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Abstract We show that the observed primordial perturba-
tions can be entirely sourced by a light spectator scalar field
with a quartic potential, akin to the Higgs boson, provided
that the field is sufficiently displaced from vacuum during
inflation. The framework relies on the indirect modulation
of reheating, which is implemented without any direct cou-
pling between the spectator field and the inflaton and does not
require non-renormalisable interactions. The scenario gives
rise to local non-Gaussianity with fNL � 5 as the typical
signal. As an example model where the indirect modula-
tion mechanism is realised for the Higgs boson, we study
the Standard Model extended with right-handed neutrinos.
For the Standard Model running we find, however, that the
scenario analysed does not seem to produce the observed
perturbation.

Introduction

The cosmological perturbations observed in the Cosmic
Microwave Background (CMB) are most commonly inter-
preted as a product of the inflaton field quantum fluctuations,
which are stretched to macroscopic scales during the infla-
tionary expansion in the early Universe.

Alternatively, the observed perturbation could be sourced
by fluctuations of spectator fields which have no dynamical
effect during inflation but affect the dynamics later on. Well-
known examples include the curvaton model [1–5] and the
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modulated reheating scenario [6,7]. In the latter, the inflaton
field decay width is modulated by spectator field fluctuations
which sources the curvature perturbation and typically gives
rise to significant non-Gaussianities [8,9]. Modulated reheat-
ing has been extensively studied in the past, most usually in
setups which rely on the direct coupling of the inflaton field
to light spectator scalars – for instance, the Higgs boson. We
refer the reader to Ref. [8] for the general formalism of mod-
ulated reheating, and to Refs. [9–12,12–17] for models with
a specific focus on the Higgs field. Further related work can
be found in Refs. [18–22]. Spectator field fluctuations can
also indirectly modulate the reheating, by introducing spa-
tial dependence in the inflaton decay width through kinematic
blocking and thereby source the primordial perturbation [11–
13,15,16,23]. In our previous work [23], we analysed the
consequences of the Standard Model (SM) Higgs field in this
framework, assuming that prior to the reheating process the
field was in the vacuum state determined by the equilibrium
configuration on a de Sitter background [24,25]. Although
the Higgs boson does give rise to a significant scalar pertur-
bation spectrum, such equilibrium state generically leads to
power spectra characterised by a blue tilt [26,27], incompat-
ible with the observed red-tilted CMB spectrum. In spite of
that, quite naturally, spectator fields not in their vacuum state
can generate the observed spectrum. Both in the modulated
reheating and curvaton models, primordial perturbations with
a red-tilted spectrum can be generated by spectator fields that
possess non-vanishing mean values and slowly roll towards
their respective vacuum states. In the curvaton setup, a cru-
cial requirement is that after the end of inflation the spectator
energy density needs to grow comparable to the dominant
energy component in order for the mechanism to source sig-
nificant perturbations. In the case of the Higgs boson, or of
any spectator field with a quartic potential, this is problematic
because the energy density of the field never dilutes slower
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than the dominant radiation component during the Hot Big
Bang epoch [13,28]. On the other hand, in the modulated
reheating scenario, such constraint can be avoided as the effi-
ciency of the mechanism does not necessarily depend on the
spectator energy density.

In this work we study a modulated reheating mechanism
that allows a Higgs-like spectator field h – that is, driven
by a quartic potential – to source the observed primordial
perturbation spectrum despite having a subdominant energy
density throughout the cosmic evolution. The setup is similar
to that of Ref. [26], but in this work we concentrate on the
limit of large spectator field values which allows to generate
the observed red spectral tilt. We discuss how the mechanism
could be implemented in extensions of the SM, with the pur-
pose of identifying the spectator field with the Higgs boson.
The main conclusion of our work is that a set-up with a quar-
tic spectator with no coupling to the inflaton and without
non-renormalizable operators can solely generate a curva-
ture perturbation that is consistent with current observational
bounds.

The model

Following Ref. [23], we consider a Lagrangian given by

L = 1

2
(∂φ)2 − 1

2
m2

φφ2 − λφ

4
φ4 + 1

2
(∂h)2 − λh

4
h4

+ i�̄∂/� − yφ�̄�φ − yh�̄�h + H.c. , (1)

where h is the spectator scalar field, the scalar singlet φ is
the inflaton and � is a Dirac fermion. The form of the infla-
ton potential considered in Eq. (1) is not a prerequisite of
our setup and is only used to provide a simple and concrete
template.

It is crucial to our purposes that the decay rate of the
inflaton is subject to the indirect modulation from a spectator
field,

�(h) = y2
φmφ

8π

[
1 − (2yhh)2

m2
φ

]3/2

, (2)

such that the decay channel is blocked by kinematics when
the spectator field has the value

h � mφ

2yh
≡ hkin . (3)

Since the Lagrangian also allows for decay of the specta-
tor field, for simplicity we restrict here to parameters such
that the effective mass of the spectator field,

√
3λh, is much

smaller than that of the fermion, yhh, and thus the process
can be safely ignored. It is worth pointing out that if we iden-
tify h with the SM Higgs boson, the remaining couplings to

SM fields, such as gauge bosons, can be safely neglected as
they do not lead to any significant depletion of the Higgs field
value over time scales relevant for the modulation effect, cor-
responding to O(1) Higgs oscillations after the inflationary
expansion [29]. Note also that while the tree-level action (1)
does not directly couple the inflaton to the Higgs boson, such
a coupling is generated by fermions at the loop level. How-
ever, because of the small values of the Yukawa coupling
yh that we are considering in this work, we neglect these
radiative effects.

Denoting by h∗ the field value at the horizon crossing
of a mode k∗ = a∗H∗ during inflation, we now focus on
the case h∗ > hkin, indicating that the inflaton decay is
kinematically blocked by the spectator field via the indi-
rect modulation mechanism. We assume the h-field to be
light if compared to the inflation scale, hence it fluctuates
locally around its VEV and the kinematic blocking of the
inflaton decay is thus lifted at different times in different
locations in the Universe. This implements the modulated
reheating mechanism [7] in our scheme and allows for the
production of significant curvature perturbations [8,13,23].
Specifically, we require that the spectator field effective mass
satisfies V ′′(h∗)/(3H2∗ ) < 0.01, which for our model trans-
lates to λhh2∗ < 0.01H2∗ . For h∗ < MP, the condition implies
�h∗ � 10−3, so the spectator field energy density is neces-
sarily subdominant with respect to the inflaton contribution.

As for the spectrum, at the equilibrium, spectator field
fluctuations in a de Sitter background result only in a blue
tilted spectra [26,27] (ns > 1) and therefore cannot source
the observed primordial perturbation. The situation is differ-
ent for field configurations far from equilibrium, i.e., in the
mean field limit h∗ >

√〈h2〉eq, when fluctuations around
the mean field value h∗ yield either red or blue tilts. In the
setup specified by Eq. (1), the out-of-equilibrium configura-
tion h∗ >

√〈h2〉eq corresponds to an atypical field config-
uration, or initial condition, which we suppose to be acci-
dentally realised in our observable patch. This is similar to
what is often assumed in the context of the curvaton sce-
nario, for example see [1]. Alternatively, one might think of
modifying the spectator field potential such that the initial
condition could be dynamically realised. Further study of
this question is however beyond the scope of this work. Here
we simply assume the mean field limit h∗ >

√〈h2〉eq due
to the phenomenological reason that it is required to get the
observed spectral tilt. Using the de Sitter equilibrium result√〈h2〉eq � 0.36H∗/λ1/4

h [25], the validity of the mean field

limit requires h∗ > 0.36H∗/λ1/4
h . Combining this with the

mass bound λhh2∗ < 0.01H2∗ , our constraints are specified
by

0.36

λ
1/4
h

<
h∗
H∗

<
0.1

λ
1/2
h

, (4)
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which further implies the bound λh < 0.006.

Analytical estimates

Simple analytical estimates of the spectrum and non-
Gaussianity of curvature perturbations produced by the indi-
rect modulation mechanism can be obtained in the limit
where the inflaton decays rapidly after the kinematic block-
ing is lifted. This occurs when h(tkin) = hkin for the first
time in the evolution of the spectator field value. In the dis-
cussion, we neglect the slow evolution of h during the infla-
tionary expansion and approximate its value at the end of this
process by hend � h∗. The spectator field starts to oscillate
when Hosc ≈ √

3λhh∗, and the field behaviour prior to the
first zero crossing can be approximated quite accurately by
[23]

h ≈ h∗
(

1 − 3

2
e
− 27

4
H√

3λhh∗
)

, (5)

where H ∝ a−3/2 for a Universe dominated by inflaton oscil-
lations in a quadratic potential.

In order to ensure the prompt decay of the inflaton field
during the first available window allowed by kinematics, we
impose that ρφ/ρtot falls below 10−5 as |h| < hkin during the
first half of the first h oscillation – i.e. the first period when h
moves from hkin through zero to −hkin. For ρφ/ρtot < 10−5,
the inflaton contribution to the number of e-folds from later
times, O(ρφ/ρtot)

∫
Hdt , can be neglected when studying

perturbations of order 
N ∼ 10−5. As a first approximation,
we can then approximate that the Universe changes from
matter to radiation domination at t = tkin, and from Eq. (5)
it follows that

Hkin(h∗) = 4

27

√
3λhh∗ ln

(
3h∗

2(h∗ − hkin)

)
. (6)

By using ρφ ∝ exp(− ∫
�dt), and estimating the integral

over the first window allowed by kinematics as
∫

�dt ∼
2�0

∫ tk
t0
dt , where t0 and tk are determined by solving Eq.

(5) for h(tk) = hkin and h(t0) = 0, the fast decay condition
− ∫

�dt > ln10−5 translates into the bound

h∗ � 0.21mφ yφ y
−1/2
h λ

−1/4
h . (7)

Here we have also assumed the limit hkin � h∗. The
numerical analysis presented below indeed confirms that this
inequality well determines the regime where our analytical
approximations are fully applicable.

The curvature perturbation in Fourier space can be com-
puted in terms of the δN expression [30] as

ζ(k∗) = N ′δh∗(k∗) + 1

2
N ′′δh∗(k∗)2 + · · · , (8)

where N is the number of e-folds from the horizon cross-
ing k∗ = a∗H∗ to a final constant energy surface after the
inflaton decay, a prime denotes differentiation with respect
to the field value h∗ at horizon crossing, and δhn∗ are con-
volutions. Throughout this work we concentrate on the limit
where the inflaton contribution to the curvature is negligible,
ζφ ≈ (1/

√
2ε∗)H∗/(2πMP) � 10−5, and therefore omit it

in all expressions.
When the condition in Eq. (7) is satisfied, we can well

approximate the evolution of the Universe using a sudden
transition from matter to radiation domination at tkin, which
yields [23] N ′ ≈ −(1/6)H ′

kin/Hkin, with Hkin given by
Eq. (6). Substituting this into Eq. (8), the power spectrum
of curvature perturbation becomes

Pζ (k∗) = H ′
kin

2

36H2
kin

(
H∗
2π

)2

≈ 1

36h2∗

(
H∗
2π

)2

+ O
(
hkin

h∗

)2

,

(9)

where in the last step we expanded Eq. (6) in the limit h∗ 

hkin. The spectral index is given by [31]

ns − 1 = −2ε∗ + 2
λhh2∗
H2∗

, (10)

where ε ≡ −Ḣ/H2 is computed at the horizon crossing.
Comparing our result with the observations, Pζ (k∗) =

(2.100 ± 0.030) × 10−9 and ns(k∗) = 0.965 ± 0.004 at the
pivot scale k∗ = 0.05 Mpc−1 [32], we find that the analytical
estimates agree with the measurements for h∗/H∗ � 580
and ε∗ � 0.018 (assuming λh � 10−8 so that the posi-
tive contribution from the second term in Eq. (10) is neg-
ligible). For h∗ � 580H∗, the assumed mean field con-
dition (4) implies λh � 1.5 × 10−13. Note also that the
derivation of the estimate (9) assumes the fast decay con-
dition in Eq. (7), which constrains from above the range of
λh values for which the analytical estimate can be used. For
instance, taking yφ = 1, yh = 10−3,mφ/H∗ = 0.1 and set-
ting h∗ = 580H∗, Eq. (7) yields λh � 1.7 × 10−12 and, for
this particular example, cases with larger values of λh need
to be studied numerically – see the “Results” further below.

The second order term in Eq. (8) contributes to the
local bispectrum with a non-Gaussianity amplitude fNL =
(5/6)N ′′/(N ′2) given by

fNL = 5

(
1 − H ′′

kinHkin

H ′2
kin

)
≈ 5 + O

(
hkin

h∗

)2

, (11)

where, in the last step, we have again expanded Eq. (6) in the
limit h∗ 
 hkin. The prediction fNL ∼ 5 is a characteristic
signal of our mechanism in the limit of fast decay (i.e. when
Eq. (7) holds), and when h∗ 
 hkin so thatO(hkin/h∗) terms
in Eq. (6) can be neglected. This analytical result is confirmed
by the numerical analysis presented below. We remark that
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this level of non-Gaussianity is still compatible with the cur-
rent bound f local

NL = −0.9 ± 5.1 [33] at the 1σ confidence
level. Importantly, the next generation surveys will reach the
sensitivity required to either detect the signal or rule out the
mechanism as the source of the primordial perturbation in the
aforementioned limits. In particular, upcoming large-scale
structure probes such as DESI and Euclid are expected to
constrain the primordial non-Gaussianity with uncertainties
of O(1) [34–36].

Numerical results

The analytical approximations we proposed apply to a regime
where the inflaton decays efficiently in the kinematically
allowed window prior to the first zero crossing of the specta-
tor field value. To go beyond this limit, we numerically solve
the following system of equations

ρ̇φ + 3Hρφ = −�(h)ρφ,

ḧ + 3Hḣ + λhh
3 = 0,

ρ̇r + 4Hρr = �(h)ρφ,

3M2
PH

2 = ρφ + ρr + 1

2
ḣ2 + λh

4
h4 , (12)

where � denotes the real part of Eq. (2). The initial condi-
tions are determined by matching the solution of the sys-
tem composed by Eq. (12) with the first line replaced by
φ̈ + 3H φ̇ + V ′(φ) = 0, at a matching time chosen well after
the end of inflation (so that 〈wφ〉 = 0) and well before tkin,
so that � = 0. The initial conditions for this second system
of equations are set by the inflationary slow roll solution,
together with ḣ∗ = 0, ρr∗ = 0 and the initial spectator field
value h∗. Note that modelling the inflaton decay by inserting
the diffusion term �φ̇ in its equation of motion would not be
justified as φ̇/� � φ when the decay takes place. We have
checked that our results do not depend on the choice of the
matching time within the given boundaries.

In our computation we set the inflaton parameters in
Eq. (1) to mφ = 1.55 × 109 GeV, λφ = 3.75 × 10−21

and yφ = 1, which yields H∗ ≈ 1.6 × 1010 GeV and
ε∗ ≈ 0.017 . . . 0.018 at the horizon crossing of the pivot
scale k∗ = 0.05 Mpc−1. The precise values vary depend-
ing on the reheating process controlled by the spectator field
couplings. For this choice of inflaton parameters, the infla-
ton contribution to the curvature perturbation is negligible,
ζ 2
φ ∼ 10−17, and will therefore be omitted henceforth. Note

also that our results are not limited to the precise form of the
inflaton potential used in Eq. (1). Any other potential leading
to same H∗ and ε∗, and reducing to a quadratic form at the
end of inflation, would give essentially the same results for
the curvature perturbation induced by the modulation mech-
anism.

Fig. 1 The amplitude of the power spectrum sourced by the modulation
mechanism computed at the pivot scale k∗ = 0.05 Mpc−1. Here H∗
denotes the Hubble rate at the horizon exit of k∗. The horizontal line
indicates the central value of the Planck data [32]. The circles mark the
smallest field value which satisfies the mean-field condition assumed in
our analysis

To compute the curvature perturbation, we construct a
grid of initial values h∗ (the results shown in the figures
are computed using a grid of 100 points and a step size

χ∗ = 0.78H∗). For each grid point we numerically evolve
the system Eq. (12) up to a common final ρ chosen such that
ρφ/ρ < 10−10 and determine the corresponding number of
e-folds N (h∗). From this data we numerically evaluate the
first and second derivatives of N (h∗) with respect to the ini-
tial field value h∗, corresponding to the coefficients of the
δh∗(k∗) powers in Eq. (8). For the spectator field perturba-
tions at the horizon crossing δh∗(k∗) in Eq. (8), we use the
linear perturbation theory result for the two point function
amplitude, Pδh∗(k∗) = (H∗/(2π))2, and neglect any non-
Gaussianity in δh∗(k∗). The spectrum of the curvature per-
turbation and the non-Gaussianity parameter fNL are then
given by

Pζ (k∗) = N ′(h∗)2
(
H∗
2π

)2

(13)

fNL(k∗) = 5

6

N ′′(h∗)
N ′(h∗)2 , (14)

and the spectral index by Eq. (10). All these quantities are
readily evaluated from the numerical data. The results forPζ ,
ns and fNL at the pivot scale k∗ = 0.05 Mpc−1 are shown in
Figs. 1, 2 and 3, respectively. We have checked that decreas-
ing the final value of ρ does not affect the results, confirming
thereby that the curvature perturbation has relaxed to a con-
stant well within the time span of the numerical computation.

The starting points of the lines in Figs. 1, 2 and 3, marked
by circles, correspond to the smallest field value for which
the mean field condition in Eq. (4) holds for each value of
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Fig. 2 The spectral index at the pivot scale k∗ = 0.05 Mpc−1. The
horizontal line indicates the central value of the Planck data [32]

Fig. 3 The local non-Gaussianity parameter fNL at the pivot scale k∗ =
0.05 Mpc−1. The green and orange horizontal dashed lines indicate the
1σ and 2σ confidence intervals of the Planck data [33], respectively

λh . The fast decay region, where the inflaton decay essen-
tially completes during the first zero crossing of the spec-
tator field, is approximately determined by the condition
Eq. (7), which for the parameters chosen as in the figures
reads h∗/H∗ � 0.6λ

−1/4
h . Increasing λh makes the inflaton

decay less efficient as �(0)/Hkin ∝ (
√

λh/h∗)−1 and, corre-
spondingly, the upper limit of the fast decay region decreases
with larger values of λh . As expected, in the fast decay regime
the numerical results agree relatively well with the analyti-
cal approximations in Eqs. (9), (10) and (11). For the cases
shown in Figs. 1 and 3, the analytical estimates for Pζ and
fNL (obtained by using the full form of Eq. (6) in Eqs. (9)
and (11)) respectively deviate less than 10% and 15% from
the corresponding numerical results in the fast decay region
h∗/H∗ � 0.6λ

−1/4
h .

Fig. 4 The dependence of Pζ on the Yukawa coupling yh . The hori-
zontal line indicates the central value of the Planck data [32]

For h∗ values not in the fast decay region (7), i.e. for
h∗/H∗ � 0.6λ

−1/4
h when parameters are chosen as in Figs. 1,

2 and 3, the decay is no longer completed during the first
window allowed by kinematics and the analytical estimates
cease to be applicable. For each value of λh in Fig. 3, the end
of the fast decay region h∗/H∗ ∼ 0.6λ

−1/4
h coincides with

the regime where fNL starts to grow towards large positive
values. Increasing h∗ further delays the inflaton decay suc-
cessively to the second, third, or following zero crossing of
the spectator field value, leading to a drastic amplification
of the non-Gaussianity and increasingly complicated non-
monotonous forms for both Pζ (h∗) and fNL(h∗), as seen
in Figs. 1 and 3, respectively. This appears to be a generic
feature of the setup, indicating that configurations not in the
fast decay regime (7) tend to generate unacceptably large
non-Gaussianity, possibly apart from tuned configurations
around points where fNL accidentally crosses zero.

As for the Yukawa coupling yh , larger values of this quan-
tity decrease hkin in Eq. (3). This narrows the window where
the inflaton decay is kinematically allowed around the specta-
tor zero crossings and makes the decay process less efficient.
Correspondingly, the region where the spectator field value
crosses zero more than once before the decay, i.e. the region
where the fast decay condition (7) does not hold, is pushed
towards smaller values of h∗ as yh grows. The dependence
of Pζ and fNL as functions of yh is illustrated in Figs. 4 and
5, respectively, for a sample of yh values.

Implications for inflationary model building

In our analysis, the inflaton potential affects directly only
the value of the spectral index Eq. (10). This is not specific
to our setup and applies also to generic modulated reheat-
ing and curvaton models when the curvature perturbation is
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Fig. 5 The dependence of fNL on the Yukawa coupling yh . The green
and orange horizontal dashed lines indicate the 1σ and 2σ confidence
intervals of the Planck data [33], respectively

dominated by the spectator field. We remark that a generic
prediction of such setups is a negligible tensor-to-scalar ratio
r , which follows from the low inflationary scale required
to keep the perturbations sourced by the inflaton subdomi-
nant. In particular, this means that potentials leading to too
large tensor perturbations in the inflaton dominated limit can
use the mechanism proposed here, as well as other mod-
ulated reheating or curvaton models, to achieve agreement
with observations. An extensive analysis of inflaton poten-
tials compatible with the curvaton framework was presented
in Encyclopaedia Curvatonis [37] and qualitatively similar
conclusions apply to our setup.

Embedding into the SM

The above analyses relied on the interplay between the infla-
ton, a generic spectator field characterised by a quartic poten-
tial and a fermion that interacts with both the scalar fields. By
regarding the parameters in the Lagrangian (1) as free and
working at the level of classical potential, the presented ana-
lytic and numerical computations have highlighted the limits
where the framework can match the CMB observations. In
Ref. [23] we have shown that the required modulation mech-
anism is already implemented in a well-known extension of
the SM, where the particle content considers a singlet infla-
ton and right-handed Majorana neutrinos. It is therefore of
interest to investigate whether the same setup allows for the
generation of the CMB through the dynamics discussed in
the present work.

If the spectator field is to be identified with the Higgs
boson, our analysis applies provided that the effective Higgs
potential can be approximated by the tree level form: V (h) =
λh(μ)h4/4. The renormalization scale is set to μ ∼ √

yt h,

with yt being the top-quark Yukawa coupling, correspond-
ing to the largest effective mass scale when h∗ 
 H∗.
The effective potential has a maximum where λh(hmax) =
−βh(hmax)/4 and the presented analysis, which used V =
λhh4/4 with a constant coupling, is applicable only for
|h| � |hmax|. Using SM two-loop beta functions in the
Rξ gauge and MS scheme, for a (world average) top-quark
mass of mt = 172.9 GeV we find λh(hmax) � O(10−5).
However, to produce the observed spectral tilt in the quar-
tic setup, we require λh(h∗) < 10−8 – see the “Discussion”
below Eq. (10). Moreover, even smaller values in the ball-
park of λh(h∗) � 10−11 are necessary to avoid large non-
Gaussianities, as shown in Fig. 3. The specific points where
fNL(h∗) in Fig. 3 accidentally crosses zero might represent a
possible caveat. However, although we have not studied this
in detail, it is expected that even such configurations lead
to too large non-Gaussianity in the form of the trispectrum
amplitude gNL ∝ N ′′′/N ′3. We thus conclude that, assum-
ing the SM running of couplings, the Higgs boson seemingly
fails to source the observed primordial perturbation through
the mechanism studied here.

One may of course ask if it is possible to circumvent
these problems in extended setups with new physics cou-
pled to the Higgs boson. Here we do not address this impor-
tant question in detail, but we briefly comment on possibly
viable phenomenological structures. First, a negative thresh-
old correction λh(h∗) → λh(h∗) + δλh � 10−10 could
make the scenario work, at the cost of fine-tuning δλh and
h∗ close to the threshold scale. Also new scalar degrees
coupled to the Higgs would act in favour of the scenario
as they contribute positively to βh and make it possible to
decrease λh(hmax) = −βh(hmax)/4. An interacting fixed
point λh(μ) � 10−11, βh(μ) = 0 at, or below, the scale h∗
would also work, and it would be interesting to investigate if
such fixed point could arise, for instance, from anomalously
broken scale invariance. More generally, the tree-level Higgs
potential could differ from the quartic form, for example due
to the non-minimal curvature coupling ξ Rh2 or couplings to
other fields with non-vanishing VEVs. This would change
the reheating dynamics compared to our analysis, leading
to potentially different conclusions. One could also think of
scenarios where h∗ is located beyond the vacuum present at
large field values, contrary to what we have assumed. Sup-
pose, for instance, that the corresponding minimum hmin is
brought to sub-Planckian values by the interaction with an
additional scalar field used to generate the right-handed neu-
trino Majorana masses via symmetry breaking. One could
then arrange h∗ > hkin > hmin, so that the reheating would
commence at h ∼ hkin and, if thermal corrections rapidly
lift the minimum hmin, the Higgs could relax into the elec-
troweak vacuum. A more careful assessment of these possi-
bilities, however, requires dedicated analyses that go beyond
the scope of this work.
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Conclusions

We have shown that a spectator field with a quartic poten-
tial can alone source the observed primordial perturbation
through the modulated reheating mechanism, realised with-
out direct couplings between the spectator and the infla-
ton field and by using only renormalisable operators. To
obtain a red spectrum , the spectator field needs to be suf-
ficiently displaced from vacuum during inflation, its quar-
tic coupling λh � 10−8 and, as in generic spectator mod-
els, the inflationary dynamics needs to yield a suitable value
for the slow roll parameter εH at the horizon crossing of
observable modes. The setup gives rise to primordial non-
Gaussianities of the local type. We find that when the inflaton
decay completes sufficiently fast (during the first spectator
oscillation that lifts the kinematical blocking associated to
the modulation channel), the bispectrum amplitude is set by
fNL ∼ 5, well in agreement with the current bounds and a
testable signature by upcoming surveys. For λh � 10−11,
this is the case for a relatively broad range of initial spectator
field values h∗. For larger values of λh , the inflaton decay
is slower which gives rise to a growing tension between
obtaining the observed amplitude of perturbations and
maintaining the non-Gaussianity within the observational
bounds.

Because the primordial perturbations are not directly
related to the inflaton potential, the proposed framework, as
well as modulated reheating and curvaton models in general,
allows a wide range of inflationary models to come in agree-
ment with present data, including those built on quadratic
and quartic potentials. The predicted scalar-to-tensor ratio is
generally negligible.

The scenario we discussed allows, in principle, for a
straightforward identification of the spectator field with
the Higgs boson in a popular extension of the Standard
Model with Majorana right-handed neutrinos. Although the
required indirect modulation mechanism can be effectively
implemented, matching the observed perturbation needs a
modification of the Standard Model renormalisation group
equations. In fact, using the Standard Model running and
approximating the Higgs effective potential with the tree-
level term, we find that the required value of the quartic
coupling, λh � 10−11, cannot be obtained in the regime
where a quartic form well approximates the full potential.
Whereas more precise studies that use the full form of
the Higgs effective potential are needed in order to fully
assess the possibility, we have briefly discussed promis-
ing phenomenological extensions of the Standard Model
which could allow the Higgs boson to source the observed
perturbations in the considered scenario based on a quar-
tic potential. It would be of interest to study how these
proposals could be realised in concrete particle physics
setups.
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