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Abstract
The mean lifetime is an important characteristic of par-
ticles to be identified in nuclear physics. State-of-the-art 
particle detectors can identify the arrivals of single ra-
dioactive nuclei as well as their subsequent radioactive 
decays (departures). Challenges arise when the arriv-
als and departures are unmatched and the departures 
are only partially observed. An inefficient solution is to 
run experiments where the arrival rate is set very low 
to allow for the matching of arrivals and departures. 
We propose an estimation method that works for a 
wide range of arrival rates. The method combines an 
initial estimator and a numerical bias correction tech-
nique. Simulations and examples based on data on the 
alpha decays of Lutetium isotope 155 demonstrate that 
the method produces unbiased estimates regardless of 
the arrival rate. As a practical benefit, the estimation 
method enables the use of all data collected in the parti-
cle detector, which will lead to more accurate estimates 
and, in some cases, to shorter experiments.
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1  |   INTRODUCTION

Radioactive decay is the textbook example of a Poisson process in time (Cox & Lewis, 1966). The 
statistical model can be derived directly from the laws of physics: the decay events are indepen-
dent given the decay rate and the lifetimes follow an exponential distribution with a mean equal 
to the inverse of the decay rate. The mean lifetime is an important characteristic of particles 
to be identified in nuclear physics since it is sensitive to the structure of underlying quantum 
mechanical states. For example, a large change in nuclear structure from the initial to the final 
state causes a radioactive alpha decay longer than predicted by a simple model (Geiger & Nuttall, 
1911). The estimation of the mean lifetime under different experimental setups is a recognized 
statistical problem in particle physics (Lyons, 2008).

In many modern experiments, radioactive species are produced continuously and decays 
are measured simultaneously. This is enabled by state-of-the-art particle detectors and data-
acquisition systems which can identify the arrivals of single radioactive nuclei to a detector as 
well as their subsequent radioactive decays (Lazarus et al., 2001; Page et al., 2003). The arrivals 
and the decays, called departures for generality, are unmatched meaning that there is no physical 
way to link an arrival and a departure to each other. Only if the arrival rate is low and the mean 
lifetime is short, we are able to say with a high probability that a certain arrival and departure 
form a pair because only one departure has been observed between two consecutive arrivals.

Challenges arise when some arrivals or departures are mislabelled or partially observed. In 
this paper, we focus on experiments where it is not possible to catch all departures due to the 
structure of the particle detector. For example, the alpha radioactive nuclei created in fusion 
reactions and implanted to a detector are typically very close to the surface of the detector which 
implies that about half of departures are not observed due to the escape of the alpha particle from 
the detector. Combined with the lack of matching, we are left with an unequal number of arrival 
and departure times that cannot in general be linked to each other. Estimating the mean lifetime 
from this kind of data is the problem addressed in this paper.

Experimenters have commonly preferred setups where the arrival rate is low compared with 
the decay rate because then matching an arrival to a departure before the next arrival causes 
only a negligible bias (e.g. Herzáň et al., 2015, figure 12). However, this approach may lead to 
inefficient use of the measurement capacity. The matching is not possible for a high arrival rate 
but on the other hand the number of events per second is high. The motivation of this paper is to 
propose a method, which can also be used with high arrival rate in the case of unmatched arrivals 
and departures.

First we show that the matching of arrivals and departures is not necessary for the estimation 
of the mean lifetime. Next, we present a simple estimator for the case where all arrivals and 
departures are observed but not matched. When the departures are only partially observed, we 
use the same estimator after the thinning of the arrivals and apply a numeric bias correction 
technique. Simulation experiments demonstrate that the proposed method produces unbiased 
estimates regardless of the arrival rate.

The paper is organized as follows. In Section 2 the details of measurement device and data 
collection procedure are explained. In Section 3 it is shown that the matching of arrivals and 
departures is not needed in the estimation. Section 4 describes the proposed methodology for 
partially observed arrivals and departures. In Section 5, the implementation of the proposed esti-
mation method is described. In Section 6, the properties of the proposed estimator are studied in 
simulations. In Section 7, the method is applied to 155Lu (Lutetium isotope 155) alpha decay data. 
The practical implications and future directions are discussed in Section 8.
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2  |   DATA

2.1  |  Technical description of the physical data collection

The data were collected in the Accelerator laboratory of University of Jyväskylä in an experiment 
aiming to measure charged particle radioactivity of 160Os produced in a fusion evaporation reac-
tion (unpublished data). A beam of 304 MeV 58Ni from the K130 cyclotron (Liukkonen, 1993) 
was used to bombard a self-supporting 106Cd target of thickness around 1 mg/cm2. The average 
beam intensity of 3 pnA (19 × 109 particles/s) was used over 14.6 h. The radioactive 155Lu was one 
of the products of the fusion evaporation reaction.

Fusion evaporation residues (recoils, called arrivals in this paper) were separated from the un-
reacted primary beam with the recoil-mass spectrometer called MARA (Sarén, 2011) employing 
electric and magnetic fields. At the focal plane of MARA the recoils are detected first with a gas-
eous multi-wire proportional counter (MWPC) transmission detector and then implanted into a 
double-sided silicon strip detector (DSSD) consisting of 192 × 72 strips in horizontal and vertical 
directions respectively. The full size of the DSSD is 128 × 48 mm2 (width × height). Ionizing 
particle causes a local simultaneous signal into both horizontal and vertical strips of the DSSD 
and therefore the event can be assigned to a virtual pixel. The transmission position in horizontal 
and vertical directions of a recoil flying through the MWPC detector is obtained with time to 
amplitude converter (TAC) modules utilizing the time differences between charge signals from 
opposite ends of the wireplanes read through delay lines. The directions of the decay products 
(departures) of the implanted recoils (arrivals) are random and the DSSD covers half of the pos-
sible directions of decays, which leads to the detection rate of 50%. Figure 1 presents a schematic 
illustration of the experimental setup.

All detector events in MWPC and DSSD are recorded by a self-triggering data-acquisition 
system employing analogue to digital converter (ADC) modules and field-programmable gate 
array (FPGA) chips. The kinetic energy of a recoil implanted into the DSSD and the radioactive 
decay of a recoil implanted earlier are calculated in the FPGA chips running a moving window 
deconvolution algorithm for the voltage signal generated by charge integrating preamplifiers.

Events observed in the DSSD are classified into three categories: recoils (arrivals), decays (de-
partures) and background. A DSSD event is a recoil if it was also observed in the MWPC detector 
and the DSSD energy and the time of flight between MWPC and DSSD is inside a two-dimensional 
gate and both horizontal and vertical positions were recorded successfully at MWPC. Due to the 
last condition, the probability to classify a recoil as background was 8.7%. A DSSD event without 
any signal at MWPC and having an energy between 500 keV and 10,000 keV is classified as a 
decay event which can be in this reaction an alpha, beta or proton radioactivity. All the rest of 
events are classified as background.

It is possible to continue measuring decays even after the fusion evaporation reaction has 
ended. This means that right censoring due to the end of the follow-up can be avoided.

2.2  |  Dataset 1

Dataset 1 is a subset of the full dataset consisting of 155Lu decay events related to the alpha 
energy of 7390  keV. The subset was deliberately chosen so that the arrivals and departures 
can be matched with a high probability. A record containing the time of an 155Lu alpha decay, 
the time of the previous recoil in the same DSSD pixel and the horizontal and vertical strip 
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number was written into a file if the time between these events was less than 1.5 s and there 
were no other decay events in between. The arrivals misclassified as background were ignored. 
The dataset contains 16,320 matched arrival–departure pairs and lifetimes obtained as the dif-
ferences of the departures and the arrivals. Lifetimes shorter than approximately 0.008 ms are 

F I G U R E  1   A schematic view of the production, separation and detection of products of a nuclear reaction 
when an in-flight recoil separator is used. (a) An almost continuous beam of primary particles from an 
accelerator hits a target foil. The electromagnetic recoil separator selects the products and transports them to 
a detector setup. (b) A typical focal plane detector setup consists of a transmission detector (typically multi-
wire proportional counter) and a Double-sided silicon strip detector (DSSD). The products are implanted into 
the surface of the DSSD and the position of the implantation is registered. The arrivals referred in the text 
form a subset of these events. (c) A radioactive decay of an implanted product can be observed later and can 
be correlated spatially and temporally to the implantation. Four different decay events are illustrated: (i) a full 
energy alpha decay takes place in a pixel defined by orthogonal strips of the DSSD, (ii) decay occurs at the pixel 
boundary and part of the decay energy might be lost, (iii) an alpha particle escaping from the surface of the 
DSSD and only part of its energy is registered and (iv) the product undergoes a beta decay and the beta escapes 
through the detector (a beta particle has much higher range in silicon compared to an alpha particle). The 
departures in the text are of the case (i) events, the cases (ii) and (iii) describe two different mechanism to miss a 
departure and the case (iv) illustrates a different decay mode creating background events

(a)

(b)

(c)
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not detectable due to technical limitations, that is, the data are left truncated at 0.008 ms. The 
time of arrivals varies from 0 ms to 52,577,456 ms (about 14.6 h) implying that the arrival rate 
is 0.000310 events/ms.

The lifetimes contain some outliers, that is, extremely long lifetimes, which are assumed to be 
not real. We choose 80 ms to be the cut-point on the basis of a visual inspection and remove 251 
lifetimes being longer than the cut-point. Thus, the data are truncated to the interval [0.008 ms, 
80 ms]. After the truncation, the number of arrivals is 16,069 and the arrival rate is 0.000306 
events/ms. These 16,069 records are called Dataset 1.

The lifetimes are modelled by the exponential distribution. This assumption is supported by 
the data even after the truncation. The mean of the lifetimes, 3.760 ms, is very close to their stan-
dard deviation 3.798 ms and the form of the empirical distribution closely resembles the expo-
nential distribution (Figure 2). For the exponential distribution with the mean lifetime 3.760 ms, 
the probability mass outside the range [0.008 ms, 80 ms] is only about 0.0021. Thus, it seems 
justifiable to treat the lifetimes as independent observations from an exponential distribution.

2.3  |  Datasets 2, 3 and 4

Datasets 2, 3 and 4 are derived from Dataset 1 for illustrative purposes by breaking the match-
ing, modifying the arrival rate and removing a part of the departures. This allows us to compare 
the estimates obtained under different conditions to those obtained from Dataset 1. The poten-
tial misclassification of arrivals was not considered because the focus was in partially observed 
departures.

F I G U R E  2   The quantile–quantile plot of Dataset 1 and the fitted exponential distribution contrasted with 
Dataset 3C. The pseudo-lifetimes for Dataset 3C are obtained applying the thinning and matching explained in 
Section 5.2
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Starting with arrival times a1, …, a16069 and the corresponding lifetimes x1, …, x16069 of Dataset 
1, we derive modified arrival and departure times as follows

where c is a positive scaling constant. Dataset 2 is a densified, unmatched variant of Dataset 1. 
The arrival times are divided by c = 1000 and the departure times are recalculated by adding 
the lifetimes to the modified arrival times. When the lifetimes are removed, Dataset 2 contains 
only arrival and departure time instances without any direct information on the matching or 
lifetimes.

Datasets 3A–3F are derived from Dataset 1 by first randomly removing each departure with 
probability 0.5 and then applying densification. These datasets contain 16,069 arrivals and 8042 
unmatched departures. The scaling constants c = 10, c = 100, c = 1000, c = 10,000, c = 100,000 
and c = 106 are used to densify Datasets 3A, 3B, 3C, 3D, 3E and 3F respectively. The main goal is 
to estimate the mean lifetime from Datasets 3A–3F.

Datasets 4A–4F are derived in a similar way as Datasets 3A–3F but each departure is removed 
with probability 0.75 instead of 0.5. Datasets 4A–4F are used to demonstrate that the proposed es-
timation method works even if the detection probability is lower than in the real-life experiment. 
Altogether we have 14 datasets for the analysis.

3  |   ESTIMATION METHODS FOR COMPLETE DATA

3.1  |  Classical setup with matched pairs

The process of interest is defined by two independent Poisson processes in time: an arrival pro-
cess with arrival rate λa, and a lifetime process with decay rate λ and mean lifetime μ = λ−1. We 
observe arrival times a1 < … < an and the corresponding departure times d1 < … < dn. As the 
arrivals and departures are matched, we can calculate the lifetimes directly as xi = di − ai. The 
lifetimes x1, …, xn are independent observations from an exponential distribution with the mean 
lifetime μ. This is the setup for Dataset 1.

As there are no censored observations, the likelihood function is given by:

The maximum likelihood estimator for μ is then

with the standard error

a�i =ai∕c

d�i =a
�
i +xi,

(1)L(�) =

n∏

i= 1

1

�
e−xi∕�.

(2)�̂ =
1

n

n∑

i= 1

xi

(3)SE(�̂) =
�̂
√
n
.
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3.2  |  Unmatched arrivals and departures

Now, let us assume that all arrival and departure times are observed, but the information on 
the matching between arrivals and departures is missing. This is the setup for Dataset 2. In 
practice, the experiment has a certain activity period when all arrivals are observed. After 
this period, new arrivals do not occur but departures can still be observed. The follow-up 
period is the activity period extended with a sufficiently long post-activity period to catch all 
departures with a high probability. The activity time refers to the length of the activity period 
and the follow-up time to the length of the follow-up period.

The lack of matching may appear as a serious problem at first. Attempts to enumerate all 
possible ways to match arrivals and departures quickly fail because of combinatorial explosion. 
Combinatorics can be completely avoided writing estimator (2) in the form

where only the sum of the departure times and the sum of the arrival times are needed to estimate 
μ. We see that the matching does not give any additional information on μ and the maximum like-
lihood estimator is the same as in the classical setup. The standard error of estimator (4) is given by 
Equation (3).

4  |   ESTIMATION METHODS FOR INCOMPLETE DATA

In the more complex case present in Datasets 3A–3F, arrivals and departures are unmatched 
and on average half of the departures are not observed. This situation is illustrated in Figure 
3. The observed data consist of n arrival times a1, …, an and m < n unmatched departure 
times d1, …, dm.

A straightforward extension of estimator (4) for data with partially observed departures is

where the constant 2 is used to compensate for the unobserved departures. The crucial difference 
compared with estimator (4) is that a half of the arrival–departure pairs are replaced by randomly 
chosen arrivals and departures. It follows that the variance of Equation (5) is larger than the vari-
ance of Equation (4) because the variance of dj − ai, j ≠ i is larger than the variance of di − ai. In 
the Appendix we show that the variance of estimator (5) increases as a function of n and thus the 
estimator is not usable.

The likelihood inference requires that the arrivals are thinned, that is, some arrivals are re-
moved so that the number of remaining arrivals equals the number of observed departures m. 
The thinning is defined by selection indicators s1, …, sn for which si = 0 if arrival ai is removed 
and si = 1 otherwise. Here, thinning s = (s1, …, sn) is called compatible with arrivals a1, …, an 
and departures d1, …, dm if

(4)�̂ =
1

n

n∑

i= 1

xi =
1

n

n∑

i= 1

(di − ai) =
1

n

(
n∑

i= 1

di −

n∑

i= 1

ai

)
,

(5)1

n

(
m∑

j= 1

2dj −

n∑

i= 1

ai

)
,
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and for any t it holds

that is, after the thinning, the cumulative number of departures never exceeds the cumulative num-
ber of arrivals. A compatible thinning guarantees that it is possible to match the arrivals and the 
departures but does not define the matching uniquely.

Denoting the arrivals by a = (a1,…, an), the observed departures by d = (d1, …, dm), and the 
set of compatible thinnings by (a, d), we can write the likelihood of μ for fixed a in the form

n∑

i= 1

si =m

n∑

i= 1

siI(ai < t) ≥

m∑

j= 1

I(dj < t),

L(�) = p(d |�, a) =
∑

s∈(a, d)

p(d, s |�, a) =
∑

s∈(a, d)

p(d |�, a, s)p(s |�, a).

F I G U R E  3   An illustration of the process of unmatched arrivals and departures when on average half of the 
departures are missing. Arrows pointing upward represent arrivals and arrows pointing downward represent 
departures. The activity period ends somewhere between a6 and d3 and the follow-up period ends a long time 
after the last observed departure d4. (a) The original data containing six arrivals and four departures. (b) The 
data after the division into blocks and the thinning of the arrivals. The vertical dashed lines show the cut-points 
between the blocks

(a)

(b)
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The challenge for the maximum likelihood estimation is the number of compatible thinnings that 
grows exponentially as a function of the sample size. For instance, in the example of Figure 3(a) 
with four departures and six arrivals, there are nine compatible thinnings and with additional new 
events a7, a8 and d5, the number would increase to 23. It seems difficult to draw a random thinning 
from (a, d) which would be needed in Monte Carlo approximations of the likelihood. Rejection 
sampling where random binary sequences are checked for the compatibility fails in practice because 
the number of possible sequences (choose m out of n) grows even faster than the number of com-
patible thinnings leading to very low acceptance rates in the sampling. One could consider various 
sequential sampling techniques where the sampling proceeds iteratively until a compatible thinning 
is obtained but these approaches seem to lead to incorrect probabilities of compatible thinnings.

Since the maximum likelihood estimator appears to be computationally intractable, we 
shift the focus to estimators that are based on a certain compatible thinning. When the thin-
ning is fixed, we may use formula (4) to obtain the maximum likelihood estimate given the 
thinning. This leads to estimators that are in general biased for μ but may be useful as initial 
estimators.

A particular estimator of interest, ̂�0, is a minimum contrast estimator defined as the solution 
to the minimization problem

where thinning s1, …, sn is required to be compatible with a1, …, an and d1, …, dm. As the density 
function of the exponential distribution decreases as a function of x for any μ, the likelihood is max-
imized when the lifetimes are as short as possible. This is achieved when the arrival times selected 
in the thinning are as large as possible. Given the maximizing thinning ŝ1, …, ŝn, the estimate �̂0 is 
obtained applying estimator (4) in a modified form

The compatibility requirement for ŝ1, …, ŝn makes estimator (7) fundamentally different from esti-
mator (5) in two aspects: estimator (7) is always non-negative, and its variance does not increase as a 
function of the activity time because each departure is implicitly matched with a nearby arrival from 
the same block. The obtained initial estimator �̂0 underestimates μ because the departures leading 
to the shortest possible lifetimes are chosen in the thinning.

In Section 5, we present an estimation procedure that starts with estimate �̂0 and corrects 
the bias by means of simulation. We generate datasets with different candidate values of pa-
rameter μ and calculate the initial estimate �̂0(�) using formula (7). The goal is to find a value 
of μ that produces an initial estimate close to initial estimate �̂0 obtained from the observed 
data. This specifies an implicit statistical model (Diggle & Gratton, 1984; Hoel & Mitchell, 1971) 
for the data. To formally justify this approach, we should prove that E[�𝜇0(𝜇(1))] < E[�𝜇0(𝜇

(2))] 
whenever μ(1) < μ(2) and the arrival rate and the number of arrivals are fixed. It seems hard to 
show this analytically because the impact of thinning is challenging to evaluate. Therefore, we 
rely on simulations when studying the properties of the initial estimator and its bias-corrected 
version.

(6)(�̂0, ŝ1, …, ŝn) = arg min
�,s1,…,sn

− L(�, s1, …, sn |a1, …, an, d1, …, dm),

(7)�̂0 =
1

m

(
m∑

j= 1

dj −

n∑

i= 1

ŝiai

)
.
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5  |   IMPLEMENTATION OF THE PROPOSED 
ESTIMATION METHOD

Our estimation procedure consists of five steps: (1) dividing the timeline into blocks (Section 
5.1), (2) thinning the arrivals block-wise (Section 5.2), (3) applying estimator (7) (Section 5.2), 
(4) using noisy binary search for bias (Section 5.3) and (5) estimating the standard error by using 
bootstrap techniques (Section 5.4). The R code for the estimation procedure is available for 
download at https://github.com/JuhaK​arvan​en/radio​active.

5.1  |  Formation of blocks

As the first step of the proposed estimation procedure, we divide the timeline into blocks on 
the basis of observed arrival and departure times. We work with a sequence v1, …, vn+m of 
events where either vi = a (arrival) or vi = d (departure). The number of arrivals is greater 
than or equal to the number of departures. The sequence must start with an arrival and end 
with a departure. The blocks are constructed processing the events sequentially from the end 
vn+m to the beginning v1. The numbers of arrivals and departures in the current block are 
tracked cumulatively during the processing. When the following three conditions are met in 
this process, a cut-point between the current block and the next block is set between events 
vi−1 and vi:

(a)	 event vi is an arrival,
(b)	 event vi−1 is a departure, and
(c)		 �the current number of arrivals in the block that is currently constructed is greater than 

the current number of departures.

The next block starts with departure vi−1 and the counters for the cumulative numbers of arrivals 
and departures are set to zero.

Let us consider an example sequence of ten events

shown in Figure 3. When events v5 = d2 and v6 = a4 are processed, we have a situation where event 
v6 is an arrival, event v5 is a departure, the number of arrivals is 3 and the number of departures is 2. 
Thus all three conditions are met and the cut-point is set between events v5 and v6. Proceeding in the 
same manner we end up having three blocks, which are (a1, d1), (a2, a3, d2) and (a4, a5, a6, d3, d4).

5.2  |  Thinning of arrivals in blocks

In the second step, some of the arrivals are removed to restore the balance between arrivals and 
departures. We have chosen to use the thinning that provides the solution to the minimiza-
tion problem (6). If a block has A arrivals and D departures, the A−D smallest arrival times are 
removed. In the example of Figure 3, the blocks after thinning would be (a1, d1),  (a3, d2) and 
(a5, a6, d3, d4). From the formed blocks, the initial estimate (7) is calculated.

(v1, …, v10) = (a1, d1, a2, a3, d2, a4, a5, a6, d3, d4)

https://github.com/JuhaKarvanen/radioactive
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The division into blocks is needed to ensure the compatibility of the thinning. Sometimes 
‘wrong’ arrivals are removed in the thinning, which causes bias in the initial estimate �̂0. For 
instance, in the example shown in Figure 3, arrivals a2 and a4 are removed, even if they could be 
the ones that match with the observed departures.

A referee proposed an alternative approach that will lead to the same initial estimate as the 
formation of blocks and the thinning described above. In this approach, departures are processed 
starting from the end and each departure time dj is matched with the largest possible arrival time 
ai, ai < dj, that has not been matched yet. After matching estimator (2) can be used to obtain the 
same initial estimate �̂0 as described above. This matching is illustrated in Figure 2 where we see 
that the distribution of the obtained pseudo-lifetimes clearly differs from the exponential distri-
bution fitted to the original data. Conceptually, we prefer the block-based definition because it 
does not require explicit matching and keeps the formation of the blocks and the thinning sepa-
rate from each other.

5.3  |  Bias correction

In order to find an unbiased estimator for the mean lifetime μ we apply an implicit statistical 
model and simulation based estimation. The initial estimate �̂0 obtained from the thinned data 
by estimator (7) provides a starting point. We simulate data with different values of μ, apply 
thinning as described above, and estimate the mean lifetime with estimator (7). We aim to find 
a value of μ that produces an estimate sufficiently close to �̂0. Binary search is applicable for this 
task because the parameter of interest is one-dimensional. However, we must apply noisy binary 
search (Ben-Or & Hassidim, 2008; Karp & Kleinberg, 2007; Rivest et al., 1980) that takes sam-
pling variation into account. In practice, this means that several datasets must be generated to 
ensure that the mean of the obtained estimates is close to �̂0 with a high confidence. The detailed 
procedure for the bias correction is given in Algorithm 1 whose steps and notations are described 
below.

In Algorithm 1, we use the following notations. The candidate for μ, denoted by M, can 
have values in the interval (L, U) initialized as (0, ∞). Variable M0 stands for the average of 
estimates (7) calculated (line 8) from samples simulated with an exponential distribution 
with mean M (lines 5–7). For each M, we simulate at least Kmin samples (line 4), and at 
maximum Kmax samples (line 13). The distance between M0 and the estimated value �̂0 is 
denoted by D. The goal is to find the value of M that gives the smallest D. The value M is 
accepted and returned (line 10) if |D | ≤ ��̂0, where δ is the tolerance given by the user. The 
maximum number of steps, that is, the maximum number of M candidates considered, is 
Jmax (line 22).

If the candidate M is not accepted on the basis of Kmin samples, the confidence interval 
(DL, DU) for E[D] is calculated (line 11) D ± z1−α/2 SE(M0), where SE(M0) is the standard error 
of M0 estimated from the Kmin samples and z1−α/2 is the 1 − α/2 quantile of the standard normal 
distribution. If the confidence interval includes zero, the loop (line 13) continues simulating 
the samples with the current M until M is accepted (line 19) or Kmax is achieved (line 13) or the 
recalculated confidence interval does not include zero (line 13).

In the latter two cases, if the number of M candidates Jmax is not reached (line 22), the lower 
or upper limit of M is first updated (lines 24–25 or lines 27–28). The new value for M is then 
calculated in two ways depending on the value of U. If U < ∞ (lines 26 and 29) or if U is ∞ and 
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D > 0 (lines 23 and 25), the value of M is the average of L and U. If U is ∞ and D < 0 (line 24), the 
current M is doubled.

Choosing large Kmin, Kmax and Jmax and small tolerance δ leads to more precise estimates but 
requires more computational time. This trade-off has practical importance in simulation experi-
ments where the analysis is repeated thousands of times.

5.4  |  Parametric bootstrap

We apply parametric bootstrap (Efron & Tibshirani, 1993) to obtain the standard error and con-
fidence intervals for the bias-corrected estimate of the parameter μ. When simulating bootstrap 
samples, the lifetimes are generated from the exponential distribution using the bias-corrected 
estimate as the mean lifetime. The arrival times are fixed to the arrival times in the data. The 
departure times are obtained by adding the lifetimes to the arrival times and each departure is 
removed with probability 0.5. For each bootstrap sample, the proposed estimation method with 
four steps (forming blocks, thinning, estimating initial value and using a bias correction) is ap-
plied in order to obtain the bias-corrected estimate. The standard error is estimated by the stand-
ard deviation of the bias-corrected estimates and the confidence intervals are calculated with the 
percentile method.

6  |   SIMULATION EXPERIMENTS

Next we study the properties of the proposed estimator in simulation experiments. In general, 
simulations may not lead to sufficient understanding on the performance of a new method 
because it is difficult to ensure that all relevant setups are considered. Here, simulations pro-
vide relatively strong evidence because all setups can be essentially characterized with only 
two quantities: the number of events which depends linearly on the activity time, and the 
ratio of the arrival rate λa and the decay rate λ. A wide range of values for these quantities 
can be easily covered in simulations. In addition, Algorithm 1 has control parameters for the 
numeric accuracy.

The arrivals follow a Poisson process with known arrival rate λa and the probability of detect-
ing each departure is 0.5. The mean lifetime μ = 1/λ is fixed to 1 without loss of generality and 
the arrival rate is altered. In all simulations, the control parameters of Algorithm 1 have values: 
tolerance δ = 0.001, risk level α = 0.05, minimum sample size Kmin = 5, maximum sample size 
Kmax = 100 and maximum number of iterations Jmax = 100.

6.1  |  Simulations with fixed number of arrivals

In the first simulation, reported in Table 1 and in Figure 4, the activity time is chosen so that 
the expected number of arrivals during the activity period is always 2000. It is seen from Table 1 
that the initial estimates are often strongly biased but the bias correction technique described in 
Section 5.3 reduces the bias to a few per cent or less in all setups. The biases and standard errors 
are calculated from 10,000 simulation runs per each arrival rate.

We consider the limiting behaviour of the estimators understanding that the setups with very 
small or very large arrival rate may not be implementable in real experiments. In the setups of 
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the first simulation, the initial estimate is unbiased when the arrival rate approaches to zero or 
infinity. When the arrival rate approaches zero, a departure (observed or unobserved) occurs 
almost always before the next arrival occurs. This means that with a high probability a block will 
contain only one departure and this departure and the arrival preceding it correspond to each 
other. In the thinning, other arrivals in the block (if any) are removed and only the departure and 
its corresponding arrival will remain. When the arrival rate approaches infinity and the expected 
number of arrivals is fixed, all arrivals occur in a short interval and almost all departures occur 
after this interval. The thinning causes only a small bias because all arrival times are almost the 
same. Consequently, the situation is close to an ideal experiment where all arrivals occur at the 
same time and the departures are observed without interference. The limiting standard error 
1∕

√
1000 ≈ 0.032 is obtained by Equation (3) where n = 1000 equals the number of observed 

departures (half of 2000 arrivals).
When we look at the results as a function of arrival rate λa keeping in mind that the number 

of arrivals was fixed to be 2000, there are two effects in the opposite directions. When the arrival 
rate increases, it becomes more difficult to match the arrivals and the departures and the bias 
caused by thinning increases. When the activity time becomes shorter, more departures occur 
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after the activity period (Table 1, third column). The expected number of these departures can be 
calculated with the formula (see Appendix for the derivation)

where t is the activity time. The departures at the post-activity period are highly informative because 
it is known for sure that the corresponding arrivals occurred during the activity period. In Table 1, 
the initial estimate has the largest bias when λa = 50. In this case, the average number of the post-
activity departures is still quite small (24.9 departures) but the bias caused by thinning is already 
high.

The bias of the initial estimate, the standard error of the initial estimate and the standard 
error of the corrected estimate are closely related. When the bias is large, initial estimate �̂0 is 
small and its standard error is also small because it is proportional to the mean (Equation 3). The 
large bias means that it is more difficult to correct the bias by Algorithm 1 and these difficulties 
are reflected in the standard error of the corrected estimate. In Table 1, the highest standard error 
of the corrected estimate occurs at λa = 15 when the initial estimate has a large bias and small 

(8)�a(� − e− t∕�)∕2,

T A B L E  1   The bias and the standard error of the estimates of the mean lifetime as functions of the arrival 
rate when the expected number of arrivals is fixed to 2000

λa

Activity 
time

Average number 
of departures 
during + after

Initial estimate �̂0
Corrected estimate 
�̂

Bias 
(10−6) SE (10−6)

Bias 
(10−6) SE (10−6)

0.0010 2,000,000 1002 + 0.00100 −1492 32,662 −1004 33,382

0.010 200,000 1001 + 0.00600 −4999 31,380 −965 32,411

0.10 20,000 1001 + 0.0470 −48,541 29,372 770 33,844

0.20 10,000 1000 + 0.111 −91,949 29,051 1618 36,708

0.50 4000 999 + 0.265 −206,872 24,906 1949 41,577

1.0 2000 998 + 0.523 −350,429 22,350 1759 55,555

1.5 1333 999 + 0.767 −451,435 20,402 3082 70,196

2.0 1000 1000 + 0.986 −525,394 17,839 4550 80,955

5.0 400 996 + 2.42 −731,918 12,721 17,705 152,324

10 200 994 + 5.04 −838,022 9392 16,988 196,961

15 133 993 + 7.53 −878,758 8617 16,886 209,075

20 100 989 + 10.0 −899,805 8256 −83 199,785

50 40 978 + 24.9 −926,573 10,292 −4583 130,901

100 20 951 + 49.9 −907,225 13,729 −4372 91,541

1000 2 568 + 433 −406,097 31,927 1708 35,541

10,000 0.2 93.8 + 906 −49,995 29,631 518 30,759

100,000 0.02 9.95 + 988 −5715 31,109 −1683 32,205

Notes: For each setup, the reported statistics are based on 10,000 simulation runs. The average bias (in units of 10−6) was 
calculated as the average of the differences of the 10,000 estimates and the true mean lifetime μ = 1. The standard errors (SE, in 
units of 10−6) were calculated as the standard deviations of the 10,000 estimates. The third column reports the average number 
of observed departures during the activity time and after the activity time.
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standard error. The uncertainty of the corrected estimate is the price we pay for the bias in the 
initial estimate.

The results give indirect information on the relative efficiency of the proposed estimation 
method compared with the maximum likelihood estimation. The optimal method (maximum 
likelihood) cannot perform better than the theoretical lower limit (standard error 0.032). We 
see that if the arrival rate λa is smaller than 0.5 or larger than 500, the optimal method cannot 
be much better than the proposed method. When λa is between 0.5 and 500, there may be room 
for improvement. The maximum standard error 0.209 was obtained when λa = 15. This means 
that in the imaginary extreme case, the optimal method might be 0.210/0.032 = 6.5 times more 
efficient. In other words, we have shown that the practical gain from a more efficient estimation 
method could be considerable but not huge.

6.2  |  Simulations with fixed activity time

In the second simulation, reported in Table 2 and in Figure 5, the activity time is fixed to a value 
(Table 2: 2000; Figure 5: 1000, 2000 or 3000) but the arrival rate is varied from 0.1 to 1000. In this 
setup, the smallest standard error of the bias-corrected estimate is obtained when the arrival rate 
is very large. Practically all information comes then from departures observed after the activation 
period. Equation (8) tells us that for long arrival times, the expected number of these departures 
is approximately λaμ/2 which does not depend on the activity time. For this reason, the curves for 
different activity times coincide for large arrival rates in Figure 5.

F I G U R E  4   The standard error for the bias-corrected estimate of the mean lifetime as function of the 
logarithm of the arrival rate in the first simulation experiment. The expected number of arrivals is always 
2000 and the true mean lifetime is 1. The dashed line shows the theoretical lower limit for the standard 
error. The results are based on 10,000 simulation runs per each arrival rate
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When we look at the results as a function of arrival rate λa, there are again effects in oppo-
site directions. When the arrival rate increases, the number of arrivals increases, which as such 
decreases the uncertainty of the initial estimate (Table 2, fifth column). At the same time, it 
becomes more difficult to match the arrivals and the departures, which increases the bias of the 
initial estimate (Table 2, fourth column). The high arrival rate also means that the number depar-
tures after the activity period is high. Using Equation (8) we learn that the ratio of the expected 
number the post-activity departures and the expected number of all departures

does not depend on the arrival rate. In Table 2, the expected proportion of post-activity departures 
is thus 1/2000.

�a(� − e− t∕�)

�at
=

� − e− t∕�

t
≈

�

t

T A B L E  2   The bias and the standard error of the estimates of the mean lifetime as functions of arrival rate λa 
in the first simulation experiment where the activity time is fixed to 2000

λa

Activity 
time

Average number 
of departures 
during + after

Initial estimate �̂0
Corrected estimate 
�̂

Bias 
(10−6) SE (10−6)

Bias 
(10−6) SE (10−6)

0.10 2000 99.9 + 0.0489 −48,011 95,557 1396 108,248

0.20 2000 200 + 0.104 −92,499 65,112 2933 80,925

0.50 2000 500 + 0.246 −208,278 36,598 −135 59,306

1.0 2000 1000 + 0.505 −351,339 22,336 340 54,679

2.0 2000 1999 + 0.987 −525,862 12,994 1454 57,994

5.0 2000 4997 + 2.50 −734,770 5577 4132 69,812

10 2000 9993 + 4.99 −844,088 2707 5778 84,146

20 2000 19,990 + 10.0 −913,106 1244 9171 100,305

30 2000 29,985 + 15.0 −939,367 763 7560 105,924

40 2000 39,978 + 20.0 −953,285 553 5878 108,452

50 2000 49,977 + 25.0 −961,929 429 6329 108,522

60 2000 59,972 + 30.1 −967,830 348 4904 104,692

70 2000 69,967 + 34.9 −972,118 300 2764 103,424

80 2000 79,962 + 39.9 −975,369 255 2699 97,856

90 2000 89,954 + 45.0 −977,923 228 1894 95,142

100 2000 99,952 + 50.0 −979,984 206 537 91,644

200 2000 199,900 + 100 −989,444 116 −11 67,503

500 2000 499,748 + 250 −995,285 67 −800 43,120

1000 2000 999,498 + 500 −997,259 47 86 30,753

Notes: For each setup, the reported statistics are based on 5000 simulation runs. The average bias (in units of 10−6) was 
calculated as the average of the differences of the 5000 estimates and the true mean lifetime μ = 1. The standard errors (SEs, in 
units of 10−6) were calculated as the standard deviations of the 5000 estimates. The third column reports the mean number of 
observed departures during the activity time and after the activity time.
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As the composition of the different effects, we see the non-trivial behaviour illustrated in 
Figure 5. There seems to be a local minimum at λa = 1, that is, when the arrival rate and the decay 
rate are equal. The location of a local maximum varies as a function of activity time. For activity 
times 1000, 2000 and 3000 the local maxima are located around λa = 30, λa = 40 and λa = 50 
respectively.

6.3  |  Simulations studying the effect of sample size

In the third simulation, reported in Table 3 and in Figure 6, we study how the standard error of 
the estimated mean lifetime behaves as a function of the expected number of arrivals λat. It is 
seen from Figure 6 that for low arrival rates, λa = 0.1 and λa = 1, the relation of the standard error 
and the expected number of arrivals is ordinary, that is, approximately linear in the log–log scale. 
When λa = 1, the standard errors are about 1.7 times the standard errors (the dashed line) one 
would obtain if the arrivals and the observed departures were matched.

For high arrival rates, λa = 100 and λa = 500, increasing the expected number of arrivals 
does not decrease the standard error after a saturation point, as also seen in Figure 5. In 
these cases, the information on μ comes mainly from the departures observed after the ac-
tivity period. Increasing the activity time has only a negligible effect on the number of these 
departures if the activity time is already long because it is unlikely that an arrival observed 
at the beginning of the activity period matches with a departure observed after the activity 
period. For intermediate arrival rates, λa = 5 and λa = 20, the curves in Figure 6 are concave 
but seem to approach linear behaviour when the expected number of arrivals increases.

F I G U R E  5   The standard error for bias-corrected estimate of the mean lifetime as function of the logarithm 
of the arrival rate. The activity time is 1000, 2000 or 3000 and the true mean lifetime is 1. The results are based 
on 5000 simulation runs per each combination of arrival rate and activity time
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7  |   EXAMPLES BASED ON 155Lu ALPHA DECAY DATA

We apply the methods of Section 3 to Datasets 1 and 2, and the method of Sections 4 and 5 to 
Datasets 3A–F and 4A–4F. Table 4 summarizes the estimates and their confidence intervals. 
Original data (Dataset 1) and its unmatched densified variant (Dataset 2) give the same estimates 
for reasons explained in Section 3.2. An estimate for the half-life 2.61 ms (2.57,2.65) is obtained 
by multiplying the mean lifetime by log(2). This estimate is close to the estimates reported in the 
literature (Page et al., 1996).

For incomplete data (Datasets 3A–3F), the point estimates are not exactly the same but still 
relatively close to the estimate obtained from Dataset 1. The uncertainty of the estimates behaves 
similarly to the first simulation experiment. (The standard errors and the arrival rates should 
be divided by the mean lifetime and accounted for the different sample sizes before they can be 
compared with those in Table 1.) When the activity time decreases and the arrival rate increases, 
the bias of the initial estimate increases. In Table 4 this is seen as an increase in the standard error 

T A B L E  3   The bias and the standard error of the estimates of the mean lifetime as functions of expected 
number of arrivals for various arrival rates λa

λa

Activity 
time

Expected 
number 
of arrivals

Average 
number of 
departures 
during + after

Initial estimate �̂0 Corrected estimate �̂

Bias SE Bias SE

(10−6) (10−6) (10−6) (10−6)

0.10 4000 400 200 + 0.0483 −47,825 67,157 1688 76,207

0.10 25,000 2500 1251 + 0.0574 −48,482 27,007 524 31,065

0.10 100,000 10,000 5001 + 0.0469 −48,381 13,313 −292 15,450

1.0 400 400 200 + 0.489 −349,507 50,985 5926 123,255

1.0 2500 2500 1249 + 0.497 −351,147 20,035 200 49,474

1.0 10,000 10,000 4999 + 0.517 −351,081 9779 558 24,331

5.0 80 400 197 + 2.50 −720,498 31,055 26,758 272,885

5.0 500 2500 1247 + 2.49 −733,237 11,083 8839 133,990

5.0 2000 10,000 4998 + 2.45 −734,854 5559 3152 70,350

20 20 400 190 + 10.0 −843,705 32,663 −10,137 203,248

20 125 2500 1240 + 9.97 −902,892 6704 −4563 188,801

20 500 10,000 4988 + 10.1 −911,069 2685 6415 155,729

100 4 400 151 + 49.1 −624,596 62,401 −1373 92,494

100 25 2500 1200 + 49.9 −921,792 11,557 −3746 95,091

100 100 10,000 4950 + 49.9 −966,021 2993 −4565 96,269

500 0.8 400 62.5 + 138 −184,038 70,613 1994 72,859

500 5 2500 1001 + 248 −700,996 23,783 −570 41,521

500 20 10,000 4748 + 250 −921,150 6311 315 41,305

Notes: For each setup, the reported statistics are based on 5000 simulation runs. The average bias (in units of 10−6) was 
calculated as the average of the differences of the 5000 estimates and the true mean lifetime μ = 1. The standard errors (SE, in 
units of 10−6) were calculated as the standard deviations of the 5000 estimates. The third column reports the mean number of 
observed departures during the activity time and after the activity time.
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F I G U R E  6   The standard error for bias-corrected estimate of the mean lifetime as function of the expected 
number of arrivals. The reference line (dashed) has the slope −0.5 in the log scale, which corresponds to the 
factor 1∕

√
n in the formula of the standard error. The results are based on 5000 simulation runs per each 

combination of arrival rate and expected number of arrivals
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T A B L E  4   The estimates of the mean lifetime from the datasets 1, 2, 3A–3F and 4A–4F

Dataset
Activity 
time

Arrival rate 
(events/ms)

No. of departures 
during + after

Estimate 
(SE) (ms)

95% confidence 
interval (ms)

1 14.6 h 3.06 × 10−4 16,068 + 1 3.760 (0.030) (3.702, 3.818)

2 53.0 s 3.06 × 10−1 16,067 + 2 3.760 (0.030) (3.702, 3.818)

3A 1.46 h 3.06 × 10−3 8048 + 0 3.760 (0.046) (3.671, 3.850)

3B 8.83 min 3.06 × 10−2 8048 + 0 3.733 (0.046) (3.644, 3.826)

3C 53.0 s 3.06 × 10−1 8047 + 1 3.808 (0.079) (3.647, 3.953)

3D 5.30 s 3.06 × 100 8045 + 3 3.334 (0.327) (2.731, 4.038)

3E 530 ms 3.06 × 101 7992 + 56 3.726 (0.380) (3.039, 4.409)

3F 53 ms 3.06 × 102 7485 + 563 3.602 (0.103) (3.399, 3.805)

4A 1.46 h 3.06 × 10−3 3992 + 0 3.809 (0.063) (3.686, 3.935)

4B 8.83 min 3.06 × 10−2 3992 + 0 3.799 (0.065) (3.684, 3.939)

4C 53.0 s 3.06 × 10−1 3992 + 0 4.003 (0.135) (3.734, 4.237)

4D 5.30 s 3.06 × 100 3991 + 1 3.625 (0.720) (2.739, 5.583)

4E 530 ms 3.06 × 101 3971 + 21 4.040 (0.807) (2.671, 5.902)

4F 53 ms 3.06 × 102 3703 + 289 3.855 (0.159) (3.550, 4.177)

Notes: The number of arrivals is 16,069 for all datasets. The confidence intervals for Datasets 1 and 2 are obtained by using 
the asymptotic properties of the maximum likelihood approach. For Datasets 3A–3F and 4A–4F, the standard errors and 
confidence intervals were calculated using parametric bootstrap with 1000 replications.
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of the bias-corrected estimate, especially in Datasets 3D and 3E. However, increasing arrival rate 
leads to higher number of departures after the activity period. Due to the departures after the 
activity period, the standard error is smaller for Dataset 3F than for Datasets 3D and 3E. It is re-
markable that the activity time of 53 ms (Dataset 3F) gave the standard error 0.10 which is only 
twice the standard error with the activity time of 1.46 h (Dataset 3A).

The results for Datasets 4A–4F show that the method works even if the probability for 
observing a departure is only 0.25. We see that the ratio of the standard errors for Datasets 3A 
and 4A, 1.37, is close to 

√
2 as one would expect when the sample size is halved. However, the 

same ratio for Datasets 3D and 4D is 2.2 indicating that in this setup the estimation becomes 
relatively more difficult when the probability for observing a departure drops from 0.5 to 0.25.

The results demonstrate that the additional loss of information due to the thinning is not nec-
essarily large. The standard errors for Datasets 1 (16,069 departures) and 3A (8042 departures) 
are 0.030 and 0.046 respectively. If we scale the standard error of Dataset 1 from sample size 
16,069 to sample size 8042, we obtain 0.042 which is 9% smaller than 0.046.

As an additional analysis, we repeated the creation of Datasets 3A–3F 100 times (regenerating 
the random removal of departures) and used the same estimation procedure. Figure 7 shows the 
obtained point estimates and their 95% confidence intervals. The results support the conclusion 
that even if the uncertainty of the estimate depends on the arrival rate, the proposed estimation 
method works reliably for a wide range of arrival rates.

8  |   DISCUSSION

We have proposed a method for the estimation of the mean lifetime in situations where 
the arrivals and the departures are unmatched and the departures are missing completely 
at random. The method is derived for experiments in nuclear physics where the goal is to 

F I G U R E  7   The point estimates (dots) and their 95% confidence intervals (vertical lines) for Datasets 3A–3F 
with 100 independent repetitions of random removal of departures. For each dataset, the results are ordered by 
the point estimate in increasing order from left to right. The horizontal dashed line shows the point estimate 
from Dataset 1
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characterize particles by their expected lifetime. The estimation relies on the exponential 
distribution of lifetimes—an assumption that follows from the laws of physics. Due to the 
memoryless property of the exponential distribution, the information on the matching of 
arrivals and departures is not needed in the estimation. In principle, the method could be 
applicable to other problems as well if the assumption of the exponential distribution can 
be justified.

Simulations and real data examples demonstrate that the mean lifetime can be success-
fully estimated from partially observed departures. The estimation method combines an ini-
tial estimator and a numerical bias correction technique. As the exponential distribution has 
only one parameter, the noisy binary search can be applied to find an unbiased estimator in 
the minimum contrast estimation. One could apply the same bias correction technique with 
some other initial estimator that is based on a different thinning strategy. The probability of 
observing a departure was known in our examples but could be estimated from the data as 
well.

We focused on the problems caused by partially observed departures and did not consider 
misclassification of arrivals in this paper. Further challenges arise in experiments where a 
large proportion of the arrivals cannot be reliably separated from the background (as defined 
in Section 2.1). There is also a risk in some experiments that some background events are 
mislabelled as departures. Whether good estimators can be derived for these situations is an 
open question.

The simulation results reveal an interesting relation between the arrival rate and standard 
error of the estimate. If the activity time is fixed (the setup of the second simulation experiment), 
the arrival rate should be either equal to the decay rate or very large. The latter case, however, has 
some limitations: First, very large arrival rates are usually practically unreachable in real-world 
experiments. Second, it is crucial that the follow-up period is longer than the activity period. 
Third, increasing the activity time may have only very small impact on the accuracy of the es-
timates after a saturation point has been reached as seen from Figure 6. Therefore, if any prior 
information on the mean lifetime is available, it seems that an optimal design should have an 
arrival rate equal to the expected decay rate. The theoretical justification for this empirical obser-
vation remains as an open problem.

In nuclear physics, the estimation of the mean lifetime for a particle may be only one of mul-
tiple goals in an experiment. This means that the arrival rate might be far from the optimal for 
a particular estimation task. Fortunately, the proposed estimation method can be applied with 
a wide range of arrival rates. This will enable using the data from all DSSD strips. Compared to 
approaches that utilize only the strips where the arrival rate is sufficiently low for the matching 
of arrivals and departures, the proposed estimation method easily multiplies the amount of avail-
able data. As a consequence, the estimates will be more accurate or the required accuracy can be 
achieved in a shorter experiment.
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APPENDIX A

A.1  |  Unbiased but inconsistent estimator
We show that estimator (5), a straightforward extension of estimator (4) for data with partially 
observed departures, is unbiased but not consistent. The estimator (5) can be written in the form

where the constant 2 is needed to compensate for the unobserved departures and Ri is a missingness 
indicator for which P(Ri = 1) = P(Ri = 0) = 0.5. The data are missing completely at random which 
means that random variable Ri is independent from all other variables.

(A1)
1

n

(
n∑

i= 1

2Ridi −

n∑

i= 1

ai

)
,
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The estimator (A1) can be written in the form

The estimator is unbiased for μ because the independence of Ri from ai and xi implies that

and

To see that the estimator is not consistent, we consider the variance of estimator (A1) starting from 
the form Equation (A2)

Now the first and the third expectations are positive and the second expectation converges in prob-
ability to 0 by Slutsky's theorem when n approaches infinity. We consider therefore only the first 
expectation that simplifies to
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because the independence of Ri and Rj, i ≠ j, implies E[(2Ri − 1)(2Rj − 1)] = 0 and the independence 
of ai and Ri allows us to factorize the first term. If the sequence a1, a2, …, an increases linearly on 
average, the variance increases as a function of n. As a demonstration, let the time between subse-
quent arrivals to be a constant μa so that we have ai = μai. Now the expression increases linearly as 
a function of n

We conclude that estimator (A1) is not consistent because its variance increases as a function of n. 
In practice this means that estimator (A1) cannot be used. Instead, Section 4 describes an approach 
where the complete data estimator (4) is applied with a bias correction.

A.2  |  Expected number of departures after the activity period

We derive the formula (8) for the expected number of post-activity departures. Let t be the activ-
ity time and assume that the follow-up continues without limits. The arrivals follow a Poisson 
process with rate λa and the lifetimes are exponentially distributed with mean μ. For an arrival at 
time a, the corresponding departure occurs after t with probability P(d > t|a) =  exp (−(t − a)/μ). 
As the arrivals are uniformly distributed on the interval [0, t] and independent from the lifetimes, 
we obtain the unconditional probability

Formula (8) is obtained when Equation (A3) is multiplied by λat, the expected number of arrivals, 
and it is taken into account that only half of the departures are observed.

1

n2

n∑

i= 1

a2i = �2a
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= O(n).
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∫
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𝜇 − e− t∕𝜇
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