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The interaction of electrons with quantized phonons and photons underlies the ultrafast dynamics
of systems ranging from molecules to solids, and it gives rise to a plethora of physical phenomena
experimentally accessible using time-resolved techniques. Green’s function methods offer an invaluable
interpretation tool since scattering mechanisms of growing complexity can be selectively incorporated in
the theory. Currently, however, real-time Green’s function simulations are either prohibitively expensive
due to the cubic scaling with the propagation time or do neglect the feedback of electrons on the bosons,
thus violating energy conservation. We put forward a computationally efficient Green’s function scheme
which overcomes both limitations. The numerical effort scales linearly with the propagation time while the
simultaneous dressing of electrons and bosons guarantees the fulfillment of all fundamental conservation
laws. We present a real-time study of the phonon-driven relaxation dynamics in an optically excited narrow
band-gap insulator, highlighting the nonthermal behavior of the phononic degrees of freedom. Our
formulation paves the way to first-principles simulations of electron-boson systems with unprecedented
long propagation times.

DOI: 10.1103/PhysRevLett.127.036402

The time-dependent behavior of systems with strongly
interacting electrons and bosons (EBs) is attracting
increasing attention [1]. Plasmon-polariton physics in
semiconductors [2–4], light-enhanced electron-phonon
(e-ph) driven superconductivity [5–8], electron-magnon
hybridization-induced zero-bias anomalies in quantum trans-
port [9,10], manipulation of the thermoelectricity with cavity
photons [11], and the new field of light-driven chemistry
[12] which aims at modifying chemical reaction landscapes
through strong coupling of matter to quantized photons [13],
is a nonexhaustive list of possible applications. A fast and
first-principles tool to deal with the quantized nature of
bosons is thus an essential requirement for future material-
specific predictions. Furthermore, such a tool may also open
the way to more sophisticated approximations of purely
electronic systems, as the screened Coulomb repulsion can
be viewed as a bosonic propagator.
A full-fledged many-body method for realistic time-

dependent EB systems is challenging, however, as the
quantum nature of both species has to be taken into
account on the same footing [14,15]. Methods such as
the direct solution of the Schrödinger equation for the
electron-boson wave function or quantum Monte Carlo
methods [16], scale exponentially with system size
and/or time [17], while other methods, such as the
time-dependent matrix renormalization group [18], are
limited to model systems with a relatively small number of
basis functions. A computationally low-cost method is the

extension of time-dependent density-functional theory
(DFT) to quantized bosons [19–21], with a linear scaling
in time and a power-law scaling with system size.
Nevertheless, like standard DFT, this extension suffers from
a lack of systematicity in generating approximate func-
tionals, as well as issues in including nonadiabatic effects.
EB interactions can instead be treated systematically

through diagrammatic [22–24] and nondiagrammatic
[25–27] expansions within the nonequilibrium Green’s
function (NEGF) formalism [28–33]. NEGF gives access
to all time-dependent one-body observables, e.g., particle
density, current density, local moments, etc., as well as to
the (non)equilibrium spectral functions, and features a
power-law scaling with the size. The main drawback of
the NEGF is numerical rather than formal; the computa-
tional effort required to evolve the system by solving
the Kadanoff-Baym equations (KBEs) [28,29]—a cubic
scaling with the propagation time—limits the simulations
to small systems and short times.
In purely electronic systems, the NEGF time scaling can

be reduced from cubic to quadratic using the so-called
generalized Kadanoff-Baym ansatz (GKBA) [34], a
controlled approximation which has recently fostered
time-dependent studies in inhomogeneous systems, from
models, [35–38] to atoms [39] and organic molecules
[40–42]. An even lower scaling has been achieved this
year, by mapping the GKBA (with mean-field propagators)
integro-differential equations onto a coupled system of

PHYSICAL REVIEW LETTERS 127, 036402 (2021)

0031-9007=21=127(3)=036402(8) 036402-1 © 2021 American Physical Society

https://orcid.org/0000-0002-7725-4653
https://orcid.org/0000-0002-2499-9125
https://orcid.org/0000-0001-9572-966X
https://orcid.org/0000-0002-2026-253X
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.127.036402&domain=pdf&date_stamp=2021-07-15
https://doi.org/10.1103/PhysRevLett.127.036402
https://doi.org/10.1103/PhysRevLett.127.036402
https://doi.org/10.1103/PhysRevLett.127.036402
https://doi.org/10.1103/PhysRevLett.127.036402


ordinary differential equations (ODEs). This ODE scheme
scales linearly in time [43,44], thus making the NEGF a
competitor to the fastest quantum method currently avail-
able, i.e., time-dependent DFT [45]. Because of a lack of an
EB GKBA, however, this fast pace of progress is confined
to purely electronic systems.
This work reports on a threefold advance of the NEGF

approach to interacting EB systems. First, we derive an
EB GKBA, thereby reducing the computational effort for
NEGF EB time-propagations from cubic to quadratic.
Second, we rewrite the EB GKBA integro-differential
equations as a system of ODEs, achieving time-linear
scaling for EB systems. Third, we show that the EB GKBA
scheme is conserving, i.e., the scheme fulfills all funda-
mental conservation laws. These ingredients enable us to
study e-ph dynamics in an optically excited narrow band-
gap insulator and to shed light on the relaxation and
nonthermal behavior of acoustic phonons.
The electron-boson Hamiltonian.—We consider an EB

system with Hamiltonian ĤðtÞ given by

ĤðtÞ ¼ ĤelðtÞ þ Ĥbos þ Ĥel-bosðtÞ; ð1Þ

a sum of the electronic Hamiltonian ĤelðtÞ, the bosonic one
Ĥbos, and the EB interaction Ĥel-bosðtÞ. We do not specify
ĤelðtÞ, which can be any Hermitian combination of field
operators ĉq (ĉ†q) annihilating (creating) an electron with
quantum number q. We write the free bosonic part using the
displacement ϕ̂μ;1 ≡ ðâ†μ þ âμÞ=

ffiffiffi
2

p
and the momentum

ϕ̂μ;2 ≡ iðâ†μ − âμÞ=
ffiffiffi
2

p
, where âμ (â†μ) annihilates (creates)

a boson in mode μ. Introducing the composite index
μ̄ ¼ ðμ; ξμÞ with ξμ ¼ 1, 2, we have

Ĥbos ¼
X
μ̄ ν̄

Ωμ̄ ν̄ϕ̂μ̄ϕ̂ν̄; ð2Þ

where ½ϕ̂μ̄; ϕ̂ν̄� ¼ αμ̄ ν̄ and αμ̄ ν̄ ¼ δμνð 0
−i

i
0
Þξμξν . For the EB

interaction we consider

Ĥel-bosðtÞ ¼
X
μ̄pq

λμ̄pqðtÞĉ†pĉqϕ̂μ̄; ð3Þ

with the EB coupling strength λμ̄pq. The formalism, however,
is not limited to linear coupling in the bosonic modes [46].
The electron-boson KBE.—In the NEGF formalism the

fundamental unknowns are the electronic lesser and greater
G≶ single-particle Green’s function (GF) and the bosonic
counterparts, D≶. They satisfy the KBE, a system of
nonlinear integro-differential equations which for the
electronic part read (in matrix form)

½i∂⃗t − hðtÞ�G≶ðt; t0Þ ¼ ½Σ≶ ·GA þ ΣR ·G≶�ðt; t0Þ;
G≶ðt; t0Þ½−i∂⃖t0 − hðt0Þ� ¼ ½G≶ · ΣA þGR · Σ≶�ðt; t0Þ; ð4Þ

where ½A · B�ðt; t0Þ≡ R
dt̄Aðt; t̄ÞBðt̄; t0Þ, is a real-time con-

volution and XR=Aðt;t0Þ¼�θ½�ðt− t0Þ�½X>ðt;t0Þ−X<ðt;t0Þ�
is the retarded and advanced function. The quantity Σ is the
correlation part of the self-energy, whereas the time-local
mean-field part is incorporated in the single-particle
Hamiltonian hðtÞ ¼ hHFðtÞ þ hbosðtÞ, where hHFðtÞ is the
Hartree-Fock Hamiltonian and hbos;pqðtÞ¼

P
μ̄ λ

μ̄
pqðtÞϕμ̄ðtÞ

is the bosonic potential. The expectation value ϕμ̄ðtÞ ¼
hϕ̂H;μ̄ðtÞi (H denotes the Heisenberg picture) fulfills in
matrix form

�
iα

d
dt

− Ω̄
�
ϕðtÞ ¼

X
pq

λpqðtÞρqpðtÞ: ð5Þ

In Eq. (5) Ω̄≡ΩþΩT and ρðtÞ≡ ρ<ðtÞ ¼ −iG<ðt; tÞ is
the electronic single-particle density matrix.
The bosonic GFs are defined using the fluctuation

operators Δϕ̂H;μ̄ðtÞ ¼ ϕ̂H;μ̄ðtÞ − ϕμ̄ðtÞ:

D<
μ̄ ν̄ðt; t0Þ ¼ −ihΔϕ̂H;ν̄ðt0ÞΔϕ̂H;μ̄ðtÞi; ð6Þ

andD>
μ̄ ν̄ðt;t0Þ¼D<

ν̄ μ̄ðt0;tÞ. The expectationvalue ofΔϕ̂H;μ̄ðtÞ
is identically zero by construction, a property which sim-
plifies the bosonic KBE [22,47]:

½i∂⃗t − αΩ̄�D≶ðt; t0Þ ¼ α½Π≶ · DA þΠR · D≶�ðt; t0Þ;
D≶ðt; t0Þ½−i∂⃖t0 − Ω̄α� ¼ ½D≶ ·ΠA þ DR ·Π≶�ðt; t0Þα; ð7Þ

whereΠ is the bosonic self-energy. In theϕ-field notation, the
bosonic KBEs are first-order in time. The numerical solution
of the coupled Eqs. (4) and (7) is demanding (cubic scaling
with the number of time steps) and so far achieved only in
small model systems [22,24,47,48]. In this work, we consider
the GD approximation shown diagrammatically in Fig. 1, as

FIG. 1. The GD approximation for the electronic (upper panel)
and random phase approximation for the bosonic (lower panel)
self-energies.
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well as the Gd (Π ¼ 0) and mean-field (Σ ¼ Π ¼ 0, also
known as semi-classical Ehrenfest) approximation.
The electron-boson GKBA.—The KBE can be used to

generate an equation of motion (EOM) for the electronic
density matrix ρðtÞ and its bosonic counterpart ρbðtÞ≡
ρ<b ðtÞ ¼ iD<ðt; tÞ. As ρðtÞ and ρbðtÞ are single-time func-
tions, their calculation scales quadratically with the number
of time steps. Subtracting the two equations in Eqs. (4)
and (7) and then letting t0 → t yields

∂tρðtÞ þ i½hðtÞ; ρðtÞ� ¼ −½IðtÞ þ I†ðtÞ�;
∂tρbðtÞ þ i½αΩ̄ρbðtÞ − ρbðtÞΩ̄α� ¼ IbðtÞ þ ITbðtÞ; ð8Þ

with the electronic and bosonic collision integrals
defined as

IðtÞ ¼
Z

t

0

dt̄½Σ>ðt; t̄ÞG<ðt̄; tÞ − Σ<ðt; t̄ÞG>ðt̄; tÞ�;

IbðtÞ ¼ α
Z

t

0

dt̄½Π>ðt; t̄ÞD<ðt̄; tÞ −Π<ðt; t̄ÞD>ðt̄; tÞ�: ð9Þ

Evaluation of the collision integrals requires the time-
off-diagonal lesser and greater GFs; hence Eq. (8) is not a
closed system of equations for the density matrices. A
partial rescue is provided by the electronic GKBA [34], i.e.,
G≶ðt;t0Þ¼∓½GRðt;t0Þρ≶ðt0Þ−ρ≶ðtÞGAðt;t0Þ�, where ρ>ðtÞ≡
1̂−ρðtÞ. Taking GRðt;t0Þ¼−iθðt−t0ÞT fexpð−iR t

t0hðt̄Þdt̄Þg,
and GAðt; t0Þ ¼ ½GRðt0; tÞ�† at the mean-field level, the
lesser and greater electronic GF’s become functionals of
ρ<ðtÞ. However, to close Eq. (9), a GKBA-like form of the
lesser and greater bosonic GF is needed.
The form of the electronic GKBA is motivated by the

fulfillment of the mean-field KBE, but is augmented with a
correlated density matrix. Using the same argument we
have derived the bosonic GKBA [49]

D≶ðt; t0Þ ¼ DRðt; t0Þαρ≶b ðt0Þ − ρ≶b ðtÞαDAðt; t0Þ; ð10Þ

where ρ>b ðtÞ¼αþρbðtÞ. Taking DR=Aðt; t0Þ ¼∓ iαθ½�ðt −
t0Þ�e−iΩ̄αðt−t0Þ at the mean-field level (which coincides with
the noninteracting case [22]) the lesser and greater bosonic
GFs become functionals of ρ<b ðtÞ. The bosonic GKBA in
Eq. (10) applies even if Ω̄ depends explicitly on time (e. g.,
phonon driving [55]) [49]. The EB GKBA allows for
closing the system in Eq. (8) as both collision integrals I
and Ib become functionals of ρ and ρb. Together with the
equation for ϕ, Eq. (5), the dynamics of any EB system can
be simulated.
Conservation laws.—The EB GKBA scheme is conserv-

ing, i.e., all fundamental conservation laws are fulfilled
provided that the underlying diagrammatic approximation
to Σ ¼ Σ½G;D� andΠ ¼ Π½G;D� stems from the functional
derivatives of the Baym functionalΦ½G;D� [56] (for the EB
case, see, for example, [57,58]). Although Baym’s original

derivation pertains to self-consistent solutions of the KBE,
the whole proof goes through if the rhs’s of Eqs. (4) and (7)
are evaluated at GF’s G0 and D0 (and hence at Φ-derivable
self-energies Σ0 ¼Σ½G0;D0� and Π0 ¼Π½G0;D0�) different
from the GF’s G and D appearing in the lhs. In the
Supplemental Material [49] we show that conservation
laws are recovered up to terms proportional to the change
of Φ½G0;D0�, as G0 and D0 are changed according to the
transformation having the conserved quantity as generator.
Since Φ is invariant under these special transformations the
aforementioned terms vanish. In the context of particle
conservation this fact was pointed out in Ref. [59] forG0 the
one-shot GF of an electronic system. The argument is,
however, more general and holds for all conservation laws,
including energy conservation, as well as EB systems,
thereby enlarging enormously the class of conserving
approximations.
As the GD self-energy is Φ derivable and the GKBA

approximation forG andD is one out of the infinitely many
choices for G0 and D0, our scheme is fully conserving and,
in particular, it correctly balances the energy transfer from
electrons to bosons and viceversa. The Gd approximation
instead is not Φ derivable, bosons do not feel any feedback
from the electrons, and energy conservation is jeopardized.
Linear-time scaling of the electron-boson GKBA.—The

EB GKBA computational cost scales quadratically with the
number of time steps, as the domain of integration for IðtÞ
and IbðtÞ grows linearly in time. Remarkably, the time
scaling can be further reduced from quadratic to linear
without affecting the scaling with the system size. Let us
write the collision integrals of Eq. (9) in the GD approxi-
mation as

IplðtÞ ¼ i
X
μ̄r

λμ̄prðtÞGμ̄
rlðtÞ;

IbðtÞ ¼ −i
X
rl

½αλrlðtÞ� ⊗ GlrðtÞ; ð11Þ

where we introduced the tensor product ðv ⊗ wÞμ̄ ν̄ ¼ vμ̄wν̄

and the one-time vector Grl ¼ G>
rl − G<

rl with

G≶
rlðtÞ ¼

X
sq

Z
t

0

dt̄D≶ðt; t̄ÞG≶
rsðt; t̄Þλsqðt̄ÞG≷

qlðt̄; tÞ: ð12Þ

Differentiating Eq. (12) with respect to time yields

i
d
dt

GrlðtÞ ¼ ΨrlðtÞ þ αΩ̄GrlðtÞ
þ
X
k

½hrkðtÞGklðtÞ − GrkðtÞhklðtÞ�; ð13Þ

with Grlðt ¼ 0Þ ¼ 0, ΨrlðtÞ ¼ Ψ>
rlðtÞ −Ψ<

rlðtÞ, and
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Ψ≶
rlðtÞ ¼ ρ≶b ðtÞ

X
sq

ρ≶rsðtÞλsqðtÞρ≷qlðtÞ: ð14Þ

In obtaining Eq. (13) we used the Leibnitz rule of differ-
entiation, d=dtðR t

0 dt̄fðt; t̄ÞÞ ¼ fðt; tÞ þ R
t
0 dt̄ð∂=∂tÞfðt; t̄Þ;

and the fact that the GKBA GFs satisfy the mean-
field KBE, i.e., ið∂=∂tÞG≶ðt; t0Þ ¼ hðtÞG≶ðt; t0Þ and
ið∂=∂tÞD≶ðt; t0Þ ¼ αΩ̄D≶ðt; t0Þ. The equations for ρ, ρb,
Eq. (8), and G, Eq. (13), form a closed system of first-order
ODEs which is equivalent to the original EB GKBA
integro-differential equations. Since no integration over
time is needed, the EB ODE scheme scales linearly in time.
Numerical algorithms.—We have numerically checked

that the integro-differential and ODE formulations of the
EB GKBAyield the same results, up to numerical accuracy.
We implemented the former scheme in the CHEERS [60]
code. The algorithm for the bosonic case follows the
electronic algorithm closely, with the difference that the
time propagation is nonunitary as α and Ω̄ do not commute.
However, by defining the Hermitian matrices hb ¼
ð1=2ÞðαΩ̄þ Ω̄αÞ and Γ ¼ i=2ðαΩ̄ − Ω̄αÞ, inserting them
into the bosonic EOM, and absorbing Γ into the collision
integral, the bosonic equation gets the same structure as the
electronic one and can be solved using the same algorithm.
The linear-time propagation is done using the fourth-order
Runge-Kutta solver. In the Supplemental Material [49], we
provide numerical evidence of the performance and accu-
racy of the method in the paradigmatic Holstein model,
a hallmark of strongly interacting EB systems. The EB
GKBA is benchmarked against exact results as well as the
full numerical solution of the EB Kadanoff-Baym equa-
tions, finding a satisfactory agreement even in the strong-
coupling regime. The scaling with the system size is
determined by two parameters: the dimension of the
electronic basis, Ne, and the number of bosonic modes,
Nb. We emphasize that the method does not scale with the
number of electrons or bosons. In particular, the scaling is
OðN3

e × NbÞ and OðN2
e × N2

bÞ for computing electronic I
and bosonic Ib collision integrals, respectively.
Two band model.—To demonstrate the capabilities of

our method we turn to periodic systems, specifically a
model of a narrow band-gap insulator consisting of one
valence v and one conduction c band [61]. Due to system’s
translational invariance the momentum representation is
appropriate:

Ĥel¼
X
α;k

εαkĉ
†
αkĉαkþ

1

Nk

X
q;k;k0

Ucv
q ĉ†ckþqĉ

†
vk0−qĉvk0 ĉck: ð15Þ

Here Ucv
q is the Fourier transform of the interband soft

Coulomb interaction Ucv
ij ¼ U=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ji − jj2 þ 1

p
and Nk is the

number of k points. The e-e interaction is treated at the
mean-field level. The electron dispersion εαk is described
by two parameters: the bandwidth W and the band gap εg.

Henceforth we express all energies in units of εg and choose
U ¼ W=2 ¼ 1 [61,62]. The electronic system is coupled to
a single (μ ¼ 1) phononic branch

Ĥbos ¼
X
q

ωμqâ
†
μqâμq; ωμq ¼

ωD

π
jqj; ð16Þ

Ĥel-bos ¼
X
k;q

λμccðk; qÞĉ†ckĉckðâ†μq þ âμqÞ: ð17Þ

The coupling is momentum independent, λμccðk; qÞ ¼ λcc.
We consider acoustic phonons with linear dispersion
characterized by the Debye frequency ωD at the edge of
the Brillouin zone q ¼ �π (in units of inverse lattice
spacing). Initially the system is in the ground state, hence
the conduction band and the phonons are not populated,
neðkÞ ¼ nphðkÞ ¼ 0. We solve the EB GKBA equations
using a mesh of Nk ¼ 1500 points. In the k-space formu-
lation the scaling with the system size reduces to OðN2

kÞ,
see Supplemental Material [49].
In Fig. 2 we present the e-ph dynamics triggered by a laser

pulse of frequency ωP ¼ 1.4. Because ωP > εg, the c band
is populated at nonzero momentum �k0 [see the two domes
at t ≃ 0 in panel (a)]. With electrons in the c band, the e-ph
scattering becomes relevant, leading to the creation of
phonons, the subsequent redistribution of neðkÞ and
nphðkÞ occupations and, eventually, to the thermalization
of the electrons and low-momentum phonons as well as to
the generation and reabsorption of nonthermal phonons [63]
around the �k0 hot spots. For a typical value of the gap
εg ¼ 1.1 eV the frequency ωP corresponds to the 800 nm
wavelength of a Ti-sapphire laser. The kinetic energy of the
conduction electrons immediately after the pulse is then
0.22 eV yielding for the inverse temperature β ¼ 2.9 eV−1

[64] or approximately Te ¼ 4000 K. At the end of propa-
gation electrons and low-momentum phonons are thermal-
ized, see insets (c) and (d) in Fig. 2, with β ≈ 80,
corresponding in our example to Te ≈ Tph ¼ 160 K.
Signatures of the initially hot phonon distribution do instead
persist for much longer times, as can be seen from the side
bands at approximately �k0. The intermediate stages of the
dynamics are more complex, they are characterized by at
least two timescales (associated with ωD and λ2cc=ωD)
describing the rapid creation of the nonequilibrium phonons
and their slow thermalization.
This wealth of phenomena cannot be observed in simpler

approaches, such as those based on the two-temperature
model [65], semiclassical Boltzmann transport equation
[66], or even in NEGF theories with frozen phonons
[67–69]. The coupled e-ph dynamics can be studied using
the nonequilibrium dynamical mean field theory (DMFT)
[70]. However, in this scheme nonlocal correlations are
difficult to incorporate [71]. Furthermore, DMFT applica-
tions have been so far limited to the Hubbard-Holstein
model [72–74] with optical phonons, which simplifies the
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momentum treatment. Here we demonstrate that it is
possible to consider realistic e and ph dispersions and
do the propagation linearly in time. Applications to light
enhanced superconductivity [5,8,55], formation and melt-
ing of the excitonic orders [75], ultrafast band gap control
[76], and many other emerging light-induced phenomena
[77] are envisaged.
Conclusions.—We have derived an EB GKBA approxi-

mation for bosonic propagators and put forward a NEGF
scheme to simulate the correlated dynamics of EB systems.
The formal advantages of the methods are (i) approxima-
tions can be systematically improved by a proper selection
of Feynman diagrams and (ii) all fundamental conservation
laws are fullfilled provided that the self-energy diagrams
are Φ derivable. The energy conservation makes the EB
GKBA suitable for studying a plethora of situations where

electrons and, for example, phonons can exchange energy;
our example being carrier relaxation in a pumped insulator
system with acoustic phonons. The computational effort of
solving the EB GKBA equations in the GD approximation
scales linearly in time; they can also be implemented in
more advanced diagrammatic approximations using the
same strategies outlined in Ref. [44]. The inclusion of e-e
interactions in the linear-scaling scheme, as discussed in
Refs. [43,44], is straightforward. We therefore believe that
our proposed method provides an efficient and accurate
alternative to the existing computational tools for models as
well as first-principles simulations of interacting electrons
and bosons out of equilibrium.
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