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Abstract
Auditory evoked fields (AEFs) are commonly studied, yet their underlying neural mechanisms remain poorly understood. 
Here, we used the biophysical modelling software Human Neocortical Neurosolver (HNN) whose foundation is a canoni-
cal neocortical circuit model to interpret the cell and network mechanisms contributing to macroscale AEFs elicited by a 
simple tone, measured with magnetoencephalography. We found that AEFs can be reproduced by activating the neocortical 
circuit through a layer specific sequence of feedforward and feedback excitatory synaptic drives, similar to prior simulation 
of somatosensory evoked responses, supporting the notion that basic structures and activation patterns are preserved across 
sensory regions. We also applied the modeling framework to develop and test predictions on neural mechanisms underlying 
AEF differences in the left and right hemispheres, as well as in hemispheres contralateral and ipsilateral to the presentation 
of the auditory stimulus. We found that increasing the strength of the excitatory synaptic cortical feedback inputs to supra-
granular layers simulates the commonly observed right hemisphere dominance, while decreasing the input latencies and 
simultaneously increasing the number of cells contributing to the signal accounted for the contralateral dominance. These 
results provide a direct link between human data and prior animal studies and lay the foundation for future translational 
research examining the mechanisms underlying alteration in this fundamental biomarker of auditory processing in healthy 
cognition and neuropathology.

Keywords Auditory processing · AEF · MEG · Biophysical model · HNN

Introduction

Brain activity evoked by auditory stimulation has been stud-
ied for many decades and remains not only commonly used 
in cognitive neuroscience (Wagner et al. 2017; Parviainen 
et al. 2019) but also clinically relevant (Paulraj et al. 2015; 
Samatra et al. 2020). In humans, the sequence of neural 
activation evoked by auditory stimulation can be measured 
using electroencephalography (EEG) or magnetoencepha-
lography (MEG), and the surface-recorded responses are 
typically divided into three categories based on their latency. 
Broadly speaking, early responses (within ~ 10 ms) primarily 
reflect brain stem activity, middle-latency auditory responses 
(10–50 ms) are thought to reflect processing in thalamocorti-
cal structures, and late-latency responses (50–250 ms) are 
associated with cortical activity (Picton et al. 1974). Late 
latency responses are elicited in the primary auditory cortex 
and surrounding areas and typically consist of components 
labelled P50m-N100m-P200m (or P1-N1-P2), which peak 
at around 50, 100 and 180 ms respectively (Eggermont and 
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Ponton 2002). Here, we refer to this cortical P50m-N100m-
P200m sequence as auditory evoked fields (AEF). Although 
the P50m-N100m-P200m waveform is commonly found in 
response to any auditory event, the shape and amplitude of 
its components depends on a number of characteristics of the 
evoking stimuli, such as their acoustic complexity, intensity, 
duration, and frequency (Picton 2011). Here, we use simple 
pure tones at 1 kHz, which have been shown to produce 
robust N1 responses and are neutral in terms of linguistic 
associations, and adopted a paradigm that has been success-
fully used to evidence the fundamental response properties 
of the human auditory processing pathway (Mäkelä et al. 
1994; Salmelin et al. 1999).

While AEFs are commonly used as correlates for a num-
ber of cognitive processes (Shahin et al. 2003; Fan et al. 
2017), developmental stages (Parviainen et al. 2019; van 
Bijnen et al. 2019), and clinical observations (Goodin et al. 
1978; Stephen et al. 2017), several fundamental questions 
about their neural origin remain unanswered. A deeper 
understanding of the cellular and circuit mechanisms gen-
erating AEFs is essential to understanding the role of AEF 
components in cognition and to developing treatments based 
on regularizing neuropathological AEF features.

Insights into the biophysical mechanisms underlying 
auditory processing have been gained using invasive record-
ings in animal models. An early description of a fundamen-
tal anatomical circuit of sensory processing was based on 
cat visual cortex (Gilbert 1983; Gilbert and Wiesel 1989) 
and states that excitatory cells in layer IV of the neocor-
tex receive thalamic inputs and project to superficial layers, 
which in turn project to deeper layers. This fundamental 
layer specific relay of sensory information has since been 
confirmed in other sensory systems, including somatosen-
sory (Di et al. 1990; Schroeder et al. 1995) and auditory 
cortex (Ojima et al. 1991, 1992), with confirmation from a 
number of studies and species (e.g. Mitani and Shimokouchi 
1985; Mitani et al. 1985; Pandya and Rosene 1993; Huang 
and Winer 2000; Sakata and Harris 2009; Atencio and 
Schreiner 2010; Ji et al. 2016). Importantly, the commonal-
ity of this laminar sequence of sensory information flow 
in different sensory areas suggests that the basic laminar 
structure and organization is similar across sensory regions 
and deterministic of the early sensory response, particularly 
in primary sensory cortices (Douglas and Martin 2004; Bar-
bour and Callaway 2008; Atencio and Schreiner 2010).

Although animal models provide insight into cell and 
circuit-level dynamics underlying sensory evoked responses, 
determining if and how this information translates to macro-
scale human signals, as measured with EEG and MEG, is a 
non-trivial problem. In recent years, computational neurosci-
ence has begun to bridge the gap between macroscale human 
brain signals and network-dynamics (Kiebel et al. 2009; 
Sanz Leon et al. 2013; Hagen et al. 2018). One approach to 

achieve this is proposed by the modeling software Human 
Neocortical Neurosolver (HNN; Neymotin et al. 2020), 
namely to create a model of neuronal circuitry informed by 
invasive animal recordings and use this model to simulate 
human macroscale brain signals based on their biophysical 
origin. The model underlying HNN consists of a canonical 
neocortical circuit, with individual excitatory and inhibitory 
neurons across the cortical layers, and layer specific thalam-
ocortical and cortico-cortical input pathways. The primary 
electrical currents generating EEG and MEG signals are 
simulated from the intracellular current flow in the long and 
spatially aligned cortical pyramidal neuron apical dendrites 
(for a detailed description, see Methods, supplement S1, or 
visit hnn.brown.edu). HNN has been applied to study the 
cellular and circuit level neural mechanism underlying a 
number of commonly measured EEG and MEG signals, such 
as alpha and beta frequency oscillations (Jones et al. 2009; 
Ziegler et al. 2010; Sherman et al. 2016), gamma oscilla-
tions (Lee and Jones 2013), and somatosensory evoked fields 
(SEF; Jones et al. 2007, 2009; Ziegler et al. 2010; Sliva 
et al. 2018). Here, we build from the prior literature and 
known commonalities in the cortical structure and informa-
tion relay in sensory areas to apply HNN to study the circuit 
mechanisms underlying MEG measured AEFs. We focus on 
interpreting the neural mechanisms generating (1) the AEF 
waveform in response to a simple auditory tone (Parviainen 
et al. 2019), including the P50m-N100m-P200m sequence, 
(2) observed differences in AEFs in the right and left hemi-
sphere, and (3) between contralateral and ipsilateral tone 
presentations. We hypothesized that the laminar organization 
and relay of sensory information is preserved across sensory 
areas, and that, as a result, AEFs could be simulated using 
similar cortical input sequences as those shown to reproduce 
SEFs in our prior studies. Note that, while the laminar organ-
ization and exogenous drives simulated in HNN are based 
on animal work (see Discussion), previous work has shown 
that the resulting simulations can be applied to human data 
and support canonical input sequences (Jones et al. 2007, 
2009; Ziegler et al. 2010; Sliva et al. 2018; Neymotin et al. 
2020). Building from this hypothesis, we then investigated 
the observed phenomenon that the AEF recorded over the 
right hemisphere, and specifically the N100m component, is 
often larger in amplitude compared to the left AEF (Peronnet 
et al. 1974; Mononen and Seitz 1977; Wolpaw and Penry 
1977; Hine and Debener 2007; Howard and Poeppel 2009; 
Kimura 2011; Shaw et al. 2013). The biophysical origin of 
this difference is unknown, and we apply HNN to develop 
targeted predictions on neural mechanisms that may generate 
these differences.

Lastly, we examine the mechanisms underlying AEF 
differences that depend on the site of auditory stimulation, 
i.e. between contralateral and ipsilateral responses. In early 
AEF research, it was found that when simple sounds were 
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presented monaurally, responses in the hemisphere con-
tralateral to the sound presentation were more pronounced 
than responses in the ipsilateral hemisphere (Tunturi 1946; 
Rosenzweig 1951). This increased magnitude in contralat-
eral auditory responses has since been confirmed in a num-
ber of experimental paradigms and recording modalities 
(Peronnet et al. 1974; Andreassi et al. 1975; Taub et al. 
1976; Wolpaw and Penry 1977; Reite et al. 1981; Pantev 
et al. 1986, 1998; Yoshiura et al. 1994; Loveless et al. 1994; 
Mäkelä et al. 1994; Jäncke et al. 2002; Devlin et al. 2003; 
Petkov et al. 2004; Parviainen et al. 2019). In addition, the 
contralateral response has been described as not only larger 
in magnitude, but also as faster than its ipsilateral equivalent 
(Mononen and Seitz 1977; Wolpaw and Penry 1977; Mäkelä 
et al. 1994; Pantev et al. 1998). However, this temporal effect 
appears to be less clear than the effect on magnitude, as 
several studies failed to confirm any temporal differences 
(Tunturi 1946; Andreassi et al. 1975; Yoshiura et al. 1994).

While there is strong evidence suggesting that the con-
tralateral dominance effect is robust (although there is some 
debate, e.g. Hine and Debener 2007), few studies have 
focused on the biophysical mechanisms underlying this 
phenomenon. These studies guide our neural model inves-
tigation of observed contralateral AEF dominance in our 
data. One explanation for contralateral dominance is that, 
while auditory processing is not as lateralized as, for exam-
ple, somatosensory processing, those pathways between 
ear and cortex which cross over nevertheless appear domi-
nant, with greater numbers of fibers and faster transmission 
speeds (Rosenzweig 1951; Kimura 1961). This feature is 
most likely to account for temporal differences, as stronger 
pathways may lead to faster transmission of information, 
resulting in earlier contralateral AEF peaks. However, it is 
not immediately apparent that the integrity of fiber tracts 
alone necessarily leads to responses of greater magnitude. A 
second explanation states that larger areas of cortex are acti-
vated by contralateral stimulation (Rosenzweig 1951; Gross 
et al. 1967; Pantev et al. 1986), which would lead to greater 
amplitude responses. Gross et al. (1967) found that the corti-
cal area in which responses could be evoked was larger when 
tones were presented contralaterally as opposed to ipsilater-
ally. Importantly, these explanations are based on evidence 
almost exclusively from animal models, and it is unknown 
if they can account for the contralateral dominance observed 
in human macroscale AEFs. We therefore applied our HNN 
modeling framework to test the hypothesis that changes in 
model parameters that represent the speed of activation of 
the cortex, and number of cells contributing to the signal, 
could account for the observed differences in contralateral 
vs. ipsilateral MEG measured AEFs.

In summary, the goals of the current study were three-
fold. (1) We aimed to simulate an AEF waveform in HNN 
and hypothesized that the cortical inputs underlying the 

waveform share important features with those previously 
shown to be involved in other sensory evoked responses, due 
to the canonical structure of sensory neocortex. (2) We used 
HNN to explore which biophysical mechanisms underlie the 
commonly observed difference between right hemisphere 
and left hemisphere AEFs. (3) We tested the hypothesis that 
differences in the scale of the underlying network as well as 
the latencies of the inputs into the network could account for 
the previously reported dominance of contralateral AEFs.

Methods

Participants

Participant recruitment, MEG recording and source-local-
ization were performed for a previous study. For a more 
detailed description, see Parviainen et al. (2005, 2019).

Ten neurotypical participants (age 23–39; five females) 
were recruited for MEG recording.

Auditory Stimulation

Participants were presented with simple 1 kHz sine wave 
tones, 50 ms in duration with 10 ms fade-in and fade-out 
time, created in Sound Edit (MacroMedia, San Francisco, 
CA, USA). The tones were presented alternatingly to the left 
and right ear (Parviainen et al. 2019). Tones were separated 
by inter-stimulus-intervals varying between 0.8 and 1.2 s and 
were presented at 60 dB above the subjective hearing level.

MEG Acquisition and Analysis

MEG was recorded using a helmet-shaped 306-channel 
whole-head system (Vectorview, Neuromag Ltd, Helsinki, 
Finland), band-pass filtered at 0.03–200 Hz and sampled at 
600 Hz. Segments of − 200 ms to 800 ms relative to auditory 
stimulus onset were averaged off-line for each participant, 
separately for left and right ear sounds. Electro-oculogram 
(EOG) was recorded and epochs in which the EOG chan-
nel exceeded a threshold of 150 µV were considered con-
taminated by blinks or saccades, and were excluded from 
the averages. After artifact rejection, an average of 102 
(± 4)/105 (± 4) (mean ± SD) epochs remained per subject 
for left/right ear sounds (see Parviainen et al. 2005, 2019).

The resulting averages were source-localized using equiv-
alent current dipole (ECD) modeling, where ECDs represent 
the average distribution of electric current within a corti-
cal patch, giving an estimate of the location, strength, and 
direction of local current flow (Hämäläinen et al. 1993). For 
determining the ECD, the temporally varying field pattern 
was visually inspected between 80 and 120 ms relative to 
the auditory stimulus to identify symmetric dipolar fields, 



 Brain Topography

1 3

indicative of separable, active neuron population. The 
N100m peak visible at the sensor-level was always associated 
with salient dipolar field pattern (cf. Fig. 2d, e). ECDs were 
determined for each participant (one dipole per hemisphere) 
from a standard subset of 46 planar gradiometers that covered 
the 100 ms auditory field pattern (Fig. 2). The determined 
ECDs in each hemisphere were then used to account for 
the MEG signals by keeping ECD location and orientations 
fixed and varying only their amplitude. For further analysis 
in this study, source-localized AEFs were segmented into 
0 ms to 250 ms epochs, relative to the auditory stimulus, and 
averaged across participants. The same pair of ECDs, at an 
individual level, accounted for the activation patterns evoked 
by both ipsilateral and contralateral stimulation. Moreover, 
the ECD that was fitted to the 100 ms response (N100m) 
was also able to account for the preceding response at 50 ms 
(P50m). The current direction of the N100m peak was into 
the cortex, and the P50m and P200m have amplitudes in the 
opposite direction representing current out of the cortex.

Source localization is an important step since we intended 
to model the AEF waveforms using the Human Neocortical 
Neurosolver software (HNN, see below), which is designed to 
study the origin of source localized signals. Inverse solution 
methods applied to sensor-level MEG (or EEG) estimate the 
primary current generator of the sensor data. These primary 
currents are estimated as current dipoles in units of current × 
distance (Ampere × meters) and known to be generated by 
intracellular post-synaptic current flow in the long and spa-
tially aligned cortical pyramidal neuron dendrites (Ikeda and 
Shibasaki 1992; Hämäläinen et al. 1993; Okada et al. 1997; 
Murakami et al. 2003; Murakami and Okada 2006; Sacchet 
et al. 2015; Neymotin et al. 2020). As detailed below, HNN 
simulates these primary currents from the model pyramidal 
neurons and produces dipole outputs in units of ampere–meters 
(Am), allowing for direct comparisons between simulated 
and empirical AEFs. Currents that flow into the cortex (e.g. 
N100m) correspond to current flow down the pyramidal neu-
ron dendrites in HNN, as detailed further below.

Statistical Analysis

In order to quantify the differences in the AEF waveform 
between left and right, as well as between contralateral and 
ipsilateral hemispheres, we focused on the analysis of the 
N100m response. Although we do not expect AEF differ-
ences to be expressed exclusively in the N100m, this com-
ponent is typically the most prominent of the AEF compo-
nents, and therefore lends itself to quantification. To this 
end, we conducted a total of four 2 × 2 repeated-measures 
ANOVAs with factors Tone Presentation (contralateral/ipsi-
lateral) and Hemisphere (right/left) to determine differences 
in N100m amplitude, N100m latency, P50m-N100m slope, 
and N100m-P200m slope. The N100m trough was defined 

per participant average as the absolute signal maximum dur-
ing the time interval from 80 to 120 ms relative to the audi-
tory stimulus onset. The P50m-N100m, and N100m-P200m 
slopes were determined by fitting straight lines to each par-
ticipant’s average waveform between 70–90 and 110–130 ms 
respectively.

We applied the same ANOVAs to the model simulation 
(see below), by running 10 simulations per modelled condi-
tion as a source of variability. While the reduced variability 
of simulations compared to human MEG data means that 
these statistics are not directly comparable to those of the 
empirical data, they nevertheless give insight into whether 
specific qualitative features, such as differences in slopes or 
latencies, are reproduced by the model.

Model

The Human Neocortical Neurosolver (HNN)

We used the computational neural modeling software 
Human Neocortical Neurosolver (HNN; Neymotin et al. 
2020) to study the neural mechanisms generating the 
observed source localized, grand-average AEF waveforms. 
HNN is an open-source software (for tutorials and detailed 
descriptions of the model, please visit http://hnn.brown.edu), 
which simulates the primary electrical currents underlying 
macro-scale EEG and MEG data, based on their biophysi-
cal origin by modeling neocortical cellular and circuit-level 
activity. The model contains multi-compartment pyramidal 
neurons as well as single-compartment inhibitory interneu-
rons (basket cells) in supragranular layers (layer II/III) and 
infragranular layers (layer V, see Fig. 1). The morphology 
of the pyramidal neurons was modelled based on cat vis-
ual cortex pyramidal neurons (Bush and Sejnowski 1993), 
and adjusted in accordance with anatomical findings in the 
human brain (Geyer et al. 1997; Fischl and Dale 2000; Elston 
et al. 2001). The intracellular electrical current flow in the 
long and spatially aligned apical dendrites of the pyramidal 
neurons across the infragranular and supragranular layers are 
the main contributors to macroscale primary current dipoles 
that generate macroscale signals that can be observed on the 
scalp (Murakami and Okada 2006). The cells are connected 
with glutamatergic and GABAergic synapses, and each 
cell’s activity is simulated using Hodgkin-Huxley dynam-
ics (Fig. 1a). The primary current dipole is calculated by 
summing the intracellular current flow across the network 
of pyramidal neurons (see red and green arrows in Fig. 1c 
and d). Importantly, the current dipole generated in HNN is 
expressed in units of ampere-meters (Am), the same units as 
those estimated by source localization methods of EEG and 
MEG data, enabling one to one comparison between model 
and empirical data. For computational tractability, a reduced 
network size is simulated and a scaling factor is multiplied 



Brain Topography 

1 3

by the aggregate current dipole to estimate the size of the 
network contributing to the recorded data, as detailed below. 
To assess the correspondence between averaged evoked 
responses and modelled dipoles, simulations are smoothed 
(30 ms Hamming window, see Table S2). There are many 
more sources of variability in the larger network contribut-
ing to the recorded human data, such as spike variability 
across the network and individual subject differences. We 
assume high-frequency components created by this variabil-
ity are more likely to average out in the larger network and 
multi-subject averages contributing to the recorded AEFs 
than in model simulations. We therefore apply smoothing to 
model simulations to allow for a direct comparison between 
simulation and data (see also Fig. S2). We also simulate 
N = 10 trials per example, each of which has some intrinsic 
variability, and average across trials.

The baseline network consists of 100 pyramidal neurons 
per layer (Fig. 1b). A scaling parameter is then applied by 
multiplying the dipole simulated by the baseline network 
by a constant. This constant represents the number of neu-
rons contributing to a given recorded signal, assuming the 

signal represents the summed activity of a larger population 
of synchronous pyramidal neurons. Since a typical MEG/
EEG response has a magnitude of 10-100nAm, and a sin-
gle pyramidal neuron contributes approximately 0.2 pAm, 
between 50,000 and 500,000 cells are contributing to a typi-
cal macroscale signal, corresponding to a scaling factor of 
between 250 and 25,000 (Murakami and Okada 2006; Ney-
motin et al. 2020).

In order to simulate macroscale MEG/EEG signals, the 
network modelled in HNN is activated through exogenous 
excitatory synaptic inputs generated by predefined trains of 
action potentials that contact layer specific post-synaptic 
targets via two canonical input pathways, which have pre-
viously been shown in animal models (Rockland and Pan-
dya 1979; Friedman and Jones 1980; Kulics and Cauller 
1986; Cauller and Kulics 1991; Douglas and Martin 2004). 
We refer to the two types of inputs used here as proximal 
or feedforward and distal or feedback inputs. Feedforward 
drives represent signals that reach the cortex from the lem-
niscal thalamus to granular layers, which then propagate 
directly to supragranular and infragranular layers where they 
effectively target the proximal dendrites of the pyramidal 
neurons (Fig. 1c). Feedback drives represent inputs from 
non-lemniscal thalamus or cortico-cortical connections that 
target the distal dendrites in supragranular layers (Fig. 1d). 
The level of detail included in HNN’s model enables simula-
tion of the macroscale current dipoles along with microscale 
circuit information, including layer specific spiking activity 
in individual cells. Detailed descriptions of the model under-
lying HNN can be found in the Supplementary Materials 
(S1: Supplemental Model Description).

Although the cortical column modelled in HNN was orig-
inally generated to account for the anatomy and behavior 
of primary somatosensory cortex (Jones et al. 2007, 2009), 
it is based on canonical features shared between different 
neocortical circuits and hence can be applied to interpret 
signals in other cortical areas (Neymotin et al. 2020). This 
is particularly the case for sensory areas, as the relay of sen-
sory information has been shown to follow remarkably ste-
reotypical patterns across modalities (Douglas and Martin 
2004; Barbour and Callaway 2008).

Since HNN is a complex model with a large number of 
parameters, many of which interact, we cannot rule out that 
some alternative parameter sets could not reproduce similar 
results (see “Discussion” section). HNN was designed to be 
a hypothesis development and testing tool. The hypothesis 
testing here was motivated from our prior studies of sen-
sory evoked responses, which provided the baseline assump-
tions for the pattern of exogenous proximal and distal drives 
underlying an evoked response, and prior literature on neural 
mechanisms underlying hemispheric dominance (see “Intro-
duction” section). While we cannot show that any given 
model provides a unique solution, it is important to note 

(a) (b)

(c) (d)

Fig. 1  HNN Model schematics. a  Pyramidal neurons in layer II/III 
and V, and inhibitory fast-spiking basket cells (empty circles). Excita-
tory and inhibitory synaptic coupling is indicated by black lines with 
filled circles and bars respectively. Within-layer excitatory–excitatory 
and inhibitory–inhibitory connections are not shown, but exist for 
each cell type (see Table S2). b Visualization of the spatial alignment 
of a network of layer II/III and V pyramidal neurons. c, d The net-
work is activated by proximal/feedforward (c) and distal/feedback (d) 
inputs which deliver trains of action potentials via canonical pathways
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that the dipole shape produced by HNN depends crucially on 
the underlying assumptions and we can examine the dipole 
response under alternative hypotheses. To illustrate this, we 
show models using alternative assumptions for two of our 
examples (see Fig. 5 and supplement S2, Fig. S1).

Results

Contralateral and Right Hemisphere AEFs Display 
More Prominent N100m Peaks

Source-localized grand average AEFs and their descriptive 
statistics are displayed in Figs. 2 and 3 respectively. The 
differences between contralateral and ipsilateral, as well as 

left and right hemispheres were quantified for the N100m 
component using Tone Presentation × Hemisphere ANO-
VAs. As expected based on prior studies (e.g. Peronnet 
et al. 1974; Wolpaw and Penry 1977; Pantev et al. 1998), 
we found that N100m magnitudes were larger in contralat-
eral compared to ipsilateral (F(1,9) = 7.72, p = 0.021, η2 = 
0.46) and right compared to left hemispheres (F(1,9) = 5.71, 
p = 0.041, η2 = 0.39; interaction p > 0.67). N100m latency 
differences did not reach significance, but there was a trend 
towards shorter latencies in contralateral compared to ipsi-
lateral N100ms (F(1,9) = 5.08, p = 0.051, η2 = 0.17; all other 
effects p > 0.21). The ascending and descending slopes of 
the N100m trough from the P50m to N100m, and N100m to 
P200m, were also greater in contralateral compared to ipsi-
lateral AEFs (FP50m−N100m(1,9) = 10.55, pP50m−N100m = 0.01, 

(a) (b)

(c)

(d) (e)

Fig. 2  Source-localized grand average AEFs: a, b AEF waveforms in 
the left (a) and right (b), as well as the contralateral (blue) and ipsi-
lateral (red) hemisphere. Inserts show average source locations. c For 
ease of comparison, (c) shows left (dotted line, corresponding to blue 
line in (a) and right (solid line, corresponding to blue line in (b) con-

tralateral AEFs overlaid. Shaded areas indicate SE. *Significant dif-
ferences in N100m amplitude at p < 0.05. d, e Magnetic field patterns 
(at 100  ms) of one example subject in the left (d) and right (e), as 
well as contralateral (blue) and ipsilateral (red) hemispheres
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ηP50m−N100m = 0.54; FN100m−P200m
2(1,9) = 5.42, pN100m−P200m 

= 0.045, ηN100m−P200m
2 = 0.38; all other effects p > 0.092; 

Fig. 3).

A Sequence of Feedforward‑Feedback‑Feedforward 
Activation of the Cortical Circuit Reproduces AEF 
in HNN

The tone evoked AEFs in Fig. 2 exhibit peak timings and 
polarities that are similar to source localized SEFs evoked 
by brief perceptual threshold level tactile stimuli observed 
in our prior studies (e.g. Jones et al. 2007, 2009), where 
there is an initial small amplitude positive peak (confirmed 
to correspond to current flow out of cortex), followed by a 
prominent negative peak (current flow into cortex), followed 
by a subsequent positive peak. Motivated by this consistency 
along with the homology of canonical cortical circuitry in 
sensory areas built into HNN, we applied the input sequence 
of the existing SEF model distributed with HNN as a starting 
point for our AEF simulation (namely the ‘default.param’ 
parameter file). This sequence consisted of a proximal input, 
followed by a distal input, followed by a second subsequent 
proximal input (Jones et al. 2007; Neymotin et al. 2020), and 
represents a canonical feedforward, feedback, feedforward 
pattern of activation. This pattern of activation was able to 

account for rough features of the AEF waveform. To produce 
a closer fit to the AEF data we began by adjusting only the 
parameters defining the strength and timing of each input 
(all input parameters are displayed in Table 1), as well as the 
scale of the waveform. We first hand-tuned these parameters 
until there was visually close agreement between model and 
data, and subsequently used the automated parameter opti-
mization feature in HNN to improve the model fit further. 
The optimization tool automatically adjusted parameters 
controlling input timing and strengths to minimize the error 
(root mean squared error; RMSE) between the simulated 
and empirical dipole waveforms (Neymotin et al. 2020). 
This was initially performed for the AEF recorded over the 
contralateral, right hemisphere. The resulting model simu-
lation (RMSE: 1.0) and its input parameters are displayed 
in Fig. 4d–f and Table 1, respectively (see Supplementary 
Materials S2 for alternatives of this model).

Briefly, the input sequence affects the network in the fol-
lowing way: first, a feedforward input reaches the proximal 
dendrites, as well as inhibitory interneurons of layer II/III 
and layer V. This input is thought of as feedforward sensory 
information reaching the auditory cortex via the lemniscal 
thalamus. It reaches the network around 47 ms after the 
onset of the auditory stimulus, strongly driving layer II/III 
cells (Table 1). This timing is broadly in line with previous 

Fig. 3  Means of empirical 
and simulated AEFs for each 
quantified N100m characteristic 
and each condition. p values 
are displayed for each ANOVA. 
Effects demonstrated in both 
empirical and simulated AEFs 
are printed in bold. Statistics 
associated with simulated AEFs 
are printed in gray as the limited 
variability in simulations does 
not allow for direct comparison 
with tests performed on empiri-
cal data. Error bars indicate 
standard error. *p < 0.05; 
***p < 0.001. a N100m ampli-
tude, b N100m latency, c P50-
N100m slope, d N100m-N200m 
slope (Color figure online)

(a) (b)

(c) (d)
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findings, suggesting that AEF components occur after audi-
tory signals reach the cortex at around 50 ms (Picton et al. 
1974). This input causes both pyramidal and basket cells in 
layer II/III to fire, with pyramidal firing quickly inhibited 
by the inhibitory basket cells (Fig. 4f). The spiking in the 
pyramidal neurons creates backpropagation of current flow 
up the pyramidal apical dendrites towards the surface of the 
cortex, leading to the P50m peak seen in the AEF (Fig. 4e).

While the effects of the proximal input are ongoing, 
a feedback input arrives at the distal dendrites at around 

81  ms (although with a wider temporal distribution, 
Fig. 4d), strongly activating layer II/III basket and pyram-
idal cells and layer V pyramidal cells and inducing the 
N100m peak. This drive is presumed to represent inputs 
from either cortico-cortical, or non-lemniscal thalamocor-
tical connections. The distal drive induces several changes 
in the network dynamics, the net effect of which is a down-
ward deflecting current. Excitatory synaptic inputs on dis-
tal apical dendrites of layer II/III and layer V pyramidal 
neurons push the current flow down (Fig. 1d). At the same 

(a) (d)

(e)(b)

(c) (f)

Fig. 4  HNN simulation of the AEF recorded in response to con-
tralateral tone presentation over the right hemisphere (right panels) 
and over the left hemisphere (left panels): a, d Input sequence: Input 
spikes are sampled from a Gaussian distribution (mean and sd are 
defined by input time and sd, see Table 1) on each trial. The resulting 
temporal profile of the spiking activity arriving into the network is 
displayed in red (proximal) and green (distal) histograms. A proximal 
input drives the network, before a distal input and a second proximal 
input arrive (see Fig. 1c, d for proximal/distal inputs). Corresponding 
input parameter values are displayed in Table  1. b, e  Dipole Simu-

lation: mean AEF model (dark blue) as well as 10 individual trial 
simulations (gray). The empirical AEF (here: contralateral AEF) is 
displayed in light blue (cf. Fig. 2). Insert at the bottom right shows 
the dipoles of layer II/III and layer V separately. Left inset in b shows 
model fit of manually fitted model (with no automatic optimiza-
tion applied). All dipoles were smoothed using the default settings 
in HNN (30  ms Hamming window; see Table  S2). An unsmoothed 
equivalent to panel e is displayed in Fig. S2. c, f Simulated spiking 
activity: spiking associated with the dipole displayed in (b) (one 
example trial selected) (Color figure online)
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time, somatic inhibition mediated by activation of basket 
cells in both layers (note, the layer V baskets cells are 
driven by the layer II/III excitatory connections to layer 
V, Fig. 1a) pulls current further down the pyramidal neu-
ron dendrites. In addition, activation of calcium dynamics, 
triggered by layer V pyramidal excitation pulls current 
down towards infragranular layers. The distal drive also 
generates spiking activity in the layer V pyramidal neu-
rons, which leads to backpropagation, i.e. current flow in 
the opposite direction up the dendrites. However, the size 
of this effect is smaller and not visible in averaged and 
smoothed data (see Fig. S2 and “Methods” section) and 
the overall effect is current flow down the dendrites, lead-
ing to a large N100m trough (Fig. 4e).

Lastly, as the spiking activity in the network would 
begin to relax back to baseline after the distal drive, a sec-
ond proximal input reaches the network at around 151 ms, 

driving primarily layer II/III and layer V basket cells, and 
some pyramidal cells, causing continuous basket firing, with 
burst-like behavior occurring at around 200 ms (Fig. 4f). 
This activation of postsynaptic excitatory synapses on the 
basal dendrites of the pyramidal neurons again pushes cur-
rent flow towards the surface of the cortex. Additionally, 
the layer II/III basket cells inhibit the distal dendrites of the 
layer V pyramidal neurons (Fig. 1a), helping to pull current 
flow up the dendrites toward the cortical surface. Together 
these effects create the P200m peak in the AEF.

Dividing the net current dipole into its layer specific 
components shows that the shape of the AEF simulation 
is largely driven by responses in layer V, while layer II/III 
responses contribute only to the earliest component (see 
inserts in Fig. 4e, and Fig. S2b).

We also calculated the simulated firing rates of each 
neuronal population by averaging the number of action 

Table 1  Input parameters used 
to simulate AEFs in the left 
and right hemisphere after 
contralateral tone presentation

The corresponding simulations are displayed in Fig. 4. Parameters which were identified as most relevant 
to account for the difference between left and right hemispheres are printed in bold. AMPA and NMDA 
synaptic weights (i.e. maximal conductances) are displayed in units of µS, while mean and standard devi-
ation of the input times are displayed in ms. Note that distal inputs do not project onto layer V basket 
cells (see Fig. 1). Parameter values rounded to three decimal places. All other parameters are displayed in 
Table S2

Parameter Left hemisphere model Right hemisphere

Proximal Distal Proximal Proximal Distal Proximal

Input time 54.898 82.99 161.307 47.355 81.09 150.826
SD 5.401 13.208 19.844 2.963 12.26 11.061
Layer II/III
Pyramidal

AMPA 0.991 0.607 0.854 0.659 0.607 0.346

NMDA 1.714 0.242 0.067 0.535 0.243 0.027
Layer II/III
Basket

AMPA 0.997 0.624 0.758 0.997 0.523 0.995

NMDA 0.984 0.953 0.851 0.987 0.959 0.994
Layer V
Pyramidal

AMPA 0.004 0.258 0.012 0.004 0.964 0.005

NMDA 0.01 0.157 0.004 0.009 0.158 0.006
Layer V
Basket

AMPA 0.615 0.98 0.427 0.984

NMDA 0.062 0.902 0.037 0.998
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potentials over trials and cells. We found the highest fir-
ing rates in basket cells (layer V = 13.97 spikes/s; layer II/
III = 13.46 spikes/s), followed by layer V pyramidal neurons 
(10.60 spikes/s), and low firing rates in layer II/III pyramidal 
neurons (1.85 spikes/s, cf. Fig. 4f). Although firing rates 
were not considered as part of the model fitting procedures, 
these firing rates appear to be within physiological ranges 
(Wallace and Palmer 2008; Atencio and Schreiner 2010), 
further supporting the model-derived predictions.

HNN Predicts Smaller Left Hemisphere AEF N100m 
Peak can be Generated by Decreased Feedback 
Drive

With the AEF recorded from the right hemisphere (for con-
tralateral tone presentation) simulated, we set out to model 
the AEF recorded over the left hemisphere. Since we did not 
have any clear hypotheses predicting the differences between 
left and right hemispheres based on prior literature, we used 
model derived knowledge of how the inputs to the network 
influence the timing and magnitude of the peaks to exam-
ine how differences in the right and left hemispheres could 
emerge. Using right AEF as a starting point, we began by 
tuning the input parameters to fit the left AEF, using both 
hand-tuning and automatic optimization. The targeted dif-
ferences we aimed to create were the significantly smaller 
N100m amplitude (Figs. 2c and 3). By hand tuning each 
input parameter, we found that modulation of only one input 
parameter was able to account fairly well for the qualitative 
differences in the right and left waveforms. Specifically, we 
found that by decreasing the AMPA mediated excitation of 
layer V pyramidal cells by the distal drive (see Table 1 and 
Table S2), and keeping all other parameters fixed between 
hemispheres, we were able to reproduce the AEF waveform 
associated with the left hemisphere (Table 1). Since distal 
layer V pyramidal excitation pushes currents down the den-
drites, creating the N100m trough, decreasing the excitatory 
inputs to these cells leads to a smaller N100m magnitude 
as seen in left hemisphere AEFs. We refer to the model in 
which only this parameter was changed to account for left 
AEFs as the ‘Manually Fitted Model’, and used automated 
parameter optimization to further improve the model fit. 
While further small parameters changes were needed to 
optimize the model fit (Fig. 4b), fitting the model with only 
this one parameter was sufficient to reproduce the targeted 
differences (see “Manually Fitted Model” in Fig. 4b). The 
optimized model (Fig. 4b, large panel) was used for all fur-
ther analyses. The resulting dipole simulations displayed the 
same N100m peak amplitude difference between left and 
right hemispheres as the empirical AEF (p < 0.001).

While our initial testing of the hypothesis that strength of 
the exogenous distal inputs would be essential to defining the 

amplitude of the AEF peaks confirmed that alteration in this 
parameter can reproduce the observed differences, we cannot 
rule out that alternative mechanisms could reproduce similar 
results. To address this issue, we also tested two alternative 
models that could logically account for N100m amplitude 
differences through alteration of local network features, 
rather than inputs into the network. Since simulations show 
that both somatic inhibition and layer V calcium activity can 
lead to current flow down the dendrite (i.e. larger N100m 
amplitudes), we decreased the parameter values represent-
ing each one at a time to test if these changes could also 
lead to less current flow down the dendrite and therefore 
smaller N100m amplitudes as seen in left hemisphere AEFs. 
We found that by decreasing the parameters controlling the 
synaptic weights of all local network connections targeting 
inhibitory cells, as shown in Fig. 1a, by a factor of 10 from 
the right hemisphere AEF parameters, the model was indeed 
able to approximate the decreased N100m amplitudes of left 
hemisphere AEFs (Fig. 5a). Specifically, we decreased five 
parameters, representing the conductance of the synaptic 
connections targeting layer V basket cells from layer II/III 
and layer V pyramidal cells, and layer V basket cells, as well 
as connections targeting layer II/III basket cells from layer 
II/III pyramidal and basket cells. However, this manipulation 
also impacted the subsequent P200m peak, which was sig-
nificantly larger when the local connections to the inhibitory 
neurons were decreased due to increased pyramidal neuron 
firing (data not shown), and hence a larger RMSE between 
the model and recorded data were observed; RMSE = 7.84 
compared to RMSE = 1.96 in Fig. 4. Similarly, we found that 
the N100m amplitude decrease could also be reproduced 
by a simulation in which the calcium channel density in 
the soma and along the dendrites of the layer V pyramidal 
neurons (Table S2), was decreased by approximately 94% 
from the right hemisphere AEF parameters (Fig. 5b). In this 
case, the subsequent P200m amplitude was smaller than 
recorded data due to decreased pyramidal neuron firing (data 
not shown), and hence the RMSE between the model and 
recorded data was again larger than before; RMSE = 6.57 
compared to RMSE = 1.96. These results suggest that initial 
manipulations of the strength of the distal input as in Fig. 4; 
Table 1, was more effective at reproducing multiple features 
of the empirical data and we therefore used the initial left 
AEF model for all following analyses.

Differences in the Feedforward and Feedback 
Input Latencies, and Network Size, Can Reproduce 
Contralateral/Ipsilateral AEF Differences in HNN

After establishing mechanisms that can reproduce the con-
tralateral AEFs in both the left and right hemisphere, we next 
tested the specific hypotheses based on prior literature that 
differences between contralateral and ipsilateral AEFs emerge 
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from differences in the size of the active network (Rosenz-
weig 1951; Gross et al. 1967), and alterations in the timing 
of the exogenous input to the network (Tunturi 1946; Kimura 
1961). The differences that we targeted to reproduce in the 
model were the decreased N100m amplitude, and smaller 
P50m-N100m and N100m-P200m slopes as observed in 
the empirical data (Figs. 2 and 3). We specifically hypoth-
esized fewer cells contributed to the ipsilateral compared 
to the contralateral AEFs, and thus we first hand-tuned the 
scaling parameter in the model that provides an estimate of 
the number of neurons contributing to the observed data (see 
Methods), decreasing from a value of 1500 in the contralateral 
AEF model to 1200 for the ipsilateral AEF simulation. This 
change was able to account well for the decreased N100m 
magnitude in the ipsilateral versus contralateral AEF, and also 
improved the model fit to the ipsilateral AEF around the P50m 
and P200m components, compared to the contralateral simu-
lation. This change in scale also accounted for the decreased 
P50m-N100m and N100m-P200m slopes associated with ipsi-
lateral AEFs (Fig. 3). As such, the model results predict that 
a smaller network with on the order of 240,000 pyramidal 
neurons (1200 × 200 PN per layer) generated the ipsilateral 
response compared to 300,000 (1500 × 200 PN per layer) for 
the contralateral response (Fig. 6). Since previous findings 
further suggest a difference in latency between contralateral 
and ipsilateral AEFs (Pantev et al. 1986, 1998), in a second 
step, we hand tuned the mean latency of the inputs into the 
network and found that the model fit to the data was improved 
when all three inputs were delayed by 5 ms. Since the laten-
cies of all inputs were adjusted equally, this manipulation did 

not change the shape of the dipole, but shifted it along the 
time axis. Although latency differences between contralateral 
and ipsilateral AEFs were not statistically significant in our 
data, N100m latencies were slightly but consistently larger 
in ipsilateral AEFs (Fig. 3). This trend was captured well by 
simulations incorporating this 5 ms shift. The resulting AEF 
simulations are displayed in Fig. 6.

Both scaling and time parameters were hand-tuned for 
the difference between contralateral and ipsilateral AEFs to 
account first for only the right hemisphere. The same modu-
lations, i.e. decreasing the scale by 300 and increasing the 
input times by 5 ms, were then applied to the model of the 
left hemisphere AEF without further fitting steps.

By following these two steps, the model provided a good 
fit to the ipsilateral AEFs of both hemispheres (RMSE right: 
2.15, RMSE left: 2.19), displaying the same N100m ampli-
tude and slope differences as the empirical data (p < 0.006, 
Fig. 3), without further fitting or optimization steps, con-
firming the hypothesis that differences in network size and 
timing of the exogenous inputs can account for waveform 
shape differences between contralateral and ipsilateral AEFs.

Discussion

Auditory evoked fields are a commonly used measurement 
in human studies of healthy cognitive processing and as 
biomarkers of neuropathology, yet the biophysical mecha-
nisms underlying these scalp-recorded responses are not yet 
fully understood. While human AEF studies and laminar 

(a) (b)

Fig. 5  Alternative simulations for left hemisphere AEFs: left hemi-
sphere AEFs (contralateral) are displayed in light blue, while model 
simulations are displayed in dark blue dotted lines. Individual simula-
tions are displayed in gray. Inserts show the dipoles associated with 
layer II/III and layer V separately. The fit provided by the alterna-
tive simulations was noticeably worse than that of the initial model, 

which only adjusted input parameters (cf. Fig. 4b). a Synaptic gains 
were decreased in all connections targeting inhibitory interneurons. 
b Layer V pyramidal calcium channel densities were decreased. All 
other parameters were equal to the model of the right hemisphere 
AEF (see Fig. 4d–f; Table 1) (Color figure online)
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recordings of the auditory cortex in animal models often 
proceed in relative isolation, here, we connected the infor-
mation of the circuitry architecture, provided by animal 
models, with human MEG recordings using biophysically 
principled computational neural modeling. We used the 
Human Neocortical Neurosolver (HNN), a software whose 
foundation is a model of a canonical neocortical circuit, 
which allows users to define inputs to activate the network 
and simulates the primary electrical currents underlying 
scalp-recorded fields or potentials (Jones et al. 2007; Ney-
motin et al. 2020), to develop and test predictions on the 
neural mechanisms underlying two well-established char-
acteristics in the AEF response, namely the lateralization 
effect in which responses recorded over the right hemisphere 
display stronger magnitudes in response to simple auditory 
stimuli than those recorded over the left hemisphere (Hine 
and Debener 2007; Howard and Poeppel 2009; Kimura 
2011), as well as the phenomenon that AEFs in response to 
contralaterally presented tones show larger, and often faster, 
responses than ipsilaterally presented tones (Tunturi 1946; 
Rosenzweig 1951; Kimura 1961; Pantev et al. 1998).

We were able to model the AEF waveform elicited by 
a brief monaural contralateral tone presentation using the 
same input sequence that has previously been shown to 
simulate somatosensory evoked responses (Jones et al. 
2009), with parameters tuned to match the AEF data. 
According to this sequence, auditory responses can be 
accounted for by an initial excitatory thalamocortical feed-
forward drive to layer II/III and V, via layer IV inducing 
the P50m, followed by a cortico-cortical or non-lemniscal 
thalamic feedback input to supragranular layers inducing 

the N100m, and a subsequent second feedforward input 
inducing the P200m. This finding is in line with evidence 
suggesting that all sensory areas share the same basic 
structure as well as many defining features, such as the 
basic laminar organization and activation patterns (Doug-
las and Martin 2004). Specifically, the initial activation 
of cortical circuits by the thalamus, which follows a layer 
IV, layer II/III, layer V information processing sequence, a 
simplified version of which is recreated here and generates 
the P50m using HNN, has been shown to be similar across 
sensory modalities (Douglas and Martin 2004; Barbour 
and Callaway 2008; Atencio and Schreiner 2010).

It is important to note that the connectivity within the 
auditory cortex is not as well understood as in other sensory 
regions, and that focusing solely on similarities between 
cortical regions is likely an oversimplified description of 
auditory cortical activation. There are known differences 
between auditory cortex and other sensory regions, as for 
example, laminar differences are less prominent than in 
visual or somatosensory regions, and there is some evi-
dence to suggest that the functional role of auditory layer 
IV may differ from those in other sensory regions (Linden 
and Schreiner 2003; Barbour and Callaway 2008; Ji et al. 
2016; Oviedo 2017). However, we show that a manually fit-
ted neural model of a cortical column with canonical layer 
specific input patterns is able to account for scalp-recorded 
auditory responses, supporting the notion that the basic 
structure and activation patterns are similar across sensory 
regions, and providing means to approach the biophysical 
basis of well-known characteristics and effects reported in 
human AEF research.

Fig. 6  HNN simulation of the contralateral dominance effect for the 
right hemisphere (right panel) and the left hemisphere (left panel) 
AEF. Average simulations (based on 10 individual trial simulations) 
of contralateral AEFs (dark blue, cf. Fig. 4) and ipsilateral (dark red) 
AEFs. Ipsilateral responses were generated by decreasing the model 

scaling factor, representing the number of cells contributing to the 
signal, and increasing the input latencies, as compared to the con-
tralateral simulations. Empirical AEFs are shown in light colors (cf. 
Fig. 2) to indicate model fit (Color figure online)
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Further, we found that simulations associated with AEFs 
recorded over left and right hemispheres were remarkably 
similar, not only in the input sequence, but also in firing rates 
and dipole waveforms (compare Fig. 4a-c and d-f). Interest-
ingly, the only parameter necessary to account for qualitative 
differences in the waveform shape was the strength of the 
distal input into layer V pyramidal neurons. In other words, 
a 100 ms distal feedback input drives layer V pyramidal 
neurons more strongly in right than in left hemisphere AEFs 
(note that since parameter optimization was performed all 
input parameters differed somewhat between left and right 
hemisphere models). These findings are in general agree-
ment with research demonstrating functional asymmetries 
between left and right hemispheres. For example, right hem-
isphere dominance has been shown especially in processing 
of pure tones, although the hemispheric balance seems to 
depend on the nature of the stimulus, as well as context (Per-
onnet et al. 1974; Wolpaw and Penry 1977; Schönwiesner 
et al. 2007; Howard and Poeppel 2009). It could be specu-
lated that the relative specialization of the right hemisphere 
to process pure tones is associated with optimized connec-
tivity, leading to stronger inputs. It would be interesting, 
in the future, to explore whether the diminished rightward 
asymmetry, or leftward asymmetry to speech sounds could 
be explained by similar underlying dynamics. However, the 
functional lateralization of auditory processing continues 
to be debated (e.g. Boemio et al. 2005), and its relation to 
biophysical mechanisms is unknown. Additionally, our inter-
pretations are model-derived predictions, since we did not 
have clear pre-defined hypotheses regarding the mechanisms 
underlying the differences in left and right AEFs.

HNN is designed to be a hypothesis development and 
testing tool, however in its current form not all possible 
hypotheses can be explored. For example, macroanatomi-
cal differences not captured in HNN between left and right 
hemispheres could contribute to, if not fully account for, 
waveform differences observed in AEFs (Galaburda et al. 
1978; Rademacher et al. 1993; Penhune et al. 1996; How-
ard and Poeppel 2009). In fact, Shaw et al. (2013) argued 
that what may appear as a functional asymmetry in auditory 
processing is, at least partially, caused by structural asym-
metries, as increased cortical folding in the left auditory 
regions results in increased MEG/EEG signal cancelation. 
Here, we do not account for these anatomical differences 
since HNN has been developed to account for the microana-
tomical principles underlying electrophysiological record-
ings, and does not include cortical folding in its parameters. 
As such, we cannot rule out the possibility that the param-
eter differences between left and right hemisphere AEFs we 
found in our model are simply compensating for the effect of 
structural differences, and do not accurately reflect underly-
ing functional mechanisms. However, we found that alter-
native model adjustments which manipulated local network 

features, instead of external input characteristics to account 
for hemispheric AEF differences, led to a poor model fit, 
providing some support for our model. Ultimately, the pre-
dictions made with HNN can guide targeted experiments to 
validate or negate model results, and new data informs HNN 
expansion and improvement.

We also simulated the contralateral dominance effect, i.e. 
the larger N100m amplitude in the AEF waveform associ-
ated with contralateral compared to ipsilateral tone pres-
entation. In the AEF literature, the mechanistic differences 
proposed to underlie the finding that increased AEF ampli-
tudes are recorded in hemispheres contralateral to the audi-
tory stimulus, are that auditory pathways that cross over are 
stronger and/or more numerous than ipsilateral ones (Tunturi 
1946; Rosenzweig 1951; Kimura 1961), and that the corti-
cal region activated by the auditory stimulus is larger in the 
contralateral hemispheres (Rosenzweig 1951; Gross et al. 
1967). We tested these predictions using HNN. We expected 
the strength of a pathway to correlate primarily with the 
speed of the relay of information, which corresponds to the 
input time parameters in HNN. The notion of differences in 
the size of the cortical area can be accounted for by HNN’s 
scaling parameter, which gives an estimate of the number of 
cells contributing to a given dipole. We were able to recreate 
the differences between contralateral and ipsilateral AEFs, 
solely by changing the time and scaling parameters, sup-
porting the hypotheses that these manipulations based on 
animal research can indeed account for the differences in 
the human signal.

These simple manipulations led to greatly improved 
model fits to ipsilateral data, in both the left and the right 
hemisphere. The ipsilateral model fits the ipsilateral AEF 
less well than the contralateral model fits its corresponding 
data which is noticeable particularly in the P200m peak fit 
in the right hemisphere. However, note that the contralateral 
models were established by hand-tuning and then optimizing 
all 28 input parameters (Table 1), while the ipsilateral model 
was generated by adjusting only four parameters, three of 
which by a fixed value. Importantly, the four parameters, as 
well as the directions in which to adjust them (i.e. increas-
ing the time of each of three inputs by a fixed amount and 
decreasing the network scale), were chosen based on pre-
dictions from the literature, not on the patterns identified 
in our data, and no further steps were taken to fit the model 
simulations to the empirical AEFs. In view of this proce-
dure, we consider the ipsilateral models to reproduce the 
corresponding AEFs remarkably well.

We found that, compared to ipsilateral AEFs, contralat-
eral AEFs can be simulated by increasing the scaling factor 
by 20% and decreasing the time of each input by 5 ms. The 
difference of 20% found here is also approximately in line 
with predictions made by Rosenzweig (1951) who sug-
gested that the size of ipsilateral presentations is around 
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25% smaller than contralateral representations. Although 
in our data, we were not able to demonstrate clear latency 
differences between contralateral and ipsilateral AEFs, we 
found that a difference of 5 ms provided improved model 
fits. This small difference is in line with previous stud-
ies which have reported contralateral responses to occur 
between 4 and 14 ms faster than ipsilateral ones (Mon-
onen and Seitz 1977; Mäkelä et al. 1994; Pantev et al. 
1998). Since this is a fairly small difference in latency, it 
may overlap with individually differing factors that influ-
ence AEF measures at these latencies, and may not be 
easily demonstrated. We speculate that this may explain 
why other studies, like our own, have not been able to 
confirm latency differences between ipsilateral and con-
tralateral AEFs (Yoshiura et al. 1994). Overall, we found 
that ipsilateral AEFs, compared to contralateral ones, can 
be simulated by delaying the activation of the cortical net-
work and decreasing the size of the network, supporting 
previous hypotheses predicting that contralateral pathways 
are faster and activate larger regions of the cortex.

It is important to note that, since HNN is a large-scale 
model with thousands of differential equations and param-
eters, we cannot claim that any given waveform has a unique 
way in which to model it. With large numbers of parameters, 
many of which interact and trade off, HNN is primarily a 
hypothesis testing tool as it is not feasible to test the entire 
parameter space. However, a large proportion of the model, 
including cell morphologies and physiologies, and local con-
nectivity patterns were fixed based on a large body of animal 
models, introducing biologically realistic constraints (Jones 
et al. 2007; Neymotin et al. 2020). Further, we drastically 
limited the number of parameters free to vary, by making the 
assumption that many basic features of the network are pre-
served across sensory areas, which allowed us to fix the vast 
majority of parameters to values previously established for 
somatosensory response models (Jones et al. 2007, 2009). 
Based on the same assumption, we also fixed the input 
sequence which activates the network, but not the timing 
and strength of the inputs. This resulted in a model with 28 
input parameters and one scaling parameter, while all other 
parameters were fixed (seven additional parameters, repre-
senting calcium activity and inhibitory connection strength, 
were adjusted to test alternative models, but were not used 
in the final models). In the case of interpreting the differ-
ence between left and right hemispheres, we attempted to 
narrow down the parameter space of interest by identifying 
which changes made the largest contribution to the differ-
ence in waveform shape. However, we cannot rule out the 
possibility that other parameter values could account for the 
finding in a different way. In the case of contralateral com-
pared to ipsilateral AEFs on the other hand, we had clear 
hypotheses predicting not only the parameters of interest, 

but also the direction of their adjustment, enabling much 
clearer conclusions.

Additionally, it is important to note that HNN is 
designed to bridge the gap between human macro-scale 
data and circuit-level findings from animal models. Many 
of the circuit features built into HNN, including those 
regulating input drives into sensory cortices, were based 
on animal studies in rodents and non-human primates 
and have not been directly demonstrated in humans (see 
Neymotin et al. 2020; Jones et al. 2007, 2009). Although 
many basic structures and mechanisms seem to be shared 
across cortical regions and species (Douglas and Martin 
2004), and HNN has been able to account for a variety 
of human signals (Jones et al. 2009; Sliva et al. 2018; 
Neymotin et al. 2020), including those with remarkable 
homology between humans, rodents and non-human pri-
mates (Sherman et al. 2016; Shin et al. 2017) we cannot 
rule out the possibility that some cell- or circuit-level 
dynamics which are specific to humans are misrepre-
sented in HNN.

Overall, we argue that biophysical modelling of human 
macro-scale brain signals, using models such as HNN, is 
an important step to bridge the gap between human cogni-
tive neuroscience, and cell- and circuit-level insights pro-
vided by animal models. While we aimed to characterize 
commonly observed phenomena on a biophysical basis, 
future research may apply similar approaches to study 
similar scalp potentials, providing insights into mecha-
nistic differences between developmental stages or clinical 
populations. Future research may also build on the current 
capabilities of HNN and incorporate sensitivity analyses to 
allow for an improved interpretation of parameter values.

In summary, we found that HNN, a model of a canonical 
neocortical circuit, can be used to simulate human AEFs 
by activating the network using an input sequence similar 
to one used to model other sensory responses, supporting 
the notion that the basic structure and activation patterns 
are preserved across sensory regions. We show that AEF 
differences between left and right, as well as contralateral 
and ipsilateral hemispheres, can be simulated by adjust-
ing a small number of parameters representing network 
scale and input characteristics. Our simulations establish a 
connection between scalp-recorded correlates of auditory 
processing and network-level insights from animal models, 
providing a first step to understand the mechanisms under-
lying this cognitively and clinically relevant biomarker.
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