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Abstract

Malware analysis is a task of utmost importance in cyber-security. Two approaches exist for malware analysis: static
and dynamic. Modern malware uses an abundance of techniques to evade both dynamic and static analysis tools.
Current dynamic analysis solutions either make modifications to the running malware or use a higher privilege
component that does the actual analysis. The former can be easily detected by sophisticated malware while the latter
often induces a significant performance overhead. We propose a method that performs malware analysis within the
context of the OS itself. Furthermore, the analysis component is camouflaged by a hypervisor, which makes it
completely transparent to the running OS and its applications. The evaluation of the system’s efficiency suggests that
the induced performance overhead is negligible.

Introduction
Malicious software, or malware, refers to a program that is
intended to cause damage to the host computer. The mal-
ware may attack the computer on which it is executed as
well as the computers to which this computer is connected
(e.g., via a computer network). Many types of malware
exist, including viruses, spyware, adware, rootkits, trojans,
ransomware (Hull et al. 2019), and so on (Vinod et al.
2009).
Two basic approaches exist for malware analysis: The

first involves static analysis techniques, while the sec-
ond involves dynamic analysis techniques (Gandotra et al.
2014; Saeed et al. 2013). A common static analysis tech-
nique is based on signatures and is typically used by virus
scanners. These tools use a database of known poten-
tially malicious instruction sequence patterns. A program
is considered malicious if it matches one or more of these
patterns. However, themalware uses an abundance of eva-
sion techniques to avoid detection by this type of tool.
The common evasion technique is obfuscation, in which
the malware attempts to camouflage itself (O’Kane et al.
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2011). An obfuscation method commonly used by mal-
ware is runtime polymorphism (O’Kane et al. 2011), in
which the malware changes its appearance, in run-time,
to avoid detection. An example of polymorphic malware
is malware that encrypts or packs its malicious code and
only decrypts or unpacks it during execution. The decryp-
tion code itself is obfuscated using code transformation
techniques such as control flow flattening and instruction
substitution (You and Yim 2010). Another obfuscation
method commonly used by malware is metamorphism
(You and Yim 2010; Rad et al. 2012; Basya et al. 2013),
in which the malware recodes itself every time it needs
to propagate. To achieve this, metamorphic malware may
also use code transformation techniques but in a granular-
ity that is typically larger than polymorphic malware (e.g.,
by transforming the entire executable code).
The most prominent problem of the signature-based

tools is the fact that they ignore the semantics of the pro-
gram. To address this issue, a class of semantic-aware
malware detectors was introduced (Christodorescu et
al. 2005; Feng et al. 2014). These tools check potential
malware against an abstract model (Kinder et al. 2005)
to determine whether it has malicious intentions, thus
achieving higher detection rates of polymorphic or meta-
morphic malware. Recently, it was shown that even the
most sophisticated static analysis tools can be evaded by
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malware (Moser et al. 2007). The authors of (Moser et al.
2007) present obfuscation transformations, using special
primitives they refer to as opaque constants, with which
malware can evade even the most sophisticated static
analysis tools.
To overcome the limitations of the static analysis tools,

many systems use a dynamic approach for malware analy-
sis. These systems are often referred to as behavior-based,
since they analyze the run-time behavior of the malware
(Egele et al. 2008). Typically, user-space malware uses OS
services intensively to perform some meaningful work
(e.g., sending a file over the network). Therefore, sys-
tems that use a dynamic approach must intercept these
calls to build a meaningful behavioral profile. The crite-
ria on which these systems are built are: (1) efficiency,
(2) transparency, and (3) quality of the analysis. Efficiency
is important, as the behavioral profile of malware may
need to be extracted at a reasonable time. For example,
some malware intentionally slows themselves down to
increase the detection time significantly. This is especially
true in slow environments, such as in an emulator. Trans-
parency is also important, as sophisticated malware may
attempt to detect sandbox environments. (Yokoyama et al.
2016). The quality of the analysis primarily depends on the
extracted information and on the tool that analyzes this
information.
Current dynamic malware analysis methods can be

divided into four classes: (1) hooking methods, (2) emu-
lation methods, (3) hypervisor-based methods, and (4)
bare-metal based methods. Hooking methods (Willems et
al. 2007; Guarnieri and Fernandes 2010; Yalew et al. 2017)
perform inline overwriting of API code directly in the pro-
cess memory. Therefore, the malware attempts to use any
of the Windows APIs can be monitored. This is typically
done by injecting a special module into the monitored
process address space. Though these methods are very
efficient, they also have several significant deficiencies.
These methods are:

1. detectable — since these methods directly modify the
process memory, malware can simply check the
contents of the desired API function against a known
signature to check whether it was changed. For
example, the structure of the Native API (i.e.,
ntdll.dll ) stubs can be easily determined and have a
similar structure in different Windows versions. Also,
the monitoring module may be detected by asking
the OS for a list of loaded modules (see skippable).

2. modifiable — malware can simply remove or replace
the hooking code by writing directly into the process
memory. If DEP (Data Execution Prevention) is in
use, the malware may call VirtualProtect to get write
permissions (see skippable).

3. skippable — malware can skip Windows API calls by
performing system calls directly. Even though the
system call numbers vary between different version
of Windows, we claim that this is completely feasible,
as it is sufficient to use the NtQueryValueKey system
call to detect the exact Windows version.

Emulation methods, e.g., (Bayer et al. 2005), perform
system call tracing without inducing any modifications to
the emulated environment. However, these methods are
slow and can be exploited due to incomplete emulation
(Dinaburg et al. 2012; Ferrie 2006; Raffetseder et al. 2007;
Vidas and Christin 2014).
Manymodernmalware analysis tools (Zaidenberg 2018)

use hypervisor-based methods. Tools such as (Dinaburg
et al. 2012; Lengyel et al. 2014) provide a malware anal-
ysis system that is both transparent (i.e., perform no
modifications to the running OS) and are more efficient
compared to emulation methods. Both (Dinaburg et al.
2012) and (Lengyel et al. 2014) are built on top of the
XEN hypervisor (Barham et al. 2003) and consequently
run the malware sample inside a guest domain while the
actual analysis takes place in the control domain (dom0).
In both methods, every conducted system-call requires
multiple transitions to the hypervisor. As a consequence,
these methods incur significant overhead and are also vul-
nerable to attacks on the XEN hypervisor (Ding et al.
2012). Moreover, the bare existence of the XEN hypervi-
sor also incurs a non-negligible overhead (Li et al. 2013).
All hypervisor-based methods are vulnerable to VMM
detection attacks (Garfinkel et al. 2007; Branco et al. 2012;
Franklin et al. 2008).
Bare-metal based methods (Kirat et al. 2011; Kirat et al.

2014) provide a bare-metal system for malware monitor-
ing and are therefore not prone to hypervisor detection
attacks. However, extraction of a behavioral profile of mal-
ware from such systems is difficult, because an analysis
component must be installed on the target machine. The
presence of such a component can be detected by sophis-
ticated malware. Therefore, these methods are best suited
for tracking activities that can be externally monitored
(e.g., network and disk activities).
Our method can be classified as a hypervisor-based

method. However, in our method:

1. The system call monitoring component is located
within the guest OS and consequently no
intervention of the hypervisor is required during the
system-call monitoring and analysis. As a result, the
performance overhead is kept to a minimum.

2. Though completely handled in the guest context, the
monitoring component is fully transparent to the
guest OS.
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The code of the hypervisor and the monitoring com-
ponent consists of 8,000 lines of code. This code size
is significantly smaller than that of other hypervisors
(Murray et al. 2008; VMWare 2005). Moreover, our hyper-
visor provides no direct API calls (e.g., through VM-call)
to the guest OS. We believe that the latter points improve
the reliability of our hypervisor.
To enable these claims, our method uses a hypervi-

sor. A hypervisor is a software module that can monitor
and control the execution of an OS. These capabilities
are provided by an extension to the original processor’s
instruction set, called “virtualization extensions,” which
are available on processors designed by Intel (VT-x) (Intel
Corporation 2007), AMD (AMD-V) (AMD 2010), and
ARM (Virtualization Extensions) (ARM Ltd. 2013) and
other architectures.
In the past we have shown how hypervisors can be used

to obtain memory contents (Ben Yehuda et al. 2021) for
forensics analysis and also create honeypots (Zaidenberg
et al. 2020) that encourage malware to expose themselves.
Interception of system calls by a hypervisor may induce

a significant overhead (Li et al. 2013; Dinaburg et al. 2012).
Our method uses a novel approach, in which a moni-
toring component is injected into the guest OS memory.
The monitoring component is responsible for the mal-
ware monitoring and analysis. The hypervisor protects
the monitoring component from modification and detec-
tion using a technique similar to invisible-breakpoints
described in (Deng et al. 2013). Our method is imple-
mented on Intel processors but can be easily ported to
AMD and ARM. The evaluation of our method suggests
that the performance overhead of the system is negligible.
Garfinkel et al. (2007) illustrate hypervisor detection

possibilities using logical, resource, and timing discrep-
ancies. Attacks that are based on these discrepancies are
outside the scope of this paper.
Throughout this paper, we refer to the entity that wants

to monitor the behavior of a given process as themalware
analyst.
Our main contributions can be summarized as follows:
We propose a method that has the advantages of an in-

guest malware analysis tool (e.g., CWSandbox (Willems et
al. 2007)) yet overcomes its disadvantages using hardware
virtualization. Given that the running kernel is trusted
(Zaidenberg et al. 2015)), the guest component can use
various OS functionality to bridge the semantic gap. Due
to the latter, it is also trivial to store the system-call trace
by any means supported by the OS (e.g., USB, Network,
Disk, etc.). In contrast, other solutions might require to
perform full virtualization to these hardware-devices thus
resulting in even greater performance overhead.
Last, in the digital forensics world it is not uncommon

for separate process to collect data (e.g. software such
as LiME for memory analysis (Sylve 2012), rekall (Cohen

2014) Snort sniffer and packer logger (Roesch 1999) etc.
and a separate process to perform the analysis of memory
(e.g. volatility (Case and Richard III 2017) or network data
(White et al. 2013), (Shah and Issac 2018)) Such software
can be based on state machine or machine learning meth-
ods (Kharaz et al. 2016), (Ucci et al. 2019). The software
described in this paper fills the role of the data collector.
This tool can also be used to detect some attacks but it
is recommended that a secondary tool, possibly AI based
will be used to detect anomalies.

VMX
Many modern processors are equipped with a set of
extensions to their basic instruction set architecture
that enables them to execute multiple OSs simultane-
ously. This paper discusses Intel’s implementation of these
extensions, which they call Virtual Machine Extensions
(VMX). The software that governs the execution of these
operating systems is called a hypervisor, and each OS
(with the processes it executes) is called a guest. Tran-
sitions from the hypervisor to the guest are called VM-
entries and transitions from the guest to the hypervisor
are called VM-exits. While VM-entries occur voluntarily
at the instigation of the hypervisor, VM-exits are caused
by some event that occurs during the guest’s execution.
The events may be synchronous, for example, execution
of an INVLPG instruction, or asynchronous, such as a
page-fault or general-protection exception. The event that
causes a VM-exit is recorded for future use by the hyper-
visor. A special data structure called the Virtual Machine
Control Structure (VMCS) allows the hypervisor to spec-
ify the events that should trigger a VM-exit as well asmany
other settings of the guest.
Intel’s Extended Page Table (EPT), a technology gener-

ally called Secondary Level Address Translation (SLAT)
allows the hypervisor to configure the mapping between
the physical address space as it is perceived by a guest
and the real physical address space. Similarly to the vir-
tual page table, EPT allows the hypervisor to specify the
access rights for each guest’s physical page. When a guest
attempts to access a page that is either not mapped or has
inappropriate access rights, an event called EPT-violation
occurs, triggering a VM-exit.

System description
The system described in this paper consists of four com-
ponents: (1) a boot application, (2) a hypervisor, (3) a
monitoring component, and (4) a process behavior ana-
lyzer. The boot application is responsible for initializing
a hypervisor. The boot application is implemented as a
UEFI or MBR application (depending on the firmware).
The hypervisor is responsible for installing the moni-
toring component and protecting it from detection and
modification. The monitoring component, in turn, is
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responsible for system call intercepting and recording. A
special sandbox configuration file determines the system
calls recording format. Finally, the process behavior ana-
lyzer is responsible for analyzing the output of the moni-
toring component.

Preparations
The malware analyst must set up a malware analysis lab,
that is, a lab that allows full control over the malware
potential operation (e.g., network access). Next, the mal-
ware analyst must create a sandbox configuration file and,
finally, install the necessary files on the target machine.
Setting up a malware analysis lab is beyond the scope of
this paper. The other two processes are described in the
following subsections.

Sandbox configuration file
A system call typically receives a list of parameters that
describe the request of the caller. For example,NtOpenFile
receives six arguments, of which four are input arguments
that describe the properties of the file to be opened (e.g.,
its path, desired access, etc.). The length of the argu-
ment list is limited. This limit is different for each OS.
For example, in Windows 7 x86, the maximum number of
arguments a system call may receive is 17. A trivial sys-
tem call analyzer may use this fact to simply copy the first
17 arguments of each system call. A special analyzer may
later be used to filter the unnecessary arguments of each

system call. However, this method of system call analysis
is ineffective as a system call parameter may potentially
point to a hierarchy of meaningful information. For exam-
ple, the third parameter of NtOpenFile is a pointer to
a POBJECT_ATTRIBUTES structure, which, in turn, has
a field that points to a PUNICODE_STRING structure,
which, in turn, has a field that points to a buffer that con-
tains the actual path of the file to be opened; see Fig. 1.
To describe more complex relations, the malware analyst
must create a formatted configuration file that describes
these relations.
The sandbox configuration file allows the description of

the complex relations between parameters and supports
unlimited depth. It supports four-parameter types: (1)
primitive, (2) pointer, (3) structure, and (4) buffer (pointer
and length). To ease the analysis process, the sandbox
configuration file supports the naming of structure fields
and system call parameters (see “Evaluation” section). For
simplicity, the sandbox configuration file must be created
manually by the malware analyst. The creation process
can be almost fully automated; this is described in “Lim-
itations and future work” section. Figure 2 presents a
simple sandbox configuration file (valid for Windows 7
x86) containing a single system call entry. Line 1 provides
information regarding the specific system call. Specifi-
cally, its number and the number of relevant parame-
ters. Lines 2, 3, 8, and 9 provide information regarding
these parameters. Each parameter line is composed of

Fig. 1 NtOpenFile third parameter information hierarchy in a x86 Windows system. The ObjectAttributes parameter points to an OBJECT_ATTRIBUTES
structure. A field named ObjectName is located at an offset of 8 bytes in the OBJECT_ATTRIBUTES structure. This field points to a UNICODE_STRING
structure. A field named Buffer is located at an offset of 4 bytes in the UNICODE_STRING structure. This field points to the unicode string
“C:\Windows\Notepad.exe”
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Fig. 2 Sandbox configuration file example for Windows 7 x86

the parameter index (0 for the first parameter, 1 for
the second, and so on), its type, and type-specific data.
For example, line 2 describes the second parameter of
NtOpenFile, DesiredAccess. The parameter is a primitive
type, with a size of 4 bytes. Lines 4 and 6 describe a pointee
of a structure type. Each structure type is composed of
one or more fields. For example, line 4 describes a struc-
ture of type OBJECT_ATTRIBUTES, which is pointed by
the third parameter (ObjectAttributes). The structure is
composed of a single pointer field at an offset of 8 bytes.
This field points to another structure field of type UNI-
CODE_STRING, which is composed of a single field. This
field is located at an offset of 4 bytes and is of the buffer
type. Text that appears after a semicolon on each line
describes the field or parameter name and type. This text
is ignored by the parser and is only used by the process
behavior analyzer.

Target installation
The boot application is implemented as a UEFI or MBR
application (depending on the firmware).
In UEFI, after a successful startup, the UEFI boot

manager loads a sequence of executable images, called
UEFI applications. The UEFI firmware stores the loca-
tion in which these images reside in non-volatile storage.
The boot-sequence can be configured using the firmware
setup screen. The UEFI boot manager loads an executable
image into the main memory, undertakes the necessary
fixups, and executes its main routine. In case the entry
routine returns, the UEFI boot manager proceeds to the
next executable image if there is one. The UEFI applica-
tion’s entry routine may also not return. A typical example
of the latter is an OS loader implemented as a UEFI
application.
In MBR, the firmware attempts to locate a bootable

device according to the defined boot order, which is typ-
ically stored on a CMOS chip. A bootable device is iden-
tified by a special sector at its very beginning. This sector
is referred to as the Master Boot Record (MBR). The
MBR contains up to four partitions, of which one must be

marked as active (typically, the OS bootloader). Once an
active partition is found, the BIOS loads its first sector to
a pre-defined location and begins to execute it.
The system described in this paper can be implemented

either as a UEFI or as an MBR application. For example,
one may choose an MBR application due to a lack of sup-
port from the OS (e.g., Windows 7 x86 does not support
UEFI boot). A malware analyst interested in installing the
system must install the boot application and the configu-
ration file into a location accessible by the firmware. For
example, in UEFI, this location lies in the ESP partition on
which the application resides.

Operation
The boot application, during the boot phase, obtains the
configuration file from the disk, initializes a hypervisor,
and returns to the original OS bootloader. The hypervisor
remains in the main memory and continues its opera-
tion even after the application terminates. The hypervisor
maps a monitoring component into the address space of
the guest OS, and the latter intercepts all system calls and
records only those that belong to the monitored process.
The hypervisor then protects the monitoring component
from detection and modification. The remainder of this
section provides a detailed explanation of the initialization
and operation of the system.

HV initialization
The boot application starts by allocating a persistent
memory block. In UEFI, this is done by the allocation
functions it provides. In BIOS, this is done by modifying
the BIOSmemory map; simply put, the application finds a
memory region that is large enough to hold the hypervisor
and subtracts the size of the hypervisor from the region’s
length. During the hypervisor initialization, the EPT and
the IOMMU are set up. The hypervisor sets the EPT and
the IOMMU mappings via the following steps:

1. The hypervisor sets an identity mapping between the
real and the guest physical address spaces. The latter
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is done by configuring the EPT such that the guest
physical page X translates to host physical page X.
Fortunately, setting up identity mapping between the
real physical address space and the I/O peripherals
physical address space is trivial, as the page-table
hierarchy used by the EPT can also be used by the
IOMMU.

2. The hypervisor sets the access rights of its code and
data to read-only. This step ensures that malicious
code, even if it executes in kernel mode, cannot
modify the hypervisor’s code and data. Figure 2
depicts the physical address space as it is perceived by
the guest and I/O peripherals after HV initialization.

Monitoring component initialization
Efficient interception of all system-calls by a hypervisor is
not a simple task. In x86 and x86-64, a special Model Spe-
cific Register (MSR) is used to indicate the virtual address
of the system call handler; these MSRs are referred to
as SYSENTER_EIP and LSTAR, respectively. To intercept
system calls, a hypervisor could intercept each instance of
access to these MSRs. However, this method is inefficient
as it implies a VM-exit and a VM-entry on each system
call.
The performance of system call interception can be

improved by performing the interception in the context
of the guest OS. Obviously, for the sake of isolation, the
address space of the hypervisor is separated from that of
the guest OS. For an efficient system call interception, the
hypervisor must map the monitoring component into the
address space of the guest OS.
The monitoring component does not depend on exter-

nal libraries. Nevertheless, it can use functions provided
by the kernel itself (for example, the Zw family in Win-
dows).
A possible approach for mapping the monitoring com-

ponent into the address space of the guest OS is by directly
modifying the OS page tables (specifically, the upper ker-
nel part). However, this method is intrusive and may
cause system instabilities (for example, in Windows 10,
we observed that the Memory Management Unit of Win-
dows generates a BSOD on such attempts). An alternative
method is to virtualize the page-tables of the guest OS (a
technique known as shadow-page-tables). However, this
method is both complex and much less efficient.
Because of these deficiencies, we decided to map the

monitoring component into the address space of the guest
OS as follows. The hypervisor waits for theOS kernel to be
successfully loaded. During its initialization, the OS kernel
writes to the system call handler register. The hypervisor
uses this event as an indication of the OS load and config-
ures the guest such that writes to the system call handler
register cause a VM-exit. When such an attempt occurs,
the hypervisor looks for the kernel image within the guest

memory and uses its export table to find the address of
ExAllocatePool. Figure 3 depicts the guest memory layout
upon a VM-exit caused by writing to the system call han-
dler register. Then, the hypervisor configures the guest to
cause a VM-exit upon a breakpoint exception. Next, the
hypervisor replaces the first byte of the ExAllocatePool
function with a breakpoint instruction (INT3 in x86) and
configures the guest such that a VM-exit is triggered upon
a breakpoint exception. Algorithm 1 depicts the actions
of the hypervisor upon the next call to ExAllocatePool.
Simply put, the hypervisor replaces the original call argu-
ments with its own arguments (e.g., the amount of mem-
ory required for the monitoring component) and saves
the original arguments. Upon completion, the hypervisor
restores the original arguments and continues the execu-
tion of the guest. Finally, when the allocation is complete,
the hypervisor forfeits control over the system call handler
register.
Finally, the hypervisor hooks the original system call

handler such that it calls the monitoring component
(which is now mapped into the address space of the guest
OS). The hypervisor protects the monitoring component
from both modification and detection, as described in
“Security and transparency” section.

Fig. 3Windows memory layout after performing a write to
SYSENTER_EIP MSR. The wrmsr instruction is intercepted by the
hypervisor. Upon interception, the hypervisor looks for the
kernel-image base by moving backward at a page granularity until
the PE magic number (0x4d5a90) is encountered. Finally, the
hypervisor looks for the ExAllocatePool address within the export table
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Algorithm 1 Hypervisor Breakpoint Handler
1: procedure HANDLEBREAKPOINT()
2: if IP is in ExAllocatePool entry then
3: Save return address
4: Save original args
5: Modify original args
6: Restore original entry byte
7: Save original return byte
8: Set return byte to 0xCC
9: else if IP is in return address then

10: CopyGuestApplicationToMemory()
11: Restore original args
12: Restore original exit byte
13: Set ip to entry of ExAllocatePool

Monitoring component operation
Themonitoring component intercepts all system calls and
records only those belonging to the monitored process.
Initially, the monitoring component sets up a sandbox by
parsing the configuration file. A system call conducted by
a monitored process is analyzed and then recorded. The
recorded data is written into an internal memory buffer
and then written to an external source every time the
buffer gets full so it can be reused. The external source can
be a remote server, a local file, or a large, previously allo-
cated memory buffer. For simplicity, we chose the option
of a local file. At the end of each interception, our handler
jumps to the original OS handler. Algorithm 2 depicts the
monitoring component system call handler. The data for
analysis is fetched from the arguments according to the
configuration file, provided by the malware analyst, and
is sequentially written into a buffer of fixed length. If a
configuration is not provided for a system call, the maxi-
mum possible number of arguments (e.g., 17 in Windows
7 x86) is fetched. When the buffer becomes full, the data
is written to an external source so it can be reused.

Algorithm 2 Monitoring Component — System Call
Handler
1: procedure HANDLESYSTEMCALL(scNo)
2: args ← GetArgs()
3: cp ← GetCurrentProcess()
4: mp ← GetMonitoredProcess()
5: if NotActive(mp) and not Exit(scNo) then
6: if IsMonitoredProcess(cp) then
7: MonitorProcessInit(mp)
8: else if Active(mp) and Exit(scNo) then
9: MonitoredProcessDumpAndFree(mp)

10: if Active(mp) and IsMonitored(cp) then
11: MonitoredProcessAnalyze(mp, scNo, args)
12: JumpToOriginalHandler()

Security and transparency
Our method can be classified as a hypervisor-based
method. However, in our method:

1. The system call monitoring component is located
within the guest OS and consequently, no
intervention of the hypervisor is required during the
system-call monitoring and analysis. As a result, the
performance overhead is kept to a minimum.

2. Though completely handled in the guest context, the
monitoring component is fully transparent to the
guest OS.

The code of the hypervisor and the monitoring com-
ponent consists of 8,000 lines of code. This code size
is significantly smaller than that of other hypervisors
(Murray et al. 2008; VMWare 2005). Moreover, our hyper-
visor provides no direct API calls (e.g., through VM-call)
to the guest OS. We believe that the latter points improve
the reliability of our hypervisor.
Garfinkel et al. (2007) illustrate VMM detection possi-

bilities using logical, resource, and timing discrepancies.
Attacks that are based on these discrepancies are outside
the scope of this paper.
The hypervisor protects itself and the monitoring com-

ponent from subversion. In addition, the hypervisor must
assure that the monitoring component remains unde-
tected. These processes are described in the following
subsections.

HVmemory protection
Secondary Level Address Translation (SLAT) is a mech-
anism implemented as part of hardware-assisted virtual-
ization technology to reduce the overhead of managing
the hypervisor’s guest page-tables. Second Level Address
Translation is supported by Intel (EPT), AMD (RVI),
and ARM (Stage-2 page-tables). Simply put, SLAT allows
the hypervisor to control the mapping of physical-page
addresses as they are perceived by the guest (known as
guest-physical-address) to real physical-pages addresses
(known as host-physical-address). An analogy to SLAT
usage in a virtualized environment (i.e., controlled by a
hypervisor) is virtual page-table usage in a process con-
text in a non- virtualized environment (i.e., controlled by
an OS). Figure 3 depicts the guest’s address translation
process.
The Input-Output Memory Management Unit

(IOMMU) is a memory management unit that stands
between DMA-capable peripherals and the main mem-
ory. In this sense, it functions as a virtual page-table
for devices. DMA is a hardware mechanism that allows
peripherals to access the main memory directly without
going through the processor. The IOMMU allows the OS
or hypervisor to set paging structures for the peripherals:
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that is, the peripherals will access a virtual address (also
known as I/O address) that will be translated by the
IOMMU. To protect itself against malicious modifica-
tions, the hypervisor configures both the EPT and the
IOMMU in such a way that all of its sensitive memory and
regions are not mapped and are therefore not accessible
from either the guest or from a hardware device.
The hypervisor also needs to protect the monitoring

component from modifications. The physical pages in
which it is stored cannot be unmapped, as they need to
be accessible from the guest OS. Therefore, the hypervi-
sor simply configures the EPT and the IOMMU such that
the memory on which the monitoring component resides
has only read and execute permissions (Figs. 4 and 5).

Monitoring component transparency
As described in “HV memory protection” section, the
SLAT (EPT) mechanism allows the hypervisor to also
configure the access rights of the guest’s physical memory.
Using EPT, the hypervisor can make code modifications
that are done to the OS and its applications completely
transparent to the guest.
The page on which the OS system call handler resides

has been modified by the hypervisor (it contains a hook
to the monitoring component). The hypervisor config-
ures that page to have only execute permissions. A guest
read or write attempt results in an EPT violation which

Fig. 4 Physical memory layout after full initialization of the monitoring
component. The original OS handler (OSSyscallHandler) jumps to our
handler (OurHandler) during its prologue. Our handler handles the
system call and jumps back to the origin OS handler (HandleContinue)

Fig. 5 Physical address space as perceived by the guest and I/O
peripherals (right). Physical page A contains code/data of the
hypervisor and therefore read-only rights. Physical page B contains
code/data of the guest’s OS and therefore has full rights (RWX).
Physical page C contains code/data of the monitoring component
and therefore has read-only rights

in turn triggers a VM-exit. In case of a write attempt, the
hypervisor emulates the write instruction as if it had been
done on the original page (initially, the original page is
copied) and resumes the execution of the guest. In case of
a read attempt, the hypervisor gives the guest the illusion
that it reads from the original page. Figure 6 depicts this
process. This technique is similar to a technique known
as invisible-breakpoints and is described in (Deng et al.
2013).

Evaluation
This section consists of three parts. First, we discuss the
overall performance impact of our system. Specifically, we
determine how the overall performance is affected by (1)
the hypervisor, (2) the monitoring component, and (3) the
analysis of a process. Next, we discuss the fourth compo-
nent of our system, the process behavior analyzer. Finally,
we demonstrate how the process behavior analyzer can
be used to analyze malware. All the experiments were
performed in the following environment:

- CPU: Intel i7-7500 CPU @ 2.70GHz
- RAM: 16GB
- OS: Windows 7 SP1 x86

Empirical evaluation
In this experiment, we tested the system in three scenar-
ios:
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Fig. 6 Hypervisor memory modifications transparency. First, the guest attempts to read from the modified page. Because this page is configured to
have only execute permissions, and an EPT violation occurs. Next, the hypervisor emulates the read instruction as if it had been done on the original
memory page. Finally, the hypervisor resumes the execution of the guest

• without a hypervisor
• with a hypervisor and disabled monitoring

component
• with a hypervisor and enabled monitoring

component

We chose three benchmarking tools for Windows:

(a) PCMark 10 – Basic Edition
(b) PassMark Performance Test 9.0
(c) Novabench 4.0.3

Each tool performs several tests and displays a score for
each.
As can be seen in the results reported in Fig. 7, the

hypervisor degrades the performance by nomore than 5%,
and themonitoring component degrades the performance
by, at most, an additional 1%.
We also checked the performance overhead of a mon-

itored process. We selected an application that performs
heavy usage of system services, the PassMark benchmark
tool (the one described in the previous paragraph). We
used a buffer size of 122k bytes and a regular file on the
disk as the external source. The final dump file was 44MB
in length. We did not observe any noticeable difference in
performance.

Process behavior analyzer
The process behavior analyzer receives two parameters as
input: (1) a sandbox configuration file, and (2) a dump
file containing the recorded system calls. The process
behavior analyzer reads the dump file and performs the
following steps for each system call:

1. If the current system call has a configuration entry,
the next data are fetched from the dump file
according to the described configuration.

2. If the current system call has no configuration entry,
the maximum possible number of arguments are
fetched from the dump file. For a better analysis
experience, the process behavior analyzer filters the
unnecessary arguments (e.g., if NtOpenFile receives
6 arguments, the last 11 arguments are dropped).

The process behavior analyzer provides two JSON for-
matted files: (1) per-system call JSON file and (2) sequen-
tial system call JSON file.
The per-system call JSON file provides a list that con-

tains only the system calls that have configuration entry in
the sandbox configuration file. Each of the entries in the
list contains a list of all occurrences of the specific system
call, ordered chronologically. Each item in the list con-
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Fig. 7 Overhead of the benchmark execution under two conditions:
(a) with HV only, and (b) with HV and enabled monitoring component

tains the information regarding the specific system call as
described in the configuration file.
The sequential system call JSON file provides a list of

all the conducted system calls (also for those that have no
entry in the sandbox configuration file). The provided list
is ordered chronologically. Each item in the list contains
the parameters of the system call.

Malware analysis experiment
In this experiment, we selected a sophisticated malware
(W32.HfAdaware.4140) from das malwerk Das Malwerk.
Then, we set up a malware analysis lab and monitored
it using our system. Finally, we analyzed the results with
the process behavior analyzer. As described, the process
behavior analyzer generates two output files. Figure 8
depicts the per-system call JSON report. Specifically, the
NtCreateUserProcess system call is collapsed. As can be
seen, the process behavior analyzer shows detailed infor-
mation regarding the system call that has been conducted.
For example, it shows the process’ creation flags, image
pathname, process arguments, and so on. As can be
understood, the malware attempts to create a process
from a temporary executable file (which it previously cre-
ated) with a list of arguments (some of which are Base64
encoded). Figure 9 depicts the sequential JSON report.
Specifically, three system calls are shown. The first sys-
tem call is NtCreateFile, in which the malware attempts
to create a temporary file named dicabfcedb.zip. After the
NtCreateFile are two NtWriteFile system calls on which
the malware attempts to write data to the created file. As

Fig. 8W32.HfsAdware.4140 results demonstration - per-system call JSON. An unknown process is created (dicabfcedb.exe). The process is given few
parameters. Some of which seem to be Base64 encoded
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Fig. 9W32.HfsAdware.4140 results demonstration - sequential JSON. System call #8447 creates a ZIP file. The following system calls perform the
actual write to the file. System call #8449, writes, among others, the ZIP signature bytes (0x504b0304)

can be understood, the written data seems to be in the ZIP
format.

Related work
The approaches for malware analysis can be divided into
two broad categories: static and dynamic. Static meth-
ods form the foundation for popular antiviruses, which
attempt to detect a particular pattern in the analyzed pro-
gram’s instructions. Due to the widely deployed evasion
techniques, the dynamic analysis methods to which our
approach belongs seem to be more robust against modern
malware.
A recent survey on dynamic malware analysis

(Or-Meir and et al. 2019) presents multiple classifications
and comparisons between the current analysis tech-
niques. In particular, Or-Meir et al. select the following
foundations of dynamic analysis systems: (a) bare metal,

(b) virtual machine, (c) hypervisor, (d) emulation, (e)
volatile memory acquisition. The bare metal approach is
too time-consuming to be used in large-scale scenarios.
Volatile memory acquisition-based systems perform
periodic snapshots, potentially missing malicious activity
initiated and completed between subsequent snapshots.
Approaches (b)-(d) are more closely related to the cur-

rent work. All these approaches share a common char-
acteristic: they execute the malware in a simulated envi-
ronment. The malware analyzer can reside either inside
or outside the simulated environment. Analyzers that
share the execution environment with the malware, like
(Willems et al. 2007; Oh et al. 2010; Mohaisen et al. 2015;
Bayer and et al. 2006), have direct access to the operating
system services, thus enabling a more meaningful analy-
sis. Unfortunately, such analyzers can be easily detected
by the malware. External analyzers are less susceptible
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to detection. Our approach has a component that exe-
cutes inside the simulated environment. However, unlike
previous solutions, our hypervisor hides the internal com-
ponent from the potential malware, making it comparable
with systems that use external analyzers while preserv-
ing the system’s efficiency and access to operating system
services.
The emulation-based methods construct the simulated

environment in software without any assistance from the
hardware. Unfortunately, perfect emulation is hard to
achieve due to the complexity of the underlying hardware.
Therefore, emulation-based methods, such as Anubis
(Mandl et al. 2009) and Bitblaze (Song and et al. 2008),
can be detected bymalware, as was described by Lindorfer
et al. (2011). Our approach employs hardware-assisted
virtualization, thus making it resistant to such detection
methods.
Virtualization solutions use two types of hypervisors:

type I (Dinaburg et al. 2012; Lin et al. 2018), referred to
as hypervisor-based solutions, and type II (Mohaisen et
al. 2015; Cohen and Nissim 2018), referred to as virtual
machine-based solutions. Type I hypervisors can oper-
ate directly over the hardware, whereas type II hyper-
visors require an operating system to mediate between
the hardware and the hypervisor itself. Both cases use
a full hypervisor, which runs at least one operating sys-
tem acting as the malware’s execution environment. Full
hypervisors provide the virtual machines with emulated
devices, communication channels, and other artifacts that
evasive malware can detect (Afianian and et al. 2019).
Our approach uses a thin hypervisor that provides its sin-
gle virtual machine and its operating system with direct
access to the hardware resources.
To the best of our knowledge, the only solution that

uses a thin hypervisor is MAVMM (Nguyen et al. 2009).
MAVMM does not use internal components to improve
its undetectability, thus requiring MAVMM to rely on
simple and slow output devices, like the serial port. Unlike
MAVMM, our approach uses an internal component
whose presence is hidden by the hypervisor. The internal
component can utilize the operating system functional-
ity to output the collected data to any external device.
Besides, in our approach, the internal component inter-
cepts the monitored events without requiring transitions
to the hypervisor, thus improving the overall performance.
Timing-based evasion attacks on malware analyzers are

challenging to circumvent. We note that using a thin
hypervisor, as in our approach, keeps the time discrepan-
cies at a minimum. Hypervisor detection and prevention
(Algawi et al. 2019) is an arms race that is out of the cur-
rent paper’s scope. However, recently a method was pro-
posed (Lin et al. 2018) to emulate local and remote time
sources to manipulate malware’s time perception. Our
system can adopt this method to improve its transparency.

Limitations and future work
Kernel integrity
Our method uses a monitoring component that runs in
the context of the guest’s OS. We have seen that the
recorded data is stored in a local buffer, which must be
written to an external source once it becomes full. As
the monitoring component is a kernel application, one
may want to use existing implemented functionality (e.g.,
ZwWriteFile) to write the buffer to a local file. However,
the threat model often assumes that the kernel code is not
to be trusted. Our method can be extended with a kernel
integrity verification method (Leon et al. 2018). Because
the performance impact of the method described in (Leon
et al. 2018) is negligible, we believe the combination with
our method will not yield a significant performance loss.

Sandbox configuration automation
“Sandbox configuration file” section describes the sand-
box configuration file. As of now, the malware analyst
must manually fill in the system call numbers, parameters
indexes, field offsets, and so on. Moreover, information
such as the system call number may differ between each
OS. This process can be almost fully automated. In Win-
dows, a Program Database (PDB) file stores debugging-
information regarding an executable file. A malware ana-
lyst could obtain the PDB of the kernel image of the system
on which the monitored process will run (the PDB can
be downloaded directly from Microsoft servers). A PDB
parser tool could then extract the required information
regarding each system call.

Detection
Modern malware try to detect the environment it runs
on (Lindorfer et al. 2011). The malware detects sand-
boxes and hypervisors. On ARM there has been work on
defeating hypervisor based malware detection (Petsas et
al. 2014). We believe that it is possible to construct hyper-
visor that cannot be detected (Algawi et al. 2019) on x86
and x64 supporting our approach.

Conclusions
We present here a hypervisor-based system for dynamic
malware analysis. Compared to current hypervisor-based
systems, our system uses a novel approach in which a spe-
cially crafted monitoring component is injected into the
address space of the guest OS. The hypervisor protects
the monitoring component from detection and modifica-
tion. We have shown that because the entire handling is
done within the guest context, the performance overhead
is negligible. In addition, we have seen that the hyper-
visor assures that the monitoring component remains
completely transparent to the guest OS. The main limita-
tion of our method is the transparency of our hypervisor.
However, we believe that because the intervention of the
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hypervisor is kept to a minimum, our method can be
extended to also provide hypervisor transparency.
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