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We construct extensions of Varopolous type for functions f ∈
BMO(E), for any uniformly rectifiable set E of codimension 
one. More precisely, let Ω ⊂ Rn+1 be an open set satisfying 
the corkscrew condition, with an n-dimensional uniformly 
rectifiable boundary ∂Ω, and let σ := Hn�∂Ω denote the 
surface measure on ∂Ω. We show that if f ∈ BMO(∂Ω, dσ)
with compact support on ∂Ω, then there exists a smooth 
function V in Ω such that |∇V (Y )| dY is a Carleson measure 
with Carleson norm controlled by the BMO norm of f , 
and such that V converges in some non-tangential sense 
to f almost everywhere with respect to σ. Our results 
should be compared to recent geometric characterizations 
of Lp-solvability and of BMO-solvability of the Dirichlet 
problem, by Azzam, the first author, Martell, Mourgoglou 
and Tolsa and by the first author and Le, respectively. In 
combination, this latter pair of results shows that one can 
construct, for all f ∈ Cc(∂Ω), a harmonic extension u, with 
|∇u(Y )|2dist(Y, ∂Ω) dY a Carleson measure with Carleson 
norm controlled by the BMO norm of f , only in the presence 
of an appropriate quantitative connectivity condition.
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List of symbols

Cμ Carleson norm of the measure μ (Definition 2.4)
CA Carleson packing norm of A ⊂ D (Definition 2.23)
D collection of dyadic cubes (Theorem 2.16)
Γ(x) dyadic cone at x ∈ ∂Ω (Definition 7.3)
Γ̃(x) cone at x ∈ ∂Ω (Definition 2.1)
ΥQ(x) semi-closed truncated cone at x ∈ Q ⊂ ∂Ω (Section 4)
Υ̃Q(x) interior of ΥQ(x)
Ω open set in Rn+1 with ADR boundary ∂Ω
ωX harmonic measure with pole at X ∈ Ω
UQ, UQ dilated and non-dilated closed Whitney region (Sections 4 and 7)
Ur
Q closed restricted Whitney region (Section 8)

TQ, TQ semi-closed and open Carleson box (Sections 4 and 7)
τQ Carleson tent (Definition 7.3)
tQ modified Carleson tent (Section 8)
W Whitney cubes in Ω (Sections 4 and 7)
GQ0 counting function with respect to Q0 ∈ D (Lemma 4.13)
δ, β distance and smooth distance function with respect to ∂Ω (Theorem 3.3)
〈f〉A,

ffl
A
f integral average of f over A (Section 2)

N0 the set of non-negative integers {0, 1, 2, 3, ...}

1. Introduction

Connections between boundary geometry and PDE estimates have been studied for a 
long time (see e.g. the seminal work of F. and M. Riesz [36]) but the work is still ongoing 
and active. In the last couple of years, a lot of progress has been made, particularly in 
domains with codimension 1 Ahlfors–David regular (ADR) or uniformly rectifiable (UR) 
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boundaries (see [20] for a survey of some of these recent advances). In this article, we 
complement recent results related to geometric characterizations of solvability of Dirich-
let problems, by showing that an extension property for BMO functions, first proved 
by Varopoulos in the half-space [41,42], remains true even in settings where harmonic 
extension of BMO boundary data (i.e., BMO-solvability of the Dirichlet problem) may 
fail: in fact, we show in the present paper that the Varopoulos extension property holds 
always for UR sets of codimension 1. In particular, our results do not require any kind 
of connectivity hypothesis on the domain or its boundary, whereas the analogous PDE 
solvability results cannot hold without certain quantitative connectivity assumptions.

Let us be more precise. Recently, Azzam, the first author, Martell, Mourgoglou and 
Tolsa [4] have presented a geometric characterization of quantitative scale-invariant ab-
solute continuity (i.e. the weak-A∞ property) of harmonic measure with respect to the 
surface measure. Their result together with recent work of the first author and Le [21]
gives us the following characterization theorem. For definitions of the properties men-
tioned in the theorem and in the rest of the introduction, see Section 2.

Theorem ([4,21]). Let Ω ⊂ Rn+1 be an open set satisfying the corkscrew condition and 
suppose that ∂Ω is n-ADR. Then the following conditions are equivalent:

(1) ∂Ω is UR and Ω satisfies the weak local John condition,
(2) harmonic measure belongs to the class weak-A∞ with respect to the surface measure 

σ := Hn�∂Ω on ∂Ω,
(3) the Dirichlet problem is Lp-solvable for some p < ∞,
(4) the Dirichlet problem is BMO-solvable.

By Lp-solvability we mean that there exists a constant C such that if f ∈ Lp(∂Ω), 
then the solution u to the Dirichlet problem with data f converges non-tangentially to 
f and

‖N∗u‖Lp(∂Ω) ≤ C‖f‖Lp(∂Ω),

where N∗ is a non-tangential maximal operator. Many key results related to this concept 
can be found in the monograph of Kenig [35]. By BMO solvability,1 we mean that there 
exists a constant C such that if f is a compactly supported continuous function on ∂Ω, 
then the solution u to the Dirichlet problem satisfies the Carleson measure estimate

sup
x∈∂Ω,0<r�diam(∂Ω)

1
σ(Δ(x, r))

¨

Ω∩B(x,r)

|∇u(Y )|2δ(Y ) dY ≤ C‖f‖2
BMO(∂Ω),

1 The definition is slightly different if Ω is unbounded and ∂Ω is bounded; see [21, Section 5] for details.
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where Δ(x, r) := B(x, r) ∩ ∂Ω. This type of solvability was first shown to be equivalent 
to Lp-solvability, for some p < ∞, by Dindos, Kenig and Pipher [14], in Lipschitz or 
chord-arc domains (see also [43] for an extension to 1-sided chord-arc domains).

It was previously known that the weak-A∞ property of harmonic measure (equiva-
lently, Lp-solvability for some p < ∞) may fail in the absence of connectivity, even if the 
boundary is UR [5], but the result of [4] is the first that tells us precisely how much con-
nectivity we need (although we refer the reader to related work of Azzam [2], concerning 
the analogous geometric characterization problem, in the case that harmonic measure is 
doubling). In particular, there are many domains with ADR or even UR boundaries for 
which one does not have BMO-solvability, nor Lp-solvability for any finite p.

In this work, we nonetheless obtain extension results of Varopoulos type that can be 
seen as substitutes for these solvability theorems, in domains with n-UR boundaries, 
but in which the weak local John property may fail. We first consider extensions of L∞

functions:

Theorem 1.1. Let Ω ⊂ Rn+1 be an open set satisfying the corkscrew condition, with n-UR 
boundary. Then for every Borel measurable f ∈ L∞(∂Ω, dσ), there is a function Φ = Φf

in Ω, such that

i) Φ ∈ C∞(Ω), and |∇Φ(X)| ≤ C‖f‖L∞(∂Ω) δ(X)−1, for all X ∈ Ω.
ii) ‖Φ‖L∞(Ω) ≤ C‖f‖L∞(∂Ω),
iii) limY→x N.T. Φ(Y ) = f(x) for σ-a.e. x ∈ ∂Ω,
iv) |∇Φ(Y )| dY is a Carleson measure:

sup
r>0,x∈∂Ω

1
rn

¨

B(x,r)∩Ω

|∇Φ(Y )| dY ≤ C‖f‖L∞ .

Here, limY→x N.T. stands for one-sided non-tangential convergence2; σ := Hn�∂Ω is the 
surface measure, and δ(X) := dist(X, ∂Ω) for X ∈ Ω. The constant C depends only on 
n, and the UR and corkscrew constants.

We remark that in particular, Theorem 1.1 applies in the case that Ω := Rn+1 \ E, 
where E is an arbitrary n-UR set: the corkscrew condition in that case is a simple (and 
well-known) consequence of Ahlfors–David regularity of E.

The proof is based on a combination of geometric arguments, potential theory and 
dyadic analysis, but the basic strategy follows that of Varopoulos [41,42]: in particular, we 
strongly make use of the ε-approximability property of harmonic functions, established 
in the present context in [25] (see Theorem 3.1 below). However, the implementation 
of this program is a delicate matter in the present generality, owing to the need to 

2 The notion of non-tangential convergence must be suitably interpreted in the present context. We shall 
return to this matter in the sequel; see Definition 2.1, Lemma 4.14, and Remarks 2.2, 4.15 and 4.16.
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make harmonic extensions of functions belonging to L∞(∂Ω, dσ), with non-tangential 
convergence σ-a.e. to the data, even though harmonic measure may fail to be absolutely 
continuous with respect to surface measure σ; see Sections 5 and 6, and in particular 
Remark 6.4.

Originally, the notion (although not the terminology) of ε-approximability was in-
troduced by Varopoulos [42], and refined by Garnett [18], in order to study new ways 
to extend BMO functions inspired by Carleson’s corona theorem [8], and the closely re-
lated topic of H1–BMO duality (see particularly [16, Theorem 3]). The ε-approximability 
property provides a convenient detour to circumvent the unfortunate fact that there exist 
harmonic functions u such that |∇u(Y )| dY is not a Carleson measure [18]. Subsequently, 
this property has offered ways to connect Carleson measure estimates for solutions, with 
quantitative Fatou Theorems [18], [6], with absolute continuity properties of elliptic mea-
sures [34,27] and with boundary geometry [25,17,3,6,23,7].

Our second result is the following generalization of [42, Theorem 2], which in some 
sense provides a substitute for BMO-solvability of the Dirichlet problem:

Theorem 1.2. Suppose that Ω ⊂ Rn+1 is an open set satisfying the corkscrew condition 
with n-UR boundary. Then there exists a constant C such that if f ∈ BMO(∂Ω, dσ) is 
compactly supported, then there exists a function V = Vf in Ω such that

i) V ∈ C∞(Ω), and |∇V (X)| ≤ C‖f‖BMO δ(X)−1, for all X ∈ Ω,
ii) limY→x N.T. V (Y ) = f(x) for σ-a.e. x ∈ ∂Ω,
iii) |∇V (Y )| dY is a Carleson measure:

sup
r>0,x∈∂Ω

1
rn

¨

B(x,r)∩Ω

|∇V (Y )| dY ≤ C‖f‖BMO.

Here limY→x N.T. stands for one-sided non-tangential convergence (see Definition 2.1
and Remark 2.2); δ(X) := dist(X, ∂Ω), and σ := Hn�∂Ω is the surface measure.

The proof is a combination of Theorem 1.1, Garnett’s decomposition lemma (see 
Lemma 10.1), and the following extension result for the “dyadic part” of Garnett’s 
lemma:

Proposition 1.3. Suppose that Ω ⊂ Rn+1 is an open set satisfying the corkscrew condition 
with d-ADR boundary for some d ∈ (0, n]. Let D be a dyadic system on ∂Ω, Q0 ∈ D

be a fixed dyadic cube and {Qj}j ⊂ DQ0 be a collection of subcubes of Q0. Suppose that 
function f in ∂Ω, f(x) =

∑
j αj1Qj

, satisfies the following conditions for some C0 ≥ 1:

• f ∈ BMO(∂Ω),
•

∑
Qj⊂Q σ(Qj) ≤ C0σ(Q) for every Q ∈ D,

• supj |αj | ≤ c‖f‖BMO,
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where c ≥ 1 depends only on the dimension and the ADR constant (see Definition 2.11). 
Then there exists a function F = Ff in Ω such that

i) F ∈ C∞(Ω), and |∇F (X)| ≤ C1‖f‖BMO δ(X)−1, for all X ∈ Ω,
ii) limY→x N.T. F (Y ) = f(x) for σ-a.e. x ∈ ∂Ω,
iii) |∇F (Y )| dY satisfies a quantitative codimension 1 type Carleson measure estimate:

sup
r>0,x∈∂Ω

1
rn

¨

B(x,r)∩Ω

|∇F (Y )| dY ≤ C1C0‖f‖BMO (1.4)

for a constant C1 ≥ 1 depending only on the dimension and the ADR constant. Here 
limY→x N.T. stands for standard type non-tangential convergence (see Definition 2.1); 
δ(X) := dist(X, ∂Ω), and σ := Hd�∂Ω is the surface measure.

We remark that in proving Theorem 1.2, we shall use only the codimension 1 case 
(i.e., d = n) of Proposition 1.3.

Unlike that of Theorem 1.1, the proof of Proposition 1.3 does not require any UR 
machinery. Many of the key arguments are fairly elementary but still a bit delicate. 
A principal difficulty is the need to build suitable substitutes for Carleson boxes that 
are compatible with non-tangential convergence, as well as with proving the Carleson 
measure estimate (1.4). Both the construction of our boxes and the rest of our techniques 
work for d-ADR boundaries for any d ∈ (0, n], including non-integer dimensions.

The paper is organized as follows. In the next section, we discuss the basic notation 
and definitions in the paper. In Section 3, we consider ε-approximators and many regu-
larization lemmas we need later. We build machinery for Theorem 1.1 in Sections 4 and 
5, and we prove the theorem in Section 6. In Sections 7 and 8, we revisit and modify the 
construction of Whitney regions and Carleson boxes and we use the modified construc-
tion to prove Proposition 1.3 in Section 9. Finally, in Section 10, we prove a version of 
Garnett’s decomposition lemma and combine it with Theorem 1.1 and Proposition 1.3
to prove Theorem 1.2.

Acknowledgments

The authors wish to thank the anonymous referee for many insightful comments re-
lated to this work and related questions, and for several suggestions that have helped to 
clarify and improve the presentation.

2. Notation and basic definitions

We use the following notation.
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• Ω ⊂ Rn+1 will always be an open set with non-empty d-dimensional ADR bound-
ary ∂Ω (see Definition 2.11). In Sections 4, 5, and 6, we additionally assume that 
∂Ω is n-UR (see Definition 2.13) and that Ω satisfies the corkscrew condition (see 
Definition 2.12).

• The letters c and C denote constants that depend only on dimension, ADR constant 
(see Definition 2.11), UR constants (see Definition 2.13) and other similar parame-
ters. The values of c and C may change from one occurrence to another. We do not 
track how our bounds depend on these constants and usually just write γ1 � γ2 if 
γ1 ≤ cγ2 for a constant like this c and γ1 ≈ γ2 if γ1 � γ2 � γ1. If the constant cκ
depends only on parameters of the previous type and some other parameter κ, we 
usually write γ1 �κ γ2 instead of γ1 ≤ cκγ2.

• We use capital letters X, Y, Z, and so on to denote points in Ω and lowercase letters 
x, y, z, and so on to denote points in ∂Ω.

• The (n + 1)-dimensional Euclidean open ball of radius r will be denoted B(x, r)
or B(X, r) depending on whether the center point lies on ∂Ω or Ω. We denote the 
surface ball of radius r centered at x by Δ(x, r) := B(x, r) ∩ ∂Ω.

• Given a Euclidean ball B := B(X, r) or a surface ball Δ := Δ(x, r) and constant 
κ > 0, we denote κB := B(X, κr) and κΔ := Δ(x, κr).

• For every X ∈ Ω we set δ(X) := dist(X, ∂Ω).
• We let Hd be the d-dimensional Hausdorff measure and denote the surface measure 

of ∂Ω by σ := Hd�∂Ω. The (n + 1)-dimensional Lebesgue measure of a measurable 
set A ⊂ Ω will be denoted by |A|.

• For a set A ⊂ Rn+1, we let 1A be the indicator function of A: 1A(x) = 0 if x /∈ A

and 1A(x) = 1 if x ∈ A.
• The interior of a set A will be denoted int(A).
• The unit outer normal (when it exists) will be denoted by 

−→
N .

• For μ-measurable sets A with positive and finite measure we set 〈f〉A :=
ffl
A
f dμ :=

1
μ(A)f dμ.

Definition 2.1 (Cones and non-tangential limits). Suppose that m > 1. For every x ∈ ∂Ω, 
the cone of m-aperture at x is the set

Γ̃(x) := Γ̃m(x) := {Z ∈ Ω: dist(Z, x) < mδ(Z)}.

Let G be a function defined in Ω, g be a function defined on ∂Ω and x be a point 
on ∂Ω. We consider two types of non-tangential convergence in this paper. We use the 
notation limY→xN.T. G(Y ) = g(x) for both of them, but the meaning should be clear 
from context.

• With standard type non-tangential convergence we mean that there exists m > 1
such that we have limk→∞ G(Yk) = g(x) for every sequence (Yk) in Γ̃m(x) such that 
limk→∞ Yk = x.
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• With one-sided non-tangential convergence we mean that there exists m > 1 and a 
connected component A ⊂ Γ̃m(x) such that x ∈ ∂A and limk→∞ G(Yk) = g(x) for 
every sequence (Yk) in A such that limk→∞ Yk = x.

Remark 2.2.

i) If Ω ⊂ Rn+1 is an open set satisfying the corkscrew condition, with UR boundary 
∂Ω, then for σ-a.e. x ∈ ∂Ω, the cone with vertex at x has at most two connected 
components inside Ω such that their boundaries contain x, by Lemma 4.13 (see also 
Lemma 4.14, and Remarks 4.15 and 4.16).

ii) In the actual calculations related to non-tangential convergence, we use dyadic cones
that we define in later sections (see Section 4 and Section 7). These dyadic cones 
always contain a truncated cone of the type Γ̃(x), at least locally.

Definition 2.3 (BMO and dyadic BMO). The space BMO(∂Ω) (bounded mean oscillation) 
consists of those locally integrable function f such that

‖f‖BMO := sup
Δ

 

Δ

|f(y) − 〈f〉Δ| dσ(y) < ∞,

where the supremum is taken over all surface balls Δ ⊂ ∂Ω. We define the dyadic BMO 
space BMOD(∂Ω) by replacing the supremum over all surface balls with the supremum 
over all dyadic cubes Q (see Theorem 2.16).

Definition 2.4 (Carleson measures). We say that a Borel measure μ in Ω is a Carleson 
measure (with respect to ∂Ω) if we have

Cμ := sup
x∈∂Ω,r>0

μ(B(x, r) ∩ Ω)
rn

< ∞. (2.5)

We call Cμ the Carleson norm of μ.

Definition 2.6 (Local BV). We say that locally integrable function f has locally bounded 
variation in Ω (denote f ∈ BVloc(Ω)) if for any open relatively compact set Ω′ ⊂ Ω the 
total variation over Ω′ is finite:

¨

Ω′

|∇ϕ| dY := sup
−→
Ψ∈C1

0 (Ω′)
‖−→Ψ‖L∞(Ω′)≤1

¨

Ω′

ϕdiv
−→
Ψ dY < ∞,

where C1
0 (Ω′) is the class of compactly supported continuously differentiable vector fields 

in Ω′.
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Definition 2.7 (Carrot paths). Let X ∈ Ω and y ∈ ∂Ω. A connected rectifiable path γ from 
X to y is a λ-carrot path if γ \ {y} ⊂ Ω and for every Z ∈ γ we have λ�(γ(y, Z)) ≤ δ(Z).

Definition 2.8 (Weak local John condition). We say that Ω satisfies the weak local John 
condition if there exist constants λ ∈ (0, 1), θ ∈ (0, 1] and R ≥ 2 such that for every X
there exists a Borel set F ⊂ ΔX := B(X, Rδ(X)) ∩ ∂Ω such that σ(F ) ≥ θσ(ΔX) and 
for every y ∈ F there is a λ-carrot path connecting y to X.

Definition 2.9 (Weak A∞). Let ν be a measure defined on ∂Ω and Δ0 := B0 ∩ ∂Ω be a 
surface ball. We say that ν belongs to weak-A∞(Δ0) if there are positive constants C
and s such that for each surface ball Δ := B ∩ ∂Ω centered on ∂Ω with B ⊂ B0 we have

ν(A) ≤ C

(
σ(A)
σ(Δ)

)s

ν(2Δ) (2.10)

for every Borel set A ⊂ Δ.

We note that the constant 2 in (2.10) can be replaced with any constant c > 1 without 
changing the class weak-A∞(Δ0) (see e.g. [1, Section 8]).

2.1. ADR, UR, NTA, CAD, and corkscrew condition

Definition 2.11 (ADR). We say that a closed set E ⊂ Rn+1 is a d-ADR (Ahlfors–David 
regular) set for d ∈ (0, n] if there exists a uniform constant C such that

1
C
rd ≤ σ(Δ(x, r)) ≤ Crd

for every x ∈ E and every r ∈ (0, diam(E)), where diam(E) may be infinite.

Definition 2.12 (Corkscrew condition). We say that Ω satisfies the corkscrew condition if 
there exists a uniform constant c such that for every surface ball Δ := Δ(x, r) with x ∈ ∂Ω
and 0 < r < diam(∂Ω) there exists a point XΔ ∈ Ω such that B(XΔ, cr) ⊂ B(x, r) ∩ Ω,

Definition 2.13 (UR). Following [12,13], we say that an n-ADR set E ⊂ Rn+1 is UR 
(uniformly rectifiable) if it contains “big pieces of Lipschitz images” (BPLI) of Rn: there 
exist constants θ, M > 0 such that for every x ∈ E and r ∈ (0, diam(E)) there is a 
Lipschitz mapping ρ = ρx,r : Rn → Rn+1, with Lipschitz norm no larger that M , such 
that

Hn(E ∩B(x, r) ∩ ρ({y ∈ Rn : |y| < r})) ≥ θrn.

As it is well-known, UR is a necessary and sufficient condition for many types of 
PDE and Calderón–Zygmund type harmonic analysis results on ADR sets or open 
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sets with ADR boundaries. In this paper, we work with two characterizations UR: ε-
approximability of harmonic function (see Section 3) and bilateral corona decomposition 
(see Section 4). We use ε-approximability to build the extension in Theorem 1.1, and the 
bilateral corona decomposition, and its consequences, as a tool to prove some convergence 
properties.

Definition 2.14 (NTA). Following [32], we say that a domain Θ ⊂ Rn+1 is NTA (non-
tangentially accessible) if

• Θ satisfies the Harnack chain condition: there exists a uniform constant C such that 
for every ρ > 0, Λ ≥ 1 and X, X ′ ∈ Θ with δ(X), δ(X ′) ≥ ρ and |X−X ′| < Λρ there 
exists a chain of open balls B1, . . . , BN ⊂ Θ, N ≤ C(Λ), with X ∈ B1, X ′ ∈ BN , 
Bk ∩Bk+1 �= ∅ and C−1diam(Bk) ≤ dist(Bk, ∂Θ) ≤ Cdiam(Bk),

• both Θ and Rn+1 \ Θ satisfy the corkscrew condition.

Definition 2.15 (CAD). An open set Ω ⊂ Rn+1 is a CAD (chord-arc domain) if it is NTA, 
and ∂Ω is n-ADR. The constants in the Harnack chain, corkscrew, and ADR conditions 
are referred to collectively as the chord-arc constants.

2.1.1. Dyadic cubes

Theorem 2.16 (E.g. [9,37,29]). Suppose that E is a d-ADR set. Then there exists a 
countable collection D (that we call a dyadic system),

D :=
⋃
k∈Z

Dk, Dk := {Qk
α : α ∈ Ak}

of Borel sets Qk
α (that we call dyadic cubes) such that

(i) the collection D is nested: if Q, P ∈ D, then Q ∩ P ∈ {∅, Q, P},
(ii) E =

⋃
Q∈Dk

Q for every k ∈ Z and the union is disjoint,
(iii) there exist constants c1 > 0 and C1 ≥ 1 such that

Δ(zkα, c12−k) ⊆ Qk
α ⊆ Δ(zkα, C12−k) =: ΔQk

α
, (2.17)

(iv) for every set Qk
α there exists at most N cubes Qk+1

βi
(called the children of Qk

α) such 

that Qk
α =

⋃
i Q

k+1
βi

, where the constant N depends only on the ADR constant of 
E,

(v) the cubes have thin boundaries: there exists a constant γ > 0 such that

σ
({

x ∈ Qk
α : dist

(
x,E \Qk

α

)
≤ �2−k

})
≤ C1�

γσ(Qk
α) (2.18)

for all cubes Qk
α and for all � ∈ (0, c1).
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In addition, there exists a collection of dyadic systems {Dν}Nν=1 on E, of bounded cardi-
nality N , and a uniform constant C, such that if Δ = B ∩E is any surface ball centered 
on E, then there is at least one choice of dyadic system Dν, and a cube Q ∈ Dν , with 
Δ ⊂ Q, and with diam(Q) ≤ min(Cdiam(B), diam(E)).

Remark 2.19. In general spaces of homogeneous type, dyadic systems were first con-
structed in [9] for some parameter δ ∈ (0, 1) instead of the dyadic parameter 1/2 (we 
may always choose δ = 1/2 by [28]). In the same context, the adjacent systems {Dν}Nν=1
were constructed in [29] (see also [31,40] for an alternative construction and some addi-
tional approximation properties in geometrically doubling metric spaces). For the history 
of adjacent systems in Rn, see [10, Section 3].

Notation 2.20. We shall use the following notational conventions.

(1) Since the boundary ∂Ω may be bounded or disconnected, we may encounter a sit-
uation where Qk

α = Ql
β although k �= l. Thus, when we consider cubes Qk

α ∈ D, 
we assume that C12−k ≤ diam(∂Ω) and the number k is maximal in the sense that 
there does not exist a cube Ql

β ∈ D such that Ql
β = Qk

α for some l > k. Notice 
that the number k is bounded for each cube since the ADR condition excludes the 
presence of isolated points in ∂Ω.

(2) For each k, and for every cube Qk
α := Q ∈ Dk, we denote �(Q) := 2−k and xQ := zkα. 

We call �(Q) the side length of Q, and xQ the center of Q.
(3) For every Q ∈ D, we denote the collection of dyadic subcubes of Q by DQ.
(4) Following [12], for every Q ∈ D and κ ≥ 1, we denote

κQ := {x ∈ ∂Ω: dist(x,Q) ≤ (κ− 1) diamQ} .

Remark 2.21. We record the following further observations.

(1) The following exterior variant of (2.18) in Theorem 2.16 also holds for every Q ∈ D:

σ
(
Ext�(Q)

)
:= σ

(
{x ∈ E \Q : dist (x,Q) ≤ ��(Q)}

)
� C1�

γσ(Q) , (2.22)

as may be seen by covering the exterior shell Ext�(Q) by dyadic cubes of uniform 
side length ≈ ��(Q), each of which is a subcube of one of a uniformly bounded 
number of neighbors of Q with side length equal to that of Q. Applying (2.18) in 
each of these neighbors, we obtain (2.22).

(2) By the ADR property and (2.17), we have σ(Q) ≈ �(Q)d with implicit constants 
independent of Q, and σ(Q̃) � σ(Q) for the dyadic parent of Q, that is, the cube 
Q̃ containing Q, and belonging to the generation immediately preceeding that of Q, 
(i.e., Q̃ ∈ Dk−1 when Q ∈ Dk). Similarly we have σ(κQ) �κ σ(Q) for all κ > 1.
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Definition 2.23. We say that a collection A ⊂ D satisfies a Carleson packing condition if 
there exists a constant C ≥ 1 such that∑

Q∈A,Q⊂Q0

σ(Q) ≤ Cσ(Q0)

for every cube Q0 ∈ D. We call the smallest such constant C the Carleson packing norm 
of A and denote it by CA.

Lemma 2.24. Suppose E ⊂ Rn+1 is a d-ADR set and that A ⊂ D satisfies a Carleson 
packing condition. Then we have∑

Q∈A,Q⊂Q0

�(Q)n � CA�(Q0)n

for every cube Q ∈ D and every d ≤ n.

Proof. For d = n, in the presence of the n-ADR condition, the lemma is a trivial refor-
mulation of Definition 2.23. Therefore let us suppose that d < n. In this case, the same 
trivial argument using d-ADR gives 

∑
Q∈A,Q⊂Q0

�(Q)d � CA�(Q0)d. Consequently,

∑
Q∈A,Q⊂Q0

�(Q)n =
∑

Q∈A,Q⊂Q0

�(Q)n−d�(Q)d ≤ �(Q0)n−d
∑

Q∈A,Q⊂Q0

�(Q)d

� CA�(Q0)n−d�(Q0)d = CA�(Q0)n. �
3. ε-approximability and regularization

In the proof of Theorem 1.1, we follow the original idea of Varopoulos and construct 
the extension using ε-approximability of harmonic functions. It was recently shown that 
this property characterizes uniform rectifiability:

Theorem 3.1 ([25,17]). Suppose that Ω ⊂ Rn+1 is an open set satisfying the corkscrew 
condition. Then ∂Ω is UR if and only if every bounded harmonic function u in Ω is
ε-approximable for every ε ∈ (0, 1): there exists a constant Cε and a function Φ = Φε ∈
BVloc(Ω) such that

‖u− Φ‖L∞ ≤ ε‖u‖L∞(Ω) and sup
x∈∂Ω,r>0

1
rn

¨

B(x,r)∩Ω

|∇Φ(Y )| dY ≤ Cε‖u‖L∞ ,

i.e. |∇Φ(Y )| dY is a Carleson measure.

The direction UR implies ε-approximability appears in [25], and the converse is proved 
in [17] (see also [23] and [7] for pointwise and Lp versions of this result). For other 
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characterizations of UR with respect to properties of harmonic functions or solutions to 
other elliptic PDE, see [25,26,17,23,7,3].

Since ε-approximators are a crucial ingredient in the proof of Theorem 1.1, it will be 
convenient for us to use regularized ε-approximators that are locally Lipschitz:

Lemma 3.2. We can choose the ε-approximators Φ = Φε in Theorem 3.1 so that

i) Φ ∈ C∞(Ω),
ii) |∇Φ(Y )| � 1

δ(Y ) for every Y ∈ Ω,
iii) if |X − Y | � δ(X), then |Φ(X) − Φ(Y )| � |X−Y |

δ(X) .

We shall verify this lemma by a fairly straightforward mollifier argument (see e.g. [15, 
Section 4])). Since we need to regularize also other functions in subsequent sections, we 
formulate the following lemmas in a fairly general way.

We start by noting that although our distance function δ is Lipschitz, that is usually 
the best level of regularity we can hope for in this context. However, we can use a classical 
result of Stein to replace δ with a smooth function that is pointwise close to δ:

Theorem 3.3 ([39, Theorem 2, p. 171]). Let E ⊂ Rn+1 be a closed set and δE be the 
distance function with respect to E. Then there exist positive constants m1 and m2 and 
a function βE defined in Ec such that

(i) m1δE(x) ≤ βE(x) ≤ m2δE(x) for every x ∈ Ec, and
(ii) βE is smooth in Ec and ∣∣∣∣ ∂α

∂xα
βE(x)

∣∣∣∣ ≤ CαβE(x)1−|α|.

In addition, the constants m1, m2 and Cα are independent of E.

For a given closed set E ⊂ Rn+1, let δ := δE , β := βE , and m2 > 0 be as in 
Theorem 3.3. Let ζ ≥ 0 be a smooth non-negative function supported on B(0, 1

2m2
), 

satisfying ζ ≤ 1 and 
´
ζ = 1. For every λ > 0, we set

ζλ(X) := 1
λn+1 ζ

(
X

λ

)
,

and define

Λ(X,Y ) = ζβ(X)(X − Y ) = 1
β(X)n+1 ζ

(
X − Y

β(X)

)
.

Set Ω := Rn+1 \ E, so that ∂Ω = E, and observe that for given X ∈ Ω,
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supp Λ(X, ·) ⊂ BX := B(X, δ(X)/2) , (3.4)

by construction. Suppose that G0 : Ω → R is a locally integrable function. We set

G(X) :=
¨

Λ(X,Y )G0(Y ) dY . (3.5)

We then have the following.

Lemma 3.6. Let G be defined as in (3.5). Then G ∈ C∞(Ω) and

∇G(X) =
¨

∇XΛ(X,Y )G0(Y ) dY. (3.7)

The proof is a routine modification of the case Ω = Rn+1 (see e.g. the proof of [15, 
Theorem 1 i, p. 123]).

Lemma 3.8. If G0 ∈ BVloc(Ω) and μ = |∇G0(Y )| dY is a Carleson measure, then

|∇G(X)| � Cμ

δ(X) (3.9)

for every X ∈ Ω, where Cμ is the constant in (2.5).

Proof. We begin with some preliminary observations. With BX defined as in (3.4), note 
that by Theorem 3.3 and construction,

sup
Y ∈BX

|Λ(X,Y )| � δ(X)−n−1 , sup
Y ∈BX

|∇XΛ(X,Y )| � δ(X)−n−2 . (3.10)

Moreover, 
˜

Λ(X, Y ) dY = 1, for every X ∈ Ω, and therefore

∇X

¨
Λ(X,Y ) dY (3.7)=

¨
∇XΛ(X,Y ) dY = 0 . (3.11)

Set [G0]BX
:= |BX |−1 ˜

BX
G0. Then

|∇G(X)| (3.7)=
∣∣∣∣¨ ∇XΛ(X,Y )G0(Y ) dY

∣∣∣∣
(3.11)=

∣∣∣∣¨ ∇XΛ(X,Y )
(
G0(Y ) − [G0]BX

)
dY

∣∣∣∣
(3.10)
� δ(X)−n−2

¨ ∣∣G0(Y ) − [G0]BX

∣∣ dY

BX
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� δ(X)−n−1
¨

BX

|∇G0(Y )| dY , (3.12)

where we have used also (3.4), and Poincaré’s inequality for BV (see [15, Theorem 1, p. 
189]).

Now let x̂ ∈ ∂Ω be a “touching point” for X, i.e. |X − x̂| = δ(X). Then

δ(X)−n−1
¨

BX

|∇G0(Y )| dY � δ(X)−n−1
¨

B(x̂,2δ(X))∩Ω

|∇G0(Y )| dY � Cμ

δ(X) ,

by hypothesis. Combining the latter estimate with (3.12), we obtain the desired con-
clusion. We remark that the full strength of the Carleson measure condition was not 
required here, but only the weaker estimate

δ(X)−n

¨

BX

|∇G0(Y )| dY ≤ C . �

Lemma 3.13. If G0 ∈ BVloc(Ω) and μ = |∇G0(Y )| dY is a Carleson measure, then also 
|∇G(Y )| dY is a Carleson measure and

sup
r>0,z∈∂Ω

1
rn

¨

B(z,r)∩Ω

|∇G(X)| dX � Cμ

where Cμ is the constant in (2.5).

Proof. Fix B(z, r) with z ∈ ∂Ω. We cover B(z, r) ∩ Ω by (possibly disconnected) “half-
open” regions

Vk :=
{
X ∈ Ω ∩B(z, r) : 2−k−1r ≤ δ(X) < 2−kr

}
,

so that Ω ∩ B(z, r) = ∪∞
k=0Vk. Observe that for X ∈ Vk, the ball BX defined in (3.4) is 

contained in

V ∗
k :=

{
Y ∈ Ω ∩B(z, 2r) : 2−k−2r ≤ δ(Y ) < 2−k+1r

}
,

and moreover, that for Y ∈ BX , we have

|X − Y | ≤ δ(X)/2 ≈ δ(Y ) .

Thus, using (3.12), we see that
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¨

Vk

|∇G(X)| dX �
¨

Vk

δ(X)−n−1
¨

BX

|∇G0(Y )| dY dX

�
¨

V ∗
k

|∇G0(Y )|

⎛⎜⎝δ(Y )−n−1
¨

|Y−X|�δ(Y )

dX

⎞⎟⎠ dY ≈
¨

V ∗
k

|∇G0(Y )| dY.

Summing in k, and using that the sets V ∗
k have bounded overlaps, we obtain

¨

B(z,r)∩Ω

|∇G(X)| dX �
¨

B(z,2r)∩Ω

|∇G0(Y )| dY � Cμr
n ,

as desired. �
Lemma 3.14. If G0 converges to g(x) non-tangentially in the standard (respectively, one-
sided) sense in a cone with large enough aperture, then also G converges to g(x) non-
tangentially in the standard (respectively, one-sided) sense.

Proof. Suppose that Y ∈ Γ̃m(x) for some m > 1. We recall that

G(Y ) = 1
β(Y )n+1

¨

B(Y,β(Y )
2m2

)

ζ

(
Y − Z

β(Y )

)
G0(Z) dZ.

In particular, since dist(x, Y ) < mδ(Y ), we have

dist(x, Z) ≤ dist(x, Y ) + dist(Y,Z) < mδ(Y ) + β(Y )
2m2

≤
(
m + 1

2

)
δ(Y )

for every Z ∈ B(Y, β(Y )/2m2). Also, if |G0(Z) − g(x)| < ε for every Z ∈ B(Y, β(Y )
2m2

), we 
can use the facts that 

˜
ζ = 1 and ζ(X) ≤ 1 for every X ∈ Ω to show that

|G(Y ) − g(x)| ≤ 1
β(Y )n+1

¨

B(Y, β(Y )
2m2

)

∣∣∣∣ζ (Y − Z

β(Y )

)∣∣∣∣ |G0(Z) − g(x)| dZ � ε.

By combining these two observations we see that if G0 converges to g(x) non-tangentially 
in a cone with aperture m, then G converges to g(x) non-tangentially in a cone with 
aperture m − 1

2 . Observe that the preceding argument applies in the case of either 
standard or one-sided non-tangential convergence. �
Remark 3.15. The aperture of the cones does not play an important role in this paper 
and we use Lemma 3.14 without considering details related to them in the proofs. This is 
because we can always use mollifiers that are supported on a smaller ball than B(0, 1 )
2m2
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and we use dyadic cones that we can construct in such a way that they contain cones of 
the type Γ̃m for a large m (see Section 7).

Proof of Lemma 3.2. By Lemma 3.8, Lemma 3.13 and the Mean value theorem, the 
previous regularization method gives us the desired properties i), ii) and iii), but it is 
not clear if the regularized ε-approximators are still ε-approximators in the sense of 
Theorem 3.1. Because of this, we tweak the regularization method for ε-approximators. 
If Φ0 is the original ε-approximator, we define the regularized ε-approximator with the 
formula

Φ(X) :=
¨

Λε(X,Y )Φ0(Y ) dY ,

where

Λε(X,Y ) := ζεβ(X)(X − Y ).

This changes the outcome of Lemma 3.8 for Φ in the sense that we get a bound

|∇Φ(X)| � Cε

εn+1δ(X)

instead, where Cε is the Carleson norm of the measure |∇Φ0(Y )| dY . However, since 
the size of the Carleson norm of the ε-approximators is not important for us (i.e. it can 
depend very strongly on ε), we can simply absorb the constant ε−n−1 to the Carleson 
norm of the regularized ε-approximators. Thus, if Φ0 is an ε-approximator, then Φ is 
a Cε-approximator such that Carleson norm C̃ε of the measure |∇Φ(Y )| dY satisfies 
C̃ε ≤ C Cε

εn+1 for some uniformly bounded constant C. We omit the details. �
4. Bilateral corona decomposition and one-sided non-tangential traces

In Rn+1
+ , the construction of dyadic Carleson boxes and dyadic Whitney regions is 

very simple: just take a dyadic cube on Rn, build a cube on top of it to get the Carleson 
box and remove the lower half of the cube to get the Whitney region. These objects 
are easy to work with particularly due to their simple geometric structure and they 
are very effective in many situations (see e.g. [27,30]). However, it is still possible to 
construct substitutes for these boxes and regions that share many good properties with 
their Rn+1

+ -analogues [25, Section 3].
In this paper, we need two versions of the Whitney regions from [25] for two different 

purposes:

1) the original regions in a slightly modified form to prove Theorem 1.1 in Section 6,
2) simplified and non-dilated regions for the construction of the extension of Proposi-

tion 1.3.
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The reason why we need these simplified regions is that although the boundaries of the 
original dilated regions are ADR, they are not quite neat enough for some more delicate 
estimates. We construct these regions in Sections 7 and 8.

Let us start by recalling some key tools from [25]. In this section, Ω ⊂ Rn+1 is an 
open set with n-UR boundary ∂Ω and D is a dyadic system on ∂Ω. We begin with a 
standard Whitney decomposition of Ω.

4.1. Whitney cubes and regions

We use Whitney cubes and Whitney regions in our proofs and constructions through-
out the article. Suppose that W := {I}I is a Whitney decomposition of Ω (see e.g. [39, 
Chapter VI], that is, {I}I is a collection of closed (n + 1)-dimensional Euclidean cubes 
whose interiors are disjoint such that 

⋃
I I = Ω and

4diam(I) ≤ dist(4I, ∂Ω) ≤ dist(I, ∂Ω) ≤ 40diam(I) for every I ∈ W

(here, by 4I we mean the standard concentric Euclidean dilate, as opposed to the “dilate” 
of a dyadic cube Q ∈ D(∂Ω) defined in Notation 2.20 (4)), and

1
4diam(I1) ≤ diam(I2) ≤ 4diam(I1)

whenever I1 ∩ I2 �= ∅. For parameters η and K satisfying η � 1 � K and for every 
Q ∈ D(∂Ω) we set

W0
Q := W0

Q(η,K) := {I ∈ W : η1/4�(Q) ≤ �(I) ≤ K1/2�(Q),dist(I,Q) ≤ K1/2�(Q)}.
(4.1)

Remark 4.2. We note that W0
Q is non-empty, for η chosen small enough, and K large 

enough, provided that Ω satisfies the corkscrew condition (see [25, Section 3]). In par-
ticular, the latter is true when Ω = ΩE := Rn+1 \E, where E ⊂ Rn+1 is an n-ADR set. 
In the sequel, we shall always assume that η and K have been so chosen.

Definition 4.3. For ξ > 1 and every I ∈ W, we let I∗ be the concentric dilation of I:

I∗ = I∗(ξ) := ξI.

We note that if ξ is close enough to 1, (and we shall always choose it so), the fattened 
cubes I∗ have bounded overlaps, and retain the property that diam(I∗) ≈ dist(I∗, ∂Ω). 
We shall refer to such values of ξ as allowable.

If we choose (as above) the parameters η, K and ξ in a suitable way, the collections ⋃
I∈WQ

I and 
⋃

I∈WQ
I∗, and certain variants of these collections, have strong geometric 

properties that we will formulate in the next lemmas and use in the subsequent sections.
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Definition 4.4. We say that a subcollection S ⊂ D is coherent if the following three 
conditions hold.

(a) There exists a maximal element Q(S) ∈ S such that Q ⊂ Q(S) for every Q ∈ S.
(b) If Q ∈ S and P ∈ D is a cube such that Q ⊂ P ⊂ Q(S), then also P ∈ S.
(c) If Q ∈ S, then either all children of Q belong to S or none of them do.

If S satisfies only conditions (a) and (b), then we say that S is semicoherent.

Lemma 4.5 ([25, Lemma 2.2]). For any pair of positive constants η � 1 and K � 1
there exists a disjoint decomposition D = G ∪ B satisfying the following properties:

(1) The “good” collection G is a disjoint union of coherent stopping time regimes S.
(2) The “bad” collection B and the maximal cubes Q(S) satisfy a Carleson packing 

condition: for every Q ∈ D we have∑
Q′⊂Q,Q′∈B

σ(Q′) +
∑

S:Q(S)⊂Q

σ(Q(S)) ≤ Cη,Kσ(Q).

(3) For every S, there exists an n-dimensional Lipschitz graph ΓS , with Lipschitz con-
stant at most η, such that for every Q ∈ S we have

sup
x∈Δ∗

Q

dist(x,ΓS) + sup
y∈B∗

Q∩ΓS

dist(y, ∂Ω) < η�(Q),

where B∗
Q := B(xQ, K�(Q)) and Δ∗

Q := B∗
Q ∩ ∂Ω.

We call the decomposition D = G∪B in Lemma 4.5 the bilateral corona decomposition
of D.

Next, we recall a construction in [25, Section 3], leading up to and including in par-
ticular [25, Lemma 3.24]. We summarize this construction as follows.

Lemma 4.6. Let E ⊂ Rn+1 be UR, and set ΩE := Rn+1 \ E. Given positive constants 
η � 1 and K � 1, as in (4.1) and Remark 4.2, let D = G ∪ B, be the corresponding 
bilateral corona decomposition of Lemma 4.5. Then for each S ⊂ G, and for each Q ∈
S, the collection W0

Q in (4.1) has an augmentation W∗
Q ⊂ W satisfying the following 

properties.

(1) W0
Q ⊂ W∗

Q = W∗,+
Q ∪ W∗,−

Q , where (after a suitable rotation of coordinates) each 
I ∈ W∗,+

Q lies above the Lipschitz graph ΓS of Lemma 4.5, each I ∈ W∗,−
Q lies below 

ΓS . Moreover, if Q′ is a child of Q, also belonging to S, then each I ∈ W∗,+
Q (resp. 

I ∈ W∗,−
Q ) belongs to the same connected component of ΩE as each I ′ ∈ W∗,+

Q′ (resp. 
I ′ ∈ W∗,−

Q′ ) and W∗,+
Q′ ∩W∗,+

Q �= ∅ (resp. W∗,−
Q′ ∩W∗,−

Q �= ∅).
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(2) There are uniform constants c < 1, C > 1, and ξ0 > 1 such that

cη1/2�(Q) ≤ �(I) ≤ CK1/2�(Q) , ∀I ∈ W∗
Q,

dist(I,Q) ≤ CK1/2�(Q) , ∀I ∈ W∗
Q,

cη1/2�(Q) ≤ dist(I∗(ξ),ΓS) , ∀I ∈ W∗
Q , ∀ξ ∈ [1, ξ0] .

(4.7)

(3) For ξ > 1, and recalling Definition 4.3, set

U±
Q = U±

Q,ξ :=
⋃

I∈W∗,±
Q

I∗(ξ) , UQ := U+
Q ∪ U−

Q , (4.8)

and given S ′, a non-empty semi-coherent subregime of S, define

ΩS′ := Ω+
S′ ∪ Ω−

S′ , Ω±
S′ = Ω±

S′(ξ) := int
⋃

Q∈S′

U±
Q . (4.9)

Then there exists ξ0 > 1 such that each of Ω±
S′ is a CAD (Definition 2.15), with 

chord-arc constants depending only on n, ξ, η, K, and the ADR/UR constants for E, 
provided that 1 < ξ < ξ0.

As in [25], it will be useful for us to extend the definition of the Whitney region UQ to 
the case that Q ∈ B, the “bad” collection of Lemma 4.5. Let W∗

Q be the augmentation 
of W0

Q as constructed in Lemma 4.6, and set

WQ :=
{

W∗
Q , Q ∈ G,

W0
Q , Q ∈ B

. (4.10)

For Q ∈ G we shall henceforth simply write WQ, W±
Q in place of W∗

Q, W
∗,±
Q . For arbitrary 

Q ∈ D, good or bad, we may then make the following definitions.

Definition 4.11. Given ξ′ > ξ > 1, we let I∗ = ξI and I∗fat = ξ′I denote dilated Whitney 
cubes, for allowable values of ξ′, ξ as in Definition 4.3. Suppose that x ∈ ∂Ω and Q ∈ D. 
The closed Whitney region relative to Q, and its fattened version are, respectively, the 
sets

UQ :=
⋃

I∈WQ

I∗, U fat
Q :=

⋃
I∈WQ

I∗fat .

Similarly, we define standard and fattened versions of the “semi-closed” (i.e., closed away 
from ∂Ω) truncated dyadic cone at x:

ΥQ(x) :=
⋃

Q′∈DQ,x∈Q′

UQ′ , Υfat
Q (x) :=

⋃
Q′∈DQ,x∈Q′

U fat
Q′



S. Hofmann, O. Tapiola / Advances in Mathematics 390 (2021) 107961 21
and the “semi-closed” Carleson box relative to Q:

TQ :=
⋃

Q′∈D,Q′⊆Q

UQ′ , T fat
Q :=

⋃
Q′∈D,Q′⊆Q

U fat
Q′ .

We list some further properties of UQ and TQ in the next lemma. Most properties in 
the first lemma follow directly from the construction but some of them require slightly 
trickier estimates related to the choice of η and K and the bilateral corona decomposition 
(see [25, Section 3]).

For an open set Ω ⊂ Rn+1 that satisfies an interior corkscrew condition and has n-
dimensional UR boundary ∂Ω, we define the Whitney regions UQ as above, but only 
include those connected components contained in Ω (by the corkscrew condition, there 
must be at least one such). Of course, this includes the case that Ω = ΩE = Rn+1 \ E, 
with for an n-dimensional UR set E = ∂ΩE , as in Lemma 4.6.

Lemma 4.12. Let Ω ⊂ Rn+1 satisfy an interior corkscrew condition, with n-dimensional 
UR boundary ∂Ω. We have the following properties:

• The region UQ is a union of a uniformly bounded number of Whitney cubes I such 
that �(Q) ≈ �(I) and dist(Q, I) ≈ �(Q).

• The regions UQ have a bounded overlap property, i.e. we have 
∑

i |UQi
| ≈ | 

⋃
i UQi

|
for cubes Qi such that Qi �= Qj if i �= j.

• If UQ ∩ UP �= ∅, then �(Q) ≈ �(P ) and dist(Q, P ) � �(Q).
• For every Y ∈ UQ we have δ(Y ) ≈ �(Q).
• For every Q ∈ D, we have |UQ| ≈ �(Q)n+1 ≈ �(Q) · σ(Q).
• If diam(∂Ω) ≈ diam(Ω), then Ω =

⋃
Q∈D TQ.

• If diam(∂Ω) < ∞ and diam(Ω) = ∞, then there exist R � diam(∂Ω) and a ball 
B(x, R) for some x ∈ ∂Ω such that ∂Ω ⊂ B(x, R) and B(x, R) ∩ Ω ⊂

⋃
Q∈D TQ.

• If Q ∈ G, then UQ has at least one connected component, and at most two, corre-
sponding to U±

Q in Lemma 4.6.
• If Q ∈ B, then UQ has a uniformly bounded number of connected components.

4.2. Non-tangential convergence of ε-approximators

We shall use the properties in Lemma 4.12 to prove some results about non-tangential 
convergence of ε-approximators.

Lemma 4.13. Let Ω ⊂ Rn+1 be as in Lemma 4.12, and write D = B∪G as in Lemmas 4.5
and 4.6. Let Q0 ∈ D be a fixed cube, denote

MQ0 := {Q ∈ B : Q ⊆ Q0} ∪ {Q(S) : Q(S) ⊆ Q0}S∈G

and set
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GQ0(x) :=
∑

Q∈MQ0

1Q(x)

for every x ∈ ∂Ω (thus GQ0 vanishes outside of Q0). Then GQ0(x) < ∞ for almost every 
x ∈ Q0. In particular, for almost every x ∈ Q0, there exists a stopping time regime Sx

such that if x ∈ Q and �(Q) ≤ �(Q(Sx)), then Q ∈ Sx. For each Q ∈ Sx, the interior of 
the cone ΥQ(x) splits into at most two chord-arc domains, as does the sawtooth region 
ΩSx

.

Proof. Since the collection MQ0 satisfies a Carleson packing condition by Lemma 4.5
and Q ⊂ Q0 for every Q ∈ MQ0 , we have

ˆ

Q0

GQ0(x) dσ(x) =
∑

Q∈MQ0

σ(Q) � σ(Q0).

In particular, GQ0(x) < ∞ for almost every x ∈ Q0. Thus, for almost every x ∈ Q0 there 
exist Cx > 0 such that if x ∈ Q and �(Q) < Cx, then Q /∈ MQ0 . In particular, there exists 
a stopping time regime Sx given by Lemma 4.5 such that if x ∈ Q and �(Q) < Cx, then 
Q ∈ Sx ⊂ G. Thus, by Lemma 4.12, the corresponding Whitney region UQ splits into at 
most two connected components. The final property follows now from Lemma 4.6. �

For every x ∈ ∂Ω that satisfies the condition in Lemma 4.13, we denote the compo-
nents of ΥQ(x) by Υ±

Q(x), whose interiors, denoted by Υ̃±
Q(x), are subdomains of Ω±

Sx

(see (4.9)), respectively. Since Ω satisfies the corkscrew condition, at least one of Ω±
Sx

is 
contained in Ω, and it may be that both are. We define Υ+,fat

Q(Sx) in the same way.

Lemma 4.14. Let Ω ⊂ Rn+1 be an open set satisfying an interior corkscrew condition and 
let ∂Ω be UR. Suppose that Φ: Ω → R is a smooth function such that μ = |∇Φ(Y )| dY
is a Carleson measure, and |∇Φ(X)| � 1

δ(X) for every X ∈ Ω. Then Φ has one-sided 
non-tangential boundary traces in the following sense: for σ-a.e. x ∈ ∂Ω, the limits

ϕ+(x) := lim
Y ∈Υ̃+

Q(Sx)(x),Y→x
Φ(Y ) and ϕ−(x) := lim

Y ∈Υ̃−
Q(Sx)(x),Y→x

Φ(Y )

exist and satisfy ‖ϕ±‖L∞(∂Ω) ≤ ‖Φ‖L∞(Ω), provided that Ω±
Sx

⊂ Ω.

Remark 4.15. As noted above, necessarily Ω±
Sx

⊂ Ω for at least one choice of + or −, 
and possibly both. Thus, Φ has at least a 1-sided non-tangential trace a.e. on ∂Ω. In 
the case that both components of ΩSx

are contained in Ω, the traces ϕ+ and ϕ− may 
not coincide. Indeed, if Ω = Rn+1

+ ∪ Rn+1
− and Φ = 1Rn+1

+
− 1Rn+1

−
, then ϕ+(x) = 1 and 

ϕ−(x) = −1 for every x ∈ ∂Ω (when we have chosen the directions + and − in the 
obvious way).
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Proof of Lemma 4.14. Fix a cube Q0 ∈ D, and let x ∈ ∂Ω be a point satisfying the 
condition GQ0(x) < ∞ in Lemma 4.13. We suppose that Ω+

Sx
⊂ Ω, and consider the 

limit in Υ̃+
Q(Sx)(x); the case that Ω−

Sx
⊂ Ω may be handled by the same argument. Let 

{Xk}k be an arbitrary sequence of points in Υ̃+
Q(Sx)(x) such that Xk → x. It suffices to 

show that {Φ(Xk)} is a Cauchy sequence.
We have fixed 1 < ξ < ξ′, and have constructed the corresponding standard and “fat” 

versions of the Whitney regions, cones and Carleson boxes as in Definition 4.11. Using 
Lemma 4.6, we set

Υ0 := Υ+,fat
Q(Sx) .

Thus, Υ+
Q(Sx) ⊂ Υ0, and the interior of Υ0 is an NTA domain. Let k, m ∈ N, m ≥ k, 

and let 0 < ε � ξ′ − ξ. Since Xk, Xm ∈ Υ+
Q(Sx), there exists a chain of balls {Bi}Ni=1, 

Bi := B(Yi, ri), inside the interior of Υ0, with the following properties:

(i) Y1 = Xk, YN = Xm,
(ii) r1 ≤ εδ(Xk), rN ≤ εδ(Xm),
(iii) Bi ∩Bi+1 �= ∅ for every i ≥ 1,
(iv) ri ≈ δ(Yi) ≈ dist(Bi, ∂Ω),
(v) 1/4 ≤ ri/ri+1 ≤ 4,
(vi) for each i ≥ 1, Bi ∪ Bi+1 ⊂ Ci ⊂ Υ0, where Ci is a cylinder with height hi and 

radius ρi satisfying

1 ≤ hi/ri ≤ 8 , 1 ≤ ρi/ri ≤ 8 ,

and such that dist(Ci, ∂Ω) ≈ diam(Ci) ≈ ri,
(vii) the balls {Bi}i and the cylinders {Ci}i have bounded overlaps.

Here, the implicit constants depend on the NTA properties of Υ0, and possibly on ε.
We now have

|Φ(Xk) − Φ(Xm)| ≤
¨

\

B1

|Φ(X) − Φ(Xk)| dX +
N−1∑
i=1

∣∣∣∣∣∣∣
¨

\

Bi

Φ(X) dX −
¨

\

Bi+1

Φ(X) dX

∣∣∣∣∣∣∣
+
¨

\

BN

|Φ(X) − Φ(Xm)| dX

:=I1 + I2 + I3.

By the mean value theorem and the pointwise gradient bound, we know that Φ is locally 
Lipschitz. Thus,
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I1 ≤ C

¨

\

B1

|X −Xk|
δ(Xk)

dX ≤ C

¨

\

B1

εδ(Xk)
δ(Xk)

dX = Cε

and similarly I3 � ε. As for I2, by (v) and (vi) above, and Poincaré’s inequality, we have∣∣∣∣∣∣∣
¨

\

Bi

Φ(X) dX −
¨

\

Bi+1

Φ(X) dX

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
¨

\

Bi

Φ(X) dX − 〈Φ〉Ci
+ 〈Φ〉Ci

−
¨

\

Bi+1

Φ(X) dX

∣∣∣∣∣∣∣
≤ 2

¨

\

Ci

∣∣∣∣∣∣Φ(X) −
¨

\

Ci

Φ(Y ) dY

∣∣∣∣∣∣ dX
� ri

|Ci|

¨

Ci

|∇Φ(X)| dX

� 1
δ(Yi)n

¨

Ci

|∇Φ(X)| dX

�
¨

Ci

|∇Φ(X)|δ(X)−n dX.

By construction, we may choose Q ∈ Sx, with �(Q) ≈ max(δ(Xk), δ(Xm)), such that 
Xk, Xm ∈ Υ+

Q(x) and Ci ⊂ Υ+,fat
Q (x) for each i = 1, 2, . . . , N . Then, by the bounded 

overlap property of the cylinders {Ci}i, and the structure of the dyadic cones, we have

I2 �
N∑
i=1

¨

Ci

|∇Φ(X)|δ(X)−n dX �
¨

Υ+,fat
Q (x)

|∇Φ(X)|δ(X)−n dX

≤
∑

x∈Q′∈DQ

¨

U+,fat
Q′

|∇Φ(X)|δ(X)−n dX

�
∑

x∈Q′∈DQ

¨

U+,fat
Q′

|∇Φ(X)|�(Q′)−n dX

�
∑

Q′∈DQ

1Q′(x)
σ(Q′)

¨

U+,fat
Q′

|∇Φ(X)| dX.

We notice that
ˆ

Q

∑
Q′∈DQ

1Q′(y)
σ(Q′)

¨

U+,fat

|∇Φ(X)| dX dσ(y) =
∑

Q′∈DQ

¨

U+,fat

|∇Φ(X)| dX
Q′ Q′
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�
¨

T fat
Q

|∇Φ(X)| dX � Cμσ(Q),

since |∇Φ(X)| dX is a Carleson measure. Thus, 
∑

Q′∈DQ

1Q′ (x)
σ(Q′)

˜
U+,fat

Q′
|∇Φ(X)| dX < ∞

for σ-a.e. x ∈ ∂Ω. In particular,

lim
�(Q)→0

∑
Q′∈DQ

1Q′(x)
σ(Q′)

¨

U+,fat
Q′

|∇Φ(X)| dX = 0

for σ-a.e. x ∈ ∂Ω. It follows that I2 ≤ ε if k, m are large enough, and consequently that 
I1 + I2 + I3 � ε. We therefore conclude that {Φ(Xk)}k is a Cauchy sequence. �
Remark 4.16. As noted above (see Remark 4.15), it is possible that non-tangential traces, 
whose existence is guaranteed by Lemma 4.14, may exist from two sides, and they may 
not coincide. It will therefore be convenient to fix a canonical, unambiguous choice of 
non-tangential approach. To this end, we proceed as follows. Recall the counting function 
GQ defined in Lemma 4.13. Set

ANT := {x ∈ ∂Ω : GQ(x) < ∞ , ∀Q ∈ D}.

Recall that for each cube Q, GQ(x) < ∞ for σ-a.e. x ∈ ∂Ω. Since D is countable, we 
find that σ(∂Ω \ ANT) = 0. For each x ∈ ANT, there is a stopping time regime Sx, as 
in Lemma 4.13, with maximal cube Q(Sx). We set DNT := {Q(Sx)}x∈ANT , and observe 
that this collection is countable (thus, Sx = Sy for many choices of distinct x and y). We 
enumerate DNT = {Qi}∞i=1, and for each Qi ∈ DNT, we let Si be the stopping time regime 
with maximal cube Qi. If Ω±

Sx
is contained in Ω, then for every Φ as in Lemma 4.14, the 

non-tangential traces ϕ±(x) are defined for σ-a.e. x ∈ ANT. In addition, for x ∈ ANT, 
there is an index i with Sx = Si, and since the corkscrew condition holds in Ω, at least 
one of Ω±

Si
is contained in Ω. If there is only one such, then the trace ϕ(x) is defined 

unambiguously; on the other hand, if both are contained in Ω, then we arbitrarily set 
ϕ(x) = ϕ+(x). Note that we make this same choice for every x ∈ ANT such that Sx = Si, 
and moreover, that this choice is specified in advance, and is independent of Φ.

5. Some results on boundary behavior of bounded harmonic functions

In this section, we shall prove some useful facts about boundary behavior of bounded 
harmonic functions. We begin with some preliminary observations.

Remark 5.1. In the sequel, given a function v defined in an open set Ω, we let Tv denote 
the non-tangential trace of v on ∂Ω, i.e., for x ∈ ∂Ω, set

Tv(x) := lim v(Y ) , (5.2)

Y→x N.T.
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provided that this non-tangential limit exists. Here, the notation Y → x N.T. means 
that Y → x, with Y ∈ Γ̃(x) (see Definition 2.1), or with Y ∈ Γ(x) (see Definition 7.3
below, and also Remark 7.5). We recall that in an NTA domain Ω, if v is a bounded 
harmonic function, then Tv(x) exists for ω-a.e. x ∈ ∂Ω, by virtue of the Fatou Theorem 
of [32, Theorem 6.4], where ω is harmonic measure for Ω with any fixed pole. Recall also 
that if, in addition, the NTA domain has an ADR boundary (i.e., so that Ω is a CAD; see 
Definition 2.15), then in particular, by results obtained independently in [11] and in [38], 
ω and σ = Hn�∂Ω are mutually absolutely continuous, and thus for a bounded harmonic 
function v, one has that Tv(x) exists for σ-a.e. x ∈ ∂Ω. In particular, in this context, the 
Dirichlet problem is uniquely solvable in Ω, with data in Lp(∂Ω, σ) for p < ∞ sufficiently 
large (depending on dimension and the chord-arc constants of Ω), with Lp control of the 
non-tangential maximal function, and with non-tangential convergence of the solution to 
the data, σ-a.e. on ∂Ω. Therefore, in a bounded chord-arc domain Ω, if v is a bounded 
harmonic function with non-tangential trace Tv, we then have

v(Y ) =
ˆ

∂Ω

Tv dωY , ∀Y ∈ Ω . (5.3)

Lemma 5.4. Let Ω be a bounded CAD. Let {uk}∞k=1 be a sequence of non-negative, bounded 
harmonic functions in Ω, whose sum

u :=
∞∑
k=1

uk

is also bounded in Ω. Then the non-tangential trace operator T satisfies the countable 
additivity property

Tu(x) =
∞∑
k=1

Tuk(x) , σ-a.e. x ∈ ∂Ω .

Proof. Set

f := Tu , fk := Tuk ,

which, as noted above, exist σ-a.e. on ∂Ω, and of course inherit non-negativity from u
and uk. Since T is a linear operator, for each positive integer N , and at σ-a.e. point on 
∂Ω,

N∑
k=1

fk =
N∑

k=1

Tuk = T

( N∑
k=1

uk

)
≤ T

( ∞∑
k=1

uk

)
= Tu ,

where in the inequality we have used that uk ≥ 0 for every k. Letting N → ∞, we find 
that
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f̃ :=
∞∑
k=1

fk ∈ L∞(∂Ω, σ) .

Our goal is then to show that f = f̃ at σ-a.e. point on ∂Ω. To this end, since Ω is a 
bounded CAD, we may apply (5.3) to obtain

ˆ

∂Ω

f dωY = u(Y ) =
∞∑
k=1

uk(Y ) =
∞∑
k=1

ˆ

∂Ω

fk dω
Y

=
ˆ

∂Ω

∞∑
k=1

fk dω
Y =

ˆ

∂Ω

f̃ dωY =: ũ(Y ) ,

for each Y ∈ Ω, where the interchange of summation and integration in the fourth 
equality may be justified by monotone convergence, since fk ≥ 0. Thus ũ = u at every 
point in Ω, hence, σ-a.e. on ∂Ω, we have

0 = T(ũ− u) = T ũ− Tu = f̃ − f . �
In the sequel, given a set A, we denote the usual supremum norm of a function g

defined on A by

‖g‖sup(A) := sup
X∈A

|g(X)| .

Of course, for continuous g, one has ‖g‖sup(A) = ‖g‖L∞(A); in particular,

‖u‖sup(Ω) = ‖u‖L∞(Ω) , for u harmonic in Ω . (5.5)

Next, we recall that by [19, Theorem 3.9.1], if g is a Borel measurable function that 
is everywhere bounded on ∂Ω (i.e., ‖g‖sup(∂Ω) < ∞), then

v(Y ) :=
ˆ

∂Ω

g dωY ,

exists and is harmonic in Ω, and satisfies ‖v‖sup(Ω) ≤ ‖g‖sup(∂Ω).
Our main result in this section is the following.

Lemma 5.6. Let Ω ⊂ Rn+1 be an open set, with n-UR boundary. Suppose that g is an 
everywhere bounded Borel measurable function on ∂Ω. Set

vg(Y ) :=
ˆ

∂Ω

g dωY . (5.7)

Then the non-tangential trace Tvg exists σ-a.e. on ∂Ω, and
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Tvg(x) = g(x) , σ-a.e. x ∈ ∂Ω . (5.8)

We note that no continuity assumption is imposed on g; moreover, in the generality of 
Lemma 5.6, harmonic measure need not be absolutely continuous with respect to surface 
measure on ∂Ω.

Proof. By Lemma 4.6 and Remark 4.16, there is a countable collection of bounded 
chord-arc domains {Ωi}∞i=1, with Ωi = Ω±

Si
for some choice of ±, such that Ωi ⊂ Ω, and

σ
(
∂Ω \

(
∪i ∂Ωi

))
= 0 . (5.9)

In the case that each of Ω±
Si

is contained in Ω, then we may choose Ωi to be either of 
these. Moreover, by the Fatou theorem of [6], Tvg exists at σ-a.e. point on ∂Ω; more 
precisely, it exists at σ-a.e. point on ∂Ω ∩ ∂Ωi, for each i, as a one-sided non-tangential 
trace (i.e., with the limit taken through the non-tangential approach region within Ωi); 
one may then invoke (5.9) to cover ∂Ω up to a set of σ-measure zero. Thus, it is enough 
to verify that (5.8) holds for σ-a.e. x ∈ ∂Ω ∩ ∂Ω1, where Ω1 is any bounded chord-arc 
subdomain of Ω, whose boundary meets ∂Ω. We therefore fix such a subdomain Ω1, 
and let T1 denote the non-tangential trace operator on ∂Ω1. Let g be an everywhere 
bounded Borel measurable function on ∂Ω, and define vg as in (5.7), so that vg is a 
bounded harmonic function in Ω.

We note that if x ∈ ∂Ω ∩∂Ω1 is a point where Tvg(x) exists, then T1vg(x) exists, and

T1vg(x) = Tvg(x) , (5.10)

since the non-tangential approach region in the subdomain Ω1 is contained in a non-
tangential approach region for the ambient domain Ω. Observe also that

T1vg(X) = vg(X) , X ∈ Ω ∩ ∂Ω1 ,

since vg is, of course, continuous in Ω. Applying (5.3) in the bounded chord-arc domain 
Ω1, we therefore have

vg(Y ) =
ˆ

∂Ω∩∂Ω1

T1vg dω
Y
1 +

ˆ

Ω∩∂Ω1

vg dω
Y
1 , Y ∈ Ω1 ,

where ω1 is harmonic measure for Ω1. We also define

ṽg(Y ) :=
ˆ

∂Ω∩∂Ω1

g dωY
1 +

ˆ

Ω∩∂Ω1

vg dω
Y
1 , Y ∈ Ω1 .

Thus, by Remark 5.1, vg is the unique solution to the Dirichlet problem in Ω1 with 
boundary data (T1vg)1∂Ω∩∂Ω1 + vg1Ω∩∂Ω1 , and ṽg is the unique solution to the Dirichlet 
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problem in Ω1 with boundary data g1∂Ω∩∂Ω1 + vg1Ω∩∂Ω1 . Moreover, each of these solu-
tions converges non-tangentially in Ω1 to its corresponding boundary data. In particular,

T1vg = (T1vg)1∂Ω∩∂Ω1 + vg1Ω∩∂Ω1 and T1ṽg = g1∂Ω∩∂Ω1 + vg1Ω∩∂Ω1 , (5.11)

σ1-a.e. on ∂Ω1, where σ1 := Hn�∂Ω1 is the surface measure on ∂Ω1.
We now claim that vg = ṽg in Ω1. Assuming the claim momentarily, we then have 

T1vg = T1ṽg, and this gives us T1vg(x) = g(x) for σ1-a.e. x ∈ ∂Ω1 by (5.11). In particu-
lar, we have Tvg = g for σ-a.e. point on ∂Ω ∩ ∂Ω1 by (5.10), and hence that (5.8) holds, 
as desired.

It therefore remains to verify that vg = ṽg in Ω1. To this end, we note first that the 
claim holds immediately in the special case that g is continuous on ∂Ω, since in that 
case Tvg = g at every point on ∂Ω (indeed, every boundary point is regular in the sense 
of Wiener, by the ADR property (see e.g. [24, Lemma 3.27] or [43, Section 3])). By 
definition of vg and ṽg, we may write

vg(Y ) =
ˆ

∂Ω∩∂Ω1

T1

⎛⎝ˆ

∂Ω

g dω(·)

⎞⎠ dωY
1 +

ˆ

Ω∩∂Ω1

ˆ

∂Ω

g dωX dωY
1 (X) ,

and also

ṽg(Y ) =
ˆ

∂Ω∩∂Ω1

g dωY
1 +

ˆ

Ω∩∂Ω1

ˆ

∂Ω

g dωX dωY
1 (X) .

For each Y ∈ Ω1, define two non-negative set functions on the Borel subsets of ∂Ω as 
follows:

μY (A) :=
ˆ

∂Ω∩∂Ω1

T1

(
ω(·)(A)

)
dωY

1 +
ˆ

Ω∩∂Ω1

ωX(A) dωY
1 (X) ,

and

μ̃Y (A) :=
ˆ

∂Ω∩∂Ω1

1A dωY
1 +

ˆ

Ω∩∂Ω1

ωX(A) dωY
1 (X) .

Note that μY (A) ≤ 1 and μ̃Y (A) ≤ 1 for all Borel A ⊂ ∂Ω, since ω and ω1 are probability 
measures. Since g is Borel measurable, it suffices to show that μY and μ̃Y are Borel 
measures, with μY = μ̃Y , for each Y ∈ Ω1; indeed, in that case we would have

vg(Y ) =
ˆ

g dμY =
ˆ

g dμ̃Y = ṽg(Y ) , (5.12)

∂Ω ∂Ω
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as claimed. Moreover, we have already observed that (5.12) holds in the special case 
that g is continuous on ∂Ω, thus it suffices simply to show that μY and μ̃Y are Borel 
measures, since equality then follows by equality on the continuous functions; in turn, it 
therefore suffices to show that μY and μ̃Y are countably additive on the Borel subsets 
of ∂Ω, i.e., that

μY
( ∞⋃

k=1

Ak

)
=

∞∑
k=1

μY (Ak) , (5.13)

and similarly for μ̃Y , whenever {Ak}k is a countable family of disjoint Borel subsets of 
∂Ω. To this end, given such a collection {Ak}k, set A := ∪kAk, and define

u(X) := ωX(A) , uk(X) := ωX(Ak) .

Since harmonic measure is a probability measure, and in particular is countably additive, 
we then have

1 ≥ u(X) =
∞∑
k=1

uk(X) , ∀X ∈ Ω . (5.14)

Recall that harmonic measure and surface measure are mutually absolutely continuous 
on the boundary of a chord-arc domain. Consequently, by (5.14), Lemma 5.4 (applied in 
the bounded chord-arc domain Ω1), and monotone convergence, we find that

μY (A) =
ˆ

∂Ω∩∂Ω1

T1u dω
Y
1 +

ˆ

Ω∩∂Ω1

u dωY
1

=
∞∑
k=1

⎛⎝ ˆ

∂Ω∩∂Ω1

T1uk dω
Y
1 +

ˆ

Ω∩∂Ω1

uk dω
Y
1

⎞⎠ =
∞∑
k=1

μY (Ak) .

The argument to treat μ̃Y is similar but simpler, requiring only countable additivity of 
harmonic measure in lieu of Lemma 5.4, and we omit the details. �
6. Proof of Theorem 1.1

We now move to the proof of Theorem 1.1. Although we can still follow the original 
strategy of Varopoulos [42], consisting of ε-approximation and iteration, we have to be 
more careful with our construction. For example, the ε-approximators in our setting may 
not have pointwise non-tangential boundary traces but rather only one-sided traces in 
the sense of Lemma 4.14 (see Remark 4.15). We shall therefore rely on the construction 
of an unambiguously defined (at least 1-sided) non-tangential trace, as outlined in Re-
mark 4.16. In addition, absolute continuity of harmonic measure with respect to surface 
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measure may fail in the present generality, but Lemma 5.6 will allow us to make har-
monic extensions, and to relate the non-tangential traces of these extensions to the data, 
thus allowing us to follow the basic strategy of Varopoulos.

In this section, Ω ⊂ Rn+1 is an open set with n-UR boundary ∂Ω.
Suppose that f is a Borel measurable function on ∂Ω, with ‖f‖L∞(∂Ω,σ) < ∞. We 

will now construct the extension Φ in Theorem 1.1.
Since f ∈ L∞(∂Ω, σ), there is a set Z ∈ ∂Ω, with σ(Z) = 0, such that

‖f‖sup(∂Ω\Z) = ‖f‖L∞(∂Ω,σ) .

Since σ is a Borel regular measure, there is a Borel set Z0 ⊃ Z, with σ(Z0) = 0. Set

f0(x) :=
{

f(x) , if x ∈ ∂Ω \ Z0

0 , if x ∈ Z0 .

Note that f0 = f at σ-a.e. point on ∂Ω. Moreover, f0 is an everywhere bounded, Borel 
measurable function on ∂Ω, so by [19, Theorem 3.9.1], we know that u0 : Ω → R, defined 
by

u0(X) :=
ˆ

∂Ω

f0(y) dωX(y),

is a harmonic function in Ω satisfying

‖u0‖sup(Ω) ≤ ‖f0‖sup(∂Ω) = ‖f‖L∞(∂Ω,σ) ,

where ωX is the harmonic measure on ∂Ω with pole at X. Thus, by Theorem 3.1, 
Lemma 3.2 and (5.5), there exists a smooth 1

2 -approximator of u0, i.e. a function Φ0 ∈
C∞(Ω) such that

‖u0 − Φ0‖L∞(Ω) ≤
1
2‖u0‖L∞(Ω) and sup

x∈∂Ω,r>0

1
rn

¨

B(x,r)∩Ω

|∇Φ0(Y )| dY ≤ C0‖u0‖L∞(Ω),

where C0 depends only on dimension and the ADR and UR constants for ∂Ω. By 
Lemma 4.14 and Remark 4.16, Φ0 has a non-tangential trace (in at least a 1-sided 
sense), defined σ-a.e. on ∂Ω, that we denote by ϕ0. Furthermore, by Lemma 5.6, the 
non-tangential trace Tu0(x) exists, with

Tu0(x) = f0(x) = f(x) , for σ-a.e. x ∈ ∂Ω . (6.1)

Let Z1 ⊂ ∂Ω denote the set where either ϕ0 does not exist, or where (6.1) fails, hence 
σ(Z1) = 0. Since σ is a Borel regular measure, we may assume without loss of generality 
that Z1 is a Borel set. We now define
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f1(x) :=
{

f0(x) − ϕ0(x) , if x ∈ ∂Ω \ Z1

0 , if x ∈ Z1 .

Then f1 is an everywhere bounded Borel measurable function on ∂Ω, so there is a 
harmonic function

u1(X) :=
ˆ

∂Ω

f1(y) dωX(y), X ∈ Ω ,

satisfying

‖u1‖L∞(Ω) ≤ ‖f1‖sup(∂Ω) ≤ ‖u0 − Φ0‖L∞(Ω) ≤
1
2‖u0‖L∞(Ω) ≤

1
2‖f‖L∞(∂Ω).

Again using Theorem 3.1 and Lemma 3.2, we may construct a smooth 1
2 -approximator 

of u1, i.e. a function Φ1 ∈ C∞(Ω) such that

‖u1 − Φ1‖L∞(Ω) ≤
1
2‖u1‖L∞(Ω) ≤

1
4‖u0‖L∞(Ω), and

sup
x∈∂Ω,r>0

1
rn

¨

B(x,r)∩Ω

|∇Φ1(Y )| dY ≤ C0‖u1‖L∞(Ω) ≤
1
2C0‖u0‖L∞(Ω) ,

with C0 as above. By Lemma 4.14 and Remark 4.16, Φ1 has a non-tangential trace 
(in at least a 1-sided sense), defined σ-a.e. on ∂Ω, that we denote by ϕ1. Moreover, by 
Lemma 5.6, u1 has a non-tangential trace Tu1 such that

Tu1(x) = f1(x) = f0(x) − ϕ0(x) , σ-a.e. x ∈ ∂Ω . (6.2)

Let Z2 ⊂ ∂Ω be the set of σ-measure 0 such that either (6.2) fails, or ϕ1 does not exist. 
Again, without loss of generality, we may assume that Z2 is a Borel set. We set

f2(x) :=
{

f1(x) − ϕ1(x) = f0(x) − ϕ0(x) − ϕ1(x) , if x ∈ ∂Ω \ Z2

0 , if x ∈ Z2 .

We let u2 be the harmonic extension of f2, and iterate, to obtain for each k ∈ N0, 
a sequence of Borel sets Zk ⊂ ∂Ω of σ-measure 0, harmonic functions uk, their 1

2 -
approximators Φk, the non-tangential boundary traces ϕk of the approximators, and the 
non-tangential boundary traces fk+1 of the function uk − Φk. These satisfy

(i) fk+1 = f0(x) −
∑k

i=0 ϕi(x), x ∈ ∂Ω \ Zk+1,
(ii) ‖fk+1‖sup(∂Ω) ≤ ‖uk − Φk‖L∞(Ω) ≤ 2−k−1‖u0‖L∞(Ω) ≤ 2−k−1‖f0‖sup(∂Ω),
(iii) ‖uk‖L∞(Ω) ≤ ‖fk‖sup(∂Ω) ≤ 2−k‖u0‖L∞(Ω)
(iv) supx∈∂Ω,r>0

1
rn

˜
B(x,r)∩Ω |∇Φk(Y )| dY ≤ C0‖uk‖L∞(Ω) ≤ 2−kC0‖u0‖L∞(Ω).

(v) ‖Φk‖L∞(Ω) � 2−k‖u0‖L∞(Ω) (by (ii), (iii) and the triangle inequality).
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By (v), we may define the uniformly convergent series

Φ(X) :=
∞∑
k=0

Φk(X) , X ∈ Ω . (6.3)

By construction, the function Φ has a non-tangential boundary trace ϕ (in at least a 
1-sided sense; we recall that the 1-sided approach may be taken to be the same for all 
Φk: see Remark 4.16), defined σ-a.e. on ∂Ω,

ϕ(x) =
∞∑
k=0

ϕk(x).

Since limk→∞ ‖fk‖sup(∂Ω) ≤ limk→∞ 2−k‖f0‖sup(∂Ω) = 0, we have limk→∞ fk(x) = 0 for 
every x ∈ ∂Ω. In particular, by (i) above we have

0 = lim
k→∞

fk+1(x) = lim
k→∞

(
f0(x) −

k∑
i=0

ϕi(x)
)

= f0(x) − ϕ(x) , σ-a.e. x ∈ ∂Ω

(that is, for x ∈ ∂Ω \ (∪kZk)). Thus, ϕ(x) = f(x) for σ-a.e. x ∈ ∂Ω, since f0 = f at 
σ-a.e. point on ∂Ω. Also, for x ∈ ∂Ω and r > 0, and for every 

−→Ψ ∈ C1
0 (B(x, r) ∩ Ω)

satisfying ‖−→Ψ‖L∞ ≤ 1, using (6.3) and then (iv), we have

1
rn

¨

B(x,r)∩Ω

Φ(Y ) div
−→
Ψ(Y ) dY =

∞∑
k=0

1
rn

¨

B(x,r)∩Ω

Φk(Y ) div
−→
Ψ(Y ) dY

≤ 1
rn

¨

B(x,r)∩Ω

|∇Φk(Y )| dY

≤
∞∑
k=0

2−kC0‖u0‖L∞(Ω) = 2C0‖u0‖L∞(Ω).

Thus, the measure μ := |∇Φ(Y )| dY is a Carleson measure.
By Lemmas 3.6, 3.8, 3.13 and 3.14, we may further assume that Φ ∈ C∞(Ω), and that 

|∇Φ(X)| � ‖u0‖L∞(Ω)δ(X)−1. Since ‖u0‖L∞(Ω) ≤ ‖f‖L∞(∂Ω), this completes the proof 
of Theorem 1.1.

Remark 6.4. Note that the preceeding argument involved the construction of a bounded 
harmonic extension u, corresponding to given Borel measurable data f ∈ L∞(∂Ω, dσ), 
such that the non-tangential trace Tu satisfies Tu(x) = f(x) for σ-a.e. x ∈ ∂Ω. It is 
perhaps worthwhile to observe that, in the absence of absolute continuity of harmonic 
measure with respect to σ, this extension need not be unique. Indeed, suppose that 
‖f‖sup(∂Ω\Z) = ‖f‖L∞(∂Ω,σ) = 1, for a Borel set Z ⊂ ∂Ω with σ(Z) = 0. Set
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g0(x) :=
{

f(x) , if x ∈ ∂Ω \ Z
0 , if x ∈ Z ,

g1(x) :=
{

f(x) , if x ∈ ∂Ω \ Z
1 , if x ∈ Z ,

and define

vi(Y ) := vgi(Y ) :=
ˆ

∂Ω

gi dω
Y , Y ∈ Ω , i = 0, 1 .

Then ‖vi‖L∞(Ω) ≤ 1 for i = 0, 1, and by Lemma 5.6, the traces Tv0 and Tv1 exist σ-a.e. 
on ∂Ω, and satisfy

Tv0 = g0 = f = g1 = Tv1 , σ-a.e. on ∂Ω .

On the other hand,

v1(Y ) = v0(Y ) + ωY (Z) ,

so if harmonic measure has positive mass on Z, then v1 �= v0.

7. Carleson boxes, Carleson tents and Whitney regions

Before we prove Proposition 1.3, we revisit the construction of Whitney regions and 
Carleson boxes. The previous construction (see Subsection 4.1, and [25, Section 3]) is not 
suitable for our current purposes, since the overlap of the Whitney and Carleson regions 
causes technical difficulties related to the Carleson measure estimates.

Since we do not need many of the strong geometric properties of the Carleson boxes 
constructed in [25], we start by presenting a simplified construction of the boxes and 
proving that the boundaries of the boxes inside Ω are upper n-ADR. We note that the 
original proof for the upper n-ADR property of the boundaries of Carleson boxes in 
[25, Appendix] does not apply “off-the-shelf” in our situation because we do not use 
dilated (hence overlapping) Whitney cubes (as is done in [25, Appendix]). However, our 
approach makes the proof quite simple.

In this section, Ω ⊂ Rn+1 is an open set, satisfying the corkscrew condition, with 
d-ADR boundary ∂Ω for some d ∈ (0, n], and D is a dyadic system on ∂Ω. Recall 
the Whitney decomposition and the definition of the collections WQ = WQ(η, K) from 
Subsection 4.1.

Remark 7.1. In this and the next two sections, it will be technically convenient to work 
with “half-open” Whitney cubes, that is, in Sections 7, 8, and 9, a cube I ∈ W is assumed 
to be of the form I = Πn+1

k=1(ak, ak +h], with �(I) = h ≈ dist(I, ∂Ω). All other properties 
of the Whitney cubes will be exactly as before.

We start by noting that our Whitney regions are not empty:
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Fig. 1. A rough idea of the structure of the Carleson box TQ (left) and the Carleson tent τQ (right) on top 
of a same cube Q in the simplest case where Ω = R2

+.

Lemma 7.2. We can choose the parameters η and K depending only on the corkscrew 
constants, so that WQ �= ∅ for every Q ∈ D.

The proof is a straightforward generalization of [25, Remark 3.3] and [22, Lemma 5.3]. 
We omit the details.

Let us remark that in the codimension 1 case, if Ω = Rn+1 \E, with E n-ADR, then 
the corkscrew condition holds automatically, with constants that in turn depend only on 
dimension and ADR. Moreover, in the d-ADR case with d < n, Ω = Rn+1 \ E has only 
one connected component, which necessarily satisfies the corkscrew condition.

Definition 7.3. Suppose that x ∈ ∂Ω and Q ∈ D. The “half-open” Whitney region relative 
to Q is the set

UQ :=
⋃

I∈WQ

I,

the dyadic cone at x is the set

Γ(x) :=
⋃

Q′∈D:x∈Q′

UQ′

the Carleson box relative to Q is the set (see Fig. 1)

TQ :=
⋃

Q′∈D,Q′⊆Q

UQ′

and the Carleson tent relative to Q is the set (see Fig. 1)

τQ := Ω \
⋃

y∈∂Ω\Q
Γ(y)

Remark 7.4. We note that every I ∈ W with �(I) � diam(∂Ω) belongs to the collec-
tion WQI

, where as above �(QI) = �(I) ≈ dist(I, QI), and QI is chosen to minimize 
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dist(I, QI). Moreover, for η chosen small enough and K large enough depending only on 
the properties of the Whitney decomposition, every J ∈ W whose closure touches the 
closure of I, also belongs to WQI

. Consequently, for such η and K, we have:

• if diam(∂Ω) < ∞ and diam(Ω) = ∞, then 
⋃

Q∈D TQ ⊃ B(x, R) ∩ Ω for some point 
x ∈ ∂Ω and R ≈ diam(∂Ω),

• if diam(∂Ω) ≈ diam(Ω), then 
⋃

Q∈D TQ ⊃ Ω.

Remark 7.5. Given m ∈ (1, ∞), one may choose η small enough and K large enough, 
depending on m, so that the dyadic cone Γ(x) contains (at least locally) a cone of the type 
Γ̃m(x) = {Y ∈ Ω: dist(x, Y ) < mδ(Y )}; i.e., Γ̃m(x) ∩B(x, R) ⊂ Γ(x) for R ≈ diam(∂Ω). 
We omit the routine proof of this fact.

We now fix a suitably large aperture constant m that allows us to apply Lemma 3.14
later. Combining Lemma 7.2 and Remarks 7.4 and 7.5, we see that we may (and do) 
choose η and K depending only on the corkscrew constants, the Whitney cube constants, 
and the fixed aperture parameter m, in such a way that the collections WQ are non-
empty, the Carleson boxes TQ have good covering properties and the dyadic cones contain 
“regular” cones. The sets UQ, TQ and Γ(x) then satisfy the same properties (with possibly 
different implicit constants) as UQ, TQ and ΥQ(x) in Lemma 4.12, excluding naturally 
the last two properties related to the bilateral corona decomposition.

Next we prove that the boundaries of the boxes TQ in Ω are upper n-ADR. The 
boundaries of the boxes constructed in [25] are also lower n-ADR, but for our present 
purposes we shall need only the upper n-ADR property. We first prove a preliminary 
lemma, which will also be useful in the sequel.

Lemma 7.6. Let Q ∈ D. Then for each positive κ < ∞∑
Q′∈DQ

dist(Q′,Qc)≤κ�(Q′)

∑
I∈WQ′

Hn(∂I) ≤ Cκ �(Q)n. (7.7)

Proof. Note that the number of Whitney cubes in WQ′ is uniformly bounded for each Q′, 
and that for I ∈ WQ′ we have Hn(∂I) ≈ �(Q′)n, by the definition of WQ′ ; consequently∑

I∈WQ′

Hn(∂I) � �(Q′)n .

Organizing the subcubes of Q by dyadic generation DQ = ∪∞
k=0D

k
Q, where

Dk
Q := {Q′ ⊂ Q : �(Q′) = 2−k�(Q)} , 0 ≤ k ≤ ∞ ,

we obtain by the thin boundary property (Theorem 2.16 (v)) that
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∑
Q′∈Dk

Q

dist(Q′,Qc)� �(Q′)

σ(Q′) � 2−kγσ(Q) . (7.8)

Combining these observations, we obtain in the codimension 1 case d = n that

∞∑
k=0

∑
Q′∈Dk

Q

dist(Q′,Qc)� �(Q′)

∑
I∈WQ′

Hn(∂I) �
∞∑
k=0

2−kγσ(Q) � σ(Q) ,

or in general that

∞∑
k=0

∑
Q′∈Dk

Q

dist(Q′,Qc)� �(Q′)

∑
I∈WQ′

Hn(∂I) �
∞∑
k=0

∑
Q′∈Dk

Q

dist(Q′,Qc)� �(Q′)

�(Q′)n

≤ �(Q)n−d
∞∑
k=0

∑
Q′∈Dk

Q

dist(Q′,Qc)��(Q′)

�(Q′)d

≈ �(Q)n−d
∞∑
k=0

∑
Q′∈Dk

Q

dist(Q′,Qc)��(Q′)

σ(Q′)

� �(Q)n−d
∞∑
k=0

2−kγσ(Q) � �(Q)n . �

Lemma 7.9. For each Q, the set ∂̃TQ is upper n-ADR, where ∂̃TQ := ∂TQ ∩Ω: for every 
X ∈ ∂̃TQ and every R ∈ (0, diam(TQ)) we have

Hn(∂̃TQ ∩B(X,R)) � Rn,

where the implicit constant depends only on n, the ADR constant, the corkscrew constant, 
the Whitney constants, and the fixed aperture parameter m.

Proof. Note that if X ∈ ∂̃TQ, then by construction there exists a dyadic cube Q′ ∈ DQ

and a Whitney cube I ∈ WQ′ such that X ∈ ∂I. Also, if �(Q′) � �(Q) and dist(Q′, Qc) �
�(Q′) for Q′ ∈ DQ, then ∂I ∩ ∂̃TQ = ∅ for every I ∈ WQ′ . Thus, if I ⊂ TQ, with 
∂I ∩ ∂̃TQ �= ∅, then I ∈ WQ′ for a cube Q′ ∈ DQ such that dist(Q′, Qc) � �(Q′), where 
the implicit constant depend on η and K (which, in turn, we have chosen to depend only 
on the corkscrew constants, the Whitney constants, and m).

Consequently, using Lemma 7.6, we obtain

Hn(∂̃TQ) ≤
∑

Q′∈DQ
′ c ′

∑
I∈WQ′

Hn(∂I) � �(Q)n .
dist(Q ,Q )��(Q )
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Thus, we have Hn(∂̃TQ) � �(Q)n ≈ diam(Q)n for any Q ∈ D. Let us then prove the 
upper n-ADR property. Suppose that X ∈ ∂̃TQ and R ∈ (0, diam(TQ)). There are three 
cases:

1) Suppose that R ≈ diam(TQ). Then, by the consideration above, we have

Hn(∂̃TQ ∩B(X,R)) ≤ Hn(∂̃TQ) � diam(Q)n ≈ diam(TQ)n ≈ Rn.

2) Suppose that R � δ(X). Then, by construction, B(X, R) ∩ ∂̃TQ is contained in 
a union of a uniformly bounded number of boundaries of Whitney cubes I such 
that �(I) > R. Since ∂I is clearly n-ADR for each I ∈ W, we therefore find that 
Hn(∂̃TQ ∩B(X, R)) � Rn.

3) Suppose that δ(X) � R � diam(TQ). Then ∂̃TQ ∩ B(X, R) = ∂̃TQ′ ∩ B(X, R) for 
some subcube of Q′ ∈ DQ with �(Q′) ≈ R. Thus, by the consideration above, we 
have

Hn(∂̃TQ ∩B(X,R)) = Hn(∂̃TQ′ ∩B(X,R)) ≤ Hn(∂̃TQ′) � �(Q′)n ≈ Rn.

This completes the proof. �
8. Modified Carleson tents

Fix a cube Q0 ∈ D. For all Q ⊆ Q0, we shall now construct disjoint Carleson tents 
tQ, that have better covering properties than τQ. We let {Q0} be “generation zero”, 
and then enumerate the dyadic descendants of Q0: let {Qi

1}i be the first generation of 
descendants, {Qi

2}i the second generation of descendants, and so on. Let the number of 
descendants of generation k be N(k). We construct a restricted version of the Whitney 
collection WQ, Q ⊂ Q0, by removing some of the cubes from WQi

k
: for each k, i ∈ N, 

i ≤ N(k), we set

Wr
Qi

k
:= WQi

k
\

⎛⎝ k−1⋃
m=0

N(m)⋃
j=1

WQj
m

∪
i−1⋃
j=1

WQj
k

⎞⎠ ,

where of course the second union is vacuous if i = 1, and both are vacuous if k = 0. Note 
that the restricted Whitney collections {Wr

Q}Q⊂Q0 are pairwise disjoint, by construction.
We can then define restricted Whitney regions U r

Q and modified Carleson tents tQ for 
cubes Q ⊆ Q0 (see Fig. 2):

U r
Q :=

⋃
I∈Wr

Q

I, tQ :=
⋃

Q′∈D,Q′⊆Q

U r
Q′ (8.1)
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Fig. 2. Two modified Carleson tents tQ and tQ′ in the simplest case where Ω = R2
+. The boundary they 

share may be slightly messy but it consists of a union of faces of Whitney cubes.

Remark 8.2. Since the Whitney collections {Wr
Q}Q⊂Q0 are pairwise disjoint, and since 

we are now working with half-open (hence disjoint) Whitney cubes I, it follows that the 
sets {U r

Q}Q⊂Q0 are also pairwise disjoint.

Lemma 8.3. Suppose that Q, Q1, Q2 ∈ DQ0 . We then have:

i) τQ ⊂ tQ.
ii) If Q1 ∩Q2 = ∅, then also tQ1 ∩ tQ2 = ∅.
iii) If Q1 ⊂ Q2, then also tQ1 ⊂ tQ2 .
iv) TQ0 = tQ0 . Moreover, for Q � Q0, there is a collection F(Q) = {Qi}Ni=1 ⊂ DQ0 , 

of uniformly bounded cardinality N depending only on n, ADR, η and K, such that 
�(Qi) ≈η,K �(Q) with �(Qi) = �(Qi′) for all i, i′, and TQ ⊂

⋃
i tQi .

Proof. The properties ii), iii), and iv) follow directly from the construction so we prove 
only property i).

Note that by construction (see Definition 7.3),⋃
y∈∂Ω\Q

Γ(y) =
⋃

Q′∈D\DQ

UQ′ ,

and that U r
Q′ ⊂ UQ′ for every Q′ ∈ DQ0 . Moreover, the restricted Whitney regions U r

Q′

are disjoint (see Remark 8.2). Consequently,

τQ = Ω \
⋃

y∈∂Ω\Q
Γ(y) = TQ \

⋃
Q′∈D\DQ

UQ′ ⊂ TQ \
⋃

Q′∈DQ0\DQ

U r
Q′ ⊂ tQ. �

Lemma 8.4. The sets ∂tQ ∩ Ω are upper n-ADR with the ADR constant depending only 
on the dimension and the ADR constant of ∂Ω.

Proof. Recall that τQ ⊂ tQ, by Lemma 8.3 i). Thus, if I ⊂ tQ, with ∂I ∩ ∂tQ �= ∅, 
then I ∈ Wr

Q′ for a cube Q′ ∈ DQ such that dist(Q′, Qc) � �(Q′). One may then use 
Lemma 7.6, following the proof of Lemma 7.9 with minor adjustments. We omit the 
details. �



40 S. Hofmann, O. Tapiola / Advances in Mathematics 390 (2021) 107961
9. Proof of Proposition 1.3

Suppose that Ω ⊂ Rn+1 is an open set satisfying the corkscrew condition with d-ADR 
boundary for some d ∈ (0, n]. Let Q0 ∈ D be a fixed dyadic cube, D̃Q0 = {Qj}j ⊂ DQ0

be a collection of subcubes of Q0 and {αj}j a collection of coefficients such that

f(x) :=
∑
j

αj1Qj
,

belongs to BMO(∂Ω), the collection D̃Q0 enjoys a Carleson packing condition with pack-
ing norm CD̃Q0

=: C0 (see Definition 2.23), and supj |αj | � ‖f‖BMO. Note that f vanishes 
on ∂Ω \Q0, but we assume that f ∈ BMO, globally on ∂Ω. We denote

F0 :=
∑
j

αj1tQj
,

where tQj
is the modified Carleson tent defined in (8.1). We will show that a smooth 

version of F0 satisfies the properties in Proposition 1.3.
We start by proving the following estimate that we shall need later:

Lemma 9.1. Let Q, Q′ ∈ D be such that

�(Q) ≈ �(Q′) � dist(Q,Q′). (9.2)

Then ∣∣∣∣∣∣
∑

j:Qj⊇Q

αj −
∑

j:Qj⊇Q′

αj

∣∣∣∣∣∣ � C0‖f‖BMO,

where the implicit constant depends on the implicit constant in (9.2).

Proof. Let us fix two disjoint cubes Q, Q′ ∈ D, that satisfy (9.2). Fix a constant C large 
enough (depending only on the implicit constants in (9.2)) that Q ∪Q′ ⊂ B∗

Q := B(xQ, r), 
with r := C �(Q). Let Δ∗

Q := B∗
Q ∩ ∂Ω denote the corresponding surface ball. Since 

f ∈ BMO(∂Ω), by the ADR property we have

 

Q

|f − 〈f〉Δ∗
Q
| +

 

Q′

|f − 〈f〉Δ∗
Q
| �

 

Δ∗
Q

|f − 〈f〉Δ∗
Q
| ≤ ‖f‖BMO . (9.3)

By the uniform bound on the coefficients and the packing condition of the collection 
{Qj}j , we have that
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Q

∣∣∣∣∣∣
∑

j:Qj⊆Q

αj1Qj
(x)

∣∣∣∣∣∣ dx ≤
supj |αj |
σ(Q)

∑
j:Qj⊆Q

σ(Qj) � C0‖f‖BMO,

and similarly with Q′ in place of Q. Combining this observation with (9.3), we see that∣∣∣∣∣∣
∑

Qj :Q�Qj

αj − 〈f〉Δ∗
Q

∣∣∣∣∣∣ =
 

Q

∣∣∣∣∣∣
∑

Qj :Q�Qj

αj1Qj
(x) − 〈f〉Δ∗

Q

∣∣∣∣∣∣ dx
=
 

Q

∣∣∣∣∣∣f(x) − 〈f〉Δ∗
Q
−

∑
j:Qj⊆Q

αj1Qj
(x)

∣∣∣∣∣∣ dx � C0‖f‖BMO,

and similarly ∣∣∣∣∣∣
∑

Qj :Q′�Qj

αj − 〈f〉Δ∗
Q

∣∣∣∣∣∣ � C0‖f‖BMO.

By the triangle inequality, these last two estimates yield∣∣∣∣∣∣
∑

Qj :Q�Qj

αj −
∑

Qj :Q′�Qj

αj

∣∣∣∣∣∣ � C0‖f‖BMO. �

Lemma 9.4. We have

lim
Y→x N.T.

F0(Y ) = f(x)

for σ-a.e. x ∈ ∂Ω. Here limY→x N.T. stands for standard type non-tangential conver-
gence.

Proof. By the Carleson packing condition of D̃Q0 , and the uniform boundedness of the 
coefficients αj , it follows that 

∑
j 1Qj

(x) < ∞, and hence also | 
∑

j αj1Qj
(x)| < ∞, for 

σ-a.e. x ∈ ∂Ω. Also, 
∑

j αj1tQj
(Y ) < ∞ for each Y ∈ Ω, since Y can belong to only a 

finite number of modified tents tQj
(those for which �(Q0) ≥ �(Qj) � δ(Y )). Thus,

F̃0(x, Y ) :=
∑
j

αj1Qj
(x) −

∑
j

αj1tQj
(Y ) =

∑
j

αj

(
1Qj

(x) − 1tQj
(Y )

)
is absolutely convergent for σ-a.e. x ∈ ∂Ω, and all Y ∈ Ω. For fixed x with 

∑
j 1Qj

(x) <
∞, we split ⋃

j

Qj =
( ⋃

F1(x)

Qj

)⋃( ⋃
F2(x)

Qj

)
,
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where F1(x) := {Qj ∈ D̃Q0 : x ∈ Qj}, and F2(x) := {Qj ∈ D̃Q0 : x ∈ ∂Ω \Qj}. In turn,

F̃0(x, Y ) =
∑

Qj∈F1(x)

αj

(
1Qj

(x) − 1tQj
(Y )

)
+

∑
Qj∈F2(x)

αj

(
1Qj

(x) − 1tQj
(Y )

)

=: F̃ 1
0 (x, Y ) + F̃ 2

0 (x, Y ) .

In particular, for x ∈ ∂Ω \ Q0, we have F2(x) = D̃Q0 , and F̃ 2
0 (x, Y ) = F̃0(x, Y ), since 

Qj ⊂ Q0 for each j.
Let us then show that limY→x N.T. F̃

i
0(x, Y ) = 0, i = 1, 2, for almost every x. Suppose 

that ε > 0, Yε ∈ Γ(x) and dist(x, Yε) < ε. For those j such that x ∈ Qj , we have 
1Qj

(x) − 1tQj
(Yε) �= 0 only if Yε ∈ Γ(x) \ tQj

. Thus,

|F̃ 1
0 (x, Yε)| ≤ sup

j
|αj |

( ∑
�(Qj)≤

√
ε

1Qj
(x) 1Γ(x)\tQj

(Yε) +
∑

�(Qj)>
√
ε

1Qj
(x) 1Γ(x)\tQj

(Yε)
)

=: sup
j

|αj |
(
Iε1(x) + Iε2(x)

)
,

where supj |αj | � ‖f‖BMO by assumption. Recall that we have fixed x with 
∑

j 1Qj
(x) <

∞. Thus, Iε1(x) ≤
∑

�(Qj)≤
√
ε 1Qj

(x) is the tail of a convergent series, so that Iε1 → 0 as 
ε → 0.

Turning now to Iε2 , we first note that since Yε ∈ Γ(x) \ tQj
, there exists a cube 

Q � x, such that Yε ∈ UQ \ tQj
, with �(Q) ≈ δ(Yε) � ε for some uniformly bounded 

implicit constants. If ε is small enough, then �(Q) � �(Qj) and thus Q ⊂ Qj , since 
x ∈ Q ∩ Qj . Hence also tQ ⊂ tQj

. Consequently, Yε /∈ tQ, and therefore there exists 
another cube Q′ such that �(Q′) ≈ �(Q), Yε ∈ tQ′ , and Q′ ∩ Qj = ∅. In particular, 
dist(x, Qc

j) � ε ≤ √
ε�(Qj). We set

Σε
j := {z ∈ Qj : dist(z,Qc

j) �
√
ε�(Qj)}

for the same implicit uniform constant as above, and assume that ε is so small that this 
constant times 

√
ε is a lot smaller that 1. We then have

Iε2(x) ≤
∑
j

1Σε
j
(x) =: hε(x).

In particular, by (2.18) and the Carleson packing condition of {Qj}j we obtain

‖hε‖L1(Q0) ≤
∑

Qj⊂Q0

σ(Σε
j) � εγ

∑
Qj⊂Q0

σ(Qj) � εγσ(Q0) → 0 , as ε → 0.

Thus, there is a sequence (εk)k with εk → 0 as k → ∞, such that hεk(x) → 0 as k → ∞, 
for σ-a.e. x ∈ ∂Ω. Since hε is pointwise decreasing as ε ↘ 0, we therefore have hε(x) → 0
as ε → 0, and hence also limε→0 I

ε
2(x) = 0, for σ-a.e. x ∈ ∂Ω.
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Consider now those j such that x /∈ Qj . Then 1Qj
(x) − 1tQj

(Yε) �= 0 only if Yε ∈
Γ(x) ∩ tQj

. In particular,

|F̃ 2
0 (x, Yε)| ≤ sup

j
|αj |

( ∑
�(Qj)≤

√
ε

1∂Ω\Qj
(x) 1tQj

∩Γ(x)(Yε)

+
∑

�(Qj)>
√
ε

1∂Ω\Qj
(x) 1tQj

∩Γ(x)(Yε)
)

=: sup
j

|αj |
(
Jε

1 (x) + Jε
2 (x)

)
,

where, as before, supj |αj | � ‖f‖BMO by assumption.
For Jε

1 , we first note that Yε ∈ tQj
implies δ(Yε) ≤ dist(Yε, Qj) � �(Qj). Moreover, 

since Yε ∈ Γ(x), we have |Yε − x| ≈ δ(Yε). Consequently, by the triangle inequality, 
there exists a uniformly bounded constant c ≥ 1 such that x ∈ cQj (recall Notation 2.20
(4)). Thus, we have Jε

1 (x) ≤
∑

j:�(Qj)<
√
ε 1cQj

(x). By the Carleson packing condition of 
{Qj}j , we know that 

∑
j 1cQj

(x) < ∞ for almost every x. Therefore Jε
1(x) is bounded 

by the tail of a convergent series for almost every x, hence Jε
1(x) → 0 as ε → 0 for almost 

every x.
For Jε

2 , we can use similar but simpler arguments as with Iε2 in the previous case. 
Since Yε ∈ Γ(x) ∩ tQj

, there exists a subcube Q ⊂ Qj such that �(Q) ≈ δ(Yε) � ε and 
Yε ∈ UQ. By definition, we have Yε ∈ Γ(y) and dist(y, Yε) � δ(Yε) for every y ∈ Q. In 
particular, there exists a point y ∈ Qj such that dist(x, Qj) ≤ dist(x, y) � ε ≤ √

ε�(Qj). 
We now set

Σ̃ε
j := {z ∈ ∂Ω \Qj : dist(z,Qj) �

√
ε�(Qj)} ,

and proceed as we did for Iε2 , but now using the exterior thin boundary estimate (2.22)
in lieu of (2.18). We leave the remaining details to the reader. �
Remark 9.5. The previous lemma is true also if we define the extension F0 with respect 
to the overlapping boxes TQ or the tents tQ and in those cases the proof actually becomes 
simpler. However, in the next proof it is crucial that we use the modified Carleson tents.

Lemma 9.6. The measure |∇F0(Y )| dY (interpreted in the local BV sense: see Defini-
tion 2.6) satisfies a quantitative codimension 1 type Carleson measure estimate:

sup
r>0,x∈∂Ω

1
rn

¨

B(x,r)∩Ω

|∇F0(Y )| dY � C0‖f‖BMO

Lemma 9.6 is the last ingredient we need for the proof of Proposition 1.3. Indeed, let 
F be the regularization of F0, as in Section 3. By Lemmas 3.6 and 3.8, F ∈ C∞(Ω), and 
F satisfies the pointwise gradient bound. We also find that F converges non-tangentially 
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to f almost everywhere, and that |∇F (Y )| dY is a Carleson measure, by combining Lem-
mas 9.4 and 3.14, and Lemmas 9.6 and 3.13. This completes the proof of Proposition 1.3. 
Thus, the only thing left to do is to prove Lemma 9.6.

Proof of Lemma 9.6. Recall that, by Definition 2.6 and the fact that F0 vanishes outside 
B(x, r) ∩ Ω for r � diam(∂Ω) (in the case that diam(∂Ω) is finite), we have to prove 
that the total variation of F0 in B(x, r) ∩ Ω is bounded by C̃C0r

n‖f‖BMO for every 
x ∈ ∂Ω and every r � diam(∂Ω), where C̃ depends only on the dimension and the ADR 
constant.

It is easy to see that every ball B(x, R) ∩ Ω with x ∈ ∂Ω and R � diam(∂Ω) can be 
covered by the union of interiors of a uniformly bounded number of Carleson boxes TQ, 
with R ≈ �(Q) (see [25, p. 2353–2354] for details). Thus, it is enough to show that

¨

int(TQ)

|∇F0(Y )| dY � C0‖f‖BMO �(Q)n

for an arbitrary cube Q ∈ D. We consider first the case that Q ⊂ Q0. Fix Q ⊂ Q0 and 
a vector field 

−→
Ψ ∈ C1

0 (int(TQ)) such that ‖−→Ψ‖L∞ ≤ 1. We have

¨
F0 div−→Ψ =

∑
j

αj

¨

tQj

div−→Ψ

=
∑

j : �(Qj)<2M �(Q)

αj

¨

tQj

div
−→
Ψ +

∑
j : �(Qj)≥2M �(Q)

αj

¨

tQj

div
−→
Ψ =: J1 + J2,

where M is a sufficiently large positive integer to be chosen. The sum J1 is easy. Since 
∂tQj

∩Ω is a union of faces of Whitney cubes, and the support of −→Ψ has a strictly positive 
distance to ∂Ω, we can apply the divergence theorem to get

¨

tQj

div
−→
Ψ =

ˆ

∂tQj
∩Ω

−→
Ψ · −→N ≤ Hn(∂tQj

∩ Ω) � �(Qj)n , (9.7)

where in the last step we have used Lemma 8.4. Since TQ contains the support of −→Ψ, 
every Qj appearing in J1 is contained in a ball B∗∗

Q := B(xQ, C�(Q)), for some C chosen 
large enough depending on M , η and K. Combining the latter fact with (9.7), and using 
the Carleson packing condition for the collection {Qj} (and Lemma 2.24 in the higher 
codimension case d < n), we see that J1 � C0 �(Q)n.

The sum J2 is little trickier. Since 
−→
Ψ is compactly supported in int(TQ), we have −→

Ψ = 0 on ∂TQ. In particular, if we happen to have TQ = tQ, then TQ ∩ tQj
= TQ for 

every Qj in the sum J2, and the same divergence theorem argument as above implies 
that J2 = 0. Unfortunately, usually tQ � TQ, so we have to be more careful.
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By Lemma 8.3, there is a collection F(Q) = {Qi}Ni=1, of uniformly bounded cardinality 
N , with �(Qi′) = �(Qi) ≈η,K �(Q) for each i, i′, such that ∪itQi contains TQ. We now 
choose M = M(η, K) so that �(Qi) = 2M �(Q), for every Qi ∈ F(Q). Thus, the cubes Qj

in J2 satisfy Qi ∩ Qj ∈ {∅, Qi} for all i and j. This choice and the divergence theorem 
give

J2 =
∑
i

∑
j:Qj⊇Qi

αj

¨

tQi

div−→Ψ =
∑
i

∑
j:Qj⊇Qi

αj

ˆ

∂tQi∩Ω

−→
N · −→Ψ ,

where we have used Lemma 8.3 ii) and iii). Since supp(
−→
Ψ) ⊂ int(TQ), 

−→
Ψ(X) can be 

non-zero only if X lies in the interior of TQ. Furthermore, the modified Carleson tents 
tQi are disjoint, and their union covers TQ. Thus, for every point X on ∂tQi where 

−→Ψ(X)
is non-zero, there is a different cube Qk ∈ F(Q) such that X ∈ ∂tQk .

By Lemma 8.3, we have that ∂tQi ∩ ∂tQk ∩Ω is either empty or it consists of a union 
of faces of Whitney cubes. Let us define the set of all the pairs of indices of the cubes 
Qi by setting

P := {(i, k) : 1 ≤ i < k ≤ N}

and let us define the collection of the faces of Whitney cubes between tQi and tQk by 
setting

F(i,k) := {F : F is a face of a Whitney cube contained in ∂tQi ∩ ∂tQk}

for every (i, k) ∈ P. Notice that F(i,k) may be empty. We can now write

J2 =
∑
i

∑
j:Qj⊇Qi

αj

ˆ

∂tQi∩Ω

−→
Ni ·

−→
Ψ

=
∑

(i,k)∈P

∑
F∈F(i,k)

⎛⎝ ∑
j:Qj⊇Qi

αj

ˆ

F

−→
Ni ·

−→
Ψ +

∑
j:Qj⊇Qk

αj

ˆ

F

−→
Nk · −→Ψ

⎞⎠ ,

where 
−→
Ni is the outer unit normal of ∂tQi ∩Ω. We notice that on F the normals −→Ni and 

−→
Nk point to the opposite directions. Thus, we actually have

J2 =
∑

(i,k)∈P

∑
F∈F(i,k)

⎛⎝ ∑
j:Qj⊇Qi

αj −
∑

j:Qj⊇Qk

αj

⎞⎠ ˆ

F

−→
Ni ·

−→
Ψ .

By Lemma 9.1, we therefore have

|J2| � C0‖f‖BMO
∑ ∑

F∈F

Hn(F ).

(i,k)∈P (i,k)
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Furthermore, if F ∈ F(i,k), then by definition F ⊂ ∂tQi ∩ ∂tQk , so∑
F∈F(i,k)

Hn(F ) ≤ Hn(∂tQi ∩ Ω) � �(Q)n,

since ∂tQi ∩ Ω is upper n-ADR by Lemma 8.4, and �(Q) ≈ �(Qi). The number of the 
modified Carleson tents tQi was uniformly bounded, hence, so is the cardinality of the 
set P. Thus, J2 � C0‖f‖BMO �(Q)n. This completes the proof in the case Q ⊂ Q0.

Next, we suppose that Q �⊂ Q0. As above, let 
−→
Ψ ∈ C1

0 (int(TQ)) be a vector field such 
that ‖−→Ψ‖L∞ ≤ 1. Consider first the case that �(Q) ≥ �(Q0). We then have

∣∣∣∣¨ F0 div
−→
Ψ
∣∣∣∣ =

∣∣∣∣∣∣∣
∑
j

αj

¨

tQj

div
−→
Ψ

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
∑
j

αj

ˆ

∂tQj
∩Ω

−→
Ψ · −→N

∣∣∣∣∣∣∣
≤ sup

j
|αj |

∑
j

Hn(∂tQj
∩ Ω)

� ‖f‖BMO
∑
j

�(Qj)n

� C0‖f‖BMO �(Q0)n

� C0‖f‖BMO �(Q)n ,

where we have used the upper-ADR property of ∂tQj
, the uniform bound for |αj|, the 

packing condition for the collection D̃Q0 = {Qj}j , the fact that Q0 contains every Qj

(and Lemma 2.24 in the higher codimension case d < n).
We therefore suppose that �(Q) < �(Q0). In this case, since supp(

−→
Ψ) ⊂ TQ, and since 

tQj
⊂ tQ0 = TQ0 for each Qj , we may further assume that dist(Q, Q0) � �(Q), where 

the implicit constants depend on η and K, otherwise 
˜

F0 div
−→
Ψ vanishes. In particular, 

we may suppose that Q ⊂ P ∈ D, where �(P ) = �(Q0), and dist(P, Q0) � �(Q0). Let us 
enumerate the collection of such P (with Q0 itself excluded), as {Pm}Nm=1, where N is a 
uniformly bounded number depending only upon n, ADR, η and K. For each such Pm, 
we construct pairwise disjoint {tQ′}Q′⊂Pm

exactly as we constructed tQ′ for Q′ ⊂ Q0 in 
Section 8, and then we build disjoint {t∗Q′}Q′∈DQ0∪DP1∪...∪DPN

by setting

t∗Q′ := tQ′ , Q′ ⊂ Q0

t∗Q′ := tQ′ \ tQ0 , Q′ ⊂ P1

t∗Q′ := tQ′ \ (tQ0 ∪ tP1), Q′ ⊂ P2

...
...

t∗Q′ := tQ′ \ (tQ0 ∪ tP1 ∪ . . . ∪ tPN−1), Q′ ⊂ PN .
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We may then generalize Lemma 8.3, so that in particular, for each Q ∈ DP1 ∪ ... ∪DPN
, 

there is a collection F(Q) = {Qi}i ⊂ DQ0 ∪ DP1 ∪ ... ∪ DPN
, of uniformly bounded 

cardinality depending only on n, ADR, η and K, such that �(Qi) ≈ �(Q), with �(Qi) =
�(Qi′) for all i, i′, and TQ ⊂

⋃
i t

∗
Qi . Moreover, t∗Q′ ⊂ t∗Q′′ , provided that Q′ ⊂ Q′′, and 

t∗Q′∩t∗Q′′ = ∅ whenever Q′∩Q′′ = ∅. One may now repeat the previous argument, mutatis 
mutandis, noting that Lemma 9.1 still applies in the case that Qi ∩Q0 = ∅. We omit the 
details. �
10. Garnett’s decomposition lemma and proof of Theorem 1.2

In this last section, we present the final ingredient for the proof of Theorem 1.2: a 
straightforward generalization of Garnett’s decomposition lemma to the setting of ADR 
sets. The proof follows the original argument sketched as an exercise in Garnett [18, 
Section VI, Exercise 12 c] (and stated without proof in [41, Lemma 1.2.1]). We include 
the details here for the sake of completeness.

Lemma 10.1 (Garnett’s lemma). Let E ⊂ Rn+1 be a d-ADR set, d ≤ n. Let Q0 ∈ D, 
and consider f ∈ BMOD(E) (see Definition 2.3), which vanishes on E \ Q0 (provided 
the latter is non-empty). Then there is a collection D̃Q0 = {Qj}j ⊂ DQ0 and coefficients 
αj such that

(1) supj |αj | � ‖f‖BMOD
,

(2) f − 〈f〉Q0 = f̃ +
∑

j αj1Qj
, where f̃ ∈ L∞(E, dσ) with ‖f̃‖L∞ � ‖f‖BMOD

,
(3) D̃Q0 satisfies a Carleson packing condition with CD̃Q0

� 1.

Remark 10.2.

i) Since ‖f‖BMOD
� ‖f‖BMO, the Lemma holds of course for f ∈ BMO(E).

ii) The construction of the coefficients αj is based on the same arguments as the proof 
of the John–Nirenberg lemma [33].

Remark 10.3. If Q0 � E, then there is a cube Q1 disjoint from Q0, of the same dyadic 
generation (i.e., such that �(Q1) = �(Q0)), with common dyadic ancestor Q∗, such that 
dist(Q0, Q1) � �(Q0) = �(Q1) ≈ �(Q∗). Since f vanishes outside of Q0, we have that 
f ≡ 0 on Q1, hence

|〈f〉Q0 | = |〈f〉Q0 − 〈f〉Q1 | � ‖f‖BMOD
,

where the last inequality is a well-known fact about dyadic BMO. Consequently, in this 
case we may absorb 〈f〉Q0 into f̃ , so that item (2) in Lemma 10.1 becomes

(2a) f = f̃ +
∑

j αj1Qj
, where f̃ ∈ L∞(E, dσ), with ‖f̃‖L∞ � ‖f‖BMOD

.
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Observe also that in this case f̃ vanishes on E \Q0.

Proof of Lemma 10.1. We build the collection D̃Q0 by using a stopping time argument. 
Set F0 = {Q0}. We have

〈|f − 〈f〉Q0 |〉Q0 ≤ ‖f‖BMOD
.

Let us subdivide Q0 and stop when 〈|f − 〈f〉Q0 |〉Q > 2‖f‖BMOD
. We let F1 = {Q(1)

j }j
be the collection of the maximal stopping cubes. By definition,

〈|f − 〈f〉
Q

(1)
j
|〉
Q

(1)
j

≤ ‖f‖BMOD
, ∀Q(1)

j ∈ F1 .

For each Q(1)
j , we repeat the process with the modified stopping condition

〈|f − 〈f〉
Q

(1)
j
|〉Q > 2‖f‖BMOD

.

We let F2 = {Q(2)
j }j be the collection of maximal stopping cubes. Again by definition,

〈|f − 〈f〉
Q

(2)
j
|〉
Q

(2)
j

≤ ‖f‖BMOD
.

We continue in this way, and denote the collection of cubes of level i by Fi. We now 
set D̃Q0 :=

⋃
i Fi, and define

α
(i)
j := 〈f − 〈f〉

P
(i−1)
k(j)

〉
Q

(i)
j

= 〈f〉
Q

(i)
j

− 〈f〉
P

(i−1)
k(j)

,

where for i ≥ 1, P (i−1)
k(j) is the unique cube in Fi−1 such that Q(i)

j ⊂ P
(i−1)
k(j) . We prove 

the properties (1) – (3) in order.

(1) Property (1) follows easily from the ADR property and the stopping criterion:

|α(i)
j | =

∣∣∣∣∣∣∣∣
 

Q
(i)
j

f − 〈f〉
P

(i−1)
k(j)

dσ

∣∣∣∣∣∣∣∣ ≤
 

Q
(i)
j

∣∣∣∣f − 〈f〉
P

(i−1)
k(j)

∣∣∣∣ dσ
�

 

Q̃
(i)
j

∣∣∣∣f − 〈f〉
P

(i−1)
k(j)

∣∣∣∣ dσ � ‖f‖BMOD
,

where Q̃(i)
j is the dyadic parent of Q(i)

j .

(2) Observe that f − 〈f〉Q0 = −〈f〉Q0 in E \Q0, if the latter is non-empty, and in this 
case, by Remark 10.3 we may simply set f̃ = −〈f〉Q0 on E \Q0. It is therefore enough 
to prove the decomposition (2) on Q0.
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For x ∈ Q0, we define a counting function

Nf (x) := #
{
i ≥ 1 : ∃Q(i)

j ∈ Fi with x ∈ Q
(i)
j

}
.

If Nf (x) < ∞, we set Nx := Nf (x), and note that in this case there is a cube Qmin(x) ∈
FNx

such that x ∈ Qmin(x), and x /∈ Q
(i)
j for all i > Nx and every j. Also, for every 

i ≤ Nx, there now exists a cube Q(i)
j(i,x) ∈ Fi such that x ∈ Q

(i)
j(i,x). Since the cubes in 

each Fi are disjoint, by the definition of the cubes P (i−1)
k(j) , we have

α
(i)
j(i,x) = 〈f〉

Q
(i)
j(i,x)

− 〈f〉
P

(i−1)
k(j(i,x))

= 〈f〉
Q

(i)
j(i,x)

− 〈f〉
Q

(i−1)
j(i−1,x)

.

In particular, the sum 
∑Nx

i=1 α
(i)
j(i,x) is telescoping and we get

∑
i,j

α
(i)
j 1

Q
(i)
j

(x) =
Nx∑
i=1

α
(i)
j(i,x) = −〈f〉Q0 + 〈f〉Qmin(x) .

On the other hand, if Nf (x) = ∞, then the analogous telescoping sum becomes

∑
i,j

α
(i)
j 1

Q
(i)
j

(x) =
∞∑
i=1

α
(i)
j(i,x) = −〈f〉Q0 + f(x) ,

by Lebesgue’s differentiation theorem, where the latter identity is valid for σ-a.e. x such 
that Nf (x) is infinite. Setting

f̃(x) :=
{

f(x) − 〈f〉Qmin(x) , if Nf (x) < ∞

0 , if Nf (x) = ∞
,

we obtain the claimed decomposition in (2). It remains to check that with this definition, 
we have ‖f̃‖L∞(E,dσ) � ‖f‖BMOD

. To this end, observe that in order to have Nf (x) < ∞, 
we must have that for every dyadic cube Q with x ∈ Q � Qmin(x),

〈∣∣f − 〈f〉Qmin(x)
∣∣〉

Q
≤ 2‖f‖BMOD

,

otherwise, there would have been another stopping cube containing x, and strictly 
contained in Qmin(x), which contradicts the definition of Qmin(x). By Lebesgue’s dif-
ferentiation theorem, we therefore find that |f̃(x)| ≤ 2‖f‖BMOD

for σ-a.e. x such that 
Nf (x) < ∞, so that (2) holds.

(3) By a standard limiting argument, we may assume that the collection D̃Q0 is finite. 
We first notice that by the stopping conditions we have
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σ(Q(i)
j ) ≤ 1

2‖f‖BMOD

ˆ

Q
(i)
j

|f − 〈f〉
P

(i−1)
k(j)

| dσ. (10.4)

Let Q ⊆ Q0 be fixed. We set

I :=
∑

R∈D̃Q0 ,R⊆Q

σ(R) = I1 + I2,

where I1 is the sum over those Q(i)
j such that P (i−1)

k(j) ⊂ Q and I2 is the sum over the rest 
of the relevant cubes. The cubes in the sum I2 are disjoint and thus, I2 ≤ σ(Q). Let i(Q)
be the smallest integer such that Fi(Q) contains at least one cube in the sum I1; thus, 
I2 is the sum over the cubes in Fi(Q)−1 that are contained in Q. With this notation, we 
may write

I =
∑

i≥i(Q)−1

∑
R∈Fi,R⊂Q

σ(R) =
∑

i≥i(Q)

∑
R∈Fi,R⊂Q

σ(R) + I2 = I1 + I2.

We have

I1 =
∑

i≥i(Q)

∑
j:Q(i)

j ∈Fi,Q
(i)
j ⊂Q

σ(Q(i)
j )

(10.4)
≤ 1

2‖f‖BMOD

∑
i≥i(Q)

∑
j:Q(i)

j ∈Fi,Q
(i)
j ⊂Q

ˆ

Q
(i)
j

|f − 〈f〉
P

(i−1)
k(j)

| dσ

(A)= 1
2‖f‖BMOD

∑
i≥i(Q)

∑
j:Q(i−1)

j ∈Fi−1,Q
(i−1)
j ⊂Q

∑
l:Q(i)

l ∈Fi,Q
(i)
l ⊂Q

(i−1)
j

ˆ

Q
(i)
l

|f − 〈f〉
Q

(i−1)
j

| dσ

(B)
≤ 1

2‖f‖BMOD

∑
i≥i(Q)

∑
j:Q(i−1)

j ∈Fi−1,Q
(i−1)
j ⊂Q

ˆ

Q
(i−1)
j

|f − 〈f〉
Q

(i−1)
j

| dσ

= 1
2‖f‖BMOD

∑
i≥i(Q)

∑
j:Q(i−1)

j ∈Fi−1,Q
(i−1)
j ⊂Q

σ(Q(i−1)
j )

〈
|f − 〈f〉

Q
(i−1)
j

|
〉
Q

(i−1)
j

(C)
≤ 1

2
∑

i≥i(Q)

∑
j:Q(i−1)

j ∈Fi−1,Q
(i−1)
j ⊂Q

σ(Q(i−1)
j )

≤ 1
2I,

where we used in (A) the observation that with this notation P (i−1)
k(l) = Q

(i−1)
j , in (B) 

the fact that the cubes Q(i)
l(j) ∈ Fi are disjoint, and in (C) the definition of the BMOD

norm. In particular,
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I = I1 + I2 ≤ 1
2I + σ(Q)

and thus I ≤ 2σ(Q). This completes the proof. �
Theorem 1.2 follows now easily from the other results we have proven:

Proof of Theorem 1.2. Suppose that f is a compactly supported function in BMO(∂Ω). 
Then, by Theorem 2.16, there is a choice of dyadic system D such that there exists a 
cube Q0 ∈ D with supp f ⊂ Q0. By Lemma 10.1, there exists now a decomposition 
f = f̃ + f0, where

(1) f̃ is bounded σ-a.e., and ‖f̃‖L∞(∂Ω) � ‖f‖BMO(∂Ω), and
(2) f0(x) =

∑
Q∈D̃Q0

αQ1Q(x) for a collection D̃Q0 ⊂ DQ0 and coefficients αQ such that
• CD̃Q0

� 1, and
• sup

Q∈D̃Q0
|αQ| � ‖f‖BMO(∂Ω).

By Theorem 1.1, we know that there exists a function Φ ∈ C∞(Ω) such that Φ converges 
to f̃ non-tangentially almost everywhere, the measure μ1 := |∇Φ(Y )| dY is a Carleson 
measure and Cμ1 � ‖f̃‖L∞(∂Ω) � ‖f‖BMO(∂Ω).

By the decomposition f = f̃ + f0, we know that f0 is a BMO function as it is a sum 
of two BMO functions. Thus, by Proposition 1.3, there exists a function F ∈ C∞(Ω)
such that F converges to f0 non-tangentially almost everywhere, the measure μ2 :=
|∇F (Y )| dY is a Carleson measure and

Cμ2 � CD̃Q0
‖f0‖BMO(∂Ω) � ‖f̃‖BMO(∂Ω) + ‖f‖BMO(∂Ω)

� ‖f̃‖L∞(∂Ω) + ‖f‖BMO(∂Ω) � ‖f‖BMO(∂Ω).

Thus, we can set V := Φ + F . �
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