JYVASKYLAN YLIOPISTO
H UNIVERSITY OF JYVASKYLA

This is a self-archived version of an original article. This version
may differ from the original in pagination and typographic details.

Author(s): Honkaranta, Anne; Leppénen, Tiina; Costin, Andrei

Title: Towards Practical Cybersecurity Mapping of STRIDE and CWE : a Multi-perspective
) Approach

Year: 2021

Version: accepted version (Final draft)

Copyright: © 2021, IEEE

Rights: |, Copyright

Rights url: http://rightsstatements.org/page/InC/1.0/?language=en

Please cite the original version:

Honkaranta, A., Leppdnen, T., & Costin, A. (2021). Towards Practical Cybersecurity Mapping of
STRIDE and CWE : a Multi-perspective Approach. In S. Balandin, Y. Koucheryavy, & T. Tyutina
(Eds.), FRUCT '29 : Proceedings of the 29th Conference of Open Innovations Association FRUCT
(pp. 150-159). FRUCT Oy. Proceedings of Conference of Open Innovations Association FRUCT.
https://doi.org/10.23919/FRUCT52173.2021.9435453

Towards Practical Cybersecurity Mapping of
STRIDE and CWE - a Multi-perspective Approach

Anne Honkaranta, Tiina Leppédnen, Andrei Costin
University of Jyviskyld
Jyviskyld, Finland
anne.honkaranta@gmail.com, leppatii @gmail.com, ancostin@jyu.fi

Abstract—Cybersecurity practitioners seek to prevent software
vulnerabilities during the whole life-cycle of systems. Threat
modeling which is done on the system design phase is an
efficient way for securing systems; preventing system flaws is
easier and more efficient than patching the security of the
system later on. Therefore, many Secure Software Development
methods include threat modeling as an integral part of the
methodology. STRIDE is a popular threat modeling method
used by many practitioners. Threat modelers using the STRIDE
method work with abstract threat categories, and would benefit
learning about the information about current system weaknesses
and vulnerabilities. The information is available on the weakness
and vulnerability databases (such as the CWE and the CVE). To
our knowledge, there exists no mapping between the STRIDE
threats and the actual weaknesses and vulnerabilities listed on the
databases, thus hindering the effectiveness of the threat modeling
and the DevSecOps and Secure Software Development Life Cycle
methods as a whole.

This work attempts to bridge the gap by exploring possible
mappings between the STRIDE threats and the CWE weaknesses,
with the goal of improving the cybersecurity processes from
end to end. The paper explores three different approaches for
mapping the STRIDE to the CWE weakness database, and
discusses the findings. The paper concludes that the mapping
between the STRIDE and the CWE “Technical Impact” and
”Scope” elements of the CWE entries is the most prominent
for the mapping. Paper also shows that other mappings were
challenged by the different conceptual backgrounds between
the threats and the weaknesses. The paper also discusses the
challenges caused by the inherent vagueness of the items within
the frameworks and the CWE and CVE databases, causing that
the mappings to these databases remain largely as a manual
tasks, which should be carried out by the domain experts.

[. INTRODUCTION

Currently almost all systems are networked together, and
people are increasingly dependent on software and its avail-
ability on everyday life. It may be harder to exclude oneself
from the networked infrastructure than to be part of it. Appli-
ances from toothbrush and fridge to cars and manufacturing
systems are all online by default. As the complexity of
software systems grows, new vulnerabilities emerge. Increased
networking and system complexity stress out the requirement
for securing the systems [1], [2], [3]. System security should
be managed with a proactive way instead of focusing on
putting out fires [1]. According to [3], on H2/2018 there was
an increase on the malware by 151 %, and it was estimated

that cyber-crime caused damages reach $6 trillion yearly cost
by 2021.

Means for tackling the software security are many. Threat
modeling “is the practice of identifying and prioritizing po-
tential threats and security mitigation to protect something of
value, such as confidential data or intellectual property” [4].
Threat modeling should be started on the early days of the
system design, as it is one of the most efficient ways for
ensuring the software security [5]. All software should go
through sufficient security testing. Yet security testing in
practise may be carried out on a light-weighted manner or
neglected for shortening the systems time-to-market, or not
being considered feasible enough to justify the expenses of
the testing [1]. Secure design is not enough, because some
vulnerabilities emerge after a long time of use, potentially
triggered by an advancement of other software and technology.
To patch up, most of the software vendors provide advisories
for maintaining the security of their systems.

This paper is organized as follows. Section II introduces
the key concepts related to software security and the two
compact most-known vulnerability frameworks: OWASP [6]
and Seven Pernicious Kingdoms [7]. OWASP is evaluated
with relation to the presented concepts, as an example. Section
also presents the weakness type database known as Common
Weakness Enumeration (CWE) [8], and the Common Vulner-
ability Enumeration (CVE) vulnerability database [9], both
maintained by the Mitre Corporation. Section III describes
the STRIDE threat framework and provides an example of
using it in a threat modeling task. Section III also describes
the three alternative ways for mapping STRIDE threats with
the Mitre CWE database items: mapping by using existing
OWASP 10 mapping as a mediator, mapping to the CWE Top
25 weaknesses, and mapping to the CWE database by using
two elements of CWE database schema (Technical Impact and
Scope). Section V discusses and summarizes the findings.

II. RELATED CONCEPTS, VULNERABILITY
FRAMEWORKS AND DATABASES

This chapter presents the concepts related to software
security, and two compact frameworks of software or code
vulnerabilities. Both frameworks are handy for anyone wishing
to use brief listings of vulnerabilities. We also present the other

end of the spectrum, i.e. the huge databases containing detailed
information about the weaknesses and the vulnerabilities iden-
tified on the real-life.

A. RELATED CONCEPTS

While most people are familiar to the concepts of confiden-
tiality, integrity, availability, vulnerability and weakness, these
concepts provide the pillars for the software security.

Confidentiality, Integrity and Availability (CIA, or
AIC) [10]. Availability means that the information is
accessible and available to authorized people when needed.
Availability assumes that also appropriate security is provided
for the information. Hence, availability is more than just
letting the information flow; it is about providing the
information to the rightful actors, and by appropriate means.
It also means that the information should be able to be
recovered, if something unexpected happens to the storage.
Integrity means that information must be whole, original, and
reliable. If there are multiple versions of the information, one
must be able to identify the original piece of information,
as well as the most recent one. Confidentiality assumes that
the information is kept secret from those who do not have
authorized access to it. It also means that information should
be kept secret at rest, i.e., when stored, and also at transit,
i.e., when information is transferred to a reader, other storage
medium, or other format than the original [10].

The CIA triad provides as basis for estimating the severity
of the vulnerability. It is used by the Common Vulnerability
Scoring System (CVSS) — a framework for measuring the
impact of software vulnerabilities [11]. Severity consists of
the exploitability of the vulnerability and the impact of its
exploitation, which is estimated by using the CIA triad. The
value of the final CVSS score is between 0.0-10.0. The main
advantages of common scoring system are standardized and
application-neutral scores, contextual scoring and transparent
scoring framework. The CVSS score does not provide strate-
gies for mitigation [11].

Raggad [12] claims that the CIA triad is not enough, and
that it needs to be appended by authentication and non-
repudiation to form a so-called security star, which is depicted
in Fig. 1.

In the heart of the security star lies Risk. Risk is an
essential factor striving businesses to focus on security. Busi-
ness managers are focused on managing risks, not security.
Not storing your information securely enough may risk the
company brand, or it may cause high fees to the company. For
example, if one rudely neglects to keep EU citizen’s personal
information safe according to the GDPR regulation guidelines,
one may end up having up to 20 M€ or maximum of 4 % of
annual revenue as an administrative fine [13].

There is an interplay between threat and risk. Harris and
Maymi [10] (pp. 6) define threat and risk as follows: 1)

Confidentiality

Integrity Availability

Risk

Authentication Non-Repudiation

Fig. 1: The security star (image by Raggad [12])

”A threat is any potential danger that is associated with the
exploitation of a vulnerability”’; 2) A risk is the likelihood of a
threat source exploiting a vulnerability and the corresponding
business impact”.

Hence, vulnerability is the weakness that one has utilized to
jeopardize the software. And, there is a risk that information
confidentiality, integrity or availability is lost, as a whole or
partially. Same outcome, i.e., the risk, may be triggered by
multiple different threats.

National Institute of Standards and Technology (NIST) [14]
defines vulnerability as:

”A weakness in the computational logic (e.g., code) found
in software and hardware components that, when exploited,
results in a negative impact to confidentiality, integrity, or
availability”. Hence a vulnerability is the result of exploiting
a weakness. In the real world, the concepts become mixed,
perhaps due to viewpoint or scope change, or because the
difference is not seen as remarkable. If someone wishes to
process information by automated means, the concepts must
be used in a semantically consistent way.

B. OWASP TOP 10 VULNERABILITY FRAMEWORK

The Open Web Application Security Project® (OWASP) is
a nonprofit foundation that works to improve the security of
software [6].

OWASP Top 10 Application Security List contains a list of
the 10 most common security risks for Web Applications [6].
OWASP is familiar to many and it is commonly used also as a
checklist for penetration testers. The OWASP Top 10 is often
referred as the list of the Top 10 Web vulnerabilities. From
the perspective of the concepts discussed above, it may also
be considered as a mix of vulnerabilities and risks.

OWASP Top 10 is interesting for this paper in two ways:
1) It is an example of a compact framework of vulnerabilities.
Compact frameworks are needed and they may be used as
checklists for security testers. 2) Even if the list is called as

“the 10 most common security risks for Web Applications” it
is commonly referred as a list of Web Application common
vulnerabilities. Hence, the intertwined relation between risks
and vulnerabilities is present on the listing, illustrating the
problem with compact vulnerability categories; some of the
items are actually risks by their nature, some may be classified
as vulnerabilities. The problem is inherent; if one needs to
provide a compact list containing the most critical and most
commonly identified application vulnerabilities, the classes are
deemed to be differing by their grain size and the level of
abstraction.

Following list provides three examples of the OWASP Top
10 threats [6] and their characterizations with regard to the
concepts of risk and vulnerability.

1) Injection: Examples of injection flaws are SQL, NoSQL
and LDAP injection [6]. When untrusted or malicious
data is sent to application as a part of command or
query the activity is called as injection. Injection is a
type of vulnerability, and the risk is that the information
is exposed/disseminated or malicious code is run on the
system.

2) Broken Authentication: Occurs when an application
does not implement correct authentication procedure
or session management. The application may reveal
passwords, keys, or tokens to the attacker, or to provide
the attacker with false identity and privileges on the
system. Consequently, attacker may disseminate (loss
of confidentiality), falsify (loss of integrity), or destroy
information (loss of availability), and run code with false
/elevated privileges, leading to potential system unavail-
ability (loss of availability) as an extreme outcome.

3) Sensitive Data Exposure: A risk, which may be caused
by weak protection of sensitive information. Vulner-
ability may come in a form of not encrypting the
data at rest or at transit (i.e., storage or traffic is not
encrypted to protect the data), and it seems obvious that
confidentiality is at risk here.

C. THE FRAME-

WORK

“SEVEN PERNICIOUS KINGDOMS”

A taxonomy of common coding errors called as the Seven
Pernicious Kingdoms is provided by [7]. The framework
operationalizes the concepts of phylum (a kind/category of
a coding error) and a kingdom (a group of phyla with some
shared features between them) from biology.

The authors of the Seven Pernicious Kingdoms emphasize
that the taxonomy of coding errors/vulnerabilities is needed
for spreading out the understanding of software vulnerabilities
within the coding community, and for enforcing security of the
code used on novel applications [7]. The authors point out that
almost half of all software vulnerabilities may be tracked back
to the source code level. They also bring out the need for a
simple, compact list of main software vulnerabilities instead

of an overwhelming encyclopedia of software bugs. Therefore,
the authors have built a taxonomy of software vulnerabilities
consisting of 7+1 classes. Why 7+1? Because it has been
proven by the psychologists that a human memory is capable
to manage information in chunks consisting of 7+/-2 items.

The taxonomy of software vulnerabilities by Tsipenyuk et
al. [7] is as follows:

1. Input Validation and Representation; 2. API Abuse; 3.
Security Features; 4. Time and State; 5. Errors; 6. Code
Quality; 7. Encapsulation + Environment.

D. THE CVE DATABASE

Software vulnerabilities were reported in differing ways
by the software and hardware vendors until the MITRE
Corporation created a common method and a database for
vulnerabilities in 1999 [15]. Since then the Common Vul-
nerabilities and Exposures (CVE) Initiative has been building
the common dictionary and structure for describing software
vulnerabilities [9]. The key objective of the CVE is that the
name and the description of each vulnerability is defined
only once, and in a standardized way in the dictionary. The
definitions of vulnerabilities are not provided in detail for a
variety of reasons, one of them being to prevent attackers from
taking advantage of the descriptions [16].

Each vulnerability is encoded in the following way: CVE
prefix, year, and sequence number digits (for example, CVE-
2019-1010200). The trademark and copyright of CVE is
managed by MITRE Corporation to legally protect use of it
and specially to secure a free and open standard [17].

Fig. 2 shows the CVE as “a link hub” to the related
data sources. Additional information about solution, impact
level or technical details can be found on other sources like
the National Vulnerability Database (NVD) and the Common
Vulnerability Scoring System (CVSS) [18].

Software
vendor
alerts int N on
- ntrusi
Vuisrc\aerr‘il:rhty y detection system
dts) signatures
base database
Se— Common F—/

Vulnerabilities
and Exposures
initiative

Software
vendor patches
and updates

Security
advisories and
e-mail lists

Vulnerability
Web sites and
databases

Fig. 2: The CVE is a dictionary which refers to the external databases [15]

CVE is referred as the central of vulnerability and exposure
databases. Currently there are 149841 vulnerabilities on the
database [9]. The large number of the vulnerabilities identified
is an advantage for users, but it also brings out challenges. As
new and more complex technologies open new possibilities
for attackers, more vulnerabilities are identified, causing the
requirements on timeliness and accuracy of the CVE as a
master dictionary to be elevated [19].

E. THE CWE DATABASE

Weaknesses expose the systems causing them to be vulner-
able to attacks. The Common Weakness Enumeration (CWE)
is a classification and a common language for identifying
and describing these weaknesses. The CWE list is maintained
by the MITRE Corporation and it is available in the Mitre
website [14].

The idea of the CWE list is to provide a detailed infor-
mation of common software and hardware weakness types.
Information about the weaknesses has been especially relevant
for software developers for avoiding the use of the known
types of the security flaws. Recently the CWE categories of
hardware have become increasingly important because all sorts
of devices include information and network related technology.
Categories of hardware weaknesses were added to the CWE
in 2020 [8].

The CWE is also one of the repositories that the CVE
database refers to. The CWE identifier is linked to each
vulnerability thus allowing the vulnerabilities to be navigated
by using the CWE ID. According to [20] mapping between
the CVE and the CWE items is done manually by domain
experts. Manual work is slow and laborous, which effects on
the availability of the CVEs for proactive threat mitigation.

The CWE database is presented as a hierarchy of classes
where each CWE entity refers to one vulnerability type. There
are no limitations on how the weaknesses may be referenced or
classified. For example, the CVEs can be mapped to different
levels of the classification. This is necessary because of the
varying specificity levels of the CVEs [21].

The CWEs are grouped into three hierarchical classifica-
tions: Software development, Hardware design and Research
concepts. The top level of the Software development and the
Hardware design are defined as classes which are based on
categories. Category is the root element and a container for
the weaknesses that share the similar characteristics. Each cat-
egory contains class, base and/or variant weaknesses. Classes
are like categories: independent of any implementation. The
base level weaknesses are more specific, but not as detailed
as the variant weaknesses. The research concepts class con-
tains more levels of abstraction than the other classification
schemes. Top level elements of the research concepts class are
pillars which describe mistakes but do not specify their impact
nor the the exact point affected. The Pillars can contain class,
base, or variant weakness [22].

III. THE STRIDE THREAT FRAMEWORK AND AN
EXAMPLE OF A STRIDE MODEL

Threats may be modeled, analyzed and detected in a nu-
merous ways. For example, the Diamond Model for Intrusion
Analysis [23] is based on a long practical experience on
intrusion analysis. The Diamond Model provides four views
for Intrusion analysis: adversary, infrastructure, capability,
and victim. The Diamond Model embeds certain features
from the “Kill Chain” analysis model [23]. The Kill Chain
model [24] was developed for analyzing Advanced Persistent
Threats (APT’s).In this method, the phases of the intrusion
are analyzed, and mitigation for each of the detected phase of
the intrusion are planned. The authors selected the STRIDE
method for the analysis for the following reasons: 1) The
method is well-known amongst practitioners, because it is
a part of the Microsoft’s Secure System Development Life
Cycle model, 2) The method uses a simple, yet comprehensive
classification of threats, and 3) The STRIDE method may be
embedded to the actual system design phase, in which the
system is designed, and 4) The method was identified as the
most mature on a comparison carried out by Shevchenko [3].

This section discusses the STRIDE threat framework and
provides an example of the STRIDE threats as identified on a
exemplar data flow diagram.

A. THE STRIDE THREAT FRAMEWORK

STRIDE is an acronym that stands for the possible threats
towards a system. The STRIDE framework is also used
as an integral part of the Microsoft Security Development
Lifecycle (SDL) method [25]. The acronym ”"STRIDE” defines
the six threat categories for a system: Spoofing, Tampering,
Repudiation, Information disclosure, Denial of service and
Elevation of privilege [26]. While the CIA (Confidentiality,
Integrity, Availability) triad [10] defines the three pillars for
secure systems, the STRIDE presents six threat types relevant
to the CIA.

Table I presents the STRIDE [27] threats along with the
authors’ layman explanation for the acronyms. It also presents
a mapping to the CIA triad, thereby mapping the threat classes
with the actual risks.

Threat modeling based on the STRIDE threat framework
has been studied from several perspectives. For example, [28]
pointed out that STRIDE is a popular threat modeling method,
but empirical studies about its application are lacking. There-
fore, the authors organized a broad empirical study in which
57 students applied the STRIDE threat modeling for a given
task. [29] found out that STRIDE is a lightweight, yet efficient
framework for modeling threats in systems compromising of
critical infrastructures and industrial control systems, which
they characterized as complex Cyber-Physical Systems (CPS).

TABLE I: MAPPING OF STRIDE FRAMEWORK ELEMENTS TO THE
CIA TRIAD

Threat Explanation/Example Relation to CIA:
Name what is risked
Spoofing Malicious user (or agent) pretends | Confidentiality,
to be someone else, (s)he uses | Integrity
other user’s credentials to access
the system [27].
Tampering The content within the targeted | Integrity
system is altered by the malicious
external party.
Repudiation Content or system has been mis- | Integrity
used or tampered, but we cannot
prove it due to absence of proof,
such as audit trail.
Information The information is exposed to par- | Confidentiality
disclosure ties which do not/should not have
access to it [27]. Information leak
and data breach are common exam-
ples of information disclosure.
Denial of | System/information is not available | Availability
service to a legitimate user.
Elevation of | Malicious or rightful user gets | Integrity, Confi-
privilege more privileges on the content than | dentiality
is entitled to.

B. AN EXAMPLE OF THE STRIDE THREAT MODEL

To illustrate the use of the STRIDE framework, this sub-
section provides an example of using the STRIDE on the threat
modeling phase.

Microsoft [30] (pp. 1) defines the threat modeling as a
process that contains five steps:

“l1. Defining security requirements, 2. Creating an applica-
tion diagram, 3. Identifying threats, 4. Mitigating threats, and
5. Validating that threats have been mitigated”.

According to the Web Applications Threat Modeling Guide-
line [25] each of the five steps contain several tasks to carry
out. For example, step 1 “Defining security requirements”
considers defining security requirements related to the CIA
and the business branch in which the software is used. In
step 2, numerous diagrams are created, including the data flow
diagrams and use case diagrams.

The threat modeling tool [31] provided by Microsoft con-
tains templates for the threat modeler and some templates that
can be used for modeling threats for the Azure cloud platform.

Fig. 3 provides an example of a data flow diagram model
within the Microsoft threat modeling tool. The diagram is
used for studying the STRIDE threats of a system. The data
flow diagram is shown on the upper-hand window of the
picture. The lower-hand picture shows the STRIDE threat list
provided by the tool. The threat modeler first draws the data
flow diagram. Once the modeler chooses a component on
the diagram, the tool shows related threat categories (system
weaknesses) as well as their outcomes, i.e., risks as well as
their descriptions on the lower-hand pane. The picture lists all
potential threats on the diagram because user has not selected
any component of the data flow diagram. Once the threats

are detected, the modeler can start planning the mitigation for
them, by designing appropriate security controls to be put into
appropriate places.

IV. STRIDE-CWE MAPPINGS

This section presents three differing trials that were carried
out in order to map the STRIDE threats with the CWE
database weaknesses.

The CWE database contains description of 916 weaknesses
at this moment [22]. The weaknesses in the CWE database are
not so detailed and technical as in the CVE database. Therefore
mapping trial from the STRIDE threats was carried out against
the CWE database.

A. MAPPING STRIDE AND OWASP TOP10

While the CWE database can be browsed, searched and
navigated in many ways, the current version (4.3) of CWE
list [22] also offers mappings to following external frame-
works: OWASP Top Ten (from year 2017 [32]), Seven Perni-
cious Kingdoms (7PK [33]), Software Fault Pattern Clusters,
SEI CERT Coding Standards, Architectural Concepts, CISQ
Quality and Data Protection Measures. These mappings are
downloadable in several file formats (HTML, CSV, XML).
Each CWE entry referenced from the external mapping has
also references to other related mappings. The mappings are
defined in the “Taxonomy Mappings” section of the CWE
entry. The Mapped taxonomy name is an attribute which
identifies the framework that was mapped with the CWE
(for instance, OWASP Top Ten 2007) and Mapped node
name contains the entry point used for the mapping (for
instance, Injection Flaws). The Mapping Fit element contains
description of how close the CWE item mapped is to the
responding entry in the framework. Possible values are Exact,
CWE More Abstract, CWE More Specific, Imprecise and
Perspective. These attributes specify more information about
the external mapping than just a title. Especially the mapping
fit values provide analysed estimation how external entry is
equivalent to the CWE entry in case.

External mappings provided by the CWE database may be
used for multiple purposes [22]. Top level definition page
of each external taxonomy mapping contains an “Audience”
section. It contains short descriptions what kind of benefits the
mapping offers for different stakeholders. The key benefits
of the external mappings for differing audiences may be
summarized as:

o Software developers: Tool to ensure that code quality
issues are considered throughout the design process,
useful view with familiar concepts, weaknesses can be
detected using source code analysis tools, a starting point
to code more securely and prevent the weaknesses, help
for tool acquisition.

¢ Product customers: A way to ask software development
teams to follow minimum expectations for secure code,

Commands

l

Human User Wab

e Generic Data

Store
Title ¥ (Category * Description ¥ Justification ¥ Interaction * Priority
Spoofing the... Spoofing Human User... Commands High
Cross Site Scr... Tampering The web serv... Commands High
Elevation Usi... EHewvation Of... Web Server... Commands High
Spoofing of D... Spoofing Generic Data... Configuration High
Potential Exc... Denial Of Ser... Does Web Se... Configuration High
Commmdima ~EC Camm ol M amaris Miada | JEAE [H

Fig. 3: A screenshot of the STRIDE threat modeling tool [30] in action

a view to requirements that must be met when software
developers claim to follow standard in question.

Product vendors: A view to help understanding code
quality issues.

Assessment tool vendors: A starting point to understand
what a software with good code quality is consisted of
and possible quality issues.

Educators: Can be used as training material, multiple
ways to create views for different subjects.

An external mapping has three output formats: booklet.html
(view), csv.zip or xml.zip. The booklet.html [32] is shown as a
tree-like relationships where the top-level items of the selected
framework are depicted as categories, which are associated
with CWE entries. An example of OWASP Top 10 [6] mapping
is shown in Fig. 4.

As depicted in Fig. 4, the framework category name may be
mapped to a vulnerability at any level of the CWE category:
Category (depicted by letter “C” on a dark red rectangle-
shaped background), Pillar, Class (depicted by letter “C” on
top of green balloon icon), Variant (depicted by letter “V” on
top of lilac balloon shape), Base (depicted by letter “B” on
top of blue balloon shape) or Composite (is not shown on this
picture). The schema used for external mapping does not seem
to limit the CWE entry types to any specific level of the CWE
vulnerability category.

The existing mappings [32] can be used as a mediator be-
tween the STRIDE and the CWE database. The first mapping
trial was carried out by mapping the STRIDE with the OWASP
Top 10. The result is shown in Table II.

As shown in the Table II, OWASP vulnerabilities 2, 3, 5,
and 10 can be mapped one-to-one with STRIDE threats. A
STRIDE modeler may thus find the related weaknesses to
Spoofing, Information disclosure, Elevation of privilege, and
Repudiation by using the existing OWASP mapping view.
By using these mappings, the modeler can also drill down
from the direct mappings by using the “booklet.html” tree
view, and selecting the related sub-weaknesses, as shown in
Fig. 4. Because each of these weaknesses have in turn a
description defining the related weaknesses, as well as upper
and lower-level weaknesses, a modeler may find lots of related
weaknesses and their descriptions.

Fig. 5 represents an example where the STRIDE modeler
selected the OWASP vulnerability number 3 “Sensitive Data
Exposure” because (s)he wants to study the weaknesses related
to the STRIDE threat “Elevation of privilege” by using the
mapping. From the tree-like view exposed, (s)he has further
selected a related weakness categorized as “Exposure of Pri-
vate Personal Information to an Unauthorized Actor”.

Because the OWASP mapping only provided partial results,
two other mapping trials were carried out.

B. MAPPING STRIDE AND CWE TOP 25

“CWE Top 25 Most Dangerous Software Weaknesses
(2020)” [34] is a listing prepared by Mitre. It lists the most
common weaknesses that were identified on the previous two
years. The list is not solely based on the Mitre CWE database;
it utilizes the CVE database by Mitre and the National Vul-
nerability Database, as well as the CVSS vulnerability scoring
system as a basis for listing [34].

- c 0

8 cwe.mitre.org/data/definitions/1026.html

1026 - Weaknesses in OWASP Top Ten (2017)
—= OWASP Top Ten 2017 Category Al - Injection - (1027)
- © Improper Neutralization of Special Elements used in a Command ('Command Injection') - (77)
—- @ Improper Neutralization of Special Elements used in an 05 Command ('0S Command Injection') - (78)
—. @ Improper Neutralization of Argument Delimiters in a Command (‘Argument Injection') - (ss)
—- @ Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection') - (8s)
—. © Improper Neutralization of Special Elements used in an LDAP Query ('LDAP Injection') - (so)
—- © XML Injection (aka Blind XPath Injection) - (s1)
—. W SQL Injection: Hibernate - (564)
—. O Improper Neutralization of Special Elements used in an Expression Language Statement ('Expression Lar
—. O Improper Neutralization of Special Elements in Data Query Logic - (943)
—= OWASP Top Ten 2017 Category A2 - Broken Authentication - (1028)
—. O Improper Authentication - (2g7)
— . © Unprotected Storage of Credentials - (256)
—- © Use of Single-factor Authentication - (308)
—- & Session Fixation - (384)
—- O Insufficiently Protected Credentials - (522)
—- © Unprotected Transport of Credentials - (523)
—. O Insufficient Session Expiration - (613)
—- @ Unverified Password Change - (520)
—. & Weak Password Recovery Mechanism for Forgotten Password - (640)

— OWASP Top Ten 2017 Category A3 - Sensitive Data Exposure - (1029)
= [NWASP Tan Ten 2017 Catannrv Ad - XMI Fvtarnal Entitiae (XXFE) - r102m

Fig. 4: A snapshot of “booklet.hml” view on OWASP — CWE vulnerability database mapping [32]

Relevant to the view "Research Concepts” (CWE-1000)

Nature Type ID Name

ChildOf © 668 Exposure of Resource to Wrong_Sphere

ParentOf 9 201 Insertion of Sensitive Information Into Sent Data

ParentOf @ 203 Observable Discrepancy

ParentOf @ 209 Generation of Error Message Containing Sensitive Information

ParentOf @ 213 Exposure of Sensitive Information Due to Incompatible Policies

ParentOf @ 215 Insertion of Sensitive Information Into Debugging Code

ParentOf @ 359 Exposure of Private Personal Information to an Unauthorized Actor

ParentOf & 497 Exposure of Sensitive System Information to an Unauthorized Control Sphere
ParentOf & 538 Insertion of Sensitive Information into Externally-Accessible File or Directory
ParentOf & 1243 Sensitive Non-Volatile Information Not Protected During Debug

ParentOf @ 1258 Exposure of Sensitive System Information Due to Uncleared Debug Information
ParentOf @ 1273 Device Unlock Credential Sharing

ParentOf @ 1295 Debug Messages Revealing Unnecessary Information

CanFollow U 498 Cloneable Class Containing Sensitive Information

CanFollow U 499 Serializable Class Containing Sensitive Data

CanFollow & 1272 Sensitive Information Uncleared Before Debug/Power State Transition

Fig. 5: Example of navigating the weakness by using the OWASP mapping to find related weaknesses to STRIDE threat “Information Disclosure”

The 2020 CWE Top 25 was built by first obtaining the
vulnerability data from NVD database (years 2018-2019).
Then analysts designed the complex scoring system which

sufficient information for mapping.

Table III shows our mapping between the CWE Top 25

uses many elements, including the vulnerability’s CVSS score
and the vulnerability’s number of occurrences on the weakness
category [34].

Mapping from CWE Top 25 to STRIDE was done by
scrutinizing each of the Top 25 weaknesses on the CWE Top
25 list with STRIDE elements, one by one. The name of the
weakness was not descriptive enough for reasoning about to
which element of the STRIDE the item should be mapped
to. Each item on the "Top 25 list” was studied by using the
weakness enumeration page, which was available by clicking
on the hyperlink attached to the weakness name. Technical
impact information on the weakness’ detail page provided

weaknesses (as listed in the CWE Top 25 [34]) and STRIDE.

This mapping shows that all STRIDE threats have related
weaknesses in the Top 25 listing. The listing of the Top 25
weaknesses contains weaknesses of differing kinds and scope;
for example, NULL pointer reference is clearly a weakness
related to coding, and perhaps specific to some of the coding
languages commonly in use. It is very specific of its nature.
Improper privilege management may be a consequence of poor
code, but also an outcome of not protecting the password
database. It is clearly broader by its nature, and not so much
dependant of a language used for software construction.

The authors of the Top 25 list bring out that during the

TABLE II: MAPPING OF STRIDE FRAMEWORK TO THE OWASP TOP
10 [6]

TABLE III: MAPPING OF CWE TOP 25 WEAKNESSES AND STRIDE

THREATS

OWASP vulnerabil-
ity/risk category
1. Injection

STRIDE Threat Category

Has not direct counterpart, injection can
lead most probably to the Elevation of priv-
ilege, Information disclosure or Tampering.
Spoofing (Elevation of privilege)

2. Broken Authentica-

CWE ID and Name

STRIDE Threat

CWE-79 Improper Neutralization of
Input During Web Page Generation
(’Cross-site Scripting’)

Elevation of privilege, Infor-
mation disclosure, Tampering
and Denial of Service.

CWE-787 Out-of-bounds Write. Scope:
Integrity Availability

Same as above

tion CWE-20 Improper Input Validation Same as above.
3. Sensitive Data Ex- | Information disclosure CWE-125 Out-of-bounds Read Information disclosure, Denial
posure of Service

4. XML External en-
tities

Has not direct counterpart, injection can
lead most probably to the Elevation of priv-
ilege, Information disclosure or Tampering,
perhaps even to Denial of Service.

CWE-119 Improper Restriction of Op-
erations within the Bounds of a Mem-
ory Buffer

Information disclosure, Denial
of Service. Possible also: Tam-
pering.

CWE-89 Improper Neutralization of

Information disclosure, Tam-

Denial of Service

7. Cross-site scripting | Same as (6).
(XSS)
8. Insecure Deserial- | Same as (6).
ization

5. Broken Access | Elevation of privilege Special Elements used in an SQL Com- | pering, Spoofing, Elevation of
Control mand ("SQL Injection’) privilege.

6. Security Miscon- | Elevation of privilege, and may lead also to CWE-200 Exposure of Sensitive Infor- | Information disclosure
figuration Information dissemination, Tampering, and mation to an Unauthorized Actor

CWE-416 Use After Free

Denial of Service, Tampering,
Information disclosure

CWE-352 Cross-Site Request Forgery
(CSRF)

Spoofing, Elevation of priv-
ilege, Information disclosure,
Tampering, Denial of Service.

9. Using Components
with Known Vulnera-
bilities

All STRIDE threats apply.

CWE-78 Improper Neutralization of
Special Elements used in an OS Com-
mand (OS Command Injection’)

Denial of Service, Information
disclosure, Tampering, Repu-
diation.

10. Insufficient Log-
ging and Monitoring

Repudiation

CWE-190 Integer Overflow or
Wraparound

Denial of Service, Tampering,
Elevation of privilege.

past year the weaknesses related to the Authentication and
Authorization have been rising on the listing. Also, a move
towards more specific weaknesses has emerged recently [34].

C. MAPPING STRIDE AND CWE’S TECHNICAL IMPACT
AND SCOPE

The key to a common language within the CWE database
is the common grammar which is defined by the CWE
Schema [35]. It represents the CWE data structure which is
used for the CWE entries, and it defines several enumerations
for describing the attributes for each of the CWE items.

Schema of the CWE provides alternative means for carrying
out the mapping between the CWE and the STRIDE. As the
mapping from the CWE Top 25 to the STRIDE was carried
out, the information in the CWE entry page section titled
as “Scope” and “Technical impact” was found beneficial for
the mapping. These items were also present at the schema
[36]. Technical impact defines the anticipated outcome of
the weakness and Scope is related to the system security
requirements. The Scope uses the Security Star as a base, and
appends it with Access Control element.

Process and method used in the STRIDE schema item
mapping was pragmatic. Accurate values of both enumera-
tions were listed from the CWE schema XSD description
first [36]. Second, each category of STRIDE was linked with
one or more enumerations of the Technical Impact. Finally,
the relations between the Scope and Technical Impact were
defined by searching the CWE list with “technical impact” as
the keyword. Scopes were also checked against the STRIDE

CWE-22 Improper Limitation of a
Pathname to a Restricted Directory
(’Path Traversal’)

Elevation of privilege, Tam-
pering, Information disclosure,
Denial of Service.

CWE-476 NULL Pointer Dereference

Denial of Service, Tampering,
Information disclosure

CWE-287 Improper Authentication

Elevation of privilege, Spoof-
ing

CWE-434 Unrestricted Upload of File
with Dangerous Type

Information disclosure, Tam-
pering. Can also lead to Ele-
vation of privilege, Denial of
Service.

CWE-732 Incorrect Permission Assign-
ment for Critical Resource

Spoofing, Elevation of priv-
ilege, Information disclosure,
Tampering, Denial of Service.

CWE-94 Improper Control of Genera-
tion of Code (’Code Injection’)

Elevation of privilege, Spoof-
ing, Repudiation.

CWE-522 Insufficiently Protected Cre-
dentials

Spoofing, Elevation of privi-
lege

CWE-611 Improper Restriction of
XML External Entity Reference

Elevation of privilege, Spoof-
ing, Denial of Service.

CWE-798 Use of Hard-coded Creden-
tials

Spoofing, Elevation of privi-
lege, Information disclosure.

CWE-502 Deserialization of Untrusted
Data

Tampering, Denial of Service.

CWE-269 Improper Privilege Manage-

Spoofing, Elevation of privi-

ment lege.
CWE-400 Uncontrolled Resource Con- | Denial of Service, Elevation of
sumption privilege.

CWE-306 Missing Authentication for
Critical Function

Spoofing, Elevation of privi-
lege.

CWE-862 Missing Authorization

Elevation of privilege, Infor-
mation disclosure, Tampering,
Repudiation.

categories to finalize the mapping.

is presented in the Table IV.

The result of the analysis

This mapping provided the best outcome in two ways. First,
the concepts of the STRIDE and the Weakness elements were
shown to be quite well comparable with each other, they are

TABLE IV: MAPPING OF STRIDE FRAMEWORK TO “TECHNICAL
IMPACT” AND “SCOPE” ELEMENTS OF THE CWE ENTRY

STRIDE CWE/Technical Im- | CWE/Scope
pact

Tampering Modify data Integrity

Information Read data Confidentiality

disclosure (privacy

breach or data leak)

Denial of service DoS: unreliable exe- | Availability
cution

Denial of service DoS: resource con- | Availability
sumption

Elevation of privilege | Execute unauthorized | Confidentiality

code or commands

Integrity Availability
Access control

Spoofing Gain privileges / as- | Access Control Au-
sume identity thentication

Elevation of privilege | Bypass protection | Access Control Au-
mechanism thentication

Repudiation Hide activities Non-Repudiation Ac-
countability

“more same calibre” than the STRIDE-CWE pairs identified
on the previous mapping trials. Second, this mapping was also
easier to do. As a downside, we found out that there is no view
available on the CWE for this mapping. This view would be
one topic for further development of the CWE.

As an outcome of the trials it may be concluded that the
CWE entry’s Scope and Technical impact elements provided
the most appropriate and straightforward outcome. As it is
not always possible to compare oranges with apples, finding
an exact fit between threats and weaknesses was found as a
challenging task. The concepts of threat and weakness come
from different scenes; one is quite abstract and on a low level
of detail, while the other one is more technical and more or
less related to a detailed finding on a real-life.

This mapping rehearsal did not cover the relation between
vulnerability database (CVE) and STRIDE. Vulnerabilities are
exact findings in specific software packages, and threats are
quite abstract entities, thus the mapping is perhaps just as diffi-
cult as the mapping trial we carried out between vulnerabilities
and weaknesses. The NIST vulnerability database provides
links from vulnerabilities to CWE weaknesses’ ““crossings”,
using the CWE weaknesses as classification mechanism for the
vulnerabilities [14]. These links may provide a starting point
for those wishing to make mappings from the weaknesses to
the related vulnerabilities.

The CWE authors and maintainers themselves had recog-
nized the need to study the inter-operability of the CWE with
other resources related to software security. They carried out a
study in which two analysis tools and one secure programming
reference was chosen, and a trial mapping from CWE to them
was carried out [37]. The authors sum up that exact mappings
were found for 45,72% of the items. As a summary, the authors
denote that mapping to CWE entities is not as straight-forward
as one might think [37]. Even though the modest mapping
rehearsal carried out by the authors does not provide enough
information for statistical analyses, it however supports the

finding made by Loveless [37].

V. CONCLUSION

This paper explored and implemented three different map-
pings from the STRIDE threats to the CWE weaknesses. We
found out that the CWE weakness type (category) names
are not sufficient for a novice user to perform an effective
mapping. Detailed information about the weaknesses on the
corresponding CWE details page was essential for carrying
out the mapping. The firts two mapping attempts; the mapping
by using the OWASP as a mediator (Section IV-A) and the
second mapping to CWE Top 25 weaknesses (Section IV-B),
both provided only partial mapping to STRIDE elements. The
third mapping from the STRIDE to the CWE schema elements
(Scope and Technical Impact) (Section IV-C), was found to
provide the most optimal outcome. However, this mapping
calls upon further development from the CWE maintainers,
because the view related to this mapping is not yet available
on the CWE external mappings list.

The authors wish that the findings presented on this paper
will help the threat modeling practitioners to identify practical
information about weaknesses and vulnerabilities for threat
estimation and mitigation. Additionally, the software develop-
ers and security researchers may find our mapping trials and
related findings helpful for practical and research purposes.

VI. ACKNOWLEDGEMENTS

Authors wish to thank the anonymous reviewers for their
valuable comments and feedback that helped to improve the
quality of the paper.

REFERENCES

[1] G. Erdogan, P. H. Meland, and D. Mathieson, “Security testing in agile
web application development-a case study using the east methodology,”
in International Conference on Agile Software Development. Springer,
2010, pp. 14-27.

[2] Y. Ayachi, E. H. Ettifouri, J. Berrich, and B. Toumi, “Modeling the
owasp most critical web attacks,” in International Conference Europe
Middle East & North Africa Information Systems and Technologies to
Support Learning. Springer, 2018, pp. 442-450.

[3] N. Shevchenko, “Threat modeling: 12 available methods,” URL:
https:/finsights. sei. cmu. edu/sei blog/2018/12/threat-modeling-12-
available-methods. html [accessed: 2020-05-24], 2020.

[4] J. Brandon, “What is threat modeling and how does it impact application
security?” Securitylntelligence, 2019.

[5] W. Xiong and R. Lagerstrom, “Threat modeling—a systematic literature
review,” Computers & security, vol. 84, pp. 53-69, 2019.

[6] OWASPFoundation, “Owasp to 10 web application risks,” URL:
https://owasp.org/www-project-top-ten/ [accessed: 2021-02-24], 2017.

[7]1 K. Tsipenyuk, B. Chess, and G. McGraw, “Seven pernicious kingdoms:
A taxonomy of software security errors,” IEEE Security & Privacy,
vol. 3, no. 6, pp. 81-84, 2005.

[8] TheMitreCorporation, “Cwe - common weakness enumeration,” URL:
https://cwe.mitre.org/ [accessed: 2021-02-24], 2021.

[9] , “Cve database,” https://https.//cve.mitre.org/index.html [accessed:
2021-02-20], 2021.

[10] S. Harris and F. Maymi, CISSP all-in-one exam guide.

Education New York, NY, USA, 2016.
[11] P. Mell, K. Scarfone, and S. Romanosky, “Common vulnerability scoring
system,” IEEE Security & Privacy, vol. 4, no. 6, pp. 85-89, 2006.

McGraw-Hill

[12]

(13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[32]

B. G. Raggad, Information security management: Concepts and practice.
CRC Press, 2010.

EU, “Regulation eu 2016/679 of the european parliament and
of the council of 27 april 2016,” Official Journal of the Eu-
ropean Union. Available at: http://ec. europa. eu/justice/data-
protection/reform/files/regulation_oj_en. pdf (accessed 20 September
2017), 2016.

NIST, “Nvd, national vulnerability database,” https://nvd.nist.gov/vuln
[accessed: 2021-02-20], 2021.

R. A. Martin, “Integrating your information security vulnerability
management capabilities through industry standards (cve&oval),” in
SMC’03 Conference Proceedings. 2003 IEEE International Conference
on Systems, Man and Cybernetics. Conference Theme-System Security
and Assurance (Cat. No. 03CH37483), vol. 2. 1EEE, 2003, pp. 1528—
1533.

M. Schiappa, G. Chantry, and 1. Garibay, “Cyber security in a complex
community: A social media analysis on common vulnerabilities and
exposures,” in 2019 Sixth International Conference on Social Networks
Analysis, Management and Security (SNAMS). 1EEE, 2019, pp. 13-20.
TheMitreCorporation, ~ “Mitre frequently asked questions,”
https://cve.mitre.org/about/fags.html [accessed: 2021-02-20], 2021.

T. Bhuddtham and P. Watanapongse, ‘“Time-related vulnerability looka-
head extension to the cve,” in 2016 13th International Joint Conference
on Computer Science and Software Engineering (JCSSE). 1EEE, 2016,
pp. 1-6.

TheMitreCorporation, “The future of vulnerability management
(1/2) - hackuity’.riskinsight, 10 feb. 2021,” https://www.riskinsight-
wavestone.com/en/2021/02/hackuity-shake-up-the-future-of-
vulnerability-management-threat-status-and-current-issues-in-
vulnerability-management-1-2/ [accessed: 2021-02-25], 2021.

E. Aghaei and E. Al-Shaer, “Threatzoom: neural network for automated
vulnerability mitigation,” in Proceedings of the 6th Annual Symposium
on Hot Topics in the Science of Security, 2019, pp. 1-3.

A. Tripathi and U. K. Singh, “On prioritization of vulnerability cate-
gories based on cvss scores,” in 2011 6th International Conference on
Computer Sciences and Convergence Information Technology (ICCIT).
IEEE, 2011, pp. 692-697.

TheMitreCorporation, “Cwe list,” https://cwe.mitre.org/data/index.html
[accessed: 2021-02-20], 2021.

S. Caltagirone, A. Pendergast, and C. Betz, “The diamond model of
intrusion analysis,” Center For Cyber Intelligence Analysis and Threat
Research Hanover Md, Tech. Rep., 2013.

TheMitreCorporation, “Cwe - common weakness enumeration. cwe
view: Weaknesses in owasp top ten (2017). view id: 1026,”
URL: https:/cwe.mitre.org/data/slices/1026.html [accessed: 2021-02-
24], 2021.

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

(33]

[34]

[35]

[36]

[37]

E. M. Hutchins, M. J. Cloppert, R. M. Amin et al., “Intelligence-driven
computer network defense informed by analysis of adversary campaigns
and intrusion kill chains,” Leading Issues in Information Warfare &
Security Research, vol. 1, no. 1, p. 80, 2011.

Microsoft, “Threat modeling web applications,” URL:
https://docs.microsoft.com/en-us/previous-versions/msp-n-
p/ff648006(v=pandp.10) [accessed: 2021-02-24], 2010.

Wikipedia, “Wikipedia, 2021, URL:
hitps://en.wikipedia.org/wiki/STRIDE security)|accessed :
2021 — 02 — 24], 2021.

Microsoft, “The stride threat model,” URL:

https://docs.microsoft.com/en-us/previous-versions/commerce-
server/ee823878(v=cs.20)?redirectedfrom=MSDN [accessed: 2021-02-
24], 2009.

R. Scandariato, K. Wuyts, and W. Joosen, “A descriptive study of mi-
crosoft’s threat modeling technique,” Requirements Engineering, vol. 20,
no. 2, pp. 163-180, 2015.

R. Khan, K. McLaughlin, D. Laverty, and S. Sezer, “Stride-based threat
modeling for cyber-physical systems,” in 2017 IEEE PES Innovative
Smart Grid Technologies Conference Europe (ISGT-Europe). 1EEE,
2017, pp. 1-6.

Microsoft, “Threat modeling tool,” URL: https://www.microsoft.com/en-
us/securityengineering/sdl/threatmodeling [accessed: 2021-02-24], p. 1,
2021.

J. Geib, D. Couter, J. Martinez, M. Baldwin, and B. Keiss,
“Getting started with the threat modeling tool,” URL:
https://docs.microsoft.com/en-us/azure/security/develop/threat-
modeling-tool-getting-started [accessed: 2021-02-24], 2017.

e “Cwe - common weakness enumeration. cwe
view: Seven pernicious kingdoms. view id: 700, URL:
https://cwe.mitre.org/data/slices/700.html ~ [accessed: — 2021-02-24],
2021.

——, “Cwe top 25 most dangerous sofware weaknesses,”

hitps://cwe.mitre.org/top25/archive/2020/2020 . we¢ op25.html|accessed :
2021 — 02 — 20], 2021.
, “Cwe database. xsd schema documentation. schema version

6.3, https://cwe.mitre.org/data/xsd/cweschemajatest.zsd[accessed :
2021 — 02 — 20], 2020.

——, “Schema documentation - schema version 6.3
https://cwe.mitre.org/documents/schema/ [accessed: 2021-02-20],
2018.

M. Loveless, “Cwe mapping analysis,”

hitps://cwe.mitre.org/documents/mappingqnalysis/index.htmllaccessed :
2021 — 02 — 20], 2008.

