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Abstract
Chemical communication plays an important role in mammalian life history decisions. Animals send and receive information 
based on body odour secretions. Odour cues provide important social information on identity, kinship, sex, group member-
ship or genetic quality. Recent findings show, that rodents alarm their conspecifics with danger-dependent body odours after 
encountering a predator. In this study, we aim to identify the chemistry of alarm pheromones (AP) in the bank vole, a common 
boreal rodent. Furthermore, the vole foraging efficiency under perceived fear was measured in a set of field experiments in 
large outdoor enclosures. During the analysis of bank vole odour by gas chromatography–mass spectrometry, we identified 
that 1-octanol, 2-octanone, and one unknown compound as the most likely candidates to function as alarm signals. These 
compounds were independent of the vole’s sex. In a field experiment, voles were foraging less, i.e. they were more afraid in 
the AP odour foraging trays during the first day, as the odour was fresh, than in the second day. This verified the short lasting 
effect of volatile APs. Our results clarified the chemistry of alarming body odour compounds in mammals, and enhanced 
our understanding of the ecological role of AP and chemical communication in mammals.

Keywords Bank vole · Alarm pheromone · Mammalian body odour · Predator–prey interactions

Introduction

Predator–prey interactions are among the strongest drivers 
of evolution (Abrams 1986, 2000; Yoshida et al. 2003). In 
the context of an evolutionary arms race, early recognition 
of predation risk by prey is essential for prey survival and 
fitness. Cues of increased predation risk range from very 
reliable cues like sighting of a predator or its direct attack 
(Blumstein et al. 2000; Van der Veen 2002), to more general 
and less accurate ones like signs or markings of predator 

revealing its presence or visit in vicinity. These signs include 
odorous faeces or other scent cues (Kats and Dill 1998). 
However, these cues do not necessarily have to originate 
from the predator, as the other option for information on 
predator are cues carried by conspecific prey, which often 
can even be more reliable than a mere predator odour (Blum-
stein et al. 2000; Randler 2006; MacLean and Bonter 2013).

After perceiving increased predation risk, multiple 
mechanisms and adaptations by prey animals are possible, 
from simple immediate behavioural responses to long-term 
physiological or even intergenerational adaptations (Abrams 
2000). Anti-predatory behaviours employed in prey range 
from simple avoidance of high-risk areas (Ferrero et al. 
2011; Clinchy et al. 2013; Pérez-Gómez et al. 2015) and 
freezing to decrease detectability (Wallace and Rosen 2000; 
Sundell and Ylönen 2004), over changes in vigilance and 
foraging (Brown 1999; Ylönen and Brown 2007; Embar 
et al. 2011), to drastic changes in the reproductive behav-
iours (Ylönen and Ronkainen 1994; Sih 1994; Mappes and 
Ylönen 1997; Mönkkönen et al. 2009; Haapakoski et al. 
2012, 2018; Sievert et al. 2019).

If a prey individual survives a direct encounter with 
a predator, it may increase its own and its conspecifics’ 
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survival and later fitness by signalling predator presence 
intraspecifically. Several means of intra-species predator 
communication have been studied in animals, from sim-
ple group flight behaviours in birds (Adamo and McKee 
2017) to elaborate vocal signalling in primates (Ouattara 
et al. 2009) and Mungotinae (Townsend et al. 2012; Col-
lier et al. 2017). Another pathway of communication is 
fear or risk signalling body secretions or alarm phero-
mones (AP). These are widespread in invertebrates, such 
as sea anemones (Howe and Sheikh 1975), ants (Crewe 
and Blum 1970b), aphids (Bowers et al. 1972; Beale et al. 
2006) or mites (Kuwahara et al. 1989), but also occur in 
vertebrates such as fish (von Frisch 1938; Wisenden et al. 
2004; Mathis and Smith 2008). In the last two decades, a 
growing number of studies were able to show the presence 
of AP also in mammals, such as Wistar rats (Kiyokawa 
et al. 2004; Gutiérrez-García et al. 2007; Inagaki et al. 
2009, 2014), C57BL/6J and OMP-GFP mice (Brechbühl 
et al. 2013), Cabrera voles (Microtus cabrerae) (Gomes 
et al. 2013), and even in domestic cattle (Aubrac breed) 
(Boissy et al. 1998) and pigs (Vieuille-Thomas and Signo-
ret 1992). Several of the aforementioned species live in 
social groups, so the secretion of AP serves to warn the 
group, family or colony.

While the structure of AP remains unresolved for most 
mammalian species, it has been identified in, for exam-
ple, aphids (Bowers et al. 1972), sea anemones (Howe and 
Sheikh 1975), and several insects (Heath and Landolt 1988; 
Kuwahara et al. 1989). Work on lab rodents has allowed for 
the analyses of alarm pheromones in Wistar rats (Inagaki 
et al. 2014), and C57BL/6J and OMP-GFP mice (Brechbühl 
et al. 2013).

In this study, we use the term “pheromone” to indicate 
semiochemical communication between individuals of the 
same species, as opposed to allelochemicals which facilitate 
communication between two different species (Dicke and 
Sabelis 1988; Sbarbati and Osculati 2006). We acknowl-
edge that the secretion discussed in this study may have 
allelochemical properties, but there is no evidence of this 
in mammals yet.

Semiochemical communication is of great importance in 
mammals (Müller-Schwarze 1983; Dehnhard 2011; Apps 
2013). It is used to convey a wide array of information, 
among others reproductive status (Pankevich et al. 2004), 
immunocompetence (Spehr et  al. 2006), stress (Gomes 
et al. 2013) and effects in the mate choice (Roberts et al. 
2010). This does not only occur in small mammalian spe-
cies (Gomes et al. 2013; Inagaki et al. 2014), but also in 
large ones, e.g. muskox (Ovibos moschatus) and giant pan-
das (Ailuropoda melanoleuca) (Flood 1992; Wilson et al. 
2018), as well as in primates (Evans 2006; Setchell et al. 
2011) and humans (Stern and McClintock 1998; Thornhill 
and Gangestad 1999).

Previous behavioural studies have already shown alarm 
pheromone effects on reproductive behaviour in bank voles, 
specifically differences in the number of offspring (Haapa-
koski et al. 2018), the amount of parturitions (Sievert et al. 
2019), and several transgenerational effects (Sievert et al. 
2020). While the effects of an alarm pheromone exposure 
have been studied, the actual nature remains unclear. This 
study combines two goals with two different experimental 
designs: first to identify the chemicals involved in semio-
chemically signalling alarm in bank voles and second, to 
verify the effects of these alarm compounds on behavioural 
decisions of bank voles in the field compared to direct preda-
tor presence cue in form of predator odour. In the labora-
tory study, we sampled vole-derived volatile organic com-
pounds (VOC) after exposing our experimental bank voles 
to three different stimuli: a live predator (P), handling by a 
researcher (H), and no stimulus (C). The VOCs were col-
lected by dynamic headspace sampling and analysed by gas 
chromatography-mass spectrometry (GC–MS). In the field 
study, we investigated how the presence of alarm phero-
mone, compared to predator odour and a control, shapes 
the foraging effort of voles over time. For the field part of 
the experiment, we predicted alarm pheromones to carry 
important but sensitive information, and expected to see only 
short-time effect of volatile APs compared to more long-
lasting risk cue of predator odours.

Materials and methods

Study animals and site

The bank vole (Myodes glareolus) is one of the most com-
mon small rodents living in a variety of northern temperate 
and boreal European forest habitats west of the Urals (Sten-
seth 1985). The species is granivorous-omnivorous, with 
their diet consisting mainly of seeds and buds, but also of 
other plant materials or invertebrates (Hansson 1979; Eccard 
and Ylönen 2006). In Central Finland, where this work was 
conducted, bank voles breed three to five times per season, 
which lasts from May until September (Mappes et al. 1995; 
Koivula et al. 2003).

Bank voles are preyed upon by a diverse predator assem-
blage, including least weasels (Mustela nivalis) and stoats 
(Mustela erminea) (Ylönen 1989; Meri et al. 2008). The 
least weasel is an especially effective hunter of voles due to 
their size and excellent hunting skills, least weasels are likely 
able to kill bank voles whenever the two species come into 
direct contact (Tidhar et al. 2007; Haapakoski et al. 2012).

We conducted our study at Konnevesi Research Station in 
Central Finland (62°37′N, 26°20′E). In the laboratory, males 
and females were maintained in the same room. The adult 
voles used in the study were wild-caught individuals that 
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were housed in the lab during the winter months preceding 
the study period. Winter colonies are formed from the last 
cohort of voles of the previous summer. Thus, their age at 
the time of the experiment is about 7 months. The winter 
population is housed on a short photoperiod (8L:16D) at 
around 17 °C throughout the winter and male voles’ testes 
are abdominal and female vaginas are closed. Samples were 
taken from non-reproductive animals, to minimize contami-
nation related to oestrus cycles or sexual maturity. All ani-
mals were individually marked with ear tags (#1005-1L1, 
National Band & Tag Company, Newport, KY, USA). Voles 
were kept individually in 42 cm × 26 cm × 15 cm transpar-
ent cages with wire mesh lids and supplied with ad libitum 
water and food. 7 days prior to sampling voles were placed 
into smaller 24 × 18 × 14 cm cages, equipped with the glass 
sampling container. The bedding materials in each cage con-
sisted of wood shavings and hay.

We a s e l s  w e r e  h o u s e d  i n d i v i d u a l l y  i n 
60 cm × 160 cm × 60 cm cages in an outdoor shelter. Each 
cage had a nest box and wood shavings and hay as bedding. 
Throughout the experiment (and during the two-week period 
before its initiation), weasels were exclusively fed dead bank 
voles.

Treatments and VOC sampling

One week before sampling, voles were changed to the small 
sampling cages containing their usual bedding, including a 
glass sampling container with a volume of 250 ml covered 
with a dark cardboard sleeve to simulate a safe refuge. This 
served to minimize the stress to the vole as much as possible. 
The control (C) treatment was achieved by switching the 
glass container for a clean one. The lid to the glass container 
was closed as soon as the vole entered it voluntarily. Every 
lid was fashioned with an inlet and outlet and the inside of 
each lid was covered with a sheet of polytetrafluoroethylene 
to prevent reactions of the VOC with the lid. Once the lid 
was attached, the sampling of the air from the chamber to get 
the control sample was started. The handling (H) treatment 
consisted of 3 min of simulated standard handling proce-
dures by the same researcher for every sampling (sexing, 
checking ear tag, checking PIT tag etc.) after which the ani-
mals were immediately transferred to a sampling container. 
For the predator (P) treatment, a vole in a live trap (Ugglan 
Special, Grahnab AB, Gnosjö, Sweden), was introduced into 
a weasel cage for 3 min. Afterwards, the vole was directly 
transferred into the sampling container. Each vole was sam-
pled for VOCs individually.

Containers were cleaned at 75 °C for 20 min with water 
before and between sampling bouts. Pressurized (Gardner 
Denver Thomas GmbH, Puchheim, Germany) and filtered, 
both through an air filter (Wilkerson model M03‐C2‐X00; 
Wilkerson Corp., Richland, MI, USA) and through active 

charcoal, inlet air was introduced into glass containers at 
a flow rate of 255–260 ml  min−1. After 20 min of flushing 
air through the tubes and filters, but not the sampling con-
tainers, VOC emissions were collected for 20 min (length 
determined with pilot samples) into pre-conditioned car-
tridges filled with 200 mg Tenax TA (60/80 mesh, Markes 
International, UK) positioned at the outlet of the glass con-
tainer. Cartridges were connected via clean silicone tubes 
to a vacuum pump (Bühler Technologies GmbH, Ratingen, 
Germany), which pulled air through the cartridges with a 
flow rate of 240 ml  min−1. Inlet and outlet airflows were 
calibrated with a gas flow calibrator (mini Buck calibrator, 
Buck, USA).

After collection, cartridges were stored at 4 °C for a 
maximum of 3 weeks before analysis. Blanks (collected 
from empty glass containers) were also sampled with 
the same method to identify potential contaminants. The 
blanks were collected daily from the room where the VOC 
collection took place and from inside the weasel cages to 
exclude a potential contamination of weasel odour in our 
samples. Analysis of VOCs collected into the cartridges was 
performed by GC–MS (7890A GC and 5975C VL MSD; 
Agilent Technologies, USA) with samples thermally des-
orbed with an automated thermal desorption unit (TD-100; 
Markes International Ltd, UK). Samples were desorbed at 
250 °C for 10 min, and cryofocused at − 30 °C in split-
less mode. The column used to separate molecules was an 
HP5-MS (60 m × 0.25 mm × 0.5 µm, Agilent, USA). The 
chromatographic program was set up as follows: 40 °C at the 
start with a hold of 2 min, a 3 °C  min−1 temperature ramp 
until 210 °C, and then a 10 °C  min−1 temperature ramp to 
300 °C. This last temperature was held for 5 min to clean 
the column. The carrier gas was helium. VOC identification 
was conducted via comparison with a series of analytical 
standards [see Saunier and Blande (2019)], comparison of 
mass spectra to the NIST and Wiley libraries and the cal-
culation of Kovats indices (through the injection of alkanes 
 C8–C20) with comparison to available literature (Adams 
2007) (https:// webbo ok. nist. gov/). The following analytical 
standards were used: 2-hexenal, 3-hexen-1-ol, benzaldehyde, 
3-hexen-1-ol acetate, nonanal, benzyl nitrile, methyl salicy-
late, alpha-pinene, beta-pinene, beta-myrcene, alpha-phel-
landrene, 3-carene, limonene, eucalyptol, ocimene, linalyl 
acetate, caryophyllene, bisabolol. Once the identification 
was done, the quantification for each compound was real-
ized based on calibration curves obtained with the injec-
tion of analytical standards used for identification. Then, 
we normalized the quantity obtained according to the inlet 
and outlet flows as well as the time of collection (see below).

We provide the experimental m/z spectra of 2-ocatanone, 
1-octanol, and unknown compound 7 (Appendix 1), along 
with the theoretical NIST spectra for 2-ocatanone and 
1-octanol (Appendix 2) in the Supplemental Material.

https://webbook.nist.gov/
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A total of 23 voles was used in this experiment, 13 for 
the C treatment and the same ten animals for both H and P.

Field experiment

Field study was conducted using five 0.25-ha outdoor enclo-
sures close to the Konnevesi Research Station in Central 
Finland (Ylönen and Eccard 2004) during July and August. 
Eight voles (four of each sex) were released in five enclo-
sures each. With two repetitions, this resulted in 80 voles 
total. The enclosures were emptied of other rodents by live 
trapping before each replication. One week after releasing 
the voles, three wooden boxes (60 × 40 × 30 cm), with lids, 
about 10 m apart from each other, were arranged in a tri-
angle at the centre of each enclosure. Each box contained 
one odour cue, control (C), predator odour (PO) or alarm 
pheromone (AP). The 1 dl odour cues were obtained as 
described in Sievert et al. (2020), i.e. clean wood shaving, 
soiled bedding from weasel cages, and bedding from weasel 
exposed voles, respectively. Each box contained further a 
seed tray for determining foraging efficiency of voles under 
each treatment using the giving-up-density (GUD) method 
(Brown 1988) (explained in the next paragraph). The trays 
were lidless boxes (19 × 19 × 6 cm) containing 8 dl of sand 
into which 20 unhusked sunflower seeds were mixed. The 
foraging patch was renewed each day, the sand was sieved 
and the remaining untouched seeds were counted to obtain 
the GUD.

Brown (1988, 1999) framed the harvest rate an animal 
makes at a given patch as a balance of the energetic gains 
and costs attributed to foraging effort, predation, and missed 
opportunity costs. The density of food remaining in a patch 
after the forager stops foraging is called a giving‐up density 
(GUD) (Brown 1999) and reflects the point where the energy 
remaining in the patch is equal to or outweighed by the 
combined costs to the forager. The GUD, as a method, has 
been adapted to test a large variety of elements affecting the 
strategic decisions animals take (Bedoya-Perez et al. 2013) 
and has been widely applied as a measure for habitat use 
(Ylönen et al. 2002; Orrock et al. 2004; Bleicher et al. 2018). 
In predator–prey studies, a low GUD (more consumed) is 
interpreted as an indicator of low perceived predation risk, 
while a high GUD (less consumed) is an indicator of a high 
perceived predation pressure(Brown 1999; Bedoya-Perez 
et al. 2013; Bleicher 2017).

Data analysis

The Emission Rates of VOCs collected by dynamic head-
space sampling (ER) were calculated with the following 
formula:

with ER expressed in ng *  h−1 *  vole−1. X is the compound 
quantity (ng), Ai and Ao are the inlet and outlet air flows (ml 
*  min−1), respectively, and t is the sampling time in h.

Statistical analyses were performed with the R software 
(R Core Team 2021). Partial Least Squares Discriminant 
Analysis (PLS-DA) was performed on ER for all treat-
ments using the package ‘vegan’ (Oksanen et al. 2020) and 
‘RVAideMemoire’ (Hervé 2021) with a cross-validation 
based on 50 submodels (fivefold outer loop and fourfold 
inner loop). Pairwise tests were performed based on PLS-
DA with 999 permutations to highlight the differences 
between treatments. The PLS-DA graphics were drawn 
with ‘MetaboAnalystR’ (Chong and Xia 2018; Chong 
et al. 2019). The Variables Importance for Projection (VIP) 
scores, obtained through PLS-DA, were used to select the 
compounds of interest (the ten compounds with the highest 
scores). Kruskal–Wallis tests followed by Nemenyi post hoc 
tests were done for these components of interest to compare 
the ER.

For the GUD measurements, generalized linear mixed 
models (GLMM) with a Poisson distribution were calcu-
lated, ‘lme4’ (Bates et al. 2015). To achieve the best model 
fit, first the interaction was removed, then other factors, only 
leaving Treatment for the simplest model. Each treatment 
was compared to the C (control) treatment. The most fitting 
model was chosen based on AICc, package ‘MuMIn’ (Bar-
ton 2020). A model was considered the best if the difference 
in AICc from the next model was greater than 2.5. Appropri-
ate random effects were chosen by AICc.

All plots were generated with ‘ggplot2’ (Wickham 2016) 
and ‘MetaboAnalystR’ (Chong and Xia 2018; Chong et al. 
2019).

Results

Emission rates

To investigate differences at the compound level, PLS-DA 
was performed for the emission rates of the individual com-
pounds emitted for each treatment (Fig. 1). A global per-
mutation test of the PLS-DA showed significant differences 
(PLS-DA, 999 permutations, P = 0.001), while a pairwise 
permutation test confirmed these (PLS-DA, 999 permuta-
tions, P = 0.001) for all three pairwise comparisons. An 
analysis of the ten compounds of interest revealed signifi-
cantly higher ER in the P treatment compared to both H and 
C, analysed by a Kruskal–Wallis test (Table 1). None of the 
ten compounds was detected in the C samples, and five were 
detected in the H samples at a low rate (Fig. 2). An analysis 

ER =
X ∗ Ai

t ∗ Ao
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focusing on sex differences for the ten compounds found no 
significant differences.

Giving‑up‑densities

The effects of predation risk cue and AP on the GUDs were 
similar during the first day of the experiment. Voles foraged 
on average 1.25 seeds less in the PO patch (GLMM, df = 6, 
P = 0.0403) compared to the C patch during the first day 
(Fig. 3). On the second day (Fig. 3), the voles foraged overall 
about 30.2% more (GLMM, df = 6, P = 0.004) but signifi-
cantly more, about 74.3% more in the AP patch (GLMM, 
df = 6, P < 0.001).

Discussion

The first result in the volatile compound (VOC) analyses 
shows clearly that a disturbed or scared individual smells 
differently than an undisturbed control vole (Fig. 1). The 
grouping of the different treatments clearly shows no 
overlap of the VOCs of animals from the control group 
and animals from either the handling or weasel exposure 
group. This simple result verifies the idea that animals can 
use body odours for signalling and information exchange 
between conspecifics (Flood 1992; Inagaki et al. 2009; 
Wilson et al. 2018). The handling and predator-scared 
groups overlap. However, the range of handling com-
pounds seems to be very narrow compared to the wider 
range of possible fear compounds.

Further, our study could identify and narrow down the 
list of possible VOCs, which could act as alarm phero-
mones in bank voles. We were able to identify ten com-
pounds of interest, which all appear with higher emission 
rates in animals who previously encountered a weasel (P 
treatment). We also were able to show that in our field 
experiment, AP secretion lost their alarming function 
and efficiency after just one day in the field. It seems that 
after the volatile alarming compounds vanish, longer last-
ing social odours are left and, as shown in many studies 
before, social odours may signal safety (Kiyokawa 2015; 
Al Aïn et al. 2017) and they could attract voles for non-
risky foraging.

From our list of ten compounds of interest, most have 
been previously found in animals (see Appendix 3. for a 
list of references) with the exception of Car-3-en-2-one, 
which to our knowledge has not been found in other ani-
mals. Two of them have previously been associated with 
alarm pheromones or other alarm secretions. 2-Octanone 

Fig. 1  Partial Least Squares—Discriminant Analysis (PLS-DA) 
based on emission rates according to treatment. Treatments: control 
(C), Handling (H), and Predator (P)

Table 1  Top 10 alarm pheromone components, sorted by VIP score

The CAS identifier together with the retention time is reported for each component. P values for the Nemenyi post hoc test for each comparision 
are shown

Component CAS Retention time 
(minutes)

VIP score Difference C–H 
(P value)

Difference C–P 
(P value)

Difference 
H–P (P 
value)

3-octen-2-one 1669-44-9 23.433 1.897 1 0.005  < 0.001
3-methylbutanal 590-86-3 6.986 1.896 1 0.005  < 0.001
2-amylfuran 3777-69-3 21.031 1.755 1 0.01 0.002
2-octanone 111-13-7 20.957 1.755 1 0.01 0.002
camphene 79-92-5 18.898 1.753 1 0.01 0.002
3-3-5-trimethylcyclohexanol 116-02-9 24.150 1.683 0.95 0.007 0.004
Unknown compound 7 NA 31.087 1.676 0.955 0.006 0.003
1-octanol 111-87-5 25.016 1.674 0.95 0.007 0.004
Car-3-en-2-one 107493-44-7 32.243 1.649 0.861 0.003 0.004
Butyrolactone 96-48-0 16.972 1.624 0.924 0.009 0.007
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has been found in the alarm secretions of several ant spe-
cies (Crewe and Blum 1970a; Dumpert 1972; Brand et al. 
1989) and lorises (Hagey et al. 2007). 1-Octanol has been 
found in the alarm secretions of several bee species (John-
son et al. 1985; Collins et al. 1989; Hunt et al. 2003) and 
stink bugs (Yamashita et al. 2016). 1-Octanol also showed 
the highest emission rate of all compounds of interest in 

our experiment (Fig. 2), followed by unknown compound 
7. We provide the experimental m/z spectra of 2-ocat-
anone, 1-octanol, and unknown compound 7, along with 
the theoretical NIST spectra for 2-ocatanone and 1-octanol 
in the Supplemental Material.

Evidence of interpreting heterospecific alarm cues is 
well established, however only in the aquatic environment 

Fig. 2  Total emission rates (ng *  h−1 *  vole−1) for the compounds 
of interest, grouped by treatment. Treatments: control (C), Handling 
(H), and Predator (P). Components in panel a, b and c are grouped by 

maximum emission rates during the experiment for an easier visual 
comparison. All components show significant differences between P 
vs C and P vs H, see Table 1 for details
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(Briones-Fourzán et al. 2008; Vogel et al. 2017; Magellan 
et al. 2019), with the exception of one termite species (Cris-
taldo et al. 2016). While there is strong evidence that phy-
logenetic closeness is a major factor (Hazlett and McLay 
2005), there is evidence of cross-phyla communication 
(Kaliszewicz and Uchmański 2009). In terrestrial species, 
interspecies communication of alarm signals appears most 
commonly with alarm calls (Templeton and Greene 2007; 
Vitousek et al. 2007; Lea et al. 2008; Magrath et al. 2009). 
Within vertebrates, there are examples of the ability to inter-
pret alarm calls correctly across taxonomic classes (Vitousek 
et al. 2007; Lea et al. 2008).

While our experiment does not provide the data to con-
clude whether there is a common structure in alarm chemi-
cals, there is evidence from previous work permitting us to 
entertain the possibility. This would be a potential expla-
nation for the occurrence of our identified compounds in, 
mostly, insects. In our study, we took only into account the 
major compounds to highlight potential alarm pheromone. 
However, we could have missed important signals by choos-
ing this method. Indeed, it has been shown in plant–insect 
interactions, that minor compounds could have an important 
effect as chemical cues just like major compounds (Clavijo 
Mccormick et al. 2014). To go further, a similar experiment 
should be done focused on minor compounds.

A previous attempt to find a common features of olfactory 
communication (in terrestrial vertebrates) concluded that the 
range of compounds is widespread and bigger range of spe-
cies is needed for proper conclusions (Apps et al. 2015). We 
share the assessment, as the studies on mammalian alarm 
pheromones are scarce. Unlike the work by Brechbühl et al. 
(2013), which found sulphur-containing compounds, our 
compounds of interest did not include any nitrogen- or sul-
phur-containing chemicals. This might be partially due to a 

completely different sampling method. While our method is 
non-invasive, the work by Brechbühl et al. (2013) included 
 CO2 euthanasia to induce stress. Their results have been 
challenged by (Kiyokawa et al. 2013), pointing out that 
sampling from sacrificed animals results in collecting early 
decay volatiles. However, work on rats identified sulphur- or 
nitrogen-free chemicals as AP (Inagaki et al. 2014). Their 
work, with methods comparable to ours, identified 4-meth-
ylpentanal and hexanal as potential APs, which were not part 
of our compounds of interest.

While sampling from live animals allows for a greater 
risk of contaminations, it also allows for more ecologically 
relevant information. In our experiment, the animals were 
contained, but similar methods showed the possibility to 
sample from freely roaming individuals (Weiß et al. 2018). 
Our methods aimed for a non- or minimal-invasive approach, 
but also to apply a stimulus, i.e. predator exposure, that is 
similar to a stimulus in the wild. We believe that the meth-
ods in this experiment represent a good balance between a 
controlled and natural environment.

In our field experiment, no clear difference in foraging 
effort was observed in the AP GUD was observed on the 
first day, which is in line with our previous results (Sievert 
et al. 2019). However, a clear increase in foraging effort 
in AP patches after just one day, we suggest two factor for 
explaining this result. First, the AP is very short-lived and 
the remaining odour just signals the presence of conspecif-
ics, or, secondly, the AP becomes rapidly so diluted that it 
requires a greater investigation effort (Parsons et al. 2018), 
which in turn leads to the discovery of food resources in 
the GUD patches and increased foraging. Either way, the 
information content concerning a predator presence or risk 
appears to be minimal at this point. Previous studies on bank 
vole AP argued that it is secreted in cases of immediate and 
acute risk (Sievert et al. 2019) and should it have an effective 
alarming function, it needs a rapid transfer to other conspe-
cifics, group members or even kin. The short-lived character 
of AP in the field experiment supports this idea.

While weasels are the main factor of vole mortality 
(Norrdahl and Korpimäki 1995), previous work on vole-
weasel interactions has shown that, if presented with the 
opportunity, bank voles prefer to take arboreal escape routes 
while chased and weasels are unlikely to follow (Mäkeläinen 
et al. 2014). This, or other immediate survival enhancing 
responses, increase the chance for a successful escape and 
lays the fundament for evolution of adaptive signalling of 
conspecifics via AP.

To summarize, in this study, we adapted a new method 
to identify a group of chemicals likely to serve as alarm 
pheromone compounds in a common mammal species, the 
bank vole. Three of those, namely 1-octanol, 2-octanone, 
and unknown compound 7, are likely to be the main actors. 
In the field experiment, we confirmed that the information 

Fig. 3  Giving-up density by treatment. Treatments: control (C), pred-
ator odour (PO), and alarm pheromone (AP). Asterisk (*) indicates a 
significant difference from control at P < 0.05. Three asterisks (***) 
in this figure indicate a significant difference from the same treatment 
on the previous day at P < 0.001
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carried in AP is short-lived, as we were expecting if AP 
functions to signal an acute and rapid event of very high 
risk. Our result expands the knowledge on predator–prey 
interactions and how predation risk can be communicated 
to unaware conspecifics.
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