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Abstract: The Aizerman and Kalman conjectures played an important role in the theory of
global stability for control systems and set two directions for its further development – the search
and formulation of sufficient stability conditions, as well as the construction of counterexamples
for these conjectures. From the computational perspective the latter problem is nontrivial, since
the oscillations in counterexamples are hidden, i.e. their basin of attraction does not intersect
with a small neighborhood of an equilibrium. Numerical calculation of initial data of such
oscillations for their visualization is a challenging problem. Up to now all known counterexamples
to the Kalman conjecture were constructed in such a way that one locally stable limit cycle
(hidden oscillation) co-exists with a locally stable equilibrium. In this paper we demonstrate
a multistable configuration of three co-existing hidden oscillations (limit cycles) and a locally
stable equilibrium in the phase space of the fourth-order system, which provides a new class of
counterexamples to the Kalman conjecture.
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1. INTRODUCTION

The necessity to study stability and limit dynamical
regimes (attractors) arises in classical theoretical and ap-
plied problems. One of the first such problems is related to
the design of automatic control systems, which ensure the
transition of the controlled object to the operating regime
and its stability with respect to external disturbances. The
first dynamical models of control systems were constructed
in a way that the operating regime corresponded to the
unique globally stable equilibrium state. After that models
with oscillating operating regimes (periodic attractors)
and chaotic regimes (chaotic attractors) were obtained.
Later on, multistable models with different co-existing
regimes (attractors) were discovered. Control of system
states and their transfer into the basin of attraction of a
desired attractor is the subject for study of the oscillation
control theory (see e.g. [Fradkov and Pogromsky, 1998,
Fradkov and Evans, 2005]). One of the first theoretical
problems on multistability is the second part of the famous
Hilbert’s 16th problem on the number and mutual dispo-
sition of coexisting periodic attractors in two-dimensional
polynomial systems. For chaotic multidimensional dynam-
ical systems a similar problem on the number and mutual
disposition of chaotic attractors and, in particular, their
dependence on the degree of polynomials in the model
is discussed in [Leonov and Kuznetsov, 2015, Kuznetsov
et al., 2018].

For nonlinear systems with a unique equilibrium and
bounded solutions, the question arose: how to find a class
of systems for which the condition for the absence of the
possibility for birth of self-excited oscillations implies the
absence of hidden oscillations 1 and the global stability
of the equilibrium. This problem has its origins in the
Watt governor stability studies. In 1877, I.A. Vyshne-
gradsky [Vyshnegradsky, 1877] for the closed dynamic
model ”machine + governor” studied an approximate lin-
ear mathematical model without dry friction and proposed
the stability conditions of the desired operating regime
corresponding to the equilibrium state (trivial attractor).
However, the question about a rigorous proof of the Vysh-
negradsky problem on the validity of the linearization
procedure for a system by discarding dry friction remained
open. In 1885, M.H. Léauté showed [Léauté, 1885] the

1 In 2009, G.A. Leonov and N.V. Kuznetsov proposed the classi-
fication of oscillations as being hidden or self-excited and laid the
foundations of the theory of hidden oscillations, which reflects the
modern stage of development of the A.A. Andronov’s theory of
oscillations. Self-excited oscillations can be visualized numerically by
a trajectory starting from a point in a neighborhood of an unstable
equilibrium. In contrast, the basin of attraction for a hidden oscilla-
tion is not connected with equilibria and, thus is necessary to develop
a special analytical-numerical methods to find initial points for their
visualization. The current progress in the development of theory of
hidden oscillations was recently presented at a plenary lecture at the
5th IFAC Conference on Analysis and Control of Chaotic Systems
(see https://chaos2018.dc.wtb.tue.nl).
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1 In 2009, G.A. Leonov and N.V. Kuznetsov proposed the classi-
fication of oscillations as being hidden or self-excited and laid the
foundations of the theory of hidden oscillations, which reflects the
modern stage of development of the A.A. Andronov’s theory of
oscillations. Self-excited oscillations can be visualized numerically by
a trajectory starting from a point in a neighborhood of an unstable
equilibrium. In contrast, the basin of attraction for a hidden oscilla-
tion is not connected with equilibria and, thus is necessary to develop
a special analytical-numerical methods to find initial points for their
visualization. The current progress in the development of theory of
hidden oscillations was recently presented at a plenary lecture at the
5th IFAC Conference on Analysis and Control of Chaotic Systems
(see https://chaos2018.dc.wtb.tue.nl).

11th IFAC Symposium on Nonlinear Control Systems
Vienna, Austria, Sept. 4-6, 2019

Copyright © 2019 IFAC 9

Coexistence of hidden attractors and
multistability in counterexamples to the

Kalman conjecture

N.V. Kuznetsov ∗,∗∗,∗∗∗, O.A. Kuznetsova ∗, T.N. Mokaev ∗,
R.N. Mokaev ∗,∗∗, M.V. Yuldashev ∗, R.V. Yuldashev ∗

∗ Faculty of Mathematics and Mechanics,
St. Petersburg State University, Russia

∗∗ Dept. of Mathematical Information Technology,
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possibility of the appearance of limit periodic oscillations
in dynamical models of control systems with dry friction.
After that, publications appeared (see e.g. [Zhukovsky,
1909, p. 6]), which criticized Vyshnegradsky approach and
questioned his conclusions. In response to this criticism,
A.A. Andronov and A.G. Maier [Andronov and Maier,
1944] provided a rigorous global analysis of the nonlinear
model of the Watt governor with dry friction and proved
the sufficiency of the Vyshnegradsky conditions for the
absence of limit oscillations and global stability of the
operating regime 2 (i.e. the existence of a rest segment
that attracts trajectories from any initial data). Further
development and generalization of the results by Vyshne-
gradsky, Andronov and Maier were done by G.A. Leonov
in [Leonov, 1971] (see also survey [Leonov et al., 2017]).

In 1949, inspirited by the discussion of the work [Andronov
and Maier, 1944] at the Andronov’s scientific seminar in
the Institute of Automation and Remote Control (USSR
Academy of Sciences, Moscow) [Bissell, 1998], M.A. Aizer-
man formulated a new problem. His question was whether
the sufficient conditions of global stability of a class of
nonlinear Lurie systems with a unique equilibrium coincide
with the necessary stability conditions when the smooth
nonlinearity belongs to the sector of linear stability [Aizer-
man, 1949]. Independently, a similar conjecture was later
advanced by R.E. Kalman in 1957, with the additional re-
quirement that the derivative of nonlinearity belong to the
linear stability sector [Kalman, 1957]: ”If ϕ(σ) in Fig. 1 is
replaced by constants k corresponding to all possible values
of ϕ′(σ), and it is found that the closed-loop system is
stable for all such k, then it is intuitively clear that the
system must be monostable; i.e. all transient solutions will
converge to a unique, stable critical point.”

φ(σ)σ G(s)φ∑
+ –

Fig. 1. Nonlinear control system. G(s) is a linear trans-
fer function, ϕ(σ) is a single-valued smooth func-
tion [Kalman, 1957].

Kalman’s statement can be reformulated in the following:

Conjecture 1. (The Kalman Conjecture). Consider the fol-
lowing control system in the Lurie form

ẋ = Ax + bϕ(σ), σ = c∗x, (1)

where A is a constant n×n matrix, b and c are constant n-
dimensional columns, with all values being, sign ∗ denotes
the transpose, and ϕ is a smooth scalar function with
ϕ(0) = 0, satisfying the condition

k1 < ϕ′(σ) < k2, σ ∈ (−∞,+∞), (2)

where k1 is a number or −∞, and k2 is a number or +∞.
If the linear system ẋ = Ax + kbc∗x, with k ∈ (k1, k2) is
asymptotically stable, then system (1) is stable in large
(i.e. a zero solution of system (1) is asymptotically stable
and any solution tends to zero as t → +∞).

2 This result was specially remarked when in 1946 A.A. Andronov
was elected to the Academy of Sciences of the USSR where he became
the first academician in control theory.

The Aizerman and Kalman conjectures played an im-
portant role in the theory of global stability for control
systems and set two directions for its further develop-
ment – the search and formulation of sufficient stability
conditions (see pioneering works [Popov, 1961, Kalman,
1963, Gelig et al., 1978]), as well as the construction
of counterexamples for these conjectures. From the com-
putational perspective, the latter problem is nontrivial,
since the oscillations in counterexamples are hidden, i.e.
their basin of attraction does not intersect with small
neighborhood of an equilibrium. Numerical calculation of
initial data of such oscillations for their visualization is a
challenging problem. Up to now all known counterexam-
ples to the Kalman conjecture were constructed in such a
way that one locally stable limit cycle (hidden oscillation)
co-exists with a locally stable equilibrium. In this paper
we demonstrate a multistable configuration of three co-
existing hidden oscillations (limit cycles) and a locally
stable equilibrium in the phase space of the fourth-order
system, which provides a new class of counterexamples to
the Kalman conjecture.

2. PREVIOUS COUNTEREXAMPLES TO KALMAN
CONJECTURE

First known attempt to construct counterexamples to the
Kalman conjecture was made by R.E. Fitts [Fitts, 1966],
who experimentally studied a fourth-order system with
a cubic nonlinearity. As a result, Fitts experimentally
observed a periodic solution of considered system. Later
on, N.E. Barabanov [Barabanov, 1988] claimed that some
Fitts’ results are not true and suggested to use discontinu-
ous nonlinearity sign(·) to derive counterexamples analyt-
ically. His work also raised critical discussions in [Bernat
and Llibre, 1996, Meisters, 1996, Glutsyuk, 1998]. In par-
ticular, Bernat and Llibre [1996] pointed out the necessity
to rigorously analyze non-local bifurcations while smooth-
ing discontinuous nonlinearities. They suggested to start
the procedure for constructing counterexamples with a
piecewise linear nonlinearity sat(·). In [Bragin et al., 2010,
2011, Leonov and Kuznetsov, 2011], it was introduced
an effective approach for construction of counterexam-
ples to the Kalman conjecture relying on an analytical-
numerical search for periodic solutions by applying har-
monic balance and numerical continuation methods and
using smooth nonlinearity tanh(·). For discrete-time sys-
tems Heath et al. [2015] demonstrated that Kalman conjec-
ture is false even for second-order systems using counterex-
amples with stable periodic solutions 3 . Also construction
of counterexamples to the Kalman conjecture is discussed
in [Burkin and Khien, 2014].

3. COEXISTING LIMIT CYCLES

To construct numerically a new counterexample to the
Kalman conjecture providing three co-existing limit cy-
cles we combined Fitts’ linear system, Barabanov’s idea
3 Remark that the difference between the dimensions of the phase
spaces of a discrete-time system and a continuous-time system
defined by autonomous ODE, for which the Kalman conjecture is
not true, is equal to 2. This value coincides with the difference
between the dimensions of the spaces in which chaos can occur (for
discrete-time systems the dimension is equal to 1, for continuous-time
systems – 3).
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of considering sign(·), and the idea from [Leonov and
Kuznetsov, 2011] to use numerical continuation procedure
while passing from sign(·) to tanh(·).
Consider the control system in the Lurie form (1) with

A=




0 1 0 0
0 0 1 0
0 0 0 1

−a0 −a1 −a2 −a3


, b =




0
0
0
1


, c =




0
0
−1
0


, (3)

and a0 = (m2
1+β2)(m2

2+β2), a1 = 2β(m2
1+m2

2+2β2), a2 =
m2

1 + m2
2 + 6β2, a3 = 4β, m1 = 0.9,m2 = 1.1, β = 0.03,

ϕ(σ) = tanh(σ/ε), ε = 0.01. The linear part of system (1)
is defined by the transfer function

W (p) =
p2

((p+ β)2 +m2
1) ((p+ β)2 +m2

2)
. (4)

Initial data for visualization of periodic oscillations were
obtained using Andronov point mapping method [An-
dronov et al., 1966] 4 for system (1), (3) with non-linearity
ϕ(σ) = sign(σ) and numerical continuation method 5 for
smoothing the discontinuous nonlinearity (see e.g. [Leonov
and Kuznetsov, 2013, Leonov et al., 2017]). Corresponding
initial points for each stable limit cycle are presented below
in Table 1. In system (1), (3) with the smooth nonlinearity
ϕ(σ) = tanh(σ/ε), ε = 0.01 for obtained initial points
the trajectories were numerically integrated, which after
the transient process allows us to visualize three hidden
periodic attractors (see Fig. 2 and Table 2 with initial
data). For each periodic attractor, an additional analysis
of the local basin of attraction was carried out by choosing
a grid of points in the vicinity of the periodic attractor and
checking the attraction of all the trajectories with initial
data from these points to the periodic attractor.

Table 1. Initial data for modeling of the three
periodic attractors for system (1), (3) with

nonlinearity ϕ(σ) = sign(σ).

1st and 2nd 3rd

x1 ±0.62520516260693109 −2.113517446278802
x2 ±3.73240970726506105 0.664336179538623
x3 0 0.891912878629890
x4 ∓3.47541697286971208 0.278600965570120

Table 2. Initial data for modeling of the three
periodic attractors for system (1), (3) with

nonlinearity ϕ(σ) = tanh(σ/ε), ε = 0.01.

1st and 2nd 3rd

x1 ±0.625216695745867 −2.11395731851229
x2 ±3.73239217905780 0.663680374961913
x3 0 0.891701229667371
x4 ∓3.47341560599714 0.279201499188914

4 Other methods for searching periodic oscillations of dynamical
models with sign(·) nonlinearity can be found e.g. in [Tsypkin, 1984,
Boiko, 2008].
5 The idea is to consider system (1), (3) with the nonlinearity
ϕ(σ) = sign(σ) + µ(tanh(σ/ε) − sign(σ)), µ ∈ [0, 1] and to switch
from the system with nonlinearity sign(·) to the system with a
smooth nonlinearity tanh(·) by varying the parameter µ from 0 to 1
with some small step. During the switching on each next step, the
initial point for a trajectory to be integrated is chosen as the last
point of the trajectory integrated on the previous step.

3.1 Sector of linear stability

It can be seen that the eigenvalues of the Jacobi matrix at
the zero equilibrium are

−β ±m1i, −β ±m2i,

and, thus this equilibrium is locally stable.

Consider the matrix

A+ kbc∗ =




0 1 0 0
0 0 1 0
0 0 0 1

−a0 −a1 −a2 − k −a3


 . (5)

Characteristic polynomial of the matrix (5) is

λ4 + a3λ
3 + (a2 + k)λ2 + a1λ+ a0. (6)

Using Routh-Hurwitz criterion it is possible to show that
for each β > 0 the linear system ẋ = Ax + k b c∗x, given
by matrices (3), is globally asymptotically stable for

k ∈
(
− 4β2 − (m2

1−m2
2)

2

2(2β2+m2
1+m2

2)
,+∞

)
.

All the roots of the characteristic polynomial (6) have
negative real parts, iff all the leading principal minors

∆1 = a3 = 4β, ∆2 = a3(a2 + k)− a1,

∆3 = a1a3k − a21 + a1a2a3 − a0a
2
3, ∆4 = a0∆3

of the Hurwitz matrix


a3 a1 0 0
1 a2 + k a0 0
0 a3 a1 1
0 1 a2 + k a0




are positive. This implies the inequality k >
a0a

2
3+a2

1−a1a2a3

a1a3
,

which defines a sector of linear stability.

3.2 Describing function method and Popov criterion

Let us show that the application of the classical describing
function method 6 and Popov method to system (1), (3)
demonstrates the necessity of their further development to
be able to obtain the necessary and sufficient conditions
for the birth of oscillations and stability.

Suppose system (1), (3) has periodic solution with ampli-
tude a and frequency ω0. Hence, according to the harmonic
balance method, frequency of this solution can be found
from the following equality ImW (iω0) = 0 and, there-

fore, ω0 =

√
β2 +

m2
1+m2

2

2 > 0. Also, from the equality

ReW (iω0) = 0 we can get a coefficient of harmonic lin-
earization

khl = − 1

ReW (iω0)
= −

(
4β2 +

(m2
1 −m2

2)
2

2(2β2 +m2
1 +m2

2)

)
< 0.

The describing function is defined as follows:

6 Describing function method belongs to the approximate methods
of analysis of control systems and there exist various examples of
systems for which it leads to incorrect results in both prediction of
stability (see e.g. [Bragin et al., 2011, Leonov and Kuznetsov, 2013])
and prediction of the existence of oscillations (see e.g. [Leonov and
Kuznetsov, 2018a,b]).
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Fig. 2. Co-existence of a stable equilibrium (light green) and three hidden limit cycles, two large symmetric ones (red
and purple), and a small one (dark green), in the phase space of system (1), (3) with ϕ(σ) = tanh(σ/ε), ε = 0.01.

Φ(a) =

2π
ω0∫

0

tanh(cos(ω0t)a) cos(ω0t)dt−

−akhl

2π
ω0∫

0

(cos(ω0t))
2dt ≥ −πakhl

ω0
.

(7)

If a �= 0, then Φ(a) > 0 and there is no such a that
Φ(a) = 0. Therefore, there are no periodic solutions in the
system (1) according to the describing function method.

Consider the Popov criterion on the absolute stability (see
e.g. [Popov, 1961, p. 961],[Yakubovich et al., 2004, p. 79])
for system (1), (3) and non-linearity ϕ(σ) = tanh(σ).
First two conditions of the Popov criterion, i.e. asymptotic

stability of the linear part and 0 ≤ tanh(σ)
σ ≤ ∞, σ �=

0, tanh(0) = 0, are satisfied. The third condition of the
Popov criterion has the following form:

Re[(1 + iωϑ)W (iω)] = ReW (iω)− ωϑ ImW (iω) ≥ 0 ⇔

− ω2(ω4 − ω2a2 + a0) ≥ 2ϑω4β

(
−2ω2 +

a1
2β

)
.

If ω = 0, then this inequality holds. Else, if ω �= 0, then
this condition takes the form:

(4ϑβ − 1)ω4 − (ϑa1 − a2)ω
2 − a0 ≥ 0. (8)

Note that since a0 > 0, then for each ϑ ≥ 0 there exists
small enough ω > 0 such that (8) is not true. Therefore,
the conditions of the criterion are not satisfied.

4. CONCLUSION

Thus, the results obtained here show the limits of applica-
bility of existing analytical methods and demonstrate the
difficulty of identifying classes of systems for which it is
possible to match the necessary and sufficient conditions
for global stability.

In the general case, when considering various nonlinear-
ities, it is possible to synthesize systems with a large
number of coexisting attractors (equilibria, limit cycles,
chaotic attractors), see e.g. [Wang and Chen, 2013, Zhang
and Chen, 2017, Stankevich et al., 2017, Kuznetsov et al.,
2017, Chen et al., 2017]. However, in these examples
the nonlinearities were non-scalar, or the derivatives of
the nonlinearities changed their signs. Therefore, these
nonlinearities did not satisfy the conditions of Kalman
conjecture. In this article, we demonstrate new counterex-
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ample to the Kalman conjecture with three co-existing
stable limit cycles. The mutual disposition of co-existing
attractors in counterexamples to the Kalman conjecture
(depending on the dimension of the system) and possibility
of managing the number of attractors (e.g. finding the
maximum possible number of attractors) are open prob-
lems for the further study.
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ample to the Kalman conjecture with three co-existing
stable limit cycles. The mutual disposition of co-existing
attractors in counterexamples to the Kalman conjecture
(depending on the dimension of the system) and possibility
of managing the number of attractors (e.g. finding the
maximum possible number of attractors) are open prob-
lems for the further study.
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