
∇H( · , t) ◦ 
t

∣∣∣
t=0

= ∂

∂t
(D
t)

−T∇ (H( · , t) ◦ 
t)

∣∣∣
t=0

= ∂

∂t
(D
t)

−T
∣∣∣
t=0

∇H( · ,0) + ∂

∂t
∇ (H( · , t) ◦ 
t)

∣∣∣
t=0
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= −
(

D
∂

∂t

t

∣∣∣
t=0

)T

∇H( · ,0) + ∇ ∂

∂t
(H( · , t) ◦ 
t)

∣∣∣
t=0

= − (DX0)
T ∇H( · ,0) + ∇ ∂

∂t
(H( · , t) ◦ 
t)

∣∣∣
t=0

.

By combining the two previous expressions

∂

∂t
(∇τHt ◦ 
t)

∣∣∣
t=0

= −〈ν0,∇H( · ,0)〉∇τH0 − |∇τH0|2ν0

− (DτX0)
T ∇H( · ,0) + ∇τ

∂

∂t
(H( · , t) ◦ 
t)

∣∣∣
t=0

(5.10)= −〈ν0,∇H( · ,0)〉∇τH0 − |∇τH0|2ν0

− (
(H̄0 − H0)B0 − ν0 ⊗ ∇τH0

)T ∇H( · ,0) + ∇τ

∂

∂t
(H( · , t) ◦ 
t)

∣∣∣
t=0

= −|∇τH0|2ν0 − (H̄0 − H0)B0∇τH0 + ∇τ

∂

∂t
(H( · , t) ◦ 
t)

∣∣∣
t=0

.

(5.14)

Thus by using the change of variables formula and integrating by parts we finally compute

d

dt
‖∇τHt‖2

L2(∂Et )

∣∣∣
t=0

= d

dt

∫
∂E0

〈∇τHt ◦ 
t,∇τHt ◦ 
t 〉Jτ
t dHn−1
∣∣∣
t=0

= 2
∫

∂E0

〈 ∂

∂t
∇τHt ◦ 
t

∣∣∣
t=0

,∇τH0〉 dHn−1

+
∫

∂E0

|∇τHt |2 ∂

∂t
Jτ
t

∣∣∣
t=0

dHn−1

(5.12)= 2
∫

∂E0

〈 ∂

∂t
∇τHt ◦ 
t

∣∣∣
t=0

,∇τH0〉 dHn−1

+
∫

∂E0

|∇τHt |2(H̄0 − H0)H0 dHn−1

(5.14)= 2
∫

∂E0

〈−(H̄0 − H0)B0∇τH0 + ∇τ

∂

∂t
(H( · , t) ◦ 
t)

∣∣∣
t=0

,∇τH0〉 dHn−1

+
∫

∂E0

|∇τHt |2(H̄0 − H0)H0 dHn−1

= −2
∫

∂E0

�τH0
∂

∂t
Ht ◦ 
t

∣∣∣
t=0

dHn−1
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−2
∫

∂E0

(H̄0 − H0)〈∇τH0,B0∇τH0〉 dHn−1

+
∫

∂E0

|∇τHt |2(H̄0 − H0)H0 dHn−1

(5.13)= −2
∫

∂E0

(�τH0)
2 − (H̄0 − H0)|B0|2�τH0 dHn−1

−2
∫

∂E0

(H̄0 − H0)〈∇τH0,B0∇τH0〉 dHn−1

+
∫

∂E0

|∇τHt |2(H̄0 − H0)H0 dHn−1.
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QUANTITATIVE ALEXANDROV THEOREM AND ASYMPTOTIC

BEHAVIOR OF THE VOLUME PRESERVING MEAN CURVATURE

FLOW

VESA JULIN AND JOONAS NIINIKOSKI

Abstract. We prove a new quantitative version of the Alexandrov theorem which states
that if the mean curvature of a regular set in Rn+1 is close to a constant in Ln-sense, then
the set is close to a union of disjoint balls with respect to the Hausdorff distance. This result
is more general than the previous quantifications of the Alexandrov theorem and using it we
are able to show that in R2 and R3 a weak solution of the volume preserving mean curvature
flow starting from a set of finite perimeter asymptotically convergences to a disjoint union
of equisize balls, up to possible translations. Here by weak solution we mean a flat flow,
obtained via the minimizing movements scheme.
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1. Introduction

The main purpose of this article is to study the asymptotic behavior of the weak solution
of the volume preserving mean curvature flow starting from a set of finite perimeter. In the
classical setting we are given a smooth set E0 ⊂ Rn+1 and we let it evolve into a smooth family
of sets (Et)t according to the law, where the normal velocity Vt is proportional to the mean
curvature of Et as

(1.1) Vt = −(HEt − H̄Et) on ∂Et,

where H̄Et = ffl
∂Et

HEt dHn. Mean curvature type of equations are important in geometry,
where one usually studies the geometric properties of ∂Et which are inherited from ∂E0. The
equation (1.1) can also be seen as a volume preserving gradient flow of the surface area. These
equations arise naturally in physical models involving surface tension (see [33]).

The main issue with (1.1) is that it may develop singularities in finite time even in the
plane [24, 25]. In order to pass over the singular time one may try to do a surgery procedure
and restart the flow after a singular time as in [18] or to define a weak solution of (1.1),
which is what we will consider here. For the mean curvature flow one may define a weak

1
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solution by using the varifold setting by Brakke [3], the level set solution developed indepen-
dently by Chen-Giga-Goto [6] and Evans-Spruck [13], or by using the minimizing movements
scheme developed independently by Almgren-Taylor-Wang [2] and Luckhaus-Stürzenhecker
[21]. Since we want the solution of (1.1) to be a family of sets and since (1.1) does not satisfy
the comparison principle, the natural choice is to define a weak solution via the minimizing
movements scheme as in [2, 21]. This solution is usually called a flat flow and it is well-defined
due to [29], but might not be unique.

The advantage of the flat flow is that it is defined for all times for any bounded initial set
with finite perimeter and we may thus study its asymptotic behavior. Heuristically, one may
guess that the flat flow converges to a critical point of the static problem, which are classified
in the recent work by Delgadino-Maggi [9] as disjoint union of balls, possibly tangent to
each other. The asymptotic convergence of (1.1) has been proved for initial sets with certain
geometric properties such as convexity [17], nearly spherical [12] or sets which are near a
stable critical set in the flat torus in low dimensions [30]. We note that in these cases the flow
does not develop singularities and is thus classically well-defined for all times. The result in
[19] shows that the convergence holds also for star-shaped sets, up to possible translations.
For the mean curvature flow with forcing the asymptotic behavior has been studied for the
level set solution in [15, 16] and for the flat flow in the plane in [14]. The result closest to
ours is the recent work by Morini-Ponsiglione-Spadaro [28], where the authors prove that the
discrete-in-time approximation of the flat flow of (1.1) converges exponentially fast to disjoint
union balls. Here we are able to pass the time discretization to zero and characterize the limit
sets for the flat flow of (1.1) in R2 and R3. The precise definition of the flat flow is given in
Section 4.

Theorem 1.1. Assume E0 ⊂ Rn+1, with n ≤ 2 and ∣E0∣ = ∣B1∣, is a bounded set of finite
perimeter which is either essentially open or essentially closed and let (Et)t≥0 be a flat flow
of (1.1) starting from E0. There is N ∈ N such that the following holds: for every ε > 0 there
is Tε > 0 such that for every t ≥ Tε there are points x1, . . . , xN , which may depend on time,

with ∣xi − xj ∣ ≥ 2r for i ≠ j and r = N− 1
n+1 such that for Ft = ⋃Ni=1Br(xi) it holds

sup
x∈Et∆Ft d∂Ft(x) ≤ ε.

Here d∂F denotes the distance function. To the best of our knowledge this is the first result
on the characterization of the asymptotic limit of (1.1) in R3. The above result holds for
any limit of the approximative flat flow and we do not need the additional assumption on the
convergence of the perimeters as in [21, 29]. We note that the assumption on E0 being either
essentially open or closed is only needed to ensure that the flow is continuous up to time zero.
It plays no role in the asymptotic analysis.

Concerning the limiting configurations, Theorem 1.1 is sharp since the flow (1.1) may
converge to tangent balls as it is shown in [14]. On the other hand, we believe that one
may rule out the possible translations and the flow actually convergences to a disjoint union
of balls. The higher dimensional case and the possible speed of convergence are also open
problems.

Quantitative Alexandrov theorem. The proof of Theorem 1.1 is based on the dissipation
inequality proven in [29] and stated in Proposition 4.1. This implies that there is a sequence
of times tj → ∞ such that the mean curvatures of the evolving sets Etj are asymptotically

close to a constant with respect to the L2-norm. Therefore, we need a quantified version of
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the Alexandrov theorem which enables us to conclude that the sets Etj are close to a disjoint
union of balls.

There is a lot of recent research on generalization of the Alexandrov theorem [8, 9, 10, 11, 20,
23]. We refer the survey paper [7] for the state-of-the-art. Unfortunately, none of the available
results is applicable to our problem, and we are also not able to use the characterization of
the critical sets by Delgadino-Maggi [9, Corollary 2] to identify the limit set. Indeed, even
if we know that the sets Etj converge to a set of finite perimeter and their mean curvatures
converge to a constant, it is not clear why the limit set is a set of finite perimeter with weak
mean curvature as this class of sets is not in general closed. Our main result of the paper is
the following quantification of the Alexandrov theorem, which is the main technical tool in
the proof of Theorem 1.1.

Theorem 1.2. Let E ⊂ Rn+1 be a C2-regular set such that P (E) ≤ C0 and ∣E∣ ≥ 1/C0.
There are positive constants q = q(n) ∈ (0,1], C = C(C0, n) and δ = δ(C0, n) such that if∥HE − λ∥Ln(∂E) ≤ δ for some λ ∈ R, then 1/C ≤ λ ≤ C and there are points x1, . . . , xN with∣xi − xj ∣ ≥ 2R, where R = n/λ, such that for F = ⋃Ni=1BR(xi) it holds

sup
x∈E∆F

d∂F (x) ≤ C∥HE − λ∥qLn(∂E).
Moreover, ∣P (E) −N(n + 1)ωn+1R

n∣ ≤ C∥HE − λ∥qLn(∂E).
The main advantage of Theorem 1.2 with respect to the previous results in the literature is

that we do not assume any geometric restriction on E such as mean convexity. Moreover, we
assume the mean curvature to be close to a constant only in the Ln-sense, which is exactly
what we need for the asymptotic analysis in Theorem 1.1. This makes the proof challenging
as we, e.g., cannot use the estimates from the Allard regularity theory [1].

Theorem 1.2 is sharp in the sense that ∥HE − λ∥Ln(∂E) cannot be replaced by a weaker
Lp-norm. This can be easily seen by considering a set which is a union of the unit ball and a
ball of small radius ε far away. On the other hand, the dissipation inequality in Proposition
4.1 controls only the L2-norm of the mean curvature, which is the reason why we cannot
prove Theorem 1.1 in higher dimensions. The proof of Theorem 1.2 is done in a constructive
way and we obtain an explicit bound on the exponent q = (n + 2)−3. It would be interesting
to obtain the sharp one as it might be crucial in order to obtain the possible exponential
convergence of (1.1) as in [28]. In the two-dimensional case the optimal power q = 1 is proven
in [14].

Outline of the proof of Theorem 1.2. Since the proof of Theorem 1.2 is rather long,
we give its outline here. As in [9], also our argument is based on the proof of the Heinze-
Karcher inequality by Montiel-Ros [27], which is originally an alternative proof for [31]. In [9]
Delgadino-Maggi are able to generalize the Montiel-Ros argument to sets of finite perimeter
with weak distrubutional mean curvature. Here we revisit the argument by Montiel-Ros and
deduce in Proposition 3.3 that for E and R as in Theorem 1.2 and for 0 < r < R the volume
of the set Er = {x ∈ E ∶ dist(x, ∂E) > r} satisfies the estimate

∣∣Er ∣ − ∣E∣
Rn+1

(R − r)n+1∣ ≤ C∥HE − λ∥Ln(∂E).
We use this in Step 1 of the proof of Theorem 1.2 to deduce that for r close to R the set Er
is a union of finite number of components, or clusters, with positive distance to each other.
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We note that the above inequality is not enough to conclude the proof as, for example,
the cube Q = (−1,1)n+1 satisfies ∣Qr ∣ = (1 − r)n+1∣Q∣. Therefore, we need further information
from the Montiel-Ros argument and we prove in Proposition 3.3 that the Minkowski sum
Er +Bρ = {x ∈ Rn+1 ∶ dist(x,Er) < ρ}, with 0 < ρ < r < R, satisfies

∣∣Er +Bρ∣ − ∣E∣
Rn+1

(R − (r − ρ))n+1∣ ≤ C(R − r)n+1
∥HE − λ∥Ln(∂E).

This enables us to prove that the components of Er + Bρ ⊂ E, with properly chosen ρ and
r, are almost spherical. In particular, if E satisfies the above estimate with C = 0, then it is
a disjoint union of balls. This, together with the density estimate from [34], concludes the
proof.

2. Notation and preliminary results

In this section we briefly introduce our notation and recall some results from differential
geometry. Given a set E ⊂ Rn+1 the distance function dE ∶ Rn+1 → [0,∞) is defined, as usual,
as

dE(x) ∶= inf
y∈E ∣x − y∣

and we denote the signed distance function by d̄E ∶ Rn+1 → R,

d̄E(x) ∶= ⎧⎪⎪⎨⎪⎪⎩
−d∂E(x), for x ∈ E
d∂E(x), for x ∈ Rn+1 ∖E.

Then clearly it holds d∂E = ∣d̄E ∣. We denote the ball with radius r centered at x by Br(x)
and by Br if it is centered at the origin. Given a set E ⊂ Rn+1 we denote its ρ-enlargement
by the Minkowski sum

E +Bρ = {x + y ∈ Rn+1 ∶ x ∈ E, y ∈ Bρ} = {x ∈ Rn+1 ∶ dE(x) < ρ}.
For a measurable set E ⊂ Rn+1 the shorthand notation ∣E∣ denotes its Lebesgue measure

and we denote the k-dimensional measure of the unit ball in Rk by ωk. In some cases, we
may use the shorthand notation ∣E∣ more generally for a measurable set E ⊂ Rk to denote its
k-dimensional Lebesgue measure but this shall be clear from context.

For a set of finite perimeter E ⊂ Rn+1 we denote its reduced boundary by ∂∗E and the
perimeter by P (E). Recall that P (E) = Hn(∂∗E) and for regular enough set it holds ∂∗E =
∂E. The relative isoperimetric inequality states that for every set of finite perimeter E and
for every ball Br(x) it holds

Hn(∂∗E ∩Br(x))n+1n ≥ cn min{∣E ∩Br(x)∣, ∣Br(x) ∖E∣},
for a dimensional constant. We refer to [22] for an introduction to the topic.

We define the tangential differential of F ∈ C1(Rn+1;Rm) on ∂E by

DτF (x) = DF (x)(I − νE(x) ⊗ νE(x)),
where νE denotes the unit outer normal of E. For a function f ∈ C1(Rn+1;R) we denote by∇τf its tangential gradient which is a vector in Rn+1. We define the tangential divergence
of F ∈ C1(Rn+1;Rn+1) by divτF = Tr(DτF ) . Then the divergence theorem on manifolds
generalizes to ˆ

∂∗E
divτF dHn = ˆ

∂∗E
HE ⟨F, νE⟩dHn,
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where HE ∈ L1(∂∗E) is the distributional mean curvature. When ∂E is smooth HE agrees
with the classical definition of the mean curvature, which for us is the sum of the principal
curvatures.

We begin by recalling the well-known inequality proven first by Simon [32] in R3 and then
by Topping [34] in the general case.

Theorem 2.1. Let Σ ⊂ Rn+1 be a compact and connected C2-hypersurface. Then

(2.1) diam(Σ) ≤ Cn ˆ
Σ
∣HΣ∣n−1 dHn,

where Cn depends only on the dimension.

We need also the Michael-Simon inequality [26].

Theorem 2.2. Let Σ ⊂ Rn+1, n ≥ 2, be a compact C2-hypersurface. Then for every non-
negative ϕ ∈ C1(Rn+1)
(2.2) ∥ϕ∥

L
n
n−1 (Σ) ≤ Cn

ˆ
Σ
∣∇τϕ∣ + ϕ∣HΣ∣ dHn,

where Cn depends only on the dimension.

The following density-type estimate is essentially proven in [28, Lemma 2.1].

Proposition 2.3. Let E ⊂ Rn+1 be a set of finite perimeter with P (E) > 0 and 0 < β < 1.
There is a positive constant c = c(n,β) such that

rE,β ∶= sup{r ∈ R+ ∶ there is x ∈ Rn+1 with ∣Br(x) ∩E∣ ≥ β∣Br(x)∣} ≥ c ∣E∣
P (E) .

We use the previous results to prove the following lemma, which is useful when we bound
the Lagrange multipliers and the number of the components of the flat flow of (1.1).

Lemma 2.4. Let E ⊂ Rn+1 be a bounded set of finite perimeter with a distributional mean
curvature HE ∈ L1(∂∗E), λ ∈ R and 1 ≤ C0 < ∞. There is a positive constant C = C(C0, n)
such that the following hold.

(i) If P (E) ≤ C0 and ∣E∣ ≥ 1/C0, then

1/C −C∥HE − λ∥L1(∂∗E) ≤ λ ≤ C +C∥HE − λ∥L1(∂∗E).
(ii) If P (E) ≤ C0, ∣E∣ ≥ 1/C0 and E is C2-regular, then the number of the components

of E is bounded by C(1 + ∥HE − λ∥nLn(∂E)) and their diameters are bounded by C(1 +∥HE − λ∥n−1
Ln−1(∂E)).

Proof. Our standing assumptions throughout the proof are P (E) ≤ C0 and ∣E∣ ≥ 1/C0. The
perimeter bound and the global isoperimetric inequality yield

∣E∣ ≤ cnP (E)n+1n ≤ cnC n+1
n

0 .
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By the assumptions on E and by the divergence theorems we compute for any vector field
F ∈ C1(Rn+1;Rn+1)

λ

ˆ
E

divF dx = ˆ
∂∗E

λ⟨F, νE⟩dHn
= ˆ

∂∗E
HE⟨F, νE⟩dHn + ˆ

∂∗E
(λ −HE)⟨F, νE⟩dHn

= ˆ
∂∗E

divτ F dHn + ˆ
∂∗E

(λ −HE)⟨F, νE⟩dHn.
(2.3)

Our goal is to construct a suitable vector field F to obtain (i) from (2.3). To this aim, we use
first the relative isoperimetric inquality, Proposition 2.3 and a suitable continuity argument
to find positive r0 = r0(C0, n), R0 = R0(C0, n) and r such that r0 ≤ r ≤ R0 and, by possibly
translating the coordinates, ∣Br ∩E∣ = ∣Br ∣/2. Again, it follows from the relative isoperimetric
inequality that Hn(∂∗E ∩ Br) ≥ c with some positive c = c(C0, n). Choose a decreasing
C1-function f ∶ R→ R for which

f(t) = ⎧⎪⎪⎨⎪⎪⎩
(2r)−1, for t ≤ 3

2r

t−1, for t ≥ 5
2r

and the conditions f(t) ≤ min{(2r)−1, t−1} , ∣f ′(t)∣ ≤ (2r)−2 hold on [3
2r,

5
2r]. We define

F ∶ Rn+1 → Rn+1 by setting F (x) = f(∣x∣)x. Then F is a C1-vector field with

DF (x) = f(∣x∣)I + f ′(∣x∣)∣x∣ x⊗ x, for every x ∈ Rn+1,

divF (x) = (n + 1)f(∣x∣) + f ′(∣x∣)∣x∣, for every x ∈ Rn+1 and

divτ F (x) = nf(∣x∣) + f ′(∣x∣) (∣x∣ − ⟨x, νE⟩2

∣x∣ ) , for every x ∈ ∂∗E.
Then 0 < divF ≤ (n + 1)(2r)−1 everywhere and divF = (n + 1)(2r)−1 in Br so by using these
and the earlier observations we obtain

(2.4)
n + 1

4R0
∣Br0 ∣ ≤ n + 1

4r
∣Br ∣ = n + 1

2r
∣Br ∩E∣ ≤ ˆ

E
divF dx ≤ n + 1

2r
∣E∣ ≤ cn(n + 1)

2r0
C
n+1
n

0 .

Again, 0 ≤ divτ F ≤ n(2r)−1 on ∂∗E and divτ F = n(2r)−1 on ∂∗E ∩Br and thus

(2.5)
nc

2R0
≤ n

2r
Hn(∂∗E ∩Br) ≤ ˆ

∂∗E
divτ F dHn ≤ nP (E)

2r
≤ nC0

2r0
.

We use (2.3), (2.4), (2.5) and ∣F ∣ ≤ 1 to obtain (i).
The claim (ii) is easy to prove in the planar case and therefore we assume that n ≥ 2. Let

E1,E2, . . . ,EN denote the connected components of E. We apply Theorem 2.2 on ∂Ei with
ϕ = 1 and use Hölder’s inequality to obtain

C−1
n ≤ ∥HEi∥Ln(∂Ei) ≤ ∥HEi − λ∥Ln(∂Ei) + ∣λ∣P (Ei) 1

n ,
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from which we conclude using (i) and Hölder’s inequality

NC−n
n ≤ 2n∥HE − λ∥nLn(∂E) + 2n∣λ∣nP (E)

≤ 2n∥HE − λ∥nLn(∂E) + 22nC0C
n (1 + ∥HE − λ∥nL1(∂E))

≤ 2n∥HE − λ∥nLn(∂E) + 22nC0C
n (1 +Cn−1

0 ∥HE − λ∥nLn(∂E)) .
(2.6)

On the other hand, Theorem 2.1 together with (i) and Hölder’s inequality implies

∑
i

diam(Ei) ≤ ∑
i

Cn

ˆ
∂Ei

∣HEi ∣n−1 dHn
≤ ∑

i

2n−1Cn (ˆ
∂Ei

∣HEi − λ∣n−1 dHn + ∣λ∣n−1P (Ei))
≤ 2n−1Cn (ˆ

∂E
∣HE − λ∣n−1 dHn + P (E)∣λ∣n−1)

≤ 2n−1Cn (∥HE − λ∥n−1
Ln−1(∂E) + 2n−1C0C

n(1 + ∥HE − λ∥n−1
L1(∂E)))

≤ 2n−1Cn (∥HE − λ∥n−1
Ln−1(∂E) + 2n−1C0C

n(1 +Cn−2
0 ∥HE − λ∥n−1

Ln−1(∂E))) .

(2.7)

Thus, by possibly increasing C, the second claim follows from (2.6) and (2.7). �

3. Quantitative Alexandrov theorem

We split the proof of Theorem 1.2 into two parts. We first revisit the Montiel-Ros argument
in Proposition 3.3 where all the technical heavy lifting is done. The idea of Proposition 3.3 is
to transform the (local) information of the mean curvature of E being close to a constant, into
information on the ρ-enlargement of the level sets of the distance function of ∂E. We note
that the statement of Proposition 3.3 is given by the sharp exponent. The proof of Theorem
1.2 is then based on purely geometric arguments.

We first state the following equivalent formulation of the theorem.

Remark 3.1. Once we prove that in Theorem 1.2 the number of component of E is bounded,
the statement on the L∞-distance is equivalent to the fact that, under the assumption ∥HE −
λ∥Ln(∂E) ≤ δ, there are points x1, . . . , xN such that

N⋃
i=1

Bρ−(xi) ⊂ E ⊂ N⋃
i=1

Bρ+(xi),
where ρ− = R − C∥HE − λ∥q

Ln(∂E), ρ+ = R + C∥HE − λ∥q
Ln(∂E), R = n/λ and the balls

Bρ−(x1), . . . ,Bρ−(xN) are disjoint to each other. We leave the details to the reader.

In Theorem 1.2 we assume that the mean curvature is bounded only in the Ln-sense and
thus the estimates from the Allard’s regularity theory [1] are not available for us. Indeed, the
Ln-boundedness of the mean curvature is not strong enough to give proper density estimates.
Moreover, even in the three dimensional case R3 we cannot use the results from [32], because
we do not have a uniform bound on the Euler characteristic of the set E. However, if we
know that the mean curvature is close to a constant with respect to the Ln-norm, then the
following density estimate holds. The proof is based on [34, Lemma 1.2].
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Lemma 3.2. Let Σ ⊂ Rn+1 be a compact C2-hypersurface and λ ∈ R+. There is a positive
dimensional constant δn such that if ∥HΣ − λ∥Ln(Σ) ≤ δn, then

δn ≤ Hn(B(x, r) ∩Σ)
rn

for every x ∈ Σ and 0 < r ≤ δn
λ .

Proof. The planar case n = 1 is rather obvious and we leave it to the reader. Let us assume
n ≥ 2. Fix x ∈ Σ and define V ∶ [0,∞) → [0,∞) as V (r) = Hn(Br(x) ∩ Σ). Since V is
increasing, the derivative V ′(r) is defined for almost every r ∈ [0,∞) andˆ r2

r1

V ′(ρ) dρ ≤ V (r2) − V2(r1) whenever 0 ≤ r1 < r2.

By a standard foliation argument we have that Hn(∂Br(x) ∩Σ) > 0 at most countably many
r ∈ R+. Thus V ′(r) is defined and Hn(∂Br(x) ∩Σ) = 0 for almost every r ∈ [0,∞). Fix such
r and choose h ∈ R+ for which Hn(∂Br+h(x) ∩Σ) = 0. Define a cut-off function fh ∶ Rn+1 → R
by setting

fh(y) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1, y ∈ Br(x)
1 − ∣y−x∣

h , y ∈ Br+h(x) ∖Br(x)
0, y ∈ Rn+1 ∖Br+h(x).

By using a suitable approximation argument combined with Theorem 2.2 we obtain

V (r)n−1n ≤ Cn (V (r + h) − V (r)
h

+ ∥fhHΣ∥L1(Σ)) .
In turn, we may choose a sequence (hk)k such that hk → 0 and Hn(∂Br+hk(x) ∩ Σ) = 0.

Then by letting k →∞ the previous estimate yields

V (r)n−1n ≤ Cn (V ′(r) + ˆ
Br(x)∩Σ

∣HΣ∣ dHn)
≤ Cn (V ′(r) + ˆ

Br(x)∩Σ
∣HΣ∣ dHn)

≤ Cn (V ′(r) + ˆ
Br(x)∩Σ

∣HΣ − λ∣ dHn + λV (r))
≤ Cn (V ′(r) + ∥HΣ − λ∥Ln(Σ)V (r)n−1n + λV (r)) .

Thus for almost every r ∈ (0,∞) it holds

⎛⎝
C−1
n − ∥HΣ − λ∥Ln(Σ)

V (r) 1
n

− λ⎞⎠V (r) ≤ V ′(r).
If ∥HΣ − λ∥Ln(Σ) ≤ δn for small δn then the above inequality implies

1

2Cn
V (r)1− 1

n − λV (r) ≤ V ′(r).
Fix r < δn/λ. We assume that V (r) ≤ δnrn, since otherwise the claim is trivially true. By

the monotonicity we have V (ρ) 1
n ≤ V (r) 1

n ≤ δn/λ for all 0 < ρ < r. For δn small enough the
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above inequality then yields
1

4Cn
V (ρ)1− 1

n ≤ V ′(ρ)
for almost every 0 < ρ < r. The claim follows by integrating this over (0, r).

�

3.1. Montiel-Ros argument. We recall that for E ⊂ Rn+1 we denote

(3.1) Er ∶= {x ∈ E ∶ dist(x, ∂E) > r}.
We use the fact that E is C2-regular and say that x ∈ ∂E satisfies interior ball condition with
radius r, if for y = x − rνE(x) it holds Br(y) ⊂ E. For r > 0 we define

(3.2) Γr ∶= {x ∈ ∂E ∶ x satisfies interior ball condition with radius r}.
Proposition 3.3. Let λ ∈ R and suppose that a bounded and C2-regular set E ⊂ Rn+1 satisfies
P (E) ≤ C0 and ∣E∣ ≥ 1/C0 with C0 ∈ R+. Then for 0 < r < R with R = n/λ it holds

∣∣Er ∣ − ∣E∣
Rn+1

(R − r)n+1∣ ≤ C∥HE − λ∥Ln(∂E)
and Hn(∂E ∖ Γr) ≤ C(R − r)n+1

∥HE − λ∥Ln(∂E),
provided that ∥HE −λ∥Ln(∂E) ≤ δ, where the constants C and δ depend only on C0 and on the
dimension. Moreover, under the same assumptions, for 0 < ρ < r < R it holds

∣∣Er +Bρ∣ − ∣E∣
Rn+1

(R − (r − ρ))n+1∣ ≤ C(R − r)n+1
∥HE − λ∥Ln(∂E).

Proof. As we already mentioned the proof is based on the Montiel-Ros argument for the
Heinze-Karcher inequality, which we recall shortly. To that aim we define ζ ∶ ∂E ×R → Rn+1

as

ζ(x, t) = x − tνE(x).
We denote the principle curvatures of ∂E at x by k1(x), . . . kn(x) and assume that they are
pointwise ordered as ki(x) ≤ ki+1(x). If we consider ∂E × R as a hypersurface embedded in
Rn+2 then its tangential Jacobian is

Jτζ(x, t) = n∏
i=1

∣1 − tki(x)∣ on ∂E ×R.

For every bounded Borel set M ⊂ ∂E ×R we have by the area formulaˆ
ζ(M)H0(ζ−1(y) ∩M)dy = ˆ

M
Jτζ dHn+1.

In the proof, C denotes a positive constant which may change from line to line, depending
only on C0 and on the dimension.

Step 1: In order to utilize Lemma 2.4, we choose δ = δ(C0, n) to be same as in the
lemma and assume ∥HE − λ∥Ln(∂E) ≤ δ. Then E has N many connected components with
N ≤ C. We may thus prove the claim componentwise and assume that E is connected. We
denote

Σ ∶= {x ∈ ∂E ∶ ∣HE(x) − λ∣ < λ/2}.
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By Lemma 2.4 it holds λ ≥ 1/C and thus by Hölder’s inequality it holds

(3.3) Hn(∂E ∖Σ) ≤ 2

λ

ˆ
∂E

∣HE(x) − λ∣dHn ≤ C∥HE − λ∥Ln(∂E).

Moreover, we have

n

n + 1

ˆ
Σ

1

HE
dHn = n

n + 1

ˆ
Σ
( 1

λ
+ ( 1

HE
− 1

λ
)) dHn

≤ nP (E)(n + 1)λ +C∥HE(x) − λ∥Ln(∂E).

Since E is connected, Lemma 2.4 yields diam(E) ≤ R̃ with R̃ = R̃(C0, n) ≥ R. Choose x0 ∈ E.
Then using (2.3) with F (x) = x − x0 we obtain

nP (E) = (n + 1)λ ∣E∣ + ˆ
∂E

(HE − λ)⟨(x − x0), νE⟩dHn,
which in turn implies

(3.4) ∣nP (E) − (n + 1)λ ∣E∣∣ ≤ C∥HE − λ∥Ln(∂E).
Hence, we deduce

(3.5)
n

n + 1

ˆ
Σ

1

HE
dHn ≤ ∣E∣ +C∥HE − λ∥Ln(∂E).

Next we define

Z = {(x, t) ∈ Σ × [0,∞) ∶ 0 ≤ t ≤ 1/kn(x)}.
Note that this is well-defined, since x ∈ Σ implies kn(x) ≥ HE(x)

n ≥ λ
2n > 0. We also set

Σ′
1 = {x ∈ ∂E ∖Σ ∶ kn(x) ≤ 1/R̃} and Σ′

2 = {x ∈ ∂E ∖Σ ∶ kn(x) > 1/R̃},
Z ′

1 = Σ′
1 × [0, R̃] and Z ′

2 = {(x, t) ∈ Σ′
2 × [0,∞) ∶ 0 ≤ t ≤ 1/kn(x)}

and finally

Z ′ = Z ′
1 ∪Z ′

2.

Then Z and Z ′ are disjoint and bounded Borel sets and it holds E ⊂ ζ(Z ∪ Z ′). To see this
fix y ∈ E and let x ∈ ∂E be such that r = d∂E(y) = ∣x − y∣. Then we may write y = x − rνE(x)
and by the maximum principle kn(x) ≤ 1/r. Since diam(E) ≤ R̃, then r ≤ R̃ and we conclude
that (x, r) ∈ Z ∪Z ′ and y = ζ(x, r).

We now recall the Montiel-Ros argument. We use the fact that E ⊂ ζ(Z ∪ Z ′), the area
formula, the arithmetic geometric inequality and the fact that for x ∈ Σ it holds 1/kn(x) ≤
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n/HE(x) to obtain

∣E∣ ≤ ∣ζ(Z)∣ + ∣ζ(Z ′)∣ ≤ ˆ
ζ(Z)H0(ζ−1(y) ∩Z)dy + ∣ζ(Z ′)∣

= ˆ
Z
Jτζ dHn+1 + ∣ζ(Z ′)∣

= ˆ
Σ

ˆ 1/kn(x)
0

n∏
i=1

(1 − tki(x))dtdHn + ∣ζ(Z ′)∣
≤ ˆ

Σ

ˆ 1/kn(x)
0

(1 − t

n
HE(x))n dtdHn + ∣ζ(Z ′)∣

≤ ˆ
Σ

ˆ n/HE(x)
0

(1 − t

n
HE(x))n dtdHn + ∣ζ(Z ′)∣ = n

n + 1

ˆ
Σ

1

HE
dHn + ∣ζ(Z ′)∣.

Next we quantify the previous four inequalities. To that aim we define the non-negative
numbers R1,R2,R3 and R4 as

R1 = ∣ζ(Z) ∖E∣(3.6)

R2 = ˆ
ζ(Z) ∣H0(ζ−1(y) ∩Z) − 1∣dy(3.7)

R3 = ˆ
Σ

ˆ 1/kn(x)
0

∣ (1 − t

n
HE(x))n − n∏

i=1

(1 − tki(x))∣dtdHn(3.8)

R4 = ˆ
Σ

ˆ n/HE(x)
1/kn(x) ∣1 − t

n
HE(x)∣n dtdHn.(3.9)

Then by repeating the Montiel-Ros argument we deduce that

∣E∣ ≤ n

n + 1

ˆ
Σ

1

HE
dHn + ∣ζ(Z ′)∣ −R1 −R2 −R3 −R4.

Therefore, by (3.5) it holds

R1 +R2 +R3 +R4 ≤ ∣ζ(Z ′)∣ +C∥HE − λ∥Ln(∂E),
where Ri are defined in (3.6)-(3.9).

Let us next show that

(3.10) ∣ζ(Z ′)∣ ≤ C∥HE(x) − λ∥Ln(∂E).
Indeed, by the area formula we have

∣ζ(Z ′)∣ ≤ˆ
Z′
Jτζ dHn+1

= ˆ
Σ′

1

ˆ R̃

0

n∏
i=1

∣1 − tki(x)∣dtdHn + ˆ
Σ′

2

ˆ 1/kn(x)
0

n∏
i=1

∣1 − tki(x)∣dtdHn.(3.11)

By the definition of Σ′
1 it holds ∣1 − tki(x)∣ = (1 − tki(x)) for every (x, t) ∈ Σ′

1 × [0, R̃] and
therefore by the arithmetic-geometric inequality we may estimate

n∏
i=1

∣1 − tki(x)∣ ≤ C(1 + ∣HE(x)∣n) for (x, t) ∈ Σ′
1 × [0, R̃].
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Similarly, we deduce that

n∏
i=1

∣1 − tki(x)∣ ≤ C(1 + tn∣HE(x)∣n) for x ∈ Σ′
2 and 0 ≤ t ≤ 1/kn(x).

On the other hand, by the definition of Σ′
2 it holds 1/kn(x) < R̃. Therefore, by (3.11), λ ≤ C

and (3.3) we have

∣ζ(Z ′)∣ ≤ C ˆ
Σ′

1∪Σ′
2

ˆ R̃

0
(1 + ∣HE(x)∣n)dtdHn = CR̃ˆ

∂E∖Σ
(1 + ∣HE(x)∣n)dHn

≤ C ˆ
∂E∖Σ

(1 + λn + ∣HE − λ∣n)dHn ≤ C(Hn(∂E ∖Σ) + ∥HE − λ∥nLn(∂E))
≤ C∥HE − λ∥Ln(∂E),

when ∥HE − λ∥Ln(∂E) ≤ 1. Hence by decreasing δ, if needed, we have (3.11). In particular, it
holds

(3.12) R1 +R2 +R3 +R4 ≤ C∥HE − λ∥Ln(∂E)
where Ri are defined in (3.6)-(3.9).

Step 2: Here we utilize the estimate (3.12) and prove the following auxiliary result. For a
Borel set Γ ⊂ ∂E and 0 < r < R it holds

(3.13) ∣E ∩ ζ(Z ∩ (Γ × (r,R)))∣ ≥ Hn(Γ)(n + 1)Rn (R − r)n+1 −C∥HE − λ∥Ln(∂E).

We prove (3.13) by ’backtracking’ the Montiel-Ros argument. By the definition ofR1,R2,R3,R4

and (3.12) we may estimate

∣E ∩ ζ(Z ∩ (Γ × (r,R)))∣ ≥ ∣ζ(Z ∩ (Γ × (r,R)))∣ −R1

≥ ˆ
ζ(Z∩(Γ×(r,R)))H0(ζ−1(y) ∩Z ∩ (Γ × (r,R)))dy −R1 −R2

= ˆ
Γ∩Σ

ˆ min{R,1/kn(x)}
min{r,1/kn(x)}

n∏
i=1

(1 − tki(x))dtdHn −R1 −R2

≥ ˆ
Γ∩Σ

ˆ min{R,1/kn(x)}
min{r,1/kn(x)} (1 − t

n
HE(x))n dtdHn −R1 −R2 −R3

≥ ˆ
Γ∩Σ

ˆ min{R,n/HE(x)}
min{r,1/kn(x)} (1 − t

n
HE)n dtdHn −R1 −R2 −R3 −R4

≥ ˆ
Γ∩Σ

ˆ min{R,n/HE(x)}
min{r,n/HE(x)} (1 − t

n
HE)n dtdHn −R1 −R2 −R3 −R4.
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Recall that for x ∈ Σ it holds λ/2 ≤HE(x) ≤ 2λ and that R = n/λ. Therefore, we may estimateˆ
Γ∩Σ

ˆ min{R,n/HE(x)}
min{r,n/HE(x)} (1 − t

n
HE)n dtdHn ≥ ˆ

Γ∩Σ

ˆ min{R,n/HE(x)}
min{r,n/HE(x)} (1 − t

n
λ)n dtdHn −C∥HE − λ∥Ln(∂E)

≥ ˆ
Γ∩Σ

ˆ R

r
(1 − t

n
λ)n dtdHn −C∥HE − λ∥Ln(∂E)

= Hn(Γ ∩Σ)n(n + 1)λ (1 − λ
n
r)n+1 −C∥HE − λ∥Ln(∂E)

= Hn(Γ ∩Σ)R(n + 1) (1 − r

R
)n+1 −C∥HE − λ∥Ln(∂E).

Hence, we obtain (3.13) from the previous two inequalities, from (3.3) and (3.12).

Step 3: Here we finally prove the proposition. Recall the definition of Er in (3.1). Let us
first prove that

(3.14) ∣Er ∣ ≥ P (E)(n + 1)Rn (R − r)n+1 −C∥HE − λ∥Ln(∂E)
for all 0 < r < R.

To this aim, we claim that it holds

(3.15) E ∩ ζ(Z ∩ (Σ × (r,R))) ⊂ Er ∪ {y ∈ ζ(Z) ∶ H0(ζ−1(y) ∩Z) ≥ 2} ∪ ζ(Z ′).
The point of this inclusion is that almost every point which is of the form y = x − tνE(x), for
x ∈ Z and t ∈ (r,R), belongs to Er.

To this aim let y ∈ E ∩ ζ(Σ × (r,R)). Then we may write y = x − tνE(x) = ζ(x, t) for some
x ∈ Σ and t ∈ (r,R), with (x, t) ∈ Z. If d∂E(y) = ∣y − x∣ then y ∈ Er because ∣x − y∣ = t > r.
Otherwise, d∂E(y) = ∣y − x̃∣ = r̃ < t for x̃ ∈ ∂E, so we may write y = x̃ − r̃νE(x) = ζ(x̃, r̃) and(x̃, r̃) ∈ Z ∪ Z ′. Again, if (x̃, r̃) ∉ Z ′, then (x̃, r̃) ∈ Z and thus H0(ζ−1(y) ∩ Z) ≥ 2. Hence, we
have (3.15).

Recall that by the definition of R2 and by (3.12) it holds

∣{y ∈ ζ(Z) ∶ H0(ζ−1(y) ∩Z) ≥ 2}∣ ≤ ˆ
ζ(Z) ∣H0(ζ−1(y) ∩Z) − 1∣dy

≤ C∥HE − λ∥Ln(∂E).
(3.16)

We then use (3.15), (3.16), (3.10) and (3.13) with Γ = Σ to deduce∣Er ∣ ≥ ∣E ∩ ζ(Z ∩ (Σ × (r,R)))∣ −C∥HE − λ∥Ln(∂E)
≥ Hn(Σ)(n + 1)Rn (R − r)n+1 −C∥HE − λ∥Ln(∂E).

The inequality (3.14) then follows from (3.3).
Let us next show that for all r ∈ (0,R) it holds

(3.17) ∣Er ∣ ≤ Hn(Γr)(n + 1)Rn (R − r)n+1 +C∥HE − λ∥Ln(∂E),
where Γr ⊂ ∂E is defined in (3.2).

First, we show

(3.18) ∣ER∣ ≤ C∥HE − λ∥Ln(∂E).



14 VESA JULIN AND JOONAS NIINIKOSKI

This follows from an already familiar argument, so we only sketch it. It is easy to see that
ER ⊂ ζ(Z ′) ∪ ζ(Z ∩ (Σ × (R,∞))). Moreover, since λ/2 ≤HE(x) ≤ 2λ for x ∈ Σ, it holds

Jτζ(x, t) = n∏
i=1

∣1 − tki(x)∣ ≤ C(1 + ∣HE(x)∣n) ≤ C for (x, t) ∈ Z ∩ (Σ × (R,∞)).
Recall that R = n/λ. Therefore, we have

∣ζ(Z ∩ (Σ × (R,∞))∣ ≤ ˆ
Σ

ˆ max{n/HE(x),R}
R

Jτζ(x, t)dtHn
≤ C ˆ

Σ

∣ n
HE

−R∣dtHn ≤ C∥HE − λ∥Ln(∂E).
The estimate (3.18) then follows from ∣ER∣ ≤ ∣ζ(Z ∩ (Σ × (R,∞))∣ + ∣ζ(Z ′)∣ and (3.10).

Note that for all ρ ∈ (r,R) it holds {x ∈ E ∶ d∂E(x) = ρ} = ζ(Γρ, ρ) and Γρ ⊂ Γr. We set
ζρ = ζ(⋅, ρ) ∶ ∂E → Rn+1 and thus it holds {x ∈ E ∶ d∂E(x) = ρ} = ζρ(Γρ) and

Jτζρ(x) = n∏
i=1

∣1 − ρki(x)∣ ≤ (1 − HE

n
ρ)n for x ∈ Γρ.

Therefore, by (3.18) and by co-area and area formulas we obtain

∣Er ∣ ≤ ∣Er ∣ − ∣ER∣ +C∥HE − λ∥Ln(∂E) ≤
ˆ R

r
Hn({x ∈ E ∶ d∂E = ρ})dρ +C∥HE − λ∥Ln(∂E)

= ˆ R

r
Hn(ζρ(Γρ))dρ +C∥HE − λ∥Ln(∂E)

≤ ˆ R

r

ˆ
Γρ

Jτζρ(x)dHndρ +C∥HE − λ∥Ln(∂E)

≤ ˆ R

r

ˆ
Γρ

(1 − HE

n
ρ)n dHndρ +C∥HE − λ∥Ln(∂E)

≤ ˆ R

r
Hn(Γρ) (1 − λ

n
ρ)n dρ +C∥HE − λ∥Ln(∂E)

≤ Hn(Γr)ˆ R

r
(1 − ρ

R
)n dρ +C∥HE − λ∥Ln(∂E)

= Hn(Γr)(n + 1)Rn (R − r)n+1 +C∥HE − λ∥Ln(∂E).
Hence, we have (3.17).

The second claim of the proposition follows immediately from (3.14) and (3.17). These also
imply

∣∣Er ∣ − P (E)(n + 1)Rn (R − r)n+1∣ ≤ C∥HE − λ∥Ln(∂E).
The first claim thus follows from (3.4) and R = n/λ.

For the last claim we refine the inclusion (3.15) and show that for 0 < ρ < r < R and
r′ ∈ (r,R) it holds

(3.19) E ∩ ζ(Z ∩ (Γr′ × (r′ − ρ,R))) ⊂ (Er +Bρ) ∪ {y ∈ ζ(Z) ∶ H0(ζ−1(y) ∩Z) ≥ 2} ∪ ζ(Z ′).
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Indeed, let y ∈ E ∩ ζ(Z ∩ (Γr′ × (r′ − ρ,R)))). Then we may write y = x − tνE(x) for some
x ∈ Σ ∩ Γr′ and t ∈ (r′ − ρ,R), with (x, t) ∈ Z. If t ∈ (r′,R) then by (3.15) it holds

y ∈ E ∩ ζ(Z ∩ (Σ × (r,R))) ⊂ Er ∪ {y ∈ ζ(Z) ∶ H0(ζ−1(y) ∩Z) ≥ 2} ∪ ζ(Z ′)
⊂ (Er +Bρ) ∪ {y ∈ ζ(Z) ∶ H0(ζ−1(y) ∩Z) ≥ 2} ∪ ζ(Z ′).

Let us then assume that t ∈ (r′ − ρ, r′]. We write y = x − r′νE(x) + (r′ − t)νE(x). Since
x ∈ Γr′ , i.e., ∂E satisfies the interior ball condition at x with radius r′ > r, then necessarily
x − r′νE(x) ∈ Er. Therefore, since 0 ≤ r′ − t < ρ, we conclude that y ∈ Er + Bρ and (3.19)
follows.

We use (3.10), (3.13), (3.16) and (3.19) to conclude

∣Er +Bρ∣ ≥ ∣E ∩ ζ(Z ∩ (Γr′ ∩ ×(r′ − ρ,R)))∣ −C∥HE − λ∥Ln(∂E)
≥ Hn(Γr′)(n + 1)Rn (R − (r′ − ρ))n+1 −C∥HE − λ∥Ln(∂E).

By using the second claim of the proposition and then letting r′ → r we deduce

∣Er +Bρ∣ ≥ P (E)(n + 1)Rn (R − (r − ρ))n+1 − C(R − r)n+1
∥HE − λ∥Ln(∂E).

On the other hand, it clearly holds Er +Bρ ⊂ Er−ρ. Then by (3.17) we have

∣Er +Bρ∣ ≤ ∣Er−ρ∣ ≤ P (E)(n + 1)Rn (R − (r − ρ))n+1 +C∥HE − λ∥Ln(∂E).
The last claim thus follows from the two previous inequalities and (3.4). �

3.2. Proof of Theorem 1.2.

Proof of Theorem 1.2. Let E, λ, C0 be as in the formulation of Theorem 1.2. Recall that
we denote R = n/λ. As before C denotes a constant which may change from line to line but
always depends only on C0 and n. Let us denote

ε ∶= ∥HE − λ∥Ln(∂E).
If ε = 0, then E is a disjoint union balls by [9]. Let us then assume that 0 < ε ≤ δ, where
δ is initially set as in Proposition 3.3. We might shrink δ several times but always in such
a way that it depends only on C0 and the dimension n. Indeed, by shrinking δ, if needed,
Proposition 2.4 provides the estimates

1/C ≤ λ,R ≤ C
and hence the first claim of Theorem 1.2 is clear. We will use these estimates repeatedly
without further mention.

By Proposition 2.4 the number of the connected components of E and their diameters are
bounded by C. Thus, by applying a similar argument as in the proof of Proposition 3.3 (to
obtain (3.4)) on each component and then summing these estimates up we obtain

(3.20) ∣nP (E) − (n + 1)λ ∣E∣∣ ≤ Cε.
By possibly shrinking δ we have R − δ 1

n+2 ≥ R/2 . Choose r0 = R − ε 1
n+2 . Then the volume

estimates given by Proposition 3.3 read as

(3.21) ∣∣Er ∣ − ∣E∣
Rn+1

(R − r)n+1∣ ≤ Cε
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for all 0 ≤ r < R and

(3.22) ∣∣Er +Bρ∣ − ∣E∣
Rn+1

(R − (r − ρ))n+1∣ ≤ Cε 1
n+2

for all 0 ≤ ρ ≤ r ≤ r0. We remark that by (3.21) we have

∣Er0 ∣ ≥ ∣E∣
Rn+1

ε
n+1
n+2 −Cε ≥ 1

C
ε
n+1
n+2 −Cε.

Hence by decreasing δ, if needed, we may assume that Er0 is non-empty. This implies that Er′
is non-empty for r′ > r0, when ∣r′−r0∣ is small enough. Since for any r′ > r0 it is geometrically

clear that Γr′ ⊂ ∂Er0 +Br0 , then by using Proposition 3.3 and r0 = R − ε 1
n+2 we have

Hn(∂E ∖ (Er0 +Br0)) ≤ Hn(∂E ∖ Γr′) ≤ C ε

(r0 − r′ + ε 1
n+2 )n+1

.

Thus by letting r′ → r0 the previous estimate yields

(3.23) Hn(∂E ∖ (Er0 +Br0)) ≤ Cε 1
n+2 .

As previously, we divide the proof into three steps.

Step 1: Recall that r0 = R − ε 1
n+2 ≥ R/2. We prove that there is a positive constant

d0 = d0(C0, n) ≤ R/4 such that if x, y ∈ Er0 , then

(3.24) either ∣x − y∣ < ε 1
2(n+2) or ∣x − y∣ ≥ d0.

Let us fix x, y ∈ Er0 . We denote d ∶= ∣x − y∣ and the segment from x to y by Jxy ∶={tx + (1 − t)y ∶ t ∈ [0,1]}. We may assume that d is small, since otherwise the claim (3.24) is
trivially true. To be more precise we assume

(3.25) d ≤ min{R
4
,1} .

Let us first show that

(3.26) Jxy ⊂ Er0−R−1d2 .
Note that r0 − R−1d2 > 0 by r0 ≥ R/2 and (3.25) and hence Er0−R−1d2 is well-defined and

non-empty. Choose z ∈ Rn+1 ∖E and z′ ∈ Jxy such that

∣z − z′∣ = dist(Rn+1 ∖E,Jxy).
If z′ = x or z′ = y, then it follows from x, y ∈ Er0 that ∣z − z′∣ > r0. If not, then from the fact
that z′ is the closest point on Jxy to z, we deduce that the vector x−z′ is orthogonal to z−z′,
i.e., ⟨x− z′, z − z′⟩ = 0. Note also that min{∣x− z′∣, ∣y − z′∣} ≤ d/2 and we may thus assume that∣x − z′∣ ≤ d/2. Therefore, we have by Pythagorean theorem

∣x − z∣2 = ∣x − z′∣2 + ∣z − z′∣2 ≤ d2

4
+ ∣z − z′∣2.

Since ∣x − z∣ > r0, the previous estimate gives us

∣z − z′∣2 > r2
0 − d2

4
.
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We deduce from r0 ≥ R/2 and (3.25) that

(r2
0 − d2

4
)1/2 ≥ r0 − d2

R
.

The previous two estimates yield ∣z − z′∣ > r0 −R−1d2 and the claim (3.26) follows due to the
choice of z and z′.

Again, we use r0 ≥ R/2 and (3.25) to observe

r0 − (1 +R−1)d2 ≥ r0 − d −R−1d2 ≥ R
2
− R

4
− R

16
> 0.

Thus Er0−(1+R−1)d2 is well-defined and non-empty. Next, we deduce from (3.26) and Er +Bρ ⊂
Er−ρ that

(3.27) Jxy +Bd2 ⊂ Er0−R−1d2 +Bd2 ⊂ Er0−(1+R−1)d2 .
Since Jxy +Bd2 contains the cylinder Jxy ×Bn

d2 , it is clear that

∣Jxy +Bd2 ∣ ≥ ωnd1+2n.

On the other hand, (3.21) and ε ≤ 1 (we may assume δ ≤ 1) imply

∣Er0−(1+R−1)d2 ∣ ≤ ∣E∣
Rn+1

(R − (r0 − (1 +R−1)d2))n+1 +Cε
= ∣E∣
Rn+1

(ε 1
n+2 + (1 +R−1)d2))n+1 +Cε

≤ ∣E∣
Rn+1

(ε 1
n+2 + (1 +R−1)d2))n+1 +Cεn+1n+2

≤ Cd2(n+1) +Cεn+1n+2 .
Then (3.27) yields

ωnd
1+2n ≤ Cd2(n+1) +Cεn+1n+2 .

If d ≥ ε 1
2(n+2) , then

ωnd
1+2n ≤ Cd2(n+1).

This implies d ≥ c > 0 for some c = c(C0, n). By recalling (3.25) the claim (3.24) follows.

Step 2: By (3.24) and possibly replacing δ with min{δ, (d0/8)2(n+2)} we may divide the
set Er0 into N many clusters E1

r0 , . . . ,E
N
r0 such that we fix a point xi ∈ Er0 and define the

corresponding cluster Eir0 as

Eir0 = {x ∈ Er0 ∶ ∣x − xi∣ ≤ d0/8}.
By (3.24) it holds Eir0 ⊂ Bε0(xi), where ε0 = ε 1

2(n+2) , and ∣xi − xj ∣ ≥ d0 for i ≠ j. Therefore, we
have for every ρ > 0

(3.28)
N⋃
i=1

Bρ(xi) ⊂ Er0 +Bρ ⊂ N⋃
i=1

Bρ+ε0(xi).
Since r0 ≥ R/2 > R/4 ≥ d0 and ∣xi − xj ∣ ≥ d0 for i ≠ j, then the balls Bρ(x1), . . . ,Bρ(xN) with
ρ = d0/4 are disjoint and contained in E, which, in turn, implies there is an upper bound
N0 = N0(C0, n) ∈ N for the number of clusters N .
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Next we improve the lower bound ∣xi − xj ∣ ≥ d0 and prove that there is a positive constant
C1 = C1(C0, n) such that

(3.29) ∣xi − xj ∣ ≥ 2R − 2C1ε
1(n+2)2 for all pairs i ≠ j.

As a byproduct we prove the last statement of the theorem, i.e., we show

(3.30) ∣P (E) −N(n + 1)ωn+1R
n∣ ≤ Cε 1

2(n+2) .
Recall that the balls Bd0/4(x1), . . . ,Bd0/4(xN) are disjoint. Therefore, using N ≤ N0 and

(3.28) with ρ = d0/4 we deduce

∣∣Er0 +Bd0/4∣ −Nωn+1 (d0

4
)n+1 ∣ ≤ Cε0 = Cε 1

2(n+2) .

On the other hand, we have d0/4 ≤ R/16 < R/2 ≤ r0 so we may use (3.22) to obtain

∣∣Er0 +Bd0/4∣ − ∣E∣
Rn+1

(d0

4
+ ε 1

n+2)n+1 ∣ ≤ Cε 1
n+2 .

These two estimates and ε ≤ 1 imply

(3.31) ∣∣E∣ −Nωn+1R
n+1∣ ≤ Cε 1

2(n+2) .
Thus, (3.20), R = n/λ and (3.31) yield (3.30).

To obtain (3.29), let us assume that there is 0 < h < R/2 such that ∣xi − xj ∣ < 2R − 2h
for some i ≠ j. This implies that the balls BR(xi) and BR(xj) intersect each other such
that a set enclosed by a spherical cap of height h is included in their intersection. As the

volume enclosed by the spherical cap of height h has a lower bound cnR
n+1h

n+2
2 , with some

dimensional constant cn, then there is c = c(C0, n) such that

∣BR(xi) ∩BR(xj)∣ ≥ chn+22 .

We use the previous estimate as well as (3.22), (3.28), (3.31), ε ≤ 1 and N ≤ N0 to estimate

Nωn+1R
n+1 ≤ ∣E∣ +Cε0

≤ ∣Er0 +Br0 ∣ +Cε0 +Cε 1
n+2

≤ ∣ N⋃
i=1

BR+ε0(xi)∣ +Cε0 +Cε 1
n+2

≤ ∣ N⋃
i=1

BR(xi)∣ +Nωn+1((R + ε0)n+1 −Rn+1) +Cε0 +Cε 1
n+2

≤ Nωn+1R
n+1 − ∣BR(xi) ∩BR(xj)∣ +Cε0 +Cε 1

n+2

≤ Nωn+1R
n+1 − chn+22 +Cε0 +Cε 1

n+2
= Nωn+1R

n+1 − chn+22 +Cε 1
2(n+2) +Cε 1

n+2
≤ Nωn+1R

n+1 − chn+22 +Cε 1
2(n+2) .

Thus h
n+2
2 ≤ Cε 1

2(n+2) and (3.29) follows.
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Step 3: Let C1 be as in (3.29). By decreasing δ, if needed, we may assume

0 < R −C1ε
1(n+2)2 < R − ε 1

n+2 = r0.

Then we have by (3.28) and (3.29) that the balls Bρ(x1), . . . ,Bρ(xN), with ρ = R−C1ε
1(n+2)2 ,

are disjoint and

(3.32)
N⋃
i=1

Bρ(xi) ⊂ Er0 +Bρ ⊂ Er0−ρ ⊂ E.
This, ε ≤ 1, N ≤ N0 and (3.31) imply

(3.33) ∣E ∖ N⋃
i=1

Bρ(xi)∣ ≤ Cε 1(n+2)2 .

Set ε1 = ε 1(n+2)3 . We prove

(3.34) E ⊂ N⋃
i=1

Bη(xi)
for η = R +C2ε1 with some positive C2 = C2(n,C0). By decreasing δ, if necessary, we deduce
from (3.33) that

∣Bε1 ∣ > ∣E ∖ N⋃
i=1

Bρ(xi)∣ .
Thus, if x ∈ Eε1 , then Bε1(x) ∩ ⋃Ni=1Bρ(xi) must be non-empty. This implies

(3.35) Eε1 ⊂ N⋃
i=1

Bρ+ε1(xi).
Assume that for x ∈ ∂E it holds

dx ∶= dist (x,Er0 +Br0) > 0.

Then by (3.23)

Hn(∂E ∩B(x, dx)) ≤ Cε 1
n+2 .

Let δn ∈ R+ be as in Lemma 3.2 and set rx = min{dx, δn/λ} . Again, by possibly decreasing δ
so that δ ≤ δn, Lemma 3.2 yields

δnr
n
x ≤ Hn (∂E ∩Brx(x)) .

By combining the two previous estimates we have

min{dx, δn
λ

} ≤ Cε 1
n(n+2) .

Since δn/λ ≥ δn/C, then by decreasing δ, if necessary, the previous estimate implies rx = dx
and further gives us

(3.36) dx ≤ Cε 1
n(n+2) ≤ Cε 1(n+2)2 .

On the other hand, by (3.28)

(3.37) Er0 +Br0 ⊂ Er0 +BR ⊂ N⋃
i=1

BR+ε0(xi),



20 VESA JULIN AND JOONAS NIINIKOSKI

where ε0 = ε 1
2(n+2) ≤ ε 1(n+2)2 . Thus, (3.36) and (3.37) imply

∂E ⊂ N⋃
i=1

Bη̃(xi)
with η̃ = R +Cε 1(n+2)2 . By combining this observation with (3.35) we obtain (3.34).

Finally, by decreasing δ one more time, if necessary, (3.30), (3.32) and (3.34) yield

N⋃
i=1

Bρ−(xi) ⊂ E ⊂ N⋃
i=1

Bρ+(xi),
where ρ− = R − Cε 1(n+2)3 , ρ+ = R + Cε 1(n+2)3 , the balls Bρ−(x1), . . . ,Bρ−(xN) are mutually
disjoint, for N it holds

∣P (E) −N(n + 1)ωn+1R
n∣ ≤ Cε 1(n+2)3

and C = C(C0, n) ∈ R+. The claim of Theorem 1.2 then follows by Remark 3.1. �

4. Asymptotic behavior of the volume preserving mean curvature flow

In this section we first define the flat flow and recall some of its basic properties. We do
this in the general dimensional case Rn+1 and resctrict ourself to the case n ≤ 2 only in the
proof of Theorem 1.1. We begin by defining the flat flow of (1.1).

Assume that E0 ⊂ Rn+1 is a bounded set of finite perimeter with the volume of the unit
ball ∣E0∣ = ωn+1. For a given h ∈ R+ we construct a sequence of sets (Ehk )∞k=1 by iterative

minimizing procedure called minimizing movements, where initially Eh0 = E0 and Ehk+1 is a
minimizer of the following problem

(4.1) Fh(E,Ek) = P (E) + 1

h

ˆ
E
d̄Ek dx + 1√

h
∣∣E∣ − ωn+1∣.

Recall, that d̄Ek is the signed distance function from Ek. We then define the approximative

flat flow (Eht )t≥0 by

(4.2) Eht = Ehk , for (k − 1)h ≤ t < kh.
By [29] we know that there is a subsequence of the approximative flat flow which converges

(Ehlt )t≥0 → (Et)t≥0,

where for every t > 0 the set Et is a set of finite perimeter with ∣Et∣ = ωn+1. Any such limit
is called a flat flow of (1.1). It follows from [29] that when n ≤ 6 and if the perimeters of
Eht converge, i.e., limh→0 P (Eht ) = P (Et) for every t > 0, then the flat flow is a weak solution
of the volume preserving mean curvature flow. It is not known if the flat flow coincide with
the classical solution of (1.1) when the latter is well defined and smooth, but the result in [5]
seems to indicate this (see also [4]).

4.1. Preliminary results. Let us take more rigorous approach to the concepts heuristically
introduced above. We base this mainly on [29], where the only difference is that the volume
constraint has a different value. Obviously, this does not affect the arguments.

First, we take a closer look at the functional Fh given by (4.1). If E,F ⊂ Rn+1 are bounded
sets of finite perimeter, then it is easy to see that modifications of E in a set of measure zero
do not affect the value Fh(E,F ) whereas such modifications of F may lead drastic changes
of the of Fh(E,F ). To eliminate this issue, we use a convention that a topological boundary
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of a set of finite perimeter is always the support of the corresponding Gauss-Green measure.
Thus, we consider Fh as a functional Xn+1 × {A ∈Xn+1 ∶ A ≠ ∅} → R, where

Xn+1 = {E ⊂ Rn+1 ∶ E is a bounded set of finite perimeter with ∂E = spt µE}.
We remark that if E0 is essentially open or closed and E0 ∈ Xn+1, then we may assume it to
be open or closed respectively.

For a non-empty F ∈Xn+1 there is always a minimizer E of the functional Fh( ⋅ , F ) in the
class Xn+1 satisfying the discrete dissipation inequality

(4.3) P (E) + 1

h

ˆ
E∆F

d∂F dx + 1√
h
∣∣E∣ − ωn+1∣ ≤ P (F ) + 1√

h
∣∣F ∣ − ωn+1∣ ,

see [29, Lemma 3.1]. Moreover, there is a dimensional constant Cn such that

(4.4) sup
E∆F

d∂F ≤ Cn√h,
see [29, Proposition 3.2]. The minimizer E is always a (Λ, r0) -minimizer in any open neigh-
borhood of E with suitable Λ, r0 ∈ R+ satisfying Λr0 ≤ 1. Thus, by the standard regularity
theory [22, Thm 26.5 and Thm 28.1] ∂∗E is relatively open in ∂E and C1,α-regular with any
0 < α < 1/2 and the Hausdorff dimension of the singular part ∂E∖∂∗E is at most n−7. These
imply that E can always be chosen as an open set. On the other hand, if E is non-empty, it
has a Lipschitz-continuous distributional mean curvature HE satisfying the Euler-Lagrange
equation

(4.5)
d̄F
h

= −HE + λE ,
where the Lagrange multiplier can be written in the case ∣E∣ ≠ ωn+1 as

(4.6) λE = 1√
h

sgn (ωn+1 − ∣E∣) ,
see [29, Lemma 3.7]. Thus, by using standard elliptic estimates one can show that ∂∗E is in
fact C2,α-regular and (4.5) holds in the classical sense on ∂∗E. In particular, E is C2,α-regular
when n ≤ 6. Moreover, if x ∈ ∂E satisfies exterior or interior ball condition with any r, then it
must belong to the reduced boundary of E. This is well-known and follows essentially from
[9, Lemma 3].

Let us turn our focus back on flat flows. Let E0 ∈ Xn+1 be a set with volume ωn+1 and
0 < h < (ωn+1/P (E0))2. Then we find a minimizer Eh1 ∈ Xn+1 for Fh( ⋅ ,E0) and by (4.3)

we have ∣∣Eh1 ∣ − ωn+1∣ ≤ √
hP (E0) implying, via the condition h < (ωn/P (E0))2, that Eh1 is

non-empty. Again, we find a minimizer Eh2 ∈ Xn+1 for Fh( ⋅ ,E1) and using (4.3) twice we

obtain ∣∣Eh2 ∣ − ωn+1∣ ≤ √
hP (E0) and thus Eh2 is also non-empty. By continuing the procedure

we find non-empty sets Eh0 ,E
h
1 ,E

h
2 , . . . ∈ Xn+1 as mentioned earlier, i.e., Eh0 = E0 and Ehk is

a minimizer of Fh( ⋅ ,Ek−1) for every k ∈ N. Thus, we may define an approximate flat flow(Eht )t≥0, with the initial set E0, defined by (4.2). Further a flat flow as a limit is defined as
before. By iterating (4.3) we obtain

(4.7) P (Ehkh) + 1

h

k∑
j=1

ˆ
Eh
jh

∆Eh(j−1)h
d∂Eh(j−1)h dx + 1√

h
∣∣Ehkh∣ − ωn+1∣ ≤ P (E0) for every k ∈ N.
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By the earlier discussion we may assume that Eht , for every t ≥ h, is an open set and ∂Eht is
C2-regular up to the singular part ∂Eht ∖ ∂∗Eht with Hausdorff dimesion at most n − 7. We
use the shorthand notation λht for the corresponding Lagrange multiplier.

Next, we list some basic properties of the approximative flat flow.

Proposition 4.1. Let (Eht )t≥0 be an approximative flat flow starting from E0 ∈ Xn+1 with
volume ωn+1 and P (E0) ≤ C0. There is a positive constant C = C(C0, n) such that the
following holds for every 0 < h < (ωn/P (E0))2:

(i) For every s, t with h ≤ s ≤ t − h it holds ∣Ehs∆Eht ∣ ≤ C√
t − s.

(ii) Suppose that for given T1 ≥ 0 it holds ∣EhT1 ∣ = ωn+1. Then P (EhT1) ≥ P (Eht ) for every
t ≥ T1 and ˆ T2

T1+h
ˆ
∂∗Eht

(HEht
− λht )2 dHndt ≤ C(P (EhT1) − P (EhT2))

for every T2 ≥ T1 + h. Moreover, for every h ≤ T1 < T2 it holdsˆ T2

T1

ˆ
∂∗Eht

(HEht
− λht )2 dHndt ≤ CP (E0).

(iii) For every T > 0 there is R = R(E0, T ) such that Eht ⊂ BR for all 0 ≤ t ≤ T .
(iv) If (hk)k is a sequence of positive numbers converging to zero, then up to a subsequence

there exist approximative flat flows ((Ehkt )t≥0)k which converges to a flat flow (Et)t≥0,
where Et ∈Xn+1, in L1-sense in space and pointwise time, i.e., for every t ≥ 0 it holds

lim
hk→0

∣Ehkt ∆Et∣ = 0.

The limit flow also satisfies ∣Es∆Et∣ ≤ C√
t − s for every 0 < s < t and ∣Et∣ = ωn+1 for

every t ≥ 0.
(v) If E0 is either open or closed, then the sequence in (iv) converges to (Et)t≥0 in L1 in

space and compactly uniformly in time, i.e., for a fixed T it holds

lim
hk→0

sup
t∈[0,T ] ∣Ehkt ∆Et∣ = 0.

Moreover, ∣Es∆Et∣ ≤ C√
t − s for every 0 ≤ s < t.

Proof. The claims (i) - (iv) are essentially proved in [29], see the proofs of Proposition 3.5,
Lemma 3.6 and Theorem 2.2.

To prove (v), we first show that

∣Ehh∆E0∣ → 0 as h→ 0

which immediately implies via (iv) that ∣E0∆Et∣ ≤ C√
t for every t ≥ 0 and hence the sec-

ond claim of (v) holds. Then the compactly uniform convergence in time is a rather direct
consequence of this and (i).

To this aim, let (hk)k be an arbitrary sequence of positive numbers converging to zero. By
(iii) and by the standard compactness property of sets of finite perimeter there is a bounded

set of finite perimeter E∞ such that, up to extracting a subsequence, Ehkhk → E∞ in L1 -sense.

In particular, by (4.7) we have ∣E∞∣ = ωn+1 = ∣E0∣. Again, by using ∣Ehkhk∆E∞∣ → 0 and (4.4)

we have

∣E∞ ∖ {y ∈ Rn ∶ d̄E0(y) ≤ j−1}∣ = 0 and ∣{y ∈ Rn ∶ d̄E0(y) ≤ −j−1} ∖E∞∣ = 0
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for every j ∈ N. Thus, by letting j →∞ we obtain ∣E∞ ∖ Ē0∣ = 0 and ∣int(E0) ∖E∞∣ = 0. Since
E0 is open or closed, this means either ∣E∞ ∖E0∣ = 0 or ∣E0 ∖E∞∣ = 0. But now ∣E∞∣ = ∣E0∣ so

the previous yields ∣E∞∆E0∣ = 0. Thus, ∣Ehkhk ∖E0∣ → 0 up to a subsequence and since (hk)k
was arbitrarily chosen, then it holds ∣Ehh∆E0∣ → 0. �

We note that the claim (v) does not hold for every bounded set of finite perimeter E0. As
an example one may construct a wild set of finite perimeter E0 such that ∣Ehh∆E0∣ ≥ c0 > 0
for all h > 0

By [29, Corollary 3.10] it holds, for a fixed time T ≥ h, that the integral
´ T
h ∣λht ∣2dt is

uniformly bounded in h and hence, via (4.6), it holds ∣{t ∈ (h,T ) ∶ ∣Eht ∣ ≠ ωn+1}∣ ≤ Ch, where
C depends also on T . We may improve this by using Lemma 2.4.

Proposition 4.2. Let C0 > 0 and E0 ∈ Xn+1 be a set of finite perimeter with volume ωn+1

and P (E0) ≤ C0. There are positive constants C = C(C0, n) and h0 = h0(C0, n) such that if
h ≤ h0 and (Eht )t≥0 is an approximative flat flow starting from E0, then for every h ≤ T1 ≤ T2

ˆ T2

T1

∣λht ∣2dt ≤ C(T2 − T1 + 1) and

∣{t ∈ (T1, T2) ∶ ∣Eht ∣ ≠ ωn+1}∣ ≤ Ch(T2 − T1 + 1).
Proof. By (4.7) we may choose h0 = h0(C0, n) such that ∣Eht ∣ ≥ ωn+1

2 whenever h ≤ h0. We

may also assume C0 > 2ωn+1 so ∣Eht ∣ ≥ 1/C0 for h ≤ h0. Thus, by Lemma 2.4 and P (Eht ) ≤ C0

we find a positive C = C(C0, n) such that for every t ≥ h and h ≤ h0 it holds

∣λht ∣2 ≤ C (1 + ˆ
∂∗Eht

(HEht
− λht )2dHn) .

Therefore, ˆ T2

T1

∣λht ∣2dt ≤ C(T2 − T1) +C ˆ T2

T1

ˆ
∂∗Eht

(HEht
− λht )2dHndt.

By Lemma 4.1 (ii) we obtain the first inequality. The first inequality implies, via (4.6), the
second inequality with the same constant C. �

We need also the following comparison result for the proof.

Lemma 4.3. Let 1 ≤ C0 < ∞. Assume E0 ∈ Xn+1 is a set of finite perimeter with volume
ωn+1 and P (E0) ≤ C0, and let F = ⋃Ni=1Br(xi) with ∣xi − xj ∣ ≥ 2r and 1/C0 ≤ r ≤ C0. There is

a positive constant ε0 = ε0(C0, n) such that if (Eht )t≥0 is an approximative flat flow starting
from E0 and

sup
x∈Eht0∆F

d∂F (x) ≤ ε with ε ≤ ε0

for t0 ≥ 0, then it holds

sup
x∈Eht ∆F

d∂F (x) ≤ Cε 1
9 for all t0 < t < t0 +√

ε

provided that h ≤ min{√ε, h0}, where h0 = h0(C0, n) is as in Proposition 4.2.
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Proof. Our standing assumptions are h ≤ min{√ε, h0} and ε ≤ min{1/(2C0),1}. As usual,
C denotes a positive constant which may change from line to line but depends only on the
parameters C0 and n.

Without loss of generality we may assume t0 = 0. Fix an arbitrary xi ∈ {x1, . . . , xN}. Up
to translating the coordinates we may assume that xi = 0. We set for every k = 0,1,2, . . .

ρk = inf{∣x∣ ∶ x ∈ Rn+1 ∖Ehkh} and rk = min{r, ρ0, . . . , ρk}.
We claim that it holds

(4.8) r2
k+1 − r2

k ≥ −C1(1 + ∣λh(k+1)h∣)h,
with some positive constant C1 = C1(C0, n). First, if rk+1 = rk, the claim (4.8) is trivially true.
Thus, we may assume rk+1 < rk which implies ρk+1 = rk+1 < rk ≤ ρk. Then ρk > 0 which, in
turn, means

ρk = min
∂Eh

kh

∣x∣.
Since Eh(k+1)h is bounded and open, there is a point x ∈ Rn+1 ∖Eh(k+1)h with ρk+1 = ∣x∣. Let x′
be a closest point to x on ∂Ehkh. Then

rk+1 + ∣d̄Eh
kh

(x)∣ = ∣x∣ + ∣d̄Eh
kh

(x)∣ ≥ ∣x′∣ ≥ ρk ≥ rk.
The condition ∣x∣ < ρk means x ∈ Ehkh so the previous estimate yields

(4.9) rk+1 − rk ≥ d̄Eh
kh

(x).
Again, x ∈ Ehkh ∖Eh(k+1)h so by Lemma 4.4 ∣d̄Eh

kh
(x)∣ ≤ Cn√h and hence

(4.10) rk+1 − rk ≥ −Cn√h.
We split the argument into two cases. First, if rk+1 < Cn

√
h, then by (4.10) we have

rk < 2Cn
√
h. Therefore, using (4.10) we obtain

(4.11) r2
k+1 − r2

k ≥ −Cn(rk+1 + rk)√h ≥ −3C2
nh.

If rk+1 ≥ Cn√h, then by (4.10) rk ≤ 2rk+1. Since rk+1 > 0, then it holds x ∈ ∂Eh(k+1)h and

Eh(k+1)h satisfies interior ball condition of radius rk+1 at x. Thus, by discussion in Section 2 x

belongs to the reduced boundary of Eh(k+1)h and therefore by the maximum principle it holds

HEh(k+1)h(x) ≤ n
rk+1 . Again, by the previous estimate, (4.9), the Euler-Lagrange equation (4.5)

and rk+1 ≤ C0 we obtain

rk+1 − rk
h

≥ d̄Ehkh(x)
h

≥ − n

rk+1
− ∣λh(k+1)h∣ ≥ − 1

rk+1
(n +C0∣λh(k+1)h∣) .

Therefore,

(4.12)
r2
k+1 − r2

k

h
≥ −(1 + rk

rk+1
)(n +C0∣λh(k+1)h∣) ≥ −3 (n +C0∣λh(k+1)h∣) .

Thus, (4.11) and (4.12) yield the claim (4.8) in the case rk+1 < rk.
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We iterate (4.8) up to K ∈ N, which is chosen so that Kh ∈ (√ε,2√ε) (recall h < √
ε), and

use Proposition 4.2 to obtain

r2
K − r2

0 ≥ −C1

K−1∑
k=0

(1 + ∣λh(k+1)h∣)h
= −C1Kh −C1

ˆ (K+1)h
h

∣λht ∣dt
≥ −2C1

√
ε −C1

ˆ 3
√
ε

h
∣λht ∣dt

≥ −2C1

√
ε − ˆ 3

√
ε

h
ε− 1

4 + ε 1
4 ∣λht ∣2 dt

≥ −Cε 1
4
⎛⎝1 + ˆ 3

√
ε

h
∣λht ∣2 dt⎞⎠ ≥ −Cε 1

4 .

(4.13)

By the assumption supx∈E0∆F d∂F (x) ≤ ε we have r−ε ≤ r0. Thus we divide r2
K −r2

0 by rK +r0

and use r0 ≥ r − ε ≥ r/2 ≥ 1/(2C0) as well as (4.13) to find a positive constant C2 = C2(C0, n)
such that rK ≥ r −C2ε

1
4 . This means that

inf
Rn+1∖Eht d̄Br(xi) ≥ −C2ε

1
4 for all t < √

ε

and again due to the arbitrariness of xi ∈ {x1, . . . , xN}
inf

Rn+1∖Eht d̄F ≥ −C2ε
1
4 for all t < √

ε.

To conclude the proof, we show that there is a positive constant ε1 = ε1(C0, n) such that

(4.14) sup
Eht

d̄F ≤ 2ε
1
9 for all t < √

ε

provided that ε ≤ ε1. To this aim we choose an arbitrary x0 ∈ Rn+1 ∖ F̄ with d̄F (x0) ≥ 2ε
1
9 .

We set for every k = 0,1,2, . . .

ρk = inf
x∈Eh

kh

∣x − x0∣ and rk = min{2ε
1
9 , ρ1, . . . , ρk}.

In particular, rk ≤ 2C
1
9
0 . A slight modification of the procedure we used to obtain (4.13) yields

r2
K − r2

0 ≥ −Cε 1
4 ,

where K is the same as earlier. Again, the conditions supx∈E0∆F d∂F (x) ≤ ε and ε ≤ 1 imply

r0 ≥ 2ε
1
9 − ε ≥ ε 1

9 . Thus

rK − r0 ≥ −C ε 1
4

r0
≥ −Cε 5

36 = −Cε 1
36 ε

1
9

and thus rK ≥ (1 −Cε 1
36 )ε 1

9 > 1
2ε

1
9 , when ε is small enough. Since x0, with dF (x0) ≥ 2ε

1
9 , was

arbitrarily chosen we deduce that

Ehkh ⊂ {x ∈ Rn+1 ∶ dF (x) ≤ 2ε
1
9 } for all k = 0, . . . ,K.

The claim (4.14) then follows from the choice of K.
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4.2. Proof of Theorem 1.1. The proof of Theorem 1.1 is based on Theorem 1.2. We first
use it together with the dissipation inequality in Proposition 4.1 (ii) to deduce that there
exists a sequence of times tj →∞ such that the sets Etj are close to a disjoint union of balls.
Since perimeter of the approximative flat flow is essentially decreasing then the number of the
balls is also monotone. In particular, we deduce that after some time, the sets Etj are close to
a fixed number, say N , of balls. We use the second statement of Theorem 1.2 to deduce that
the perimeters of Etj converges to the perimeter of N many balls with volume ωn+1 and thus
the right-hand-side of the dissipation inequality converges to zero. This allows us to improve
our estimate and use Theorem 1.2 again to deduce that the flat flow Et is close to a disjoint
union of N many balls for all large t except a set of times with small measure. The statement
then finally follows from Lemma 4.3.

Proof of Theorem 1.1. Assume that the initial set E0 ∈ Xn+1 has the volume of the unit ball∣E0∣ = ωn+1, fix a positive C0 with C0 ≥ max{1, P (E0)} and assume h < (C0/ωn+1)2. Let(Et)t≥0 be a flat flow starting from E0 and let (Ehlt )t≥0 be an approximative flat flow which
by Proposition 4.1 converges to (Et)t≥0 locally uniformly in L1. We simplify the notation and
denote the converging subsequence again by h. Since we are now in the dimensions 2 and 3
(n = 1,2), the sets Eht are C2-regular.

Step 1: Let us denote

(4.15) Σh ∶= {t ∈ (0,∞) ∶ ∣Eht ∣ ≠ ωn+1}
By (4.7) and Proposition 4.2 we find a constant h0 = h0(C0, n) < 1 such that ∣Eht ∣ ≥ 1/C0 for
every t ≥ 0 and

∣(T1, T2) ∩Σh∣ ≤ 1

3
(T2 − T1)

for every T1 ≥ 1 and T2 ≥ T1 + 1 provided that h ≤ h0. On the other hand, by Proposition 4.1
(ii) we have for every h ≤ h0 and l ∈ N

Il,h ∶=  (l+1)2
l2

∥HEht
− λht ∥2

L2(∂Eht ) dt ≤ C
l
.

By Chebysev’s inequality

∣{t ∈ (l2, (l + 1)2) ∶ ∥HEht
− λht ∥2

L2(∂Eht ) ≥ 3Il,h}∣ ≤ 1

3
((l + 1)2 − l2).

Therefore, by choosing T1 = l2 and T2 = (l + 1)2 we deduce that the set

{t ∈ (T1, T2) ∶ ∣Eht ∣ = ωn+1, ∥HEht
− λht ∥2

L2(∂Eht ) < 3Il,h}
is non-empty. Thus, if h ≤ h0, then there is a sequence of times (T hl )l, with l2 ≤ T hl ≤ (l + 1)2,

such that the corresponding sets satisfy ∣Eh
Th
l

∣ = ωn+1 and

(4.16) ∥HEh
Th
l

− λh
Th
l
∥L2(∂Eh

Th
l

) ≤ Cl− 1
2 .

By slight abuse of the notation we set Ehl ∶= EhTh
l

and λl,h ∶= λhTh
l

for h ≤ h0. Since the sets

Ehl are C2-regular and bounded, then thanks to P (E0) ≤ C0, ∣Ehl ∣ ≥ 1/C0, (4.16) and Theorem
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1.2 we find l0 = l0(C0, n) such that for every l ≥ l0 we have 1/C ≤ λl,h ≤ C,

(4.17) ∣P (Ehl ) −Nh
l (n + 1)ωn+1(rhl )n∣ ≤ Cl− q2 and sup

Eh
l

∆Fh
l

d∂Fh
l
≤ Cl− q2 ,

where rhl = n/λl,h and F hl is a union of Nh
l -many pairwise disjoint (open) balls of radius rl,h.

Since 1/C ≤ λl,h ≤ C, then also 1/C ≤ rl,h ≤ C, which together with the perimeter estimate

P (Ehl ) ≤ P (E0) ≤ C0 implies that there is N0 = N0(C0, n) ∈ N such that Nh
l ≤ N0. Further

the distance estimate in (4.17), together with 1/C ≤ rl,h ≤ C and Nh
l ≤ N0, yields

∣Ehl ∆F hl ∣ ≤ Cl− q2 .
Since ∣Ehl ∣ = ωn+1, then the estimate above implies ∣(rl,h)n+1Nh

l − 1∣ ≤ Cl− q2 and further∣(rl,h)n(Nh
l ) n

n+1 − 1∣ ≤ Cl− q2 . This inequality, the perimeter estimate in (4.17) and Nh
l ≤ N0

imply

(4.18) ∣P (Ehl ) − (n + 1)ωn+1(Nh
l ) 1

n+1 ∣ ≤ Cl− q2 .
Since by Proposition (4.1) (ii) (P (Ehl ))l≥l0 is non-increasing, then (4.18) implies that there is

a positive integer l1 = l1(C0, n) ≥ l0 for which (Nh
l )l≥l1 is non-increasing for all h ≤ h0.

Step 2: For l ≥ l1 and h ≤ h0 the sets Ehl are thus close to Nh
l many balls. We claim

that there are N ∈ N and l2 ≥ l1 such that for every integer L ≥ l2 it holds

(4.19) Nh
l = N for all l2 ≤ l ≤ L

provided that h is small enough.
By using a standard diagonal argument and possibly passing to a subsequence we find a

sequence of positive integers (Nl)l≥l1 , with Nl ≤ N0, such that Nh
l → Nl for every l ≥ l1. Since(Nh

l )l≥l1 is non-increasing, then (Nl)l≥l1 is non-increasing too and hence there are N, l2 ∈ N,

l2 ≥ l1, such that Nl = N for every l ≥ l2. Hence, we have (4.19) by the convergence of Nh
l to

Nl.
We obtain from (4.18) and (4.19) that

(4.20) ∣P (Ehl ) − (n + 1)ωn+1(N) 1
n+1 ∣ ≤ Cl− q2

for l2 ≤ l ≤ L, provided that h is small enough. Therefore, it follows from Proposition 4.1 (ii)
that ˆ ThL

Th
l
+h ∥HEht

− λht ∥2
L2(∂Eht ) dt ≤ Cl− q2 .

Since h ≤ 1, and L > 1 was arbitrary, the above yields

(4.21) sup
T≥(l+2)2 [lim sup

h→0

ˆ T

(l+2)2 ∥HEht
− λht ∥2

L2(∂Eht ) dt] ≤ Cl− q2
for every l ≥ l2.

Step 3: Let us fix small δ, which choice will be clear later. Then it follows from (4.21),
(4.20) and the fact t ↦ P (Eht ) is non-increasing in Σh that there is Tδ such that for every
T ≥ Tδ + 1 there is hδ,T such that

(4.22)

ˆ T

Tδ

∥HEht
− λht ∥2

L2(∂Eht ) dt ≤ δ
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for all h ≤ hδ,T and

(4.23) ∣P (Eht ) − (n + 1)ωn+1N
1
n+1 ∣ ≤ δ

for all t ∈ (Tδ, T ) ∖ Σh. On the other hand, by Proposition 4.2 and by decreasing hδ,T if
necessary we deduce that

(4.24) ∣Σh ∩ (Tδ, T )∣ ≤ δ for all h ≤ hδ,T .
Let ε > 0 and let us fix t ≥ Tδ + 1. (The time Tδ + 1 will be Tε in the claim.) We claim that,

when δ is chosen small enough, it holds

(4.25) sup
Eht ∆Fht

d∂Fht
≤ ε,

for h ≤ hδ,T , where F ht is a union of N -many pairwise disjoint (open) balls of radius r = N− 1
n+1

with volume ωn+1.
Fix T ≥ t + 1. Then it follows from (4.22) thatˆ t

t−δ1/4 ∥HEhτ
− λhτ ∥2

L2(∂Ehτ ) dτ ≤ δ
and from (4.23) and (4.24) that

∣P (Ehτ ) − (n + 1)ωn+1N
1
n+1 ∣ ≤ δ for all τ ∈ (t − δ1/4, t) ∖Σh

and ∣Σh ∩ (t − δ1/4, t)∣ ≤ δ. Using these estimates we deduce that there is t0 ∈ (t − δ1/4, t) such
that ∣Eht0 ∣ = ωn+1,

(4.26) ∣P (Eht0) − (n + 1)ωn+1N
1
n+1 ∣ ≤ δ

and ∥HEht0
− λht0∥L2(∂Eht0) ≤ δ1/4.

Theorem 1.2 implies that

sup
Eht0

∆Fht0

d∂Fht0
≤ Cδq/4,

for all h ≤ hδ,T , where F ht0 is a union of Nt0,h-many pairwise disjoint (open) balls of radius
rt0,h with volume ωn+1 and

∣P (Eht0) −Nt0,h(n + 1)ωn+1r
n
t0,h

∣ ≤ Cδq/4.
Since 1/C ≤ rt0,h ≤ C, then, as in Step 1, we deduce from the previous two estimates above

that ∣Eht0∆F ht0 ∣ ≤ Cδq/4. Then by (4.26) and ∣F ht0 ∣ = ωn+1 we further conclude that Nt0,h = N ,

i.e., F ht0 is a union of N -many pairwise disjoint (open) balls with volume ωn+1 and radius

r = N− 1
n+1 .

By Lemma 4.3 it holds

sup
Ehτ∆Fht0

d∂Fht0
≤ Cδ q

36 for all t0 < τ < t0 + δ q8
and h ≤ hδ,T . In particular, since δ

q
8 > δ 1

4 the above inequality holds for t. This proves (4.25)

by choosing F ht = F ht0 and δ small enough. The claim follows by letting h → 0. Note that by

Proposition 4.1 (iii) there is R > 0 such that F ht ⊂ BR for all h ≤ hδ,T . Therefore, by passing
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to another subsequence if necessary, we have that F ht → Ft, where Ft is a union of N -many
pairwise disjoint (open) balls with volume ωn+1 and by (4.25) it holds

sup
Et∆Ft

d∂Ft ≤ ε.
�
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STATIONARY SETS OF THE MEAN CURVATURE FLOW WITH A FORCING

TERM

VESA JULIN AND JOONAS NIINIKOSKI

Abstract. We consider the flat flow solution to the mean curvature equation with forcing
in Rn. Our main result states that tangential balls in Rn under a flat flow with a bounded
forcing term will experience fattening, which generalizes the result in [11] from the planar
case to higher dimensions. Then, as in the planar case, we characterize stationary sets in Rn

for a constant forcing term as finite unions of equisize balls with mutually positive distance.

1. Introduction

In this article, we consider the mean curvature flow (MCF) with a bounded forcing term
for compact embedded hypersurfaces. By definition, this is a family of embedded surfaces(Σt)t∈[0,∞) in Rn, with initial set Σ0, and which moves according to the law

(1.1) Vt = −HΣt + f(t),
where Vt is the normal velocity, HΣt the mean curvature and f a bounded measurable function.
It is well known that the flow may develop singularities for a smooth initial set when n ≥ 3
[12] and even in the plane when f ≠ 0 [4]. In order to define the flow over the singular
times and in order to define it for rough initial sets, one may define a weak solution by using
either the level set formulation [7, 10], the flat flow via the minimizing movement scheme
[1, 14] or Brakke’s varifold formulation [5]. The main issue is that there is no unique way to
define the weak solution, and the previous methods may give rise to a different solution. The
level-set approach provides a unique function which is a solution of the corresponding partial
differential equation in the viscosity sense, but its level sets may have positive volume. We
call this phenomenon fattening. De Giorgi’s minimal and maximal barriers provide essentially
the same solution as the level-set approach, and in this context the fattening means that the
minimal and the maximal solution do not agree. The fattening may occur instantaneously if
the initial set is not regular [4, 10] or after a finite time for regular initial sets [4]. In this work,
we consider the flat flow of (1.1), which is a solution obtained via the minimizing movement
scheme as in [1, 14]. The flat flow can be defined for rough embedded initial hypersurfaces
which are boundaries of sets of finite perimeter. Therefore, it is more natural in this context
to define the flow for sets rather than surfaces. If the initial set is smooth, then the flat flow
agrees with the classical solution for a short time interval, but in case of fattening it is not
clear if it is uniquely defined.

Here we study the fattening for the flat flow of (1.1) in the specific case when the initial set
is a union of two tangent balls. It is well known that in this case the level-set solution produces
instantaneously fattening [4, 13]. We also mention the work [9], where Dirr, Luckhaus and
Novaga study the same setting but add randomness to the flow. For a general introduction
to the topic, we refer to [3]. In our main theorem, we generalize the result in [11] from the

1
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plane to Rn and prove that the flat flow instantaneously connects the two tangent balls with
a thin neck which continues to grow at least for a short period of time.

Theorem 1.1. Let E0 ⊂ Rn, n ≥ 2 , be a union of two tangential balls B(x1, r) and B(x2, r).
Let (Et)t be a flat flow with a forcing term f , which is bounded by C0 ∈ R+, starting from E0.
There exist positive numbers δ, c1 and c2 depending only on n, r and C0 such that for every
t ∈ (0, δ) the set Et contains a dumbbell-shaped simply connected set which again contains the
balls B(x1, r − c1t), B(x2, r − c1t) and B((x1 + x2)/2, c2t).

We note that the above result immediately generalizes to the case when the two balls do
not have the same radii. This follows from Theorem 1.1 and a standard comparison argument
(see Proposition 3.2).

Theorem 1.1 implies that a union of tangent balls cannot be a stationary set of the flow (1.1).
Therefore, we may use the characterization of critical points of the isoperimetric problem from
[8] to characterize all stationary points of the flow (1.1).

Theorem 1.2. A bounded set of finite perimeter E0 ⊂ Rn, with n ≥ 2, is a stationary set of
the flow (1.1) (see definition 3.5) with a positive constant forcing Λ exactly when it is a finite
union of balls of radius r = (n − 1)/Λ with mutually positive distance.

Let us finally mention a few words about the proof of Theorem 1.1. We begin the proof as
in the planar case [11] by showing that any discrete approximation of the flat flow creates at
the first step a neck which connects the two balls. After this, we need to show that this neck
is growing until the time δ. In the planar case, it is enough to construct a single barrier set to
show that the neck is growing (see [11, Proof of Theorem 1.1]). In the higher-dimensional case,
we need to construct a family of comparison sets which, together with a delicate comparison
argument, implies that the neck is growing. The novelty of the proof is the construction of
this discrete barrier flow. A similar idea is used in [13] in the context of level set solutions.
The main difference is that in our case the flow is defined via time discretization.

2. Notation and preliminary results

Let us introduce some basic concepts and notation. First, our standing assumption through-
out the paper is that the dimension n is at least two, and for x ∈ Rn we use the decomposition
x = (x1, x′), where x1 ∈ R and x′ ∈ Rn−1. For a given set E ⊂ Rn, the distance function
dE ∶ Rn → R is given by dE(x) = infy∈E ∣x − y∣, and further the signed distance function
d̄E ∶ Rn → R is defined by

d̄E(x) = ⎧⎪⎪⎨⎪⎪⎩
−dE(x), x ∈ E
dE(x), x ∈ Rn ∖E.

For the empty set, we use the convention that its signed distance function is ∞ everywhere.
If E ⊂ Rn is Lebesgue-measurable, then we will denote its n-dimensional Lebesgue-measure
by ∣E∣.

For a set of finite perimeter E ⊂ Rn, the term ∂∗E denotes its reduced boundary as usual.
Recall that then ∂∗E is the support of the corresponding Gauss-Green measure and the
perimeter of E is given by P (E) = Hn−1(∂∗E). If E is C1-regular, then we have ∂∗E = ∂E.

Moreover, we may always assume ∂E = ∂∗E. The measure theoretic outer unit normal is
defined in ∂∗E and we denote it by νE . If E is a C1-set, then νE agrees with the classical
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outer unit normal of E. Again, for every C1-vector field Ψ ∶ Rn → Rn the tangential differential
at x is defined by

DτΨ(x) = DΨ(x)(I − νE(x) ⊗ νE(x))
and the tangential divergence by divτ Ψ = Tr(DτΨ(x)).

For an orientable C2 -hypersurface Σ ⊂ Rn, with orientation νΣ ∶ Σ → ∂B(0,1), the corre-
sponding mean curvature HΣ(x) at x ∈ Σ is defined as the sum of the principal curvatures
k1(x), . . . , kn−1(x). If E ⊂ Rn is a C2 -set, then HE(x) for x ∈ ∂E denotes H∂E(x), with the
orientation νE , and we have the classical (surface) divergence theorem�

∂E
divτ Ψ dHn−1 = �

∂E
HE⟨Ψ, νE⟩ dHn−1

for every Ψ ∈ C1
0(Rn;Rn). In general, we say that a set of finite perimeter E ⊂ Rn has a

distributional mean curvature HE ∈ L1(∂∗E) if for every Ψ ∈ C1
0(Rn;Rn) it holds

(2.1)

�
∂∗E

divτ Ψ dHn−1 = �
∂∗E

HE⟨Ψ, νE⟩ dHn−1.
Note that for C2-regular sets the distributional mean curvature agrees with the classical
mean curvature. Finally, we say that a set of finite perimeter E ⊂ Rn is critical if it has a
constant distributional mean curvature. By [8, Theorem 1 ], we know that the critical sets
are characterized as finite unions of balls with equal radius and mutually disjoint interiors.
As a consequence, we have the following convergence result; see [8, Corollary 2].

Theorem 2.1. Let (Ei)∞i=1 be a sequence of sets of finite perimeter in Rn with distributional
mean curvature HEi, let E ⊂ Rn be a set of finite perimeter with a positive volume, and let Λ
be a positive constant such that ∣E∆Ei∣ → 0, P (Ei) → P (E) and HEi → Λ in the distributional
sense, i.e., for every Ψ ∈ C1

0(Rn;Rn) it holds
lim
i→∞

�
∂∗Ei

divτ Ψ −Λ⟨Ψ, νEi⟩ dHn−1 = 0.
Then E is a finite union of balls with the equal radius r = (n−1)/Λ and the balls have mutually
disjoint interiors.

We will use solids of revolution, which are obtained by rotating a non-negative function
around the x1-axis in Rn. If g is a non-negative function defined on an interval [a, b], then
we will denote by C(g, [a, b]) the solid of revolution

C(g, [a, b]) ∶= {x ∈ Rn ∶ x1 ∈ [a, b], x′ ∈ B̄n−1(0, g(x1))}.
Again, by the heads of C(g, [a, b]) we mean the vertical part of the boundary

{x ∈ Rn ∶ x1 ∈ {a, b}, x′ ∈ B̄n−1(0, g(x1))}.
In the special case of a cylinder, symmetric to the hyperplane {x1 = 0}, i.e., g ≡ R > 0 and
b = −a, we simply denote C(R,a) =C(R, [−a, a]). In the case where g is continuous on [a, b]
and vanishes at the endpoints, we make the following technical observation.

Remark 2.2. Suppose that g ∈ C([a, b]) is non-negative with g(a) = 0 = g(b) and set E =
C(g, [a, b]). Then, for every x1 ∈ R, the set d̄E(x1, ⋅ ) ∶ Rn−1 → R is a radially symmetric
function strictly increasing in radius.
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If g ∈ C([a, b]) ∩C2((a, b)) and g is strictly positive, then for the surface of revolution

Γ = {(x1, x′) ∈ Rn ∶ x1 ∈ (a, b), x′ ∈ ∂Bn−1(0, g(x1))}
with the inside-out orientation of C(g, [a, b]) one computes

(2.2) HΓ(x) = − g′′(x1)(1 + g′(x1)2) 32 +
1

(1 + g′(x1)2) 12
n − 2
g(x1)

for every x ∈ Γ.
A solid of revolution C(g, [a, b]) is an example of a Schwarz symmetric set. Recall that

for every measurable set E ⊂ Rn its Schwarz symmetrization, or (n − 1)-dimensional Steiner
symmetrization, with respect to a direction e ∈ ∂B(0,1) is a measurable set E∗e such that for
every t ∈ R the section {z ∈ ⟨e⟩⊥ ∶ te + z ∈ E∗e } is an open (n − 1)-dimensional ball centered at
the origin and it holds

Hn−1({z ∈ ⟨e⟩⊥ ∶ te + z ∈ E}) = Hn−1({z ∈ ⟨e⟩⊥ ∶ te + z ∈ E∗e }).
Note that ∣E∗e ∣ = ∣E∣ and if E is a set of finite perimeter, then E∗e is also a set of finite perimeter
and P (E∗e ) ≤ P (E) (see[2]). A set E is Schwarz symmetric with respect to e if E∗e = E holds,
up to a set of measure zero.

3. Flat flows with forcing and stationary sets

Let us first heuristically explain how a flat flow with a forcing term is obtained via the
minimizing movement scheme. Let C0 ∈ R+ be a fixed constant and let f ∶ [0,∞) → R be a
measurable function satisfying the condition

(3.1) sup
t≥0 ∣f(t)∣ ≤ C0.

The function f will act as a time dependent forcing term in the dynamics. Now if E0 is a
bounded set of finite perimeter, then we define for every 0 < h ≤ 1 a sequence of bounded sets
of finite perimeter (Eh,k)∞k=0, a so-called approximative sequence, inductively by setting first

Eh,0 = E0 and for k = 0,1,2, . . . we set Eh,k+1 to be a minimizer of the functional

(3.2) F ↦ P (F ) + 1

h

�
F
d̄Eh,k dx − f̄(h, k)∣F ∣,

where f̄(h, k) = � (k+1)hkh f(t) dt. Then we define an approximate flat flow (Eh
t )t≥0 by setting

(3.3) Eh
t = Eh,k for kh ≤ t < (k + 1)h.

If there is a subsequence (hk)k∈N with hk → 0 and a family of bounded sets of finite perimeter(Et)t≥0 such that Ehk → Et for every t ≥ 0 in the L1-sense, then we call (Et)t≥0 a flat flow
with forcing f starting from E0. An existence of such a cluster point is always guaranteed;
see, for instance, [11, Proposition 2.3].

Let us next make the above argument more precise by using the results in [11, 16]. We note
that in [16] Mugnai, Seis and Spadaro consider flat flow for volume preserving mean curvature
flow, but the arguments will remain valid in our setting. Our first observation is that the
functional in (3.2) may change its values if we perturb the set Eh,k by a set of measure zero
due to the distance function. In order to use the notion of distance function consistently, we
define the class

Xn = {E ⊂ Rn ∶ E is a bounded set of finite perimeter with ∂E = ∂∗E}.
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Recall that every (essentially) bounded set of finite perimeter has an L1-equivalent set from
Xn. For given 0 < h ≤ 1 and Λ ∈ [−C0,C0], we define the functional

Fh,Λ ∶Xn ×Xn → R ∪ {∞}
by setting

(3.4) Fh,Λ(F,E) = P (F ) + 1

h

�
F
d̄E dx −Λ∣F ∣.

For every E ∈ Xn, the functional Fh,Λ( ⋅ ,E) admits a minimizer Emin ∈ Xn; see [16, proof
of Lemma 3.1]. If E is empty, then d̄E = ∞, and hence necessarily Emin must be empty too.
Minimizers have the following distance property; see the proof of [14, Lemma 2.1] (or [16,
Proposition 3.2]): there is a positive constant γ = γ(n,C0) such that for every E ∈ Xn and
every minimizer Emin ∈Xn of Fh,Λ( ⋅ ,E) it holds
(3.5) ∣d̄E ∣ ≤ γh 1

2 in E∆Emin.

Now, (3.5) has the following consequence.

Remark 3.1. Suppose that E1,E2, . . . ,Ek ∈ Xn have a mutually positive distance of at least
d. Then there is a positive hd = hd(n,C0, d) ≤ 1 such that for any h ≤ hd it holds that any
minimizer of Fh,Λ( ⋅ ,⋃iEi) must be a union of minimizers of Fh,Λ( ⋅ ,Ei).

In general, the uniqueness of a minimizer of Fh,Λ(⋅,E) is not known. However, the following
weak comparison principle holds; see [6, proof of Lemma 7.2].

Proposition 3.2. Let E,E′ ∈Xn and Λ,Λ′ ∈ [−C0,C0], with Λ > Λ′.
(i) If E′ ⊂⊂ E and Emin,E

′
min ∈ Xn are minimizers of Fh,Λ( ⋅ ,E) and Fh,Λ( ⋅ ,E′)

respectively, then ∣E′min ∖Emin∣ = 0.
(ii) If E′ ⊂ E and Emin,E

′
min ∈ Xn are minimizers of Fh,Λ( ⋅ ,E) and Fh,Λ′( ⋅ ,E′)

respectively, then ∣E′min ∖Emin∣ = 0.
Concerning the regularity of a minimizer Emin of (3.4), it is not difficult to see that it is a(Λ0, r0)-perimeter minimizer (using the notation from [15]) with suitable Λ0, r0 ∈ R+ satisfying

Λ0r0 ≤ 1. Then it follows [15, Theorem 26.5 and Theorem 28.1] that ∂∗Emin is relatively open
in ∂Emin, a C

1,α-regular hypersurface for every 0 < α < 1/2 and the (closed) singular part
∂E ∖ ∂∗E has Hausdorff-dimension at most n − 8. In particular, from now on we will use the
convention that the minimizers are always open sets.

Moreover, by considering local variations (Φt)t of the form Φt = id+tΨ, with Ψ ∈ C1
0(Rn,Rn),

and differentiating t ↦ Fh,Λ(Φt(Emin),E) at zero, we see that Emin has distributional mean
curvature HEmin

which satisfies the Euler-Lagrange equation in the distributional sense

(3.6)
d̄E
h
= −HEmin

+Λ on ∂∗Emin.

Since HEmin
is Lipschitz continuous on ∂∗E, then, by standard elliptic estimates, ∂∗Emin is

C2,α-regular and (3.6) holds in the classical sense on the reduced boundary. In particular,
Emin is a C2,α-set when n ≤ 7. Finally, we note that if ∂E satisfies an exterior or interior ball
condition at x, then x must belong to the regular part ∂∗Emin. This follows essentially from
[8, Lemma 3].

The next proposition states the somewhat obvious fact that for a ball E = B(x, r) any
non-empty minimizer of Fh,Λ(⋅,E) must be a concentric ball.
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Proposition 3.3. For a ball E = B(x, r), every minimizer (3.4) must be an open concentric
ball or the empty set. There is a positive constant h0 = h0(n,C0) ≤ 1 such that if h ≤ h0, then
every ball B(x, r), with r ≥ (n−1)/C0, has a concentric ball B(x, rmin) as a unique minimizer
of Fh,Λ( ⋅ ,E) and it holds

(3.7) rmin − r = [Λ − n − 1
r
+O(h)]h.

In the case Λ = (n − 1)/r, the error term O(h) vanishes and hence rmin = r.
Proof. The first claim is easy to see by using the isoperimetric inequality and the fact that for
a given non-zero volume V an open ball of the volume V , centered at x, is a unique minimizer
of the energy

�
F d̄B(x,r) dy among the open sets F of the volume V . Again, by using (3.5),

we see that if h is sufficiently small compared to the radius, then every minimizer must be
non-empty and hence a concentric ball. Thus, the uniqueness and (3.7) follow from (3.5) and
the Euler-Lagrange equation (3.6). □

Let us denote the Schwarz symmetrization of E with respect to the x1-axis simply by E∗.
As we mentioned above, Schwarz symmetrization decreases the perimeter and preserves the
volume. Moreover, for a smooth set in the case of equality P (E∗) = P (E), it holds that
every vertical slice Ex1 = {x′ ∈ Rn−1 ∶ (x1, x′) ∈ E} is an (n − 1)-dimensional ball [2]. We
also notice that if the set E is Schwarz symmetric with respect to the x1-axis, then Schwarz
symmetrization also decreases the dissipation term of Fh,Λ( ⋅ ,E) defined in (3.4). This follows
rather directly from Fubini’s theorem. For a suitable solid of revolution E around the x1-axis,
there is invariance of minimizers under the symmetrization.

Proposition 3.4. If E = C(g, [a, b]), with a non-negative and continuous g attaining the zero
value at the endpoints, then every (open) minimizer F of Fh,Λ( ⋅ ,E) defined in (3.4) is
Schwarz symmetric with respect to the x1-axis.

Proof. Let F be a such a minimizer. We may assume F to be non-empty. Now P (F ∗) ≤ P (F )
and ∣F ∗∣ = ∣F ∣. By Remark 2.2, every section d̄E(x1, ⋅ ) is radially symmetric and strictly
increasing in radius, which implies via Fubini’s theorem that the (n−1)-dimensional Lebesgue
measure of the symmetric difference ∣(F ∗)x1∆Fx1 ∣n−1 of the vertical slices (F ∗)x1 and Fx1 is
zero for almost every x1, since otherwise it would hold�

F ∗
d̄E dx < �

F
d̄E dx

and hence Fh,Λ(F ∗,E) < Fh,Λ(F,E) contradicting the minimality of F . Since F is open,

every vertical slice Fx1 ⊂ Rn−1 is open too, and thus the previous observation guarantees that(F ∗)x1 = Fx1 for almost every x1. Thus, the openness of F implies that the equality holds for
every x1.

□
After this discussion, we are convinced that an approximative sequence (Eh,k)∞k=0, starting

from E0, where for every k = 1,2 . . ., the set Eh,k+1 is defined as a minimizer of the functionalFh,f̄(h,k)( ⋅ ,Eh,k) defined in (3.4), is well-defined. Further, we may define the approximative

flat flow (Eh
t )t≥0 as in (3.3). We have for every t ≥ h that the set Eh

t is open and C2-regular
up to a singular part ∂Eh

t ∖ ∂∗Eh
t of Hausdorff-dimesion at most n − 8. Moreover, Eh

t , with
t ≥ h, has a distributional mean curvature HEt

h
which satisfies the Euler-Lagrange equation

(3.6), with Λ = f̄(h, ⌊t/h⌋ − 1), in a weak sense and on ∂∗Eh
t in the classical sense. For more
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properties of the approximative flat flows, when the forcing term satisfies (3.1), such as local
Hölder continuity of (t, s) ↦ ∣Eh

t ∆E
h
s ∣ and perimeter control we refer to [11, Proposition 2.3].

Next, we define stationary sets of (1.1) with constant forcing term by using flat flows as in
[11, Definition 3.1].

Definition 3.5. A non-empty set E0 ∈ Xn is a stationary set of (1.1) for a constant forcing
term f ≡ Λ > 0 if for any flat flow, starting from E0 it holds

sup
0≤t≤T ∣Et∆E0∣ = 0

for every T > 0.
By using Remark 3.1 and Proposition 3.3, one may conclude the obvious direction of

Theorem 1.2, that is, a finite union of equisize balls with a mutually positive distance is a
stationary set for the constant forcing term Λ = (n − 1)/r, where r is the radius of the balls.
In turn, the following lemma states that the converse is almost true, that is, a stationary set
is also critical, i.e., a finite union of balls with equal radius and mutually disjoint interiors.

Lemma 3.6. Every stationary set E0 ⊂ Rn for a positive constant forcing term Λ, is a finite
union of balls of radius r = (n − 1)/Λ with mutually disjoint interiors.

Proof. The lemma is already established in the two-dimensional case in [11, Lemma 3.4].
Again, the proof of the general case is analogous to the proof of [11, Lemma 3.4] with the
only essential change being that we use Theorem 2.1 instead of [11, Lemma 3.2]. Therefore, we
only sketch the proof. Besides Theorem 2.1, we also use some basic properties of approximate
flat flows proven in [11].

We begin by fixing times 0 < T1 < T2. Then, by Definition 3.5 and [11, Proposition 2.3], we
have a decreasing sequence (hi)∞i=1, with 0 < hi < 1 and hi converging to zero, such that the

approximate flat flows (Ehi
t )t≥0, with constant forcing f ≡ Λ and starting from E0, satisfy

(3.8) lim
i→∞ sup

t∈[T1,T2] ∣E0∆E
hi
t ∣ = 0.

Moreover, since the forcing term is constant, it follows from the argument in the proof of [11,
Proposition 2.4] that there is C ∈ R+, independent of h, such that for every t ∈ [T1, T2] with
t > h it holds

(3.9)

� t

h

�
∂∗Eh

s

∣HEh
s
−Λ∣2 dHn−1ds ≤ C [(P (E0) − P (Eh

t )) + (∣Eh
t ∣ − ∣E0∣)] .

Now, (3.8) and (3.9) imply lim supi→∞ P (Ehi
t ) ≤ P (E0), for every t ∈ [T1, T2]. On the other

hand, by [11, Proposition 2.3 ], there is a radius R > 0, independent of i, such that Ehi
t ⊂

B(0,R) for every t ∈ [0, T2]. Then, by the lower semi-continuity of the perimeter and by the

previous estimate, we have P (Ehi
t ) → P (E0) for every t ∈ [T1, T2]. Thus, (3.9) yields

lim
i→∞

� T2

T1

�
∂∗Ehi

t

∣H
E

hi
t

−Λ∣2 dHn−1dt = 0
and further, by the mean value theorem, we find times ti ∈ (T1, T2) such that

lim
i→∞

�
∂∗Ehi

ti

∣H
E

hi
ti

−Λ∣2 dHn−1 = 0.
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Since P (Ehi
ti
) are uniformly bounded, we deduce by the previous estimate that H

E
hi
ti

→ Λ

in the distributional sense. We also have ∣E0∆E
hi
ti
∣ → 0 and P (Ehi

ti
) → P (E0), so the claim

follows from Theorem 2.1. □
Now, the non-trivial direction of Theorem 1.2 is a rather straightforward consequence

of Lemma 3.6 and Theorem 1.1, since the latter guarantees that a critical set having two
tangential balls cannot be stationary. The reasoning is exactly the same as in the planar case,
but for the sake of completeness we sketch the argument here. To this end, let E0 be a finite
union of balls with equal radius r containing a union of two tangential balls, say

E′0 = B(x1, r) ∪B(x2, r).
Let (Et)t≥0 be any flat flow with a bounded forcing f starting from E0. By applying the second
claim of Proposition 3.2, we find a a flat flow (E′t)t≥0 with the forcing f − 1 starting from E′0
such that ∣E′t ∖Et∣ = 0 for every t ≥ 0. By Theorem 1.1, we have ∣B((x1 + x2)/2, ct) ∖E′t∣ = 0,
and thus ∣B((x1 + x2)/2, ct) ∖ Et∣ = 0 for some c ∈ R+ and for all small t > 0. On the other
hand, it clearly holds ∣B((x1 + x2)/2, ct) ∖E0∣ > 0. Therefore, we deduce that ∣E0∆Et∣ > 0 for
all small t > 0. Thus, E0 cannot be stationary.

4. Proof of Theorem 1.1

Proof of Theorem 1.1. Let E0 be a union of two tangential balls of radius r. We may assume
that E0 = B(−re1, r)∪B(re1, r). Recall that for 0 < h ≤ 1 an approximative sequence (Eh,i)∞i=0
is defined recursively by setting first Eh,0 = E0 and for each i = 0,1,2, . . . the set Eh,i+1 is

chosen to be a minimizer of Fh,f̄(h,i)( ⋅ ,Eh,i) defined in (3.4), where f̄(h, i) = � (i+1)hih f(t) dt.
Recall also that f ∶ [0,∞) → R is measurable and satisfies (3.1) (and hence ∣f̄(h, i)∣ ≤ C0).
Now each Eh,i, with i ≥ 1, satisfies the Euler-Lagrange equation (3.6) with the constant
Λ = f̄(h, i − 1). Again, the corresponding approximative flat flow (Eh)t≥0 is given by (3.3).

Our aim is to show that for a time interval (0, δ], with δ small enough, we may construct

barrier sets Gh,i ⊂ Eh,i for i = 1, . . . , ⌊δ/h⌋ + 1 such that for every h ≤ t ≤ δ the barrier Gh,⌊t/h⌋
contains a simply connected set At defined by

(4.1) At =C(c1t, r) ∪B(−re1, r − c2t) ∪B(re1, r − c2t),
with some c1, c2 ∈ R+, depending only on n, r and C0, provided that h is small enough. Now,
if (Et)t≥0 is any cluster flow, then At ⊂ Eh

t implies ∣At ∖Et∣ = 0 for every t ∈ (0, δ). Further,
since Et ∈Xn, this means int(At) ⊂ Et. The rest of the claim follows trivially from this.

We first note that it is easy to see that the balls B(±re1, r−c2t) are contained in Et. Indeed,
by possibly replacing C0 with max{C0,4(n − 1)/r}, we may assume that r/4 ≥ (n − 1)/C0.
Then, by (i) of Proposition 3.2 and Proposition 3.3, we find η = η(n, r/2,C0) ∈ R+ and
0 < h0 = h0(n, r/2,C0) ≤ 1 such that for every 0 < h ≤ h0 the following implication holds

(4.2) B(x, r̃) ⊂ Eh,i with r̃ ≥ r/2 Ô⇒ B̄(x, r̃ − ηh) ⊂ Eh,i+1.
We split the proof into three steps.

Step 1: First, we prove that there is a positive α = α(n, r,C0), such that the set Eh,1

contains the cylinder C(αh 1
4 , αh

1
2 ) provided that h is sufficiently small.

To this end, let τ > 0 be a small number, which we will fix later. We use C and c for
positive constants which may change from line to line but always depend only on n, r and

C0. We also use a further shorthand notation Ch,τ for the cylinder C(τh 1
4 , τh

1
2 )
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By (4.2), the balls B̄(±re1, r − ηh) are contained in Eh,1 provided that h is small enough.
Again, assuming τ ≤ r/2 and h to be sufficiently small, we have

(r − ηh)2 − (r − τh 1
2 )2 = (2r − ηh − τh 1

2 )(τ − ηh 1
2 )h 1

2

> τr
2
h

1
2 ≥ τ2h 1

2 .

Therefore, the heads of the cylinder Ch,τ , which are the vertical parts of the boundary,

are contained in B(±re1, r − ηh) and therefore, in turn, in the set Eh,1. Since ∂Eh,1 is C2

(possibly up to a closed singular part of Hausdorff-dimension at most n − 8), by a foliation
and continuity argument, we may assume that Hn−1(∂Ch,τ ∩∂Eh,1) = 0. Otherwise, we would
choose τ/2 ≤ τ̃ < τ such that the heads of the cylinder Ch,τ̃ are contained in B(±re1, r − ηh)
and Hn−1(∂Ch,τ̃ ∩ ∂Eh,1) = 0. This implies

(4.3) P (Ch,τ ∪Eh,1) = Hn−1(∂Ch,τ ∖Eh,1) +Hn−1(∂Eh,1 ∖Ch,τ).
Again, we have the following estimates

Hn−1(∂Ch,τ ∖Eh,1) ≤ Cτn−1hn
4 ,(4.4)

d̄E0 ≤ Cτ2h 1
2 in Ch,τ and(4.5)

∣Ch,τ ∣ ≤ Cτnhn+1
4 .(4.6)

We show that C(τh 1
4 /2, τh 1

2 ) ⊂ Eh,1 which implies the claim of Step 1 by choosing α = τ/2.
Suppose by contradiction that this does not hold. We first notice that E0 = C(g, [−2r,2r])
with a continuous g having the zero value at the endpoints, and therefore by Proposition 3.4
it holds Eh,1 = (Eh,1)∗, i.e., Eh,1 is Schwarz symmetric with respect to the x1-axis. Using
this and the fact that the heads of Ch,τ are in Eh,1, we conclude

Hn−1(∂Eh,1 ∩Ch,τ) ≥ cτn−1hn−1
4 .

We use the set Ch,τ ∪ Eh,1 as a competitor in the energy Fh,f̄(h,0)( ⋅ ,E0). By using the

previous estimate as well as (4.3), (4.4), (4.5) and (4.6) and assuming h to be small enough,
we estimate

Fh,f̄(h,0)(Ch,τ ∪Eh,1,E0) = Fh,f̄(h,0)(Eh,1,E0) +Hn−1(∂Ch,τ ∖Eh,1) −Hn−1(∂Eh,1 ∩Ch,τ)
+ 1

h

�
Ch,τ∖Eh,1

d̄E0 dx − f̄(h,0)∣Ch,τ ∖Eh,1∣
≤ Fh,f̄(h,0)(Eh,1,E0) +Cτn−1hn

4 − cτn−1hn−1
4

+C(τ2h− 1
2 + 1)∣Ch,τ ∣

≤ Fh,f̄(h,0)(Eh,1,E0) +Cτn−1hn
4 − cτn−1hn−1

4 +Cτn+2hn−1
4

≤ Fh,f̄(h,0)(Eh,1,E0) + c
2
τn−1hn−1

4 − cτn−1hn−1
4 +Cτn+2hn−1

4

= Fh,f̄(h,0)(Eh,1,E0) + τn−1hn−1
4 (Cτ2 − c

2
) .

Thus by choosing τ < √c/(2C), we have Fh,f̄(h,0)(Ch,τ ∪Eh,1,E0) < Fh,f̄(h,0)(Eh,1,E0) which
contradicts the minimality of the set Eh,1. Hence, we have C(αh 1

4 , αh
1
2 ) ⊂ Eh,1 for α = τ/2.
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Step 2: We proceed by constructing a candidate family for the barrier sets Gh,i for every
i = 1, . . . , ⌊δ/h⌋ + 1 and small δ, which satisfy for every h ≤ t ≤ δ the condition At ⊂ Gh,⌊t/h⌋,
where At is defined in (4.1). To be more precise, we will define positive numbers dh,i, lh,i and
rh,i (such that lh,i increases and rh,i decreases linearly in discrete time and rh,1 → r as h→ 0)
and suitable convex and positive functions φh,i ∶ [−dh,i, dh,i] → R with lh,i/2 ≤ φh,i ≤ lh,i. Then
we define the barrier sets Gh,i, see Figure 4, as the union

Gh,i =C(φh,i, [−dh,i, dh,i]) ∪ B̄(−re1, rh,i) ∪ B̄(re1, rh,i).
Here it follows from the selection of the parameters and the functions that the heads of the

−rh,ie1 rh,ie1
x1

dh,i

lh,i
rh,i

ϕh,i

Figure 4.1. A visualization of the barrier set Gh,i.

neck C(φh,i, [−dh,i, dh,i]) are contained in the balls B(±re1, rh,i) so Gh,i will contain a simply
connected set

C(lh,i/2, r) ∪ B̄(−re1, rh,i) ∪ B̄(re1, rh,i).
and hence the behavior of lh,i and rh,i yields the condition At ⊂ Gh,⌊t/h⌋.

To this end, let 0 < δ < 1 be a sufficiently small number which will ultimately depend only
on n, r and C0. Note that it holds hi ≤ 2δ for all i = 1, . . . , ⌊δ/h⌋ + 1 when h is small. We
begin by setting rh,i = r − ηhi. Now rh,i ≥ r − 2ηδ, so by assuming δ to be small enough, we
have rh,i ≥ r/2. Hence, thanks to (4.2)

(4.7) B̄(−re1, rh,i) ∪ B̄(re1, rh,i) ⊂ Eh,i.

Again, set Λ0 =max{4η2,29(n − 2)2,1} and for each i = 1, . . . , ⌊δ/h⌋ + 1 define

(4.8) lh,i = Λ0h(i − 1) + αh 1
4 and dh,i = 2ηh(i − 1) + αh 1

2 .

It follows from the choice of Λ0 that for δ small enough (δ ≤ Λ−20 ) it holds

(4.9) Λ
1
2
0 dh,i ≤ lh,i.

Moreover, lh,i ≤ Λ0δ + αδ 1
4 , so by decreasing δ we may assume that dh,i and lh,i are as small

as we need. Note that by Step 1 we have

(4.10) C(lh,1, dh,1) ⊂ Eh,1.
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Further, by replacing α with min{α, r/4}, if necessary, we have

r2h,i − (r − dh,i)2 = (rh,i + r − dh,i)(rh,i − r + dh,i)
= (2r − ηh(3i − 2) − αh 1

2 )(ηh(i − 2) + αh 1
2 )

≥ r(ηh(i − 2) + αh 1
2 )

= rηh(i − 1) + r(α − ηh 1
2 )h 1

2

≥ rηh(i − 1) + αr
2
h

1
2

≥ 2δΛ2
0h(i − 1) + 2α2h

1
2

≥ 2Λ2
0h

2(i − 1)2 + 2α2h
1
2

≥ (Λ0h(i − 1) + αh 1
4 )2 = l2h,i,

when δ is small. Therefore, by the Pythagorean theorem

(4.11) {(±dh,i, x′) ∈ Rn ∶ x′ ∈ B̄n−1(0, lh,i)} ⊂ B̄(−re1, rh,i) ∪ B̄(re1, rh,i),
i.e., the heads of the cylinder C(lh,i, dh,i) are contained in the balls B̄(±re1, rh,i).

We define for each i = 1, . . . , ⌊δ/h⌋+1 a convex function φh,i ∶ [−dh,i+1, dh,i+1] → R by setting

φh,i(t) = ah,i
2
(t2 − d2h,i) + lh,i,

where ah,i = Λ 1
2
0 /lh,i. Note that by (4.9) we have ah,idh,i ≤ 1, and further ah,id

2
h,i ≤ lh,i. Thus,

φh,i is 1-Lipschitz and

(4.12) φh,i ≥ φh,i(0) = lh,i − 1

2
ah,id

2
h,i ≥ lh,i2 .

Recall that we set Gh,i as the union

Gh,i =C(φh,i, [−dh,i, dh,i]) ∪ B̄(−re1, rh,i) ∪ B̄(re1, rh,i).
By (4.11) and (4.12), the barrier Gh,i contains the simply-connected set

C(lh,i/2, r) ∪B(−re1, rh,i) ∪B(re1, rh,i).
Thus recalling lh,i = Λ0h(i− 1) +αh 1

4 and rh,i = r − ηhi, we find c1, c2 ∈ R+, depending only on

n, r and C0, such that for every h ≤ t ≤ δ the barrier Gh,⌊t/h⌋ contains the set At defined in
(4.1) with the constants c1 and c2.

Step 3: We finish the proof by showing that each barrier Gh,i constructed in the previous
step is actually contained in Eh,i. First, we conclude from (4.8), (4.9) and Λ0 ≥ 2η that, when
δ is small enough, for every i = 2, . . . , ⌊δ/h⌋ + 1 it holds

(4.13) ∣φh,i − φh,i−1∣ ≤ 2Λ0h on [−dh,i−1, dh,i−1].
Further, using the facts that φh,i is 1-Lipschitz and rh,i−1 ≥ rh,i, we obtain

(4.14) Gh,i ⊂ {x ∈ Rn ∶ d̄Gh,i−1(x) ≤ 4Λ0h}.
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By (4.7) and (4.10), we have Gh,1 ⊂ Eh,1. Thus, we argue by induction. Assume that for
i = 2, . . . , ⌊δ/h⌋ + 1 it holds Gh,i−1 ⊂ Eh,i−1. By (4.8) and (4.12), we have for small δ

φh,i − 2Λ0h ≥ lh,i
2
− 2Λ0h ≥ α

2
h

1
4 − 2Λ0h > 0

and hence the setC(φh,i−2Λ0h, [−dh,i, dh,i]) is well-defined. Again, by (4.13) and φh,i−2Λ0h ≤
lh,i−1, it holds
(4.15) C(φh,i −Λ0h, [−dh,i, dh,i]) ⊂ Gh,i−1.

Next, we define an auxiliary set G̃h,i ⊂ Gh,i by

G̃h,i =C(φh,i − 2Λ0h, [−dh,i, dh,i]) ∪ B̄(−re1, rh,i) ∪ B̄(re1, rh,i).
Then, by the induction assumption (4.15) and rh,i−1 ≥ rh,i, we have G̃h,i ⊂ Eh,i−1. Therefore,
by (3.5),

(4.16) {x ∈ G̃h,i ∶ dist(x, ∂G̃h,i) > γh 1
2 } ⊂ Eh,i.

Since the function t ↦ max{s ∶ {t} × B̄n−1(0, s) ⊂ G̃h,i} is increasing in [0, r], decreasing in[−r,0] and G̃h,i is a solid of revolution, then for any

x ∈C(φh,i − 2Λ0h, [−dh,i, dh,i]) ∖ (B̄(−re1, rh,i) ∪ B̄(re1, rh,i))
the closest point y ∈ ∂G̃h,i, i.e. dist(x, ∂G̃h,i) = ∣x − y∣, must lie on

∂C(φh,i − 2Λ0h, [−dh,i, dh,i]) ∖ (B̄(−re1, rh,i) ∪ B̄(re1, rh,i)) .
Let us write x = (x1, x′) and y = (y1, y′). Since φh,i is a 1-Lipschitz function, we have

∣φh,i(x1) − ∣x′∣∣ ≤ ∣φh,i(x1) − φh,i(y1)∣ + ∣φh,i(y1) − ∣x′∣∣≤ ∣x1 − y1∣ + ∣∣y′∣ − ∣x′∣∣
≤ 2∣x − y∣ = 2dist(x, ∂G̃h,i).(4.17)

We have γh
1
2 > 2Λ0h and αh

1
4 > 12γh 1

2 , provided that δ is small. Thus by (4.8) and (4.12),

(4.18)
lh,i

4
≤ φh,i − 3γh 1

2 < φh,i − 2Λ0h − 2γh 1
2 on [−dh,i, dh,i].

Therefore, it follows from (4.7), (4.16), (4.17) and (4.18) that the setC(φh,i−3γh 1
2 , [−dh,i, dh,i])

is well-defined and contained in Eh,i.
We argue by contradiction and assume that Gh,i is not contained in Eh,i. Since

C(φh,i − 3γh 1
2 , [−dh,i, dh,i]) ⊂ Eh,i,

we may lift up the graph of φh,i − 3γh 1
2 until it touches the boundary ∂Eh,i. To be more

precise, by a continuity argument and (4.7), there is 0 < τ < 3γh 1
2 such that

C(φh,i − τ, [−dh,i, dh,i]) ⊂ Eh,i

and there is a point z ∈ Γ ∩ ∂Eh,i, where

Γ = {(x1, x′) ∈ Rn ∶ x1 ∈ (−dh,i, dh,i), x′ ∈ ∂Bn−1(0, φh,i(x1) − τ)}.
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In particular, the boundary ∂Eh,i satisfies the interior ball condition at z, and thus z belongs
to the regular part of ∂Eh,i. Hence, by the comparison principle, we have HEh,i(z) ≤ HΓ(z),
where HΓ is chosen to be compatible with the inside-out orientation of

C(φh,i − τ, [−dh,i, dh,i]).
Recalling (2.2), (4.18), ah,idh,i ≤ 1 and the choice of Λ0, we estimate

HΓ(z) = − φ′′h,i(z1)(1 + (φ′h,i(z1))2) 32 +
1

(1 + (φ′h,i(z1))2) 12
(n − 2)

φh,i(z1) − τ
= − ah,i(1 + (ah,iz1)2) 32 +

1

(1 + (ah,iz1)2) 12
(n − 2)

φh,i(z1) − τ
≤ −ah,i

2
3
2

+ 4(n − 2)
lh,i

= 2
7
2 (n − 2) −Λ 1

2
0

2
3
2 lh,i

≤ − Λ
1
2
0

2
5
2 lh,i

.

Thus, by choosing δ to be small enough, we have HΓ(z) ≤ −(5Λ0 + C0). Then the Euler-
Lagrange equation (3.6) for Eh,i and HEh,i(z) ≤HΓ(z) yields

d̄Gh,i−1(z) = −HEh,i(z)h + f̄(h, i − 1)h ≥ 5Λ0h.

However, by the construction we have z ∈ Gh,i, and thus the above contradicts (4.14). Hence,
we have Gh,i ⊂ Eh,i for every i = 1, . . . , ⌊δ/h⌋ + 1. □
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