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1. INTRODUCTION

Consider the following Rössler systems [Rössler, 1976a,b,
1979]:

ẋ = −y − z, ẏ = x+ a1y, ż = b1 − c1z + xz, (1)

ẋ = −y − z, ẏ = x+ a2y, ż = b2x− c2z + xz, (2)

ẋ = −y − z, ẏ = x, ż = −b3z + a3(y − y2), (3)

with arbitrary real parameters a1,2,3, b1,2,3, c1,2 ∈ R.
System (1) if c21 ≥ 4a1b1 has the following equilibria:

O±
1 = (a1p

±,−p±, p±), where p± =
c1±

√
c21−4a1b1
2a1

, (4)

which coincide for c21 = 4a1b1. It is known [Barrio et al.,
2011] that the equilibrium O+

1 is always unstable and O−
1

is linearly stable iff the parameters a1, c1 belongs to the
region {(a1, c1)

∣∣ a1 ≤ 1, c1 > 2a1} or {(a1, c1)
∣∣ a1 ∈

(1,
√
2), c1 ∈ (2a1,

2a1

a2
1−1

)}, and the parameter b1 satisfies

the inequalities: b∗1(a, c) ≤ b1 ≤ c21
4a1

, where

b∗1(a1, c1) =
a1

2(a2
1+1)2

[
2− a41 + c1a

3
1 + 2a21 − c1a1 + c21

+(c1 − a1)
√
a61 − 4a41 + 2c1a31 − 4a21 + c21

]
. (5)

As it was mentioned in [Algaba et al., 2015], in the region
of parameters where the equilibria O±

1 exist system (1)
is equivalent to system (2) with respect to the following
linear change of variables:

x → x+ a1p
+, y → y − p+, z → z + p+, (6)

and parameters a2 = a1, b2 = −p+, c2 = c1 + a1p
+.

System (3) for arbitrary real parameters a3, b3 ∈ R (a3 �=
0), has the following equilibria:

O+
3 =

(
0, 0, 0

)
, O−

3 =
(
0, a3+b3

a3
, −a3+b3

a3

)
. (7)

Stability analysis of O±
3 shows that if 0 < −a3 < b3, then

O+
3 is locally stale, and if 0 < b3 < −a3 < 2b3, then O−

3 is
locally stable.

For some values of parameters systems (1),(2),(3) exhibit
chaotic behavior. To get a visualization of chaotic attractor
one needs to choose an initial point in the basin of
attraction of the attractor and observe how the trajectory,
starting from this initial point, after a transient process
visualizes the attractor. An attractor is called a self-
excited attractor if its basin of attraction intersects with
any open neighborhood of an equilibrium, otherwise, it is
called a hidden attractor [Leonov et al., 2011, Leonov and
Kuznetsov, 2013, Leonov et al., 2015, Kuznetsov, 2016a].
It was discovered numerically by Rössler that in the phase
space of system (1) with parameters a1 = 0.2, b1 = 0.2,
c1 = 5.7 and system (3) with parameters a3 = 0.386,
b3 = 0.2 there exist chaotic attractors of different shapes,
which are self-excited with respect to both equilibria O±

1,3,
respectively.

One of the building blocks of chaotic attractor are embed-
ded unstable periodic orbits (UPOs) (see e.g. [Afraımovic
et al., 1977, Auerbach et al., 1987, Cvitanović, 1991]). A
proof of the existence of UPOs for discrete and continuous-
time dynamical systems can be done, for example, us-
ing a special analytical-numerical technique [Galias, 1999,
2006b, Galias and Tucker, 2008, Barrio et al., 2015].
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proof of the existence of UPOs for discrete and continuous-
time dynamical systems can be done, for example, us-
ing a special analytical-numerical technique [Galias, 1999,
2006b, Galias and Tucker, 2008, Barrio et al., 2015].

15th IFAC Workshop on Time Delay Systems
Sinaia, Romania, September 9-11, 2019

Copyright © 2019 IFAC 219

On lower-bound estimates of
the Lyapunov dimension and topological

entropy for the Rossler systems

Kuznetsov N.V. ∗,∗∗,∗∗∗ Mokaev T.N. ∗ Kudryashova E.V. ∗

Kuznetsova O.A. ∗ Danca M.-F. ∗∗∗∗

∗ Faculty of Mathematics and Mechanics,
St. Petersburg State University, Russia

∗∗ Dept. of Mathematical Information Technology,
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time-delay feedback control technique for verification of Eden’s conjecture on the maximum of
local Lyapunov dimension, and for the estimation of the topological entropy is demonstrated. To
this end, numerical experiments on computation of finite-time local Lyapunov dimensions and
finite-time topological entropy on a Rössler attractor and embedded unstable periodic orbits
are performed. The problem of reliable numerical computation of the mentioned dimension-like
characteristics along the trajectories over large time intervals is discussed.

Keywords: chaos, hidden and self-excited attractors, Lyapunov dimension, Lyapunov
exponents, unstable periodic orbit, time-delay feedback control

1. INTRODUCTION

Consider the following Rössler systems [Rössler, 1976a,b,
1979]:

ẋ = −y − z, ẏ = x+ a1y, ż = b1 − c1z + xz, (1)

ẋ = −y − z, ẏ = x+ a2y, ż = b2x− c2z + xz, (2)

ẋ = −y − z, ẏ = x, ż = −b3z + a3(y − y2), (3)

with arbitrary real parameters a1,2,3, b1,2,3, c1,2 ∈ R.
System (1) if c21 ≥ 4a1b1 has the following equilibria:

O±
1 = (a1p

±,−p±, p±), where p± =
c1±

√
c21−4a1b1
2a1

, (4)

which coincide for c21 = 4a1b1. It is known [Barrio et al.,
2011] that the equilibrium O+

1 is always unstable and O−
1

is linearly stable iff the parameters a1, c1 belongs to the
region {(a1, c1)

∣∣ a1 ≤ 1, c1 > 2a1} or {(a1, c1)
∣∣ a1 ∈

(1,
√
2), c1 ∈ (2a1,

2a1

a2
1−1

)}, and the parameter b1 satisfies

the inequalities: b∗1(a, c) ≤ b1 ≤ c21
4a1

, where

b∗1(a1, c1) =
a1

2(a2
1+1)2

[
2− a41 + c1a

3
1 + 2a21 − c1a1 + c21

+(c1 − a1)
√
a61 − 4a41 + 2c1a31 − 4a21 + c21

]
. (5)

As it was mentioned in [Algaba et al., 2015], in the region
of parameters where the equilibria O±

1 exist system (1)
is equivalent to system (2) with respect to the following
linear change of variables:

x → x+ a1p
+, y → y − p+, z → z + p+, (6)

and parameters a2 = a1, b2 = −p+, c2 = c1 + a1p
+.

System (3) for arbitrary real parameters a3, b3 ∈ R (a3 �=
0), has the following equilibria:

O+
3 =

(
0, 0, 0

)
, O−

3 =
(
0, a3+b3

a3
, −a3+b3

a3

)
. (7)

Stability analysis of O±
3 shows that if 0 < −a3 < b3, then

O+
3 is locally stale, and if 0 < b3 < −a3 < 2b3, then O−

3 is
locally stable.

For some values of parameters systems (1),(2),(3) exhibit
chaotic behavior. To get a visualization of chaotic attractor
one needs to choose an initial point in the basin of
attraction of the attractor and observe how the trajectory,
starting from this initial point, after a transient process
visualizes the attractor. An attractor is called a self-
excited attractor if its basin of attraction intersects with
any open neighborhood of an equilibrium, otherwise, it is
called a hidden attractor [Leonov et al., 2011, Leonov and
Kuznetsov, 2013, Leonov et al., 2015, Kuznetsov, 2016a].
It was discovered numerically by Rössler that in the phase
space of system (1) with parameters a1 = 0.2, b1 = 0.2,
c1 = 5.7 and system (3) with parameters a3 = 0.386,
b3 = 0.2 there exist chaotic attractors of different shapes,
which are self-excited with respect to both equilibria O±

1,3,
respectively.

One of the building blocks of chaotic attractor are embed-
ded unstable periodic orbits (UPOs) (see e.g. [Afraımovic
et al., 1977, Auerbach et al., 1987, Cvitanović, 1991]). A
proof of the existence of UPOs for discrete and continuous-
time dynamical systems can be done, for example, us-
ing a special analytical-numerical technique [Galias, 1999,
2006b, Galias and Tucker, 2008, Barrio et al., 2015].
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Fig. 1. The UPO uupo1 with period τ1 = 5.8811 (red) and the UPO uupo2 with period τ2 = 11.7586 (green) in system (1)
with parameters a1 = 0.2, b1 = 0.2, c1 = 5.7, stabilized using TDFC method.

Since for system (1) (and, also, (2)) corresponding results
about the existence of low-periodic UPOs were obtained
in [Galias, 2006a], further in this paper we will restrict
ourselves to the case of system (1).

One of the effective methods 1 for the numerical visu-
alization of the UPOs is the time-delay feedback control
(TDFC) approach, suggested by K. Pyragas [Pyragas,
1992]. The main idea behind the Pyragas’ approach is
to stabilize UPOs by constructing a control force propor-
tional to the difference between the current state of the
system and an earlier state of the system (delayed by some
time interval).

From the mathematical perspective, the Pyragas method
is as follows. Let uupo(t) be an UPO with period τ > 0,
uupo(t − τ) = uupo(t), satisfying a differential equation
u̇ = f(u). To compute the UPO, we add the TDFC:

u̇ = f(u) +KBC∗[u(t− T )− u(t)
]
, (8)

where B,C are column vectors, K > 0 is a feedback
gain and operator ∗ denotes transposition. If T = τ ,
then KBC∗[u(t − T ) − u(t)

]
= 0 along the UPO, and

the periodic solution of system (8) coincides with the
periodic solution of system the u̇ = f(u). There exist
various modifications of the TDFC that allow to calculate
the values of feedback gain and period adaptively, within
the stabilization procedure [Chen and Yu, 1999, Cruz-
Villar, 2007, Lin et al., 2010, Lehnert et al., 2011, Pyragas
and Pyragas, 2011, 2013]. Remark that TDFC has some
limitations (see e.g. [Hooton and Amann, 2012, Kuznetsov
et al., 2015]) which nevertheless do not occur in the Rössler
system.

For system (1) with parameters a1 = 0.2, b1 = 0.2,
c1 = 5.7, we solved time-delayed differential equation (8)
with B∗ = C∗ = (0, 1, 0) and for different values of
feedback gain K stabilized two UPOs, uupo1,2 , by the
trajectories on the time interval t ∈ [0, 1000] with initial
data u0 = (1, 1, 1) on [0,−τ1,2]. Using the feedback gain
K = 0.3 the trajectory tends to the UPO uupo1 with
period τ1 = 5.8811 2 , using the feedback gain K = 0.2

1 The first known approach to control chaos and detect the UPOs
was the so-called OGY method suggested by Ott, Grebogi, Yorke
[Ott et al., 1990]. The idea behind the method was to use a small
time-dependent perturbation in the form of feedback to an accessible
system parameter.
2 Periodic orbits in a continuous-time system often regarded as
period-k orbits in accordance with the smallest positive number k

the trajectory tends to the UPO uupo2 with period τ2 =
11.7586 (see Fig. 1), wherein uupo1,2 are also the solutions
of the initial system (1) (i.e. a system without the control).
Here the values of period τ1,2 can be found e.g. using the
algorithm by Lin et al. [2010].

Then for the initial points uupo
0 , chosen on the UPO

uupo
1 =

{
uupo1(t), t ∈ [0, τ1]

}
, either uupo

2 =
{
uupo2(t), t ∈

[0, τ2]
}
, we numerically compute the trajectory ũ(t, uupo

0 )
of system (8) without the stabilization (i.e. withK = 0) on
sufficiently large time interval [0, T = 500] (see Fig. 1b,1c).
One can see that on the initial small time interval [0, T1 ≈
60], even without the control, the obtained trajectory
ũ(t, uupo

0 ) traces approximately the ”true” periodic orbit
uupo(t, uupo

0 ). But for t > T1 without control the trajectory
ũ(t, uupo

0 ) diverge from uupo and wind on the attractorA 3 .

For systems (1),(2),(3) it was numerically verified
[Kuznetsov et al., 2014] the conjecture stating that the
maximum of the Lyapunov dimension on attractor is
reached at an equilibrium (a special case of the Eden’s
conjecture [Eden, 1989] which claims that for an arbi-
trary attractor its maximum of the Lyapunov dimension is
reached at an equilibrium or on a unstable periodic orbit.
In general, a conjecture on the Lyapunov dimension of
self-excited attractor [Kuznetsov, 2016b, Kuznetsov et al.,
2018] is that for a typical system the Lyapunov dimension
of a self-excited attractor does not exceed the Lyapunov
dimension of one of unstable equilibria, the unstable man-
ifold of which intersects with the basin of attraction and
visualize the attractor. In this article we are going to
verify numerically the Eden’s conjecture for system (1)

of distinct points {uj = Πj(u0) | j = 0, . . . , k−1} with u0 = Πk(u0)
on a certain Poincaré map Π.
3 Rigorous analysis of the time interval choices for reliable numerical
computation of trajectories for the Lorenz system leads to the
following results [Kehlet and Logg, 2013, Liao and Wang, 2014,
Kehlet and Logg, 2017]. The time interval for reliable computation
with 16 significant digits and error 10−4 is estimated as [0, 36], with
error 10−8 is estimated as [0, 26], and reliable computation for a
longer time interval, e.g. [0, 10000] in [Liao and Wang, 2014], is a
challenging task that requires significant increase of the precision
of the floating-point representation and the use of supercomputers.
Analytical aspects of this problem are concerned with the so-called
shadowing theory (see e.g. [Pilyugin, 2011]) which for some classes
of systems can guarantee the existence of a ”true” trajectory in the
vicinity of its approximation.
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(and (2)) using the procedures for estimation of finite-time
Lyapunov dimension.

2. LYAPUNOV DIMENSION, EDEN CONJECTURE
AND TOPOLOGICAL ENTROPY

Below we follow the concept of the finite-time Lyapunov
dimension, which is convenient for carrying out numer-
ical experiments with finite time. The finite-time local
Lyapunov dimension [Kuznetsov, 2016b, Kuznetsov et al.,
2018] can be defined via an analog of the Kaplan-Yorke
formula with respect to the set of finite-time Lyapunov
exponents:

dimL(t, u)=dKY
L ({LEi(t, u)}3i=1) =

j(t, u) +
LE1(t,u)+··+LEj(t,u)(t,u)

|LEj(t,u)+1(t,u)| , (9)

where j(t, u) = max{m :
∑m

i=1 LEi(t, u) ≥ 0}. Then
the finite-time Lyapunov dimension (of dynamical system
generated by (1) on compact invariant set A) is defined as

dimL(t,A) = sup
u∈A

dimL(t, u). (10)

The Douady–Oesterlé theorem [Douady and Oesterle,
1980] implies that for any fixed t > 0 the finite-time Lya-
punov dimension, defined by (10), is an upper estimate of
the Hausdorff dimension: dimH A ≤ dimL(t,A). The best
estimation is called the Lyapunov dimension [Kuznetsov,
2016b]:

dimL A = inf
t>0

sup
u∈A

dimL(t, u) = lim inf
t→+∞

sup
u∈A

dimL(t, u).

The notion of Lyapunov dimension is closely connected
(see e.g. [Boichenko et al., 2005]) with another important
characteristic of dynamical and control systems which is
called topological entropy. Topological entropy was pro-
posed in [Adler et al., 1965] as an analog of Kolmogorov-
Sinai entropy that can be introduced without considera-
tion of invariant measures. It plays an important role in
the development of large-scale control systems in which the
control tasks are distributed among numerous processors
via a communication network [Matveev and Pogromsky,
2017]. As the size of such systems grows, limitations caused
by the network finite capacity becomes irremovable via
the design of control algorithms. Here, topological entropy
comes to the fore, since according to the fundamental data
rate theorem [Nair et al., 2007] the rate at which the
channel is capable of reliable data communication should
exceed the topological entropy of the open-loop system.

It is known that Rössler system (1) is non-dissipative
in the sense that it does not possess a bounded convex
absorbing set [Leonov and Reitmann, 1986] containing a
global attractor. Nevertheless, for parameters a1 = 0.2,
b1 = 0.2, c1 = 5.7 in numerical experiments it is possible
to observe an invariant attracting set A which could be
localized numerically within a cuboid C (Fig. 2). On the
set A we define a dynamical system {ϕt}t≥0, generated
by equations (1). Here ϕt

(
(x0, y0, z0)

)
is a solution of (1)

with the initial data (x0, y0, z0).

In Fig. 2 is shown the grid of points Cgrid filling the
attractor: the grid of points fills cuboid C = [−9.5, 12] ×
[−11, 8] × [0, 23] with the distance between points equals
to 0.5. The time interval is [0, T = 500], k = 5000, τ =

x
y

z

Fig. 2. Localization of the chaotic attractor of system (1)
with parameters a1 = 0.2, b1 = 0.2, c1 = 5.7 by the
cuboid C = [−9.5, 12]× [−11, 8]× [0, 23] (red) and the
corresponding grid of points Cgrid (black).

0.1, and the integration method is MATLAB ode45 with
predefined parameters. The infimum on the time interval
is computed at the points {tk}N1 with time step τ = ti+1−
ti = 0.5. Note that if for a certain time t = tk the computed
trajectory is out of the cuboid, the corresponding value
of finite-time local Lyapunov dimension is not taken into
account in the computation of maximum of the finite-time
local Lyapunov dimension (e.g. there are trajectories with
initial data in cuboid, which tend to infinity).

For the considered set of parameters we use MAT-
LAB realization 4 of the adaptive algorithm of finite-time
Lyapunov dimension and Lyapunov exponents computa-
tion [Kuznetsov et al., 2018] and obtain the following
values:

(i) maximum of the finite-time local Lyapunov dimen-
sions at the points of grid, maxu∈Cgrid

dimL(t, u), at
the time points t = tk = 0.1 k (k = 1, .., 5000);

(ii) finite-time Lyapunov dimensions dimL(500, ·) for the
stabilized UPOs with periods τ1 = 5.8811 and τ2 =
11.7586;

(iii) approximate value of topological entropy which is
defined by the maximum of the finite-time local
topological entropies around the points of grid:
maxu∈Cgrid

Hloc

(
500, u

)
;

(iv) the values of finite-time local local topological entropy
on the two UPOs: Hloc

(
500, uupo1,2

)
.

For numerical computation of finite-time Lyapunov dimen-
sion for the UPO uupo =

{
uupo(t), t ∈ [0, τ ]

}
we choose an

initial point uupo
0 ∈ uupo and apply adaptive algorithm to-

gehter with Pyragas control to keep the computation along
the uupo(t). Starting from the same point uupo

0 on UPO we
also compute finite-time Lyapunov dimension along the
trajectory but without stabilization (i.e. when K = 0 in
(8)) which stops to trace the UPO and starts to wind on
the chaotic attractor. The corresponding results obtained
for two stabilized UPOs, uupo1 =

{
uupo1(t), t ∈ [0, τ1]

}
and

uupo2 =
{
uupo2(t), t ∈ [0, τ2]

}
, with periods τ1 = 5.8811

and τ2 = 11.7586, respectively, are presented in Fig. 3 and
Fig. 4. The results are given in Table 1.

4 Various realizations of algorithms that compute finite-time Lya-
punov exponents and Lyapunov dimension for discontinuous, piece-
wise continuous and fractional order systems can be found e.g.
in [Danca, 2015, 2018, Danca and Kuznetsov, 2018, Danca et al.,
2018].
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Sinai entropy that can be introduced without considera-
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control tasks are distributed among numerous processors
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2017]. As the size of such systems grows, limitations caused
by the network finite capacity becomes irremovable via
the design of control algorithms. Here, topological entropy
comes to the fore, since according to the fundamental data
rate theorem [Nair et al., 2007] the rate at which the
channel is capable of reliable data communication should
exceed the topological entropy of the open-loop system.

It is known that Rössler system (1) is non-dissipative
in the sense that it does not possess a bounded convex
absorbing set [Leonov and Reitmann, 1986] containing a
global attractor. Nevertheless, for parameters a1 = 0.2,
b1 = 0.2, c1 = 5.7 in numerical experiments it is possible
to observe an invariant attracting set A which could be
localized numerically within a cuboid C (Fig. 2). On the
set A we define a dynamical system {ϕt}t≥0, generated
by equations (1). Here ϕt

(
(x0, y0, z0)

)
is a solution of (1)

with the initial data (x0, y0, z0).

In Fig. 2 is shown the grid of points Cgrid filling the
attractor: the grid of points fills cuboid C = [−9.5, 12] ×
[−11, 8] × [0, 23] with the distance between points equals
to 0.5. The time interval is [0, T = 500], k = 5000, τ =
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Fig. 2. Localization of the chaotic attractor of system (1)
with parameters a1 = 0.2, b1 = 0.2, c1 = 5.7 by the
cuboid C = [−9.5, 12]× [−11, 8]× [0, 23] (red) and the
corresponding grid of points Cgrid (black).

0.1, and the integration method is MATLAB ode45 with
predefined parameters. The infimum on the time interval
is computed at the points {tk}N1 with time step τ = ti+1−
ti = 0.5. Note that if for a certain time t = tk the computed
trajectory is out of the cuboid, the corresponding value
of finite-time local Lyapunov dimension is not taken into
account in the computation of maximum of the finite-time
local Lyapunov dimension (e.g. there are trajectories with
initial data in cuboid, which tend to infinity).

For the considered set of parameters we use MAT-
LAB realization 4 of the adaptive algorithm of finite-time
Lyapunov dimension and Lyapunov exponents computa-
tion [Kuznetsov et al., 2018] and obtain the following
values:

(i) maximum of the finite-time local Lyapunov dimen-
sions at the points of grid, maxu∈Cgrid

dimL(t, u), at
the time points t = tk = 0.1 k (k = 1, .., 5000);

(ii) finite-time Lyapunov dimensions dimL(500, ·) for the
stabilized UPOs with periods τ1 = 5.8811 and τ2 =
11.7586;

(iii) approximate value of topological entropy which is
defined by the maximum of the finite-time local
topological entropies around the points of grid:
maxu∈Cgrid

Hloc

(
500, u

)
;

(iv) the values of finite-time local local topological entropy
on the two UPOs: Hloc

(
500, uupo1,2

)
.

For numerical computation of finite-time Lyapunov dimen-
sion for the UPO uupo =

{
uupo(t), t ∈ [0, τ ]

}
we choose an

initial point uupo
0 ∈ uupo and apply adaptive algorithm to-

gehter with Pyragas control to keep the computation along
the uupo(t). Starting from the same point uupo

0 on UPO we
also compute finite-time Lyapunov dimension along the
trajectory but without stabilization (i.e. when K = 0 in
(8)) which stops to trace the UPO and starts to wind on
the chaotic attractor. The corresponding results obtained
for two stabilized UPOs, uupo1 =

{
uupo1(t), t ∈ [0, τ1]

}
and

uupo2 =
{
uupo2(t), t ∈ [0, τ2]

}
, with periods τ1 = 5.8811

and τ2 = 11.7586, respectively, are presented in Fig. 3 and
Fig. 4. The results are given in Table 1.

4 Various realizations of algorithms that compute finite-time Lya-
punov exponents and Lyapunov dimension for discontinuous, piece-
wise continuous and fractional order systems can be found e.g.
in [Danca, 2015, 2018, Danca and Kuznetsov, 2018, Danca et al.,
2018].
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Fig. 3. Numerical computation of LE1(t, u
upo1
0 ) and dimL(t, u

upo1
0 ) = dKY

L ({LEi(t, u
upo1
0 )}31) for the time interval

t ∈ [0, 500] along the period-1 UPOs uupo1(t) (red) and along the trajectory integrated without stabilization
(blue). Each trajectory starts from the point uupo1

0 = (6.491,−7.0078, 0.1155) (dark red).
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Fig. 4. Numerical computation of LE1(t, u
upo2
0 ) and dimL(t, u

upo2
0 ) = dKY

L ({LEi(t, u
upo2
0 )}31) for the time interval

t ∈ [0, 500] along the period-2 UPOs uupo2(t) (green) and along the trajectory integrated without stabilization
(blue). Each trajectory starts from the point uupo2

0 = (5.3914,−3.2889, 0.1099) (dark green).

Table 1. Approximation of the finite-time Lya-
punov dimensions and entropy.

t = 60 t = 500

maxu∈Cgrid
dimL(t, u) 2.0209 2.0160

dimL(t, u
upo2
0 ) 2.0227 2.0200

dimL(t, u
upo1
0 ) 2.0406 2.0283

maxu∈Cgrid
Hloc(t, u) 0.1754 0.1250

Hloc(t, u
upo2 ) 0.1756 0.1571

Hloc(t, u
upo1 ) 0.3126 0.2219

The comparison of the obtained values of LE1(t, u
upo
0 ) and

dimL(t, u
upo
0 ) = dKY

L ({LEi(t, u
upo
0 )}31) computed along the

stabilized UPO and the trajectory without stabilization
gives us the following results 5 . On the initial part of the
time interval, one can indicate the coincidence of these
values with a sufficiently high accuracy. For the period-
1 UPO and for the unstabilized trajectory the largest
Lyapunov exponents LE1(t, u

upo1
0 ) coincide up to the 5th

decimal place inclusive on the interval [0, T 1
match ≈ 5τ1],

up to the 4th decimal place inclusive on the interval
[0, T 2

match ≈ 9τ1], up to the 3th decimal place inclusive on
the interval [0, T 3

match ≈ 12τ1]. After t > T 3
match the differ-

ence in values becomes significant and the corresponding
graphics diverge in such a way that the part of the graph

5 The idea to compare finite-time Lyapunov dimensions of trajec-
tories computed along UPOs with and without Pyragas control was
discussed in [Kuznetsov and Mokaev, 2019].

corresponding to the unstabilized trajectory is lower than
the part of the graph corresponding to the UPO (see
Fig. 3b). The same situation is observed for the period-
2 UPO, but the obtained time intervals are smaller: the
corresponding values of the largest Lyapunov exponents
LE1(t, u

upo2
0 ) coincide up to the 5th decimal place inclusive

on the interval [0, T 1
match ≈ 1.1τ2], up to the 4th decimal

place inclusive on the interval [0, T 2
match ≈ 3.6τ2], up to

the 3th decimal place inclusive on the interval [0, T 3
match ≈

5.6τ2].

For the considered values of parameters a1 = 0.2, b1 = 0.2,
c1 = 5.7 the Jacobian at the equilibria O±

1 has the
following simple eigenvalues

λ1(O
+
1 ) = 0.1930, λ2,3(O

+
1 ) = −4.5 · 10−6 ± 5.428i,

λ1,2(O
−
1 ) = 0.0970± 0.9952i, λ3(O

−
1 ) = −5.6870.

Therefore, we get

dimL O
+
1 = dKY

L ({Reλi(O
+
1 )}3i=1) = 3,

dimL O
−
1 = dKY

L ({Reλi(O
−
1 )}3i=1) = 2.0341.

(11)

Let us mention here previous results on dimension of
Rössler attractor. In [Peitgen et al., 2004, p. 644] it is
stated that the fractal dimension is between 2.01 and 2.02,
in [Fuchs, 2013, p. 80] it is stated that the correlation di-
mension is equal to 2.01. In literature we found the follow-
ing values for the Lyapunov dimension: 2.014 [Froehling
et al., 1981], 2.01 [Sano and Sawada, 1985], 2.0132 [Sprott,
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2003, 2007, Fuchs, 2013], and 2.09635 [Awrejcewicz et al.,
2018].

Using the formula of the local topological entropy of
a system around an equilibrium point: Hloc(ueq) =
1

ln 2

∑3
j=1 max{Re[λj(ueq)], 0}, we get the the following

values of the local topological entropy of system (1) around
O±

1 : Hloc(O
+
1 ) = 0.2784, Hloc(O

−
1 ) = 0.2799.

3. CONCLUSION

In this note we have confirmed the Eden conjecture for
the Rössler system (1) 6 and obtained the following rela-
tions between the Lyapunov dimensions: 3 = dimL O

+
1 >

2.0341 = dimL O
−
1 > 2.0283 = dimL(500, u

upo1) > 2.02 =
dimL(500, u

upo2) > 2.0160 = maxu∈Cgrid
dimL(500, u)

and various values of topological entropy: 0.2799 =
Hloc(O

−
1 ) > 0.2784 = Hloc(O

+
1 ) >

0.2219 = Hloc(500, u
upo1) > 0.1571 = Hloc(500, u

upo2) >
0.1250 = maxu∈Cgrid

Hloc(500, u).

Then for any invariant set or attractor contaning period-
1 UPO: A ⊃ uupo1 , we have the following lower-bound
estimates for the Lyapunov dimension

dimL A ≥ 2.0283 ≈ dimL(u
upo1),

and the topological entropy:

H(A) ≥ 0.2219 ≈ Hloc(u
upo1).

The above numerical values are close to the exact values
computed via multipliers of uupo1,2 . For the upper-bound
estimates one can use special analytical methods (see, e.g.
[Leonov, 1991, Boichenko and Leonov, 1998, Kuznetsov,
2016b]).
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Cvitanović, P. (1991). Periodic orbits as the skeleton
of classical and quantum chaos. Physica D: Nonlinear
Phenomena, 51(1-3), 138–151.

Danca, M.F. (2015). Lyapunov exponents of a class
of piecewise continuous systems of fractional order.
Nonlinear Dynamics, 81(1-2), 227–237.

Danca, M.F. (2018). Lyapunov exponents of a discon-
tinuous 4D hyperchaotic system of integer or fractional
order. Entropy, 20(5), 337.
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Rössler, O. (1976b). An equation for continuous chaos.
Physics Letters A, 57(5), 397–398.
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