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Abstract

Stabilization of the carrier-envelope offset frequency of an Yb:KYW
femtosecond laser for the generation of an XUV comb for He™ spectroscopy

by Jorge MORENO

In this work, the carrier-envelope offset (CEO) frequency of an Yb:KYW frequency
comb was detected and stabilized. The stabilization of the Yb:KYW frequency comb
is an important step in a larger scale experiment to perform spectroscopy on the yet
unexplored 15-25 two-photon transition in He™, by means of the generation of an
XUV frequency comb. The output from the Yb:KYW mode-locked laser consists of
100 fs pulses emitted at a 40 MHz repetition rate and spectrally centered at 1033 nm,
which were amplified, compressed and spectrally broadened up to an octave of fre-
quencies. This allowed measuring the CEO frequency through f-2f interferometry,
and its stabilization via feedback to the Yb:KYW laser’s pump current. By simulta-
neously controlling the CEO frequency and the frequency one optical mode of the
comb (with an independent setup), all degrees of freedom in the frequency comb are
locked, and the system is fully stabilized. We report on the design and construction
of a fiber amplifier, pulse compressor, f-2f interferometer and phase-locked loop
system for the aforementioned goals, and present proof of their successful operation
on the stabilization of the frequency comb.
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Chapter 1

Introduction

Quantum Electrodynamics (QED) is regarded as a paradigmatic model for other
quantum field theories, and its extremely accurate predictions makes it one of the
most successful theories in physics. In fact, the two quantities that can be calculated
with the highest precision are the anomalous magnetic moment of the electron and
the energy levels of hydrogen, this being one of the simplest bound state systems in
QED.

As scientists, we would like to make sure this theory really describes nature, and if
not completely, then find its limitations. This means we need to design experiments
that can measure the quantities described by the theory with a level of precision
that matches that achieved by its calculations, and then compare the results from
theory and experiment. In simple terms, QED predictions depend on parameters
that need to be adjusted to experimental data, and if we make the same number of
measurements than there are parameters in our theoretical expression, we can obtain
a numerical value for such parameters. If the goal is to test the theory, what we
need is more measurements than parameters, so that one can compare the obtained
values from different measurement sets and check for consistency within the theory.
This way, if these measurements are consistent, one can claim that QED is valid up
to a certain precision level, and if they are not, one could argue that QED fails to
describe the studied phenomena at such precision. For this reason, high-precision
experiments are a good way of searching for unknown phenomena and new physics.

Experiments with hydrogen and hydrogenic systems have always provided excel-
lent tests for QED, since these are some of the simplest quantum systems, and they
can be theoretically described with exceptionally high precision. In the last years,
spectroscopic experiments in such systems have matched and pushed the limits in
both theory and precision measurements [1-4]. For instance, the 15-2S transition in
hydrogen has been measured with an astounding fractional uncertainty of 4 - 10715
The QED expression for the energy levels of atomic hydrogen effectively depends
on two parameters: the Rydberg constant R« and the proton charge radius r,. This
means that other parameters such as the fine structure constant and the electron-to-
proton mass ratio are better obtained from other experiments. Before 2010 a com-
pound of 15 different measurements of transition frequencies gave consistent values
for Re and 7, and therefore QED passed the test. But measurements in muonic
hydrogen [5] and further experiments in electronic hydrogen [4] showed a > 5¢ dis-
crepancy with the previously accepted values for 7, and Re, and gave place to a
still unresolved situation that has come to be known as the proton radius puzzle [6, 7].
In this context, new measurements in other hydrogen-like systems, such as that of
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the 15-2S transition in He™[8] are of great interest and may shed some light on this
problem.

Towards He " Spectroscopy

Exploring atomic transitions in He™ has some advantages regarding QED tests, con-
sidering that high order correction terms scale with high powers of the atomic num-
ber Z. Furthermore, He™ can be stored and sympathetically cooled in ion traps such
as Paul or Penning traps, which reduces systematic uncertainties such as second-
order Doppler shifts, collisional shifts or time-of-flight broadening.

The 15-2S two-photon transition in He' needs to be driven resonantly with 61 nm
XUV radiation, where there are no CW lasers available. Generation of this radia-
tion at a power high enough to efficiently excite the two-photon transition poses a
major technical challenge [9, 10]. The most promising approach consists of the gen-
eration of high harmonics from a near-infrared femtosecond frequency comb in an
enhancement cavity [11, 12]. Starting from an Yb:KYW mode-locked laser that emits
pulses at 1033 nm, the 17" harmonic at 61 nm can be obtained via high-harmonic
generation, which is inherently a very inefficient process and thus needs ultra-short
pulses with very high intensity. Eventually, an XUV generated power of 10-100 yW
tightly focused down to an area < 10 ym? will be required for reaching significant
detection rates [8]. The adversities in the 15-2S He™ experiment are evident, but
measuring this transition can provide very relevant input for QED tests, and a more
precise determination of the Rydberg constant, adding a new relevant piece to the
proton-radius puzzle.

The fact that high peak intensities but also narrow bandwidths are needed for com-
pleting this high-precision experiment immediately calls for the use of a frequency
comb.

Understanding the Frequency Comb

The first question is obvious; what exactly is a frequency comb and how does it
work? And the short answer is: a frequency comb is a phase-stabilized mode-locked
laser.
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Fig. 1.1. Representation of the pulse formation in a frequency comb. In a frequency comb,

the longitudinal modes of an optical cavity f, = nf, + fy are spatially overlapped and phase-

coherent such that their superposition forms a pulse that circulates inside the cavity. The

resulting output is a train of pulses emitted at the repetition rate f,. From Diddams et al.
[13]
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Mode-locking is a technique by which one can make an optical oscillator produce
ultra-short pulses of light, that can be as short as a few femtoseconds. So when talk-
ing about mode-locked lasers (MLL), we are basically talking about (pulsed) fem-
tosecond lasers. These pulses are created by constructive interference of the reso-
nant cavity’s longitudinal modes, as is shown in Fig. 1.1. Mode-locking ensures
constructive interference by enforcing every mode to be equidistant in frequency
space and separated by a frequency f,, and more importantly, that every mode is
phase-coherent with each other, such that they share a common phase evolution.
This produces a pulse inside the cavity that travels back and forth between the mir-
rors at its group velocity v, with a round trip time of T, = 2L/v, = f,; !, with L
the cavity length. Every round trip, the pulse is partially transmitted by one of the
mirrors (the output coupler), such that the output of the cavity consists of a series
of pulses emitted at the repetition rate f, = T, !. It is useful to visualize this output
as a carrier wave oscillating at an optical frequency w., modulated by an envelope
A(t) with periodicity T,. The fact that A(t) is periodic in time, means the optical
field outside the cavity can be decomposed in a Fourier series

E(t) — A(t)eiwct — Zanei(wﬁ-nw,)t (1.1)

where a, are the Fourier components of A(t) and w, = 27/ T,. One can see that,
given the Fourier relation between time and frequency domains, the spectrum of this
field is a set of equally spaced "deltas" or narrow lines. In other words, a frequency
comb.

If every pulse were exactly the same and the modulation were to produce a pulse ev-
ery n optical cycles, then the repetition rate f, would be a sub-harmonic of the carrier
frequency f, = f./n, and the associated comb modes would be just f, = nf,. How-
ever, it must be noted that the output pulses are not identical to each other. Since
there are dispersive elements in the cavity, such as the gain medium, the group and
phase velocities are not equal, i.e. the pulse envelope and the optical carrier travel
at different velocities inside the cavity. This produces a relative phase shift between
the envelope and the carrier every round-trip, that is called the carrier-envelope offset
phase slip Agc.. The good thing is that this does not destroy coherence in the comb
because the relative phase from pulse to pulse is always A¢,,, and the only effect this
has is to shift every comb mode by the same frequency fo = f,A@c. /27 [14], usually
called the carrier-envelope offset frequency. This is depicted in Fig. 1.2.

The Comb Equation

Bringing together everything explained so far, one can describe the modes compos-
ing the spectrum of the MLL by the frequency comb equation [14-16]

fo=nfr+ fo. (1.2)

This equation describes a set of optical modes f,, that are equally spaced by f, and
share a common offset fp. The mode number 7 is in general on the order of 10° —
108, and f, and f; on the order of 10 MHz to 10 GHz, such that Eq.1.2 maps two
microwave/radio frequencies onto the set of optical frequencies f,. And it does so
in a single step! Typically an optical frequency comb spectrum consists of hundreds
of thousands up to a million of optical modes, spanning a bandwidth of hundreds of
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Fig. 1.2. Representation of the frequency comb in time and frequency domains. (A) Out-
put of a continuous-wave (CW) laser, for reference. The Fourier transform of a harmonic
signal of period T = 1/f is a delta function centered at f. (B) The output of a mode-locked
laser (MLL) is a train of periodic pulses, which is a frequency comb when Fourier trans-
formed. Since there is a phase slip of Ag., from pulse to pulse, the period of the pulses’
modulation T; is not an exact multiple of the optical period T, but has some delay. This
shifts the whole comb spectrum by an offset frequency fy. From Diddams et al. [13]

terahertz in the optical domain. What is interesting, is that this comb has only two
degrees of freedom, which are again f, and fy. If these two frequencies are controlled
and stabilized to a precise radiofrequency reference, such as a Cs clock, one obtains
more than 10° precisely defined optical frequencies in a single laser beam.

The f-2f interferometer

The idea of the optical frequency comb seems rather simple and useful for many
different experiments, so what took so long until it could be implemented? Not long
after the first CW lasers were created, the MLL was invented too in the 1960s [17].
And while the nature of fp was understood around the 1970s [14], it was not until
the 1990s that it was found how to measure and control it. It is precisely the control
of the degrees of freedom of the comb what makes it a useful tool for high precision
measurements.

The repetition rate is readily measurable by sending the pulsed laser beam into a
regular photodetector, which will generate a periodic voltage at f, that can be elec-
tronically resolved. Then, one can make a feedback loop to control the cavity length
and lock the repetition rate at a constant value. By locking f,, one prevents the comb
lines from moving in an accordion-like manner.

On the other hand, measuring fj is not as straightforward, since it is an offset, com-
mon to every comb mode, that shifts the whole comb from the origin. The most com-
mon way of measuring fy is by using a so-called f-2f interferometer [18, 19], which is
a nonlinear interferometer that allows heterodyning (mixing) the second harmonic
of an optical mode 2f,, taken from the low-frequency side of the comb spectrum,
with a mode f>, from the high-frequency side of the comb, to obtain fo = 2f, — fo,.
Building such interferometer is one of the main parts of this work, and this process
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will be explained in great detail in Chapter 5. Locking fy and f, grants full control
of the optical comb and is thus essential for high precision experiments.

The f-2 f method requires a spectrum broad enough to span an octave of frequencies,
i.e. from f, to fo,, and this was highly simplified around the year 2000 with the
invention of micro-structured or photonic crystal fibers (PCF). These are highly non-
linear fibers that can broaden the narrow spectrum emitted by most MLL to a full
octave of frequencies through non-linear processes such as self-phase modulation, in
what is called supercontinuum generation [20]. These fibers along with the dynamics
involved will be further discussed in Chapters 3 and 5.

20 years of frequency comb

Before 2000, the common method to access an optical frequency was by knowing
the speed of light and using optical wavemeters to measure wavelengths with a
relative precision of 1077, which is much lower than the standards required nowa-
days for testing QED in high-precision spectroscopy experiments. The first attempts
to directly measure optical frequencies were made with harmonic frequency chains
[21-23], which were highly complex and large experiments aimed to connect the 9.2
GHz Cs standard to the optical range through a series of nonlinear frequency mul-
tiplications, phased-locked at each step to different oscillators. The finest of these
frequency chains needed up to 10 scientists, 20 different oscillators and 50 feedback
loops in two laboratories in two different buildings to work [24]! Because of their
complexity, these systems would hardly ever become widely available, and only one
or two high precision optical measurements could be performed per year. The ar-
rival of the optical frequency comb would eventually substitute the large frequency
chains by a single mode-locked laser of the size of a shoe-box, that can connect the
microwave standard with the optical range in a single step.

The capacity to connect the optical and radiofrequency domains, as well as the abil-
ity to measure absolute optical frequencies with unprecedented precision, made
the optical frequency comb quickly accomplish its original goals in precision spec-
troscopy, and time and frequency metrology. Public recognition for this technology
was granted in 2005, when John L. Hall and Theodor W. Hansch were awarded with
half! of the Nobel Prize in Physics "for their contributions to the development of
laser-based precision spectroscopy, including the optical frequency comb technique"
[25, 26].

The first all-optical atomic clock was build in 2001 by Diddams et al. [27], and in
the last 15 years vast optical fiber networks have been expanded over Europe to
connect and compare ensembles of optical atomic clocks, and eventually realize a
redefinition of the SI second [28-30]. What few people could have foreseen, is the
amount of different applications the optical frequency comb has found in these 20
years since its invention [13, 31]. For instance, the direct relation between the optical
and microwave domains does not only allow optical stabilization from a highly sta-
ble microwave source, but also the generation of ultra-low-noise microwaves by using
the same idea "in reverse", referencing the comb to a high-stability optical source to
generate a microwave signal with a stability of 10~%°, which is a 100 times better
than the best room-temperature electronic oscillators [32].

IThe other half was granted to Roy J. Glauber "for his contribution to the quantum theory of optical
coherence."
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Other applications range from the study of time variations in fundamental constants
such as the fine structure constant [33-36], searches for ultralight dark matter [37,
38], synthesis of single cycle and attosecond pulses [39], calibration of astronomical
spectrographs for the search of exoplanets [40—42], and precision distance measure-
ments with LIDAR systems [43, 44].

There has also been much progress in the technology and architecture of optical
frequency comb themselves. Ti:Sapphire lasers have been one of the most used fre-
quency comb systems [45], even though nowadays the different erbium-doped fiber
MLL emitting in the 1550 nm (telecommunications) region are very widespread and
commercially available from different companies [46—48]. These Er-doped systems
are so robust, they have even been operated on board a space rocket [49]. Another
notable case is that of the Yb-doped lasers, which are promising systems for XUV
frequency comb generation via high-harmonic generation from their high power 1
pm emission [50]. There are also different approaches to the optical frequency comb
that do not use MLL, such as electro-optic frequency combs and microresonator fre-
quency combs [51-53]. The latter opens the door to microcombs integrated in semi-
conductor chips, that may one day bridge the gap even closer between optics and
electronics in everyday technological applications.

All in all, spectroscopy was, and still is, one of the main applications of optical fre-
quency combs [54]. They can either be used as precise optical references for spec-
troscopic CW lasers, or conversely, they can be used directly to excite or probe a
sample. This second approach is usually referred to as direct frequency comb spec-
troscopy (Fig 1.3). The f-2f interferometer built in this work is used for stabilizing an
Yb:KYW mode-locked laser, which will eventually serve for generating an extreme
ultra-violet (XUV) frequency comb to be used in direct spectroscopy of the 15-25
two-photon transition in He™.

Vo =2fp

fn—l fn+1
fn—Z fn+2

NN PR
fn—3 fn+3

Spectral Intensity

fn—4- fn+4-

fn—5 fn+5

S
>

frequency

Fig. 1.3. Representation of direct comb spectroscopy in a two-photon transition. The use of
a frequency comb for exciting a two-photon transition is just equivalent to that of a CW with
the same average power. This is due to the fact that, if a single optical line is resonant to the
two-photon transition, i.e. vp = 2f, = 2(nf, + fo), the pairs of modes that are symmetrically
(red- and blue-) detuned from the resonance also sum up to the same resonance frequency
[(n4+n")fr + fo] + [(n —n') fr + fo] = 2fa = vp, and consequently the whole power of the
comb contributes to the excitation. If two counter-propagating combs are used, the excitation
can be made Doppler-free.



Chapter 2

Yb:KYW optical oscillator

Before presenting the work that was specifically developed for this Master’s Thesis,
we will go through a brief description of the Yb:KYW oscillator, the element that was
taken as the starting point for the rest of this work. Some concepts and theoretical
tools discussed in this short chapter, such as the main characteristics describing light
pulses and their propagation dynamics, will be explained in detail in Chapter 3 and
others. The reader that is not acquainted with them may prefer to read those first.

2.1 Kerr-lens mode-locking

The pulsed operation of the laser is achieved through Kerr-lens mode-locking. In
general, mode-locking is a group of techniques that either actively or passively en-
sure the formation of an ultra-short pulse that circulates in the optical cavity. For
correct operation in a steady-state, the various effects that provoke changes in the
pulse parameters must be compensated. These are fundamentally dispersion and
non-linear effects that cause the pulse shape and spectrum to distort, unless their
net combined effect is appropriately balanced in each round trip. When the pulse
reaches the output coupler every round-trip time T,, a copy of the pulse is trans-
mitted, generating an output consisting of a train of pulses emitted with a repetition
rate f, = Tfl. In this manner, all pulses are practically identical, preserving the same
shape and spectrum, and only differ in their carrier-envelope phase, which slips by
a constant amount A¢cg from pulse to pulse, as explained in the Introduction, and
leads to the offset frequency f in the frequency comb.

Passive mode-locking is often achieved by the introduction of a saturable absorber in
the optical cavity. The basic idea is that the saturable absorber introduces losses in
the cavity that prevent the laser from operating in a CW mode, but when a pulse
with higher peak intensity hits the absorber, it saturates it and momentarily reduces
losses in the cavity, enabling lasing in a pulsed fashion. Kerr-lens mode-locking acts
similarly, but instead of introducing losses, it increases the net gain thanks to Kerr
lensing in the gain medium. This self-focusing effect occurs by means of the inten-
sity dependent refractive index n(I) = ng + npl. When a pulse travels through a
non-linear medium (i.e. a medium with sufficiently large n,), its radially decreasing
intensity profile modulates the index of refraction in the material in a similar shape.
This gradient in the index of refraction deforms the pulse wavefront and effectively
creates a lens that focuses the pulse while it propagates in the medium, reducing its
radius or waist, and consequently increasing its peak intensity.
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Pump

Fig. 2.1. Schematic representation of Kerr-lens mode-locking. The shaded area represents
the overlap between the pump and the laser light, which limits the active region in the gain
medium, and thus the net gain. A pulsed beam with higher peak intensity with respect to
a CW field with the same average power will self-focus through Kerr-lensing, improving its
overlap with a tightly focused pump, i.e. concentrating more energy in the active region.

To understand why this mode-locks the laser, it is useful to explain it in terms of the
laser gain. The non-saturated gain depends on the spatial overlapping of both the
pump and laser intensity profiles

g~ /Ooo I(r)I,(r)rdr . (2.1)

If one tightly focuses the pump beam at the crystal, leading to a very narrow waist
and abrupt intensity gradient, the overlapping with the lasing light becomes sharp.
When a pulse is focused via Kerr-lensing, its waist shrinks, its overlapping with the
pump profile improves and the gain increases. Note that it is not only the overlap-
ping area that counts, but the light’s intensity or energy density in that area, that
increases when the beam waist is reduced. We therefore have a method for mode-
locking and generating ultra-short pulses.

So far we have discussed mode-locking when a pulse is already circulating in the
cavity, but an obvious question arises when one wonders how is the first pulse gen-
erated. This sort of laser usually starts operating in a CW mode after turning on the
pump. Any random peak appearing in the flat intensity profile due to noise, may be
amplified in the gain medium, eventually leading to the pulse formation. When a
pulse passes through the gain medium and is amplified, it depletes the upper laser
level and thus effectively rises the lasing threshold, preventing CW operation. In
other words, the energy that was initially used for CW lasing is compressed in short
periods and used for pulsed operation, which means simultaneous CW and pulsed
lasing is only possible for very high pump power. If this process does not occur
spontaneously (self-starting mode-locking), manual action to create a perturbation
in the intensity may be needed, usually by knocking on one of the mirrors or by
introducing some vibration in it.
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LoYVpass econdary output
filter (A =1050 nm)
‘Mirrc:r Otn' Main output
pleazccz:tc;:uc (A’ =1033 nm)
GDD
GDD i compensating
compensating mirrors
mirrors

Collimating lens
for pump Yb:KYW crystal

Fig. 2.2. Yb:KYW oscillator layout. Two focusing mirrors M1 and M2 tightly focus the
laser diode’s collimated pump into the Yb:KYW crystal for Kerr-lens mode-locking. The
generated pulses travel along a set of dispersion (GDD) compensating mirrors to preserve
the pulse’s properties after each round trip. A piezoelectric transducer and a linear stage act
on two movable mirrors that control the cavity length. A lowpass filter forces laser operation
at 1033 nm and extracts a secondary output at 1050 nm (M3 and M4), which will be used for

f-2f self-referencing. The main output is emitted through a 1% output coupler and consists
of a 40 MHz - 100 fs pulsed laser beam at 1033 nm.

2.2 Cavity layout

The schematic setup can be seen in Fig. 2.2. This setup composes a diode-pumped
solid-state femtosecond laser, with Yb:KYW (ytterbium-doped potassium yttrium
tungstate) as its gain medium. The 10-at.% Yb:KYW crystal, commercially available
from Altechna, has a size of 3 X 4 X 2 mm in its Nj,, N;, and N, axes respectively,
and it is AR (anti-reflection) coated. The pump and laser light fields are polarized
parallel to the N, axis, and are propagating through the N one. The pump light
is provided by a laser diode at 981 nm, which coincides with a sharp absorption
peak in Yb:KYW, and allows for laser emission in a broad band around 1020 - 1060
nm. The diode’s output is collimated and tightly focused into the crystal, which is
mounted on a linear stage for fine tuning its position.

The optical cavity is arranged in a linear configuration, meaning the light travels the
same path to go from the crystal to the output coupler and back. For compensating
the dispersion and ensuring constant pulse properties, a set of seven flat mirrors is
used with appropriate GDD values'. The use of such number of mirrors allows for a
longer (yet compact) cavity length, which sets the repetition rate f, around 40 MHz.
The cavity length can be tuned by two movable mirrors, one mounted on a linear
stage for a long range - slow response, and another one mounted on a piezoelectric

1GDD stands for group-delay dispersion and we will discuss its effects further in Chapter 3.
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Fig. 2.3. Transmission spectrum for the 1075 OD4 SP Filter from Alluxa at 0° and 20° angle

of incidence of a collimated beam. This optical low-pass filter has an angle-dependent cut-

off wavelength, such that by tilting it one can obtain the desired performance with maximum
transmission at 1033 nm. Adapted from the manufacturer’s data.

actuator for a short range - fast response. The mirror mounted in the linear stage is
precisely the output coupler, which has a 99% reflectivity from 980 nm to 1100 nm.

For its application in He™' spectroscopy, the main output is set to 1033 nm. The
Yb:KYW tends to emit closer to 1040 nm, so a shorter wavelength is obtained by
means of a low-pass filter, whose cut-off edge can be tuned by tilting its angle rela-
tive to the incident beam (see Fig. 2.3). This is done in such a way that transmission
at 1033 nm is maximized (~ 99%), and there is partial reflectivity around 1050 nm.
The 1033 nm transmitted light hits the piezo-controlled mirror and is reflected back
to the "main cavity path", while the light around 1050 nm is eventually expelled from
the cavity by sending it towards the M3 and M4 mirrors. This causes the intracavity
mode’s spectrum to shift and narrow at 1033 nm, and this is what comes out the main
output. The secondary output, centered at 1050 nm is used for f-2f self-referencing.
This configuration allows for a 10 mW main output with a spectrum centered at 1033
nm and a FWHM = 10 nm, and a 60 mW secondary output at 1050 nm and a 10 nm
FWHM width. In fact, the secondary output is in principle composed of two beam:s,

from mirrors M3 and M4, but only one of them is used for practical reasons. The

achieved pulse duration is approximately 100 fs. The pulse shape from the main
output and its spectrum measured by the FROG (Frequency Resolved Optical Gating)

method? are shown in Fig. 2.4 and the spectrum of the secondary output measured
with a regular spectrometer is shown in Fig. 2.5.

2.3 Actingon f, and f

Our ultimate goal is to measure and control the frequency comb’s offset frequency
fo. For this, it is necessary to understand what physical parameters in the optical
oscillator affect fy. A variation of the cavity length L readily changes the repetition
rate, but leaves the offset frequency almost unchanged. On the other hand, it can

2We will describe the FROG method in Chapter 4.
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Fig. 2.4. Intensity and phase of the main output of the Yb:KYW oscillator in both (a)
time (pulse-shape) and (b) frequency (spectrum) domains. The pulse shape (blue) forms
a quasi-gaussian peak with a duration ¢; = 105 fs, which gives a quasi-gaussian spectrum
(red) centered at 1033 nm with a ¢, = 10 nm bandwidth. The spectral phase (purple) seems
to be dominated by a quadratic component, even though its top flattens at the maximum of
the spectrum. This means the pulses come rather linearly chirped out of the cavity, hence the
different spectral components are temporally distributed along the pulse and its duration is
not strictly Fourier-limited. Data from FROG measurements.
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Fig. 2.5. Spectrum measured at the secondary output of the Yb:KYW oscillator. Due to the

action of the low-pass filter, this spectrum has a strong component centered at 1050 nm, but

also a weak contribution at ~ 1028 nm. This is the spectrum that is sent towards the f-2f

interferometer for measuring fy and self-referencing the frequency comb, after appropriate
amplification and spectral broadening.
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be shown that the intensity of the laser acts on both parameters through the afore-
mentioned Kerr effect. These two frequencies, which represent the two degrees of

freedom of the comb, can be expressed as f, = v,/2L and fy = ;’—7; (1 — z—i) [55],

where w, is the carrier or central frequency, and v, and v, are the group and phase

-1
velocities, defined as v, = ¢ {fl + we (%) } and v, = c/7. Here, i = #ig + 72l
We

is the average refractive index in the cavity, and thus 7L is the optical path length
throughout the cavity. It is therefore straightforward to see how an intensity de-
pendent index of refraction leads to intensity dependent group and phase velocities,
and consequently to a variation of both f, and fy. A more detailed description of
the intensity related dynamics can be found in e.g. [55, 56], but what is clear is that
one can use the pump power to change the intensity of the emitted light (within the
the limits imposed by mode-locking) and thus control the degrees of freedom of the
frequency comb. If one sends feedback to the cavity length to control either f, or
the frequency of one optical mode f,, then the offset frequency can be controlled by
acting on the optical pump power, and that is precisely what we will do in this work.
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Chapter 3

Ultra-short pulses

When talking about ultra-short pulses, one usually refers to femtosecond light pulses.
These are fully characterised by their space and time dependent electric field, and
their dynamics are governed by the well-known Maxwell’s equations. Due to their
high peak-intensity, these sort of pulses are very useful for exploiting nonlinear op-
tical phenomena. Throughout this chapter we will introduce and define the main
quantities that describe a light pulse, relating them with experimentally measurable
parameters. We will put special effort in describing the interaction of these pulses
with matter in a classical framework, in which a macroscopic polarization with lin-
ear and nonlinear contributions in the field amplitude will significantly shape the
pulses during their propagation in material elements such as optical fibers. Under-
standing these dynamics and how to use them to our advantage is a key step in the
stabilization of the frequency comb, as one needs to generate an optical spectrum
wide enough to span an octave of frequencies to perform f-2f interferometry, which
is usually not readily available from most laser systems. Numerical methods for the
simulation of propagation of pulses in matter are described and implemented, even-
tually considering realistic parameters for supercontinuum generation and octave-
spanning.

3.1 Theoretical background

3.1.1 Characteristics of light pulses

Light pulses are electromagnetic wave-packets characterised by their electric field,
with its corresponding space, time and polarization dependencies. For the moment,
and without loss of generality, we can describe the electric field as a complex quan-
tity dependent on time only. Keeping in mind that the physical electric field is real,
we define it as

E(t) = 2E(t)e' + C.C.=ET(t) +E (1), (3.1)

N =

where w, is the carrier frequency and £(t) is the complex envelope, characterised by
its amplitude and phase

E(t) = E(H)el?D+oo (3.2)

The envelope determines the temporal width and shape of the pulse, and it is typ-
ically parametrized as a gaussian or a sech function, even though it can take any
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arbitrary form. The constant phase term with @g is commonly neglected since it is
actually hard to define in a single pulse, but the pulse-to-pulse carrier-to-envelope
(CE) phase difference Apcg plays a relevant role and is the origin of the frequency
offset fy in a frequency comb.

Let us pay some special attention to the phase of the electric field and its physical
meaning. We have implicitly defined with respect to the carrier frequency as ®(t) =
@(t) + wct', which means the instantaneous frequency is

w(t) = =w.+ ——=. (3.3)

This is a clear way of seeing how the frequency can vary inside the pulse, or in other
words, how the frequency components of the pulse can be temporally distributed.
When d¢(t)/dt is constant, then Eq. 3.3 just adds a correction to the carrier fre-
quency w, = w. + w}, demonstrating that an appropriate choice of w. minimizes or
eliminates the envelope’s phase variation. On the other hand, when d¢(t)/dt is a
function of time, the carrier frequency increases or decreases along the pulse, and the
pulse is said to be up or down chirped respectively. The simplest and very common
case happens when ¢(f) varies quadratically in time and thus the pulse is linearly
chirped.

Intensity and Power: from single pulses to a laser beam

From the characteristics of single pulses, one should be interested in describing those
of laser beams, since these are what we work with and can measure in a lab. Thus,
we can begin by describing some instantaneous quantities such as intensity and
power in terms of single pulse parameters, and then average them in time over the
number of pulses per second, i.e. the repetition rate f,, in a beam. Since electronic
detectors are not fast enough to resolve optical oscillations, we define the instanta-
neous intensity as averaged over an optical cycle T = 27t/ w,, in units of energy per
time per surface, usually [W/cm?] 2

t+T/2 2 1 5
= eocn—/ |E(t)|"dt' = Zepen|E(H)]”, (3.4)
T/2 2

where 7 is the index of refraction of the propagation medium. The instantaneous
power is obtained by integrating the intensity over the cross section of the beam

t+T/ 2 >
/ dSI(F) = egen / dS— / E(¥) 2. (3.5)
T Ji—1/2

Note that in general, the intensity profile is space-dependent I(r, t). In fact, the fun-
damental transverse mode in an optical cavity corresponds to a Gaussian profile, but
many other forms are possible.

Now, we can average Egs. 3.4 and 3.5 in time over the number of pulses per second
fr to obtain the average power and intensity that characterise the laser beam as we
measure it in the lab:

Do not confuse the envelope’s phase ¢(t) with the electric field’s phase ®(t)
2This definition can be traced back to Poynting’s theorem
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- %eocnfr /_i dHE(H) 2 (3.6)
p— ;eocnf,/sds /:: dtle@)? . (3.7)

Lastly, if one was interested in knowing the energy per pulse, they would only need
to divide the average power P by the repetition rate.

Spectral representation

So far, we have constructed a description of the main parameters that describe the
light pulses with time as the main argument, i.e. in the time domain. Equivalently,
we could choose to describe our pulses in the frequency or spectral domain. As
conjugate variables, time and frequency domains are related through the Fourier
transform F , and thus one can express the spectrum of the complex electric field as
e .

E(w) = F{E(D)} = / E(f)e“idt (3.8)

which, in terms of the complex envelope function is

() = [ %g(t)e’i(“’""“)tdt (39)
= %g(w —we)
= %S(w — we)ew)

Here, he have defined the spectral envelope and phase, and we have seen how nat-
urally the spectral envelope is evaluated at the carrier frequency we.

In a similar manner, we can define the spectral intensity as

S(w) = %]f(w - wc)}z . (3.10)

Commonly one talks about the "spectrum" of light, which can be measured with
a spectrometer or optical spectrum analyzer, and this usually refers to a graphical
representation of the spectral intensity (often in logarithmic scale) as a function of
frequency.

Pulse duration and spectral width

There is no unique way of defining the duration of a pulse A7, but it is common
to describe it as the FWHM of the intensity profile |£(t) ‘2. A similar definition can

2, even though

be made for the bandwith Aw of the spectral intensity profile |€(w)
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in many practical cases the spectrum can have an intricate structure that may re-
quire a re-definition of the spectral width for that particular case. The Fourier du-
ality between temporal and spectral characteristics of the pulse leads to a minimum
duration-bandwidth product [57]

AwAT > 2710B . (3.11)

cp is a numerical constant on the order of the unit that depends on the specific shape
of the pulse. Pulses that satisfy the minimum product equality, meaning they have
the minimum duration for a given spectrum, are said to be Fourier-limited. This
condition is accomplished when the pulse’s phase is flat or linear in time, and the
pulse is thus un-chirped, so that its frequency components are not distributed along
the pulse.

3.1.2 Propagation of pulses in dispersive media

A pulse of light propagating through a medium will create a response in that medium
that ultimately depends on the amplitude of the light’s electric field, in either a linear
or nonlinear manner. This response is represented by a macroscopic polarization

P(l‘, t) = PL(I', t) -+ PNL(I‘, t) (3.12)

that is induced by the electric field through a causal and local response function
known as the electric susceptibility

PL(rt) = /w XD (=) - B(x, t)dt' (3.13)

Pni(r, ) = 60/ X3 (£ 11, t, £3) TE(x, 1) E(x, ) E(x, t3)dt dbrdts . (3.14)

—00

In this work, we are mostly interested in the propagation of pulses in optical fibers,
and for this reason the nonlinear polarization depends directly on x(®). This is so
because x?, responsible for phenomena such as second-harmonic generation or
sum-frequency generation, vanishes in materials with inversion symmetry, as it is
the case of common silica (5iO») fibers, even though some weak second order effects
may arise due to imperfections or color centers in the fiber core. The interaction
of the light pulses with the medium will therefore change the properties of both
the pulse and the medium, and these quite complicated dynamics are governed by
Maxwell’s equations, from which one can obtain the following wave equation:

, 102 02

Solving Eq. 3.15 requires appropriate knowledge of the linear and nonlinear re-
sponse functions, and since that is usually inaccessible, this problem is commonly
treated in a perturbative manner, such that different effects and contributions may
be accounted for. A proper discussion can be found in textbooks such as Agrawal’s
[58], so here a more applicable form of the propagation equation will be presented
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directly, in terms of the slowly-varying pulse envelope £(t) and assuming spatial
dependence only along the propagation axis z:

9E(t) E(t)  iBa 0%E(t)
oz P T e

+§aﬂ:wmmwuwaw- (3.16)

It must be noted that, in Eq. 3.16, the temporal variation of £ () and ¢(t) is assumed
to be small within an optical cycle T = 271/ w.. This is known as the slowly-varying
envelope approximation (SVEA), and in terms of the complex pulse envelope is ex-
pressed as

‘ié(t)' << w|E()] (3.17)

This also means that the bandwith of the pulse is be very narrow around the carrier
frequency Aw/w. << 1.

Today, pulses with only a few optical cycles or even single-cycle pulses can be gen-
erated, so one has to be careful as to when to describe the pulse in terms of a slowly
varying envelope and a phase as we are doing.

Linear Effects: Group-velocity dispersion

Let us describe Eq. 3.16 in detail. The left-hand side gathers all the terms that are
linear in the field amplitude. Losses are accounted for through «, and chromatic
dispersion through B; and B>. Chromatic dispersion means that different spectral
components travel at different velocities because of the frequency dependency of
the index of refraction n(w), which makes the spectral components spread over time,
effectively stretching or broadening the pulse.

In this context, one can define a so-called mode-propagation function f(w) = n(w)w/c
and expand it in a Taylor series centered at the carrier frequency w., where 1, B2,
Bs... are its Taylor components. Therefore, chromatic dispersion is treated too in a
perturbative way and its coefficients describe different features of linear pulse prop-
agation. In short, the envelope propagates at a group velocity v, = 1/ and its
dispersion is described by the group-velocity dispersion (GVD) represented by S».
Higher order terms add further effects, like B3, related to the third-order dispersion
(TOD) that introduces temporal asymmetry in the pulse. These effects will be further
discussed in the Results section.

GVD is the main factor responsible for stretching pulses in dispersive media, such
as optical fibers, which means the duration of the pulses after propagation in such
elements can be considerably longer, depending on the B, parameter and length of
the specific medium. This is understood again thinking on the frequency dependent
accumulated phase over a distance z

¢p(w,z) = %526022 : (3.18)

When the pulses get broader, and since energy is conserved within the pulse?, their
peak intensity is reduced accordingly, and their nonlinear interaction with the medium

3neglec’cing absorption or losses in the medium
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will decrease, which may be in detriment of the interests of the experiment. For this
reason, techniques such as pulse compression are commonly used to compensate the
dispersion introduced by optical fibers, as we will see in Chapter 4.

Nonlinear effects: Self-phase modulation

Nonlinear effects in optical fibers stem from the third order susceptibility (), which
is related to the nonlinear refractive index, i.e. the variation of the refractive index
with the intensity of the light propagating in a medium, also known as the Kerr effect.

n(w) +nal = n(w) + | E)* . (3.19)

The right-hand side of Eq. 3.16 accounts for the main nonlinear contribution to the
propagation dynamics, namely self-phase modulation (SPM), which is weighted by
a nonlinear coefficient 7y(w), that is specific of each material. Self-phase modulation
introduces a time-dependent phase in the pulse after a propagation distance z

ot (t,2) = (1) z . (3.20)

This phase shift does not stretch the pulse envelope in time domain, but it does
broaden the spectral envelope. By generating new frequencies and keeping the time
width constant, the frequency chirp introduced in the pulse translates into a broader
spectral width. As a matter of fact, this is the main mechanism that we use for
spanning an octave of frequencies in the f-2f interferometer.

Higher order terms in the field amplitude can be added, leading to phenomena like
stimulated Raman and Brillouin scattering, but we will not consider them here.

3.2 Numerical methods: Split-step Fourier method

The scope of this section is to explain the method by which we will numerically solve
Eq. 3.16, or a very similar one. A numerical approach is needed because the propa-
gation equation is a differential equation that does not have an analytic solution in
general. For this, we will make use of the split-step Fourier method (SSFM) [58]. To
understand this method easily, it is useful to express the propagation equation in the
following way

o€ A
5, = (D+N)E, (3.21)

where D is a differential operator that comprises the linear terms accounting for
dispersion, and N is a nonlinear operator that comprises nonlinearities in the prop-
agation dynamics

_ P29 P (3.22)

A

D
N =iy|E*. (3.23)
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Note that here we are considering the effects that are of most interest to us in under-
standing the propagation dynamics, which are GVD and potentially higher order
dispersion terms, such as TOD; and SPM. Additionally, the t parameter here means
time measured in a reference frame that moves with the pulse at the group velocity
v, (retarded frame)* A formal solution of Eq. 3.21 would be of the form

E(z,t) = ePtNzg (2 1), (3.24)

but the partial derivatives in time from D make this solution inadequate for prac-
tical computation. A way around this is to Fourier transform the D operator, so
that the mapping d; — —iw converts the differential expression in a simple alge-
braic one in the frequency domain. For this purpose, we would like D and N to
act independently on the envelope £, even though this is not true since these are
non-commuting operators. In fact, one should formally use the Baker-Campbell-
Hausdorff (BCH) formula

exp(Dz) exp(Nz) = exp (Dz + Nz + % [D,N]z* +.. > , (3.25)

where [A, B] = AB — BA. Asa first approximation, we can let D and N act indepen-
dently, i.e. to commute, in small split steps, so that the higher order terms in z in the
BCH expansion can be neglected. This means that after a small step /, the envelope
propagates as

E(z+ht) = ePheNig (2, t) (3.26)

and in each of these steps, we can evaluate the action of D in the frequency domain
via Fourier transform, and then transform back to the time domain so that

ePhE(z,t) = f’leD(“’)hFS(z,t) . (3.27)

Subsequent application of this formula over the whole fiber length will lead to a
pulse that will show features arising from linear and nonlinear effects in both time
and frequency domains.

There is a simple modification to this protocol that can improve the accuracy of the
results, and it is sometimes called the symmetrized SSFM. When propagating from
z to z + h, instead of acting first with N and then with D, one can do the following:

n

E(z+ht) ~ eN%eDheNZS(Z, t), (3.28)
thus applying the nonlinear operator in the middle of the segment. By using the
BCH formula twice in Eq. 3.28 one can easily see how the first order commutators
(< z2) vanish, and the leading error term is on the second order commutators (o z°).
Besides, implementation of this method is not substantially harder than that of Eq.
3.26, because by consequent application of Eq. 3.28 over a length L, the expression
obtained is equivalent to

“That is why the term with 81 does not appear on this equation.
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(M .
E(Lt) ~e 2N (H eNheDh> e2NE(, 1), (3.29)
m=1

where L = Mk is the total fiber length.

Several issues must be considered when computationally implementing this method.
First, the time window —T <t < T used for simulations must be sufficiently bigger
than the pulse time width, keeping in mind the possible stretching. Also, the time
resolution is set by the number of points N in the FFT algorithm that implements
the Fourier transform, being 6t = 2T /N, and the frequency resolution is in fact set
by the time window

27t 1
To_ (3.30)

dw="N"T

Therefore, for a correct sampling of the pulse in both time and spectral domains, one
would want 5t and dw to be small enough, which means having large N and T with
the consequent increment in computation time. This means that a balance must be
found, probably by trial and error. Another important issue is the choice of the step
size h. In principle, the criterion is having a step small enough so that terms of order
h3 and higher can be safely neglected in the BCH formula. In practice, the step size
can be varied in different simulations until the results converge, meaning if the step
size is too large, the results may differ when changing /, but when it is sufficiently
small, they will be independent of it.

3.2.1 Implementation of the method

The split-step Fourier transform method was implemented for this work in C++. A
Fourier limited 100 fs Gaussian pulse was used as a seed to propagate over different
distances for consistently showing the effects of linear and nonlinear propagation in
a medium. Some characteristic lengths can be defined in terms of the B,, B3 and 7y
parameters, that represent the length from which their corresponding contributions
(GVD, TOD and SPM) are more apparent.

T
Lp=—2%" (3.31)
B2
%
Ltop = B3] (3.32)
Int = —— (3.33)
NL=Ch :

where T is the pulse duration and Py the peak power. Therefore, when studying
the interplay of these effects, comparing their characteristic lengths gives an idea of
their relative contribution to the pulse dynamics. It must be noted that a simulation
of linear or nonlinear effects only does not need the SSFM, and just propagation with
the corresponding phases in either frequency (GVD) or time (SPM) domains is per-
formed. Only when both linear and nonlinear effects are considered simultaneously
the SSFM is fully exploited.



3.3. Results 21

3.3 Results

3.3.1 Linear propagation with dispersion

We begin our simulations with a 100 fs Fourier limited Gaussian pulse, witha T = 3
ps time window and a 6t = 1 fs resolution. The first phenomenon we would like
to study is pulse broadening from GVD, and for that purpose we use Eq. 3.21 to
propagate the pulse with only the term in ;. This effectively means we can use
Eq. 3.27 with an arbitrary step distance, equivalently to applying the SSFM for one
large step. In other words, we Fourier transform the pulse, add a phase of the form
%,BQa)ZL to it, and Fourier transform back to the time domain. Doing this simulation
for different values of L/Lp, with Lp as defined in Eq. 3.31, one can clearly see the
effects of GVD symmetrically stretching the pulse (Fig. 3.1).
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Fig. 3.1. Pulse broadening by the effects of GVD. Only considering the effects of GVD,
A 100 fs Gaussian pulse is propagated over L/Lp = 2 and 4 showing a clearly increased
duration. The integrated area is constant, meaning the pulse energy is conserved.

Note that the pulse energy is conserved, meaning that while the pulse broadens, the
peak intensity decreases accordingly, so that the integrated area of the pulse remains
constant. Furthermore, GVD broadens the pulse without distorting the pulse shape,
i.e. the Gaussian envelope remains a Gaussian.

GVD is present in almost any occasion where a pulse propagates in a dispersive
medium, and the broadening of the pulse can only be avoided by GVD-compensating
mechanisms (pulse compressor), by propagation near the zero dispersion wave-
length A =~ Ap (where B> ~ 0) or in special conditions where GVD and SPM con-
tribute to the pulse dynamics with opposite signs and exactly compensate each other
so that the pulse travels without changing as a soliton. °.

Next, we study the effects of TOD in exactly the same manner, but using only the
term with B3 in the propagation equation, meaning we add a phase in the frequency
domain of the form [33(03 L. Propagating the pulse over different values of L/Lrtop,
we obtain the results of Fig 3.2. TOD breaks the time symmetry in the pulse and
introduces a distinctive oscillatory tail on one of its sides. These oscillations are
deep and bring the intensity to zero on some points when GVD is not present, but

5This can happen in the so-called anomalous-GVD region, where A < Ap and B, < 0.
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Fig. 3.2. Breaking of time-symmetry via TOD. A 100 fs Gaussian pulse is propagated over

distances L/ Ltop = 2 and 5, with the effects of TOD only. The pulse envelope shape changes
asymmetrically, developing an oscillatory tail on one of its sides.
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Fig. 3.3. Pulse propagated with combined effects from GVD and TOD. After propagation

over L = 5 Ltop, the pulse broadens more than with GVD alone, and asymmetrically, but

the oscillations from TOD are smoothed. The relative importance of both effects is indicated
by the ratio Lp / Ltop-
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are smoothed out when , # 0. In Fig. 3.3 a simulation with both effects active is
shown. The pulse is propagated through a distance L = 5 Ltop, and the relative
importance of the effects is represented by the ratio of their corresponding charac-
teristic distances Lp/ Ltop.

When introducing some GVD to the case with TOD only, the oscillations on the
pulse’s tail see their relative amplitude reduced, and increasing the GVD parameter
may smooth them out entirely, but keeps the asymmetry introduced by TOD. From
another point of view, TOD increases the broadening introduced by GVD alone, but
it does so asymmetrically.

3.3.2 Nonlinearities with SPM

In order to realize the effects of SPM, we set the dispersion parameters > and 3 to
zero, and propagate the pulse by adding a phase exp(NL) with N = iy |E(¢) |2. This
time, we will not look at the pulse envelope in time domain, which does not change,
but at the spectrum or spectral intensity. The spectra shaped by SPM for different
accumulated nonlinear phases are shown in Fig. 3.4.
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Fig. 3.4. Spectra modified via SPM A Gaussian pulse is propagated through different non-

linear phases, without considering dispersion effects. The spectrum broadens and develops

an oscillatory structure, always keeping two prominent peaks at both sides of the spectrum.

Note these spectra have been normalised to their maxima, but their maximum intensity de-
creases with spectral broadening as to conserve the area of the spectrum.

What we first notice is how the spectrum broadens and develops an oscillatory struc-
ture that covers the whole spectral range symmetrically from its center. In general,
the spectrum consists of many peaks (the number of peaks increases linearly with
the nonlinear phase), with the most prominent peaks at both edges of the spectrum.
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This structure can be understood by considering the chirp introduced by SPM. The
chirp is a nonlinear function of time and will in general have the same value at two
different times . This means there will be pairs of equal frequencies that can inter-
fere constructively or destructively depending on their relative phase. In any case, it
must be noted that the symmetry of the spectrum is not a general property, and can
be broken by different pulse shapes or original chirp in the pulse.

When GVD and SPM contributions are of the same order, the pulse dynamics can
change significantly. We simulate this situation making full use of the symmetrized
SSEM, with a distance step chosen so that the distance sample spans 1500 points.
In the normal-GVD region (8, > 0), the pulse stretching is enhanced by SPM, and
the stretching factor increases with distance. This can be understood by thinking
how the linear chirp introduced by GVD temporally distributes the frequencies in
the pulse from trailing (blue) to leading edge (red), and the new frequencies gener-
ated by SPM are red- or blue-shifted accordingly, boosting the pulse stretching. The
specific pulse shape and spectrum structure can vary significantly depending on the
ratio between both contributions, but in general the minima of the peaks generated
by SPM are not as deep when GVD plays a role.
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Fig. 3.5. (a) temporal and (b) spectral evolution of a pulse propagating under GVD and

SPM simultaneous dynamics, simulated with with SSFM. The pulse is propagated with

non-zero By > 0 and v coefficients, with Lp /Ly = 2000, for different distances L/Lp. The

interplay of GVD and SPM lead to intricate forms of the pulse in both time and frequency

domains, but in general the broadening rate will increase when ; > 0 and decrease when
B2 < 0.
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3.3.3 Soliton dynamics

Very rich dynamics arise when propagating the pulse in the anomalous-GVD region,
i.e. with B, < 0. The opposing contributions to the chirp from GVD and SPM give
rise to the formation of a soliton, characterised by its soliton order N 2=Lp/Ln.L =
YPyt?/|B2|. If N = 1, the chirp from SPM and GVD tends to cancel out, and the
fundamental soliton pulse shape will remain constant along its propagation through
the fiber. As a matter of fact, it can be shown that fundamental solitons in an optical
fiber must have a sech? shape[58], so that even with N = 1, if the original pulse
has a different shape, it will asymptotically tend to reshape as a sech? pulse. This
behaviour can be seen in Fig. 3.6, where an initially gaussian pulse is propagated
with N = 1 and it evolves to become a sech? pulse, while its spectrum narrows due
to the Fourier-limited broadening of the pulse. If N > 1.5, the pulse will find a
different steady state which will consist on some sort of periodical behaviour of the
pulse shape, were several peaks may appear in both time and spectral domains to
be recombined again in a cyclic manner, as in Fig. 3.7.
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Fig. 3.6. Fundamental soliton. An initially Gaussian pulse is propagated under conditions
such that N = 1, so that it reshapes to form a sech? fundamental soliton. In this process the
pulse stretches in time domain and its spectrum narrows, keeping a chirp-free pulse.

A soliton of order N can be portrayed as a superposition of N fundamental solitons
evolving collectively in a periodic fashion. This formation can only remain intact if
all the individual solitons travel with the same group velocity, but any dispersive
or nonlinear perturbation may break a high order soliton into its fundamental con-
stituents, leading to the so-called soliton fission. Without this phenomenon, spectral
broadening in the anomalous-GVD region would not occur, since a soliton would
keep its spectrum intact or periodically varying in a steady state. Typical features of
soliton fission are observed in Fig. 3.8, where a spectral peak appears by the high-
frequency side of the spectrum and a pulse gradually separates from the main peak
in time domain, when being perturbed by TOD. Any soliton, even when N = 1, will
emit part of its energy when perturbed by TOD or higher order dispersion, in what
is called non-solitonic radiation or a dispersive wave which, in the case of B3 > 0, is
emitted by the short-wavelength side of the spectrum, and consequently travels at a
group velocity that is higher than that of the original pulse®.

Different phenomena related to soliton fission contribute to exceptional spectral broad-
ening and supercontinuum generation. The creation of dispersion waves from TOD
generate spectral peaks in the blue or anti-Stokes side of the spectrum, and intrapulse
Raman scattering may form Raman solitons on the red or Stokes side. These spectral

®Remember B, < 0 in the anomalous-GVD region and blue components travel at a faster group
velocity than red ones.
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Fig. 3.7. Third order soliton A third order soliton (N=3) exhibits a cyclic behaviour in both

time (top) and frequency (bottom) domains, such that the chirp induced by SPM and GVD

compensates periodically, finding a steady state as long as the pulse is not perturbed by
higher-order effects.
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Fig. 3.8. Soliton fission A TOD perturbation is introduced to the second order soliton condi-

tions, such that N = 2 and Ltop/Lp = 5. A spectral peak appearing in the high-frequency

(anti-Stokes) side of the spectrum (bottom) is a typical evidence for soliton fission. The orig-

inal pulse separates into two pulses in time domain (top), a soliton and a dispersive wave,
and fringes from their coherent interference appear in the overlapping region.
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peaks at both sides of the original spectrum may overlap in time domain and gen-
erate new spectral components, under certain phase-matching conditions, through
cross-phase modulation and four-wave mixing, making it possible for the original spec-
trum to span many octaves of frequencies and form a supercontinuum. Additionally,
one must note the full spectrum may fall on both sides of the zero-dispersion wave-
length, which means there will be a combination of the different dynamics from the
normal- and anomalous-GVD regions discussed so far. Our current version of the
code does not include Raman scattering, and thus leaves out some of the effects that
lead to a realistic broadening of the spectrum, but we can still reproduce the con-
ditions that we find in our experimental setup and study the expected broadening
from SPM, GVD, TOD and higher order dispersion terms.

3.3.4 Simulation with experimental parameters

Up to here we have studied the effects of GVD, TOD and SPM in pulse propagation
dynamics from a purely theoretical point of view, but we would be interested in
simulating the pulse propagation under conditions similar to those we may find
in the lab. Our main goal is finding the parameters that allow for broadening the
spectrum up to an octave of frequencies, thus enabling f-2f interferometry.

The parameters we need to consider are those describing the ultra-short pulses and
the propagation medium. In the latter case, we will consider a highly nonlinear
fiber that enhances SPM for spectral broadening, which is a photonic-crystal fiber
(PCF) from NKT Photonics, namely the SC-3.7-975. The manufacturer offers a curve
for a frequency dependent B, parameter, which means that for a correct descrip-
tion, higher order dispersion terms in frequency have to be considered. Performing
numerical fittings of B2(w) around the central laser wavelength A, = 1050 nm for
polynomials of different orders, led to an optimal fitting at third order in frequency,
which means that terms up to fifth order in the Taylor expansion of f(w) need to be
considered’. Therefore, the linear operator D in Eq. 3.21 will have terms up to fifth
order in frequency, i.e.

N

D(w) = éﬁZ(w —we)® + éﬁ3(w —we)® + iﬁz}(w —we)* + L

o 5
130 Bs(w — we)’ (3.34)
with we = 271/ A.. The B parameters extracted from the fitting of the manufacturer’s
data are

» | =9.034+0.03-107% s*/m
B
31806+£0.01-1074  s¥/m
B
By | —525+£0.04-107% s*/m
Bs | 21+0.1-10772 $2/m .

The nonlinear coefficient is simply provided by the manufacturer for this fiber and
is ¥ = 18 (W - km)~!, and the mode field diameter is 3.3 um. The index of refraction
is 1.45 as it usually is in silica fibers.

7If B, was constant, we would "cut" the expansion of B(w) at second order. A linear j3, asks for a
third order contribution (83 # 0)... and a cubic behaviour of B, means that at least S5 # 0 needs to be
considered.
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With respect to the pulse characteristics, the pulses are again taken to be T = 100
fs Fourier-limited Gaussian pulses with a spectrum centered at A, = 1050 nm. The
pulse peak amplitude & (and thus its shape) is reconstructed from Eq. 3.7, which
can be integrated analytically for a Gaussian pulse, and therefore the peak amplitude
can be expressed in terms of the average beam power P = 100 mW, the repetition
rate f, = 40 MHz, and a spatial area of integration corresponding to a circle of radius
wo = 3.3 ym equal to the fiber’s mode field diameter, i.e.

& = \/ZP/(nw%ﬁTfreoc) ) (3.35)

The intensity profile in both time and spectral domains is shown in Fig. 3.9, cal-
culated at different distances inside the fiber from the SSFM simulation. One can
clearly see the emission of dispersion waves typical of TOD, and an abrupt broad-
ening of the spectrum at the very short distance of ~ 3 cm, which then seems to
cease and keep a practically constant bandwidth for longer distances. This spec-
trum is already spanning an octave of frequencies under the current conditions, and
one must remember than intrapulse Raman scattering is expected to enhance the
spectral broadening even more. This simulation shows in a coarse manner that the
conditions for octave spanning can be achieved with a set of parameters similar to
the ones considered here, that may be achieved in our current setup as it will be
shown in the following chapters.
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Fig. 3.9. Temporal (a) and spectral (b) evolution of a pulse under realistic conditions,
accounting for up to fifth-order dispersion terms and SPM. An initially Gaussian pulse is
propagated in a photonic-crystal fiber with dispersion and nonlinear parameters extracted
from the manufacturer’s specifications (see main text). The initial pulse is reconstructed from
measured average power, pulse duration, repetition rate and mode-field diameter of the
fiber. Clear signs of dispersive wave emission can be seen in (a), and (b) shows a spectrum
that broadens significantly even lacking contribution from intrapulse Raman scattering.
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Chapter 4

Yb fiber amplifier

One of the cornerstones of the f-2f interferometer is the broadening of the comb
spectrum up to an octave of frequencies, mainly via self-phase modulation. Being a
non-linear process, it is highly dependant on the peak intensity of the light pulses.
The 60 mW direct output from the Yb:KYW oscillator proved to be insufficient for
effective octave spanning, and for this reason it was necessary to design and build
an optical amplifier for this work. This consists of an Yb-doped fiber amplifier and a
pulse compressor, such that not only the average power of the laser beam is ampli-
fied, but also the peak power of the pulses.

This idea is inspired by the chirped-pulse amplification (CPA) protocol [59], which is
used by most high-power lasers in the world, and which granted the Nobel prize to
Gérard Mourou and Donna Strickland in 2018.

The motivation behind the CPA protocol is that direct amplification of ultra-short
pulses is not straightforward, because due to their high peak intensities, unwanted
distortions from non-linearities can be introduced or even the gain medium or other
optical elements can be damaged. For this reason, if the pulses are stretched and
chirped by a pulse stretcher before amplification, the peak intensity is significantly re-
duced while keeping the same average power and spectral properties intact. Then,
they can safely be amplified in an optical amplifier that increases the pulse energy
while possibly chirping and stretching the pulses even more. Finally, a pulse compres-
sor is used for compressing the pulses again and concentrating the amplified average
power in short pulses with high peak power.

In this work we implement a similar protocol, but dispensing with the pulse stretcher,
because the initial power is not enough to damage the optical fibers used in the am-
plifier or to produce significant non-linear effects.

Throughout this chapter, we will deepen in the theoretical concepts that are needed
for understanding how to design and construct a fiber amplifier and a pulse com-
pressor, and we will present the actual setup that was built for amplifying the pulses
up to a power that will allow us to span an octave of frequencies in the f-2f inter-
ferometer.
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4.1 Theoretical background

4.1.1 Laser amplification

The process of coherent light amplification is the core principle of lasers!. As a mat-
ter of fact, a laser system is basically a laser amplifier in which the output is fed back
to the input, hence the denomination of optical oscillator.

Light amplification is achieved from the interaction of light with a gain medium. At
the microscopic level, this interaction is fundamentally governed by three mecha-
nisms: absorption, spontaneous emission and stimulated emission. Absorption and
stimulated emission are responsible for attenuation and amplification respectively,
and spontaneous emission is the cause of noise generated in the amplifier.

By stimulated emission, a photon in a given mode can induce the emission of a pho-
ton into the same mode from a system that undergoes a transition from an excited
state to a lower energy state, as long as the energy of the incoming photon is approx-
imately the same as the energy difference between the two levels, i.e. E, — E; = hv.
This energy matching condition restricts the interaction to a certain bandwidth of
frequencies, which is given by the linewidth of the transition. More explicitly, the
probability density rate for stimulated emission can be written as [60]

2

W=¢o(v)=¢ gv), (4.1)

81 Tsp

where ¢ is the photon-flux density and o(v) is the transition cross section, which
depends on the wavelength of the light in the medium A, the effective spontaneous
lifetime 75, and the normalized lineshape function g(v). Interestingly, the probabil-
ity density for absorption is exactly the same as that for stimulated emission.

Now, let us picture the gain medium as an ensemble of two-level atoms with N;
atoms in the lower state and N, atoms in the upper state. The density number of ab-
sorbed photons must be N1W and the density number of photons emitted by spon-
taneous emission N;W. Consequently, the net gain in the number of photons per
unit of time and volume is (N, — N1)W = NW. From this, it is obvious that, in order
to have a positive net gain in the process, the effect of stimulated emission must be
predominant over absorption, which necessarily means having more atoms in the
excited state than in the lower state., i.e. N > 0. This situation is referred to as
population inversion, because this is generally not the case for an ensemble of atoms
in thermal equilibrium. Therefore, one needs an excitation mechanism to drive the
system out of equilibrium, that comes in the form of a pump that continuously pop-
ulates the upper level.

The gain

To characterize the net gain in an amplifier, we can first describe the differential
increment in the photon-flux density d¢, in a differential slide of the medium dz

9 — NW = pNo(w) = p1(v), (4.2)

IRemember that LASER stands for Light Amplification by Stimulated Emission of Radiation.
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where we have used Eq. 4.1 for W, and then defined the gain coefficient as

2

7(v) =No(v) =N

= SHngOO' (4.3)

Solving Eq. 4.2 tells us that the photon-flux increments exponentially with the dis-
tance, and consequently, so do the optical intensity I = hv¢ and the optical power.

$(z) = p(0)e7)7, (4.4)
I(z) = 1(0)e")?, (4.5)
P(z) = P(0)e"™)= (4.6)

Finally, we can measure the net gain of the amplifier by comparing the input and
output optical powers, after a total interaction length L, corresponding to

G@):i%):wML. (4.7)

It should be noted that we have established the following relations: the gain coeffi-
cient y(v) depends on the population inversion N (Eq. 4.3), N is governed by the
pumping rate and the transition rate W, and W depends on the photon-flux ¢ (Eq.
4.1). This means that the gain coefficient depends on the photon-flux to be amplified,
which is the origin of amplifier non-linearity and gain saturation. Gain saturation
stems from the fact that a high power signal® can compete with the pump, in the
sense that when stimulation emission is too high, population inversion is destroyed
and N ~ 0. At this point the amplifier is saturated and does not amplify anymore.
In general we can write a saturated gain coefficient

1) = 2o

“ T /) (+8)

where Ny and 7 (v) are the "small signal" population inversion and gain coefficient
respectively, and ¢,(v) is the saturation photon-flux density. Eq. 4.8 makes it clear
that the gain coefficient decreases as the photon flux ¢ increases, and tends to zero
for high values of the signal photon flux.

Pumping schemes

As we have pointed out previously, as long as the gain coefficient is positive, i.e.
there is population inversion, there will be amplification in the system. There are
different pumping schemes to transfer population from the lower to the upper laser
level, but they all involve the use of auxiliary energy levels. This is due to the fact
that in a continuously driven two-level system, since the absorption and stimulated
emission probabilities are equal, the best one can obtain is continuous oscillations
of the population between the two levels, known as Rabi oscillations. Therefore, it
is mandatory to use three or four atomic levels, or even bands of level manifolds to

2By signal we refer to the laser light that is being amplified. We may sometimes refer to the input
signal as the seed, before amplification.
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achieve population inversion. In the next section, we will study the specific pump-
ing scheme, as well as the absorption and emission bandwidths and any other rele-
vant characteristics of the amplifier that was build for this work, an ytterbium-doped
tiber amplifier.
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Fig. 4.1. Spectroscopic characteristics of Yb%*. (a) Energy level scheme (not to scale), show-
ing the 2F; /5 and 2F5/, manifolds participating in the laser transition and pumping scheme
of the Yb-doped fiber amplifier. (b) From R. Paschotta et al. [61]. Absorption (solid) and
emission (dotted) cross sections of Yb-doped germanosilicate glass. The absorption peak at
975nm is pumped for amplification of radiation near the 1030nm emission peak.

4.1.2 YD fiber amplifier

Ytterbium-doped fibers are commonly silica glass optical fibers, with a core doped
with Yb** ions. Using an optical fiber as a gain medium allows for long amplifi-
cation regions, of several meters easily. So even though the gain coefficient may be
small compared to other systems, the net gain may be of tens of decibels with mod-
erate pump power, which may generate an output of hundreds of watts or even kW.
In single-mode fiber amplifiers the signal and the pump propagate together in the
core, but to achieve very high powers double-clad fibers are used. In these fibers
the laser light propagates in the single-mode core, and the pump travels through
an inner cladding, that allows for multi-mode propagation® at higher power. This
reduces the risk of destroying the fiber and avoiding distortion of the gain shape
caused by saturation from a standing-wave like pump spatial mode (spatial hole
burning). Every time the pump passes through, or partially propagates in the core,
amplification of the laser light occurs.

The spectroscopic scheme of Yb®> shows two relevant energy level manifolds for
the laser transition: the 2F; /, manifold acting as the lower level, and the %Fs /, mani-
fold serving as the upper one. Note that these manifolds consist of 4 and 3 sublevels
respectively, as depicted in Fig. 4.1 (a). The specific absorption and emission spectra

3Multi-mode propagation can be visualized as geometrical reflections inside the cladding.
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have some dependency on the host medium, and these are shown for Yb in ger-
manosilicate glass, which is the most common material for optical fiber cores (Fig.
4.1 (b)).

From the absorption and emission spectra one can see how there are different pumping-
lasing schemes, always considering that the pump must have shorter wavelength
than the signal. One can for instance pump the peak at 910 nm and amplify at 975
nm, or as it is the case in our experiment, pump at 975 nm and amplify near the wide
1030 nm peak. For the latter configuration, since the absorption peak is narrow, the
pump linewidth must be rather small, and a maximum of 50% excited population
can be achieved because of the absorption and stimulated emission cross sections
being equal at 975 nm, which sets a limit to the gain of the amplifier.

4.1.3 Pulse compression with gratings

The dispersion introduced by the typically long fibers in fiber amplifiers can be com-
pensated by a pair of parallel gratings. These act as a pulse compressor.

In fact, any optical element that introduces chromatic angular dispersion, introduces
GDD. This can be intuitively understood by acknowledging that after the disper-
sive element, different frequency components follow different optical paths, which
introduces a frequency dependent phase delay in the pulse. This causes spectral
dispersion in time domain (chirp), while leaving the spectrum unchanged, and in-
evitably stretching or compressing the pulse, depending on its original chirp. By
using a second dispersive element after the first one, one can compensate for the
angular dispersion and make all the spectral components parallel again, keeping a
collimated but compressed (or stretched) pulsed beam.

To characterize the GDD introduced by a pair of parallel gratings, we first need to
obtain the phase delay ¢ (w) for different spectral components. For this, we can take
a central frequency wy and a neighbouring frequency w = wy + dw, such that if wy is
diffracted by an angle p’ on a first grating, the w component is diffracted by g’ + dp’.

Let us look at the frequency dependent optical path ABC shown in Fig. 4.2. The
w component follows a path AB = Cog—ﬁ, and BC = ABsin(90° — (B+p)) =
ﬁﬁ’ cos(B + p'), such that

ABC =

(14 cos(B+p)) . (4.9)

cos p/

where B is the angle of incidence, p’ the diffraction angle*, and b is the normal dis-
tance between the gratings. The incidence and diffraction angle are related through
w by the grating equation. For the first order of diffraction m = 1:

27c

— (4.10)

sinf’ —sinf =
where d is the distance between the grating grooves. Usually, we would say that
the phase delay is related to the optical path length through ¢(w) = Lopt.(w)w/c,
but gratings have a special feature that adds an extra correction to that. In a grating,

“Note that g’ + dp’ ~ g
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Fig. 4.2. Two parallel gratings set up for pulse compression. Higher frequencies are

diffracted by a larger angle p’ and travel a shorter path length, which causes a negative

GDD on light pulses. Note that dp’ is a differential quantity and its size has been exagger-

ated. The choice of a reference wavefront CCj is arbitrary, and it has been chosen so that its
extension falls on A for convenience.

there is a 27tm phase-shift from one groove to the next one, such that we should ac-
count for a phase difference of 27t times the number of grooves between B and B
[62]. This can also be done consistently by just subtracting a phase to ABCw /¢, cor-
responding to the number of grooves from A’ to B. This gives a frequency dependent
phase delay of [57]

P(w) = CgABf—Zcmtanﬁ’. (4.11)

The GDD is obtained as the second-order derivative of Eq. 4.11, making use of Egs.
4.9 and 4.10:

d?y 47%be
DD = = — . 4.12
G dw? w3d? cos® B/ (4.12)

Rewriting this expression for wavelengths, at the central wavelength Ay , one gets

2
__ o (AO) b (4.13)

GDD —
o 2rtc2\ d ) cos® B/

_dyp
- dw?

Ao

This equation shows how the dispersion introduced by a pair of gratings is always
negative. This can be intuitively understood looking again at Fig. 4.2, and noticing
that the higher frequencies travel a shorter optical path, making the blue compo-
nents come out before the red ones in the pulse (negative chirp). Even though we
are calling this device a pulse compressor, it should be clear that a pulse with no ini-
tial chirp can only be stretched by introducing GDD of any sign. But it is precisely
because the pulses coming out of the long fiber amplifier are positively chirped and
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stretched (positive GDD is introduced in the normal-GVD region), that the pulse
compressor can be tuned to compensate for the amplifier’s GDD with opposite sign,
and restore the pulses to their original width. This tuning is usually made by ad-
justing the distance b between the pair of gratings with a specific grating parameter
d~1. The transverse displacement of the different spectral components can be com-
pensated by using two consecutive pairs of gratings or by sending the beam twice
through the same grating pair, keeping in mind that in that case we are introducing
twice the dispersion of Eq. 4.13.

4.2 Experimental setup

421 Yb-doped fiber amplifier

For the amplification of the 60 mW output from the Yb:KYW oscillator, in this work,
a fiber amplifier based on an Yb-doped double clad fiber (Yb-DCEF), was built. The
gain medium fiber is the YB1200-10/125DC from Thorlabs, an ytterbium-doped sin-
gle mode double-clad fiber with a 7 + 0.5 ym mode-field diameter ° and a 125 =+ 2
pum inner cladding diameter. The core numerical aperture (NA), defined as the value
of the sine of the largest incidence angle a ray can have for total internal reflection, is
NA = 0.12, which is a typical value in SM fibers. The amplifier is fully fiber based,
which makes it compact and robust. The different fibers and optical elements used
in the amplifier will be explained throughout this section. A photo of the Yb-DCF
can be seen in Fig. 4.3.

Fig. 4.3. Ytterbium-doped double-clad fiber. The Yb-DCF has a core doped with Yb3* ions
that acts as a gain medium. The 1050 nm signal propagates through the core, and the 975
nm pump propagates through the inner cladding. The appreciable green glow is a typical
fluorescence emission in Yb. A metallic case for protecting a spliced region can also be seen.

5This is similar, but not equal to the core diameter.
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Coupling light to the amplifier

To optimize the free-space-to-fiber coupling at the input of the amplifier, a GRIN
lens is used. These are solid cylinders engineered to have an index of refraction
n(r) that varies radially and continuously from a maximum value at its symmetry
axis to a minimum at its outer surface®. It can be shown that when this variation is
parabolic, an initially collimated beam can be focused to a certain focal point. The
GRIN lens used is a commercial device that is glued to a SM fiber and is designed in
such away that accounting for the lens width and length, a beam of light incident on
the GRIN lens is focused and coupled to the core of the fiber. This simplifies the task
of coupling light into the fiber, since one does not need to be concerned with finding
the right focusing lens configuration. Still, the laser beam needs to be resized to a 1.8
mm waist, which is smaller than the starting Yb:KYW output. To resize a collimated
beam, two regular lenses can be used in a telescope configuration. In this case, two
lenses of focal lengths f = 500 mm and f = 150 mm are used such that the beam size
isreduced to a ~ 1.8 mm waist and still collimated. Measuring the power right at the
output of the SM fiber attached to the GRIN lens permits aligning and optimizing
the coupled power to nearly 80%.

Now that we have a way to couple the light into a SM fiber, we need to splice this
to the Yb-DCE. A splice of two fibers with different core sizes and cladding con-
figurations is delicate, but it can be done with a fusion splicer. The FSM-30S Arc
Fusion Splicer model from Fujikura can automatically align the cores of two fibers
and splice both fiber ends together by quickly heating them up to their fusion tem-
perature, without significant power loss at the joint. An imaging system and digital
display allow for checking the quality of the prior alignment and subsequent splic-
ing. The success of this process is highly dependent on how well the fiber ends are
cleaved. One must make sure that both end surfaces are cleaved clean and straight,
i.e. with a sharp cut and no angle with respect to the fiber propagation axis. This is
achieved with a cleaver from Fujikura. The same procedure (with appropriate pa-
rameter selection of the fusion cleaver) will be used for splicing all the other fiber
segments used in this setup.

The pump

As explained in section 4.1.2, the pumping scheme of choice consists on pumping
at 975 nm, such that we can amplify around 1030 nm or 1050 nm. This task is per-
formed by a laser diode, the LU0975T090 from Lumics. According to the manu-
facturer, this diode operates at a maximum CW output power of 9 W for a 11.5 A
current, even though it will be operated at much lower power for the range of am-
plification needed (< 3 A). The laser light goes straight into a multi-mode fiber with
a 105 ym core and a 125 ym cladding diameter. It has a peak wavelength of 975 nm
with a very narrow spectral width of 5 nm, even though it shifts with temperature
by 0.3 nm/K, and 0.6 nm/W with changes in power. For this reason, and to avoid
overheating of the diode, it needs to be temperature controlled.

To measure the diode temperature, an Analog Devices AD590 temperature sensor
is attached to its surface with a thermally conducting glue. This sensor is an inte-
grated circuit temperature transducer that produces an output current proportional
to the absolute temperature. A Peltier element is used as a temperature controller.
A Peltier device uses the thermoelectric effect to transfer heat from one side of the

Other geometries are possible, but this is the one used in this work.
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Fig. 4.4. Yb-doped fiber amplifier. The schematic figure on the right depicts the main com-
ponents of the fiber amplifier. The signal laser is coupled into the fiber system through the
right GRIN lens and a single-mode fiber (SMF), which is spliced to the Yb-doped double-
clad fiber (Yb-DCEF). This one is joint to a combiner via another double-clad fiber (DCF).
The combiner receives the pump from a laser diode through multi-mode fibers (MMF) and
sends it to the inner clad of the Yb-DCE. After amplification, the signal comes through the
combiner’s SMF and comes out the left GRIN lens. The X symbols mark fiber splicings. Note
that the temperature stabilization system for the laser diode is not shown here (see text). On
the left, a picture of the actual setup, with some labels for orientation. The compartment for
the laser diode, Peltier element and temperature sensor is marked on the picture.

device to the other when an electric current is applied. The heat flux is proportional
to the DC electric current, and is bidirectional, meaning it can heat up or cool down
one surface or the other depending on the sign of the current. The diode is then at-
tached to one surface of the Peltier element with thermally conducting double-sided
tape, and by continuously reading the temperature one can stabilize and control it by
sending a feedback signal to the Peltier device, compensating for temperature drifts
and setting a chosen temperature. This is performed by a PID loop filter that com-
pares the output current from the temperature sensor with a set-point, and sends a
current to the Peltier element to keep the temperature at a constant value ”.

Now, we need to couple the pump laser to the Yb-doped fiber for enabling ampli-
fication. This is performed with the aid of a fiber-optic combiner. This device has
two multi-mode fibers for pump inputs (one is idle in this case), one double-clad
fiber for signal input / pump output and one single-mode fiber for signal output.
The pump and signal fibers are tapered and fused together so that their cores are
in close contact over a few centimeters. This way, the evanescent wave from one
fiber can be coupled into the other fiber and both signal and pump are effectively
combined. The signal DCF and the pump MMFs have 10/125 and 105/125 pym core
and cladding diameters respectively. The MMF from the laser diode is then spliced
to the combiner’s MMF pump input, and similarly, the DCF from the combiner and
the Yb-doped DCF are spliced together, coupling the 975 nm pump light into the am-
plifying fiber. Splicing the DCFs may be tricky since they have different core sizes
(mode field diameters are 10 ym and 7 pym), but it can be achieved without great

7We will discuss PID controllers and feedback loops in Chapter 6
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losses after, perhaps, a few attempts. A schematic view of the different fibers used
and their splicing points is shown in Fig. 4.4.

Assembling and boxing

All the components are placed in a specifically designed metallic box, as can be seen
in Fig. 4.4. This way the fiber is more tightly fixed and small motion, which would
introduce polarization rotation, is minimized. The output SM fiber from the com-
biner, which propagates the amplified signal, is spliced to a SM fiber attached to a
GRIN lens identical to that of the input coupler. In this manner, the output is a colli-
mated beam of known size. The laser diode, temperature sensor and Peltier element
that form the stabilized pump system are placed inside the compartment marked in
the left picture on Fig. 4.4. Three BNC connectors, which pins were wired and sol-
dered to those of the three constituent elements, allow cabling with a power supply
for the laser diode (LD), and the PID controller, which receives the sensor’s signal
and supplies the Peltier element. The input and output GRIN-lens couplers were
mounted in 1/2” mirror mounts for ease of alignment. The joints between spliced
fibers are mechanically fragile, because the coating must be removed for splicing,
thus they are sheltered by small metallic cases that accommodate the fiber in a cen-
tral channel and make a frame that prevents contact with the un-coated segment,
which is critical in DCF where the pump propagates through the cladding, (one can
be seen in Fig. 4.3), while some others were just made a white-tape coat for less
sensitive fibers such as SME.

4.2.2 Pulse compressor

The fiber amplifier has a total length of approximately 3 m in optical fibers. This
introduces significant dispersion in the light pulses, and thus broadening. As has
been noted before, self-phase modulation (which will grant spectral broadening in
the f-2f interferometer) and non-linear effects in general, depend not on the average
power, but on the peak power. For this reason, we would like to compress the pulses
to at least compensate for the amplifier’s dispersion, and reach the Fourier limited
width if possible, therefore optimizing the pulses” peak power. For this purpose,
a pulse compressor had to be designed and built for this work, based on the ideas
of pulse compression by a pair of gratings explained in Section 4.1.3. We will first
discuss some design concerns, and then explain the setup dividing it in two arms:
the input and the compression arms.

Preliminary considerations

To design the compressor, we must first do an estimation of the GDD introduced
by the amplifier. Ultimately, the parameter that we want to obtain is the distance
needed between the gratings; b in Eq. 4.13. The different fibers produce slightly
different GVDs, depending on their characteristics, but to do an estimation we will
assume homogeneous dispersion along the amplifier.

We can quickly do some numbers by looking at the specifications of one of the fibers,
that we can take as a model. For instance, the combiner’s SM output fiber, a HI 1060
Specialty Fiber by Corning, has a dispersion of D, = —38 ps/nm/km at 1060 nm
according to the manufacturer. Expressed as GVD, this is a (positive) group velocity
dispersion of GVD = 22.7 fs>/mm, which after 3 m produces a group delay disper-
sion of GDD = 68 - 10° fs?, corresponding to a final pulse width of 2 ps from the



4.2. Experimental setup 41

initial 100 fs, which is a factor 20 larger. This highlights the importance of compress-
ing the pulses after the amplifier.

Knowing the GDD, we can calculate the distance b between the gratings, but for
that we need to know the specific parameters of the gratings to be used. These
will be two T-1600-1030s lithographically patterned transmission gratings from II-
VI. They have a line density of 1600 lines/mm, or equivalently, a line periodicity of
d = 0.625 ym, and an optimal incident angle of 55.5° at 1030 nm. The incidence
angle is, by design, that angle that maximizes the power transmitted in a certain
diffraction order (m = 1 in this case). This is achieved by tilting the grooves in a
certain angle, so that they have a sawtooth shape that form little prisms. In blazed
transmission gratings, the transmitted intensity is maximized at an order m when the
refraction of the incident light in a prism occurs in the same direction as the one
given by the diffraction equation for that order, which is called the blaze angle®. It
is common to choose the blaze angle such that the incident and diffracted angles are
the same for a certain wavelength, in what is called the Littrow configuration. For
our spectrum centered at 1050nm, the Littrow angle is ~ 57°.

With all this, we are in position to calculate the optimum distance b for the grating
pair from Eq. 4.13. For the values of the GDD discussed, we obtain a distance of
b ~ 1 mm, accounting for a two-step compression. Eventually, we will optimize the
gratings’ separation by mounting one of the gratings in a linear translation stage and
finding the distance that minimizes the pulse width or autocorrelation function, that
we will measure with a FROG system”.

Setup: Input arm

The input arm, previous to the compression arm, consists of an optical isolator, to
prevent any unwanted light from going back into the fiber amplifier, and a set of
waveplates to prepare the right polarization states (see Fig. 4.5).

The optical isolator transmits light only in one direction, blocking the light going in
the opposite direction. The most common way to achieve this is by means of the
Faraday effect, by which the polarization of light propagating in certain materials
can be rotated proportionally to an applied magnetic field. A Faraday isolator in-
cludes such a material with a permanent magnetic field (Faraday rotator), enclosed
by two linear polarizers with a relative angle of 45° between their polarization axes.
When light linearly polarized at the right direction comes into the isolator, it passes
through the first polarizer without losses. The Faraday rotator is set to rotate the
polarization axis by 45° and make it coincide with that of the second polarizer, such
that the light comes out the isolator minimizing losses. If any light would come in
from the output port, it would be polarized and rotated by yet another 45° such that
it would be orthogonally polarized to the input polarizer, therefore being blocked
by it.

Consequently, we need the ability to have linearly polarized light at an axis of choice
at the input, and this can be achieved by a A /2 waveplate (HWP1) and a A /4 wave-
plate (QWP). Elliptical polarization coming from the fiber amplifier can be converted
to linear polarization at an arbitrary direction by the QWP, and then set to a specific

8In reflection blazed grating this condition is satisfied when the reflection and the diffraction direc-
tions are matched.
9This will be discussed in Section 4.3.2
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Fig. 4.5. Pulse compressor. The rightmost figure is a schematic of all the components form-
ing the compressor module and their alignment. The laser beam coming out of the fiber
amplifier (FA) is reflected by a first mirror (M1) through a half-wave plate (HWP) and a
quarter-wave plate (QWP) and sent into the Faraday isolator. A second HWP and two mir-
rors (M2 and M3) send the beam through the gratings in S-polarization. The parallel reflector
sends the beam back, but vertically displaced such that it goes again through the gratings
but over M3. Finally the M4 mirror sends the beam out of the compressor module. The cen-
tral picture is a photograph of the actual setup with labeled components and the laser beam
path in red. On the left, a close-up on the custom grating holders.

polarization axis by the HWP1. This can be optimized with respect to the isolator by
rotating both waveplates to maximize the transmitted output.

Yet another A /2 waveplate (HWP2) is placed after the isolator because the gratings
are designed to work at S-polarization, meaning the light should be polarized par-
allel to the grating lines for optimal performance. Again, we can rotate the HWP to
maximize the intensity transmitted by the grating pair.

Setup: Compression arm

Alignment of the grating pair, as well as the mirror that allows for back reflecting
the beam such that it passes twice through the gratings, is critical for the success of
the compressor. These three elements compose the core of the compressor. The main
idea is, as mentioned before, to fix one grating, and mount the other one on a trans-
lation stage with sub-millimeter precision, so that we can manually and precisely
regulate the distance between them. Once the beam has passed once through the
gratings, it will be reflected back by what we will call a parallel reflector, an arrange-
ment of two mirrors forming 45° in a V-shape, such that the reflected beam is parallel
to the incident beam, but displaced by a small distance in the vertical direction. This
way, the reflection travels along the same path but in opposite direction and verti-
cally displaced. The vertical shift is determined by the relative height of the incident
beam with respect to the vertex where the two mirrors are joined, i.e. the incident
and reflected beams are symmetrically shifted from the vertex. This has to be taken
into account, since the gratings have a vertical length of 12.3 mm, and therefore the

FA
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separation of the beams cannot be larger than that'’. The strict constraints on the
relative height, angles, and parallelism of the gratings, made it necessary to design
and manufacture special holders for the gratings, that are shown in Fig. 4.5.

Since the alignment of these elements can be pretty challenging, we will now de-
scribe it step by step.

First, we align the beam, parallel to the table, to a horizontal virtual axis that we will
take as a reference for aligning the rest of the elements. Then, we must align one of
the gratings (the one on the linear stage) with the beam, so that the incident angle is
close to 55° - 57°. This can be done by finding the angular position that maximizes
the intensity of the light at the first diffraction order. Once that position is found,
we have to align the second grating to be parallel to the first one and approximately
at the right distance b ~ 1 mm. The best way to do this is to move the stage to the
most forward position, and then place the second grating as close to the first one as
we can, avoiding direct contact. For finding the parallel position, the second grating
with its holder were glued to a 1/2” mirror mount, such that the alignment could
be fine tuned. Then, by observing the back-reflected beam at a distant screen, one
can find the alignment that makes the beam more circular, i.e. that compensates the
lateral spectral dispersion. As it was noted, the relative height of the incident beam
with the gratings and parallel reflector is critical, because the reflected beam must fit
within the gratings” window size, but also go over the M3 mirror without clipping,
and hit the M4 mirror to be extracted out of the compressor. This was achieved by
hitting the parallel reflector ~ 2 mm below the joint of its two mirrors, so that the
two beams are separated by ~ 4 mm, which is enough for successful extraction of
the compressed beam.

4.3 Results

4.3.1 Characterization of the amplified power

A first test to make is checking the performance of the laser diode (LD), in order to
have an idea of the range of pumping optical powers that we can access, for rea-
sonable values of the electric current. The average power of a laser beam with a
relatively narrow spectrum can be measured with a photodiode powermeter.

Fig. 4.6 shows the LD ouput power measured right after its MMEF, before splicing
with the combiner. A typical diode behaviour is observed, with no significant emit-
ted power before the threshold at 0.7 A, and a linear increase in power with increas-
ing current from the threshold. The range of available powers is quite significant,
rising up to 2 W for a current lower than 3 A. This proved to be very adequate for
our application.

With the fully operative fiber amplifier, we would like to check the available output
powers as a function of the pump electrical current. This is presented in Fig. 4.7.
The power right after the fiber amplifier is compared to the output from the pulse
compressor, to account for the losses introduced by the latter and characterize the
average optical power that will be sent to the f-2f interferometer. For a 3 A pump
current we obtain a net gain factor of roughly 8, corresponding to an optical power of
almost 500 mW, compared to the initial 60 mW. We also confirm the linear behaviour

10Actually, the limitation is more strict, because the alignment was such that the incident beam
passes through the gratings at approximately their center.
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Fig. 4.6. Optical output power of the laser diode as a function of the supplied electrical

current. A typical linear diode behaviour can be observed, with a threshold at 0.7 A. The

diode can stand currents up to 11.5 A with a corresponding 9 W output power, but values
above the ones shown in this plot are not needed for the current application.

of the amplifier, which is always a desirable feature in any amplifier, and denotes
that we are not saturating the gain.

After losses in the compressor, mostly in the Faraday isolator and the grating pair,
the effective net gain is reduced to 3. Losses in the isolator usually arise even for
perfect alignment and polarization matching due to the quality of the polarizers,
residual reflections from the anti-reflection coatings and imperfect 45° rotation in
the Faraday rotator. In a similar manner, the pair of gratings introduce unavoidable
losses since part of the power is lost in other orders of diffraction than the one used.
Nevertheless, it should be reminded that it is not the average power what we are
interested in, but the peak pulse power. Therefore, the pulse compression is a crucial
condition for evaluating the quality of the amplifier, and ultimately the ability to
span an octave of frequencies in the f-2f interferometer will be the key to confirm
the success of the fiber amplifier for this application (we will verify this in Chapter
5).

As we mentioned in Section 4.2.1, the central wavelength of the LD’s emission de-
pends on the temperature of the diode. Since the absorption peak at 975 nm in the
gain medium is quite narrow (Fig. 4.1), a slight deviation from this wavelength may
cause large changes in the population inversion, and thus in the gain of the ampli-
fier. This is confirmed in Fig. 4.8, where the temperature of the diode was manually
changed using the PID controller that stabilizes the temperature of the pump system
as described in Section 4.2.1. A very significant change in the amplified power, of a
factor 2-3 can be observed when varying the temperature of the LD while keeping
the supply current fixed. In both cases, for currents of 2 A and 1 A, the amplified op-
tical power increases with increasing temperature until it starts reaching a saturation
point, where possibly the wavelength does not change significantly!!. The change is
such, that in the 2 A case we find the amplifier in the optical attenuator regime for
low temperatures, but achieve a gain factor of 3.4 at 40 °C. From this observations, it

'Higher temperatures were not available with this temperature controller.
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was decided to operate the fiber amplifier at an LD temperature of 40 °C, at the cost
of reducing the diode’s lifetime in the long term.
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Fig. 4.7. Amplified optical power out of the fiber amplifier (FA) and pulse compressor. The

blue data points are measured right after the FA’s output GRIN lens, and the red ones after

the compressor’s M4 mirror (see Figs. 4.4 and 4.5). The desired linear behaviour is observed,

without hints of saturation. The net gain shown is the ratio between the output power and
an input power of 60 mW. The temperature of the LD is set to 40 °C
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Fig. 4.8. Amplified optical power vs. laser diode temperature for constant supply current.

In blue, power measurements for a current of 1 A, and in red for 2 A. In both cases, amplifi-

cation is enhanced with increasing temperature until a saturation point seems to be reached.
The measurements were made before the pulse compressor.

4.3.2 Characterization of the pulses after compression

We will study now not the average properties of the laser beam, such as the power,
but those of the single pulses. Our goal is to make sure that the pulse compressor
is indeed compressing the pulses, and quantify their temporal width. This can in
principle be done by measuring their autocorrelation function (ACF) with an auto-
correlator, but a full characterization of the pulses is achievable with a FROG system
(Frequency-resolved optical gating system). The difference is that, while the ACF
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contains information about the pulse time-width, it does not contain enough infor-
mation about its phase to reliably recreate the exact pulse shape or even give an
exact numerical value of its time-width. Still, it can be used for optimizing the pulse
compressor (the distance b between the grating pair), because minimizing the width
of the ACF generally leads to minimization of the pulse time-width. As a matter of
fact, the optimization of the compressor was done with an autocorrelator, but for-
tunately a FROG system was available for a few days, which allowed a complete
characterization of the pulses.

In short, the FROG system measures the optical spectrum of the second-harmonic
light generated by overlapping two pulses in a frequency-doubling crystal. Measur-
ing this SHG spectrum as a function of the time delay between the pulses generates a
time-frequency 2D trace that contains information about the amplitude and phase of
the pulse in both time and frequency domains'?. This information is automatically
retrieved with a software offered by the manufacturer, MesaPhotonics, by solving
the so-called two-dimensional phase-retrieval problem.

An important feature of this system is that it provides feedback about the validity
of the results via the FROG trace error, which is assumed to be indicative of reliable
results when < 1%. In a few words, the FROG trace is an N x N array of points,
that is used to calculate N intensity and N phase points, i.e. 2N total. There are thus
more degrees of freedom in the FROG trace than in the pulse, and the pulse intensity
and phase are over-determined. This allows for re-calculation of a "retrieved" FROG
trace that can be compared to the measured one, as a manner of checking whether
the software has captured all relevant features of the trace for the reconstruction of
the pulse. The fidelity of the reconstruction is highly dependent on a correct align-
ment of the FROG setup!® and on the correct tuning of some software parameters.
A good starting point is making sure the trace is centered at, and symmetric from,
zero time delay, but comparing with the retrieved trace is the key test, as well as
minimizing the calculated FROG trace error.

A FROG measurement of the pulses after the compressor, with its corresponding
measured and retrieved traces, is plotted in Fig. 4.9. We find outstanding agreement
between both traces, and both demonstrate good symmetry properties. This is an
indicator of the excellent quality of the measurement and retrieval, and also proves
the superb stability of the pulses.

Aswe said, from these traces, the commercial software reconstructs the intensity and
phase profiles in both time and frequency domains. From observing the real-time
calculated pulse width, one can optimize the grating distance that minimizes the
time-width. The intensity and phase of the minimum-width pulses in both time and
frequency domains are shown in Fig. 4.10. The most noticeable feature of the pulses
is that most of their power has been compressed to 65 fs, which is more than 20 times
narrower than the 1.5 ps estimated width after the fiber amplifier. This proves the
excellent performance of the pulse compressor. This width is even shorter than the
presumed 100 fs of the pulses emitted by the Yb:KYW oscillator. This is not strange,
since the pulses are most likely chirped when they are emitted, so that they admit
further compression. Also, as we can see in Fig. 4.10 (b), the spectrum is somehow
wider than the seed spectrum before the amplifier (shown in Fig. 2.5), which means
the amplifier has introduced new frequencies via self-phase modulation. This also

121t effectively contains a frequency-resolved ACFE.
13Tn a commercial system this shouldn’t be necessary often, but due to some special circumstances
the FROG setup had to be dismounted and realigned.
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Fig. 4.9. Measured and retrieved FROG traces from compressed pulses. The measured
time-frequency array contains all the information needed to (over) characterise the light
pulses. The retrieved trace captures a very high level of detail and is in excellent agree-
ment with the measured trace. A FROG trace error of 0.52% is also indicative of a good
measurement and pulse reconstruction, and also good pulse stability.
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Fig. 4.10. Intensity and phase of compressed pulses in time and frequency domains. (a)
Time domain. Intensity profile in blue and phase in green. The pulse is mostly forming a
smooth main peak with a width of Teywpm = 65 fs, meaning it is more than 20 times nar-
rower than before compression. The wiggling tail at longer time delays is characteristic from
third order dispersion (TOD). (b) Frequency domain. Spectral intensity (in wavelengths) in
red and spectral phase in purple. The spectrum spans more frequencies than the original
Yb:KYW seed spectrum, which is a sign of non-linearities (SPM) in the Yb-doped amplifier.
The fact that the spectral phase is not completely flat nor linear, means the pulse width is
still not Fourier-limited.
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leads to think that, from a wider spectrum, we can compress the pulses further than
their "original" widths. Looking at the spectral phase, we can see that it is not com-
pletely flat nor linear, meaning there is still some chirp in the pulse and its width is
still not Fourier limited. In fact, it seems to be slightly convex upwards, which leads
to think the main contribution to the chirp is linear.
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Chapter 5

f-2f Interferometer

The f-2f interferometer is the core of the present work. As it was stated in the
introduction, controlling fy is essential for gaining full control over the frequency
comb and succeeding in applications such as high precision spectroscopy. Optical
heterodyne detection of the beat note generated by mixing f», with 2f, modes of the
comb, in what is called f-2f interferometry, is the standard technique for measuring

fo.

With the purpose of stabilizing an Yb:KYW mode-locked laser for future high-precision
spectroscopy in He™, an f-2f interferometer was built for this work. Throughout
this chapter, the theory behind heterodyne detection and f-2f interferometry will be
further explained, a detailed description of the experimental setup for octave span-
ning and the interferometer will be made, and results proving the operational suc-
cess of the f-2f interferometer will be presented.

5.1 Theoretical background

5.1.1 Optical heterodyne detection

The concept of optical heterodyne detection lies on the principle of superposition
of two electromagnetic waves E; and E, with frequencies w; and w,. Let us as-
sume that these are optical frequencies which are relatively close to each other. For
instance, they can be in the hundreds of terahertz range (100 - 10'? Hz) and their dif-
ference in the tens of megahertz range (10 - 10° Hz). If they are superimposed on a
beamsplitter, the output is a superposition of both waves travelling collinearly

E(t) = Ej cos(wnt) 4+ Ex cos(wat) , (5.1)

where the two polarizations E; and E; are naturally perpendicular to the direction of
propagation and form a relative angle 6. In this simple equation we are already as-
suming some conditions for interference, which is that both waves must be spatially
coherent, so that their (laser beam) intensity profiles are overlapped, and that their
wavefronts must match at the interference plane. Now, if we send their superposi-
tion to a photodetector, the device will create a current proportional to the optical
intensity, which is proportional to the squared amplitude

E%(t) = E3 cos®(wyt) + E5 cos®(wat) + 2E; - By cos(wit) cos(wat) . (5.2)
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The cross-term already shows how both waves interfere to modulate each other, but
this can be seen more explicitly by using some trigonometric relations!

E%(t) = E? cos?(wyt) + E5 cos®(wat)
+ Ej - Ex[cos ((w1 4+ wa)t) + cos ((wy — wa)t)] . (5.3)

Therefore, the two waves interfere by creating two components at the sum and dif-
ference frequencies w; £+ w>. Now, one must consider that photodetectors cannot
resolve optical frequencies, because their oscillations are much faster than the de-
tectors response time. This means, the electrical signal generated by the detector is
proportional to Eq. 5.3, but averaged over its response time. Effectively, this means
that terms oscillating at optical frequencies such as wi, wy and w; + wy are time
averaged, leaving

(E2(1)) = %E%+ %E§+E1~E2[cos((w1 — o) . (5.4)
Therefore, the only time dependence that the detector is responsive to, is that at the
beatnote frequency w; — wy, presumed to be some tens of megahertz or gigahertz.
Note that the scalar product of the polarizations E; - E; = E;E; cos(f) means that
the modulation of the detector’s output will be maximum for parallel polarizations,
and zero for orthogonal polarizations, assuming linearly polarized light.

With this detection scheme one can compare two optical frequencies that would
otherwise be unresolvable by electronic systems, allowing for measuring and ref-
erencing optical frequencies by beating them with other known optical signals. In
other words, having a very stable optical oscillator, one can reference a less stable
source to it by measuring and locking their beatnote, thus translating the stability
from one system to the other. This is what makes the frequency comb so useful in
frequency metrology, because once the comb is referenced to a highly stable RF or
optical source, one can translate this stability and accuracy from one domain to the
other, allowing for synthesis of highly stable RF or optical light for referencing, direct
spectroscopy, etc.

5.1.2 f-2f self referencing

Even though heterodyne detection is usually explained as the interference of light
from two independent optical sources, in the case of f-2f interferometry, w; and w,
are frequencies from both extremes of a comb spectrum that is broad enough to span
an octave of frequencies. This why this technique is also called f-2f self-referencing.

Let us assume we have an octave spanning comb spectrum comprising frequencies
fn and fo,, as described by the comb equation (Eq. 1.2 in the Introduction):

fn=mnfr+ fo (5.5)
fon =2nf, + fo . (5.6)

Lcos(a) cos(b) = 3(cos(a — b) + cos(a+Db))
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Fig. 5.1. Idea of f-2f interferometry. A mode wy,, from the low-frequency side of the comb

spectrum, is frequency doubled and made to interfere with a mode wy; from the high-energy

side of the spectrum. The resultant beatnote is the carrier-envelope offset frequency fy. From
Th. Udem et al. [16].

By some means, such as a dichroic mirror, we spatially separate the spectrum so
that frequencies below a frequency threshold (f, < fu,) are sent to one arm of the
interferometer, and frequencies over that threshold (f2, > fu,) are sent to the other
arm. Then, the lower-frequency beam is frequency doubled via second-harmonic
generation (SHG) in a non-linear crystal. This turns the frequencies f, into

2fn =2(nfy + fo) - (5.7)

Then, both interferometer arms meet again, overlapping the lower-frequency and
higher-frequency beams in a beamsplitter, in such a way that they are matched spa-
tially and temporally?. The overlapped beam is sent into a photodetector, that will
detect the beatnote as explained in Section 5.1.1 (Eq. 5.4). Interestingly, the beatnote
between Egs. 5.7 and 5.6 is

2fn — on = 2(1’lfr + fo) — 21”lfr + fo = f() . (5.8)

Consequently, what we measure at the photodetector is a sinusoidal signal at the
carrier-envelope offset frequency fo. If this electronic signal is sent to a spectrum
analyzer, we would expect to obtain a spectrum with a line at fy, only departing
from a delta because of noise.

Beat spectrum

According to everything explained until now, one may expect to measure a spec-
trum consisting on a single delta line centered at fy. This is because we have been
conducting the explanation focusing on the beating of the 2f, and f», modes, but as
a matter of fact many other lines may satisfy the interference conditions of spatial

2This means that the light beams are aligned to the same axis and the pulses from both beams are
overlapped. In practice this is done by optimizing the beatnote detection signal.
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and temporal coherence, generating beatnotes that will also appear in the spectrum.
Let us even forget for a while about the interferometer device and think about what
will happen if we send our pulsed beam right out of the MLL onto a photodetector.
Since the pulses are repeated periodically at f,, the detector signal will correspond-
ingly be a pulse train that, when Fourier transformed in the spectrum analyzer, will
produce a comb of signals separated by f,. This is understood from the point of view
of the time-domain, but we can also look at it from the frequency-domain. The point
is that the comb modes in the pulse can also beat with each other. For instance, we
can look at the beat from neighbouring modes

fosr = fo = ((n+D)fr + fo) — (nfr + fo) = fr
fui2 = fu = ((n+2)fr + fo) — (nfy + fo) = 2f;

fosm — fo = ((n+m)fy + fo) — (nfy + fo) = mfr . (5.9)

Therefore, even without an interferometer, the repetition rate will appear in the pho-
todetector spectrum. In this sense, measuring the optical comb spectrum through an
electronic photodetector is like translating the comb to the RF region near the origin
of frequencies, since m starts from the unit.

So far we have seen how a comb structure is always implicit in a pulsed beam, and
how fj is accessed via f-2f interferometry. The last step to complete our understand-
ing of the beat spectrum after the f-2f interferometer, is to realize that f, and fy can
also beat. In fact, since they are both RE, they make two beatnotes, by keeping both
the sum and difference terms in Eq. 5.3 . Finally, we can write down an expression
that describes the measured beat spectrum

mf, + fo for m=0,1,2... (5.10)

This means we will find comb lines at fo, f, — fo, fr, fr + fo, etc. in the RF region.
One may also note that, in the f-2f interferometer, there will be beatings of the type
2fn1 — 2fon = 2fr + fo, but they do not add new lines to the spectrum described by
Eq. 5.10.

5.2 Experimental setup

The f-2f experimental setup can be divided in two main parts: the octave-spanning
section, with the photonic-crystal fiber as the main element, and the interferometry
section, which has a Mach-Zehnder geometry with SHG in one of its arms. We will
now proceed to a detailed description of these sections and all the elements they
comprise.

3Remember that we originally discarded the sum term because optical oscillations are too fast to
resolve, which is not the case now
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Fig.5.2. Actual picture (top) and schematic diagram (bottom) of the f-2f setup. The incom-
ing beam is coupled into the PCF with the help of two mirrors (M1 and M2) and a f = 6.24
mm lens on a 3-axis stage (L1). A A/2-plate (W1) and a PBS (P1) control the transmitted
power. Light reflected back from the PCF input face is sent by P1 to an imaging system.
The spectrum is broadened in the PCF via SPM and it is sent towards the interferometer. A
dichroic mirror (DM) separates the short and long wavelength components with a cut-on
wavelength of 950 nm. A BBO crystal produces SHG in the IR arm. A prism pair (PP) with
one of the prisms on a linear stage permits changing the optical path length of the red arm,
for temporal overlapping of the pulses at the P2 PBS, where both arms are recombined and
spatially overlapped. A A/2-plate (W5) and a PBS (P3) project all components to the same
polarization axis, and a bandpass optical filter (BF) blocks all wavelengths except for those
at 680 £ 10 nm. An avalanche photodetector (APD) collects the light and sends its output
current to a spectrum analyzer. The IR arm is sketched in red color and the red arm in blue
for a clearer visualization.
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5.2.1 Octave-spanning section

The octave-spanning section is aimed to broadening the comb spectrum in a con-
trolled way up to an octave of frequencies. This is achieved via self-phase modula-
tion in a photonic-crystal fiber (PCF). Photonic-crystal or micro-structured fibers are
optical fibers that obtain their waveguide properties from an arrangement of cylin-
drical air holes that extend along the fiber parallel to its optical axis, surrounding the
fiber core. The core can either be a missing hole in the arrangement (solid core) or
a hole of a different size or position (hollow core), and wave-guiding can occur via
one of two mechanisms: effective-index guidance (high-index core) and photonic-
bandgap guidance (low-index core). This air-hole structure is used for tuning the
zero-dispersion wavelength of the fiber, such that pulses propagating at this wave-
length do not stretch from GVD and can keep a short duration over long propagation
distances. This, along with a narrow mode-field diameter on the order of 3 - 4 ym,
keeps high optical peak intensities in the fiber and enhances non-linear processes.

Different geometrical arrangements of the micro-structured cladding may lead to
different sets of properties, therefore the selection of a specific PCF has to be stud-
ied within each application. In this work, two different PCFs from NKT Photon-
ics were tested for viability of octave-spanning from the narrow spectrum of the
Yb:KYW laser. These are the SC-3.7-975 and the SC-5.0-1040, whose distinctive char-
acteristics are their mode-field diameters, 3.3 = 0.3 ym and 4.2 £ 0.2 ym, and their
zero-dispersion wavelengths 975 £ 15 nm and 1040 & 15 nm respectively, as well as
different cladding structures.

Coupling system

The system for coupling light into the PCF core is rather sophisticated. The reader
should check Fig. 5.2 for reference. Two mirrors, M1 and M2, make a rough align-
ment of the incoming beam (from the pulse compressor) towards the PCF optical
axis. A A/2-plate (W1) along with a polarizing beamsplitter (P1) allow for adjust-
ing the transmitted power. Polarizing beamsplitters (PBS), are polarizer cubes that
transmit light that is linearly polarized in a certain axis, and reflect light polarized
in the orthogonal direction. Thus, rotating the polarization of the beam with a A/2-
plate one can control the transmitted power. A second A/2-plate (W2) allows for
selecting a convenient polarization axis for propagation in the PCF.

The L1 lensis a f = 6.24 mm focusing lens that couples the laser beam into the PCF.
The lens is chosen to maximize the coupling efficiency, attending to the beam waist
and the fiber core size. It can be shown that a collimated gaussian beam with waist
w can be focused down to a waist w’, with a lens of focal length f, following the next
expression [60]

w = Acf (5.11)

T w
where A, is the laser central wavelength. The laser beam waist was measured to be
w = 1.4 mm* with a CCD camera and specialized software. Therefore, the f = 6.24
mm lens focuses the beam to a w' = 1.46 ym waist according to Eq. 5.11, thus a
2.92 ym diameter, which is similar to both the core sizes of the PCFs considered. In

4The beam waist is defined here as the radius at which the intensity drops to 1/¢? from its maxi-
mum.
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order to control the beam alignment accurately, the lens was mounted on a 3-axis
stage, which allows for manually adjusting the spatial position of the lens in the
three directions with sub-millimeter precision.

The system described so far is enough to couple the laser beam to the PCF, but to
have a visual reference while aligning, an imaging system is also used. This consists
in collecting the back-reflected light from the PCF input facet, which travels back
through L1 and W2, and is reflected upwards by P1. A mirror (M3) and lens (L2)
align and focus this light into a CCD camera that is connected to a computer for
displaying the image. A neutral density filter (NDF) is used for power attenuation.
What one observes, is the live-image of the PCF input face from the "beam’s per-
spective", so that one can visually track the beam position with respect to the fiber
core and its surroundings while aligning.

The usual alignment protocol is the following, considering the laser beam is roughly
aligned, but may not even be hitting the PCF input facet. One starts adjusting the
M1 and M2 mirrors searching for visual references in the imaging system display.
These references may firstly be on the PCF holder, and at some point the PCF it-
self. For this process one may start with a L1-to-PCF distance somehow longer than
its focal length, but once the PCF is found, the distance can be adjusted to form a
clear and focused image on the display. This is realized when the air holes look
sharply defined in the screen. Then, one must find the position with the L1 3-axis
stage that better aligns the beam with the fiber core. On the screen display, this is
usually seen as a bright spot on the core position. At this point some light should
be coupled into the core and propagating through the fiber, such that it should be
detectable with a power meter at the fiber end. Then, one can optimize the coupling
by maximizing the output power. The alignment can be tuned with M1, M2 and
L1, with their corresponding 2 4- 2 4+ 3 = 7 degrees of freedom, even though strictly
speaking only M1, M2 and the longitudinal displacement of L1 are needed. Usually
one has to patiently go back and forth adjusting these three elements in the verti-
cal and horizontal directions, but gradually reducing the L1-to-PCF distance’. It is
recommended to perform this whole operation with low laser power, which can be
adjusted by rotating the half-waveplate W1 to a convenient position.

After propagation in the PCF, the output beam is highly divergent and is thus re-
collimated by another f = 6.24 mm lens (L3), and sent to the interferometry section
by the M4 mirror. The L3 lens is mounted on a linear stage for fine tuning its distance
from the PCF and optimizing the beam collimation.

The PCF

As stated, different PCFs were tested for finding the appropriate configuration for
octave spanning. Segments of different lengths from the SC-3.7-975 and the SC-5.0-
1040 from NKT Photonics were tested. Each segment needs to be prepared carefully
for correct performance, meaning the input and output facets need to be precisely
cleaved. While the input facet can be cleaved in a straight angle with respect to the
optical axis, the output facet is always cleaved in a ~ 8° angle with respect to the
vertical, such that light cannot be partially back-reflected and travel backwards in
the PCE. This was done with an angle-cleaver. When dealing with the fibers after
cleaving, one must make sure the face ends do not make contact with anything, to

50Once L1 is pretty close to the PCF, the image display stops being a sharp image of the PCF input
facet, but rather a diffraction pattern from the micro-structured cladding array.
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Fig. 5.3. Optical microscope images of photonic-crystal fibers. (a) and (b) show a frontal

perspective of the SC-975 and SC-1040 fibers” input facet respectively. Note the different

micro-structured air-hole arrays, with the core at the center. The cladding diameter is 125

pm, and some damage can be seen in the SC-1040 cladding. (¢) and (d) show a side perspec-

tive of the output and input ends of the SC-975 fiber respectively. The output end is cleaved
at ~ 8° while the input end has a straight cleave.

avoid dust particles or scratching. In fact, for checking the quality of the cleaving,
an optical microscope part of a fiber splicer is used to obtain frontal and side images
of the fiber ends. Some examples of these images are shown in Fig. 5.3.

In order to try different fiber lengths in the setup, a two-segment custom fiber holder
was initially used. The two segments were mounted on a rail, so that the effective
fiber holder length could be changed. The holder consisted of two copper blocks
with a central V-shaped groove to accommodate the fiber in a relatively fixed posi-
tion. A vertical cylindrical hole at each end of the blocks could fit a glass cylinder
with a horizontal slit, such that the ends of the fiber could fit on the slits and be
pressed down by the glass cylinders” own weight, and consequently fixed at the
end points of the blocks. Additionally, the fibers were taped to the copper blocks
for further stabilization. The fibers must be as still as possible, for keeping the align-
ment conditions on both the input (coupling) and output (subsequent interferometer
alignment) ends.

When the appropriate PCF and its length was established (this will be discussed in
Section 5.3.1), a new and final fiber holder was designed. This holder consists of a
single copper block of a length similar to that of the fiber, but ~ 1 mm shorter so that
the end facets of the fiber are not in contact with it. It also has a V-shaped groove for
fiber accommodation, but the glass-cylinder system for holding the fiber ends was
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substituted by a ~ 60 um® step that serves as a support for the un-coated part of the
fiber, in a way that avoids vertical bending, and permits fixing the fiber with tape.

5.2.2 Interferometry section

One may wonder why an interferometer is needed at all. Why can’t we just send the
octave spanning spectrum through a SHG crystal so that the frequency doubled part
interferes with the fundamental spectrum, also transmitted through the crystal. The
answer lies in temporal overlap. Since the group velocity in the crystal is different
for the fundamental and doubled frequencies, the temporal overlapping of the dif-
ferent components within the pulse is lost. It is thus necessary to send them through
different arms and control their relative phase in order to achieve interference.

A dichroic mirror with a cut-on wavelength of 950 nm transmits longer wavelengths
towards M5 (we will call this the IR arm) and reflects shorter wavelengths towards
the prism pair (PP, in the red arm). An image of the visible light out of the PCF can
be seen in Fig. 5.4.

In the IR arm, the beam is tightly focused by a short focal-length lens (L4), so that
high intensity is achieved at the BBO’ crystal for efficient second-harmonic gener-
ation (SHG). Second-harmonic generation, also known as frequency doubling, is a
non-linear process by which two photons of frequency w are destroyed to create a
single photon of frequency 2w, therefore conserving energy. This process can oc-
cur in materials that lack inversion symmetry and have a non-zero second order
susceptibility x?). For SHG to happen, a condition known as phase-matching must
be satisfied, which consists in keeping a phase relation between the fundamental
and second-harmonic waves along the optical axis of the crystal such that all the
frequency doubled photons interfere constructively to create a coherent wave.

This effectively imposes a condition on the incidence angle and polarization direc-
tion of the laser beam with respect to the non-linear crystal (BBO). For this reason,
the BBO crystal is mounted in a rotational stage and the W3 A /2 plate can also rotate
the polarization of the beam to the direction that maximizes the frequency doubled
light, which can simply be seen on a white piece of paper in the visible range. After
the BBO crystal, the beam is re-collimated by the L5 lens, and sent towards the P2
polarizing beamsplitter, where the two interferometer arms are reunited. The po-
larization must also be chosen in such a way that the beam is mostly transmitted
through P2.

In the red arm, a prism pair (PP) is used for effectively elongating the optical path
length and introducing the right phase delay for temporal matching between the
two interferometer arms, i.e. pulse overlapping at P2. One of the prisms is mounted
on a linear stage, so that the optical path length can be tuned to find and maximize
the interferometric signal. The W4 waveplate selects the right polarization for max-
imizing reflection at the P2 beamsplitter.

The alignment between the two arms must be extremely precise for achieving inter-
ference. First, the length of the arms should be the same within the length range that
the prism pair can compensate (~ 5 mm). In fact, since the prisms add some effec-
tive length, the red arm should be just slightly shorter. Additionally, the beams from
both arms need to be spatially overlapped from P2 on. This means that their spatial

®This is the distance between the outer coating surface and the cladding of the PCF.
"The BBO crystal one of the most common materials used for type I SHG.
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Fig. 5.4. Photonic-crystal fiber, generating red light via continuous broadening from IR.
Infrared light with a spectrum centered at 1050 nm (see Fig. 4.10 (b)) enters the SC-975 fiber
from the bottom right-hand corner in the picture, and red light is gradually generated via
SPM. Note that SPM broadens the spectrum continuously and symmetrically, so that also
longer wavelength IR light is generated. A collimating lens (L3) can be seen by the fiber end.

profiles are to be matched along their path until the photodetector. This is practi-
cally done by fixing the alignment of the frequency-doubled beam, and adjusting
the alignment of the red beam with M6 and P2 so that both beams are matched.
To check the correct overlapping of the beams, one can choose two reference points
separated by a relatively long distance (right at P2’s output and a distant wall, for
instance) and make sure the beams are overlapped at both positions.

After P2, even though they are overlapped, the components coming from the two
red and IR arms have orthogonal polarizations®. For that reason, a A/2 plate (W5)
and a polarizing beamsplitter (P3) project both polarizations onto the same axis,
accomplishing every condition for optimal interference.

At this point we have a broad spectrum A ~ 475 - 950 nm, but the fy beatnote is only
contained in the narrow band that corresponds to the f», and 2f, frequencies in the
original spectrum, now corresponding to frequencies around 675 nm. If we are to
maximize the signal-to-noise (S/N) ratio, we would like to filter the rest of the fre-
quencies out, that would only contribute to the noise. This was first done by using
a grating in place of the M7 mirror, that acted as a wavelength selector. This would
diffract every spectral component in a different angle so that, by rotating the grating
and the M8 mirror, one could select the frequencies that were sent to the photodetec-
tor (APD). Once the beatnote is found and the S/N ratio maximized, the spectrum at
the position of the APD can be measured with an optical spectrometer to realize the
frequency that is maximizing the S/N ratio. Knowing that, one can substitute the
grating by a regular mirror (M7), and place an optical bandpass filter (BF) in front of
the APD to select the appropriate spectral bandwith. After these considerations, the
filter was chosen to have a transmission peak at a central wavelength of 680 nm (see
Fig. 5.9 (b) in Section 5.3.1) and a FWHM= 10 nm, which improved the S/N ratio

8 After all, one was transmitted and the other one was reflected by P2.
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by roughly 10 dB with respect to the configuration with the grating only, by making
a more specific and efficient wavelength selection.

Finally, the avalanche photodetector (APD) collects the light and generates an output
current modulated by all the components that lead to Eq. 5.10. This output is sent to
an electronic spectrum analyzer that displays the RF beat spectrum.

5.3 Results

5.3.1 Spectral broadening at the PCF

An important first step is to characterize the coupling of the laser beam to the PCF,
by measuring the optical power before and after the fiber. This was done with a
thermal detector, which is fairly wavelength-insensitive, in contrast with a photodi-
ode detector, and is thus more accurate in measuring the power of broadband light.
Comparing the values shown in Fig. 5.5, the coupling is around 60%.
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Fig. 5.5. Optical power coupled to the PCFE. The optical power is measured at the PCF’s
output with a thermal detector and compared to that at the input. The maximum coupling
efficiency is 60%.

A scanning optical spectrum analyzer is used to measure the spectra at the out-
put of the PCF. For this purpose, the light coming out of the PCF is coupled into
a broadband multi-mode optical fiber with a simple coupling system consisting of
two mirrors and a focusing lens, and this fiber is then connected to the spectrum
analyzer. The spectrum analyzer has some sort of tunable wavelength selector or
monochromator, such as a rotating grating, that sends light of a specific wavelength
to a photodetector. The spectral intensity is detected and displayed in a screen, as a
function of the wavelength.

Optimization of the spectral broadening

Spectra were recorded for both PCF types, the SC-975 and SC-1040, different fiber
lengths and optical powers. It must be noted that the first attempts at octave span-
ning were performed before the fiber amplifier was build. For this reason, with an
input power limited to 60 mW, increasingly longer fibers were tested. The longest
fiber used was a 22-cm-long SC-975. This length was limited by the available space
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Fig. 5.6. Spectra measured after broadening in a 22-cm long SC-975 PCE. The optical pow-
ers in the legend corresponds to the coupled power in the PCE, measured at its output, and
controlled by a A/2 plate and a PBS (see Fig. 5.2). The spectra were measured with a scan-
ning optical spectrum analyzer. These measurements were made before building the fiber
amplifier, so the maximum power is limited by the direct output from the Yb:KYW oscillator
(60 mW), and proves to be insufficient for octave spanning. The displayed curves have been
offset by -40, -35, -20 and 0 dB (from lower to higher power) for a clear visualization.

in the setup, for placing the fiber without bending excessively. The measured spec-
tra as a function of coupled power can be seen in Fig. 5.6. In this figure, one can see
how the spectrum is notably broadened when the average optical power, and thus
the pulse peak power, is increased. Typical features from SPM are observed, such
as the prominent side lobes, but the complicated structure and asymmetries make
it clear that there is an interplay of linear and non-linear effects that play a relevant
role in the spectral modulation dynamics. For instance, asymmetry in the relative
height of the side lobes appears when third-order dispersion (TOD) dominates over
GVD, which happens when propagating close to the zero dispersion wavelength. A
similar effect can be originated by self-steepening, a high-order non-linear effect, but
the fact that the asymmetry is more obvious for lower powers, induces to think that
it is indeed due to TOD, so that when the power is increased, SPM is dominant over
TOD, and symmetry is somehow recovered.

What is obvious from Fig. 5.6, is that octave spanning was not readily achievable
from the Yb:KYW available output power. The broadest spectrum, for a coupled
power of 35 mW extends from ~ 730 nm to 1270 nm, therefore less than an octave
of frequencies. One could argue that the fiber length could be increased to broaden
the spectrum more and more, but since the pulses also broaden in time-domain via
GVD (this effect is even enhanced by SPM), the peak power is reduced over distance,
so that at some point the spectral broadening is not efficient. This idea is reinforced
when comparing the spectra from fiber segments with two different lengths, at the
same coupled power, as in Fig. 5.7. Increasing the SC-975 fiber length from 17 cm to
22 cm did not produce a significant increment in the spectral broadening, proving
the point that broadening cannot occur indefinitely by using longer PCFs.

The performance in terms of spectral broadening was also compared for the SC-975
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Fig. 5.7. Spectra broadened in SC-975 segments with different lengths, at 35mW coupled

power. The broadening is not considerably different between the 22 cm and the 17-cm-

long fibers, because after some propagation the pulse peak power is reduced in such a way

that SPM does not act significantly. Both curves have a relative offset of 15 dB for a clear
visualization.
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Fig. 5.8. Spectra broadened in SC-975 and SC-1040 segments of similar length, at 35mW
coupled power. The SC-975 segment was somewhat longer, which could be the reason of
its corresponding spectrum being broader. Still, it does not seem like the SC-1040 would
outperform the SC-975 at equal length, therefore the latter was the preferred one for the
definitive setup. Both curves have a relative offset of 20 dB for a clear visualization



62 Chapter 5. f-2f Interferometer

and the SC-1040 PCFs. Two segments of similar lengths were prepared from both
fibers’, and spectra at the same coupled power were measured. These are shown in
Fig. 5.8. It is clear that the spectrum from the SC-975 is broader than the one from the
SC-1040. This can partially be due to the SC-975 fiber being slightly longer, but even
considering that, the best we could say about the SC-1040 fiber is that it performs
similarly to the SC-975.

For this reason, the SC-975 was the preferred and definitive choice for spectral broad-
ening. Also, the results from Fig. 5.6 and 5.7 were decisive for building the fiber
amplifier, in order to access higher pulse powers.

Octave spanning

After completing the fiber amplifier, the spectral broadening was studied for average
coupled powers 2 or 3 times higher than before, now easily accessible. The measured
spectra after a 16-cm-long SC-975 fiber are shown in Fig. 5.9.
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Fig. 5.9. (a) Spectra broadened in a 16 cm SC-975 fiber for different coupled powers. At

75 mW and 95 mW the spectrum spans an octave of frequencies and more, but it is at 75

mW that the f and 2f frequencies fall on the spectrum’s side lobes, maximizing their inten-

sity. The spectra have been offset by -35, -15 and 0 dB (from lower to higher power) for a

clear visualization. (b) Octave spanning spectrum at a 75 mW coupled power in a 16cm

SC-975 PCE. The f and 2f components fall on the spectrum’s side lobes and correspond to
wavelengths around 1370 nm and 685 nm respectively.

One observes how at 60 mW average coupled power, the spectrum is not broad
enough yet for this fiber length, but at 75 mW and higher powers such as 95 mW, the
spectrum spans more than an octave of frequencies, achieving the main condition for
f-2f interferometry. In order to maximize the spectral power that corresponds to the
f and 2f components, the ideal broadening is sought to be such that the side lobes of
the spectrum fall on the f and 2f regions. This is precisely what happens at 75 mW
average coupled power, corresponding to a 2.6 A LD current in the amplifier, and a
135 mW average optical power sent into the PCF. The corresponding wavelengths in
this case are 1370 nm and 685 nm, and this will be the definitive setup configuration
for the f-2f interferometer.

9Preparing two different segments of the same length is quite challenging, specially when multiple
cleaving attempts may be made to achieve the appropriate quality in the fiber end facets.
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5.3.2 Beat note detection

All our efforts so far were leading to the detection of the carrier-envelope offset fre-
quency fp as the beat note from the f-2f interferometer. Having an octave-spanning
spectrum and after careful alignment of the interferometer, the beat spectrum is mea-
sured in an electronic spectrum analyzer that receives the modulated output current
from the avalanche photodetector (APD).

ol RBW =100 kHz
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Fig. 5.10. Beat spectrum from f-2f interferometer. The spectrum shows the carrier-envelope

offset frequency fy and the repetition rate f, the two degrees of freedom of the frequency

comb. The beat between these two frequencies also appears as lines at f, — fp and f; + fo.

The peak widths are limited by the resolution bandwidth (RBW), 100 kHz. Measurement
averaged over 10 scans.

Fig. 5.10 shows the measured beat spectrum with a resolution bandwidth (RBW)
of 100 kHz, in a range from 0 MHz to 50 MHz, which is enough for displaying
the carrier-envelope offset frequency fo, the repetition rate f, and their relative beat
fr £ fo. This pattern is periodically repeated for higher frequencies, as expected
from Eq. 5.10. The offset frequency fy can take any value between 0 and 40MHz,
which is the value of f;, and in fact it can freely drift in time. It should be noted that
identification of fy and f — fo is arbitrary, since it is not possible to tell them apart.
Still, the identity of f, and fy can be confirmed by blocking the light from one of the
arms of the interferometer, making fy disappear but not f,.

The offset frequency fy is therefore measured with a signal-to-noise ratio (5/N) of
roughly 40 dB at 100 kHz RBW'C. There are four contributions to the background
and noise in the spectrum: the detector’s (APD) and spectrum analyzer’s (SA) in-
strumental noise, noise on the measurement of the light’s amplitude and phase, and
lastly the light’s shot-noise, even though these last two are hardly distinguishable.
This means, there are contributions to the noise from the instruments themselves
that are there even when there is no light input, and additional contributions gener-
ated when measuring light. At least the contribution from each of the instruments

10The RBW is specified because the noise floor level depends on its value, i.e. it is higher for a higher
RBW value, thus affecting the S/N ratio.
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and the light itself can be easily tested by some simple measurements. One can mea-
sure the noise spectrum from the SA when it is not receiving any input from the
APD, and then again when the APD is connected but the light input is completely
blocked. These measurements can be compared to that of the beat spectrum, as in
Fig. 5.11, to realize the different contributions to the background. As one can see, the
spectrum analyzer’s instrumental noise is the major contribution to the background,
with almost no addition from the APD.
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Fig. 5.11. Background levels in the beat spectrum The blue curve is the noise spectrum as
measured from the SA without external input. The red curve is a similar measurement, with
the APD connected to the SA but blocking the light input, i.e. the APD’s instrumental noise
on top of the SA’s. The grey curve is the spectrum measured with light input, showing the
beat spectrum. A spurious signal at 21 MHz is originated by some environmental signal that
appears in the spectrum when a BNC cable is connected to the SA, acting as an antenna, con-
nected or not to the APD (this signal does not appear in other measurements). Measurement
averaged over 100 scans, with RBW= 100 kHz
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Chapter 6

Comb stabilization

Stabilizing the comb, or phase-locking the mode-locked laser in other words, is a
cornerstone in the full realisation of the frequency comb. Absolute control of the
comb is achieved by locking its two degrees of freedom, the carrier-envelope offset
frequency fo and the repetition rate f,, or equivalently any other combination of
two between fj, f, and one optical mode f,. The choice of which two degrees of
freedom are locked depends on the final application for the comb. For instance, if
one locks fp and fnl, as it is our case, one can make sure that the optical mode used
for spectroscopy has a phase noise that is only limited by the quality of the lock
and the noise of reference laser to which the comb mode is locked. Alternatively,
if fo and f, are locked, the noise in f, will be propagated and multiplied along the
comb spectrum. Depending on the precision required in the experiment this may be

something to consider.
Reference
optical a:v_v 1L(;A383ER
cavity _ nm

".f‘?p.t.

A

Fig. 6.1. Schematic diagram of the setup for the full stabilization of the Yb:KYW fre-

quency comb. The beat of an optical mode with a CW laser at 1033 nm (fopt), and the

carrier-envelope offset frequency f, are locked by phase-locked loops (PLL), that send feed-
back to the cavity length and the optical power of the Yb:KYW MLL respectively.

Since the purpose of the Yb:KYW laser will ultimately be to perform spectroscopy
on He', an optical mode from the oscillator’s 10 mW main output is locked to a
CW laser reference at 1033 nm. This was made before and independently from this
work. As we have stated before, the main goal of this work is to fully lock the comb

IThe specific mode number # may not be known, and may not be relevant.
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by measuring an locking f to an RF reference. A schematic of the complete setup is
depicted in Fig. 6.1.

Throughout this chapter, we will explain some basic concepts about control the-
ory and phase-locked loops, we will demonstrate how the offset frequency of the
Yb:KYW laser fy, measured by f-2f interferometry, was experimentally locked; and
we will show proof of the complete stabilization of the frequency comb.

6.1 Theoretical background

6.1.1 Control and feedback

Control theory is the field of engineering that deals with the control of dynamical
systems. Control systems operate most of modern technologies, like cars or dish-
washers, but they also regulate many natural processes. Think for instance about
how your body regulates its temperature, keeping it close to a constant value. When
our temperature sensors detect a drop in body temperature, our system burns calo-
ries and activate our muscles to shake and generate heat. On the other hand, when
our temperature rises too much, we sweat and cool down by evaporating water. This
intuitive example contains the main ideas behind control systems, that apply these
ideas to mechanical or electronic systems.

One of the most important concepts in control theory is the notion of feedback. This
refers to a situation in which two dynamical systems are strongly coupled, meaning
they influence each other’s dynamics in such a way that they must be described
as a whole. Picture we have a system A that produces an output that is sent to
another system B as an input. This affects the dynamics of B, and we can say that
A controls B, but A knows nothing about B’s output, and there is thus no feedback
between them (open-loop control). However, if B’s output is sent to A, affecting its
dynamics and own input, we form a feedback loop (closed-loop control) in which each
system is controlling the other’s dynamics in a manner that a causality relation is not
straightforwardly established and it is unclear who is controlling who.

Overshoot

Error
T

=== |deal
Actual

Time

Fig. 6.2. Typical transient response showing common dynamics. Over-shooting, steady-
state error (Egg), rise time (T) and settling time (Ts) contribute to the departure of the tran-
sient response from the ideal case. Adapted from Killian’s textbook [63].
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This is the idea used by control systems to monitor the operation of a system, com-
pare it with a desired performance and act on some of its physical properties to guide
it towards the ideal behaviour.

We can understand this better, while introducing some jargon, with an example.
A control system constantly measures the output of a process with a sensor, say an
electrical current oscillating at a certain RF frequency. The measured quantity is
referred to as the process variable (PV). A comparator, takes as input the sensor’s
signal and a given set point (SP), a target RF in this case, and produces an output
known as the error signal e which is nothing more than the difference between the
sensor’s signal and the set point, e = SP — PV . The error signal is then sent to a
controller, which has an implemented strategy for minimizing the error, thus driving
the controlled variable to the set point. To do this, the controller sends a command to
an actuator, that physically acts on the system, changing some property that affects
the process variable.

The path the process variable follows from one point to another is called the transient
response, and its typical features are shown in Fig. 6.2. In order to minimize the error
signal in time, different control strategies may be used. The art in control theory is
to find a strategy for each process that ensures stability while minimizing the time it
takes for the process value to reach the set point, by avoiding over-shooting and a
steady-state error as much as possible.

6.1.2 PID Control

The most common type of controller used in engineering systems is the PID con-
troller. This controller applies a correction based on a linear combination of three
types of feedback: Proportional + Integral + Derivative. Even though in some de-
vices the use of Proportional + Integral feedback is enough, and we could be talking
about PI controllers, PID is the general method and nomenclature.

Error Present

Past Future

-

|

Time
t t+ Tﬂr

Fig. 6.3. Action of a PID control. The proportional term acts considering the instantaneous

error at t, the integral term integrates over all past errors (shaded area) and the derivative

term makes a projection to future errors based on the current trend. From Astrém and Mur-
ray’s book [64].
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Proportional Control

In a purely proportional controller, the actuator applies a corrective action that is
directly proportional to the error signal:

up(t) = Kpe(t), (6.1)

where u,, is the controller’s output, K, is the proportional gain, and e(t) = SP(t) —
PV(t) is the error signal at an instant ¢. This logic makes sense for quickly getting
to the SP from distant PVs, while trying to avoid over-shooting by reducing the
proportional-signal when these two values are close.

One problem of using proportional control only is its tendency to stabilize the system
close to, but not exactly on the set point. This is known as the steady-state error.
This happens because the controller output gets asymptotically close to zero when
the process variable approaches the set point, but some opposition mechanism may
prevent the system to ever reaching the set point, such as heat escaping an oven.

Integral Control

The introduction of integral control can eliminate the steady-state error. An integral
controller has an output proportional to all past errors integrated in time

ui(t) = K; te(T)dT ~K; ) eAt, (6.2)

to

where K; is the integral gain, and the sum is over all past errors e multiplied by some
time interval At. If the error is constant in time, the integral term grows linearly and
at some point it will overcome the aforementioned opposition mechanism. In other
words, since the control has a notion of memory of past events, it is able to realize
when the system is settling at a wrong steady state and prevent it, thus avoiding the
steady-state error. As a counterpart, integral control reduces overall stability in the
system, and can lead to a situation where the process value drifts away or oscillates
around the set point with ever increasing oscillation amplitude, under certain con-
ditions. This happens because the integral control can only "look back" in time and
will only stop pushing the process value towards the set point when it has already
passed it, leading to over-shooting. This is why an integral control is rarely used by
itself, but is usually combined with a proportional control.

Derivative control

The over-shooting problem can solved by including a derivative term of the form

de(t) Ae

ug(t) = Ky

being K; the derivative gain. This type of control has some predictive ability, since it
computes the slope or rate of change at the current position of the process value, such
that e(t + ') = e(t) + t' de(t)/dt. This way, it can slow down the rate at which the
process value is approaching the set point with some anticipation and avoid over-
shooting. Consequently, it reduces the settling time by helping the process value
reach the set point, minimizing over-shooting, and also giving an initial boost when
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the system goes from a steady-state to a new set point. But, the derivative control can
also slow the system’s response down when Kj; is too high, and it can easily amplify
any present noise. Considering this, and that PI controls can already achieve good
stability under the right conditions, derivative control is not always used in control
systems.

In conclusion, the complete action of a PID control can be summarized by the com-
bined action of its three components: an integral term that makes decisions based on
the past states of the system, a proportional term that acts according to the present
error, and a derivative term that predicts the future states of the system based on its
current trend, as depicted by Fig. 6.3. This is summarized by the PID equation [63,
64]:

t
u(t) = Kpe(t) + Kz-/ e(t)dt + Ky d;(tt) , (6.4)
0
which also found in the literature as
1 rt de(t)
=K — T .
u(t) p<e(t) + T ), e(t)dt + Ty T > , (6.5)

where we define the integral time T; = K,/ K; and the derivative time Ty = K;/K,.
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Fig. 6.4. Conceptualization of a phase-locked loop. A phase detector receives an input

oscillatory signal and compares its phase to that of a reference oscillator. It generates a

phase-error signal that is sent to a PID controller, that acts on the oscillator to keep a fixed

phase relation between the signals, making both frequencies the same and correcting for any
possible phase-jitter ¢(t).

6.1.3 Phase-locked loop

For our current application, which is locking and controlling fy, we focus our at-
tention on a specific kind of control systems, known as phase-locked loops (PLL).
These systems keep a constant phase relation between an input wave signal and a
reference oscillator. In order to do this, PLLs have a phase detector, that receives two
input oscillatory signals and produces an oscillatory output with a phase propor-
tional to their phase difference. If, for instance, these signals differ in frequency, the
phase detector generates a signal that oscillates at the difference frequency. In PID
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terms, the two inputs would be the process variable and the set point, and the output
would be the error signal. This phase-error signal is usually filtered and amplified
and then sent to a PID controller, which cancels out the error signal via an actuator
that controls or affects the input frequency at its source, "locking" it to the reference
oscillator’s frequency. This is diagrammatically depicted in Fig. 6.4. Note that in a
PLL, the phase detector creates an error signal dependent on the phase, but the PID
controller is adjusting a frequency. This only means there is integration within the
PLL, since phase is the time integral of frequency ¢(t) = wt + ¢.

6.2 Experimental setup

APD S1 Amp. s2 Counter
S | BF | I\ S BF 10.0... MH
*\ > I/ l > 0... z
v -
Spectrum f\ Function H
Analyzer i Generator
—t (10 MHz)
Phase
detector
l, Oscilloscope
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Yb:KYW € power PID 022 %2 %%
driver ——

Fig. 6.5. Layout of the phase-locked loop setup for locking fy. The beat spectrum is de-
tected by the avalanche photodetector and displayed by the spectrum analyzer after being
split (51). The beat note is filtered through a band-pass filter at 10 MHz, amplified and split
again (S2) between a frequency counter and the phase detector. The phase detector mixes
the beat note with a 10 MHz reference signal from a function generator and produces the
error signal that is sent to the PID controller and is also displayed on an oscilloscope. The
PID controller minimizes the error signal by acting on the LD power drive that controls the
optical pump power of the Yb:KYW oscillator, therefore locking f; to 10 MHz.

A phase-locked loop (PLL) is used for locking the carrier-envelope offset frequency
fo to an RF reference. As explained in the previous section, a phase detector and
a PID controller can be employed for locking fj to the set point established by an
external reference, which is a sinusoidal signal with a frequency arbitrarily chosen
to be 10 MHz. The control of fj is achieved by controlling the Yb:KYW’s pump
power, that affects fj as explained in Chapter 2.

Let us analyze the layout of our PLL setup with help from Fig. 6.5. From Chapter 5
we know the APD detects the beat spectrum. This signal is split (S1) so that we have
a live visualization of the beat signal on the spectrum analyzer and can monitor the
position and shape of the beatnote at all times. This permits, for instance, manually
controlling the Yb:KYW’s pump power to place f; close to 10 MHz to facilitate the
locking process.
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To separate and select the beatnote at 10 MHz from the full spectrum, a 10 MHz
band-pass filter (BF) with 0.5 MHz bandwidth is used after the splitter. This signal is
then amplified and split again (S2), and sent towards a counter and the phase detec-
tor. Additional band-pass filters are used at the input of both instruments to improve
the beatnote S/N ratio, filtering out any noise that may have been amplified by the
previous amplifier. The counter will measure the beat note frequency with high pre-
cision, and its working principle and related considerations will be explained later
on.

The filtered beatnote signal from the S2 splitter in Fig. 6.5, is sent to the balanced
mixer phase detector. The set point or reference signal is provided by a function
generator that synthesizes a sinusoidal signal oscillating at 10 MHz. As explained
in section 6.1.3, the phase detector mixes this reference signal with its main input,
the offset frequency fy, to produce a signal at the difference frequency, that plays the
role of the error signal.

The error signal is then sent to a PID controller, which needs to be manually tuned to
optimize its performance, overseen by monitoring the error signal in an oscilloscope.
After tuning, it eventually locks the offset frequency fy to 10 MHz by acting on the
LD power driver that controls the pump optical power of the Yb:KYW laser.

6.2.1 Counters, Function Generators and timebases

The frequency counter is a device that measures frequencies by counting the num-
ber of times an oscillating electronic signal crosses a voltage threshold (it may be a
zero-crossing in a specific direction, e.g. from negative to positive) in a given time
interval. In other words, it accumulates the number of cycles during a time inter-
val, after which it calculates the oscillations per second. This time interval is known
as the gate time and it determines the resolution of the counter. According to this,
a gate time of 1 s would allow for a resolution of 1 Hz. Although, as a matter of
fact, modern counters not only count the cycles in the gate time, but also the relative
time of arrival of the first and last pulses in that interval. This makes it possible to
improve the resolution. The signal that triggers the gating is usually given by a local
oscillator, which is typically a temperature controlled crystal oscillator, like that in
a quartz clock. This internal clock sets the counter’s time-base, and its precision lim-
its the precision of the measured frequency. For some applications, a highly stable
time-base may be wanted, and external references may be used to improve on the
local oscillator’s performance.

In this experiment, the counters and function generator’s time-bases, i.e. elements
that either measure or produce frequencies, are referenced to a hydrogen maser emit-
ting a 10 MHz RF. This maser is hosted at the MPQ’s Laser Spectroscopy Division
and serves as a highly stable reference for many of the electronics in the different labs
where high-precision experiments are carried out. The maser signal is propagated
and split in frequency distributors which bring the signal to the desired devices, al-
lowing for synchronization of their time-bases with each other and with the 10 MHz
maser. Additional devices can also be synchronized by cascading them with the
maser referenced oscillators.

6.2.2 The phase detector

The phase detector is usually an electronic circuit that has the ability to produce
a periodic output at the difference frequency between two input frequencies. In
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phase-locked loops, we can classify phase detectors in two types. Type I or analog
detectors can act on analog or digital signals, by simply multiplying both inputs as
a frequency mixer®. In digital systems this operation is performed by an XOR gate,
while for analog signals, the phase detector is an analog multiplier also called a
balanced mixer, whose output is an analog waveform. On the contrary, Type II or
digital detectors produce a digital output sensitive to the relative timing between the
edges of the input signals. They each have their own advantages, but for the present
PLL a Type II detector was used.

6.2.3 PID tuning

The PID controller is manufactured by the group’s electronic workshop and is in
fact a PI controller with only proportional and integral gains. Both gains must be
manually adjusted by rotating their corresponding knobs to find the parameters
that achieve the best performance when closing the loop. This process is commonly
known as "tuning" the PID. To monitor the PID’s action, the error signal is sampled
and displayed by an oscilloscope, so that one can see whether it is overshooting,
drifting or stable, and also how clean or noisy it is. The tuning proceeds as follows.
Both gains are set to zero, and fj is set close to 10 MHz by manually adjusting the
pump power of the Yb:KYW laser. Then, closing the loop, the proportional gain can
be gradually increased. The error signal may initially not change or change very
slowly, but when the P-gain is increased it will at some point flatten the error signal,
meaning there is a constant phase relationship between the reference and the input
waves, and they have thus the same frequency. At this point, fj is already locked.
The integral gain is then increased to make sure there is no steady-state error, but
avoiding an oscillatory behaviour of the error signal, which means it is overshoot-
ing and losing stability. When the PID is optimized and the error signal is flat and
steady, we can claim the loop to be stable and the system phase-locked. Both gains
can also be fine tuned by reducing the noise on the beat note, which is related to
its width around 10 MHz and can be checked in the spectrum analyzer with the
appropriate scale and RBW.

One must also consider one important aspect of locking fo. As we discussed in
Chapter 5, in the frequency interval between the origin and f, there two beat notes,
fo and f, — fo, and their individual identification is not possible a priori. This means
we will be locking any of the two at 10 MHz, but this locks fy and the comb spec-
trum anyways, so it does not pose a problem. The only difference is they will have
opposite behaviour when changing the laser’s pump power, meaning one will move
towards higher frequencies and the other ones towards lower frequencies when in-
creasing the pump power and vice-versa. This means the PID controller should act
in opposite ways with one frequency or the other if it is to successfully lock any of
them. For this purpose, the sign of the loop can be easily inverted with a switch,
so that one can just try what sign can lock the beat note at 10 MHz, and invert it
manually.

2Note the similarity with an optical interferometer. In fact, the term "heterodyning" originally refers
to mixing or multiplying two frequencies in electronic systems, to obtain their sum and difference
frequencies.
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6.3 Results

6.3.1 Control of fj

As we have explained before, the complete stabilization of the comb spectrum is
achieved by locking the beat between a comb mode and a CW laser at 1033 nm,
which will be called fopt, and the f-2f beat, i.e. the carrier-envelope offset frequency

fo.

Locking the optical beat f,pt is achieved by controlling the cavity length with a piezo-
electric transducer that changes the position of one of the cavity mirrors when a volt-
age is applied to it, making use of a similar PLL scheme as the one used for locking
fo, but built independently from this work. The stabilization of fj is achieved by
actuating on the LD’s optical pump power of the Yb:KYW oscillator, regulated by a
power driver which is controlled by the PID loop described in the previous section.

We can easily see the action of the pump power on fy by measuring the beat note
frequency with the spectrum analyzer while changing the pump current manually
on the LD power driver, with its PLL open so that fj is not locked to a specific value.
It can be seen in Fig. 6.6 (a) how fjy changes linearly with the pump current, and
thus optical power. This is always the desired behaviour between an actuator and
its controlled variable for a good control. Once again it must be noted that whether
the beat frequency increases or decreases just depends on which beat note is being
locked, so the sign of the slope seen in Fig. 6.6 (a) may change. The optical pump
power proves to be a good actuator in terms of range, since fy can be shifted by a
few MHz by only changing the pump current in the mA scale, and by doing a simple
least-squares linear fitting we see that the shifting rate is (-)320 £ 5 kHz/mA.
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Fig. 6.6. (a) Carrier-envelope offset frequency as a function of the Yb:KYW pump current.
The data points are measured from the position of the beat note on the spectrum analyzer,
and the line is a least-squares linear fit with a slope of -320 & 5 kHz/mA. f; follows a clear
linear behaviour with the optical pump power over a range wide enough for optimal lock-
ing. (b) Optical beat (blue) and CEO frequency (red) as a function of the voltage applied
to the piezoelectric mirror controlling the Yb:KYW laser’s cavity length. The motion of the
mirror affects the optical beat linearly as one would expect by changing the cavity length,
but it also affects fy due to a slight misalignment it introduces, changing the non-linear index
of refraction via the Kerr effect. The lines are linear fits of the data points with corresponding
slopes of 6.8 + 0.1 MHz/mA for fopt and 3.1 4 0.1 MHz/mA for f.
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This should provide good long term stability, when fq could drift from 0 to 40 MHz
if not controlled.

The ability to control fy in the short term depends more on the reaction speed or
modulation bandwidth of the actuator to compensate for small scale but fast fluctu-
ations. This will be further discussed later on, but regarding the long term stability
we may wonder what is the effective range the LD power driver can tolerate, and
as a matter of fact the limitation comes from the lasing modes of the Yb:KYW os-
cillator. When the optical pump power is driven below 0.5-0.6 A pump power, the
oscillator will stop mode-locking, therefore losing the pulsed and comb structure.
On the maximum boundary, when the pump power is too high, say above 1.8 A,
the Yb:KYW starts lasing in a CW mode on top of the pulsed emission, which is an
unwanted behaviour since it interacts with the comb structure adding extra RF beat
notes that may confuse the locking system, apart from the consequences it may have
when performing spectroscopy.

When locking simultaneously fo and fopt we ideally want to control physical param-
eters of the optical oscillator that act independently on these two frequencies, i.e. we
want both degrees of freedom to be uncoupled. This is in principle the case when
acting on the optical pump power to control fy and the cavity length to control fopt.
Nonetheless, the observed behaviour is that changing the pump power does indeed
only affect fo, leaving fop: unchanged 3, but applying some voltage to the piezoelec-
tric transducer to change the cavity length affects both frequencies together. This
can clearly be seen in Fig. 6.6 (b), were both frequencies were measured for different
voltages applied to the piezoelectric mounted mirror. The optical beat fopt changes
6.8 £0.1 MHz/V and the carrier-envelope offset frequency fy changes by 3.1 £0.1
MHz/V. This unexpected behaviour can be understood noticing the motion of the
piezoelectric mirror is not exactly along a straight axis, but rather forms an arc with
a slight curvature due to an imperfect design. This provokes not only a change in
the geometric cavity length but also a slight misalignment of the light beam inside
the cavity, that changes the Kerr-lens self-focusing condition in the Yb:KYW crys-
tal. This changes the non-linear contribution to the index of refraction which in turn
changes the dispersion in the cavity, and thus fy. In conclusion, the motion of this
specific mirror couples fo and fopt.

This is not ideal but it does not impede simultaneously locking both frequencies,
because the rate of change of the optical beat with the piezo voltage is still twice that
of fo, and fy has a broad range of action when controlled by the LD pump current,
that can compensate for the deviations inflicted by the motion of the piezoelectric
mirror. Still, it may impose a limit on the long term stability since, even though both
locking systems may find a temporary balance, they are somehow coupled into a
combined feedback loop that may eventually drive one of the actuators out of its
effective working range, for instance lowering the optical pump power to a level
where the laser stops mode-locking.

6.3.2 Stability of the frequency comb

By closing both the feedback loops controlling fo and fopt we completely stabilize
the frequency comb. This means that locking the offset frequency and one of the
optical modes leaves the comb no degrees of freedom, therefore fixing also the rep-
etition rate f,. These three frequencies are measured by counters that sample the

3This is in fact not intuitive at all, but can be understood from the fixed point model [56].
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frequencies with a 1 s gate time and send the data to a computer that uploads each
data point with its timestamp to an online database hosted in a local server. This
permits monitoring the three frequencies at all times and recording any event that
may alter the stability of the comb and track how long the feedback loops can keep
the comb stabilized. As we have just explained, the long term stability is limited
by some factors like the coupling of fo and fqpt through the piezoelectric mirror, but
still the regular practice showed that the comb can be stabilized commonly for about
30 minutes straight, and Fig. 6.7 shows an example of it. As we know, the CEO fre-
quency is locked to a 10 MHz reference, and the optical beat is locked at 13 Mhz. The
repetition rate is not locked at a specific value since it depends on the two aforemen-
tioned parameters, but is also fixed when the frequency comb is stabilized. In fact,
for different measurements, the repetition rate is generally fixed at different values.
This happens because when locking an optical beat note to the 13 MHz reference
with respect to the CW laser, we do not choose or know the specific comb line that is
being locked*. This means locking comb lines with different mode number will fix
fr = (fu — fo)/n at different values.

Apart from fast noise fluctuations, the three frequencies are kept constant at their
aim values for over 30 min. Note that the noise around the average value cannot be
taken directly as a measure of the frequency oscillations since it depends on instru-
mental parameters such as the gate time, but it still shows the frequencies are kept
constant within the 10-100 mHz scale. After the approximate 30 min time, either f
or fopt would usually get unlocked and its corresponding PLL fail to lock it back,
which is understandable since the pass-band filters limit the transmitted signal to
narrow values around the reference frequencies. This 30 min stability time should
be improved for performing spectroscopy experiments with fy stabilized, but it is a
first step in the right direction.

f, =40 028 174.448 Hz

fooa = 13 MHz
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Fig. 6.7. Simultaneous measurement of the repetition rate f,, optical beat fopt and CEO fre-

quency fy as a function of time, with the latter two locked by PLLs. The data are measured

by frequency counters and depicted as detuning from the framed values. Measurement over
30 min shows good long term stability.

“Even though it could be found out.
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The stability of fy in the short scale is a different matter. Any deviation of fy from a
delta function can be attributed to the performance of the feedback loop. The shape
and width of the beat note can be checked with a spectrum analyzer, as in Fig. 6.8.
If the width of the corresponding peak is limited by the instrument’s RBW, we can
at least know its proper width is lower than that limit, and argue it can be a delta
function, but if the RBW is lowered to such a value that the peak’s width does not
decrease any more, one can extract information about the phase-noise fluctuations
of the measured frequency.

Phase-noise theory is a broad and complex field and we will not go into details in
this work, but some references are left for the interested reader [65, 66]. Very briefly,
phase-noise manifests as side-bands (e.g. with Lorentzian shape) on the carrier fre-
quency. When the distinction between the delta function and its side-bands is clear,
a measurement of the power spectral density (PSD) can be made to extract the stan-
dard deviation of the frequency fluctuations. However, when the phase-noise is too
large, the distinction between carrier and sidebands is unclear and this analysis is
practically unfeasible. This is our case (see Fig. 6.8), which indicates that the ac-
tuator is not fast enough to follow and compensate for the short-scale frequency
fluctuations. One option to reduce the phase-noise in fy would be to use a modified
LD power driver with a faster action on the optical pump power, or even replacing
the laser diode by a more stable solid state laser that would reduce the amplitude
noise of the pump. In any case, the limited time in which this work was performed
did not allow for implementation of these ideas.

0

RBW =1 kHz

Spectral Intensity (dB)

96 9.7 98 99 100 101 102 10.3 104
Frequency (MHz)

Fig. 6.8. Spectrum measured around the locked CEO frequency fy. The spectrum was

measured with a spectrum analyzer with RBW= 1 kHz. Its finite width, and the inability

to distinguish the carrier from the noise side-bands evidences that the performance of the
actuator in the short time-scale can be improved.

Allin all, the degrees of freedom of the frequency comb were successfully locked and
stabilized, which grants a full control over the comb. With a potential application
in spectroscopy in mind, the long term stability may have to be further developed,
and even though the short-scale stability of fy can be improved and there are al-
ready some ideas to do so, its fluctuations do not directly translate to phase-noise in
fopt, at least not in the same magnitude. How much the noise in fq affects fopt will
eventually depend on the quality of the lock on fopt.
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Chapter 7

Conclusions and Outlook

In this work, we report the phase stabilization of the carrier-envelope offset (CEO)
frequency of an Yb:KYW femtosecond frequency comb. The output from the Yb:KYW
optical oscillator was amplified, compressed and spectrally broadened to an octave
of frequencies in a photonic crystal fiber. This octave spanning spectrum was used to
measure the comb’s CEO frequency in an f-2f interferometer, which was then stabi-
lized by sending feedback to the laser pump current. This scheme, together with an
independent setup that locks an optical comb mode to a CW laser, allows for fully
stabilizing the Yb:KYW frequency comb.

First, numerical simulations were made for a better understanding of the pulse prop-
agation dynamics that are most relevant for this experiment. The split-step Fourier
method was implemented for this goal, and successfully reproduced the systematic
effects of GVD, TOD and SPM and their combined effect. Simulations with realistic
parameters from our experimental setup were also performed, showing the ability
to achieve octave-spanning. The simulations can still be improved by introducing
higher-order nonlinear effects that would potentially reproduce finer details of the
calculated spectra and pulse shapes.

An Yb-doped fiber amplifier and pulse compressor were built for achieving enough
peak intensity for octave-spanning in the photonic crystal fiber. The fiber amplifier
can easily achieve average output powers of 300 - 500 mW (5 - 8 net gain) for supply
currents of 2.5 - 3 A, well below the maximum available power for the laser diode
that serves as optical pump. The pulse compressor’s performance was tested with a
FROG system, which showed a compression of the pulses down to 65 fs (FWHM),
improving on their original 100 fs duration.

Octave spanning was achieved in a 16 cm long, 3.3 ym core-sized photonic crystal
fiber seeded with 65 fs pulses at a repetition rate of 40 MHz, with an average optical
power of 75 mW coupled into the fiber. This specific set of parameters was carefully
selected for optimum performance, so that the broadened spectrum’s side-lobes fall
on the f and 2f frequencies, maximizing their intensity for better f-2f interferome-

try.
An f-2f interferometer was built and used to measure the CEO frequency f, with a
40 dB signal-to-noise ratio at 100 kHz resolution bandwidth.

The CEO frequency was stabilized by a phase-locked loop acting on the Yb:KYW
laser’s optical pump power. Together with an optical mode being phase-locked to a
CW laser via the Yb:KYW laser’s cavity length, the frequency comb can be fully sta-
bilized for about 30 min. This stability time should be improved in the future if the
device is to be used in spectroscopy experiments, and also the short-scale stability of
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fo has some room for improvement, since low RBW spectra show a widened peak
at fo that denotes excessive phase-noise. Possible upgrades on the setup to solve
these issues could consist on increasing the bandwidth of the pump power modula-
tion and substituting the laser diode pump by a solid state laser with lower intensity
noise.

All in all, the success of this f-2f interferometer sets a milestone in the stabilization
of the Yb:KYW frequency comb and its possible use in high precision spectroscopy
experiments, such as the exploration of the 1S-2S transition in He™.
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