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Abstract
In ecological community studies it is often of interest to study the effect of
species related trait variables on abundances or presence-absences. Specifically,
the interest may lay in the interactions between environmental and trait vari-
ables. An increasingly popular approach for studying such interactions is to use
the so-called fourth-corner model, which explicitly posits a regression model
where the mean response of each species is a function of interactions between
covariate and trait predictors (among other terms). On the other hand, many
of the fourth-corner models currently applied in the literature are too simplis-
tic to properly account for variation in environmental and trait response and
any residual covariation between species. To overcome this problem, we propose
a fourth-corner latent variable model which combines the following three fea-
tures: latent variables to capture the correlation between species, fourth-corner
terms to account for environment-trait interactions, and species-specific random
slopes for modeling excess heterogeneity between species in their environmen-
tal response. We perform an extensive numerical study comparing a variety of
fourth-corner models available in the literature which account for the aforemen-
tioned sources of variation to varying degrees. Simulation results demonstrate
that the proposed fourth-corner latent variable models performed well when
testing for the fourth-corner (interaction) coefficients, across both Type I error
and power. By comparison, some models that do not full account for all relevant
sources of variation suffer from inflated Type I error leading to potentially mis-
leading inference. The proposed method is illustrated by an example on ground
beetle data.

K E Y W O R D S

community analysis, fourth-corner problem, generalized linear mixed model, joint species
distribution model, multivariate abundance data, variational approximation

1 INTRODUCTION

One of the main aims of statistical analyses in community ecology is to understand how species differ in their responses
to the environment, and why. Specifically, if trait information on each species is measured, it is possible to study how

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the
original work is properly cited.
© 2021 The Authors. Environmetrics published by John Wiley & Sons Ltd.

Environmetrics. 2021;e2683. wileyonlinelibrary.com/journal/env 1 of 17
https://doi.org/10.1002/env.2683

https://orcid.org/0000-0002-7992-2598
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fenv.2683&domain=pdf&date_stamp=2021-05-25


2 of 17 NIKU et al.

these traits mediate the effect of environmental conditions on species responses. In ecology, this problem of studying
associations between environmental and trait variables using species abundance data is often known as the fourth-corner
problem (Legendre, Galzin, & Harmelin-Vivien, 1997). Specifically, given three matrices defining the environmental data
(R), species abundances (L), and species traits (Q), we can use these to infer how the environmental variables and species
traits are jointly related to species abundance. Most classical approaches to solving the fourth-corner problem use a gen-
eralized singular value decomposition applied to an environment-trait association matrix constructed using R, L, and
Q, thus leading to a pair of ordinations for making interpretations of the associations (Dolédec, Chessel, ter Braak, &
Champely, 1996). Legendre et al. (1997) further introduced a hypothesis testing approach based on permutation testing
to assess which associations between environmental and trait variables are significant. Classical methods were further
developed in Dray and Legendre (2008), ter Braak, Cormont, and Dray (2012), and Dray et al. (2014). The strength of the
interaction in these approaches is quantified by the fourth-corner correlation, the square of which is a score test statis-
tic for trait-environment interaction in a Poisson log-linear model (ter Braak, 2017). One such classical method which
has recently gained particular attention is double constrained correspondence analysis (Peng, ter Braak, Rico, & Van den
Brink, 2021; ter Braak, Šmilauer, & Dray, 2018).

In the past decade, several model-based approaches have arisen in the literature for solving the fourth-corner problem,
with a notable advantage being that with standardized environmental and trait variables, they also give a concrete measure
of the effect size through the interpretation of relevant coefficients in the mean model. We now give an overview of these.
Denote the abundances (counts, presence-absences, biomass) of m responses (species) recorded at n samples (sites) by
yij, i= 1, … , n, j= 1, … , m. For each site i, a vector of k environmental variables, ei = (ei1, … , eik)′, and for each species
j, a vector of q trait variables tj = (tj1, … , tjq)′ are also measured. The more general form of the fourth-corner model for
the mean responses, 𝜇ij, can then be formulated as

g(𝜇ij) = ri + 𝛽0j + e′i(𝜷e + bj) + vec(Bet)′(tj ⊗ ei), (1)

where g(⋅) is a known link function, 𝛽0j are species-specific intercepts, the k-vector 𝜷e includes main effects for envi-
ronmental covariates, and the k× q matrix Bet consists of environmental-trait interaction terms (also known as the
fourth-corner coefficients). In addition, the quantity ri denotes random site effects which we include as means of row stan-
dardization to account for differences in species total abundance across sites. Jamil, Ozinga, Kleyer, and ter Braak (2013)
and Jamil and ter Braak (2013) noted that the random site effects ri can also accommodate quadratic response to the
environment. The k-vector bj denotes species-specific random effects for environmental variables. The precise models
considered so far in the literature differ in the way the random effects are included in model (1). For instance, in the gener-
alized linear model (GLM) approach by Brown et al. (2014), random site effects ri and random slopes bj were ignored, and
Warton, Shipley, and Hastie (2015) proposed inference on Bet based on bootstrapping the set of n vector residuals across
the sites. Warton, Shipley, and Hastie (2015) also showed that the method proposed in Brown et al. (2014) is a general-
ization of a maximum entropy approach (community assembly via trait selection, CATS) proposed by Shipley, Vile, and
Garnier (2006). Easier interpretation, model selection and inference methods for CATS-regression are thus readily avail-
able. Pollock, Morris, and Vesk (2012) proposed a generalized linear mixed modeling (GLMM) approach for solving the
fourth-corner problem by including species specific random intercepts, 𝛽0j, and random slopes for environmental vari-
ables ei in the model. The model was later extended by Jamil and ter Braak (2013) with the inclusion of the random site
effects ri. Most recently, ter Braak (2019) proposed to further include a site-dependent random slope for trait variables tj.

A potentially major drawback with many of the model-based approaches listed above is that they do not model any
potential residual correlation between the responses. Such residual covariation could arise from a variety of sources,
including but not limited to similarity in response to shared but unobserved predictors, and biotic interactions between
species. More importantly, if not accounted for, this can lead to potentially invalid inference on a variety of aspects in the
model (Warton et al., 2015). As mentioned above, Warton, Shipley, and Hastie (2015) attempted to circumvent this issue
by resampling sites. Pollock et al. (2012) and Jamil and ter Braak (2013) took into account the randomness at the indi-
vidual species level. However, modeling residual correlation across species by a single random site intercept is often too
simplistic in practice (Warton, Foster, Deáth, Stoklosa, & Dunstan, 2015). In the context of testing environmental-trait
interactions, the problem of ignoring residual interspecific variation to the environment (not explained by traits) was
studied by ter Braak, Peres-Neto, and Dray (2017) in detail. Specifically, ter Braak et al. (2017) compared four different
resampling strategies in the GLM framework and noted that resampling (bootstrapping or permuting) either sites or
species tended to yield Type I error rates that were too large when testing for the fourth-corner coefficients. The pmax
permutation test (ter Braak et al., 2012), where two separate resampling tests (site-level and species-level) are performed
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and the significance is assessed by the largest of the two p-values, was shown to perform best when the data were gener-
ated according to a simple GLMM model. However, the pmax test also produced inflated Type I errors when simulating
from models where observed trait and environmental variables interact with latent trait and environmental variables.

An alternative approach to resampling-based procedures for testing the environmental-trait interactions is to try to
construct a model that explicitly takes into account all the relevant sources of variation, including between species cor-
relation and interspecific variation, through the inclusion of one or more random effects (or variations thereof.) In doing
so, we can then employ, say, likelihood-based methods for estimation and inference. Recently, ter Braak (2019) used
such as approach by introducing a GLMM based fourth-corner multilevel model (we refer to it by GLMM3), which
differs from equation 1 primarily by adding site-specific random slopes for trait variables, t′jui where the ui are inde-
pendent multivariate normal random effects with variance-covariance matrix 𝚺u. ter Braak (2019) compared different
model-based testing approaches (likelihood-ratio test, parametric bootstrap test and permutation-based pmax test) for test-
ing the fourth-corner interaction term, and the likelihood ratio tests based on the GLMM3 model was shown to outperform
other GLM and GLMM based tests for interaction. However, a potential issue with this approach is that it assumes that
all between-species correlation can be captured by the measured traits. Specifically, adding t′jui to the linear predictor
is equivalent to introducing a multivariate normal random intercept 𝜖ij with variance-covariance matrix proportional to
T𝚺uT′, where T is a matrix whose jth row is tj. The question is whether such a term is sufficient to capture between
species correlation.

We consider here another potential model, namely, a generalized linear latent variable model (GLLVM), that explic-
itly accounts for between species correlations using a factor analytical approach. The past 5 years has seen an explosion in
the use of latent variable models for community level modeling; see Warton, Blanchet, et al. (2015), Warton et al. (2016),
Ovaskainen et al. (2017), Bjork, Hui, O’Hara, and Montoya (2018) Niku, Warton, Hui, and Taskinen (2017), among many
others. The fourth-corner latent variable model, which we consider in this article, builds on the models proposed pre-
viously in Jamil and ter Braak (2013) and Warton, Blanchet, et al. (2015), while also extending the fourth-corner GLM
of Brown et al. (2014) by including site-specific random row intercepts to account for the variation between sites, and
species-specific random slopes for environmental variables for capturing the interspecific variation in responses not
explained by the traits. In addition, latent variables with corresponding loadings are included to capture any residual
correlation between species which is not explained by observed environmental and trait variables. While similar mod-
els have also been developed in the Bayesian context by Hui (2016) and Tikhonov, Opedal, Abrego, Lehikoinen, and
Ovaskainen (2019), the performances of such models for assessing environment-trait interactions (in terms of produc-
ing valid inference) have not been studied before, let alone compared with existing procedures (including those reviewed
above) in the literature.

To fit such models, we extend a fast and efficient maximum likelihood-based estimation algorithm, presented in
(Niku et al., 2019; Niku, Hui, Taskinen, & Warton, 2019), for the fourth-corner latent variable model, and apply it to the
environment-trait interaction testing problem. Specifically, when testing the fourth-corner coefficients, we employ a sim-
ple likelihood ratio testing approach. Importantly, this is made possible by including the necessary terms in the mean
structure to ensure that all relevant sources of heterogeneity and residual correlation are accounted for. The performance
of the proposed interaction test is compared with tests based on GLMMs (Jamil & ter Braak, 2013; Pollock et al., 2012; ter
Braak, 2019; ter Braak et al., 2017), as well as with the pmax permutation test (ter Braak et al., 2012) through simulation
studies, as we investigate both Type I error rates under the null hypothesis and powers of the various tests under several
scenarios.

The article is organized as follows. In Section 2, we define our fourth-corner latent variable model and discuss the
associated estimation and inferential procedures based on fast variational approximations (Hui, Warton, Ormerod, Haa-
paniemi, & Taskinen, 2017; Niku, Brooks, et al., 2019). In Section 3, we perform simulation studies for comparing Type I
errors and powers of different tests for the interaction term. Finally, in Section 4 we illustrate our method by applying it
to ground beetle data (Ribera, Dolédec, Downie, & Foster, 2001).

2 MODEL DEFINITION AND ESTIMATION

Using the notation previously introduced, we propose a fourth-corner latent variable model with random site effects
(intercepts) and random slopes, as defined by the following mean regression model,

g(𝜇ij) = 𝜂ij = ri + 𝛽0j + e′i(𝜷e + bj) + vec(Bte)′(tj ⊗ ei) + u′
i𝜸j, (2)
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or equivalently formulated in a hierarchical fashion,

g(𝜇ij) = 𝜂ij = ri + 𝛽0j + e′i𝜷 j + u′
i𝜸j, where (ri,u′

i)
′ ∼ Nd+1(0,𝚺u)

𝜷 j = 𝜷e + Btetj + bj, where bj ∼ Nk(0,𝚺b). (3)

As in model (1), we let 𝛽0j denote the species-specific intercepts, k-vector 𝜷e denote the main effects for the envi-
ronmental covariates, and k× q matrix Bte denote the environmental-trait interaction matrix on which testing will be
performed. The random site intercepts, ri, are assumed to follow a normal distribution with zero mean and variance
𝜎2, ri ∼ N(0, 𝜎2). Notice that if the site effects are treated as fixed, then the main effects for environmental covariates,
𝜷e, can be omitted. The vector bj includes k species-specific random effects for environmental variables, which are
assumed to follow a multivariate normal distribution with zero mean vector and unstructured k× k covariance matrix
𝚺b, bj ∼ Nk(0,𝚺b). If random slope parameters are included in the model, then the effect of predictors is a combination
of the fixed effects, 𝜷e, which are common to all species, the interaction terms with species traits, Bte, which define how
traits mediate the effect of environmental variables, and the random effects for species, bj, which capture the interspe-
cific variation not explained by traits. Finally, the d-vector 𝜸j includes species-specific factor loadings for d-variate (d≪m)
latent variables, ui, which are assumed to follow a multivariate standard normal distribution, ui ∼ Nd(0, Id), where Id
denotes a d× d identity matrix. The zero mean and unit variance fix the locations and scales of latent variables and
ensure parameter identifiability (Huber, Ronchetti, & Victoria-Feser, 2004). In turn, the term u′

i𝜸j captures the residual
correlation between species not accounted for by the observed covariates ei and trait variables tj. The covariance matrix
Cov((ri,u′

i)
′) = C𝜎 is formed so that we include the correlation term between site effects and latent variables, corr(ri,uil) =

𝜌l. We denote the matrix of loadings 𝚪 = (𝜸1 … 𝜸m)′, and set all the upper triangular elements of m× d matrix 𝚪 to be
zero and constrain its diagonal elements to be positive in order to avoid rotation invariance and (again) ensure param-
eter identifiability (Huber et al., 2004). Note that this constraint on the loading matrix does not reduce the flexibility
of the model; indeed, the residual between species covariance matrix (given the environmental and trait predictors) is
straightforwardly seen to be 𝚺 = 𝚪𝚪′, from which we see that the residual covariance is modeled parsimoniously via
rank-reduction.

Model (3) serves as a unifying framework that encompasses models proposed previously in Pollock et al. (2012), Jamil
and ter Braak (2013), and Brown et al. (2014). If we set all variances of random effects, ri and bj, and latent vari-
ables ui in model (3) to zero, the model reduces to the fourth-corner GLM of Brown et al. (2014). If we set the
covariance matrix of random row effects and latent variables, 𝚺u, to zero, we get a similar model as in Pollock
et al. (2012), with an exception that Pollock et al. (2012) treated species-specific intercepts, 𝛽0j, as random. Jamil
and ter Braak (2013) extended the model proposed in Pollock et al. (2012) by adding random site effects, ri, while
ter Braak (2019) added site-specific random trait effects in the model. The latter is closely related to the method
proposed here, in that it also models residual species covariance matrix 𝚺 via rank reduction. The key distinction
however is that the method of ter Braak (2019) method assumes 𝚺 is a quadratic function of measured traits tj,
while our latent variable approach imposes no restrictions on the residual covariance matrix, beyond restricting its
rank.

Let𝚿 = {𝜷′
0, 𝜷

′
e, vec(Bte)′, vec(𝚪)′,𝚽′

, vec(𝚺u), vec(𝚺b)} denote the full vector of parameters in the fourth-corner latent
variable model, where 𝜷0 = {𝛽01, … , 𝛽0m}′ is the vector of all species-specific intercepts, 𝚽 = (𝜙1, … , 𝜙m)′ includes all
other nuisance parameters, for example, dispersion parameters of the negative binomial or the Tweedie distribution as
in (Niku, Warton, et al., 2017). Furthermore, we denote r = (r1, … , rn)′, b = (b′

1, … ,b′
m)′ and u = (u′

1, … ,u′
n)′ as the

full vector of site intercepts, species-specific random effects, and latent variables, respectively. Conditional on the latent
variables and parameter vector 𝚿, the responses are assumed to be independently distributed and we obtain the joint
distribution f (y|r,b,u;𝚿) =

∏n
i=1

∏m
j=1 f (yij|ri,bj,ui;𝚿). By integrating over random effects r and b and latent variables

u then, we obtain the following marginal log-likelihood function for the fourth-corner latent variable model,

l(𝚿) = log
{
∫ f (y|r,b,u;𝚿)f (r,u;𝚺u)f (b;𝚺b)d(r,b,u)

}
. (4)

For multivariate abundance data, the response distribution f (y|r,b,u;𝚿) is not assumed to be a multivariate normal
distribution (since the responses are usually discrete with a strong nonconstant mean-variance relationship). Conse-
quently, the integration over latent variables and random effects does not have a closed form. To overcome this issue then,
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a common and computationally efficient approach is to approximate the integral using approaches such as the Laplace
(Niku, Warton, et al., 2017) or variational (Hui et al., 2017) approximation, which subsequently provide either a closed
or nearly closed form approximation to the marginal log-likelihood (4). In Niku, Brooks, et al. (2019) it was shown that
computationally convenient estimation algorithms for GLLVMs can be obtained by combining the Laplace or variational
approximation methods with automatic optimization techniques implemented in R software, for computationally effi-
cient estimation. Either the variational approximation or the Laplace approximation could be used to fit the proposed
model. In this article, we choose to use the variational approximation in the simulations due to its computational effi-
ciency, and the Laplace approximation in the application to allow the calculation of a common information criteria across
methods. Applying the Laplace approximation to the chosen model is relatively straightforward, and goes similarly to
the applications in Niku, Warton, et al. (2017) and Niku, Brooks, et al. (2019), and so we focus more closely here on the
details of the variational approximation.

Specifically, we adopt the variational approximation approach for approximating the marginal log-likelihood in (4).
Some theory has been developed to support the quality of variational approximations in general, for example, in (Hall,
Pham, Wand, & Wang, 2011; Hui et al., 2017), and Wang and Blei (2019). However, theoretical study for the approxima-
tion of the specific type of model presented above has not been done as yet, and we view this as a subject of future research.
As part of using the variational approximation method, we need to define so-called variational distributions for the ran-
dom effects r and b, and the latent variables u, which effectively act as the approximate posterior distributions for these
latent quantities. For ease of computation, while also being a sensible choice in an asymptotic sense (Blei, Kucukelbir, &
McAuliffe, 2017; Hui et al., 2017), we propose to use independent normal distributions. Specifically, for i= 1, … , n, we
set the variational density of the random effects q(ri,ui) as independent multivariate normal distributions Nd+1(ai,Ai),
while for response j= 1, … , m we set the variational density of the random effects q(bj) as independent multivariate nor-
mal distributions Nk(abj,Abj). Here, ai and abj denote mean vectors of length (d+ 1) and k, respectively, while Ai and Abj
are assumed to be positive definite and unstructured covariance matrices of dimension (d+ 1)× (d+ 1) and k× k, respec-
tively. Following these assumptions, and assuming that yij comes from the exponential family of distributions with mean
𝜇ij = E(yij), such that f (yij|ri,bj,ui;𝚿) = exp{(yij𝜂ij + b(𝜂ij))∕𝜙j + c(yij, 𝜙j)}, where b(⋅) and c(⋅) are known functions, then
the resulting variational log-likelihood function is given by

𝓁(𝚿, 𝝃) =
n∑

i=1

m∑
j=1

{yij𝜂̃ij − Eq{b(𝜂ij)}
𝜙j

+ c(yij, 𝜙j)
}

+ 1
2

n∑
i=1

{
log det(Ai) − tr(𝚺−1

u Ai) − a′
i𝚺

−1
u ai − log det(𝚺u)

}

+ 1
2

m∑
j=1

{
log det(Abj) − tr(𝚺−1

b Abj) − a′
bj𝚺

−1
b abj − log det(𝚺b)

}
,

where 𝜂̃ij = 𝛽0j + e′i(𝜷e + abj) + vec(Bte)′(tj ⊗ ei) + a′
i(1, 𝜸

′
j)
′, and all quantities constant with respect to the parameters

have been omitted. Notice that above Eq(⋅) denotes the expectation with respect to q(b)q(r,u), which does not necessar-
ily have a closed form. In Hui et al. (2017) it was shown that by reparametrizing GLLVMs, fully closed form variational
log-likelihoods can be obtained in case of binary, ordinal and count data. A proof for the above formula is provided in
Appendix A.

By treating the variational log-likelihood function as a new objective function, we can then fit and perform inference
on the fourth-corner latent variable model. For instance, maximization of 𝓁(𝚿, 𝝃) with respective to both model 𝚿 and
variational 𝝃 parameters produces relevant estimates, with the latter acting also as predictions for the latent variables and
random effects. Specifically, the variational distributions q(ri,ui) and q(bj) serve as approximate posterior distributions
for all latent quantities, which can be used for ordination. The asymptotic standard errors for model parameters can be
computed using the observed information matrix (negative Hessian) as described in Hui et al. (2017). This allows us to
construct confidence intervals as well as to conduct Wald tests for the model parameters. Likelihood ratio tests are also
readily available and will be applied in the following section for testing the fourth-corner interaction terms. All the infer-
ential methods listed above are implemented in the R package gllvm (Niku et al., 2017). The package uses Template
Model Builder (TMB, Kristensen, Nielsen, Berg, Skaug, & Bell, 2016) for automatic differentiation of the log-likelihood
function to enable efficient parameter estimation. For further details of the implementation, we refer to Niku, Hui,
et al. (2019).



6 of 17 NIKU et al.

3 SIMULATION STUDIES

Three simulation studies were conducted to evaluate the ability of the proposed fourth-corner latent variable model to
account for unobserved random variation in multivariate count data, in comparison to a variety of other fourth-corner
models currently available in the literature. In the first simulation setup, we study the Type I errors of the likelihood
ratio test for testing the null hypothesis H0 ∶ Bte = 0 based on the fourth-corner latent variable model in (3), for a situ-
ation where interspecific variation and correlation between species is inherent in data. The Type I error simulations are
repeated in the second setting with a more complex correlation structure that is related to the traits. In the third setting, we
examined the power of the proposed test, that is, the empirical probability of finding the significant interaction between
environmental and trait variables, under varying alternative hypotheses. For comparison, we consider four variants of
model (3), consisting of two GLMM models with and without species-specific random slopes for environmental variables
(GLMM2 and GLMM1, respectively) and two GLLVM models with and without random slopes and d-dimensional latent
variables (GLLVM2(d) and GLLVM1(d), respectively). These are denoted as follows

g(𝜇ij) = ri + 𝛽0j + e′i𝜷e + e′iBtetj, GLMM1
g(𝜇ij) = ri + 𝛽0j + e′i(𝜷e + bj) + e′iBtetj, GLMM2
g(𝜇ij) = ri + 𝛽0j + e′i𝜷e + e′iBtetj + u′

i𝜸j, GLLVM1(d)
g(𝜇ij) = ri + 𝛽0j + e′i(𝜷e + bj) + e′iBtetj + u′

i𝜸j. GLLVM2(d).

Here, we assume that d is known, but in practice, model selection tools, such as AIC and BIC, can be used to guide the
selection (Burnham & Anderson, 2002). We simulated data under d= 2, as described below, and so results for d= 1 and
d= 0 (GLMM2) give some insight into the performance of GLLVM when the covariance structure has been misspecified.
As additional method for comparison, we also included the likelihood ratio test based on the multilevel model of ter
Braak (2019), which we denote as GLMM3. The mean model of GLMM3 can be defined by

g(𝜇ij) = 𝛽0 + b0j + e′i(𝛽e + bj) + u0i + tj(𝛽t + ui) + e′iBtetj,

where bj and ui are assumed to be independent with variances 𝜎2
b and 𝜎2

u. A random effect u0i can be seen as a site-specific
error term or site-specific random intercept, similar to ri. Finally, we also included the pmax permutation test of ter Braak
et al. (2017) for comparison. This approach applies the log-likelihood ratio tests to a Poisson GLM (the Poisson being
used for computational efficiency, ter Braak et al., 2017), and involves taking the largest of the two p-values formed by
permuting either rows or columns of predictors.

In the first simulation setup, we compared the Type I errors based on likelihood ratio tests to those of the pmax test.
We generated datasets according to the negative binomial distribution using two sample sizes and dimensions: (a) m= 40
and n= 70, and (b) m= 70 and n= 40. As a simulation model, we used

log(𝜇ij) = ri + 𝛽0j + tj𝛽t + e′i(𝛽e + bj) + e′iBtetj + u′
i𝜸j, (5)

with one trait and one environmental variable generated independently from the standard normal distribution. The
species intercepts 𝛽0j were generated independently from the uniform distribution U(−1, 1), and 𝛽t = 0.3. The value for
the variance of the random row effects was 𝜎2 = 0.3, while we set 𝛽e = 0.3. The fourth-corner coefficient Bte was set to
zero in order to assess Type I error. The species-specific dispersion parameters were all set to 𝜙j = 0.5.

In order to create unobserved correlation structure between species, we generated a vector of two-dimensional latent
variables, ui = (ui1,ui2)′, for site i from the bivariate standard normal distribution, and simulated the values of the asso-
ciated loadings 𝜸j independently from the standard normal distribution. Finally, we generated the random slopes bj
from a normal distribution with mean zero and variance from the range 𝜎2

b ∈ {0, 0.2, 0.4, 0.6, 0.8, 1}. That is, the vari-
ances of random slopes bj that induce additional interspecific variation not explained by the covariates was gradually
increased from 0 to 1. To recap, the latent variables can also be interpreted to include latent environmental covariates
and their loadings as effects of latent traits on latent environmental variables, while the random slopes generate unex-
plained random variation on species that is not explained by the observed traits, and can therefore be interpreted as
latent traits. The latent variables and their loadings, random effects and covariates were regenerated for each simulated
datasets.
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and m= 70 species. The variance of the random slope effects, 𝜎2

b is plotted on x-axis. A gray envelope around the nominal level 0.05
corresponds to values for sample proportions which are not significantly different from 0.05. GLLVM, generalized linear latent variable
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Given the above set up, we simulated 1000 datasets, assuming a negative binomial distribution for the response. For
each dataset, we then calculated p-values based on likelihood ratio tests from the four models listed above, the likeli-
hood ratio test based on GLMM3, as well as the pmax test applied to GLMs, for assessing the null hypothesis H0: Bte = 0.
The resulting Type I errors are presented in Figure 1. Results indicate that the fourth-corner latent variable models,
GLLVM2(d) with d= 1 and d= 2, provided empirical Type I errors that were reasonably close to the nominal significance
level of 5% for all values of 𝜎2

b . The Type I errors for likelihood ratio tests based on models GLLVM1(2) and GLMM1, which
do not include species-specific random slopes, were severely inflated for values of 𝜎2

b greater than zero, while the likeli-
hood ratio test based on any of the considered models with such random effect, including GLMM2 as well as GLMM3,
provided empirical Type I errors close to the nominal level. A possible explanation for the failure of the GLLVM1(2) could
be due to model underfitting. That is, the latent variable term may not have been able to properly and simultaneously
account for both the variation caused by the latent variables and variation in species caused by the random slopes (espe-
cially given the latent variables and the environmental variable were generated independently of each other). The pmax
test applied to GLMs controls the Type I error well, although tended to produce Type I errors below the nominal level
especially for small values of 𝜎2

b . The pmax is based on the sequential test procedure (Goeman & Solari, 2010), and if the
assumptions hold true, the test controls Type I error rate in the sense that it is smaller than or equal to the nominal level.
Therefore, it is not considered as a fault, that the error rate is smaller than the nominal level. However, Type I errors well
below the nominal level may be an indication of a lower power of the test in such scenarios compared with the other
methods, which will be explored in the third simulation setup.

In the second simulation setup, we introduced correlation between the residual correlation term and the observed
trait by setting corr(𝛾j2, tj) = 0.5, where 𝛾j2 is the loading corresponding to the second latent variable ui2. In practice, load-
ings 𝛾j2 and traits tj were generated from a bivariate normal distribution with unit variances and 0.5 correlation. This
can be interpreted as a situation in which the effect of the observed trait differs between sites and is not fully explained
by the observed environmental variables. This feature is highlighted in the additional simulation setup in Appendix B.
The methods that provided inflated Type I errors in the previous setting, namely, GLLVM and GLMM without random
slopes, were excluded from the comparison. Therefore, only five methods were compared. Type I errors presented in
Figure 2 show that the likelihood ratio test based on the fourth-corner latent variable model with d= 1 (GLLVM2(1))
and the mixed model with random intercept and slope (GLMM2) both produced inflated Type I errors, especially for
small values of 𝜎2

b . The results of the additional simulations (see Figure B1 in Appendix B) support the conclusion that
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the GLMM2 in particular is incapable of capturing the relevant sources of variation. The fourth-corner latent variable
model with d= 2 typically maintained close to nominal Type I error, although rising to almost 0.1 in one case with
a small sample size n= 40 and variance 𝜎2

b = 0.2. Similar results can also be seen in Figure B1(b) in the Appendix B,
where the simulation model was chosen to mimic a situation in which the effect of the observed trait differed between
sites. Under such a model, the results then showed moderate inflation for GLLVM2(2) in one case. The pmax test applied
to GLMs provided Type I errors close to the nominal level in Figure 2, but also exhibited slight inflation in the addi-
tional simulation in Appendix (see Figure B1(b)). The most consistent results were provided by the GLMM3 model,
both in Figures 2 and B1(b), with Type I errors very close to the nominal level. Recall that the GLMM3 model dif-
fered from other GLMM implementations by having a random slope for traits, which uses traits to try and approximate
the residual correlation structure across species. Overall, these results indicate that misspecification of the correlation
structure of the responses can lead to invalid results in cases where correlation structure is not independent of the
predictors.

In the third simulation setup, we compared the power of the various testing procedures. The methods that provided
inflated Type I errors in the first simulation study were excluded from the comparison, meaning only five methods were
included for comparison. We again generated 1000 datasets using the similar setup as in the first simulation study with
n= 70 and m= 40, but varied the interaction term Bte such that Bte ∈ {0, 0.1, 0.2, 0.3, 0.4}. As variances for random slope
effects, we considered 𝜎2

b ∈ {0, 0.4, 0.8}. The power simulation for the setup with n= 40 and m= 70 was excluded as
results were similar compared with the previous one. The resulting empirical powers of the pmax test and four different
likelihood ratio tests are plotted in Figure 3. In all cases, the likelihood ratio tests based on any of the four models provide
higher probabilities for detecting a true nonzero interaction between environmental and trait variables as compared with
the pmax test. This was not surprising given the pmax test is, by construction, conservative since it involves performing two
permutation tests and then choosing the more conservative of the two. Indeed, this conservatism was reflected in the Type
I error results seen in Figure 1. Likelihood ratio tests applied to GLMM2 or GLMM3 performed well, but were slightly
less powerful than the tests based on the fourth-corner latent variable models when the value for 𝜎2

b was small. This can
be seen especially when Bte = 0.1 in the case of 𝜎2

b = 0. The difference between GLLVM with the correct number of latent
variables and GLMM3 became slightly more clear when we used a more complex residual correlation structure defined
by four latent variables (see Figure B3 in Appendix B for additional results), for which the residual covariance structure
could not be well approximated by measured traits tj.
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T A B L E 1 The values of AIC for the
two fourth-corner latent variable
models, and the GLMM model fitted to
the ground beetle dataset

GLLVM2(1) GLLVM2(2) GLMM2 GLMM3 pmax

AIC 18,294 18,077 19,098 18,913 NA

p-value <0.001 <0.001 <0.001 <0.001 0.143

Note: Also shown are the p-values for the corresponding likelihood ratio test of the fourth-corner interaction
terms, Bold values indicates lowest AIC value.
Abbreviations: GLLVM, generalized linear latent variable model; GLMM, generalized linear mixed modeling.

4 CASE STUDY

We applied the proposed fourth-corner latent variable model to a dataset consisting of counts of m= 68 ground beetle
species recorded at n= 87 sites across Scotland (Ribera et al., 2001). The original data also included 17 environmental
variables recorded at each site and 20 trait variables for each species. Ribera et al. (2001) studied whether the morphol-
ogy and life traits of ground beetle species can be related to the environmental variability of the habitats. For illustration
purposes, we consider using a subset of k= 4 environmental variables: land use management intensity score (Manage-
ment), percentage moisture content (Moist), elevation, and soil pH value, along with four species trait covariates: total
length and pronotum height, overwintering (OVE, with two levels: 1= only adults; 2 = adults and larvae or only larvae),
and breeding season (BRE, with three levels: 1= spring; 2= summer; 3= autumn or winter). This set of environmen-
tal and trait variables were among the most important covariates affecting the ground beetle communities based on the
analysis of Ribera et al. (2001). All quantitative covariates were centered and scaled to have variance one before the anal-
ysis, while dummy variables were set up for OVE and BRE, meaning there were a total of q= 5 predictors in the vector of
traits tj.

We first tested if the interactions between environmental and trait covariates were significant using likelihood ratio
tests based on the fourth-corner latent variable model with one and two latent variables, GLMMs with random row and
slope parameters included, and the pmax test. Table 1 lists the AIC values for various models, as well as p-values given
by four likelihood ratio tests and the pmax. The GLLVM with random row effects and random slopes and two latent vari-
ables had the lowest value of AIC, suggesting that both latent variables and species-specific random effects were needed
to model additional sources of (co)variation, while the p-values for all LR tests were less than 0.001 providing clear evi-
dence of an interactions between the considered environmental and trait variables. By contrast, the pmax test with 999
permutations gives a p-value of 0.143 when testing for the fourth-corner interaction term. The result is thus consistent
with the simulation study results showing the conservativeness of the pmax test. To ensure AIC values were comparable,
all models were fitted using TMB (via glmmTMB or gllvm) using a Laplace approximation. Note that using a variational
approximation method as detailed in Section 2 would have given similar p-values and conclusions, and so the choice of
the approximation method itself is not critical. Rather, when comparing the AICs, because GLMM3 was designed for and
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F I G U R E 4 Point
estimates and associated 95%
confidence intervals for
coefficients (left), along with a
level plot (right) for
fourth-corner interaction terms
from a fourth-corner latent
variable model with two latent
variables fitted to the ground
beetle data. The confidence
intervals that do not contain
zero are in black while those
that do contain zero are in gray
and faded

fitted using the glmmTMB package which employs the Laplace approximation, then to facilitate comparison we also fitted
our proposed method GLLVM2 (via the gllvm package) using a Laplace approximation.

The estimated coefficients for the environmental covariates and interaction terms based on the GLLVM with two
latent variables are plotted in Figure 4. The strongest negative interactions were between management intensity and
total length, as well as between management intensity and pronetum height. In other words, high management intensity
was found to have a large negative effect on species that have larger body size. The strongest positive effects occurred
in interactions between elevation and breeding season. That is, species having breeding season in summer succeeded
better in high altitude environments as compared with species which breed during other seasons. Finally, predictions for
species-specific random slopes for the environmental covariates and their associated 95% uncertainty intervals are plotted
in Figure 5; the uncertainty intervals were constructed based on the conditional mean squared error of prediction (Booth
& Hobert, 1998). From this, we can see that the interspecific variation in responses, which is not explained by the traits,
is highest for the effect of the moisture content and management intensity and low or nearly nonexistent for the effect
of the elevation and the pH value. Finally, we note that adjustments of the confidence intervals to account for multiple
comparison was not done here, and we leave this as an avenue for future research.

5 DISCUSSION

In this article, we have proposed a fourth-corner latent variable model that accounts for two key sources of error in current
implementations of fourth-corner model, namely, the failure of traits to capture all interspecific variation (species-specific
error), and the failure to account for the residual correlation between species (site-specific error) not explained by the
environmental and trait variables. With a model-based approach, we are able to account for both sources of additional vari-
ation through the inclusion of additional species-specific random slopes, and site-specific latent variables. The approach
is shown to be an extension of the recently introduced model-based approaches in Pollock et al. (2012), Jamil and ter
Braak (2013), and Brown et al. (2014). We adopted an efficient estimation and inference approach based on variational
approximations, and compared its finite sample performance to classical competitors for assessing the importance of
fourth-corner interaction terms. Results showed that the proposed approach (GLLVM2) maintains close to nominal Type I
error levels when testing for the fourth-corner coefficients, while power can be substantially better than resampling-based
procedures. Importantly, models which fail to account for additional species-specific variation not due to traits, such as
GLMM1 and GLLVM1, produced inflated Type I errors and hence misleading inference.

While GLMM3 and the proposed latent variable method (GLLVM) tended to maintain close to nominal Type I error,
each method strayed from nominal levels in some simulations—GLMM3 occasionally being too conservative and GLLVM
occasionally being too liberal (see Figure 1, also Figure B1). The former is the more desirable situation, although we do
not think that the general behavior is due to a structural weakness of either method. While Type I error control tended to
be better for GLMM3, this will not always be the case, as shown in an additional simulation with quadratic site-specific
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F I G U R E 5 Point predictions for species-specific random slopes and associated 95% uncertainty intervals from a fourth-corner latent
variable model with two latent variables fitted to the ground beetle data

effects of traits (see Figure B4 in Appendix B). In Appendix B Figure B2, we present an important scenario in which
any regression model fails and so also all fourth-corner models will fail: namely when there are missing predictors that
are correlated with the observed predictors. Such methods can fail here because it leads to confounding, thus biased
estimation and uncertainty quantification for the associated regression coefficients (see, for instance, Paciorek, 2010, on
the related issue of confounding).

Model (1) included a random effect to capture species-specific variation in environmental response, not captured
by traits. Because species tend to respond to the environment in complex and sophisticated ways, and because our
data collection process rarely captures all these reasons, it seems a sensible working assumption to always expect such
species-specific variation. Simulations in ter Braak et al. (2017), and those in this article, emphasize the importance of
including such a term. This article additionally shows that it is important to capture residual correlation in abundance
across species, which can be achieved using latent variables, as in model (3). In future research, we will examine other
data-driven approaches to selecting the number of latent variables (Hui, Tanaka, & Warton, 2018), as well as extensions to
incorporate other sources of variation such as phylogenic (Ovaskainen et al., 2017) or spatio-temporal correlations (e.g.,
adapting the work of Ren & Banerjee, 2013; Thorson et al., 2016; Taylor-Rodriguez et al., 2019; Tikhonov et al., 2020),
and imperfect detection (Tobler et al., 2019; Warton et al., 2016). Adjusting the inference for multiple comparisons when
a moderate number of fourth-corner interactions terms are present is also a topic of future investigation.
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APPENDIX A. PROOF FOR THE VARIATIONAL APPROXIMATION OF THE LIKELIHOOD
FUNCTION

Assume that the responses come from the exponential family of distributions with density f (yij|ri,ui,bj;𝚿) =
exp

{
(yij𝜂ij − b(𝜂ij))∕𝜙j + c(yij, 𝜙j)

}
. The variational approximation for the marginal log-likelihood can then be obtained

as follows

𝓁(𝚿, 𝝃) = ∫ log
{

f (y|r,u,b;𝚿)f (r,u;𝚺u)f (b;𝚺b)
q(r,u)q(b)

}
q(r,u)q(b)d(r,u,b),
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= ∫ (log f (y|r,u,b;𝚿) + log f (r,u;𝚺u) + log f (b;𝚺b) − log q(r,u) − log q(b))

× q(r,u)q(b)d(r,u,b),

=
n∑

i=1

m∑
j=1

Eq{log f (yij|(ri,ui,bj),𝚿)} +
n∑

i=1
Eq{log f ((ri,ui;𝚺u))}

+
m∑

j=1
Eq{log f (bj;𝚺b)} +

n∑
i=1

Eq{− log q(ri,ui|𝝃)} + m∑
j=1

Eq{− log q(bj|𝝃)},
where Eq is expectation with respect to variational density q(r,u,b) = q(r,u)q(b). Expectation Eq{−log q(ri,ui)} is the
definition to the entropy of q(ri,ui) which equals to log det(2𝜋eAi)∕2 and similarly Eq{−log q(bj)} = log det(2𝜋eAbj)∕2.
When we omit all quantities constant with respect to the parameters, the above equals to

𝓁(𝚿, 𝝃) =
n∑

i=1

m∑
j=1

{yij𝜂̃ij − Eq∗{b(𝜂ij)}
𝜙j

+ c(yij, 𝜙j)
}

+ 1
2

n∑
i=1

{
log det Ai − Eq

{
(ri,u′

i)𝚺
−1
u (ri,u′

i)
′ + log det(𝚺u)

}}

+ 1
2

m∑
j=1

{
log det Abj − Eq

{
bj

′𝚺−1
b bj + log det(𝚺b)

}}

=
n∑

i=1

m∑
j=1

{yij𝜂̃ij − Eq{b(𝜂ij)}
𝜙j

+ c(yij, 𝜙j)
}

+ 1
2

n∑
i=1

(
log det(Ai) − tr(𝚺− 1

2
u Ai𝚺

− 1
2

u ) − a′
i𝚺

−1
u ai − log det(𝚺u)

)

+ 1
2

m∑
j=1

(
log det(Abj) − tr(𝚺− 1

2
b Abj𝚺

− 1
2

b ) − a′
bj𝚺

−1
b abj − log det(𝚺b)

)

=
n∑

i=1

m∑
j=1

{yij𝜂̃ij − Eq{b(𝜂ij)}
𝜙j

+ c(yij, 𝜙j)
}

+ 1
2

n∑
i=1

(
log det(Ai) − tr(𝚺−1

u Ai) − a′
i𝚺

−1
u ai − log det(𝚺u)

)

+ 1
2

m∑
j=1

(
log det(Abj) − tr(𝚺−1

b Abj) − a′
bj𝚺

−1
b abj − log det(𝚺b)

)
,

where 𝜂̃ij = 𝛽0j + e′i(𝜷e + abj) + vec(Bte)′(tj ⊗ ei) + a′
i(1, 𝜸

′
j)
′. The matrix 𝚺−1∕2

u is the square root of 𝚺−1
u which means that

𝚺− 1
2

u 𝚺− 1
2

u =𝚺−1
u . This operation is possible for positive semidefinite matrices 𝚺u and 𝚺b. The same result holds for matrix 𝚺b.

APPENDIX B. ADDITIONAL SIMULATIONS

B.1 Additional simulations with random parameters
We compared the methods used in Section 3 by mimicking the simulation setup of ter Braak et al. (2017), and the methods
used in Section 3 were included in the comparisons. We generated 1000 datasets with 40 species and 40 sites from the
negative binomial distribution with mean model

g(𝜇ij) = 𝜇0 + Ri + Cj + btetjei + bzezjei + btxtjxi + b∗
zxz∗j x∗i + 𝜖ij, (B1)

and variance V(𝜇ij) = 𝜇ij + 𝜇2
ij. Here intercept equals 𝜇0 = log(30). Row effects were generated as Ri = a0ei + a1e2

i + 𝜖ri,
with 𝜖ri ∼ N(0, 0.01), and column effects similarly by Cj = c0tj + c1t2

j + 𝜖tj, with 𝜖tj ∼ N(0, 0.01). Observed environmental
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F I G U R E B1 Type I error rates obtained using simulation setup described in Appendix B.1 for likelihood ratio tests based on GLMM
with random intercepts (GLMM1), GLMM with random intercepts and slopes (GLMM2), GLLVM with random intercepts (GLLVM1(2)), and
GLLVM with random intercepts, slopes, and d= 1, 2 latent variables (GLLVM2(d)), GLMM with random intercepts for sites and species and
random slopes for both environmental and trait variables (GLMM3) and the pmax test. Generated datasets consisted of n= 40 sites and m= 40
species. A gray envelope around the nominal level 0.05 corresponds to values for sample proportions which are not significantly different
from 0.05. GLLVM, generalized linear latent variable model; GLMM, generalized linear mixed modeling

variable ei and trait tj were generated from standard normal distribution N(0, 1). Independent latent environmental
variables xi and x∗i and traits zj and z∗j were also generated from N(0, 1). Parameters bte, bze, btx, and b∗

zx are effects for
associations. Term b∗

zxz∗j x∗i represents here the correlation structure among species and sites and can be interpreted simi-
larly to the latent variable term u′

i𝜸j in fourth-corner latent variable model, with is only one latent variable. Error terms
𝜖ij were generated from normal distribution, 𝜖ij ∼ N(0, 0.2). We test the null hypothesis H0 : bte = 0 and calculate Type
I error rates for random trait case, where bte = 0, bze ∈ {0, 0.2, 0.4, 0.6, 0.8}, btx = 0, and random trait and random envi-
ronmental variable case, where bte = 0, bze = btx ∈ {0, 0.2, 0.4, 0.6, 0.8}. We set a0 = 0.05, a1 =−0.1, c0 = 0.05, c1 =−0.1, and
b∗

zx = 0.2.
Based on the results in Figure B1(a,b), the likelihood ratio test based on the GLLVMs with one and two latent

variables, random slopes and random row effects provided Type I errors close the nominal level 0.05 in all consid-
ered cases excluding the case bze = btx = 0.2 where the Type I errors exceeded significantly the nominal level 0.05.
Such peak is seen in all conducted simulation setups with a small sample size. The likelihood ratio test based on
the GLMM with random slopes and random row effects produced close to valid Type I errors for the random trait
case (Figure B1(a)) but inflated Type I errors for the random trait and random env case (Figure B1(b)). The pmax
test applied for GLM worked quite well for the random trait case, but produced slightly inflated Type I errors for
the random trait and random environmental variable case when effect sizes for bze and btx were larger than 0.4. The
likelihood ratio tests based on GLLVM and GLMM which did not include random slopes produced too large Type
I errors.

In Figure B2, the Type I errors were calculated using the same mean model as above, except observed
environmental variables ei and latent environmental variables xi as well as observed traits tj and latent traits
zj were generated so that they were correlated, that is, corr(ei, xi)= 0.3 and corr(tj, zj)= 0.3. Such correlations
lead to a confounding effect and the results show that if this is the case all methods produced too inflated
Type I errors.

B.2 Simulations with four latent variables
We conducted an additional simulation setup similar to the power simulation in Section 3, except that
the mean model included four latent variables generated from the multivariate standard normal distribu-
tion. Here, we compared GLLVM2(d) with d= 2 and d= 4 latent variables and GLMM3. Results are shown
in Figure B3.
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F I G U R E B2 Type I error rates obtained using simulation setup described
in Appendix B.1 for likelihood ratio tests based on GLMM with random
intercepts (GLMM1), GLMM with random site intercepts and slopes for
environmental variables (GLMM2), GLLVM with random site intercepts
(GLLVM1(2)), and GLLVM with random intercepts, slopes, and d= 1, 2 latent
variables (GLLVM2(d)), GLMM with random intercepts for sites and species
and random slopes for both environmental and trait variables (GLMM3), and
the pmax test. Generated datasets consisted of n= 40 sites and m= 40 species. In
the mean model, we used latent environmental variables xi and latent trait
variables zj which were correlated with the observed environmental ei and
observed trait variables tj with correlation of 0.3. These settings lead to such
confounding, in which any regression model fails and so also all fourth-corner
models will fail. GLLVM, generalized linear latent variable model; GLMM,
generalized linear mixed modeling
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variables (GLMM3). The datasets were generated based on the simulation model defined by Equation (5), with four latent variables, similarly
to the first simulation setup in Section 3. GLLVM, generalized linear latent variable model; GLMM, generalized linear mixed modeling

B.3 Simulations with complex correlation structure based on quadratic traits
In this additional simulation setup, we used a more complex correlation structure for the species by defining latent
variable loadings using both linear and quadratic terms for traits. As a simulation model we used

log(𝜇ij) = ri + 𝛽0j + tj𝛽t + e′i(𝛽e + bj) + e′iBtetj + u′
i𝜸j,

with one trait and one environmental variable generated independently from the standard normal distribution. Species
intercepts 𝛽0j were generated independently from the uniform distribution U(−1, 1) and 𝛽t = 0.3. The value for the vari-
ance of the random row effects was set to 0.3, while 𝛽e = 0.3. The fourth-corner coefficient Bte was set to zero in order
to assess Type I error. The species-specific dispersion parameters were all set to 𝜙j = 0.5. The random slopes bj were
generated from a normal distribution with mean zero and variance from the range 𝜎2

b ∈ {0, 0.4, 0.8}. Unobserved cor-
relation structure between species was constructed by generating two-dimensional latent variables, ui = (ui1,ui2)′, from
the bivariate standard normal distribution. Finally, the loadings 𝜸j were generated so that 𝛾j1 = −2 − 0.4tj + 0.3t2

j + 𝜖j1,
𝜖j1 ∼ N(0, 0.1) and 𝛾j2 = 0.5tj + 𝜖j2, 𝜖j1 ∼ N(0, 0.7). We generated 1000 datasets assuming a negative binomial distribution
for the response, and considered n= 150 units and m= 25 species. Here, we compared GLLVM2(d) with d= 2 latent vari-
ables and GLMM3. Results are presented in Figure B4. In terms of the Type I error, GLMM3 performed slightly worse
than GLLVM, showing moderate inflation. This could be fixed by modifying GLMM3 to include an additional random
site effect for the quadratic trait term.
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F I G U R E B4 Type I error rates obtained using simulation setup described
in Appendix B.3 for likelihood ratio tests based on GLLVM with random
intercepts, slopes and d= 2 latent variables (GLLVM2(d)), GLMM with random
intercepts for sites and species and random slopes for both environmental and
trait variables (GLMM3). GLLVM, generalized linear latent variable model;
GLMM, generalized linear mixed modeling
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