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Abstract. This thesis approaches the problem of quasi-isometric
classification of Lie groups. The point of view is motivated by the
known metric properties of Carnot groups, and the strategy to find
similar properties in more general settings is thus twofold: First,
we ask when a pair of non-isomorphic Lie groups can be made
isometric using left-invariant Riemannian distances. Second, we
investigate what kind of role the existence of metric dilations plays
for quasi-isometry questions. Several new results and viewpoints
are found, reducing metric questions to algebraic ones. Examples
of the limitations of the theory and the methods to find those
examples are studied.

Tiivistelmä. Tämä väitöskirja käsittelee Lien ryhmien kvasi-iso-
metrisen luokittelun ongelmaa. Käytetyt ideat juontavat juurensa
Carnot’n ryhmien tunnettuihin metrisiin ominaisuuksiin, ja on-
gelmaa lähestytäänkin kahtaalta: Ensiksi kysymme millaisia ei-
isomorfisia Lien ryhmien pareja voidaan varustaa isometrisillä (va-
semmalta) siirtoinvarianteilla Riemannilaisilla etäisyysfunktioilla.
Toisekseen tutkimme millainen yhteys on venytyskuvausten ole-
massaololla ja kvasi-isometrioilla. Nämä kysymykset johtavat mo-
niin uusiin näkökulmiin ja tuloksiin, joissa metriset ongelmat pa-
lautuvat algebrallisiksi. Tarkastelemme myös esimerkkien valossa
teorian rajoituksia sekä menetelmiä uusien esimerkkien löytämi-
seksi.
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1. Lie groups as metric objects

The objects of interest in this thesis are Lie groups. In addition
to their structure as differentiable manifolds and groups, we will equip
them with distance functions compatible with the two firstly mentioned
structures. We will treat such distances both precisely and with respect
to a coarse equivalence, and the latter is formalised by the concept of
quasi-isometry: We recall that, given two metric spaces (X, d) and
(X ′, d′), a map f : X → X ′ is said to be a quasi-isometry if there are
constants L ≥ 1 and C ≥ 0 so that all the points x, y ∈ X satisfy the
inequalities

1

L
d(x, y)− C ≤ d′(f(x), f(y)) ≤ Ld(x, y) + C

and in addition for all x′ ∈ X ′ there is x ∈ X with d(f(x), x′) ≤ C. If
such a map f exists, then the metric spaces X and X ′ are said to be
quasi-isometric (or quasi-isometrically equivalent).

For the later purposes, we recall immediately also the other relevant
equivalence relations of metric spaces: If it is possible to choose above

• L = 1, then f is a rough isometry and X and X ′ are roughly
isometric.
• C = 0, then f is a biLipschitz map andX andX ′ are biLipschitz
equivalent.
• L = 1 and C = 0, then f is an isometry and X and X ′ are
isometric.

Intuitively, two isometric metric spaces may be regarded as the same
space with different coordinates. Two biLipschitz equivalent metric
spaces look like stretched versions of each other, with the factor of
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stretching allowed to vary but required to stay in some bounds. Two
roughly isometric metric spaces may be arbitrarily different on small
scales, but they look more and more as the same metric space when
zooming out and looking at the space from far away. Finally, a pair
of quasi-isometric metric spaces has only the property that the metric
spaces look like stretched versions of each other when looking at the
space from far away.

Coming back from metric spaces to Lie groups, if a set G has both
a Lie group structure and a structure of a metric space, then these
structures are regarded to be compatible with each other if the distance
function d induces the manifold topology of G (such a distance is said
to be admissible), and if it is left-invariant, i.e., if the group of left-
translations of G acts by isometries for the distance; We call such an
object (G, d) a metric Lie group. However, we shall not regard Lie
groups equipped with distances, i.e., metric Lie groups, as our main
objects of interest. Instead, the main objects of interest are some
particular relations between Lie groups, and these relations will have a
“metric flavour”. We are going to particularly focus on the two relations
below.

• Given two Lie groups G and H, we will say they can be made
isometric, if there exist some left-invariant Riemannian dis-
tances dG and dH on G and H, respectively, so that the metric
spaces (G, dG) and (H, dH) are isometric. We will refer to this
relation as the isometry relation.
• Given two Lie groups G and H, we will say they are quasi-
isometric, if there exist some left-invariant Riemannian dis-
tances dG and dH on G and H, respectively, so that the metric
spaces (G, dG) and (H, dH) are quasi-isometric. We will refer
to this relation as the quasi-isometry relation.

Traditionally, quasi-isometries have received more attention in math-
ematical research. They started to become into focus in the early 20th
century after the introduction of Cayley graphs (a.k.a. Dehn Gruppen-
bilds). The research on quasi-isometries accelerated especially after in
the 1980s Gromov proposed to study finitely generated groups as large
scale geometric objects. For a more in-depth historical account, see [11,
Section 1].

Finitely generated groups can be equipped naturally with word dis-
tances with respect to finite generating sets, and all the word distances
are quasi-isometrically equivalent. Hence by large scale geometry of a
given finitely generated group G it is meant the equivalence class of
those finitely generated groups that are quasi-isometric toG with some,
and therefore any, word distances.
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One theorem of Gromov that became especially famous is that groups
of polynomial growth are virtually nilpotent [23]; this is an algebraic
statement detected by large scale geometry. As the groups of polyno-
mial growth are quasi-isometric to nilpotent groups, it is then natural
to ask what are the quasi-isometry relations of nilpotent groups?

The conjectural statement, first mentioned by [18], is that if two
torsion-free finitely generated nilpotent groups are quasi-isometric, they
have isomorphic Malcev completions. The Malcev completion (intro-
duced in [35]) of a torsion-free finitely generated nilpotent group is
a simply connected nilpotent Lie group on which the finitely gener-
ated group isomorphically sits as a lattice. Thus, it is here that Lie
groups come to the picture, even if the large scale geometry of finitely
generated groups also remains as an active research topic, see for ex-
ample [15, 16, 17].

The following conjecture can be regarded as very much related to
the one about finitely generated groups, although these two conjectures
are not completely equivalent since not all nilpotent Lie groups admit
lattices.

Conjecture 1.1. If two simply connected nilpotent Lie groups are
quasi-isometric, then they are isomorphic.

This conjecture is attacked by active research, with the most im-
portant steps towards a solution being for now probably [42, 36, 22,
37, 40, 39, 10]. The topic is very well surveyed in [9], together with a
more general perspective. It is here that the input of this thesis to the
research field starts.

2. Isometries of nilpotent Lie groups

Conjecture 1.1 and the research on isometries of subRiemannian
Carnot groups led us to ask the regularity of isometries on nilpotent
metric Lie groups with non-Riemannian distances. Isometries of a Eu-
clidean space are affine maps with respect to the vector space structure.
If one considers a non-Abelian Lie group, then the corresponding no-
tion would be that a map F between two groups is affine if it is a com-
position of a left-translation and an automorphism. It was established
by [25, 30, 34] that isometries between subRiemannian Carnot groups,
which are special cases of nilpotent metric Lie groups, are affine.

We realised that, using the Gleason–Yamabe–Montgomery–Zippin
structure theory (GYMZ-theory for short), it is possible to establish the
smoothness of isometries for general metric Lie groups. This smooth-
ness we used to deduce that the isometry group of a metric Lie group
may be extended by passing to Riemannian metrics, and finally we



4 VILLE KIVIOJA

showed how this leads to the affiness of isometries between any con-
nected nilpotent metric Lie groups.

In more detail, we first show that the isometry group I of a metric
Lie group (G, d) is a Lie group and that the action I y G is smooth
and has compact stabilisers. Notice that a distance of a metric Lie
group is not assumed to have precompact balls, which is an issue that
needs to be treated to apply GYMZ-theory.

Then, for a connected metric Lie group (G, d), the smoothness of
isometries opens up the possibility of averaging a scalar product over
the compact stabiliser of the identity element to produce a Riemannian
metric g whose isometry group contains the original self-isometries, i.e.,
Iso(G, d) ⊂ Iso(G, g). As a consequence, isometries between two con-
nected metric Lie groups may be regarded as Riemannian isometries:

Theorem 2.1 (with Le Donne, in [A]). If (G1, d1) and (G2, d2) are
connected metric Lie groups, then there exist left-invariant Riemannian
metrics g1 and g2 on G1 and G2, respectively, such that Iso(Gi, di) ⊂
Iso(Gi, gi) for i ∈ {1, 2} and for each isometry F : (G1, d1)→ (G2, d2)
the map F : (G1, g1)→ (G2, g2) is a Riemannian isometry.

The fact that isometries between two nilpotent metric Lie groups are
affine may now be deduced from the work of Wolf on the Riemannian
case. Indeed, Wolf proved in [42, Theorem 4.2] that, for a connected
nilpotent Riemannian Lie groupG, the group of left-translations ofG is
the nilradical of the identity component of I; We generalise this result
to arbitrary left-invariant admissible distances in [A, Theorem 1.2.iii].

Theorem 2.2 (with Le Donne, in [A]). Isometries between connected
nilpotent metric Lie groups are affine.

In particular, we find that the following “isometric version” of Con-
jecture 1.1 is true: if two connected nilpotent Lie groups admit left-
invariant admissible distance functions that make them isometric met-
ric spaces, then they are isomorphic. Also, we understand from The-
orem 2.1 that restricting to Riemannian distances when defining the
isometry relation is not important.

In the results above, we only assume that the Lie groups are con-
nected. In almost everything that follows, we will assume more strongly
that they are simply connected.

2.1. Groups isometric to nilpotent groups. While the regularity
of isometries between connected nilpotent metric Lie groups is so high
that it forces isometries to induce isomorphisms, this was known to
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not hold in much higher generality. For a simple example, consider
the universal covering group of the isometry group of the Euclidean
plane. This group, which we denote by S̃E(2), is a Lie group that
is naturally identified with the manifold R3. Under this identifica-
tion, the Euclidean distance of R3 is left-invariant for the group law of
S̃E(2). Hence the non-Abelian group S̃E(2) can be made isometric to
the Abelian group R3.

The group S̃E(2) is an example of a simply connected solvable Lie
group with polynomial growth, and Breuillard [4] proved in general
that every simply connected solvable Lie group with polynomial growth
can be made isometric to a nilpotent Lie group. This nilpotent group
is its nilshadow, after the work of Auslander and Green and others,
see [2, 14]. This result is in relation with Gromov’s theorem that
finitely generated groups of polynomial growth are quasi-isometric to
nilpotent groups. It was natural to ask then, which are exactly the
groups that can be made isometric to nilpotent groups, or if some
group of polynomial growth might be possible to make isometric to
two different nilpotent groups. Notice that the latter was not ruled out
by Theorem 2.2 since the transitivity of the isometry relation is not
established at this point; we discuss the transitivity more in Section 3.1.
These questions are however answered by the following theorem, which
we already found in [7]. The article [7] is the first version of the
article [B] from 2017, and it was not yet able to treat arbitrary solvable
simply connected Lie groups; we will continue discussing those groups
in Section 3.

Theorem 2.3 (with Cowling, Le Donne, Nicolussi Golo and Ottazzi,
in [B]). Let G1 and G2 be simply connected Lie groups and assume that
G1 is nilpotent. The following are equivalent:

• G1 and G2 can be made isometric;
• G2 is solvable and of polynomial growth, and G1 is its nil-
shadow.

We next discuss briefly the definition of nilshadow; for more details,
see [4, Definition 3.2] or [14]. When g is a solvable Lie algebra, one
can find a vector subspace a complementary to the nilradical n of g
with the property that ads(X)(Y ) = 0 for all X, Y ∈ a. Here ads(X)
denotes the semisimple part in the Jordan decomposition of ad(X). If
πa : g→ a denotes the projection map associated to the decomposition
g = n⊕ a, the nilshadow of g is defined by equipping the vector space
g with a new bracket law

[X, Y ]nil = [X, Y ]− ads(πa(X))(Y ) + ads(πa(Y ))(X)

for all X, Y ∈ g.
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Example 2.4. Consider the Lie algebra g with a basis X1, . . . , X6 and
with the non-trivial bracket relations in this basis given by

[X6, X2] = −X1 , [X6, X3] = −X2 ,

[X6, X4] = X5 , [X6, X5] = −X4 .

This Lie algebra is denoted by gα=0,p=0
6,10 in the classification given in [5].

It may be checked using [29, Theorem 1.4] that the simply connected
Lie group with Lie algebra g has polynomial growth. The nilradical of
g is the Abelian subalgebra span(X1, . . . , X5), and thus we may choose
the complementary subspace a to be span(X6). The non-trivial bracket
relations of the nilshadow are therefore given by

[X6, Xi]nil = [X6, Xi]− ads(X6)(Xi) =





0 for i = 1

−X1 for i = 2

−X2 for i = 3

0 for i = 4

0 for i = 5

The Lie algebra (g, [·, ·]nil) is isomorphic to the direct product of Engel
Lie algebra and R2.

3. Isometries of solvable Lie groups

Several points of view then led us to ask if similar results could be
achieved with less restrictive algebraic structure. On the one hand, it
already follows from the work of Gordon and Wilson [22, Theorems 4.3
and 5.2] that if two simply connected completely solvable Lie groups
can be made isometric, then they are isomorphic. A completely solv-
able Lie group is a solvable Lie group G such that for all X ∈ Lie(G)
the eigenvalues of the map ad(X) are real numbers. In particular,
nilpotent Lie groups are completely solvable. The above consequence
of [22] is the solution of “the isometric version” of the following conjec-
ture.

Conjecture 3.1 (due to Y. Cornulier, see Conjecture 19.113 in [9]). If
two simply connected completely solvable Lie groups are quasi-isometric,
then they are isomorphic.

On the other hand, the work of Jablonski [28] allowed us to define
the real-shadow of a solvable Lie algebra whose construction we out-
line below. The construction associates to every solvable Lie group a
completely solvable Lie group, and it is analogous to the construction
of nilshadow.
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Let g be a solvable Lie algebra and let a and πa be as in the con-
struction of nilshadow. Define a map

ϕa : g→ der(g) ϕa(X) = −adsi(πa(X)) ,

where der(g) denotes the derivation algebra of g and adsi is the part of
ads with purely imaginary eigenvalues, see [33, Section 2.1]. Then

• the graph of ϕa, i.e., Gr(ϕa) = {(X,ϕa(X)) : X ∈ g}, is a
completely solvable subalgebra of go der(g), and
• when the vector space g is equipped with the bracket law

[X, Y ]R = [X, Y ] + ϕa(X)(Y )− ϕa(Y )(X) ,

then the map X 7→ (X,ϕa(X)) is a Lie algebra isomorphism
from (g, [·, ·]R) to Gr(ϕa).

We show in [B] that, with respect to the isometry relation, the real-
shadow plays a similar role within the family of all simply connected
solvable groups as nilshadow does within the family of simply con-
nected solvable groups of polynomial growth. We remark that the
real-shadow of a simply connected solvable Lie group of polynomial
growth is equal to its nilshadow.

Theorem 3.2 (with Cowling, Le Donne, Nicolussi Golo and Ottazzi,
in [B]). Let G1 and G2 be simply connected solvable Lie groups. Then
G1 and G2 can be made isometric if and only if their real-shadows are
isomorphic.

Within the family of simply connected solvable groups, Theorem 3.2
reduces the isometry relations to algebraic questions. This theorem
should be also compared to Theorem 2.3. Together with the added
generality, there are two notable differences:

• Theorem 2.3 did not tell that if two solvable groups of poly-
nomial growth can be made isometric, they need to have the
same nilshadow. Such a conclusion was possible to make from
the later work of Jablonski [28] though.
• Theorem 3.2 does not tell that a group that can be made iso-
metric to a completely solvable group should be solvable. In-
deed, such a statement is false, since by [B, Corollary 3.29]
the universal covering group of SL(2,R) can be made isometric
to the group R × Aff+(R), where Aff+(R) denotes the unique
non-Abelian simply connected Lie group of dimension 2.

We also proved in article [B] that the general study of locally com-
pact connected isometrically homogeneous metric spaces up to quasi-
isometry reduces to simply connected solvable Lie groups with left-
invariant metrics. In particular, this explains why the title of the thesis
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does not mention the assumption of solvability while we concentrate
discussing only solvable groups.

Theorem 3.3 (with Cowling, Le Donne, Nicolussi Golo and Ottazzi,
in [B]). Let (M,d) be a connected locally compact metric space, and
assume that the action of the isometry group of (M,d) is transitive.
Then there is a solvable Lie group S with a left-invariant admissible
distance dS and a rough isometry (M,d)→ (S, dS).

The above result follows when combining Theorem A and Theo-
rem 3.24 of the article [B].

3.1. Transitivity questions. It is worth to notice that Theorem 3.2
implies the transitivity of the isometry relation within the family of
simply connected solvable Lie groups. It remains open if this relation
is transitive for all simply connected Lie groups. Remarkably, there is
an example (due to Y. Cornulier, based on a result of Gordon in [21])
of a triple of non-simply connected Lie groups G1, G2, G3 so that the
pair (G1, G2) can be made isometric, and the pair (G2, G3) can be
made isometric, while the pair (G1, G3) cannot be made isometric. In
this example, which is recalled in [C, Proposition 1.9], the group G2 is
solvable and the groups G1 and G3 are semisimple.

The quasi-isometry relation instead is transitive because all left-
invariant Riemannian distances on a given Lie group are biLipschitz
equivalent. It holds more generally that on a given Lie group all left-
invariant quasi-geodesic distances that have precompact balls (a prop-
erty known as boundedly compact or proper) are quasi-isometric via
the identity map. This explains the asymmetry in the definitions of
the metric relations: it is common to say two Lie groups “are quasi-
isometric” instead of saying that they “can be made quasi-isometric”
since this class of quasi-geodesic boundedly compact distances is con-
sidered somewhat canonical as it contains the Riemannian distances
and also the word distances in case the Lie group admits lattices.

3.2. Applications to low dimension. Theorem 3.2 reduces the ques-
tion of whether two simply connected solvable Lie groups can be made
isometric, to an algebraic problem of determining their real-shadows.
Since the equivalence classes up to the quasi-isometry relation are
unions of the equivalence classes of the isometry relation, there is a po-
tential benefit of this study for the quasi-isometric classification prob-
lem of simply connected solvable Lie groups. It might even turn out
that these relations completely agree withing this family of groups, but
such a statement (being equivalent to Conjecture 3.1) is far from being
established for the time being. In order to make some progress, we
wanted to concretely determine the equivalence classes of the isometry
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relation for some families of low dimension for which the algebraic clas-
sifications are known. For this task, the following result has practical
value.

Theorem 3.4 (with Le Donne and Nicolussi Golo, in [C]). Let H be
a simply connected Lie group and α a derivation of H. Then the Lie
group H oα R can be made isometric to the Lie group H oα0 R, where
α0 = α−αsi where αsi is the part of α that is semisimple and has purely
imaginary eigenvalues (see [33, Section 2.1])

We remark that if H is simply connected and completely solvable,
then such a result implies that H oα0 R is the real-shadow of H oα R.
Consequently, if G1 = H1 oα R and G2 = H2 oβ R are two simply
connected solvable Lie groups, and if the groups H1 and H2 are com-
pletely solvable, then the groups G1 and G2 can be made isometric if
and only if H1 oα0 R and H2 oβ0 R are isomorphic.

The classification of simply connected solvable Lie groups of dimen-
sion 4 with respect to the isometry relation is given below in the no-
tation of [38]. Similar classification for all Lie groups of dimension 3
and less is surveyed in [19].

Theorem 3.5 (with Le Donne and Nicolussi Golo, in [C]). Let G and
H be simply connected solvable Lie groups of dimension 4. If G and
H are both completely solvable, then they can be made isometric if
and only if they are isomorphic. Instead, if at least one of them is not
completely solvable, then they can be made isometric if and only if they
belong to the same set of groups in the following list:

(I) {R4, R× A3,6},
(II) {R× A3,1, A4,10},

(IIIλ) {Aλ,λ4,5 } ∪ {Aa,b4,6 : λ = sign(ab) min(|b/a|, |a/b|)},
(IV) {A1

4,9} ∪ {Aa4,11 : a ∈ ]0,∞[ },
(V) {R× A3,3, A4,12} ∪ {R× Aa3,7 : a ∈ ]0,∞[ },

(VI) {R2 × A2} ∪ {Aa,04,6 : a ∈ R}.

Here (IIIλ) stands for distinct sets depending on parameter λ ∈ R\{0}.
Hence the above list contains 5 sets (2 finite and 3 infinite) and one
family of sets depending an a parameter.

In article [C], we also survey the classification of 5-dimensional sim-
ply connected solvable Lie groups of polynomial growth with respect
to the isometry relation.
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4. Self similar groups

We started discussing nilpotent groups and the groups of polynomial
growth in Section 2 and moved to more general solvable groups in Sec-
tion 3, and we always had the viewpoint of the isometry relation. Now
we go back to study some subfamilies of nilpotent groups, but making
more delicate notes about their metric structures, especially related to
the existence of dilations. Eventually, this leads to the discussion of
quasi-isometries between Heintze groups.

A Carnot group is a simply connected nilpotent Lie group G whose
Lie algebra g admits a Carnot grading (a.k.a. a stratification), i.e., a
decomposition g =

⊕s
k=1 Vk such that Vk+1 = [V1, Vk] for all 1 ≤ k ≤

s − 1, and Vs 6= {0}. Here s is the nilpotency step of G. Carnot
groups may be naturally equipped with subRiemannian distances, and
as such are rich geometric structures with appearances as model spaces
(and tangents) of subRiemannian geometry, as asymptotic cones of
nilpotent groups and in geometric measure theory and other fields of
mathematics; we point the reader to [13] for a list of references and a
more in-depth survey of Carnot groups and their subRiemannian (and
subFinsler) distances.

A Positive grading is the following relaxation of a Carnot grading: a
positive grading is a decomposition g =

⊕
λ>0 Vλ, where the subspaces

Vλ, called layers, are only assumed to satisfy [Vλ, Vλ′ ] ⊂ Vλ+λ′ . A
nilpotent Lie algebra may admit several inequivalent positive gradings
(for the precise notion of equivalence, see Section 4.1), or none at all;
On the contrary, if a Lie algebra admits a Carnot grading, then all
its Carnot gradings are conjugate under automorphisms. If the Lie
algebra of a simply connected nilpotent Lie group G admits a positive
grading, then G is said to be positively gradable.

From the metric geometry point of view, the importance of posi-
tively gradable Lie groups is in the fact that they admit left-invariant
distances with automorphic dilations. In more detail, if G is a pos-
itively gradable Lie group and g =

⊕
λ>0 Vλ is a positive grading

for its Lie algebra, then there is a left-invariant admissible distance
d on G and a homomorphism R+ → Aut(G), t 7→ δt so that for all
t ∈ R+ the map δt is a dilation of factor t, i.e., for all x, y ∈ G it
holds d(δt(x), δt(y)) = td(x, y). Such a homomorphism is constructed
by defining the map δt to be the automorphism with the differential
that acts by multiplication on the layers so that for all λ > 0 we have
X 7→ tλX for all X ∈ Vλ. We omit here the general description of
the distance, see [26]. We remark however that if a positive grading
is indeed a Carnot grading, then the natural subRiemannian distances
admit such families of dilations.
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In a sense, positively gradable Lie groups equipped with such dis-
tances are the most general metric spaces with a dilation structure.
This is made precise by the following result that was also proven al-
ready in the 2017-version of the article [B]. Its proof is based on a
famous theorem of Siebert [41].

Theorem 4.1 (with Cowling, Le Donne, Nicolussi Golo and Ottazzi,
in [B]). Suppose (M,d) is a metric space that is

• locally compact,
• connected,
• isometrically homogeneous, i.e., the group of isometries acts
transitively,
• self-similar, i.e., admits a dilation δ of factor λ for some λ > 1.

Then there is a positively gradable Lie group G with a left-invariant
distance dG and an isometry F : (M,d)→ (G, dG) so that F ◦ δ ◦ F−1
is an automorphism of G. Moreover, every dilation of (G, dG) that
fixes 1G is an automorphism.

Pay attention that a metric space with these assumptions may still
not admit a one-parameter family of dilations, and in such a situation
the distance dG is not of the type defined in [26], see Example 5.7
in [33] and compare to the discussion after Definition 4.3.

The following structure is more refined than a positive grading in a
nilpotent Lie group.

Definition 4.2. A pair (N,α) is a homogeneous group if N is a simply
connected nilpotent Lie group and α is a derivation of N so that for
each eigenvalue λ of α it holds Re(λ) > 0. Further, we say that a
homogeneous group (N,α) is purely real if the eigenvalues of α are real
numbers.

As we shall see later in the discussion preceding Conjecture 4.4 (see
also Theorem 3.2, Theorem 3.4 and Proposition 4.5), for the metric
geometry purposes it is often enough to consider the purely real homo-
geneous groups. We next discuss what kind of a correspondence for a
positively gradable nilpotent Lie group N there is between its positive
gradings and its structures as a purely real homogeneous group.

Consider a positive grading Lie(N) =
⊕

λ>0 Vλ. Equipping N with
the derivation α that acts as multiplication by λ on each layer Vλ,
the pair (N,α) becomes a purely real homogeneous group. We shall
call such α the derivation associated to the positive grading. Con-
versely, given a purely real homogeneous group (N,α), the generalised
eigenspaces of α define an associated positive grading (see, for exam-
ple, [33, Lemma 2.3]). These associations are not inverses of each other
since the derivation associated to a purely real homogeneous group is
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allowed to have a nilpotent part, and this structure is forgotten when
passing to the associated positive grading.

For the structures of homogeneous groups, it is preferable not to use
Riemannian distances but the distances of the following kind.

Definition 4.3. The triple (N,α, ρ) is a homogeneous metric group
if ρ is a left-invariant admissible distance function on N , and for all
λ > 0 it holds ρ(δλx, δλy) = λρ(x, y) for all x, y ∈ N , where δλ is the
automorphism of N with the differential (δλ)∗ = elog(λ)α.

All the distances that make a given homogeneous group into a homo-
geneous metric group are biLipschitz-equivalent (see [C, Remark 1.4]).

In [33, Proposition 4.5] it is proven, based on Theorem 2.2, that if a
nilpotent metric Lie group admits dilations of all factors, then it is a
homogeneous metric group. This result, combined with Theorem 4.1,
characterises the homogeneous metric groups as the only metric spaces
that are connected, locally compact, isometrically homogeneous, and
admit dilations of every factor. This characterisation and Theorem 4.1
may both be compared to the characterisations given in [32, Theo-
rem 1.1] or also [3, Theorem 2]. Regarding these characterisations,
observe that a homogeneous metric group (N,α, ρ) is geodesic if and
only if α is the derivation associated to a Carnot grading of N and ρ
is a subFinsler distance associated to the Carnot grading.

We recall that a Heintze group is a semidirect product G = N oαR,
where N is a simply connected nilpotent Lie group and the structure
of a semidirect product is defined by a derivation α of N so that for
each eigenvalue λ of α it holds Re(λ) > 0. Thus, Heintze groups and
homogeneous groups are in a natural one-to-one correspondence: their
defining data coincide. However, there is actually a deeper geomet-
ric correspondence, and we are going to discuss in Section 4.2 how
homogeneous metric groups appear as (parabolic) visual boundaries of
Heintze groups and thus the first are related to the quasi-isometric clas-
sification of the latter. First we discuss a bit how to find homogeneous
groups, or at least positive gradings.

4.1. Finding the examples of low dimension. Already when study-
ing examples of Carnot groups, one encounters the problem of iden-
tifying Carnot groups from some given list of nilpotent groups. For
this problem, a solution is described by Y. Cornulier [8, Lemma 3.10].
Using it, we wrote down in article [D] a description of an explicit pro-
cedure to find a Carnot grading for a Lie algebra given in terms of
its bracket relations in some basis, or to find that no Carnot grading
exists. The algorithm, described as Algorithm 3.5 in [D] is written in
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a form to be easily implemented by a computer software and we did
such an implementation in [24].

The ability to find Carnot gradings or their non-existence led us to
ask if the same can be done for positive gradings. It turns out to be
possible, but one needs to pay attention what is meant by “finding all
positive gradings”. In particular, one needs to consider a grading either
as a set of layers, or take into account the indexing of the layers over
some group (that in the above was always R). These two notions of
“a grading” give then rise to corresponding notions of equivalence. A
clear study of these concepts is carried out by M. Kochetov in [31] and
we recall it in [D, Section 2.1].

As people from the field of metric geometry Carnot groups and ho-
mogeneous groups might be not familiar with the terminology of [31],
we present the main concepts briefly here to be able to state our main
results clearly. We actually slightly alter the terminology from [31]
and [D], hopefully to achieve added clarity.

By a weak grading (just grading in [31] and in [D]) of a Lie algebra
g we mean a direct sum decomposition g =

⊕
s∈S Vs, where S is a

set and we assume that for all s1, s2 ∈ S there is s3 ∈ S so that
[Vs1 , Vs2 ] ⊂ Vs3 . The weights of the weak grading are the elements of
the set S corresponding to the non-trivial subspaces Vs. If S can be
embedded into an Abelian group A so that the condition

[Vs1 , Vs2 ] ⊂ Vs3 6= {0}

implies s1 + s2 = s3, then g =
⊕

s∈A Vs is called a group grading or an
A-grading, and it is a realisation of the original weak grading. Collo-
quially speaking, for a weak grading the focus is only on the subspaces,
while for a group grading the indexing is considered important. This
slightly vague statement is made precise by defining that two weak
gradings are equivalent if they have the same layers up to automor-
phism of g. Instead, two group gradings over A1 and A2 are group
equivalent if the automorphism induces a map on the weights that is
a restriction of a group isomorphism between A1 and A2.

When one considers a realisation of a weak grading, one adds the
information about the indexing group. A weak grading usually admits
several realisations. It may also admit none at all (see [31, p. 5]), but
we are not interested in these cases. Actually, we will pay attention
only to weak gradings that admit some realisation over a torsion-free
Abelian group.

A weak grading (that admits a realisation over a torsion-free Abelian
group) admits always a universal realisation. It is a Zk-grading for
some k ≥ 1, and it has the property that all other realisations of the
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weak grading can be projected from the universal realisation, collo-
quially speaking. This projection is made precise by the concept of
push-forward grading, for which see [D, Definition 2.5]. All universal
realisations of a given weak grading are group equivalent, hence we may
speak about the universal realisation. A group grading is said to be a
universal grading if it is group equivalent to the universal realisation
of its corresponding weak grading.

Finally, we need to discuss the maximal grading of a given Lie alge-
bra g: It is a group grading that has such a fine layer-structure that all
the universal gradings of g can be found by “combining” some layers of
the maximal grading. The above is again formalised by push-forward
gradings, and one may see [D, Section 2.4] for the precise statements.
Every Lie algebra admits a maximal grading and it is unique up to
group equivalence. Maximal grading is also a universal grading.

It is perhaps time to see some examples to illustrate the concepts
above. Let g be the Lie algebra of the Heisenberg group with the only
non-trivial bracket relation [X, Y ] = Z. There are two obvious weak
gradings:

g = 〈X, Y 〉 ⊕ 〈Z〉 and g = 〈X〉 ⊕ 〈Y 〉 ⊕ 〈Z〉 ,

where angle brackets denote the linear spans. The first one of these
has a realisation over Z by V1 = 〈X, Y 〉 and V2 = 〈Z〉, and this group
grading is actually the universal realisation of the weak grading. For
the latter one of the weak gradings we might consider the realisation

(I) over Z by V1 = 〈X〉, V2 = 〈Y 〉 and V3 = 〈Z〉.
(II) over Z by V2 = 〈X〉, V4 = 〈Y 〉 and V6 = 〈Z〉.
(III) over Z by V1 = 〈X〉, V−1 = 〈Y 〉 and V0 = 〈Z〉.
(IV) over Z2 by V(1,0) = 〈X〉, V(0,1) = 〈Y 〉 and V(1,1) = 〈Z〉.

The group gradings (I) and (II) are group equivalent. The group grad-
ing (IV) is the universal realisation of the weak grading under con-
sideration, and the group grading (IV) is actually a maximal grading
of g. The group gradings (I) and (II) are positive gradings, while (III)
and (IV) are not. In this terminology, a positive grading is a grading
over a subgroup of R with all the weights required to lay on the open
interval ]0,∞[. The positive gradings (I) and (II) can be “projected”
(using push-forwards) from the group grading (IV).

If one wants to find all the positive gradings of a given Lie algebra g
up to group equivalence, there are three main steps to take in prac-
tice: (1) find all the weak gradings of g, (2) determine which of the
weak gradings admit realisations as positive gradings, and (3) find all
inequivalent positive realisations for those weak gradings.
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A strategy for the task of finding all weak gradings is outlined in [31]:
if one is able to find a maximal grading for the Lie algebra, then it is
possible to extract a complete list of universal gradings (up to group
equivalence) for a given Lie algebra and such a list will be finite. Notice
that weak gradings and universal gradings are in one-to-one correspon-
dence. In turn, maximal gradings can be constructed using maximal
split tori, this is again shown by Cornulier, see [8, Proposition 3.20],
and thus step (1) may be preformed. From such a list of universal
gradings, one can use the observations in [8, Proposition 3.22] to find
which of the weak gradings in the finite list admit realisations as pos-
itive gradings, thus solving step (2). In step (3), given a weak grad-
ing that admits some realisation as a positive grading, one needs to
parametrise all the projections to R from the corresponding universal
grading and figure out which, if any, of them produce positive gradings.
Finally, one needs to find out which of the positive gradings are group
equivalent.

Using all this previous work, in [D] we described explicitly the full
procedure of executing the steps (1) and (2) above. Namely, we de-
scribed the construction of a maximal grading and the process of find-
ing then all universal gradings that a given Lie algebra has, and finally
we made it explicit how to find those universal gradings with realisa-
tions as positive gradings. We refer to Section 3.2, Section 3.3 and
Appendix A of [D]. A computer implementation is written in [24],
and using the implementation we explicitly list all universal realisa-
tions of gradings of all nilpotent Lie algebras of dimension 6 using the
classification given in [12]. We do the same for a representative list of
nilpotent Lie algebras up to dimension 7 using the classification of [20].
Because in dimension 7 there are one parameter families of nilpotent
Lie algebras, it was not convenient to treat all of them, but we con-
sidered some representative set of parameter values, see more in [D,
Section 4.2]. All these lists of gradings are presented in [24].

The above results make it possible to directly find all positive grad-
ings for a given nilpotent Lie algebra g. We leave open the question
of finding all the structures of g as a homogeneous group; This would
mean describing not only all possible positive gradings of g, but also all
the possible derivations that have a particular positive grading as its
decomposition to generalised eigenspaces, i.e., finding all the possible
nilpotent parts.

4.2. Boundaries of Heintze groups. The quasi-isometric classifi-
cation of Heintze groups is one of the most active subareas of the
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quasi-isometric classification of Lie groups. From the research pre-
sented above, we arrive naturally to the quasi-isometric classification
problem of Heintze groups for two reasons.

First, it has been known for a while (see [9]) that every Heintze group
is quasi-isometric to a purely real Heintze group. Our results about
isometries between solvable groups introduced in Section 3 prove the
stronger statement that every Heintze group can be made isometric to
a purely real Heintze group, although this seems to be known due to
the results of [1]. The important remaining conjecture on the area of
quasi-isometric classification of Heintze groups is the following.

Conjecture 4.4. If two purely real Heintze groups are quasi-isometric,
then they are isomorphic.

Second, the parabolic visual boundaries of Heintze groups are ho-
mogeneous groups; We shall present this well known relation explic-
itly below. It is also well known that the quasi-isometries between
Heintze groups induce biLipschitz-maps to the homogeneous groups
on the boundary, see Proposition 4.5. Thus, we end up considering
again distances of nilpotent groups, as we did in Section 2. One needs
to pay attention that as the homogeneous metric groups are not usually
geodesic, their distances do not belong to the quasi-isometry equiva-
lence class of Riemannian distances. However, as we show in Theorem
4.6, if a biLipschitz map exists between some homogeneous distances,
then a quasi-isometry exists for all left-invariant Riemannian distances.

There is a link here to the Section 2, namely the analogy between
Conjecture 4.4 and Conjecture 1.1. Remark that a possible answer to
the validity of 4.4 does not tell the validity of Conjecture 1.1, or vice
versa. However, an immediate consequence of Theorem 4.6 is that the
validity of Conjecture 1.1 would imply that two quasi-isometric purely
real Heintze groups have isomorphic nilradicals. Recall also that both
Conjecture 1.1 and Conjecture 4.4 are special cases of the more general
Conjecture 3.1.

Homogeneous distances on the boundary. A Heintze group G = NoαR
may always be equipped with a left-invariant Riemannian metric g
for which N × {0} and {1N} × R are orthogonal and the maximum
of sectional curvatures is −1. Denoting by dg the distance function
induced by such a metric tensor g, we shall show that the parabolic
visual boundary of (G, dg) may be identified with the Lie group N and
that, under such an identification, N inherits a homogeneous distance.
The result is well known, we only record it here for completeness.

The vertical line with the support {1N} × R is length minimising
between any of its points. Indeed, by orthogonality of R and N , every
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path with a non-trivial component of its derivative on T1NN ×{0} will
have a non-zero contribution to its length-integral coming from this
component. Hence, using also the left-invariance of the distance, we
deduce that there is some λ > 0 so that all the curves of the form s 7→
(n, λs), where n ∈ N , are isometric embeddings. Let ξ : [0,∞[ → G
be the curve s 7→ (1N , λs). We may follow [27, p. 384] and define the
parabolic visual boundary of (G, dg), denoted by ∂∞(G, dg), to be the
set of isometric embeddings γ : R→ (G, dg) that satisfy

lim
s→∞

dg(γ(s), ξ(s)) = 0 . (1)

The parabolic visual boundary is then equipped with so called Hamen-
städt distance

d(σ, γ) = exp(−1
2

lim
s→∞

(2s− dg(σ(−s), γ(−s)))) .

Next we argue how the Lie groupN may be identified with ∂∞(G, dg).
For one direction, to each element n ∈ N we associate the infinite ge-
odesic γ(s) = (n, λs). For this to be well defined, one needs to verify
the condition (1). Using the group law of the semidirect product and
the left-invariance of g, and denoting by ϕs the automorphism of N
with differential esα, we may calculate for any s0 ∈ R that

lim
s→∞

dg((n, λs+ s0), (1N , λs)) = lim
s→∞

dg((1N , λs) ∗ (ϕ−λsn, s0), (1N , λs))

= lim
s→∞

dg(((ϕ−λsn, s0), (1N , 0))

= dg((1N , s0), (1N , 0)) = s0/λ . (2)

In particular, putting s0 = 0, the curve γ satisfies (1).
For the other direction, we consider γ ∈ ∂∞(G, dg) and denote by

(n, s0) ∈ N oα R the point γ(0). If we can show s0 = 0, i.e., γ(0) ∈
N × {0}, then we have a natural map ∂∞(G, dg) → N . Let σ be the
infinite geodesic s 7→ (n, λs + s0). First, the computation (2) shows
that

lim
s→∞

d(σ(s), ξ(s)) = s0/λ .

We find

0 ≤ lim
s→∞

d(σ(s), γ(s)) ≤ lim
s→∞

d(σ(s), ξ(s)) + lim
s→∞

d(ξ(s), γ(s)) ≤ s0/λ .

Thus the triangle formed by the points γ(0) = σ(0), σ(s) and γ(s) has
two sides of length s and one at most s0/λ. Because the space (G, dg)
is CAT(−1) and s can be taken arbitrarily large, the triangle has to
be degenerate, i.e., γ = σ.

Using the correspondence above, we see d as an admissible left-
invariant distance function on N (for admissibility, [33, Theorem A]
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can be used). A computation analogous to (2) gives

d(ϕtn, ϕtn
′) = exp(−1

2
lim
s→∞

(2s− dg((ϕtn,−λs), (ϕtn′,−λs))))
= exp(−1

2
lim
s→∞

(2s− dg((1N , t) ∗ (n,−λs− t), (1N , t) ∗ (n′,−λs− t))))
= exp(−1

2
lim
s→∞

(2s− dg((n,−λs− t), (n′,−λs− t))))
= exp(−1

2
lim
h→∞

(2(h− t/λ)− dg((n,−λh), (n′,−λh))))

= et/λ exp(−1
2

lim
h→∞

(2h− dg((n,−λh), (n′,−λh))))

= et/λd(n, n′) .

Notice that by writing ψt = ϕlog(t) for t > 0 we got the formula
d(ψtn, ψtn

′) = t1/λd(n, n′) for all n, n′ ∈ N . Moreover, defining δt = ψtλ
the differentials satisfy (δt)∗ = (ψtλ)∗ = eλ log(t)α, and thus δt is the one-
parameter subgroup of automorphisms associated to the derivation λα
and we have d(δtn, δtn

′) = td(n, n′) for all n, n′ ∈ N . We thus proved
that under the identification of N with the parabolic visual boundary,
the Hamenstädt distance makes (N, λα) into a homogeneous metric
group.

4.3. Quasi-isometric invariants for Heintze groups. When at-
tacking Conjecture 4.4, one may always do the analysis in the level
of parabolic visual boundaries; This is demonstrated by the following
well known fact for which the references are recorded in [6, p. 6], see
also [C, Proposition 1.5].

Proposition 4.5. Let (N1, α) and (N2, β) be homogeneous groups.
Then Heintze groups N1 oα R and N2 oβ R are quasi-isometric if and
only if there exists λ1, λ2 > 0 so that (N1, λ1α) and (N2, λ2β) are biLip-
schitz equivalent.

Inspired by the results and ideas of [6], we proved in article [C] the
following theorem.

Theorem 4.6 (with Le Donne and Nicolussi Golo, in [C]). Let (N1, α)
and (N2, β) be purely real homogeneous groups that are biLipschitz
equivalent. Then N1 and N2 are quasi-isometric as Riemannian Lie
groups. As a consequence, the associated Carnot groups of N1 and N2

are isomorphic by [37].

The last conclusion in the above theorem is a strong algebraic simi-
larity between N1 and N2. It implies for example that the nilpotency
steps of N1 and N2 agree. In particular, if N1 is Abelian, then N2 must
also be Abelian; This observation completes, in a sense, the quasi-
isometric classification of Heintze groups with Abelian nilradicals due
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to X. Xie. Namely, it is proven in [43] that if two purely real Heintze
groups with Abelian nilradicals are quasi-isometric, then the Jordan-
forms of the associated derivations must agree up to scalar multiple,
and hence the two Heintze groups are isomorphic. With Theorem 4.6
we rule out the possibility that there could exist a quasi-isometry be-
tween two Heintze groups out of which only one has Abelian nilradical.

Since quasi-isometries of Heintze groups correspond to biLipschitz
maps of homogeneous group as in Proposition 4.5, then biLipschitz in-
variants can be used to get information about quasi-isometries. How-
ever, it is a priori non-trivial which biLipschitz invariants are practi-
cally computable and hence useful. One invariant that we investigated
is the set of those points that can be reached by curves starting from
the identity element and having Hausdorff-dimension less or equal to
s, for some fixed s ≥ 1 (notice that curves have always Hausdorff-
dimension at least 1). Formally, when (N,α) is a homogeneous group,
we denote

R(s) = {γ(1) : γ ∈ C0([0, 1], N), γ(0) = 1N , H-dim(γ([0, 1])) ≤ s} .

The method to compute this set algebraically, and hence practically,
should not come as a surprise, although it is likely a new result. Such
a set may be computed as the subgroup of N , denoted by (N,α)(s),
corresponding to the subalgebra LieSpan(

⊕
0<λ≤s Vλ). Here Lie(N) =⊕

λ>0 Vλ is the decomposition of Lie(N) by the generalised eigenspaces
of the derivation α.

Theorem 4.7 (with Le Donne and Nicolussi Golo, in [C]). Let (N,α)
be a purely real homogeneous group. Then R(s) = (N,α)(s) for every
s ≥ 1.

We give examples of the usefulness of this result in Section 2.3 of
article [C]. The Examples 2.3 and 2.6 in [C] illustrate the situation
where these new invariants are not enough but more refined invariants
need to be found.
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Abstract. We consider Lie groups equipped with arbitrary distances. We only
assume that the distances are left-invariant and induce the manifold topology. For
brevity, we call such objects metric Lie groups. Apart from Riemannian Lie groups,
distinguished examples are sub-Riemannian Lie groups, homogeneous groups, and,
in particular, Carnot groups equipped with Carnot–Carathéodory distances. We
study the regularity of isometries, i.e., distance-preserving homeomorphisms. Our
first result is the analyticity of such maps between metric Lie groups. The second
result is that if two metric Lie groups are connected and nilpotent then every isome-
try between the groups is the composition of a left translation and an isomorphism.
There are counterexamples if one does not assume the groups to be either connected
or nilpotent. The first result is based on a solution of the Hilbert’s fifth problem by
Montgomery and Zippin. The second result is proved, via the first result, reducing
the problem to the Riemannian case, which was essentially solved by Wolf.
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1. Introduction

In this paper, with the term metric Lie group we mean a Lie group equipped with a
left-invariant distance that induces the manifold topology. An isometry is a distance-
preserving bijection. Hence, a priori it is only a homeomorphism. As a general fact
we show the following regularity result.

Theorem 1.1. Isometries between metric Lie groups are analytic maps.

We say that a map between groups is affine if it is the composition of a left transla-
tion and a group homomorphism. For nilpotent groups we have the following stronger
result.

Theorem 1.2. Isometries between nilpotent connected metric Lie groups are affine.

In particular we have that

[1.2.i] two isometric nilpotent connected metric Lie groups are isomorphic;
[1.2.ii] given a connected metric Lie group N , its isometry group Isom(N), which

always is a Lie group, is a semidirect product if N is nilpotent. Namely,

Isom(N) = N o AutIsom(N),

where N is seen inside Isom(N) as left translations and AutIsom(N) denotes
the group of automorphisms of N that are isometries.

Moreover, with the above notation, we have

[1.2.iii] N is a maximal connected nilpotent subgroup of Isom(N) and the Lie algebra
of N is the nilradical of the Lie algebra of Isom(N), see Section 3.2.

Theorem 1.2 is a generalization of previous results. On the one hand, in the case
of nilpotent Lie groups equipped with left-invariant Riemannian distances the result
is essentially known from the work of Wolf, see [Wol63, Wil82] and Remark 3.3. On
the other hand, Theorem 1.2 has been shown in the case of Carnot groups equipped
with Carnot–Carathéodory distances, see [Pan89, Ham90, Kis03, LO16]. In fact our
strategy of proofs is built on both [Wol63] and [LO16].

Examples of groups not considered before are sub-Riemannian, and more generally
sub-Finsler, groups that are not Carnot groups (i.e., the sub-Riemannian structure
is not coming from the first layer of a stratification), together with their subgroups,
and their snowflakes. Other examples are given by the Heisenberg group equipped
with the Korányi gauge and, more generally, by any other homogeneous group (in
the sense of Folland and Stein), i.e., a graded group equipped with a homogeneous
norm, see more in [LN16, LR17].

We remark that both assumptions ‘connectedness’ and ‘nilpotency’ are necessary for
Theorem 1.2 to hold. In this respect in Section 4 we provide some counterexamples.
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The large-scale analogue of Theorem 1.2 is a challenging open problem that has
raised a lot of attention since the papers of Pansu and Shalom [Pan89, Sha04]. What
is expected is that if two finitely generated nilpotent groups are torsion-free, then
every quasi-isometry between them induces an isomorphism between their Malcev
completions. The quasi-isometric classification of locally compact groups is also a
very active area, see the (quasi-)survey [Cor15].

We spend the rest of the introduction to explain the strategy of the proofs of
the two theorems and the structure of the paper. To study isometries between two
metric Lie groups, we first treat the case when the two groups are the same, i.e., they
are isometric via a Lie group isomorphism. If M is a connected metric Lie group,
we consider its isometry group G, that is, the set of self-isometries of M equipped
with the composition rule and the compact-open topology. Hence, the group G acts
continuously, transitively and by isometries on M . It is crucial that G is a locally
compact group. This latter fact follows from Ascoli–Arzelà Theorem but it needs
some argument since closed balls are not necessarily assumed to be compact. At this
point, the theory of locally compact groups, [MZ74], provides a Lie group structure
on G such that the action GyM is smooth, see Section 2.1.

Assume that M1,M2 are metric Lie groups and F : M1 → M2 is an isometry. We
consider the above-mentioned Lie group structures on the respective isometry groups
G1, G2. The conjugation by F provides a map from G1 to G2 that is a continuous
homomorphism between Lie groups, hence it is analytic. This observation will give
the conclusion of the proof of Theorem 1.1, see Section 2.2.

An important consequence of Theorem 1.1 is that every isometry between metric Lie
groups can be seen as a Riemannian isometry. Namely, for every map F : M1 → M2

as above there are Riemannian left-invariant structures g1, g2 such that F : (M1, g1)→
(M2, g2) is a Riemannian isometry, see Proposition 2.4. Of a separate interest is the
fact that the Riemannian structures can be chosen independently of F . Together
with Wolf’s study of nilpotent Riemannian Lie groups, Theorem 1.2 and the other
statements now follow.

We also show that if M is a group equipped with a left-invariant distance, then its
isometries are affine if and only if its isometry group G splits as semi-direct product

G = M o Stab1(G),

where Stab1(G) is the set of isometries fixing the identity element 1 of M . We provide
the simple proof in Lemma 3.2.

Acknowledgement. The authors thank M. Jablonski, A. Ottazzi, P. Petersen, and the
referee for helpful discussions. In particular, Remark 3.3 is due to the referee. E.L.D.
acknowledges the support of the Academy of Finland project no. 288501.
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2. Regularity of isometries

2.1. Lie group structure of isometry groups. The first aim of this section is to
show that the isometry group of a metric Lie group is a Lie group. Such a fact is
a consequence of the solution of the Hilbert’s fifth problem by Montgomery–Zippin,
together with the observation that the isometry group is locally compact. This latter
property follows by Ascoli–Arzelà Theorem.

We stress that a metric Lie group (M,d) may not be boundedly compact. Namely,
the closed balls B̄d(1M , r) := {p ∈ M : d(p, 1M) ≤ r} with respect to d may not be
compact. For example, this is the case for the distance min{dE, 1} on R, where dE
denotes the Euclidean distance.

Remark 2.1. If (M,d) is a connected metric Lie group, then there exists a distance ρ
such that (M,ρ) is a metric Lie group that is boundedly compact and Isom(M,d) ⊆
Isom(M,ρ). Indeed, since the topology induced by d is the manifold topology, then
there exists some r0 > 0 such that B̄d(1M , r0) is compact. Then we can consider the
distance

ρ(p, q) := inf{
k∑

i=1

d(pi−1, pi) : k ∈ N, pi ∈M, p0 = p, pk = q, d(pi−1, pi) ≤ r0}.

Once can check that (M,ρ) is a metric Lie group, for all r > 0 the set B̄ρ(1M , r) is
compact, and Isom(M,d) ⊆ Isom(M,ρ).

Let us clarify now why the isometry group of a connected metric Lie group is
locally compact, which was not justified in [LO16]. With the terminology of Re-
mark 2.1 the stabilizer S of 1 in Isom(M,d) is a closed subgroup of the stabilizer
Sρ of 1 in Isom(M,ρ). Furthermore, for any r > 0 and f ∈ Sρ we have that
f(B̄ρ(1, r)) = B̄ρ(1, r), which is compact. Hence, the maps from S restricted to
B̄(1, r) form an equi-uniformly continuous and pointwise precompact family. Ascoli–
Arzelà Theorem implies that Sρ is compact, being also closed in C0(M,M). Con-
sequently, S is compact and because M is locally compact, then also Isom(G, d) is
locally compact. At this point we are allowed to use the theory of locally compact
groups after Gleason–Montgomery–Zippin [MZ74]. In fact, the argument in [LO16,
Proposition 4.5] concludes the proof of the following result.

Proposition 2.2. Let M be a metric Lie group with isometry group G. Assume that
M is connected.

(1) The stabilizers of the action GyM are compact.
(2) The topological group G is a Lie group (finite dimensional and with finitely

many connected components) acting analytically on M .

Remark 2.3. The assumption of M being connected in Proposition 2.2 is necessary.
Indeed, one can take as a counterexample the group Z with the discrete distance.
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2.2. Proof of smoothness. With the use of Proposition 2.2, we give the proof of
the analyticity of isometries (Theorem 1.1). We remark that in the Riemannian
setting the classical result of Myers and Steenrod gives smoothness of isometries, see
[MS39], and more generally [CL16]. However, the following proof is different in spirit
and, nonetheless, it will imply (see Proposition 2.4) that such metric isometries are
Riemannian isometries for some Riemannian structures.

Proof of Theorem 1.1. Let F : M1 → M2 be an isometry between metric Lie groups.
Without loss of generality we may assume that F (1M1) = 1M2 and that both M1

and M2 are connected, since left translations are analytic isometries and connected
components of identity elements are open. By Proposition 2.2, for i ∈ {1, 2}, the space
Gi := Isom(Mi) is a Lie group. The map CF : G1 → G2 defined as I 7→ F ◦ I ◦ F−1

is a group isomorphism that is continuous, see [Are46, Theorem 4]. Hence, the map
CF is analytic, see [Hel01, p. 117, Theorem 2.6].

Consider also the inclusion ι : M1 → G1, m 7→ Lm, which is analytic being a
continuous homomorphism, and the orbit map σ : G2 → M2, I 7→ I(1M2), which is
analytic since the action is analytic (Proposition 2.2). We deduce that σ ◦ CF ◦ ι is
analytic. We claim that this map is F . Indeed, for any m ∈M1 it holds

(σ ◦ CF ◦ ι)(m) = σ(F ◦ Lm ◦ F−1) = (F ◦ Lm ◦ F−1)(1M2) = F (m). �

2.3. Isometries as Riemannian isometries. We show next that isometries be-
tween metric Lie groups are actually Riemannian isometries for some left-invariant
structures. Let us point out that when M is a Lie group and g is a left-invariant Rie-
mannian metric tensor on g, then one has an induced Riemannian distance dg and,
by the theorem of Myers and Steenrod [MS39], the group Isom(M,dg) of distance-
preserving bijections coincides with the group Isom(M, g) of tensor-preserving diffeo-
morphisms. In what follows we shall write (M, g) to denote the metric Lie group
(M,dg).

Proposition 2.4. If (M1, d1) and (M2, d2) are connected metric Lie groups, then there
exists left-invariant Riemannian metrics g1 and g2 on M1 and M2, respectively, such
that Isom(Mi, di) ⊆ Isom(Mi, gi) for i ∈ {1, 2} and for all isometries F : (M1, d1) →
(M2, d2) the map F : (M1, g1)→ (M2, g2) is a Riemannian isometry.

Let us first deal with the case (M1, d1) = (M2, d2).

Lemma 2.5. If (M,d) is a connected metric Lie group, then there is a Riemannian
metric g such that Isom(M,d) ⊆ Isom(M, g).

Proof of Lemma 2.5. Fix a scalar product 〈〈·, ·〉〉 on the tangent space T1M at the
identity 1 of M . From Proposition 2.2, the stabilizer S of 1 in Isom(M,d) is compact
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and acts smoothly on M . Let µS be the probability Haar measure on S. Consider
for v, w ∈ T1M

〈v, w〉 :=
∫

S
〈〈dFv, dFw〉〉dµS(F ).

Then 〈·, ·〉 defines an S-invariant scalar product on T1M , and one can take g as the
left-invariant Riemannian metric that coincides with 〈·, ·〉 at the identity. �

Proof of Proposition 2.4. By Lemma 2.5 let g2 be a Riemannian metric on M2 with

(2.6) Isom(M2, d2) ⊆ Isom(M2, g2).

Fix F : (M1, d1)→ (M2, d2) an isometry. By Theorem 1.1 the map F is smooth, and
we may define a Riemannian metric on M1 by g1 := F ∗g2. There are two things
to check: a) Isom(M1, d1) ⊆ Isom(M1, g1), which in particular gives that g1 is left-
invariant and b) every isometry H : (M1, d1)→ (M2, d2) is an isometry of Riemannian
manifolds.

For part a, since by construction F is also a Riemannian isometry, the map I 7→ F ◦
I◦F−1 is a bijection between Isom(M1, d1) and Isom(M2, d2) and between Isom(M1, g1)
and Isom(M2, g2). Therefore the inclusion (2.6) implies the inclusion Isom(M1, d1) ⊆
Isom(M1, g1).

For part b, since H ◦ F−1 ∈ Isom(M2, d2) ⊆ Isom(M2, g2), then (H ◦ F−1)∗g2 = g2.
Consequently, we get H∗g2 = F ∗(H ◦ F−1)∗g2 = g1. �

3. Affine decomposition

3.1. Preliminary lemmas. Given a group M we denote by ML the group of left
translations on M . The following two results make sense in the settings of groups
equipped with left-invariant distances. We call such groups metric groups.

Lemma 3.1. Let M1 and M2 be metric groups. Suppose F : M1 →M2 is an isometry
and F ◦ML

1 ◦ F−1 = ML
2 . Then F is affine.

Proof. Up to precomposing with a translation, we assume that F (1M1) = 1M2 . So
we want to prove that F is an isomorphism. The map CF : Isom(M1) → Isom(M2),
I 7→ F ◦I◦F−1, is an isomorphism and by assumption it gives an isomorphism between
ML

1 and ML
2 . We claim that F is the same isomorphism when identifying Mi with

ML
i . Namely, we want to show that for all m ∈ M1 we have LF (m) = CF (Lm). By

assumption for all m1 ∈ M1 exists m2 ∈ M2 such that Lm2 = CF (Lm1). Evaluating
at 1M2 , we get

m2 = Lm2(1M2) = CF (Lm1)(1M2) = F (Lm1(F
−1(1M2))) = F (m1). �

With the next result we clarify that the condition of self-isometries being affine is
equivalent to left translations being a normal subgroup of the group of isometries.
Equivalently, we have a semi-direct product decomposition of the isometry group.
Namely, given a metric group M and denoting by G the isometry group and by
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Stab1(G) the stabilizer of the identity element, we have that M has affine isometries
if and only if G = ML o Stab1(G). We denote by Aff(M) the group of affine maps
from M to M and by Aut(M) the group of automorphisms of M .

Lemma 3.2. Let M be a metric group with isometry group G. Then the following
are equivalent:

(a) ML C G, i.e., F ◦ML ◦ F−1 = ML, for all F ∈ G;
(b) G < Aff(M);
(c) Stab1(G) < Aut(M);
(d) G = ML o Stab1(G);
(e) G = ML o (G ∩ Aut(M)).

Proof. Property (a) implies (b) by Lemma 3.1. Regarding the fact that (b) implies
(a), consider a map F ∈ G, which we know is of the form F = τ ◦ Φ with τ ∈ ML

and Φ ∈ Aut(M). For all p ∈M we get

F ◦ Lp ◦ F−1 = (τ ◦ Φ) ◦ Lp ◦ (τ ◦ Φ)−1

= τ ◦ Φ ◦ Lp ◦ Φ−1 ◦ τ−1

= τ ◦ LΦ(p) ◦ Φ ◦ Φ−1 ◦ τ−1

= τ ◦ LΦ(p) ◦ τ−1 ∈ML,

which gives ML C G.

The equivalence of (b) with (c) is trivial. The equivalence of (a) with (d) follows
from the facts ML · Stab1(G) = G and ML ∩ Stab1(G) = {id}. Finally, (e) implies
(d), and (e) is implied by (d) together with (c). �
Remark 3.3. As said in the introduction, Theorem 1.2 is essentially due to Wolf in the
Riemannian setting. Indeed, in [Wol63, p. 278, Theorem 4.2] he proved the semi-direct
product decomposition of the isometry group of a Riemannian nilpotent Lie group,
which is equivalent to self-isometries being affine, as in the lemma above. To conclude
that an isometry F : N1 → N2 between Riemannian nilpotent Lie groups is affine one
considers the self-isometry of the product N1×N2 given by (n,m) 7→ (F−1(m), F (n)).
Also, one can check that the proof of [Wil82, Theorem 3] gives the same result.

3.2. Theorem 1.2 from Proposition 2.4. For every Riemannian nilpotent Lie
group Wolf proved a characterization of the group inside its isometry group. In fact,
he described the nilpotent group as the nilradical of its isometry group. We shall
give the same characterization in the general setting. We introduce some terminology
inspired by [Wol63, Wil82, GW88].

Definition 3.4 (Nilradical condition). Let g be a Lie algebra. The nilradical of g,
denoted by nil(g), is the largest nilpotent ideal of g. We say that a connected metric
Lie group N with isometry group Isom(N) satisfies the nilradical condition if it holds

(3.5) Lie(NL) = nil(Lie(Isom(N))).
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Clearly, a metric Lie group N can satisfy the nilradical condition only if it is
nilpotent. The nilradical of a Lie algebra g can also be defined as the sum of all
nilpotent ideals of g, see [HN12, Definition 5.2.10].

Remark 3.6. The nilradical condition is satisfied by Riemannian nilpotent Lie groups,
where the distance is induced by a left-invariant metric tensor. Such a result was
proved by Wolf [Wol63, p. 278, Theorem 4.2], see also [Wil82, p. 341 Theorem 2].
Actually, Wolf proved the stronger statement that such a group N is a maximal
connected nilpotent subgroup inside Isom(N), which implies the nilradical condition
since NL C Isom(N). Clearly, there may be several maximal connected nilpotent
subgroups inside Isom(N).

The nilradical condition is an algebraic characterization of the Lie algebra of a
nilpotent metric Lie group inside the Lie algebra of its isometry group. Hence, by
Lemma 3.1 it is clear that if two connected metric Lie groups N1 and N2 satisfy
the nilradical condition (3.5), then any isometry F : N1 → N2 is affine. Indeed, the
map I 7→ F ◦ I ◦ F−1 induces a Lie algebra isomorphism between Lie(Isom(N1)) and
Lie(Isom(N2)), and therefore, since the exponential map is surjective, one concludes
that the map sends NL

1 to NL
2 .

We also mention that the work of Wolf, together with the work of Gordon and
Wilson, is one of the initial steps in the study of (Riemannian) nilmanifolds, solv-
manifolds, and homogeneous Ricci solitons, see [GW88, Jab15a, Jab15b].

Proof of Theorem 1.2. Let F : (N1, d1)→ (N2, d2) be an isometry between two nilpo-
tent connected metric Lie groups. By Proposition 2.4 for i ∈ {1, 2} there exist left-
invariant metric tensors gi on Ni such that F : (N1, g1) → (N2, g2) is a Riemannian
isometry. By Remark 3.3, the map F is affine. In particular, we have [1.2.i].

Because of Lemma 3.2 we also deduce that the isometry group of a nilpotent con-
nected metric Lie group N has the semi-direct product decomposition [1.2.ii]. Re-
garding [1.2.iii], given such a group N we use again Proposition 2.4 and have that
N ⊆ Isom(N) ⊆ Isom(N, g), for some left-invariant metric tensor g on N . By Re-
mark 3.6, the group NL is a maximal connected nilpotent subgroup inside Isom(N, g),
thus also inside Isom(N). Since from [1.2.ii] we have NL C Isom(N), so Lie(NL) is
an ideal of Lie(Isom(N)). Thus, by the maximalitity of N , we deduce the nilradical
condition (3.5). �

4. Examples for the sharpness of the assumptions

In this section we provide several examples to illustrate the sharpness of the as-
sumptions in Theorem 1.2. Namely, we show that if one of the groups is not assumed
connected and nilpotent then there may be isometries that are not affine.

Regarding the connectedness assumption, there are examples of Abelian metric Lie
groups with finitely many components for which some isometries are not affine. One of
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the simplest examples is the subgroup of C consisting of the four points {1, i,−1,−i}
equipped with the discrete distance. Here every permutation is an isometry. However,
any automorphism needs to fix −1, since it is the only point of order 2.

Regarding the nilpotent assumption, there are both compact and non-compact
examples. We remark that in any group equipped with a bi-invariant distance the
involution is an isometry. Consequently, every compact group admits a distance for
which the involution is an isometry. Such a map is a group isomorphism only if the
group is Abelian. Nonetheless, we point out the following fact which is a consequence
of the work of Baum–Browder and Ochiai–Takahashi, see [BB65, OT76] and also
[Sch68, HK85].

Corollary 4.1. Let G1, G2 be connected compact simple metric Lie groups. If F : G1 →
G2 is an isometry, then G1 and G2 are isomorphic as Lie groups. If, moreover, G1, G2

are the same metric Lie group and F is homotopic to the identity map via isometries,
then F is affine.

We point out that there exist examples of pairs of metric Lie groups that are
isomorphic as Lie groups and are isometric, but are not isomorphic as metric Lie
groups: an example is the rototranslation group (see below) with different Euclidean
distances.

Other interesting results for isometries between compact groups can be found in
[Oze77] and [Gor80].

The conclusion of Corollary 4.1 may not hold for arbitrary connected metric Lie
groups. In fact, we recall the following example, due to Milnor [Mil76, Corollary 4.8],
of a group that is solvable and isometric to the Euclidean 3-space. Let G be the
universal cover of the group of orientation-preserving isometries of the Euclidean
plane, which is also called the rototranslation group. Such a group admits coordinates
making it diffeomorphic to R3 with the product



x
y
z


 ·



x′

y′

z′


 =




cos z − sin z 0
sin z cos z 0

0 0 1






x′

y′

z′


 +



x
y
z


 .

In these coordinates, the Euclidean metric is left-invariant. On the one hand, one
can check that the isometries that are also automorphisms of G form a 1-dimensional
space. On the other hand, the isometries fixing the identity element and homotopic to
the identity map form a group isomorphic to SO(3). Hence, we conclude that not all
such isometries are affine. Moreover, this group gives an example of a non-nilpotent
metric Lie group isometric (but not isomorphic) to a nilpotent connected metric Lie
group, namely the Euclidean 3-space.

Notice that also the Riemannian metric with orthonormal frame ∂x, ∂y, 2∂z gives
a left-invariant structure on G, which is isometric to the previous one, but there is
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no isometric automorphism between the two structures. Hence, these spaces are not
isomorphic as metric Lie groups.

A further study of metric Lie groups isometric to nilpotent metric Lie groups can be
found in [CKL+]. In the simply connected case, such groups are exactly the solvable
groups of type R.

We finally recall another example. The unit disc in the plane admits a group
structure that makes the hyperbolic distance left-invariant. In this metric Lie group
not all isometries are affine.
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Abstract. We study homogeneous metric spaces, by which we mean connected, lo-
cally compact metric spaces whose isometry group acts transitively.

After a review of some classical results, we use the Gleason–Iwasawa–Montgomery–
Yamabe–Zippin structure theory to show that for all positive ε, each such space is(1, ε)-quasi-isometric to a connected metric Lie group.

Next, we develop the structure theory of Lie groups to show that every homoge-
neous metric manifold is homeomorphically roughly isometric to a quotient space of a
connected amenable Lie group, and roughly isometric to a simply connected solvable
metric Lie group.

Third, we investigate solvable metric Lie groups in more detail, and expound on and
extend work of Gordon and Wilson [28, 29] and Jablonski [40] on these, showing, for
instance, that connected, simply connected solvable Lie groups may be made isometric
if and only if they have the same real-shadow.

Finally, we extend [44] to show that homogeneous metric spaces that admit a metric
dilation are all metric Lie groups with an automorphic dilation.
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1. Introduction

In this paper we present some links between Lie theory and metric geometry. We
consider homogeneous metric spaces, that is, metric spaces whose isometry groups act
transitively, subject to a number of standing assumptions:

(a) homogeneous metric spaces are connected and locally compact, unless explicitly
stated otherwise;

(b) a metric means a distance function unless it is preceded by infinitesimal ; and
(c) metrics are admissible, that is, compatible with the topology of the underlying

space.

However, we do not assume that they are riemannian, or geodesic, or quasigeodesic, or
even proper. If the metric space is also a topological manifold, and the metric topology
and manifold topology coincide, then we write metric manifold. We consider locally
compact groups and Lie groups equipped with admissible left-invariant metrics, which
we call metric groups and metric Lie groups.

1.1. Background. Geometry and topology on Lie groups and their quotients have a
very long history, which we cannot even begin to survey here; rather, we refer the reader
to Helgason [34], Kobayashi and Nomizu [46, 47] and Samelson [64]. Nevertheless, there
are a few milestones that are specially relevant for this paper, namely Milnor [53], Wolf
[72], Alekseevskĭı [2], Wilson [71] and Gordon and Wilson [28, 29]; in these papers and
the texts cited previously, Lie groups and their quotients are considered as models for
riemannian manifolds.

There are very good reasons to consider Lie groups and their quotients with more
general metrics. These appear naturally in studying rigidity of symmetric spaces (see
Mostow [58] and Pansu [61]), regularity of subelliptic operators (see Folland and Stein
[25] and Rothschild and Stein [63]), and asymptotic properties of nilpotent groups (see
Gromov [30, 31] and Pansu [60]). Negatively curved homogeneous riemannian manifolds,
classified by Heintze [35], have parabolic visual boundaries that are self-similar Lie groups
with metrics that are not always riemannian. The restriction to a connected closed
subgroup of a riemannian metric need not be riemannian, or even geodesic. For more
information on these developments, see Montgomery [55], Cornulier and de la Harpe [19],
and Dungey, ter Elst and Robinson [21].
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The prototypical examples of homogeneous metric spaces are connected locally com-
pact groups with left-invariant metrics. Solvable and nilpotent Lie groups, including the
stratified groups of Folland [24] or Carnot groups of Pansu [59], are particularly nice ex-
amples. Starting with these, one may obtain new examples by considering `p products,
passing to subgroups and quotients, and composing the metric with concave functions,
as in the “snowflake” construction.

1.2. Main results and contents. Section 2 reviews the basic facts about homogeneous
metric spaces and their isometry groups. In more detail, we consider the realisation of
homogeneous metric spaces as coset spaces of almost connected locally compact iso-
metry groups, we describe various constructions to produce new metric spaces from old,
and we discuss polynomial growth and doubling properties. Because we allow metrics
that are not proper or quasigeodesic, we observe some paradoxical phenomena, such as
metric groups that are of polynomial growth as groups but not as metric spaces. The
introduction to Section 2 provides more information.

Section 3 focusses on the use of Lie theory. In dealing with general rather than rie-
mannian metrics on Lie groups, what happens at the Lie algebra level may not determine
what happens at the group level, and so the global approach is to be preferred. That
being said, however, the theory is similar in the riemannian and in the general cases.

Our first theorem is a consequence of the Gleason–Iwasawa–Montgomery–Yamabe–
Zippin structure theory of almost connected locally compact groups.

Theorem A. Let M be a homogeneous metric space. Then M is

(i) (1, ε)-quasi-isometric to a connected metric Lie group Gε, for all positive ε, and
(ii) roughly isometric to a contractible metric manifold.

We prove an extended version of Theorem A as Theorem 3.7.
Our contributions here are the observations that quasi-isometry may be sharpened

to rough isometry and the additive constant in (a) may be made arbitrarily small. For
fundamental groups of compact riemannian manifolds, part (b) was shown by Švarc
[67] and rediscovered by Milnor [53]. More recently it has been extended, with quasi-
isometry rather than rough isometry, to the case of quasigeodesic metrics and to spaces
of polynomial growth: see [19, Theorem 4.C.5.] and [14, Proposition 1.3].

One of our aims is to study the following relation between topological groups. Given
two topological groups G and H, we say that G may be made isometric to H if there
exist admissible left-invariant metrics dG and dH such that the metric spaces (G,dG) and(H,dH) are isometric. Moreover, if G is already a metric group, then we may impose the
extra condition that the new metric is roughly isometric to the initial one; in this case,
the Gromov–Hausdorff distance of the new metric space from the original one is finite.

Our next theorem, which relies heavily on the Levi and Iwasawa decompositions, shows
that every homogeneous metric manifold may be made isometric to a compact quotient
of a direct product of a solvable and a compact Lie group.

Theorem B. Let (M,d) be a homogeneous metric manifold. Then there is a metric d′
on M such that the identity mapping from (M,d) to (M,d′) is a homeomorphic rough
isometry, and there is a transitive closed connected amenable subgroup A of Iso(M,d′);
hence M is homeomorphic to A/K, where K is a compact subgroup of A.

We prove an extended version of Theorem B as Theorem 3.24.
We believe that Theorem B is new, though it may have been known but not published.

Much is known about the isometry of riemannian symmetric spaces and riemannian solv-
manifolds; but we are not aware of a complete treatment of the general case. Gordon
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and Wilson [28, 29] certainly came close to this, and promised a solution to the general
case at the end of [29], but as far as we know this proposed paper did not eventuate.

In various special cases, we obtain simpler and more explicit results; see Corollaries
3.26, 3.28, and 3.29. Corollary 3.26 is of particular interest: there we consider riemannian
homogeneous spaces and riemannian metrics. In this case, the result of Theorem B holds
with rough isometry replaced by bi-Lipschitz equivalence. Bi-Lipschitz equivalence is
stronger locally, but weaker globally, than rough isometry, and our Theorem B provides
more information about the large scale behaviour of homogeneous spaces than the strictly
riemannian version. This is further evidence that consideration of more general metrics
can unlock information that is not accessible in the riemannian framework.

In Section 4, we examine solvable metric Lie groups. We need more background, which
we discuss in more detail later. Auslander and Green [5] discovered that a connected
simply connected solvable Lie group G of polynomial growth could be embedded in a
connected solvable Lie group H (the hull of G), in such a way that

H = G ⋊ T and H = N ⋊ T,
where T is a torus (a compact connected abelian Lie group) in H, and N is the nilradical
(the largest connected normal nilpotent subgroup) of H. Then G is homeomorphic to
N , since both may be identified with H/T , and G and N enjoy various similarities (see
[5, 3]); N is known as the nilshadow of G. Gordon and Wilson [28, 29] considered
this from a Lie algebraic point of view, and described G and N as modifications of
each other; they considered general solvable Lie groups. Recently, Cornulier [16], and
very recently, Jablonski [40] showed that every connected, simply connected solvable Lie
group is homeomorphic to a split-solvable Lie group, which we call its real-shadow, in
the same way as a connected, simply connected solvable group of polynomial growth is
homeomorphic to its nilshadow.

We give a complete and coherent treatment of this recent development. We then
proceed to describe when simply connected solvable Lie groups may be made isometric.
Here is our third main theorem.

Theorem C. Let G0 be a connected simply connected split-solvable Lie group, T be a
maximal torus in Aut(G0), and d0 be a T -invariant metric on G0. Let G1 be a connected
simply connected solvable Lie group. Then the following are equivalent:

(i) G1 may be made isometric to G0;
(ii) G1 may be made isometric to (G0, d0);

(iii) G0 is the real-shadow of G1; and
(iv) G1 may be embedded in H ∶= G0 ⋊ T in such a way that every element of h has

a unique factorisation gt, where g ∈ G1 and t ∈ T .

We prove an extended version of Theorem C as Theorem 4.21.
While the results here are mostly known, our proofs are often different to and some-

times simpler than those of previous authors, and we believe that the reader will find it
useful to have a clear account of this development.

Theorem C has various corollaries and extensions, some of which are due to Gordon
and Wilson [29] (for riemannian metrics) and Breuillard [14] (for the polynomial growth
case). First, the metric d0 on a connected, simply connected split-solvable Lie group
considered in Theorem C may be taken to be riemannian. Next, if G1 and G2 are
connected, simply connected solvable Lie groups, then they may be made isometric if
and only if they have the same real-shadow G0, and in this case they may both be made
isometric to (G0, d0). In the special case in which G0 is of polynomial growth, then G0 is
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necessarily nilpotent, and so we obtain a characterisation of groups which may be made
isometric to nilpotent Lie groups.

The classification of nilpotent groups up to quasi-isometry is an important unsolved
problem. Our result shows that if a connected simply connected Lie group admits one
metric for which it is isometric to a nilpotent metric Lie group (N1, d1) and another for
which it is isometric to another nilpotent metric Lie group (N2, d2), then necessarily N1

and N2 are isomorphic.
For more details and other results, see the discussion following the proof of Theorem

C in Section 4.
Finally, in Section 5, we discuss homogeneous metric spaces that admit metric dila-

tions. A map δ ∶X → Y between metric spaces is called a metric dilation if δ is bijective
and d(δ(x), δ(x′)) = λd(x,x′) for all x,x′ ∈ X, for some λ ∈ (1,+∞), and a metrically
self-similar group is a metric group (G,d) that admits a map δ ∶ G → G that is both a
metric dilation and an automorphism. The stratified groups of Folland and Stein [26]
with the Hebisch–Sikora metric [33], the Carnot groups of Pansu [61] and finite dimen-
sional normed vector spaces are examples of metrically self-similar groups; so are the
parabolic visual boundaries of the negatively curved connected homogeneous riemann-
ian spaces described by Heintze [35]. Our fourth main theorem described homogeneous
metric spaces with dilations.

Theorem D. If a homogeneous metric space admits a metric dilation, then it is iso-
metric to a metrically self-similar Lie group. Moreover, all metric dilations of a metri-
cally self-similar Lie group are automorphisms.

Theorem D appears later as Theorem 5.5. It generalises a result of [51], where it
is shown that a space is a sub-Finsler Carnot group if and only if the conditions in
Theorem D hold and the metric is geodesic.

As a consequence of [65, Proposition 2.2] and [44], if a metric space M is isometric
to a metrically self-similar Lie group (G,d ′), then G is a gradable, connected simply
connected nilpotent Lie group isomorphic to the nilradical of Iso(M). However, M may
also be isometric to a Lie group that is not nilpotent. As discussed after Theorem C,
there are metric groups that are not nilpotent but which are isometric to metrically
self-similar metric Lie groups; it follows from Theorem D that if M is a metric Lie group
and δ is a metric dilation, then δ is an automorphism if and only if M is nilpotent.

While many of the results will be familiar to the experts, we included proofs if we
could not find an explicit proof in the literature or if we could give an easier one. We
have not attempted to provide a full bibliography of all the areas that we touch on, but
rather refer mainly to those papers that we use. At the end of Sections 2 to 5, the reader
will find some discussion of who did what and when, and of related results. The reader
may wish to consult some other works in this area, in particular, the books of Cornulier
and de la Harpe [19] for more information. Recent papers, such as [22], refer to other
relevant recent works.

1.3. Notation and conventions. We remind the reader of our convention that homoge-
neous metric spaces are connected and locally compact, unless explicitly stated otherwise.
Metric manifolds, metric groups and metric Lie groups are examples of these. Some of
our results may be proved in greater generality, but this assumption will save space.

A set that is a neighbourhood need not be open. Locally compact groups are always
locally compact Hausdorff topological groups.

The expression the isometry group means the full isometry group, while an isometry
group means a closed subgroup of the full isometry group.
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Constants are always nonnegative real numbers that may vary from one occurrence
to the next. These are often denoted by C or ε, and we do not specify that these letters
denote constants when they occur.

We denote by eG, or more simply e, the identity element of a group G; the identity of
G1 may be denoted by e1.

1.4. Thanks. We thank the referee of an earlier version of this work for very many
helpful comments that led to substantial improvements.

2. Preliminaries

In this section, we recall some more or less familiar facts. First, we discuss homo-
geneous metric spaces, then changes of metrics. Third, we consider when there are
simply transitive isometry groups, and finally, we discuss invariant measures, polyno-
mial growth, and the doubling property. While these are very closely related in the case
of proper quasigeodesic metrics (see [18]), this is not the case for more general metrics,
as we are going to see.

2.1. Notation. When (M,d) is a metric space, we sometimes write just M , leaving the
metric d implicit. We denote by B(x, r) or Bd(x, r) the open ball {y ∈M ∶ d(x, y) < r},

and by B̆(x, r) or B̆d(x, r) the closed ball {y ∈ M ∶ d(x, y) ≤ r}, which need not be the
closure of the open ball B(x, r); set closure is denoted with a bar. The metric space is

said to be proper if closed bounded sets are compact, or equivalently, if all balls B̆d(x, r)
are compact, and is said to be geodesic if every pair of points may be joined by a curve
whose (rectifiable) length is equal to the distance between the points. Berestovskĭı [8]
showed that a homogeneous metric manifold is geodesic if and only if it is equipped with
an invariant infinitesimal sub-Finsler metric.

A function f ∶ (M1, d1)→ (M2, d2) is an (L,C)-quasi-isometry if

L−1d1(x, y) −C ≤ d2(f(x), f(y)) ≤ Ld1(x, y) +C
for all x, y ∈M1, and for every z ∈M2 there is x ∈M1 such that d2(f(x), z) ≤ C. If such
a function exists between two metric spaces, then we say that they are (L,C)-quasi-
isometric, or more simply quasi-isometric.

There is a zoo of equivalences of metric spaces that we might consider. Quasi-isometry
(for some choice of the constants L and C, possibly depending on the function) is an
equivalence relation. If C = 0, then f is called bi-Lipschitz ; bi-Lipschitz gives us another
equivalence relation, which, in contrast to quasi-isometry, implies homeomorphism. A
third equivalence relation is rough isometry, which is defined to be (1,C)-quasi-isometry
for a suitable choice of C, which may depend on f ; we sometimes call C the implicit
constant of a rough isometry. This is finer than general quasi-isometry and more restric-
tive at large scales than bi-Lipschitz. Yet another equivalence relation that we consider
is homeomorphic rough isometry. A fifth relation that we consider applies to topological
rather than metric groups: we say that G1 and G2 may be made isometric provided that
there exist admissible left-invariant metrics d1 and d2 such that (G1, d1) and (G2, d2) are
isometric.

2.2. Homogeneous metric spaces. We define an isometry of a metric space (M,d)
to be a surjective map f on M such that

(2.1) d(f(x), f(y)) = d(x, y) ∀x, y ∈M.

We denote by Iso(M,d) the set of all isometries of (M,d); given the surjectivity, it is
evident that Iso(M,d) is a group under composition. We recall that a metric space (M,d)



HOMOGENEOUS METRIC SPACES AND LIE GROUPS 7

is said to be homogeneous if its isometry group acts transitively, and our convention that
a homogeneous metric space (M,d) is connected and locally compact, but not necessarily
proper, unless explicitly stated otherwise.

Changing the metric on a space (without changing its topology) may change its iso-
metry group. For instance, we may equip R2 with any one of the bi-Lipschitz equivalent
translation-invariant metrics

d((x1, y1), (x2, y2)) = (∣x1 − x2∣p + a∣y1 − y2∣p)1/p
,

where 1 ≤ p < +∞ and 0 < a < +∞. When p = 2, the isometry group includes rotations, but
otherwise it does not. And when p = 2, the rotation group depends on the parameter a.
However, in this example, each of the isometry groups act by bi-Lipschitz transformations
with respect to all the other metrics.

We prove that Iso(M,d) is a metrisable, locally compact and σ-compact topological
group that acts with compact stabilisers (Theorem 2.6), and whose identity component
acts transitively (Corollary 2.8). In Theorem 2.7, we also prove a more quantitative
and precise statement about the metrisability, namely that for every ε ∈ R+, the group
Iso(M,d) may be metrised so that it is (1, ε)-quasi-isometric to (M,d).
Proposition 2.1. Let (M,d) be a metric space, not necessarily connected or locally
compact. Then the compact-open topology and the topologies of uniform convergence
on compacta and of pointwise convergence agree on Iso(M,d), and the group Iso(M,d),
endowed with any of these topologies, is a topological group.

Proof. For the fact that these topologies agree on Iso(M,d), see [19, Lemmas 5.B.1 and
5.B.2]. That this structure makes the isometry group a topological group is well known;
van Dantzig and van der Waerden [20] show this in the case where M is connected,
locally compact and separable, and a proof of the general case may be found in [19,
Lemma 5.B.3]. �

We now equip Iso(M,d) with any of the topologies above.
We are not assuming that our metric spaces are proper, but we still need some sub-

stitute for a proper metric, and this construction (and some other useful facts) will be
the subject of the next two lemmas. Much of this is “folklore”, but we do not know a
reference and so we include proofs. We first choose ` ∈ R+ small enough so that B̆(p,2`)
is compact for one and hence every p in M by homogeneity. Then there exists a positive
integer L for which the compact set B̆(p,2`) may be covered by L open balls of radius
`, for one and hence all p in M by homogeneity.

Given a point o ∈M , we define sets Vn(o, `) inductively: first, V0(o, `) ∶= {o}, then

(2.2) Vn(o, `) ∶= ⋃
p∈Vn−1(o,`)

B̆(p, `)
when n ∈ Z+. Further, we define Uo ∶= {g ∈ Iso(M,d) ∶ g(o) ∈ B̆(o, `)}.

Lemma 2.2. Let G be the isometry group of a homogeneous metric space (M,d), and o
be any point of M . Then

(i) Vn(o, `) may be covered by at most Ln open balls B(p, `) for all n ∈ Z+;
(ii) M = ⋃n∈N Vn(o, `), whence (M,d) is σ-compact and second countable;

(iii) a subset A of M is precompact if and only if A ⊆ Vn(o, `) for some n ∈ N;
(iv) the n-fold product Un

o is equal to {g ∈ G ∶ g(o) ∈ Vn(o, `)} for all n ∈ N;
(v) Uo is compact in G, whence Un

o is compact in G and so Vn(o, `) is compact in
M for all n ∈ N.
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Proof. First, if x ∈ ⋃q∈B̆(p,`) B̆(q, `), then

d(x, p) ≤ d(x, q) + d(q, p) ≤ 2`.

Hence ⋃q∈B̆(p,`) B̆(q, `) may be covered by L balls of radius `, by our choice of L. Now

(i) may be proved by induction.
From (i), we see that Vn(o, `) is precompact. Now ⋃n∈N Vn(o, `) is both open and

closed in M and hence coincides with M . It follows that M is σ-compact and hence
second countable, which completes the proof of (ii).

To prove (iii), note that {⋃p∈Vn(o,`)B(p, `) ∶ n ∈ N} is an increasing open cover of M ,
and hence if A is a precompact subset of M , then for some n,

A ⊆ Ā ⊆ ⋃
p∈Vn(o,`)B(p, `) ⊆ Vn+1(o, `).

Conversely, if A ⊆ Vn+1(o, `) then A is precompact.
For (iv), we must show that

(2.3) Un
o = {g ∈ G ∶ g(o) ∈ Vn(o, `)}.

If n = 1, then (2.3) holds by definition. Assume that (2.3) holds when n = k. On the one
hand, if f ∈ Uk+1

o , then f = gh where g ∈ Uk
o and h ∈ Uo, so

f(o) ∈ g(B̆(o, `)) = B̆(g(o), `) ⊆ Vk+1(o, `).
On the other hand, suppose that f(o) ∈ Vk+1(o, `). By definition, there exists q ∈ Vk(o, `)
such that f(o) ∈ B̆(q, `), and by transitivity and the inductive hypothesis, there exists g ∈
Uk
o such that q = g(o). Now g−1f(o) ∈ B̆(o, `), that is, g−1f ∈ Uo, since g−1(B̆(g(o), `)) =

B̆(o, `), and we may conclude that f ∈ Uk+1
o . By induction, (2.3) holds for all n.

For (v), the Arzelà–Ascoli theorem implies that Uo is precompact in the compact-open
topology. Moreover, if (fn)n∈N is a sequence of elements of Uo that converges to f ∈ G,
then fn(o) converges to f(o) ∈M and d(fn(o), o) ≤ ` for all n, whence d(f(o),0) ≤ ` and
f ∈ Uo. Thus Uo is compact.

Since G is a topological group, Un
o is compact for each n ∈ N, and so Vn(o, `) is compact

from (iv) and the continuity of the map g ↦ g(o) from G to M . �
We now construct two proper metrics on M ; the first has the advantage that it is

closely related to the sets Vn(o, `) and the second that it is admissible. We define the
Busemann gauge ρ[`] on M by

(2.4) ρ[`](o, p) = `min{n ∈ N ∶ p ∈ Vn(o, `)}
and the derived semi-intrinsic metric d[`] by

(2.5) d[`](p, q) = inf{ k∑
j=1

d(xj, xj−1) ∶ x0, . . . , xk ∈M,x0 = p, xk = q, d(xj, xj−1) ≤ `}.
We note that ρ[`] takes discrete values. Observe that, in the case where the metric space
is R and the metric is given by d(x, y) = ∣x − y∣θ, where θ ∈ (0,1) and ` = 1, the derived
semi-intrinsic metric is given by d[`](x, y) = ⌊∣x−y∣⌋+(∣x−y∣−⌊∣x−y∣⌋)θ, and is somewhat
bizarre; here ⌊x⌋ denotes the integer part of x.

Lemma 2.3. The Busemann gauge ρ[`] and the derived semi-intrinsic metric d[`] are
both metrics on the set M . Further,

d(p, q) ≤ d[`](p, q) ≤ ρ[`](p, q) ≤ 2d[`](p, q) + ` ∀p, q ∈M.

Hence d[`] is proper since ρ[`] is proper. In addition, if d(x, y) ≤ `, then d[`](x, y) =
d(x, y), for all x, y ∈M , whence d[`] is admissible.
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Proof. It is easy to see that both ρ[`] and d[`] are metrics.
Take p, q ∈ M . On the one hand, if q ∈ Vn(p, `), then by definition there are points

xj ∈ M , where 0 ≤ j ≤ n, such that x0 = p, xn = x and xj ∈ B̆(xj−1, `). It follows
immediately that d[`](p, q) ≤ n`.

On the other hand, for any positive ε, we can find points x0, . . . , xk such that x0 = p,
xk = q and ∑k

j=1 d(xj, xj−1) ≤ d[`](p, q) + ε. Observe that we may omit points xj if
d(xj+1, xj) + d(xj, xj−1) ≤ `, for in this case

d(xj+1, xj−1) ≤ d(xj+1, xj) + d(xj, xj−1) ≤ `.
We omit such points recursively until this is no longer possible. Now we may not only
assume that ∑k

j=1 d(xj, xj−1) ≤ d[`](p, q) + ε, but also that d(xj+1, xj) + d(xj, xj−1) > `. It
follows that

d[`](p, q) + ε ≥ k∑
j=1

d(xj, xj−1) > ⌊k/2⌋`,
and this implies that

ρ[`](p, q) ≤ k` ≤ ` + 2d[`](p, q).
The rest of the proof is evident. �

It is easy to see that, if d is a geodesic metric, then d[`] coincides with d. Moreover, if
we start with arbitrary admissible metrics d1 and d2 with a common transitive isometry
group, and construct the Busemann gauges ρ1,[`] and ρ2,[`] or the derived semi-intrinsic
metrics d1,[`] and d2,[`] (still with the assumption that the balls Bd1(p,2`1) and Bd2(p,2`2)
are relatively compact) then ρ1,[`] and ρ2,[`] are quasi-isometric. Hence by Lemma 2.3
all the metrics ρ1,[`], ρ2,[`], d1,[`] and d2,[`] are quasi-isometric. It is also straightforward
to see that the derived semi-intrinsic metrics d[`1] and d[`2] are quasi-isometric (again,
provided that the balls Bd1(p,2`1) and Bd2(p,2`2) are relatively compact).

We now introduce an important class of metrics.

Definition 2.4. A metric on a homogeneous metric space (M,d) is called proper quasi-
geodesic if the identity map is a quasi-isometry from (M,d) to (M,ρ[`]), where ρ[`] is
the Busemann gauge defined in (2.4).

This definition is not standard, but coincides with the usual versions. Two distinct
proper quasigeodesic metrics on M are quasi-isometric.

2.3. Metric spaces and coset spaces. We begin by clarifying notation. A group H
acts on a set M if there is a homomorphism α from H to Trans(M), the group of all
invertible transformations of M . If the action is effective, that is, if α(h)p = p for all
p ∈M only if h = e, then H may be identified with a subgroup of Trans(M).
Remark 2.5. If a group H acts transitively on a set M , then all the stabilisers of points
in M are conjugate. Hence a normal subgroup of H that is contained in one stabiliser
is contained in all stabilisers, that is, it fixes all points. Thus if H acts effectively and
transitively on a set, then no nontrivial compact normal subgroups of H are contained in
a stabiliser. In general, if H acts transitively but not effectively, and K is the stabiliser
of a point, then N ∶= ⋂h∈H hKh−1 is a normal subgroup of H that may be factored out
to obtain a effective action of H/N , since H/K may be identified with (H/N)/(K/N).

We write Z(H) for the centre of a group H; then what we have just shown implies
in particular that if H acts effectively on a set, and K is the stabiliser of a point, then
K ∩Z(H) = {e}.

An action α of a group H on a metric space (M,d) is isometric or by isometries if
α(H) ⊆ Iso(M,d).
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Theorem 2.6. Let (M,d) be a homogeneous metric space, o be a point of M , ρ[`] be the
Busemann gauge of (2.4), and H be the isometry group of (M,d). Then

(i) H is locally compact, σ-compact and second countable;
(ii) the stabiliser K of o is compact;

(iii) H is metrisable, and for each ε ∈ R+, the Busemann metric dH on H, given by

dH(g, h) ∶= sup{d(g(q), h(q))e−ρ[`](o,q)/ε ∶ q ∈M},
is an admissible left-invariant metric on H;

(iv) the map π ∶ g ↦ g(o) from (H,dH) to (M,d) is 1-Lipschitz and (1,2ε/e)-quasi-
isometric; more precisely,

dH(g, h) − 2ε/e ≤ d(g(o), h(o)) ≤ dH(g, h) ∀g, h ∈H.
(v) diamH(K) ≤ 2ε/e, and dH is right-K-invariant, that is, dH(gk, hk) = dH(g, h)

for all g, h ∈H and all k ∈K.

Proof. The local compactness of H was shown by van Dantzig and van der Waerden [20].
By Lemma 2.2 (v), (ii) and (iv) and Proposition 2.1, the set Uo and hence the sets Un

o

are compact in H when n ∈ N, and H = ⋃n∈NUn
o , whence H is σ-compact. The second

countability of H follows from that of M .
Next, van Dantzig and van der Waerden proved (ii), which also follows from the fact

that the stabiliser of o is a closed subset of the compact set Uo of Lemma 2.2.
Clearly dH is left-invariant; we need to show that it is admissible. Let (gn)n∈N be a

sequence in H. On the one hand, if gn → g in (H,dH), then

d(gn(p), g(p)) ≤ eρ[`](o,p)/εdH(gn, g),
for all p ∈M , and hence gn converges to g pointwise, and so in H.

On the other hand, if gn → g in H, then the convergence is uniform on compacta,
by Proposition 2.1. Fix η ∈ (0,1), and take R ∈ R+ such that te−t/ε < η whenever
t > R. Define A to be the closure of {p ∈ M ∶ ρ[`](o, p) ≤ R}. Then A contains o and is
compact in M by definition and part (v) of Lemma 2.2. Hence there is n0 ∈ N such that
d(gn(p), g(p)) ≤ η for all p ∈ A and all n ≥ n0. Therefore

d(gn(p), g(p))e−ρ[`](o,p)/ε ≤ η,
if n ≥ n0 and p ∈ A, while if n ≥ n0 and p ∉ A, then

d(gn(p), g(p))e−ρ[`](o,p)/ε≤ (d(gn(p), gn(o)) + d(gn(o), g(o)) + d(g(o), g(p)))e−ρ[`](o,p)/ε
≤ (2d(o, p) + η)e−ρ[`](o,p)/ε≤ 3η.

We conclude that dH(gn, g) ≤ 3η for all n ≥ n0. As η may be chosen to be arbitrarily
small, gn → g in (H,dH).

By definition, d(π(g), π(h)) = d(g(o), h(o)) ≤ dH(g, h) for all g, h ∈ H, so π is 1-
Lipschitz. Moreover, π is surjective by the homogeneity assumption, and

(2.6)

dH(g, h) ≤ sup{(d(g(p), g(o)) + d(g(o), h(o)) + d(h(o), h(p)))e−ρ[`](o,p)/ε ∶ p ∈M}
≤ d(g(o), h(o)) sup{e−ρ[`](o,p)/ε ∶ p ∈M} + 2 sup{d(o, p)e−ρ[`](o,p)/ε ∶ p ∈M}≤ d(π(g), π(h)) + 2ε/e

for all g, h ∈H, whence π is a (1,2ε/e)-quasi-isometry.
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Finally, for g, h ∈H and k ∈K,

dH(gk, hk) = sup{d(gk(q), hk(q))e−ρ[`](o,q)/ε ∶ q ∈M}
= sup{d(g(k(q)), h(k(q)))e−ρ[`](o,k(q))/ε ∶ q ∈M} = dH(g, h),

as required. Further, from (2.6),

diam(K) = sup{dH(k, e) ∶ k ∈K} ≤ 2ε/e + sup{d(k(o), e(o)) ∶ k ∈K} = 2ε/e,
and the proof is complete. �

Observe that we could define the Busemann metric in the statement of the theorem
using d[`] rather than ρ[`], and the proof above would work with minor modifications.
Observe also that Iso(M,d) ⊆ Iso(M,d[`]), where d is a derived semi-intrinsic metric as
defined just before Lemma 2.3.

We now consider closed subgroups of the isometry group in more detail.

Theorem 2.7. Let (M,d) be a homogeneous metric space, G be a closed subgroup of
Iso(M,d), and S be the stabiliser in G of a point o in M . Then

(i) G is locally compact and S is compact;
(ii) if G acts transitively on M , then the map gS ↦ g(o) is a homeomorphism from

G/S to M ;

(iii) if B̆(o, `) ⊆ G(o) for some choice of ` ∈ R+ and o ∈M , then G acts transitively
on M ;

(iv) if G is open in Iso(M,d), then it acts transitively on M ;
(v) if G acts transitively on M , then for each ε ∈ R+ and o ∈ M , we may equip G

with an admissible left-invariant metric in such a way that the map g ↦ g(o) is
1-Lipschitz and a (1, ε)-quasi-isometry;

(vi) if G acts transitively on M , then for each n ∈ N and o ∈M ,

{g ∈ G ∶ g(o) ∈ B̆(o, `)}n = {g ∈ G ∶ g(o) ∈ Vn(o, `)}.
Proof. Part (i) is standard: closed subspaces of locally compact or compact spaces are
locally compact or compact.

Part (ii) follows from [34, Theorem 3.2, page 121].
For part (iii), the orbit G(o) is nonempty, open and closed. As M is connected, by

our standing assumption, M = G(o).
For part (iv), it follows from part (ii) that the map g ↦ g(o) from G to M is open.

Consequently G(o) is open and G acts transitively by part (iii).
The proof of part (v) is similar to the proof of part (iii) in Theorem 2.6, and the proof

of part (vi) is similar to the proof of part (iv) in Lemma 2.2. �
Corollary 2.8. Let (M,d) be a homogeneous metric space. The connected component
H of the identity in Iso(M,d) is locally compact and acts transitively on M , and the
quotient Iso(M,d)/H is compact.

Proof. The subgroup H is closed in Iso(M,d), and hence is locally compact. It is also
normal, and the totally disconnected locally compact group Iso(M,d)/H has a neigh-
bourhood base N of the identity consisting of open and closed subgroups, ordered by
reverse inclusion; see [66, Proposition 4.13]. For each ν ∈ N, let Hν be the preimage of
ν in Iso(M,d). Then (Hν)ν∈N is a net of open and closed subgroups of Iso(M,d) such
that H = ⋂ν∈NHν , and Hν acts transitively on M for every ν ∈ N by Theorem 2.7.

Take o, p ∈ M . For each ν ∈ N, there is gν ∈ Hν such that gν(o) = p. By the Arzelà–
Ascoli theorem, {g ∈ Iso(M,d) ∶ g(o) = p} is compact; since each gν lies in this set, we
may assume that gν converges to g ∈ Iso(M,d) by passing to a subnet if necessary. For
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each ν ∈ N, gν′ ∈ Hν when ν′ ≥ ν, and hence g ∈ Hν . In conclusion, g ∈ ⋂ν∈NHν = H and
g(o) = p.

Let K be the stabiliser in Iso(M,d) of the point o in M ; then K is compact. Since H
acts transitively, for every g ∈ Iso(M,d), there exists h ∈ H such that h−1g(o) = o, that
is, h−1g ∈K. It follows that Iso(M,d) ⊆HK. �

The next definition summarises and extends the structure that we have seen in the
last theorems.

Definition 2.9. A homogeneous metric projection is a pair of homogeneous metric spaces(M1, d1) and (M2, d2), with a group H acting isometrically, continuously and transitively
on both M1 and M2, and an H-equivariant projection π ∶M1 →M2 such that

d2(x2, y2) = inf{d1(x1, y1) ∶ πx1 = x2, πy1 = y2} ∀x2, y2 ∈M2.

The set {x1 ∈M1 ∶ πx1 = x2} is called the fibre above x2 in M2.

Because H acts continuously on both M1 and M2, the stabilisers K1 of a point x in
M1 and K2 of πx in M2 are closed, and it is clear that K1 ⊆K2. There is then a natural
identification of the fibre above x with the quotient space K2/K1, and all the fibres are
isometric to each other because H acts transitively. As noted in the remark above, the
subgroup of H of elements that act trivially on M1 (and a fortiori on M2) is a closed
normal subgroup that may be factored out.

With K1 and K2 as above, if the set K2/K1 is compact, then the diameter of each
fibre is bounded; hence there exists a constant C such that

d1(x, y) −C ≤ d2(πx,πy) ≤ d1(x, y) ∀x, y ∈M1,

that is, π is 1-Lipschitz and a rough isometry. The constant C is called the implicit
constant of the projection π and may be identified with the diameter of K2/K1.

Let π be the projection from a locally compact group H onto a quotient space H/K.
We recall that a section σ for H/K in H is a mapping such that π ○σ is equal to IdH/K ,
the identity map on H/K. It is well-known that sections exist: they may be taken to
be Borel or even Baire (see, for instance, [43]). It is evident that if π is a homogeneous
metric projection from (M1, d1) onto (M2, d2) and H is a common transitive isometry
group, then M2 may be identified with H/K2, where K2 is a compact subgroup of H,
and a section from M2 to H composed with the projection from H to M1 is a section
from M2 to M1. If

d1(x, y) −C ≤ d2(πx,πy) ≤ d1(x, y) ∀x, y ∈M1,

and if σ is a section for M2 in M1, then

d2(p, q) ≤ d1(σ(p), σ(q)) ≤ d2(p, q) +C ∀p, q ∈M2.

We conclude this section with a remark.

Remark 2.10. Let (M,d) be a homogeneous metric space, and let H be a subgroup of
Iso(M,d) that acts transitively on M . Equip Iso(M,d) with the topology of Proposition
2.1, H with the relative topology, and M with the topology induced by d. Take an
arbitrary point o of M .

Then the relative topology on H is also the only topology on H such that the mapping
π ∶ h ↦ ho is continuous and open. Indeed, the sets {g ∈ H ∶ d(hx,x) < ε}, where x ∈M
and ε ∈ R+ form a subbase for any topology on H such that π is continuous and open,
and also for the topology of pointwise convergence.

This implies that if U ⊂ H and U = UK, then U is open in H if and only if Uo is
open in M . It follows that if we change the metric on M to a new metric that induces
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a different topology and is such that H is still an isometry group, then the topology of
H as an isometry group with the new metric must also change.

2.4. Modifying metrics. In dealing with homogeneous metric spaces, a useful tech-
nique is the use of pseudometrics on groups; we show how to use these to modify metrics.

Pseudometrics are functions that satisfy all the conditions required of a metric, except
perhaps the condition that d(x, y) = 0 implies that x = y. Let ḋ be a left-invariant

pseudometric on a topological group G. We define the kernel of ḋ to be the subset{x ∈ G ∶ d(x, e) = 0}, and say that ḋ on G is continuous if ḋ(xn, y)→ ḋ(x, y) for all y ∈ G
whenever xn → x in G, semiproper if {x ∈ G ∶ ḋ(x, e) = 0} is compact, and proper if{x ∈ G ∶ ḋ(x, e) < C} is relatively compact for all C ∈ R+.

Given a pseudometric space (M, ḋ), we define the ball Bḋ(x, r) ∶= {y ∈M ∶ ḋ(x, y) < r};

then Bḋ(x, r) is open if ḋ is continuous. Further, given pseudometric spaces (M1, ḋ1) and(M2, ḋ2), we say that a bijection f ∶M1 →M2 is an isometry if ḋ2(fx1, fy1) = ḋ1(x1, y1)
for all x1, y1 ∈M1.

Lemma 2.11. Suppose that (M,d) is a homogeneous metric space, that G is a transitive
closed subgroup of Iso(M,d), and that K is the stabiliser in G of a point o in M . Then

ḋ ∶ G ×G→ [0,+∞), defined by

ḋ(x, y) ∶= d(xo, yo) ∀x, y ∈ G,
is a continuous left-invariant pseudometric on G, and

(i) ⋂x∈G xKx−1 = {e};

(ii) ḋ(x, e) = 0 if and only if x ∈K;

(iii) ḋ(x, y) = ḋ(xk, yk′) for all x, y ∈ G and k, k′ ∈K;
(iv) the topology induced by d on G/K coincides with the quotient topology on G/K.

Conversely, if ḋ is a continuous left-invariant pseudometric on a connected metrisable
topological group G, then K ∶= {x ∈ G ∶ ḋ(x, e) = 0} is a closed subgroup of G, and{x ∈ G ∶ ḋ(x, y) = 0} = yK; further, (iii) holds. The function d ∶ G/K ×G/K → [0,+∞),
defined by

(2.7) d(xK, yK) ∶= ḋ(x, y) ∀x, y ∈ G,
is a metric on the set G/K, and G acts continuously and transitively by isometries on(G/K,d). Further, the subgroup N ∶= ⋂x∈G xKx−1 is closed and normal in G, and acts
trivially on G/K, so that G/N may be identified with a transitive subgroup of Iso(G/K,d).
Finally, suppose that the topology induced by d on G/K coincides with the quotient
topology on G/K. Then

(v) the Busemann metric dε on G/N , given by

dε(g, h) ∶= sup{d(g(q), h(q))e−ρ[`](o,q)/ε ∶ q ∈ G/N},
is admissible on G/N ; and

(vi) the subgroup K/N of G/N is compact.

Proof. Take x, y, z ∈ G. Then ḋ(x, y) ≥ 0 and ḋ(x, y) = ḋ(y, x) by definition; further,

ḋ(x, z) = d(xo, zo) ≤ d(xo, yo) + d(yo, zo) = ḋ(x, y) + ḋ(y, z),
and

ḋ(x, y) = d(xo, yo) = d(zxo, zyo) = ḋ(zx, zy).
Hence ḋ is a left-invariant pseudometric on G.
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The compactness of K and items (i) and (iv) are proved in Section 2.3; items (ii) and
(iii) follow immediately from the definitions.

Conversely, if ḋ is a continuous left-invariant pseudometric on a topological group G,
and K = {x ∈ G ∶ ḋ(x, e) = 0}, then

ḋ(x−1y, e) = ḋ(y, x) ≤ ḋ(y, e) + ḋ(e, x) = 0,

for all x, y ∈ K whence K is a subgroup of G, which is closed since ḋ is continuous.
Observe that

ḋ(x, y) = 0 ⇐⇒ ḋ(y−1x, e) = 0 ⇐⇒ y−1x ∈K ⇐⇒ x ∈ yK.
Moreover,

ḋ(xk, yk′) ≤ ḋ(xk, x) + ḋ(x, y) + ḋ(y, yk′) = ḋ(x, y)
and

ḋ(x, y) ≤ ḋ(x,xk) + ḋ(xk, yk′) + ḋ(yk′, y) = ḋ(xk, yk′),
so (iii) holds. It follows immediately that ḋ induces a metric d on G/K, by the formula

d(xK, yK) = ḋ(x, y) ∀x, y ∈ G,
and G acts transitively and continuously by isometries on (G/K,d). It is evident that
N is closed and normal, and is precisely the subgroup of G that stabilises every point of
G/K, hence G/N acts effectively, transitively and isometrically on G/K, which we may
identify with (G/N)/(K/N) by a standard isomorphism theorem.

Now we suppose that the topology induced by d on G/K coincides with the quotient
topology on G/K, that is, that d is admissible, and prove (v) and (vi). We may and
shall suppose that N is trivial, otherwise we just divide it out. By Remark 2.10, the
topology on G coincides with the relative topology as a subgroup of Iso(G/K,d), and
Theorem 2.7 implies (v) and (vi). �

The reader may wish to check that, in the first part of the preceding lemma, if d is
proper on G/K, then ḋ is proper on G, while in the second part, ḋ is semiproper if and
only if d is proper.

Definition 2.12. A left-invariant continuous pseudometric ḋ on a topological group G
with kernel K is said to be admissible if the topology of the induced metric on G/K
coincides with the quotient topology on G/K. Equivalently, the sets Bḋ(x, r)K, where
x ∈ G and r ∈ R+ form a base for the topology of G/K, or the sets Bḋ(x, r), where x ∈ G
and r ∈ R+ form a base for the subtopology of G of all right-K-invariant sets of the
topology.

By the proof of the previous lemma and the continuity of ḋ, the sets Bḋ(x, r) satisfy
Bḋ(x, r) = Bḋ(x, r)K and are open in G. Hence the key to showing admissibility is to
show that if U is an open neighbourhood of x in G and U = UK, then Bḋ(x, r) ⊆ U when
r is small enough.

Corollary 2.13. If ḋ is a left-invariant continuous admissible pseudometric on G, and
xn → x in G as n→∞, then supy∈Kc

ḋ(xny, xy)→ 0 for all compact subsets Kc of G.

Proof. Let K be the kernel of ḋ, and d be the corresponding metric on G/K. Convergence
of a sequence in G implies pointwise convergence and hence locally uniform convergence
of the corresponding sequence of elements of Iso(G/K,d), by Proposition 2.1. �

We show now that if G is a locally compact group and dG is an admissible left-invariant
metric on G that is also right-K-invariant, where K is a closed bounded subgroup of G,
then the quotient space G/K may be equipped with a metric in a natural way.
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Lemma 2.14. Let K0 and K be compact subgroups of a locally compact group G such
that K0 ⊆K. Suppose that ḋ is a left-invariant right-K-invariant continuous admissible
pseudometric on G with kernel K0, and take C ∶= sup{ḋ(x, y) ∶ x, y ∈K} (which is finite).
Then

d̈(x, y) ∶= min{ḋ(xk, yk′) ∶ k, k′ ∈K} ∀x, y ∈ G
defines a left-invariant continuous admissible pseudometric on G with kernel K, and

ḋ(x, y) −C ≤ d̈(x, y) ≤ ḋ(x, y) ∀x, y ∈ G.
Proof. Since ḋ is continuous and right-K-invariant and K is compact, we may write

(2.8) d̈(x, y) = min{ḋ(xk, y) ∶ k ∈K} = min{ḋ(x, yk′) ∶ k′ ∈K}.
Clearly d̈ is left-invariant and d̈(x, y) ≥ 0 and d̈(x, y) = d̈(y, x) for all x, y ∈ G. Further,

ḋ(xk, zk′) ≤ ḋ(xk, y) + ḋ(y, zk′),
and taking minima shows that d̈(x, z) ≤ d̈(x, y) + d̈(y, z) for all x, y, z ∈ G. Suppose that

d̈(x, y) = 0; then there exists k ∈K such that ḋ(x, yk) = 0. Hence x ∈ yK0 and xK = yK.

We now show that the pseudometric d̈ is admissible. By the remark following Defini-
tion 2.12, it suffices to consider x ∈ G and an open neighbourhood U of x in G such that
U = UK, and show that some Bd̈(x, r) ⊆ U . Clearly U = UK0, and since ḋ is admissible,
there exists r ∈ R+ such that x ∈ Bḋ(x, r) ⊆ U . From (2.8),

Bd̈(x, r) = ⋃
k∈KBḋ(xk, r) = Bḋ(xk, r)K ⊆ UK = U,

so d̈ is admissible. �
Corollary 2.15. Let K0 and K be compact subgroups of a locally compact group G such
that K0 ⊆K. If d0 is a G-invariant admissible metric on G/K0 such that

d0(xkK0, ykK0) = d0(xK0, yK0) ∀x, y ∈ G ∀k ∈K,
then d, defined by

d(xK, yK) = min{d0(xkK0, yk
′K0) ∶ k, k′ ∈K} ∀x, y ∈ G,

is a G-invariant admissible metric on G/K, and the projection π ∶ G/K0 → G/K is a
G-equivariant rough isometry; more precisely,

d0(xK0, yK0) −C ≤ d(xK, yK) ≤ d0(xK0, yK0)
for all x, y ∈ G.

Proof. This follows from the preceding lemma, translated into the language of metrics
using Lemma 2.11. Indeed, the metric d0 induces a pseudometric ḋ on G which satisfies
the conditions required in the previous lemma; the previous lemma constructs another
pseudometric d̈ on G; finally d is the metric on G/K induced by d̈. �

A locally compact topological group G is said to be metrisable if there is a metric
dG on G that induces the topology of G; it is known that dG may be taken to be left-
invariant (see [37, Theorem 8.3]), and we shall always do so. Conversely, it is easy to
check that if dG is a left-invariant metric on G, then G with the topology induced by dG
is a topological group (that is, multiplication and inversion are continuous) if and only
if dG satisfies the condition dG(xn, x) → 0 as n → +∞ implies that dG(xnz, xz) → 0 as
n→ +∞ for all z ∈ G.

Lemma 2.14 suggests the question whether, given a pseudometric group (G,d) and a
closed d-bounded subgroup K of G, it is possible to adjust d on G to obtain a pseudo-
metric that is both left-invariant and right-K-invariant. This is the point of the next
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lemma. We say that a closed subgroup K of G is compact modulo a closed central
subgroup Z of G provided that K/(K ∩Z) is compact.

Lemma 2.16. Let Z be a closed central subgroup of a locally compact group G, and
let ḋ be a left-invariant continuous admissible pseudometric on G. Suppose that K is a
subgroup of G that is compact modulo Z, and set

(2.9) C ∶= sup
k∈K inf

z∈Z ḋ(kz, e).
Then C is finite. Further, ḋK, defined by

ḋK(g, h) = sup
k∈K ḋ(gk, hk) ∀g, h ∈ G,

is a left-invariant, right-K-invariant, continuous, admissible pseudometric on G, and

(2.10) ḋ(g, h) ≤ ḋK(g, h) ≤ ḋ(g, h) + 2C ∀g, h ∈ G.
Proof. In light of the existence of suitable sections for quotients of locally compact groups
(see, for instance, [43]), there is a compact subset Kc of K such that K ⊆KcZ. Then

sup
k∈K ḋ(gk, hk) ≤ sup

k∈Kc

sup
z∈Z ḋ(gkz, hkz) = sup

k∈Kc

ḋ(gk, hk) ≤ sup
k∈K ḋ(gk, hk),

and so

(2.11) ḋK(g, h) = sup
k∈Kc

ḋ(gk, hk) ∀g, h ∈ G.
Similarly,

C = sup
k∈K inf

z∈Z ḋ(kz, e) = sup
k∈Kc

inf
z∈Z ḋ(kz, e) ≤ sup

k∈Kc

ḋ(k, e) < +∞.
By definition, given k ∈K and z ∈ Z,

ḋ(gk, hk) = ḋ(gkz, hkz) ≤ ḋ(gkz, g) + ḋ(g, h) + ḋ(h,hkz) ≤ ḋ(g, h) + 2ḋ(kz, e)
for all g, h ∈ G; we obtain (2.10) for ḋK by optimising in z. In particular, we see that ḋK
is finite. We may easily check that ḋK is a pseudometric on G. It remains to show that
ḋK is admissible and continuous.

The continuity of ḋK follows immediately from (2.11) and Corollary 2.13.
To check admissibility, we suppose that x ∈ G and V is an open neighbourhood of x

in G, and take U = V K. We need to show that BḋK
(x, r) ⊆ U when r is small enough.

But BḋK
(x, r) ⊆ Bḋ(x, r) and the admissibility of ḋ implies that Bḋ(x, r) ⊆ U when r is

small enough. �
The next result follows immediately from Lemmas 2.11 and 2.16.

Corollary 2.17. Suppose that Ko is a compact subgroup of a locally compact group G,
and K is a subgroup of G that contains Ko and is compact modulo the centre of G. If
d is a G-invariant metric on G/Ko, then there is a metric d′ on G/Ko such that the
identity mapping on G/Ko is a rough isometry from (G/Ko, d) to (G/Ko, d′) and d′ is
left-invariant and right-K-invariant, in the sense that

d′(gg′kKo, gg
′′kKo) = d′(g′Ko, g

′′Ko) ∀g, g′, g′′ ∈ G ∀k ∈K.
We have seen that, starting from a homogeneous metric space (M,d), we may construct

various transitive isometry groups H, which are metrisable locally compact groups, and
realise M as H/K, where K is the stabiliser of a point o in M . Conversely, given a
quotient space H/K of a metrisable locally compact group, it is natural to ask whether
H/K may be given the structure of a metric space on which H acts isometrically. The
following corollary answers this question.
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Corollary 2.18. Given a compact subgroup K of a connected metrisable locally compact
group H, there exists an admissible metric d on H/K such that H acts isometrically on(H/K,d). Hence there also exists a left-invariant admissible metric dH on H such that(H,dH) is (1, ε)-quasi-isometric to (H/K,d).

Proof. First, if H is metrisable, then, as noted above, there is a left-invariant admissible
metric d1 on H. We modify d1 if necessary so that it is right-K-invariant, by defining d2

by

d2(x, y) ∶= max{d1(xk, yk) ∶ k ∈K} ∀x, y ∈H.
Lemma 2.16 shows that d2 is a metric. By Lemma 2.14, d, defined by

d(xK, yK) = inf{d2(xk, yk′) ∶ k, k′ ∈K} ∀xK, yK ∈H/K,
is an admissible metric on H/K, and H acts isometrically on (H/K,d).

Finally, we may find an admissible metric dH on H such that (H,dH) is (1, ε)-quasi-
isometric to (H/K,d) using Theorem 2.7. �

Now we discuss covering maps of homogeneous metric spaces. If M ♯ and M are
connected topological spaces, then a continuous surjection π ∶ M ♯ → M is said to be
a covering map provided that, for all sufficiently small neighbourhoods U in M , there
are disjoint neighbourhoods Vz in M ♯, where z ∈ Z, such that π−1(U) = ⊔z∈Z Vz and the
restriction of π to Vz is a homeomorphism onto U .

In the case of connected topological groups, which we write H♯ and H, we take π to
be a homomorphism, with kernel Z. In this case, Z is discrete and normal in H♯, which
implies that Z is central, since {x ∈ G ∶ xzx−1 = z} is both open and closed in G for
each z ∈ kerπ. For such π, for all sufficiently small neighbourhoods U in H, there is a
neighbourhood V in H♯ such that the restriction of π to V is a homeomorphism onto U
and π−1(U) = ⊔z∈kerπ zV .

When we deal with homogeneous metric spaces, universal covering spaces need not
exist; consider, for example, an infinite product of circles.

Lemma 2.19. Suppose that π ∶ G♯ → G is a covering map of connected locally compact
topological groups and that K♯ and K are closed subgroups of G♯ and G such that K♯
is an open subgroup of π−1K. Then the canonical projection π♯ ∶ G♯/K♯ → G/K is a
covering map. Suppose that d is a G-invariant metric on G/K. Then for all ε ∈ R+,
there exists a G♯-invariant metric d♯ on G♯/K♯ such that

d♯(x, y) − ε ≤ d(πx,πy) ≤ d♯(x, y) ∀x, y ∈ G♯/K♯.
If K1 is a connected subgroup of G that contains K and d is right-K1-invariant, then

d♯ may be taken to be right-π−1K1-invariant.

Proof. The mapping π♯ is the composition of two mappings: the canonical projection
from G♯/K♯ to G♯/π−1K and the canonical isomorphism of G♯/π−1K with G/K, which
is a homeomorphism. It is obvious that we can use the latter map to transfer the metric
from G/K to G♯/π−1K so that the homeomorphic isomorphism is also an isometry, so it
suffices to deal with the canonical projection. To simplify the notation, we replace G♯,
K♯, π♯ and π−1K by G, K, π and K♭. Thus K is an open subgroup of K♭, which is a
closed subgroup of G, and we consider the projection π ∶ G/K → G/K♭; we need to prove
that π is a covering map and show how to lift a metric on G/K♭ to G/K.

From the hypotheses, we may find points zj ∈ K♭ such that K♭ = ⊔j zjK. Moreover,
there is a symmetric (that is, U = U−1) open set U in G such that U2∩K♭ =K. Then the
sets UzjK are open in G and disjoint, and the mapping uzjK ↦ uK♭ is a homeomorphism
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from UzjK to UK♭, and then by the G-equivariance of π, the restriction of π to a set
gUzjK, where g ∈ G, is a homeomorphism to gUK♭. It follows that π is a covering map.

Next, a metric d on G/K♭ gives rise to a pseudometric ḋ on G with kernel K♭. We
may define a (not necessarily proper) metric d1 on G/K by choosing ε small enough that
B(eK♭, ε) ⊆ UK♭, and then setting

d1(xK, yK) ∶= {min{d(πx,πy), ε) if x, y ∈ gUK for some g ∈ G
ε otherwise.

We leave to the reader the task of checking that a suitable linear combination dG/K of ḋ
and d1 has the required properties. �
Lemma 2.20. Let H be a locally compact group with closed subgroups S1 and S2 such
that H = S1 ⋅ S2, and let H× = S1 × S2. Let ω ∶ H× → H be the mapping (s1, t) ↦ s1t−1.

Then ω is a homeomorphism. Further, if ḋ is a left-invariant and right-S2-invariant
continuous admissible pseudometric on H, then ḋ×, given by

ḋ×((s1, s2), (s′1, s′2)) = ḋ(s1s
−1
2 , s

′
1s

′−1
2 ) ∀s1, s

′
1 ∈ S1 ∀s2, s

′
2 ∈ S2,

is a left-invariant continuous admissible pseudometric on S1 × S2.

Proof. Since s2 ↦ s−1
2 is a homeomorphism of S2 and ψ ∶ (s1, s2) → s1s2 is a homeo-

morphism, ω is a homeomorphism from H× to H. Since ḋ is a left-S1-invariant and
right-S2-invariant pseudometric, ḋ× is a left-(S1 ×S2)-invariant pseudometric. Since ḋ is

continuous, so is ḋ×.
Let K be the kernel of ḋ and K× be the kernel of ḋ×. From Lemma 2.11,

p×K× = {q× ∈H× ∶ ḋ×(p×, q×) = 0}
and

pK = {q ∈H ∶ ḋ(p, q) = 0}.
for all p× ∈H× and all p ∈H. The definition of ḋ× then implies that

q ∈ pK× ⇐⇒ ḋ×(p, q) = 0 ⇐⇒ ḋ(ω(p), ω(q)) = 0 ⇐⇒ ω(q) ∈ ω(p)K.
It follows that ω induces a homeomorphism from H×/K× to H/K, which is an isometry

by construction. The admissibility of ḋ and that of ḋ× are therefore equivalent. �
We note conversely that if the map ω ∶ S1 × S2 → H, given by ω(s1, s2) = s1s−1

2 is an
isometry from the pseudometric group S1 × S2 to the pseudometric group H, then the
pseudometric on H must be right-S2-invariant.

2.5. Simply transitive isometry groups. Here we are interested in the question
whether a homogeneous metric space admits a simply transitive isometry group.

Theorem 2.21. Let (M,d) be a homogeneous metric space, H denote Iso(M,d) and K
denote the stabiliser of a base point o in M ; let G be a group. Then the following are
equivalent:

(i) there is a simply transitive action of G on M by isometries;
(ii) there is a left-invariant metric dG on G such that (G,dG) is isometric to (M,d);

(iii) there is a monomorphism α ∶ G→H such that H = α(G)K and α(G)∩K = {eH}.

In addition, if (i), (ii) and (iii) hold, and G is a topological group, then the following are
equivalent:

(iv) the metric dG of (ii) is admissible;
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(v) α is a homeomorphism from G to α(G), equipped with the relative topology as
a subset of H.

Finally if (i) to (v) all hold, then α(G) is closed in H.

Proof. Suppose that (i) holds, and denote the action by α. We define the left-invariant
pull-back metric dG on G by

dG(g, g′) = d(α(g)o,α(g′)o) ∀g, g′ ∈ G;

then the map g ↦ α(g)o is an isometry from (G,dG) to (M,d), so (ii) holds.
Assume that (ii) holds, and that F ∶ (G,dG) → (M,d) is an isometry. By composing

with a translation of G if necessary, we may suppose that F (e) = o. For g ∈ G, define
the mapping α(g) ∶M →M by the formula

α(g)(p) = F (gF −1(p)) ∀p ∈M.

It is straightforward to check that (iii) holds.
Now assume that (iii) holds. Then α(G) is transitive since every element of H may be

written as α(g)k where g ∈ G and k ∈K, and α(G) is simply transitive since α(G)∩K ={eH}. So G acts simply transitively by isometries on (M,d), and (i) is proved.
Now assume that (i), (ii) and (iii) hold, and that G is a topological group. Consider,

for g and a net of elements gν in G, the following statements:

(a) gν → g in G as ν →∞;
(b) gνg′ → gg′ in G as ν →∞ for all g′ ∈ G;
(c) dG(gνg′, gg′)→ 0 as ν →∞ for all g′ ∈ G;
(d) d(α(gνg′)(o), α(gg′)(o))→ 0 as ν →∞ for all g′ ∈ G;
(e) α(gν)(p)→ α(g)(p) in M as ν →∞ for all p ∈M ;
(f) α(gν)→ α(g) in H.

Since G is a topological group, (a) and (b) are equivalent, while (c) and (d) are equivalent
by definition, (d) and (e) are equivalent by writing p = g′(o), and (e) and (f) are equivalent
by definition of the topology on H. Further, (b) and (c) are equivalent if and only if dG
is admissible.

If dG is admissible, then (a) and (f) are equivalent, so α is a homeomorphism of G
onto its image in H. Conversely, if the topology of α(G) induced by that of G coincides
with that induced by H, then (a) and (f) are equivalent, and so dG is admissible.

We now suppose that if (i) to (v) all hold, and show that α(G) is closed in H. We
take a net (gν) in G such that α(gν) → h in H, and need to prove that h ∈ α(G). Now
h = α(g)k, where g ∈ G and k ∈K; by replacing gν by g−1gν if necessary, we may assume
that α(gν)→ k in H, and must prove that k = e. Now

dG(gν , eG) = d(α(gν)o, o)→ d(ko, o) = 0,

so gν → eG, as required. �
The theorem above shows that, if we are looking for metric groups that are isometric

to a given homogeneous space, and whose topology is related to that of the homogeneous
space, it will suffice to look for closed subgroups of the isometry group. Actually, since
our homogeneous spaces are assumed to be connected, it will suffice to look for closed
subgroups of the connected component of the identity in the isometry group. The condi-
tions in the theorem will appear quite often, and so it is useful to have some additional
notation.

Definition 2.22. If G and K are subgroups of a group H, then GK denotes the subset{gk ∶ g ∈ G,k ∈K} of H.
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We write H = G ⋅K to indicate that G and K are closed subgroups of a locally compact
group H, such that the mapping (g, k)↦ gk from the set G×K with the product topology
to H is a homeomorphism.

If H = G ⋅K and moreover G is normal in H, then we write H = G⋊K and call H the
semidirect product of G and K.

Remark 2.23. If H = G ⋅K, then G is homeomorphic to H/K. Further, if H is connected,
so are G and K.

The subgroup K is not required to be compact in Definition 2.22. However, if K is
compact, then the condition that the mapping is a homeomorphism in the definition
of the expression H = G ⋅K is satisfied provided only that the mapping is a bijection.
Indeed, if (gν) and (kν′) are nets such that gν → g in G and kν′ → k in K, then gνkν′ → gk
in H since multiplication is continuous. Conversely if G is closed and K is compact, and
gνkν → h in H, then, by passing to a subnet, we may assume that kν → k in K, and then
gν → hk−1 in H and so in G since G is closed; if the net kν had two limits, then we could
factorise h as a product gk in two distinct ways, which contradicts bijectivity.

The next lemma is about groups that nearly act simply transitively.

Lemma 2.24. Suppose that α is a continuous monomorphism of a connected locally
compact group G into a connected metrisable locally compact group H, and that K is a
compact subgroup of H. Let ω ∶ G×K →H be the continuous mapping (g, k)↦ α(g)k−1.
Suppose also that there are neighbourhoods U0 of eG in G and V0 of eK in K such that,
if eG ∈ U ⊆ U0 and eK ∈ V ⊆ V0, then the restricted mapping ω∣U×V is a bijection onto a
neighbourhood of eH in H. Then

(i) H = α(G)K,
(ii) there is an open set U1 in G containing eG such that the restriction ω∣U1×K is a

homeomorphism onto its image, with the relative topology;
(iii) α−1(K) is discrete in G and G/α−1(K) is homeomorphic to H/K;
(iv) α(G) ∩K is finite if and only if α(G) is closed in H; and
(v) if α(G) ∩K = {eH}, then H = α(G) ⋅K.

Proof. To prove (i), we equip the connected space H/K with an H-invariant metric, by
using Corollary 2.18, so that G acts isometrically on H/K. By assumption, ω(G ×K)
contains a neighbourhood of eH , so the image of the base point K in H/K under α(G)
contains a neighbourhood of the base point, whence G acts transitively on H/K by part
(ii) of Theorem 2.7, and H = α(G)K. Hence (i) holds.

Now we prove (ii). By compactness, there exist finitely many points k1, . . . , kI in K
such that K = ⋃i kiV0. Suppose that i in {1, . . . , I}. If α(U0)∩ kiV0 ≠ ∅, then there exist
ui ∈ U0 and vi ∈ V0 such that α(ui) = kivi. Now if u ∈ U0 ∩ α−1(K), then there exist j in{1, . . . , I} and v ∈ V0 such that α(u) = kjv. We deduce that

α(u)v−1 = kj = α(uj)v−1
j ,

whence u = uj. Thus

U0 ∩ α−1(K) = {uj ∶ α(U0) ∩ kjV0 ≠ ∅, kj = α(uj)v−1
j },

which is a finite set. It follows that there exists a neighbourhood U ′
0 of eG in G such that

α(U ′
0) ∩K = {eH}. We take a neighbourhood U1 of eG in G such that U−1

1 U1 ⊆ U ′
0. Now

if g1, g2 ∈ U1 and k1, k2 ∈K are such that α(g1)k−1
1 = α(g2)k−1

2 , then α(g−1
2 g1) = k−1

2 k1 and
g−1

2 g1 ∈ U ′
0 and k−1

2 k1 ∈ K. It follows that g1 = g2 and k1 = k2, and ω∣U1×K is a bijection.
The hypothesis on ω implies that ω∣U1×K is open, and it is continuous by definition.
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Part (iii) follows immediately from (ii). Indeed, α−1(K) ∩ U1 = {eG}, so the point eG
is isolated in α−1(K). By a translation argument, every point of α−1(K) is isolated,
and α−1(K) is discrete. Further, standard isomorphism theorems show that α induces a
continuous bijection, α̇ say, of G/α−1(K) onto H/K. The hypothesis on ω implies that
α̇ is open, so α̇ is indeed a homeomorphism.

We now prove one implication of (iv). If α(G) is closed in H, then α(G)∩K is a closed
subgroup of K, so is compact. Now G is connected and locally compact by hypothesis,
and so is σ-compact; further, α−1(K) is a discrete subgroup of G, and hence there is a
neighbourhood W of eG such that the sets xW , as x ranges over α−1(K), are disjoint. It
follows that α−1(K) is countable, whence α(G)∩K is a countable compact group, hence
finite (see the notes and remarks at the end of this section).

Conversely, to complete the proof of (iv), we assume that α(G)∩K is finite, and take
a net (gν) in G such that α(gν) → h in H; we must show that h = α(g∗) for some g∗ in
G, and gν → g∗ in G. By the transitivity of the G action on H/K, proved in (i), there
exists g in G such that h ∈ α(g)K; then α(g−1gν) → α(g−1)h in H, and, by replacing gν
and h by g−1gν and α(g−1)h, we may assume that h ∈ K. Next, from (ii), if ν is large
enough, there exists g̃ν in U1 such that α(g̃ν)K = α(gν)K, and g̃ν → e in G; by replacing
gν by g̃−1

ν gν , we may assume that α(gν) ∈ K. Since α(G) ∩K is finite, the convergent
net gν is eventually constant, so the limit is in G.

Finally, if α(G)∩K = {eH}, then α(G) is closed in H from part (iv). By Remark 2.23,
H = α(G) ⋅K. �

We now clarify when two connected locally compact groups may be made isometric.

Corollary 2.25. Suppose that G1 and G2 are connected locally compact groups. Then
G1 and G2 may be made isometric if and only if there exists a metrisable locally compact
group H with a compact subgroup K such that H = G1 ⋅K = G2 ⋅K.

Proof. If G1 and G2 may be made isometric, then we may assume that the isometry
sends e1 to e2, and that they have a common isometry group, H say. Then we may take
K to be the stabiliser of e1 in G1 or e2 in G2.

Conversely, given H and K, Corollary 2.18 constructs a metric d on H/K so that
H acts isometrically on (H/K,d). Since Gj acts simply transitively on H/K, we may
transport the metric d on H/K to Gj by the formula

dj(x, y) = d(xK, yK) ∀x, y ∈ Gj,

and obtain left-invariant metrics on Gj, when j is 1 or 2. Now (G1, d1) and (G2, d2) are
both isometric to (H/K,d), and so are isometric to each other. �

2.6. Invariant measure and growth. Every locally compact group G admits a Haar
measure µ, that is, a left-invariant Radon measure that gives positive mass to all
nonempty open sets; the Haar measure is unique up to a multiplicative constant.

If K is a compact subgroup of a locally compact group G, with a left-invariant Haar
measure µ, and π ∶ G → G/K is the quotient map, then there is a unique G-invariant
Radon measure m on G/K such that

(2.12) m(U) = µ(π−1(U))
for all Borel subsets U of G/K; see [37, §15]. From Theorem 2.7 and Corollary 2.8, if(M,d) is a homogeneous metric space and G is Iso(M,d), then M may be identified
with G/K for some compact subgroup K of G. Thus every homogeneous metric space(M,d) admits a unique (up to scalar multiplication) Radon measure that is invariant
under Iso(M,d).
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A compactly generated locally compact group G with Haar measure µ is said to be of
polynomial growth if there is a compact generating neighbourhood U of the identity in
G such that

(2.13) µ(Un) ≤ CnQ ∀n ∈ Z+.
If G is of polynomial growth and V is another compact generating neighbourhood of
the identity in G, then the same equation holds but with a possibly different constant
C. From part (i) of Lemma 2.2, m(Vn(o, `)) grows no faster than exponentially in n;
however, it may grow only polynomially, or even be bounded.

The following definition is standard, at least for quasigeodesic metrics.

Definition 2.26. Let (M,d) be a homogeneous metric space. We say that (M,d) is of
polynomial growth if for a given point and hence for an arbitrary point o in M ,

(2.14) m(B(o, r)) ≤ CrQ
for all sufficiently large r.

At this point, for a metric Lie group we have two notions of polynomial growth, which
in general are not equivalent. For instance, R is a group of polynomial growth, but if we
define the metric d on R by

d(x, y) ∶= log(∣x − y∣ + 1) ∀x, y ∈ R,
then (R, d) is not of polynomial growth. More generally, m(B(o, r)) may grow much
faster in r than m(Vn(o, `)) grows in n.

A proper quasigeodesic homogeneous metric space is of polynomial growth if and
only if its isometry group is of polynomial growth. For general metric spaces, only one
implication may be proved, as follows.

Lemma 2.27. If M is a homogeneous metric space of polynomial growth, and G is a
subgroup of Iso(M,d) that acts transitively on M , then G is of polynomial growth.

Proof. By part (v) of Theorem 2.7, we may fix o ∈ M and ` ∈ R+ such that the set

U ∶= {f ∈ G ∶ f(o) ∈ B̆(o, `)} is a compact neighbourhood of the identity element in G
and

Un = {f ∈ G ∶ f(o) ∈ Vn(o, `)}.
Let µ be a Haar measure on G and m be a G-invariant measure on M such that (2.12)

holds, as discussed at the beginning of this section, and suppose that m(B(o, r)) ≤ CrQ
for all sufficiently large r. Then

µ(Un) =m(Vn(o, `)) ≤ C`Q(n + 1)Q
since Vn(o, `) ⊆ B(o, (n + 1)`). �

We now connect growth to the doubling property.

Definition 2.28. Let (M,d) be a homogeneous metric space. We say that (M,d) is
doubling if there is a constant N such that each ball of radius 2r may be covered by at
most N balls of radius r for all r ∈ R+. We say that (M,d) is doubling at small scale
or at large scale if the covering property holds for all sufficiently small r or sufficiently
large r.

Polynomial growth is often linked with the property of being doubling at large scale.
Indeed, if (M,d) is proper quasigeodesic, then it is of polynomial growth if and only if
it is doubling at large scale; see, for instance, [18]. However, these two notions are not
equivalent in our setting. More precisely, if a metric space (M,d) is doubling at large
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scale, it may fail to be of polynomial growth; see Remark 2.29. However, if (M,d) is
doubling at large scale and proper, then it is of polynomial growth; see Remark 2.30.
Conversely, if (M,d) is of polynomial growth, then it is proper, but it does not need to be
doubling at large scale; see Remarks 2.31 and 2.32. This paradoxical behaviour reflects
the fact that polynomial growth and properness are not quasi-isometric invariants when
metrics are not proper quasigeodesic.

Remark 2.29. The space (R, d), where the metric d is given by d(x, y) = min{∣x − y∣,1},
is trivially doubling at large scale, but is evidently not of polynomial growth.

Remark 2.30. If a homogeneous metric space is proper and doubling, then it is of poly-
nomial growth. Indeed, if one and hence every ball of radius 2r may be covered by N
balls of radius r, then it may be seen that

m(B(o, r)) ≤ Nm(B(o,1))rlog2(N)
when r > 1.

Remark 2.31. It is easy to construct homogeneous metric spaces of polynomial growth
that are not locally doubling (consider the product ∏n∈N(R/2−nZ), where each factor
has the metric induced from the euclidean metric on R and the product has the `∞-
metric) and to construct nonhomogeneous metric spaces of polynomial growth that are
not doubling at large scale (consider sparsely branching R-trees of unbounded degree).
The next example shows that having polynomial growth does not even imply being
doubling at large scale for proper connected homogeneous metric spaces.

Consider the piecewise linear function D ∶ [0,+∞) → [0,+∞) with nodes at (0,0),(1,1), and (xn, yn), where n ∈ N, given by xn = 22n+1 and yn = 22n . The nodes all lie on
the graph y = x1/2, so D is evidently increasing and concave. Hence d(x, y) ∶= D(∣x − y∣)
is a translation-invariant metric on R, and ∣B(x0, r)∣ = 2D−1(r) for all r ∈ [0,+∞).

Take r = yn, and consider the ratio

∣B(0,2r)∣∣B(0, r)∣ = D−1(2yn)
D−1(yn) = D−1(2yn)

xn
.

We shall now show that the right-hand fraction is unbounded in n, which shows that d
is not a doubling metric.

If (x, y) lies on the line segment between (xn, yn) and (xn+1, yn+1), then

y − yn
x − xn = yn+1 − yn

xn+1 − xn = y2
n − yn
y4
n − y2

n

= 1

yn(yn + 1) ,
so

x = xn + yn(yn + 1)(y − yn).
Since 2yn ≤ yn+1, if D(x) = 2yn, then (x,2yn) lies on the line segment, and so x =
xn + xn(yn + 1) and

D−1(2yn)
xn

= x

xn
= yn + 2,

which tends to infinity as n increases.
The same argument also shows that if (x, y) lies on this line segment, then

∣B(0, y)∣ = 2x = 2xn + 2yn(yn + 1)(y − yn)≤ 2y2
n + 2yny(yn + 1) ≤ 2y2 + 2y2(y + 1),

and it follows that d is of polynomial growth.
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Remark 2.32. If (M,d) is a homogeneous metric space of polynomial growth, then it

is proper. Indeed, if there were a noncompact closed ball B̆(p, r), then there would be

ε ∈ R+ and points xi in B̆(p, r), where i ∈ N, such that d(xi, xj) > 2ε if i ≠ j. But then it
would follow that

C(r + ε)Q ≥m(B̆(p, r + ε)) ≥∑
i∈Nm(B(xi, ε)) = +∞,

which would be a contradiction.

2.7. Notes and remarks. Here we include some additional comments on the results
established above.

2.2. Homogeneous metric spaces. If f is a metric preserving mapping of a homogeneous
metric space (M,d), in the sense that condition (2.1) holds, then f is surjective; this
need not be true for metric preserving mappings of general metric spaces. The proof
involves first composing with an isometry, so that f(o) = o, then using compactness to
show that f is bijective on closed balls (defined relative to the Busemann gauge), and
finally letting the radius of the balls go to infinity.

2.3. Metric spaces and coset spaces. The simple observations of this section raise further
questions about isometry groups. Given a metric space (M,d) and a transitive isometry
group G of M , let o be a point in M and K be the stabiliser of o in G. Is there a
left-invariant metric dG on G such that

d(p, q) = min{dG(g, h) ∶ g(o) = p, h(o) = q}?

Under what circumstances do the stabilisers of all points in M have the same diameter?
And if we equip M with the metric d′ that is defined by the right-hand side of the above
formula, is it true that G = Iso(M,d′)?
2.4. Modifying metrics. The use of pseudometrics leads to another interpretation of
Theorem 2.6. Given a metric on a homogeneous metric space (M,d), we may define a

family of pseudometrics ḋx, where x runs over M , on the isometry group H, by setting
ḋx(g, h) = d(gx, hx) for all g, h ∈H. If g, h ∈H and ḋx(g, h) = 0 for all x in M , then g−1h

acts trivially on M , so g = h. Thus expressions such as supx∈M ḋx(g, h), where x runs

over M , only vanish when g = h. The pseudometrics ḋx satisfy the inequality

ḋx(g, h) = d(gx, hx) ≤ d(gx, gy) + d(gy, hy) + d(hy, hx)≤ d(gy, hy) + 2d(x, y) = ḋy(g, h) + 2d(x, y)
for all g, h ∈ H, and if M is unbounded, then supx∈M ḋx(g, h) might well be infinite.
However, the formula given in Theorems 2.6 and 2.7 is but one of many ways of combining
these pseudometrics to get a metric on H.

We will use Corollary 2.17 later. For future purposes, we note that if Ko and K are
compact subgroups of a Lie group G and Ko ⊂K, then there exists a riemannian metric
d on G/Ko such that

d(gg′kKo, gg
′′kKo) = d(g′Ko, g

′′Ko) ∀g, g′, g′′ ∈ G ∀k ∈K.
All riemannian metrics are bi-Lipschitz equivalent.

The reader may wish to check whether the new metrics produced in Corollary 2.15 or
Lemma 2.15 are proper or derived semi-intrinsic (as defined just before Lemma 2.3) or
proper quasigeodesic or geodesic if the initial metric has this property.
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2.5. Simply transitive isometry groups. Definition 2.22 deserves a further comment.
In the definition of a semidirect product, it suffices to suppose that G and K are closed

subgroups and G is normal, and the mapping (g, k)↦ gk is a bijection. Indeed, if gν → g
in G and kν → k in K, then gνkν → gk in H by definition. Conversely, if gνkν → gk in
H, then Gkν → Gk in the quotient group G/H, which is homeomorphic to K by [37,
Theorem 5.26], that is, kν → k in K, and hence also gν → g in G.

The results of this and the previous section offers us an alternative viewpoint on homo-
geneous metric spaces and their isometry groups. We begin by taking the basic object to
be a metric space (M,d) with a topology that is compatible with the metric, and showed
that a closed subgroup H of the isometry group that acts transitively is a topological
group with a metric compatible with the topology, and that the projection from H to
M is both a metric projection and a topological projection (that is, it is continuous and
open). However, we might also take the basic object to be a metrisable topological group
H, and consider various quotient spaces H/K with the quotient topologies and quotient
metrics, or even just a topological group H acting on a quotient space H/K that may
be endowed with a metric that is compatible with the quotient topology.

2.6. Invariant measure and growth. Suppose that M is the coset space G/K, where G
is a (not necessarily connected) locally compact group and K is a compact subgroup.
We claim that if M is compact and countable, then M is finite. Indeed, M admits a
G-invariant Radon measure m, and the regularity of M implies that there is an open set
U of positive but finite measure. Since M is compact, m(M) must be finite, since it may
be covered by finitely many translates of U . All points of M have the same measure. If
points had measure 0, then M would have measure 0; hence points have positive measure
and the cardinality of M is m(M)/m({p}) for any point p.

3. Lie theory and metric spaces

This section is concerned with homogeneous metric manifolds, which for us are locally
euclidean, but not a priori smooth. However, as a consequence of the solution of Hilbert’s
fifth problem, they are quotient spaces of Lie groups, and hence may be given analytic
structures such that the connected component of the identity in the isometry group acts
analytically.

In this section we first review the Gleason–Iwasawa–Montgomery–Yamabe–Zippin
structure theorem of almost connected locally compact groups, and then discuss some
variants and consequences thereof, which include our first main theorem, that homoge-
neous metric spaces may be approximated by homogeneous metric manifolds.

We then look at more Lie theory, such as the Levi decomposition, and see how this
enables us to prove our second main theorem, on the finer structure of homogeneous
metric manifolds. We should mention that there have been exhaustive investigations
into the homogeneous spaces of semisimple Lie groups and those of solvable Lie groups,
but the general case seems less well known.

Many of the results here may be proved by a reduction to the riemannian case and
then appealing to the appropriate classical result. Indeed, as we shall see in Corollary
3.4, if two homogeneous metric manifolds are isometric, then they admit riemannian
structures for which they are isometric. However, classical riemannian geometers did
not consider quasi-isometries, and at least some of our theorems are not true in the
context of isometries, and are certainly not in the literature (at least in forms that we
are able to recognise).
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3.1. The main structure theorem. A locally compact group G is said to be almost
connected if G/G0 is compact, where G0 is the connected component of the identity in
G; this is closed and normal. The isometry groups of homogeneous metric spaces are
almost connected, by Theorem 2.6.

We recall without proof one version of the solution to Hilbert’s fifth problem by Glea-
son, Iwasawa, Yamabe, Montgomery and Zippin. See, for instance, [54, Section 4.6] or
[69, Theorem 1.6.1].

Theorem 3.1. Let G be an almost connected locally compact group. Then every neigh-
bourhood U of the identity in G contains a compact normal subgroup N such that G/N
is locally euclidean. If G is locally euclidean, then G may be given a unique analytic
structure for which it is a Lie group.

The following related result was first stated by Szenthe [68]. Unfortunately, there was
a mistake in his argument, discovered by Antonyan, but the gap was filled independently
by Antonyan and Dobrowolski and by George Michael. See Glockner’s review [27] for
the history and location of the proof.

Theorem 3.2. If K is a compact subgroup of an almost connected locally compact group
H, and ⋂h∈H hKh−1 = {e}, then the following are equivalent:

(i) H is a Lie group and H/K is a manifold;
(ii) H/K is locally contractible.

Corollary 3.3. Let K be a compact subgroup of an almost connected locally compact
group H such that H/K is connected and ⋂h∈H hKh−1 = {e}. Suppose also that H/K is
locally euclidean or that H is locally euclidean. Then H and hence H/K may be given
analytic structures, compatible with their topologies, such that H is a Lie group and the
action of H on H/K is analytic.

Proof. If H/K is locally euclidean, then so is H, by Theorem 3.2, so we may assume
that H is locally euclidean.

By Theorem 3.1, we may endow H with an analytic structure so that H becomes a Lie
group, and this analytic structure on H induces an analytic structure on H/K. These
analytic structures are compatible with the topologies of H and H/K. Further, H acts
analytically on H/K. �

In particular, if (M,d) is a homogeneous metric manifold, H is its isometry group,
and K is the stabiliser of a point o in M in H, then we may identify M with H/K and
apply this corollary to deduce that H and M have analytic structures such that H acts
analytically on M .

In light of Theorems 3.1 and 3.2 and Lemma 3.6 below, there are several criteria which
ensure that H is locally euclidean or H/K is locally euclidean.

Corollary 3.4. Let (M1, d1) and (M2, d2) be homogeneous metric manifolds. Then there
exist analytic structures and left-invariant analytic infinitesimal riemannian metrics g1

and g2 on M1 and M2 such that

(i) Iso(M1, d1) ⊆ Iso(M1, g1) and Iso(M2, d2) ⊆ Iso(M2, g2); and
(ii) each isometry f from (M1, d1) to (M2, d2) is also an isometry from (M1, g1) to(M2, g2).

Proof. Write H1 and H2 for Iso(M1, d1) and Iso(M2, d2), and let K1 and K2 be the
stabilisers in H1 and H2 of points o1 in M1 and o2 in M2; we may and shall identify M1

and M2 with H1/K1 and H2/K2. By the previous result, H1 and H2 are Lie groups and
act analytically on H1/K1 and H2/K2.
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The action of K1 on H1/K1 induces an action of K1 on the tangent space to H1/K1 at
the point K. Take an inner product on this tangent space; then by averaging over the
action of K1 using the Haar measure of K1, we may assume that the inner product is K1-
invariant. We may extend this inner product to an analytic left-invariant infinitesimal
riemannian metric g1 on H1/K1; the key is that if h and h′ in H1 both map K1 to
hK1, then h′ = hk for some k ∈ K1, and the K1-invariance of the inner product at
the point K1 implies that h and h′ induce the same inner product at hK1. It follows
immediately that H1 acts on (H1/K1, g1) by riemannian isometries, and we conclude
that Iso(M1, d1) ⊆ Iso(H1/K1, g1).

If there are no isometries from (M1, d1) to (M2, d2), we repeat this argument to put a
riemannian metric on M2, and there is nothing more to prove.

Otherwise, we take one isometry f from (M1, d1) to (M2, d2); we may and shall suppose
that f(o1) = o2. Conjugation with f induces a homeomorphic isomorphism F of the
isometry groups Iso(M1, d1) and Iso(M2, d2), and F (K1) = K2. Hence we may identify
f with the map xK1 ↦ F (x)K2 from H1/K1 to H2/K2. The groups H1 and H2 are Lie
groups, and continuous homomorphisms of Lie groups are automatically analytic, so F
is analytic.

We transport the infinitesimal riemannian metric g1 on H1/K1 to an infinitesimal
riemannian metric g2 on H2/K2, and then f is also an analytic riemannian isometry
from (M1, g1) to (M2, g2); further, Iso(M2, d2) ⊆ Iso(M2, g2).

Finally, if f ′ is any isometry from (M1, d1) to (M2, d2), then f−1 ○ f ′ ∈ H1. It follows
that f ′ is also a riemannian isometry from (M1, g1) to (M2, g2). �

This result was proved for metric Lie groups in [44, Proposition 2.4].

3.2. Compact subgroups. We summarise some results about compact subgroups of
connected locally compact groups, and establish some corollaries of the structure theo-
rems above.

Lemma 3.5 (After Iwasawa [39]). Let G be a connected locally compact group. Then
every compact subgroup of G is contained in a maximal compact subgroup of G, and all
maximal compact subgroups are conjugate to each other.

If N is a connected normal subgroup of G and K is a maximal compact subgroup of
G, then N ∩K is a maximal compact subgroup of N and KN/N is a maximal compact
subgroup of G/N ; conversely, if KN is a maximal compact subgroup of N and KG/N is
a maximal compact subgroup of G/N , then there exists a maximal compact subgroup K
of G such that K ∩N =KN and KN/N =KG/N .

Proof. The first result is [39, Theorem 13], and the second is [39, Lemma 4.10]. In
both cases, the results are first proved for Lie groups and then for groups that admit
approximations by Lie groups, as in Theorem 3.1. �

It follows that the intersection of all maximal compact subgroups is the unique maxi-
mal compact normal subgroup of a connected locally compact group.

The following result is almost standard and may be extended (see [4]); compact con-
tractibility is the only new ingredient. We say that a topological space M is compactly
contractible if, for each compact subset S of M , there are x ∈M and a continuous map
F ∶ [0,1] × S →M such that F (0, s) = s and F (1, s) = x for all s ∈ S.

Lemma 3.6. If K is a compact subgroup of a connected locally compact group H, then
the following are equivalent:

(i) K is a maximal compact subgroup of H;
(ii) H/K is homeomorphic to a euclidean space;
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(iii) H/K is contractible;
(iv) H/K is compactly contractible.

Proof. By [54, page 188], (i) implies (ii). It is trivial that (ii) implies (iii) and (iii) implies
(iv). We prove that (iv) implies (i) by modifying the argument of [4, Theorem 1.3] that
shows that (iii) implies (i).

Suppose that (iv) holds. By [7], there is a maximal compact subgroup K0 of H that
contains K, and then by [54, page 188], there is a map Φ ∶ Rn → H such that the map(x, y) ↦ Φ(x)y is a homeomorphism from Rn ×K0 to H. Hence H/K is homeomorphic
to Rn ×K0/K. The contraction of the compact set K0/K in H/K composed with the
projection onto K0/K is a contraction of K0/K. From Antonyan [4], K0/K is contractible
if and only if K =K0, so K is maximal. �

3.3. Proof of Theorem A. In this section, we prove our first main theorem, which we
restate in more detailed form.

Theorem 3.7. Let (M,d) be a homogeneous metric space, and H be the connected
component of the identity in Iso(M,d).

(i) For all positive ε, there is a connected metric Lie group (Hε, dε) and a (1, ε)-
quasi-isometry ϕ ∶M →Hε.

(ii) There are an H-invariant metric d0 of M , a contractible metric manifold (M ′, d′)
and an H-equivariant projection π from (M,d0) to (M ′, d′), such that the iden-
tity mapping is a homeomorphic rough isometry from (M,d) to (M,d0), and
π is a homogeneous metric projection with compact fibre, and hence a rough
isometry.

Proof. Let Ko be the stabiliser of a point o in M , so that M may be identified with
H/Ko.

To prove part (a), take a compact normal subgroup N of H such that H/N is a Lie
group and No has diameter less that ε. Define

ḋ(g, h) = sup
k∈N d(gko, hko).

By Lemma 2.16, ḋ is a continuous admissible left-invariant and right-KoN -invariant
pseudometric on H, and

d(go, ho) ≤ ḋ(g, h) ≤ d(go, ho) + 2 diam(No) ∀g, h ∈H.
By the second part of Lemma 2.14, there is an admissible metric d′ on M ′ ∶= H/KoN
such that

d′(gKoN,hKoN) = ḋ(g, h) ∀g, h ∈H.
Hence (M,d) is (1, ε)-quasi-isometric to the homogeneous metric manifold (M ′, d′). By
Theorem 2.7, (M ′, d′) is itself (1, ε)-quasi-isometric to the metric Lie group (H/N,d′ε).

The proof of part (b) is similar. Let K be a maximal compact subgroup of H such
that Ko ⊆ K, whence KoN ⊆ K, and take M ′ to be G/K. As before, we lift the metric

d on M to a pseudometric ḋ on H with kernel Ko, using Lemma 2.11, and then using
Lemma 2.16, we define a left-invariant, right-K-invariant pseudometric d̈ on H by

d̈(g, h) = max{ḋ(gk, hk) ∶ h ∈K}.
This then induces H-invariant metrics d0 on G/Ko and d′ on M ′ ∶= G/K by Lemma 2.14,
and the projection from G/Ko to G/K has the required properties by construction. �
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3.4. Lie groups and algebras. To say more about homogeneous metric spaces, we
need more background on Lie theory; we review some aspects thereof in this section. We
begin with some standard definitions and results.

Recall that the adjoint group of a Lie algebra h is the Lie group of linear transforma-
tions of h generated by the elements exp(ad(X)), where X ∈ h. Recall also that if H is
a Lie group with Lie algebra h, and g is a subalgebra of h, then there is a Lie subgroup
G of H whose Lie algebra is g, but G need not be closed. Next, if G is a Lie subgroup
of H, then G with its own Lie structure is analytically immersed, but not necessarily
embedded, in H. Of course, G is embedded if and only if it is closed. In light of this
correspondence between Lie groups and algebras, we denote the Lie algebra of a Lie
group G by the corresponding fraktur letter g.

We recall also that a discrete normal subgroup Γ of a connected Lie group G is central,
since {x ∈ G ∶ xγx−1 = γ} is both open and closed in G for each γ ∈ Γ. This implies that
if G is connected and Γ is a discrete central subgroup, then a discrete subgroup ∆ of G
that contains Γ is central in G if and only if ∆/Γ is central in G/Γ.

Definition 3.8. A torus or toral group is a connected compact abelian Lie group, that
is, a finite power of the multiplicative group of complex numbers of modulus 1. A
subalgebra t of a Lie algebra h is compact if ad(U) is semisimple and has purely imaginary
eigenvalues on h for all U ∈ t and is toral if it is abelian and compact. The subgroup T
corresponding to a compact subalgebra need not be compact, but Ad(T ) is a compact
subgroup of End(h), and is a torus if t is toral.

If K is a compact subgroup of a connected Lie group H, then k is a subalgebra of
h, and ad(U) is semisimple and has purely imaginary eigenvalues for all U ∈ k. Indeed,
by averaging any inner product over K, using the Haar measure, we may produce an
Ad(K)-invariant inner product on h; then Ad(K) is a group of orthogonal mappings of
h. Hence if U in k, then exp(tad(U)) is semisimple with eigenvalues of modulus 1 for all
t ∈ R, and ad(U) is semisimple with purely imaginary eigenvalues. If moreover K is a
torus, then K is abelian and k is abelian; in this case we may simultaneously diagonalise
ad(K) acting on the complexification of g. (For information about complexifications of
Lie algebras, see, for example, [70, p. 47].)

In general, the implicit use of an inner product to construct complements of subspaces
that are invariant under the action of a compact group K, or to decompose a space into
a direct sum of minimal invariant subspaces, or to show that ad(U) acts semisimply
with purely imaginary eigenvalues for all U in its Lie algebra k will be referred to here
as “Weyl’s unitarian trick”, though for Weyl this was just the starting point. See [70,
p. 342] for more information. Quite often the compact group K will be a torus, and we
usually write T rather than K in this case.

Finally we recall that, if G is a connected Lie group with Lie algebra g, then the radical
R of G is the maximal connected solvable normal subgroup of G, while the nilradical N
is the maximal connected nilpotent normal subgroup of G; both are closed. Their Lie
algebras r and n are the maximal ideals of g that are respectively solvable and nilpotent.
(The existence of these ideals may be established by showing that the sum of nilpotent or
solvable ideals is a nilpotent or solvable ideal respectively, whence the sum of all nilpotent
or solvable ideals is the largest nilpotent or solvable ideal respectively.) Sometimes we
write R = rad(G) and N = nil(G), or r = rad(g) and n = nil(g).
Remark 3.9. It is well-known that [g, r] ⊆ n.

For these results and much more, see Bourbaki [12, pp. 44–47 and p. 354] or Varadara-
jan [70, pp. 204–207 and 244–245].
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We will need a structural result concerning tori in a connected Lie group H; this
illustrates the power of Lie theory in establishing results that are of interest in our study
of homogeneous metric spaces.

Lemma 3.10. Let H be a connected Lie group with nilradical N . If T is a normal torus
in H, then T ⊆ N . If K is a compact subgroup of N , then K is central in H.

Proof. Let h, t, k and n be the Lie algebras of H, T , K and N .
Since t and n are nilpotent ideals, so is t + n, and consequently t ⊆ n, that is, T ⊆ N .
We now take a compact subgroup K of N , and show that K is central in H. We

suppose without loss of generality that K is a maximal compact subgroup of N , so that
K is connected; as K is also compact and nilpotent, K is abelian.

Let Z be the centre of N , which is closed and connected [70, Corollary 3.6.4], and so
of the form T ×V , where T is a torus and V is a vector space. Since KZ/Z is a compact
subgroup of the simply connected nilpotent group N/Z, whose only compact subgroup
is trivial, K ⊆ Z, and hence K = T .

We have now shown that T is central in N , but not that T is central in H. To complete
the proof, we write Λ for the set of all elements U ∈ n such that exp(U) = e. Then Λ is
a lattice in t (see [70, Theorem 3.6.1]), and is contained in the centre Z(n) of n, which
is a characteristic ideal in h. Hence for each U ∈ Λ, Ad(H)U is a connected subset of Λ
that contains U , and hence coincides with {U}.

Thus, if h ∈ H, then Ad(h)Z(n) is a linear mapping that fixes all U in Λ, and hence
acts trivially on the linear span of Λ, that is, on t; exponentiating, T is central. �
3.5. Lie theory and metric spaces. We return to the situation that arises in the
context of isometry groups.

The main result of this section, Corollary 3.12, is an algebraic criterion for when a Lie
group G2 may be made isometric to a metric Lie group (G1, d1).

The material in this section is largely an extension to the case of more general metrics
of ideas that go back many years to deal with riemannian Lie groups, which may be
found in Helgason [34] or Kobayashi and Nomizu [46, 47].

Lemma 3.11. Suppose that K is a compact subgroup of a connected Lie group H and
denote by π the quotient map from H to H/K. Let G be a Lie subgroup of H (not
necessarily closed) such that h = g⊕ k as vector spaces. Then

(i) H = GK,
(ii) the map π∣G ∶ G→H/K is a covering map,

(iii) G is closed in H if and only if G ∩K is finite, and
(iv) if H/K is simply connected, then H = G ⋅K.

Proof. The derivative of the product of exponential maps (X,Y )↦ exp(X) exp(Y ) from
g ⊕ k to H is nonsingular at 0, whence H, G and K satisfy the hypotheses of Lemma
2.24 (with α taken to be the identity mapping). Part (i) follows from Lemma 2.24 (i).

Lemma 2.24 (iii) implies that π∣G ∶ G → H/K is a covering map, which proves (ii);
part (iii) is just Lemma 2.24 (iv).

Finally, if H/K is simply connected, then the covering map π∣G is a homeomorphism,
whence G ∩K = {eH}. Part (iv) now follows from Lemma 2.24 (v). �

We remind the reader that when H = G ⋅K, the spaces G and H/K are homeomorphic,
and if H is connected, so is K.

Corollary 3.12. Let G1 and G2 be connected simply connected Lie groups, let d1 be an
admissible left-invariant metric on G1, let H ∶= Iso(G1, d1), and let K be the stabiliser
of e1 in H. The following are equivalent:
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(i) G2 may be made isometric to (G1, d1);
(ii) there is a Lie group monomorphism α ∶ G2 → H such that we may write H =

G1 ⋅K = α(G2) ⋅K;
(iii) there is a Lie algebra monomorphism τ ∶ g2 → h such that τ(g2)⊕ k = h.

Proof. This follows by combining Lemma 3.11 above with Theorem 2.21 (we may write
H = G2 ⋅K) and Corollary 3.3 (the isometry group of a metric Lie group is a Lie group).

�
In the context of riemannian metrics, this result was well-known.

3.6. Decompositions of Lie groups. We are going to deal with semidirect products
R ⋊ L, and refer the reader to Definition 2.22 for the details. We shall also use the
following nomenclature.

Definition 3.13. Suppose that Γ is a subgroup of the semidirect product R⋊L. We say
that Γ is strongly central if both (r, e) and (e, l) are central in R⋊L whenever (r, l) ∈ Γ.

It will be useful to recall some features of the Levi decomposition of a connected Lie
group G. Write g for the Lie algebra of G. The Lie algebra of the universal covering
group G̃ of G is also g, and G is a quotient of G̃ by a discrete central subgroup Γ. The
Levi decomposition writes g as the sum r⊕ l, where r is the radical and l is a semisimple
subalgebra of g, known as a Levi subalgebra. While r is uniquely determined, l need not
be, but all choices of l are conjugate under the adjoint group of g.

Let R̃ and L̃ be the analytic subgroups of G̃ and R and L be the analytic subgroups
of G corresponding to r and l; R̃ and R are the radicals of G̃ and G, while L̃ and L are
called Levi subgroups. The subgroup L̃ is closed in G̃ but L need not be closed in G.
Denote Γ ∩ R̃ and Γ ∩ L̃ by ΓR and ΓL.

The centre Z(L̃) of the simply connected semisimple group L̃ is discrete and con-
tains a finite index subgroup Z+(L̃) which is the intersection of the kernels of all finite-
dimensional representations of L̃; in particular, Z+(L̃) is contained in the kernel of the
restriction of the adjoint representation of G̃ to L̃, and hence Z+(L̃) ⊆ Z(G̃) ∩ L̃. Hence
Z(G̃)∩ L̃ is of finite index in Z(L̃). Similarly we consider Z+(L), the intersection of the
kernels of all finite-dimensional representations of L, and show that Z(G)∩L is of finite
index in Z(L). The subgroups Z+(L̃) and Z+(L) do not depend on the choice of L̃ and
L in the Levi decomposition, since all Levi subgroups are conjugate to each other.

The next lemma summarises many properties of the Levi decomposition.

Lemma 3.14. Let G, Z(G), R, L, Z+(L), G̃, R̃, L̃, Z(L̃), Z+(L̃), Γ, ΓR and ΓL be as
defined above. Then the following hold.

(i) R̃ and L̃ are simply connected and closed in G̃, and R̃ is normal; further, G̃ is
the semidirect product R̃ ⋊ L̃ of these subgroups.

(ii) R̃ and L̃ are the universal covering groups of R and L, and R and L may be
identified with R̃/ΓR and L̃/ΓL.

(iii) R is closed and normal in G, but L need not be closed. However, Z+(L) L is
closed in G.

(iv) G may be identified with (R⋊L)/Γ0, where Γ0 = Γ/(ΓR ×ΓL), and ∣Γ0∣ = ∣R∩L∣.
(v) G is a semidirect product of its radical and a Levi subgroup if and only if R∩L ={e} if and only if Γ0 = {e} if and only if Γ = ΓRΓL.

(vi) R⋊L is the smallest covering group of G that is a semidirect product of its radical
and a Levi subgroup, in the sense that every covering group that is a semidirect
product of its radical and a Levi subgroup also covers R ⋊L.
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(vii) L is closed in G if and only if Γ0L is closed in R⋊L if and only if the projection
of Γ0 onto R is closed in R.

(viii) Γ0 has a largest strongly central subgroup Γ1, whose index in Γ0 is bounded by∣Z(L̃)/Z+(L̃)∣. We may identify G with the finite quotient (R ⋊L/Γ1)/(Γ0/Γ1).
(ix) the subgroup R ∩ L is discrete and central in L, and so is finite if L has finite

centre. The connected component of the identity in its closure (R ∩L)¯ in G is
central in G. If Γ0 is strongly central in R ⋊L, then R ∩L is central in G.

Proof. Item (i), the structure of G̃, is well-known; see, for instance, [70, p. 244]. Item
(ii) and the first part of item (iii) are also standard; we prove the second part of (iii)
below. Item (iv) is a consequence of a standard isomorphism theorem. Items (v), (vi)
and (vii) are trivial.

To prove item (viii), observe that if (r0, l0) ∈ Γ and (e, l0) lies in the centre of G̃, then
so does (r0, e). We define Γ1 = {(r0, l0) ∈ Γ0 ∶ (e, l0) ∈ Z(G̃)}; then Γ1 is a subgroup of
Γ0.

In the semisimple group L̃, the set Z+(L̃) of elements that lie in the kernel of every
finite dimensional representation of L̃ is a subgroup of finite index in the centre Z(L̃) of
L̃. The index of Γ1 in Γ0 is bounded by Z(L̃)/Z+(L̃).

Now we prove (ix). Since r∩ l = {0} and R is closed and normal in G, R∩L is a closed
normal zero-dimensional subgroup of L, so it is discrete and central in L, but it may not
be closed in R. Obviously R ∩L is finite if L has finite centre (e.g., if L is compact).

As noted before the statement of this lemma, L∩Z(G) is a subgroup of finite index of
Z(L). Hence R∩L∩Z(G) is of finite index in R∩L. Thus the closures of R∩L∩Z(G)
and of R ∩ L in G have the same connected component of the identity, and the closure
of R ∩L ∩Z(G) in G is of finite index in the closure of R ∩L in G. Since the closure of
a central subgroup is central, the closure of R ∩ L ∩ Z(G) in G is central. We conclude
that the connected component of the identity in (R ∩L)¯ is central, as required.

If moreover Γ0 is strongly central in R ⋊ L and h ∈ R ∩ L, then both (h, e) and (e, h)
in R ⋊ L map to h under the canonical quotient mapping, and so (h,h−1) ∈ Γ0, whence
h is central in G.

Finally, we prove the second part of (iii). We repeat the above proofs for the quo-
tient group G/Z+(L) . The semisimple subgroup L′ in the Levi decomposition R′L′ of
G/Z+(L) is such that Z+(L′) is trivial, and hence Z(L′) is finite, so that R′ ∩ L′ is
finite and L′ is closed in G/Z+(L) , whence Z+(L) L is closed in G. �

Note in particular that (iv) and (vii) of the lemma imply that if R∩L is finite, then L is
closed in G, while if R∩L is infinite, and L may or may not be closed. Note also that every
connected Lie group G has a covering group that is a semidirect product of its radical
and a Levi subgroup, and the number of leaves in the cover is equal to the cardinality of
R ∩L, or equivalently, the cardinality of Γ0. By contrast, to obtain a quotient that is a
semidirect product of its radical and a Levi subgroup, it may be necessary to factor out
a subgroup of positive dimension: this is illustrated by the following example.

Example 3.15. Consider the connected, simply connected Lie group G̃ that is the semidi-
rect product Cn ⋊ (SU(n) × R), where SU(n) × R acts on Cn by α(u, t)v = eituv. The
centre of this group may be identified with the subgroup of (SU(n) × R) of elements(u, t) such that eitu is the identity matrix.

The centre Γ of G̃ is discrete but is not the product of the groups of central elements
of the Levi subgroup L (which is SU(n)) and of the central elements of the radical R
(which is Cn ⋊ R); hence the group G ∶= G̃/Γ has trivial centre and is not a semidirect
product of the form R⋊L, and has no quotient of the same dimension that is a semidirect
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product of its radical and a Levi factor. The group Γ is central, but unless n = 2, it is
not strongly central, though by Lemma 3.14, it has a subgroup Γ1 of finite index that is
strongly central.

We recall the Iwasawa decomposition of a semisimple Lie algebra l and of a correspond-
ing connected semisimple Lie group L. The Lie algebra l may always be decomposed as
a direct sum of three subalgebras:

l = a⊕ n⊕ k,

where ad(X) is semisimple with real eigenvalues for all elements X in a, is semisimple
with purely imaginary eigenvalues for all elements X of k, and is nilpotent for all elements
X in n. Further, a is abelian and [a,n] ⊆ n, so a⊕n is also a subalgebra. The subalgebra
k is in turn a direct sum t⊕ k′, where t, the centre of k, is a toral subalgebra and k′, the
commutator subalgebra of k, is a compact semisimple subalgebra.

The analytic subgroups A and N corresponding to a and n are closed in L, and simply
connected; further, AN is solvable, closed, simply connected, and exponential, that is,
the exponential mapping is a homeomorphism from a⊕n to AN . The analytic subgroup
K of L corresponding to k is also closed, and is a covering group of a compact Lie group;
thus it may or may not be compact. We may always write K as V ×Kc, where V is a
vector subgroup and Kc is a compact subgroup, and Z(L) is a discrete subgroup of K.
The Iwasawa decomposition of L is the statement that

(3.1) L = A ⋅N ⋅K.
All Iwasawa decompositions of L or of l are conjugate to each other by an inner auto-
morphism of L or under the adjoint group of l.

Remark 3.16. If L is a connected semisimple Lie group with Iwasawa decomposition
A⋅N ⋅K, thenK is a deformation refract of the semisimple Lie group L, so L is contractible
or simply connected if and only if K is. From the classification of semisimple Lie groups
(see, e.g., [34, Chapter X]), L is contractible if and only if it is a product of copies of the
universal covering group of SL(2,R). Other simple Lie groups have compact subgroups
that are not contractible.

Thus if G is a contractible Lie group, then G = R ⋊ L, where R is its radical and L
a Levi subgroup; both R and L are contractible. For connected solvable Lie groups, it
is known that contractibility and simple connectedness coincide, while the contractible
Levi factor is as just described.

It is worth pointing out that, for a simply connected semisimple Lie group L, the Lie
algebra of V is t and that of Kc is k′. For a general semisimple Lie group L, there is a
projection π from its universal covering group L̃ onto L, and π(V ) is the product of a
torus (which is absorbed into Kc) and a vector subgroup of V .

Lemma 3.17. Let G be a connected Lie group, r ⊕ l be a Levi decomposition of g and
a⊕n⊕k be an Iwasawa decomposition of l. Let L, AN and K be the analytic subgroups of
G corresponding to l, a⊕ n and k. Then AN is a closed, solvable, connected and simply
connected subgroup of G. Further, Z(L) and Z+(L) are subgroups of K, K̄ = ZK and
L̄ = ZL, where Z is the connected component of the identity in (Z+(L)) .

Proof. Let πR be the canonical projection of G onto G/R, where R is the radical of G,
which coincides with L♭ ∶= LR/R ≃ L/(R ∩ L). Let K♭, A♭ and N ♭ be the subgroups
πR(K), πR(A) and πR(N) of L♭; then A♭ ⋅N ♭ ⋅K♭ is an Iwasawa decomposition of L♭.
Thus AN and A♭N ♭ are simply connected exponential solvable Lie groups whose Lie
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algebras may be identified, and the restriction πR∣AN of πR to AN is a homeomorphic
isomorphism onto A♭N ♭.

It follows immediately that AN is closed in G. Take aj ∈ A, nj ∈ N such that ajnj → g ∈
G as j →∞; we must show that g ∈ AN . Now πR(ajnj)→ πR(g) inG/R, and the Iwasawa
decomposition of L♭ implies that there exist an ∈ AN such that πR(g) = πR(an). The
identification of AN and A♭N ♭ in the first paragraph of this proof implies that ajnj → an
in AN and hence ajnj → an in G.

We have already noted that Z(L) is a discrete subgroup of L; a fortiori Z+(L) is a
discrete subgroup of L, central in G. The closure (Z+(L)) is a central Lie subgroup of
G, and it is immediate that (Z+(L)) = Z+(L)Z, where Z is the connected component
of the identity in (Z+(L)) . We have noted that K/Z+(L) is compact, and so there
is a compact subset S of K such that every element of K may be written as zs where
z ∈ Z+(L) and s ∈ S. It follows that K̄ ⊆ (Z+(L)) S ⊆ Z+(L)ZS = ZK; it is obvious
that ZK ⊆ K̄, and so equality holds.

Finally to identify L̄, we observe that if aj ∈ A, nj ∈ N , kj ∈ K, and ajnjkj → g in
G, then πR(ajnj)πR(kj) → πR(g) in L♭, whence πR(ajnj) → πR(an) for some a ∈ A and
n ∈ N from the properties of the Iwasawa decomposition of L♭, and hence ajnj → an
from the identification of AN and A♭N ♭. It is now immediate that kj converges in G to
some element of ZK. �

Our next lemma links maximal compact subgroups to the Levi and Iwasawa decom-
positions.

Lemma 3.18. Suppose that G is a connected Lie group with radical R. Then the fol-
lowing hold.

(i) Given a Levi subgroup L with Iwasawa decomposition ANK, there exists a max-
imal compact subgroup KR of R such that K commutes with KR; if K is compact
then KRK is a maximal compact subgroup of G.

(ii) Given a maximal compact subgroup K ′
R of R, there exists a Levi subgroup L′ of

G with Iwasawa decomposition A′N ′K ′ such that K ′ commutes with K ′
R; if K ′

is compact then K ′
RK

′ is a maximal compact subgroup of G.
(iii) Given a maximal compact subgroup K0 of G, there exists a Levi subgroup L

of G with Iwasawa decomposition ANK such that K commutes with KR and
K0 ⊆KRK̄, where KR =K0 ∩R.

Proof. To prove (i), take any Levi subgroup L of G; then the group R ⋉L is a covering
group of G by Lemma 3.14. It is also a covering group of R ⋉ L/Z+(L). Hence G is
locally isomorphic to R ⋉ L/Z+(L). Observe that two connected closed subgroups of G
commute if and only if the two connected closed subgroups of R ⋉ L/Z+(L) with the
same Lie algebras commute.

Let ANK be an Iwasawa decomposition of L; then AN(K/Z+(L)) is an Iwasawa de-
composition of L/Z+(L), and K/Z+(L) is a maximal compact subgroup of L/Z+(L). Ex-
tend K/Z+(L) to a maximal compact subgroup Km of R⋉L/Z+(L). Then KR ∶=Km∩R
is a maximal compact subgroup of R, and KmR/R, which is naturally isomorphic to
Km/KR, is a maximal compact subgroup of (R⋉L/Z+(L))/R, which is naturally isomor-
phic to L/Z+(L). Under this isomorphism, the image of KmR/R is a maximal compact
subgroup of L/Z+(L) that contains K/Z+(L), and hence these subgroups coincide. Thus
Km = (K/Z+(L))KR, and KR is a connected compact solvable normal subgroup of the
connected compact Lie group Km, and hence is a central torus. It follows that K/Z+(L)
and KR commute, and hence K and KR commute.
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If K is compact, then KRK is a compact subgroup of G; further, KRK ∩R ≥KR, but
KR is a maximal compact subgroup of R and so equality holds. It follows that KRK is
a maximal compact subgroup of G from the fact that KR and K are maximal compact
subgroups of R and L.

Now we prove (ii). Given another maximal compact subgroup K ′
R of R, there ex-

ists r ∈ R such that K ′
R = rKRr−1; then rLr−1 is a Levi subgroup of G with Iwasawa

decomposition rAr−1rNr−1rKr−1 and K ′
R commutes with rKr−1, as required.

We prove part (iii) by induction on the dimension of R, the radical of G. Suppose
that the result holds whenever dim(R) < r, and suppose that dim(R) = r. We consider
two cases, according to the properties of Z+(L).

If Z+(L) has dimension 0, then Z+(L) is discrete in G. We write G♭ for G/Z+(L)
and consider the local isomorphism π ∶ G → G♭. Take a Levi decomposition R♭L♭ of G♭;
then R♭ and L♭ are locally isomorphic to the subgroups R and L that arise in a Levi
decomposition of G, but Z+(L♭) = {e}, which means that the subgroup K in an Iwasawa
decomposition of L is compact. It is evident π(K0) is contained in a maximal compact
subgroup of G♭, and maximal compact subgroups of G♭ are of the form KRK♭. In this
case, the desired result follows.

If Z+(L) has positive dimension, then Z, the connected component of the identity
in Z+(L) , is a nontrivial closed connected normal subgroup of R. We let π ∶ G → G/Z
be the canonical projection; the radical of the quotient group G/Z has dimension less
than r, while a Levi factor L♭ of the quotient is locally isomorphic to a Levi factor of
G; the main difference is that Z+(L♭) is trivial. The result follows from the inductive
hypothesis applied to G♭. �

We also need some information about maximal solvable subalgebras of a Lie algebra
which follows from the Levi decomposition and an argument of Mostow.

Lemma 3.19 (After Mostow [57]). Suppose that h is a Lie algebra. There exist finitely
many maximal solvable subalgebras gj of h such that every maximal solvable subalgebra
g is conjugate under the adjoint group to exactly one of the gj. Exactly one of these
subalgebras, g0 say, has the property that there is a compact subalgebra k of h such that
g0 + k = h.

Proof. Let r be the radical of h and l be a Levi subalgebra of h, so that h = r⊕ l. Denote
by π the canonical projection of h onto the quotient q ∶= h/r, which may be identified
with l.

If g is a maximal solvable subalgebra of h, then r ⊆ g, since otherwise g + r would be
a larger solvable subalgebra than g. Further, for subalgebras g of h that contain r, g is
solvable if and only if π(g) is solvable (this relies on that fact that if s1 and s2/s1 are
solvable, so is s2). Consequently, π(g) is a maximal solvable subalgebra of q if and only
if g is a maximal solvable subalgebra of h.

Mostow [57] classified the maximal solvable subalgebras of the semisimple Lie algebra q
(showing that they correspond to Cartan subalgebras of q), and described finitely many
maximal solvable subalgebras sj of q with the property that every maximal solvable
subalgebra is conjugate to exactly one of these. The maximal solvable subalgebras s of
q for which there exists a compact subalgebra k of q such that s+ k = q are all conjugates
under the adjoint group of q of a particular subalgebra s0, which is a toral extension of
the subalgebra a + n of q arising from an Iwasawa decomposition of q.

We define gj ∶= π−1(sj) and k′ to be the compact subalgebra of l that corresponds to
k under the identification of l and q. Then gj is a maximal solvable subalgebra of h
(containing r), and every maximal solvable subalgebra of h is conjugate to one of these.
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Further, π(g0) + π(k′) = s0 + π(k′) = q, and π(k′) is compact, whence g0 + k′ = h. If s is
a maximal solvable subalgebra of h and s + k′′ = h for some compact subalgebra k′′ of h,
then π(s) is a maximal solvable subalgebra of q and π(s) + π(k′′) = q for some compact
subalgebra π(k′′) of q, whence π(s) is conjugate to s0 under the adjoint group of q and
hence s is conjugate to g0. �

Suppose that H is a connected Lie group with centre Z(H). The above result implies
that there exist finitely many maximal connected solvable subgroups Gj of H such that
every maximal solvable subgroup G is conjugate to exactly one of the Gj. Since the
closure of a connected solvable group is connected and solvable, these maximal connected
solvable subgroups are closed. Exactly one of these subgroups, G0 say, has the property
that H/G0Z(H) is compact.

While we are focussing on solvable Lie groups, we mention that for solvable groups,
simply connected and contractible coincide.

3.7. Polynomial growth and amenability. We now look at the structure of two
particular types of Lie group in more detail. If G is a connected Lie group, then it is of
polynomial growth if and only if its Lie algebra g is of type (R), that is, the eigenvalues
of adX are purely imaginary for each X ∈ g. For instance, nilpotent Lie groups and
euclidean motion groups are of polynomial growth. For more on this, see [32, 42].

Lemma 3.20. Let G be a connected Lie group with radical R and a Levi subgroup L.
Then G is of polynomial growth if and only if R is of polynomial growth and L is compact.
If G is of polynomial growth and contractible, then G is solvable.

Proof. Both Guivarc’h [32, p. 345] and Jenkins [42, p. 123] showed that Lie groups are of
polynomial growth if and only if their radicals are of polynomial growth and their Levi
subgroups are compact. See also [21, Theorem II.4.8].

If G is contractible, then G is simply connected, so G = R ⋊ L (see, for example, [21,
II.1.17]) and thus R and L are contractible. A contractible compact Lie group is trivial,
by Lemma 3.6, so G coincides with R and is solvable. �

Note that the universal covering group of SL(2,R) is contractible but not of polynomial
growth.

Definition 3.21. A connected Lie group with a compact Levi factor is said to be
amenable.

The standard definition of amenability of a group G involves the existence of a left-
invariant mean on L∞(G). The fact that for connected Lie groups this amounts to the
definition above is well known (see, for instance, [74, Corollary 4.1.9]. It is also well
known (and follows from the standard definition or from ours) that connected closed
subgroups and quotients of amenable groups are amenable.

It is clear that connected Lie groups of polynomial growth are amenable, but examples
such as the “ax + b-group”, which is solvable but not of polynomial growth, show that
the converse is false.

Lemma 3.22. Suppose that K is a maximal compact subgroup of a connected amenable
Lie group H, and that ⋂h∈H hKh−1 = {e}. Then there is a closed connected solvable
normal subgroup G of H such that

(i) H = G ⋅K, whence G acts simply transitively on H/K;
(ii) TG = G whenever T is an automorphism of H and TK =K.
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Proof. Let N and R be the nilradical of and radical of H; then N ⊆ R. Write H as RL,
where L is a necessarily compact Levi subgroup; in light of Lemma 3.18, we may assume
without loss of generality that L ⊆K. The assumption on K implies that K∩Z(H) = {e}.
We write n, r and so on for the Lie algebras of these groups; then k ∩Z(h) = {0}.

We are going to use the Killing form, a bilinear form on h defined by

B(X,Y ) = trace(ad(X)ad(Y )) ∀X,Y ∈ h.
This has many important properties, for which see, for instance, [12, pp. 33–50]; we will
use the following:

(a) if T∗ is an automorphism of h, then B(T∗X,T∗Y ) = B(X,Y ) for all X,Y ∈ h;
(b) B(X,X) < 0 for all X ∈ k ∖ {0} (because k is compact and k ∩Z(h) = {0});
(c) B(X,Y ) = 0 for all X ∈ h and all Y ∈ n;
(d) B([X,Y ], Z) = 0 for all X ∈ h if and only if Z ∈ r;

We denote by g the subspace {X ∈ h ∶ B(X,Y ) = 0 ∀Y ∈ k}. Because k is semisimple,[h,h] ⊇ [k, k] = k, and from (c) and (d) it follows that n ⊆ g ⊆ r. Then g is an ideal in h,
from Remark 3.9, and h = g⊕ k from (b) and linear algebra.

Write KR for K ∩R, which is connected since it is a maximal compact subgroup of R,
and abelian, since it is both compact and solvable, and so is a torus; further, KR∩N = {e}
by assumption and Lemma 3.10.

Let T be an automorphism of H that fixes K. Then T∗k = k, and from (a), T∗g = g.
Since H/K is simply connected, Lemma 3.11 implies that the connected analytic

subgroup G of R with Lie algebra g is closed, H = G ⋅K, and G acts simply transitively
on H/K. Further, if T is an automorphism of H and TK = K, then its infinitesimal
version T∗ is an automorphism of h and T∗k = k, whence T∗g = g and TG = G. �
Remark 3.23. This lemma may be extended to more general connected Lie groups H at
the cost of relaxing the requirement that G be normal. However, the following example
shows that no such result can hold for all connected Lie groups.

Let H be the simply connected covering group of SU(n,1), where n ≥ 1, and K be a
maximal compact subgroup. Then H/K is contractible, but there is no solvable subgroup
G of H that acts transitively on H/K.

3.8. Proof of Theorem B. We are now ready to prove our next main theorem, which
we restate, in a longer version.

Theorem 3.24. Let (M,d) be a homogeneous metric manifold. Then there is a metric
d′ on M such that the identity mapping on M from (M,d) to (M,d′) is a homeomor-
phic rough isometry, and there is a transitive closed connected amenable subgroup H×
of Iso(M,d′); hence M is homeomorphic to H×/K×, where K× is a compact subgroup of
H×.

If M is a metric Lie group, then we may take K× to be a finite group; if M is a simply
connected metric Lie group, then we may take K× to be trivial.

If M is a contractible metric space, then we may take K× to be trivial and H× to
be solvable, so that M is homeomorphically roughly isometric to a connected, simply
connected solvable metric Lie group.

Proof. Let M be a homogeneous metric manifold, and suppose that H is a connected
transitive isometry group of M , so that we may identify M with H/Ko, where Ko is the
compact stabiliser of a point o in M . We may take H to be a Lie group that acts on M
by analytic maps, by Theorem 3.2.

We begin with a short outline of the proof. Up to local isomorphism, the connected
Lie group H is a semidirect product R ⋊ L, where R is the solvable radical and L
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is a semisimple Levi subgroup. Further, up to local isomorphism, L has an Iwasawa
decomposition AN ⋅K, where K is compact and AN is solvable. Then H = S ⋅K, where
S is the closed solvable subgroup R⋊AN of H. If H has a left-invariant, right-K-invariant
metric d, then H is isometric to the group S×K, equipped with a left-invariant metric d×,
as described in Lemma 2.20. We need to deal with two additional complications: first,
we need to deal with groups H that are not semidirect products, but quotients thereof,
and second, we need to deal with the quotient H/Ko. Now we provide the details.

We recall from Lemma 3.14 that, in general, there is a continuous open projection
π ∶ R ⋊L → H, with discrete kernel, Γ say, and Γ has a subgroup of finite index Γ1 that
is strongly central, that is, if (r, l) ∈ Γ1, then both (r, e) and (e, l) are central in R ⋊ L.
In particular, this implies that l lies in the subgroup K for any Iwasawa decomposition
ANK of L.

Now L has an Iwasawa decomposition (see (3.1)) ANK, in which K = V ×Kc, where
V is a vector group which is compact modulo V ∩Z+(L), and Kc is a maximal compact
subgroup of L, while AN is solvable; as above, we write S for the solvable group R⋊AN ,
and then R ⋊ L = S ⋅ (V ×Kc). Let Ko be the stabiliser of a point o in M in H, let Km

be a maximal compact subgroup of H that contains Ko and let KR = Km ∩ R. Then
Ko ⊆ (Z(L)+) KRKc, by Lemmas 3.18 and 3.17. The subgroup KRKc × V of H is
compact modulo the centre of H, so that we may apply Corollary 2.17 to modify d and
obtain a new admissible metric d′ on M , such that the identity map on M is a rough
isometry from (M,d) to (M,d′), and

(3.2) d′(gg′kKo, gg
′′kKo) = d′(g′Ko, g

′′Ko) ∀g, g′, g′′ ∈H ∀k ∈KRKcV.

For simplicity of notation, we replace d′ by d and assume that d has the invariance
property (3.2).

We define ω ∶ S × (V ×Kc)→ S ⋅ (V ×Kc) by

ω(s, k) = sk−1 ∀s ∈ S ∀k ∈ (V ×Kc).
Then ω is a homeomorphism. We lift the metric d on the space H/Ko, first to a pseu-

dometric on H with kernel Ko, and then to a pseudometric ḋ on the covering group
S ⋅ (V ×Kc) with kernel π−1Ko: more precisely, we define

ḋ(x, y) ∶= d(πxKo, πyKo) ∀x, y ∈ S ⋅ (V ×Kc).
By construction, ḋ is continuous, admissible, and left-invariant and right-π−1(KRKcV )-
invariant. By Lemma 2.20, ḋ× ∶= ḋ ○ (ω ⊗ ω) is a continuous admissible left-invariant
pseudometric on S × (V ×Kc), whose kernel is a closed subgroup of S × (V ×Kc), by

Lemma 2.11. When we identify points at ḋ×-distance 0, we obtain a S×(V ×Kc)-invariant
admissible metric d× on the quotient M×. Since the mapping ω from S × (V ×Kc) to
S ⋅ (V ×Kc) is an isometry of pseudometric spaces, the quotient metric space (M×, d×)
is isometric to (M,d).

Trivially, the amenable Lie group S × V ×Kc acts transitively and isometrically on(M×, d×), so there is a continuous homomorphism α ∶ S × V ×Kc → Iso(M×, d×). The
image of α is the product of the compact group α(Kc) and the solvable group α(S ×V ),
and so H×, the closure of this image in Iso(M×, d×), is the commuting product of the
compact group α(Kc) and the closed solvable group (α(S × V )) . The intersection of
these subgroups may be nontrivial, but H× is still amenable. We may identify M× with
the space H×/K×, where K× is the compact stabiliser in H× of a point in M×.

This proves the general part of the theorem. However there are still some particular
cases to consider.
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First, if M is a metric group, then we may take Ko to be trivial, and trace through
the argument above. We see that M× is a finite quotient of an amenable metric group,
and the order of the group that we factor out is bounded. Indeed, in this case, M may
be identified with the covering group R ⋊L/Γ0, and by Lemma 3.14, Γ0 has a subgroup
Γ1 of finite index such that ω−1Γ1 is central and a fortiori normal in S × (V ×Kc). Then
M× may be identified with (S×V ×Kc)/ω−1Γ0, which is a finite quotient of the amenable
Lie group (S × V ×Kc)/ω−1Γ1. If M is also simply connected, then no factoring out of
discrete subgroups is involved, and we may identify M× with S × V ×Kc.

Another special case is when M is contractible. In this case, M× is contractible, and
so is of the form H×/K× where K× is a maximal compact subgroup of H×, and H× is
amenable. Then there is a simply connected solvable group that acts simply transitively
on M by Lemma 3.22. �
Remark 3.25. We may choose the metric in Theorem 3.7, in such a way that it is not
necessary to change the metric at the beginning of this theorem. Moreover, for any
ε ∈ R+, there is a homogeneous metric manifold of the form S ×K/K0, where K0 is a
compact subgroup of S ×K, that is (1, ε)-quasi-isometric to the original space (M,d0).

Before we move on, we make a few observations. It is evident that if we start with
slightly different hypotheses, we can modify the argument of the proof above to prove
slightly different results. For example, if we start with a riemannian metric, we can
work throughout with riemannian metrics and bi-Lipschitz mappings rather than general
metrics and rough isometries. Or if we start with a semisimple Lie group, we do not
need to consider the Levi decomposition. Or if we are allowed to choose the metrics,
then we may do so to ensure that we have an isometry rather than a rough isometry. By
doing this, we easily obtain the following corollaries, which are really corollaries of the
method of proof rather than of the result.

Corollary 3.26. Let (M,d) be a homogeneous riemannian manifold. Then there is a
riemannian metric d′ on M (so the identity mapping on M from (M,d) to (M,d′) is
bi-Lipschitz), such that (M,d′) admits a transitive connected isometry group of the form
S ×L, where S is solvable and L is compact and semisimple; hence M is homeomorphic
to (S ×L)/K, where K is a compact subgroup of S ×L.

If M is a metric Lie group, then we may take K to be a finite group; if M is a simply
connected metric Lie group, then we may take K to be trivial.

If M is a contractible metric space, then we may take L and K to be trivial, so that
M is bi-Lipschitz to a connected, simply connected solvable metric Lie group.

Corollary 3.27. Let G be a connected Lie group. Then the following are equivalent:

(i) G may be made isometric to a connected simply connected solvable Lie group;
and

(ii) G = R⋊L, where R is the solvable radical and L is a Levi subgroup of G; further,
R is simply connected and L is a direct product of finitely many (possibly zero)
copies of the universal covering group of SL(2,R).

Proof. If (i) holds, then G is contractible; by Remark 3.16, (ii) holds.
On the other hand, if (ii) holds, then G may be made isomorphic to a solvable Lie

group by Theorem 3.24. �
Corollary 3.28. Suppose that (G,d) is either a simply connected metric Lie group or a
connected semisimple metric Lie group. Then there exist a connected Lie group H that is
the product of a solvable and a compact Lie group, and admissible left-invariant metrics
dG and dH such that (G,dG) and (H,dH) are isometric and the identity map is a rough
isometry from (G,d) to (G,dG).
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Corollary 3.29. Let G be a connected semisimple Lie group with Iwasawa decomposition
ANK. Write K as V ×K0, where V is a vector group and K0 is compact. Then G may
be made isometric to the direct product AN × V ×K0.

It seems reasonable to ask whether a general connected metric Lie group (G,d) is
homeomorphically quasi-isometric to an amenable connected metric Lie group. Example
3.15 provides a counterexample. Indeed, with the notation of that example, we consider
the group G = G̃/Γ, and observe that the arguments used to prove Theorem 3.24 show
that G̃ is homeomorphic to an amenable direct product group G̃∗, and that G̃/Γ is
isometric to G̃∗/Γ∗, where Γ∗ is the group {(r, l−1) ∶ (r, l) ∈ Γ}. However, unless n = 2,
the subgroup Γ∗ is not normal, but has a subgroup of finite index that is normal. In
this case, G∗/Γ∗ is not a group but is a finite quotient of a group. Further, G̃/Γ1 is a
finite covering group of G, and is isometric to the group G̃∗/Γ∗

1. More generally, we state
without proof the following variant of Theorem 3.24.

Theorem 3.30. Let (M,d) be a homogeneous metric manifold. Then there is a metric
d′ on M such that the identity mapping on M from (M,d) to (M,d′) is a homeomorphic
rough isometry, and (M,d′) has a finite cover that admits a simply transitive connected
isometry group of the form S ×L, where S is solvable and L is compact and semisimple;
hence M is homeomorphic to (S ×L)/K.

3.9. Notes and remarks.

3.1. The main structure theorem. We have mentioned some of the contributors to the so-
lution of Hilbert’s fifth problem, on the structure of locally euclidean topological groups.
It is worth pointing out that earlier the structure of compact groups was elaborated by
von Neumann, and that of solvable groups by Chevalley. For much more, see [54].

Apropos of Corollary 3.4, riemannian geometers have known for a long time that spaces
H/K, where K is a compact subgroup of a connected Lie group H, may be equipped
with a riemannian metric such that H acts by isometries, by choosing a K∗-invariant
infinitesimal metric at the point K of H/K and then translating this to the whole space.
For instance, this fact is described as well known in a 1954 paper of Nomizu [62].

3.2. Compact subgroups. It is well known that connected compact Lie groups contain
maximal connected abelian subgroups, or maximal tori, all of which are conjugate (see,
for instance, [45, Corollary 4.35, p. 255]). It is perhaps not so well known that all
connected compact groups contain maximal connected abelian subgroups, which are
automatically closed, and all of these are conjugate. See [52, Theorem 9.32] for more
details.

We have stated Corollaries 3.3 and 3.4 for connected groups for simplicity, and Lemma
3.5 for connected groups since Iwasawa did so. For the almost connected case, see [66,
Theorem 32.5] and the references cited there.

For more classical theory of the topology of Lie groups, see [64].

3.3. Proof of Theorem 3.7. Let o be a point in a homogeneous metric space (M,d).
Then there is a connected locally compact group H that acts effectively and transitively
on (M,d) by isometries, and M may be identified with the space H/Ko, where Ko is
the stabiliser of o in H. Let K be a maximal compact subgroup of H that contains Ko,
and suppose that d is right-K-invariant, which may always be arranged as in the proof
of the theorem.

Then the collection of compact subgroups Kν of H such that Ko ⊆ Kν ⊆ K is a
partially ordered set, and in the corresponding collection of quotient spacesH/Kν , and by
extending the construction following Definition 2.9, we may find a family of homogeneous
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metric space projections πν,ν′ ∶ H/Kν → H/K ′
ν whenever Kν ⊆ K ′

ν , and the implicit
constants in all these projections are uniformly bounded. This family of projections is
an inverse system, and H/Ko is (trivially) the limit of spaces H/Kν as Kν shrinks down
to Ko. If we restrict to the subgroups Kν such that H/Kν is a Lie group, then the limit
is no longer trivial if H/Ko is not a manifold.

When the spaces H/Kν and H/K ′
ν are manifolds, then H/Kν is a fibre bundle over

H/K ′
ν . However, in general, we cannot assert this: local triviality is a problem.

3.4. Lie groups. Apropos of the exponential mapping on a Lie group, it may be of
interest that in some cases, G = exp(g), while G = exp(g) exp(g) always (see [56]).

3.6. Decompositions of Lie groups. Under suitable conditions, a connected locally com-
pact group H has a connected simply connected locally compact universal covering group
H̃ (an infinite-dimensional torus is a counter-example). We refer the reader to [9] for
more information. Thus it would be possible to extend the Levi decomposition to more
general locally compact connected groups, but to discuss this would take us too far from
our main goals.

We give two more examples that illustrate what may happen in the Levi decomposition
when L is not closed. Let U denote the universal covering group of SL(2,R), and{kt ∶ t ∈ R} be the one-parameter subgroup of U that projects down to the standard
rotation subgroup of SL(2,R), normalised so that kt projects to the rotation through an
angle t; thus the elements k2πn, where n ∈ Z, project to the identity of SL(2,R).
Example 3.31. Let G be the group (U × T )/Z, where T = {z ∈ C ∶ ∣z∣ = 1} and Z is the
central discrete subgroup {(k2πn, ein) ∶ n ∈ Z} of U × T . The Levi subgroup of G is an
analytic subgroup, which may be identified with U , and the radical is a torus, which
may be identified with T ; these have an intersection which is dense in the radical. This
group cannot be written as a semidirect product of its radical and a Levi factor, and
nor can any finite covering group or finite quotient, though a compact quotient of lower
dimension is trivially a semidirect product of its radical and a Levi factor.

Example 3.32. Let G be the group (U ×U ×R)/Z and Z be the central discrete subgroup{(k2πm, k2πn,m + αn) ∶ m,n ∈ Z}, where α is irrational. Then the Levi subgroup of G
is an analytic subgroup, which may be identified with U × U , and the radical is a line;
these have an intersection which is dense in the radical. This group cannot be written as
a semidirect product of its radical and a Levi subgroup, and nor can any finite covering
group or compact quotient.

3.7. Polynomial growth and amenability. A propos of Definition 3.21, the term was ap-
parently coined by M.M. Day, to indicate the existence of a left-invariant mean on a
group. For us, amenable groups are amenable because they are much more tractable
than general Lie groups.

3.8. Proof of Theorem B. Theorem 3.24 shows that the class of solvable Lie groups is
not closed under isometries. It was already known (see [1, 53]) that the infinite covering
group of SL(2,R) and the direct product of R and the “ax + b-group” may be made
isometric, even though the former group is not solvable and the latter is.

We remark that rough isometry is connected to Cornulier’s [17] notion of commability ;
two homogeneous spaces are commable if they may be connected by a finite number of
projections from a group G onto a quotient G/K, where K is a compact subgroup of G,
and cocompact embeddings; the arguments above show that G and G/K may be metrised
(subject to some topological separability) in such a way that the projection and section
are rough isometries. But when we allow metrics that are not proper quasigeodesic, then
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rough isometry need not imply commability. For instance, infinite covering projections
may be rough isometries, by Lemma 2.19, but a space and its infinite cover are not
commable.

Finally, it may be useful to recall that there is significant literature showing that the
topology alone comes close to determining compact Lie groups; see [38] and the works
cited there. On the other hand, relations such as (L,C)-quasi-isometry do not “see”
compact factors at all if C is sufficiently large.

4. Solvable groups

In this section, we restrict our attention to connected simply connected solvable Lie
groups. We discuss the classification of connected, simply connected solvable Lie groups
up to isometry, due to Gordon and Wilson [28, 29] in the riemannian case, when two
such groups may be made isometric, and make some minor contributions to the question
of their classification up to quasi-isometry, which has not yet been achieved and seems
to be very difficult. We present a different point of view to previous authors and extend
some existing definitions and results.

We remind the reader of Definition 2.22: we write H = G ⋅K to mean that G and K
are subgroups of H and the map (g, k)↦ gk is a homeomorphism from G ×K to H.

Up to now, we have been looking at homogeneous metric spaces of the form H/K,
where H is a connected group and K is a compact subgroup. For example, we showed in
Corollary 2.25 that if G1 and G2 are connected groups that both act simply transitively
by isometries on a homogeneous metric space (M,d), and H is the connected component
of the identity in Iso(M,d) and K is the stabiliser in H of a point in M , then it is possible
to write H = G1 ⋅K = G2 ⋅K. However, this does not tell us whether G1 and G2 are
algebraically similar.

In Section 3.3, we showed that homogeneous metric spaces are roughly isometric to
connected simply connected solvable Lie groups. In this section we use the additional
information available from Lie theory to discuss when two connected simply connected
solvable Lie groups are isometric, or may be made isometric, or even when they are
roughly isometric (and here there are many open problems). The first main step in
doing this is to show that if G1 and G2 are isometric connected, simply connected
solvable metric Lie groups, then there is a connected, simply connected solvable metric
Lie group H and a toral subgroup T such that H = G1 ⋅ T = G2 ⋅ T . Then we proceed to
a detailed analysis of solvable Lie groups and their subgroups of this form.

In Section 4.1, we examine derivations of Lie algebras, and particularly solvable Lie
algebras, in detail. In Section 4.5, we briefly describe “twisted versions” of solvable
Lie groups, and show that two isometric connected, simply connected solvable groups
are both twisted versions of the same connected, simply connected solvable group. We
connect twisted versions of groups to the normal modifications of Gordon and Wilson
[28, 29], and to hulls and real-shadows of solvable groups in Section 4.6. In Section
4.7, we prove Theorem C and a number of consequences. Much of what we do, or at
least something similar, is known; we leave a brief description of the history of this
development to Section 4.8.

We end this introductory discussion with a remark; before stating it, we remind the
reader that Z(H) and Z(h) mean the centres of H and h.

Remark 4.1. Let (M,d) be a homogeneous metric space, H be a closed solvable subgroup
of Iso(M,d) that acts transitively on M , and K be the stabiliser of a point in M ; then
K is a compact subgroup of H. From Remark 2.5, Z(H) ∩K = {e}.
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In the case where K is connected and so is a torus, T say, then there is no loss of
generality in supposing that Z(H) ∩ T = {e}. Once we have done this, nil(H) ∩ T is
trivial, by Lemma 3.10.

4.1. Derivations and automorphisms. Here we prove some preliminary results and
introduce a little more notation.

Remark 4.2. Suppose that L is a diagonalisable linear map on a Lie algebra g; then there
is a direct sum eigenspace decomposition g = ∑λ gλ, where LX = λX for all X ∈ gλ. It is
well known that L is a derivation if and only if [gα,gβ] ⊆ gα+β for all eigenvalues α and
β. Indeed, if X ∈ gα and Y ∈ gβ, then

[LX,Y ] + [X,LY ] = (α + β)[X,Y ],
so if L is a derivation, then [X,Y ] ∈ gα+β. Conversely if [X,Y ] ∈ gα+β for all X ∈ gα and
Y ∈ gβ and all eigenvalues α and β, then by linearity L[X,Y ] = [LX,Y ] + [X,LY ] for
all X,Y ∈ g and L is a derivation.

Remark 4.3. If D is any derivation of a Lie algebra g, then D rad(g) ⊆ nil(g), by [41,
Theorem 7, p. 74]. In particular, [g, rad(g)] ⊆ nil(g). This implies that if v is a subspace
of g and nil(g) ⊆ v ⊆ rad(g), then v is an ideal in g.

The next lemma is certainly known, but we are not aware of a proof in the literature,
so we provide one.

Lemma 4.4. Suppose that g is a real Lie algebra, and that d is an abelian algebra of
semisimple derivations of g. Then there are commuting abelian algebras dr and di of
semisimple derivations of g such that every element of dr has purely real eigenvalues,
every element of di has purely imaginary eigenvalues, and every element D of d may be
written as a sum D =Dr +Di, where Dr ∈ dr and Di ∈ di.

Proof. By considering the simultaneous eigenvalue decomposition of g under the action
of d, we may write the complexification gC as a “sum of root spaces” ∑α∈Φ gα, where Φ is
a finite subset of Hom(gC,C) and gα is the subspace of all X ∈ gC such that DX = α(D)X
for all D ∈ d. We write gγ = {0} if γ ∉ Φ.

Define D̄ ∈ End(gC) by linearity and the condition that D̄X = ᾱ(D)X for all X ∈ gα
and all α ∈ Φ. Since (α(D) + β(D))¯ = ᾱ(D) + β̄(D), Remark 4.2 implies that D̄ is
a derivation. Further, D + D̄ has real eigenvalues while D − D̄ has purely imaginary
eigenvalues. It remains to show that D̄ restricts to a linear mapping of g.

By linear algebra, g has a basis

{Xj, Yj,Wk ∶ j ∈ {1, . . . , J}, k ∈ {1, . . . ,K}}
such that the subspaces span{Xj, Yj} and span{Wk} are irreducible and invariant for d.
In the complexification gC, each D ∈ d is diagonalised in the basis

{Xj + iYj,Xj − iYj,Wk ∶ j ∈ {1, . . . , J}, k ∈ {1, . . . ,K}},
with eigenvalues λj and λ̄j and µk, say; here the λj are strictly complex while the µk are
real. By definition, D̄(Xj + iYj) = λ̄j(Xj + iYj) and D̄(Xj − iYj) = λj(Xj − iYj); it follows
that

D̄Xj = ReλjXj + ImλjYj and D̄Yj = − ImλjXj +ReλjYj.

Since also D̄Wk = µkWk, it follows by R-linearity that D̄ preserves g, as required. �
Corollary 4.5 (After [49, Corollary 2.6]). Suppose that g is a Lie algebra and D is a
derivation of g. Then we may write D =Dsr+Dsi+Dn, where each summand is a deriva-
tion of g, each summand commutes with the other summands, and Dsr is semisimple
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with real eigenvalues, Dsi is semisimple with purely imaginary eigenvalues, and Dn is
nilpotent. Moreover, the ranges Ran(Dsr), Ran(Dsi) and Ran(Dn) are all subspaces of
the range Ran(D).

Proof. Bourbaki [13, Proposition 4, page 6] shows that we may write D as Ds +Dn, the
commuting sum of a semisimple and a nilpotent derivation. Further, Ds decomposes as
the commuting sum Dsr +Dsi of derivations, where the summands have real and purely
imaginary eigenvalues, by Lemma 4.4. It remains to show that Dsr and Dn commute,
and to examine the ranges.

We choose a Jordan basis for g so that D is in real Jordan normal form; then in each
block, the nilpotent part commutes with the real and imaginary parts of the diagonal
part, and the ranges behave as claimed. �

4.2. The lower central series. We recall some standard facts (for more details, see,
for example, [70, Section 3.5]). The lower central series of a Lie algebra g is defined
recursively:

g[0] ∶= g and g[j+1] = [g,g[j]].
Then

g[0] ⊇ g[1] ⊇ g[2] ⊇ . . . ;
The subspaces in this series decrease strictly and then stabilise, that is, all later terms
coincide. The series reaches {0} if and only if g is nilpotent; in this case, the nilpotent
length ` of g is the integer ` such that g[`−1] ≠ {0} while g[`] = {0}. Each g[j] is a
characteristic ideal, that is, Dg[j] ⊆ g[j] for any derivation D of g. The lower central
series of the complexification gC is the complexification of the lower central series on g,
that is, (gC)[j] = (g[j])C.

4.3. Modifications. Many problems on Lie groups may be turned into linear problems
on Lie algebras and solved. This is certainly the case for us. Corollary 2.25 shows that
we are interested in examples of connected groups H with closed connected subgroups
G0, G1 and K such that K is compact and H = G0 ⋊K = G1 ⋅K. This implies that
the corresponding Lie algebras satisfy h = g0 ⊕ k = g1 ⊕ k and g0 is an ideal in h. In this
situation, for all X ∈ g0, there exists a unique σX ∈ k such that X + σX ∈ g1. Evidently,
σ ∶ g0 → k is linear and

g1 = {X + σX ∶X ∈ g0}.
The map σ and algebra g1 are examples of what Gordon and Wilson [29] call a modifica-
tion map and a modification. We shall be interested in modifications in the case where
k is the Lie algebra of a torus (so we write t).

The following technical lemma follows from Gordon and Wilson [29, Theorem 2.5].
We give a different proof.

Lemma 4.6. Suppose that h is a solvable Lie algebra of the form n ⊕ t, where n is a
nilpotent ideal and t is a toral subalgebra such that t ∩ Z(h) = {0}. Suppose also that g
is a subalgebra of h such that h = g⊕ t. Then g is an ideal in h.

Proof. We are going to use induction on dim(h). If dim(h) is 0, 1 or 2, then g is trivially
an ideal. We assume for the rest of the proof that g′ is an ideal in h′ whenever h′, n′, t′
and g′ satisfy the hypotheses of the lemma and dim(h′) < dim(h).

By “Weyl’s unitarian trick”, we may equip n with an inner product such that the
commuting family of linear maps ad(t) is skew-symmetric. Since n is ad(t)-invariant, so
is each member n[j] of the lower central series (see Section 4.2), and there are (unique)
ad(t)-invariant subspaces v[j] such that n[j−1] = v[j] ⊕ n[j]. Further, we may decompose
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the spaces v[j] into minimal ad(t)-invariant subspaces, of dimension 1 or 2, which we
label wk.

It is not hard to show inductively that n[j] = ad(v[1])jv[1] + n[j+1], and hence v[1]
generates n.

We consider g as a modification of n, that is we choose σ ∶ n→ t such that

g = {X + σX ∶X ∈ n}.
Since t is abelian and g is a subalgebra,

[X,Y ] + [σX,Y ] − [σY,X] = [X + σX,Y + σY ] ∈ g ∀X,Y ∈ n.
All terms on the left-hand side lie in n = Dom(σ), and σ(g ∩ n) = {0}, so

(4.1) σ[X,Y ] = σ[σY,X] − σ[σX,Y ] ∀X,Y ∈ n.
Step 1: a consequence of (4.1). Suppose that wj and wk are minimal ad(t)-invariant
subspaces of n, and σ[wj,wk] = {0}. We claim, and shall now prove, that

(4.2) σ[σY,X] = 0 ∀X ∈ wj ∀Y ∈ wk,

or equivalently, σ[σX,Y ] = 0, since in light of our hypothesis,

(4.3) σ[σY,X] = σ[σX,Y ] ∀X ∈ wj ∀Y ∈ wk.

If dim(wk) = 1, then (4.2) holds, since ad(σX) is skew-symmetric, so [σX,Y ] = 0;
similarly (4.2) holds if dim(wj) = 1. If both wj and wk are 2-dimensional, then, as the
dimension of the space of skew-symmetric maps of R2 is 1-dimensional, we may take an
orthonormal basis {X0,X1} of wj such that ad(σX0)∣wk

= 0. This implies that

σ[σY,X0] = σ[σX0, Y ] = 0 ∀Y ∈ wk.

Now there are two possibilities: either [σY,X0] = 0 for all Y ∈ wk, or there exists Y ∈ wk

such that [σY,X0] ≠ 0. In the former case, the skew-symmetry of ad(σY )∣wj
implies that

ad(σY )∣wj
= {0}, for all Y ∈ wk, and (4.2) holds. In the latter case, there exists Y ∈ wk

such that [σY,X0] = X1 and hence σX1 = 0; coupled with the fact that ad(σX0)∣wk
= 0,

this shows that ad(σX)∣wk
= 0 for all X ∈ wj and (4.2) holds in this case too from (4.3).

Step 2: the case where n is abelian. We recall that t ∩Z(h) = {0}.
Since [h,g] = [t,g] + [g,g] ⊆ [t,g] + g,

g is an ideal if and only if [t,g] ⊆ g.
We consider the decomposition of n into ad(t)-invariant subspaces wj, as described in

the second paragraph of this proof. Since n is abelian, [wj,wk] = {0} for all j and k. If
σX = 0 for all X ∈ wj and for all j, then g = n and we are done. Otherwise, we fix a
summand wj and X ∈ wj such that σX ≠ 0, and then our assumption that t∩Z(h) = {0}
implies that there exists k such that [σX,wk] ≠ {0}. Now σ[σX,Y ] = 0 for all Y ∈ wk

and since ad(σX)∣wk
is surjective, σY = 0 for all Y ∈ wk. Then wk is a nontrivial ideal

in h that is contained in n and in g. We may now write

h′ = n′ ⊕ t′ = g′ ⊕ t′,
where

h′ = h/wk, n′ = n/wk, g′ = g/wk, and t′ = (t +wk)/wk ≃ t,

and it is easy to show that h′, n′, t′ and g′ satisfy the hypotheses of the lemma and
dim(h′) < dim(h), and so g′ is an ideal in h′ by the inductive assumption and hence g is
an ideal in h.

For the rest of the proof, we may and shall assume that n is not abelian.
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Step 3: the induction on dimension argument. Suppose that n0 is a (nontrivial) ideal in
h, that n0 ⊆ n[1], and that σn0 = {0}, that is, n0 ⊆ n[1] ∩ g. In this case, we may show
that g is an ideal by induction on dimension. Indeed, we may write

h′ = n′ ⊕ t′ = g′ ⊕ t′,
where

h′ = h/n0, n′ = n/n0, g′ = g/n0, and t′ = (t + n0)/n0 ≃ t.

By our inductive assumption, g′ is an ideal in h′, and hence g is an ideal in h, as required.

Step 4: minimal ad(t)-invariant subspaces. Suppose that there exists a subspace wj such
that σ(wj) = {0}. Then for all X ∈ wj, all Y ∈ n and all U ∈ t,

σ[X,Y ] = σ[σX,Y ] + σ[σY,X] = 0

since σX = 0 by hypothesis and [σY,X] ∈ wj, and

σ[U, [X,Y ]] = σ[[U,X], Y ] + σ[X, [U,Y ]] = 0

similarly. Define
n0 ∶= wj + [h,wj] + [h, [h,wj]] + . . . ;

then n0 is an ideal in h and σn0 = {0}, that is, n0 ⊆ g.
There are now two possibilities: n0 /⊆ v[1] or n0 ⊆ v[1]. In the first case, n1 ∶= n0 ∩ n[1]

is also an ideal which may be factored out much as in Step 3 to show that g is an ideal
by induction on dimension. Otherwise, n0 is central in n and an ideal in h, and may be
factored out so that induction on dimension again shows that g is an ideal.

Step 5: Denouement. Take wj ⊆ n[`−1]; then wj is an ideal in h, where ` is the nilpotent
length of n. If dim(wj) = 2, then there exists X ∈ wk ⊆ n such that ad(σX)∣wj

≠ 0. Now
σ[σX,Y ] = 0 for all Y ∈ wj by (4.2) and hence σwj = {0}. We may factor out wj and
show that g is an ideal by induction on dimension, as in Step 3. Otherwise, if dim(wj) = 1
and σwj = {0}, then wj is an ideal which we may factor out to apply the induction on
dimension argument and show that g is an ideal. Finally, if dim(wj) = 1 and σwj ≠ {0},
there exists wk ⊆ n such that [σwj,wk] = wk, and now σwk = σ[σwj,wk] = {0} by (4.2),
so again we may apply the result of Step 4 to conclude that g is an ideal. �

4.4. Split-solvability and the real-radical. Recall that a solvable Lie algebra g or
corresponding Lie group G is said to be split-solvable (or completely solvable) if the
eigenvalues of each ad(X), where X ∈ g, are real. If G is split-solvable and of polynomial
growth, then the eigenvalues of each ad(X) are also purely imaginary, and so they are
all zero, that is, G is nilpotent.

Theorem 4.7 (After Jablonski [40]). Suppose that G is a connected Lie group with
Lie algebra g. Then g contains a unique maximal split-solvable ideal s. The analytic
subgroup S of G corresponding to s is closed, connected, and normal in G. If G is
simply connected, then so is S.

Proof. Jablonski [40, Proposition 2.1] showed that g contains a unique maximal split-
solvable ideal s.

We take S to be the Lie subgroup of G with Lie algebra s. The closure S̄ is a connected
normal solvable subgroup of G, contained in the radical R of G. Take x ∈ S̄; we need to
show that x ∈ S.

We recall that a subgroup S of G is closed if and only if U ∩ S is closed in U for a
fixed open neighbourhood U of e. Hence we may suppose that x lies close enough to the
identity that x and approximants xn to x lie in exp(s).
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If (xn)n is a sequence of elements of S that tend to x, then the characteristic polynomial
pn of each Ad(xn) has only positive real roots. Since Ad is continuous, the characteristic
polynomial p of Ad(x) is the limit of the pn and has only roots in [0,+∞); as Ad(x) is
invertible, 0 cannot be a root of p. It follows that the Lie algebra of S̄ is a split-solvable
ideal in g; by the maximality of s, S̄ = S, and S is closed.

By [15, end of Section II], all analytic subgroups of a connected simply connected solv-
able Lie group G are closed and simply connected. In particular, S is simply connected
if G is simply connected. �

We call the Lie algebra s and the group S of the theorem above the real-radical of g
and G, and denote them by rrad(g) and rrad(G). The real-radical coincides with the
nilradical in the special case where G is of polynomial growth.

The role of the real-radical is highlighted by the following simple result.

Lemma 4.8. Suppose that H is a connected solvable Lie group with real-radical S, and
T is a torus in H. Then S ∩ T ⊆ Z(H) and s ∩ t ⊆ Z(h).

Proof. If x ∈ S ∩ T , then every eigenvalue of Ad(x) is of modulus 1 since x ∈ T by
“Weyl’s unitarian trick”, and is a positive real number since x ∈ S. Hence all eigenvalues
are 1; since Ad(x) is semisimple because x ∈ T , Ad(x) is the identity operator, whence
x ∈ Z(H), and so S ∩ T ⊆ Z(H). A fortiori s ∩ t ⊆ Z(h). �

If we are dealing with a metric space of the form H/T , where T is a torus in a connected
solvable Lie group H such that Z(H) ∩ T = {e}, then S ∩ T = {e}. Such toral subgroups
T are complemented.

Lemma 4.9. Suppose that H is a connected solvable Lie group, and T is a toral subgroup
of H such that Z(H) ∩ T = {e}. Then there exists an ideal g0 of h such that h =
g0⊕t. Hence if H/T is simply connected, there exists a closed connected simply connected
normal subgroup G0 of H such that H = G0 ⋊ T .

Proof. Denote by h, n and t the Lie algebras of H, nil(H) and T ; then n ∩ t = {0} by
Lemma 4.8.

Take a subspace g0 such that n ⊆ g0 and g0 ⊕ t = h. Then g0 is an ideal because every
subspace of h that includes n is an ideal, because [h,h] ⊆ n.

If H/T is simply connected, then the connected analytic subgroup G0 of H with Lie
algebra g0 is closed and normal, and H = G0 ⋅ T by Lemma 3.11, so H = G0 ⋊ T . �

Split-solvable Lie subalgebras of solvable Lie algebras and hence connected split-
solvable subgroups of solvable Lie groups have nice properties.

Theorem 4.10 (After Jablonski [40]). Suppose that g is a split-solvable subalgebra of a
solvable Lie algebra h and t is a toral subalgebra of h such that h = g⊕t and Z(h)∩t = {0}.
Then g is the real-radical of h. If g1 is a subalgebra of h such that h = g1 ⊕ t, then g1 is
also an ideal in h.

Proof. We write n and s for the nilradical and real-radical of h.
First we are going to show that n ⊆ g. This implies immediately that g is an ideal

by Remark 4.3. Then, since g is split-solvable by hypothesis, g is contained in s. The
hypotheses and Lemma 4.8 imply that

dim(h) − dim(t) = dim(g) ≤ dim(s) ≤ dim(h) − dim(t),
so g = s.
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Since h = g ⊕ t ⊇ n ⊕ t, there is a unique linear mapping σ ∶ n → t defined by the
condition that

X + σX ∈ g ∀X ∈ n.
Define

t̃ ∶= σ(n), ñ ∶= n, h̃ ∶= n⊕ t̃, and g̃ ∶= {X + σX ∶X ∈ n}.
Since t is abelian, t̃ is a subalgebra of t; by Remark 4.3, h̃ is an ideal in h; and by linear
algebra, g̃ = h̃ ∩ g; hence g̃ is a subalgebra of h̃ and h̃ = g̃⊕ t̃.

Clearly, ñ is a nilpotent ideal in h̃; if it were not the nilradical nil(h̃) of h̃, then it
would be a subalgebra thereof, and there would be some nonzero element U of t̃ in
nil(h̃). Consider ad(U) acting on h̃; this is semisimple since t̃ is toral, and nilpotent

since U ∈ nil(h̃), and hence ad(U) annihilates h̃. Since U ∈ t̃ ⊆ t, ad(U) annihilates t as t
is abelian and a by the definition of a. Hence ad(U) annihilates h, that is, U ∈ Z(h) ∩ t.
We conclude that U = 0 and hence ñ is also the nilradical of h̃.

We fix X ∈ ñ and consider ad(X + σX), acting on the complexified algebra (g̃)C;
suppose that [X + σX,Y + σY ] = λ(Y + σY ),
where Y ∈ ñC ∖ {0} and λ ∈ C ∖ {0}. On the one hand, since g is split-solvable, λ is real.

On the other hand, Y + σY ∈ ñC since λ ≠ 0, and so σY = 0. Now Y ∈ ñ[j]
C ∖ ñ

[j+1]
C (see

Section 4.2 for the definition of the lower central series) for some j, whence

[σX,Y ] + ñ
[j+1]
C = [X + σX,Y ] + ñ

[j+1]
C = λY + ñ

[j+1]
C ,

that is, λ is an eigenvalue of ad(σX) acting on the complex quotient space ñC/ñ[j+1]
C .

Since ad(σX) has purely imaginary eigenvalues, λ is purely imaginary.
These almost contradictory conclusions imply that all eigenvalues of ad(X + σX),

acting on (g̃)C, are 0, and g̃ is nilpotent.

By Lemma 4.6, g̃ is an ideal in h̃; then g̃ ⊆ ñ as ñ is the largest nilpotent ideal in h̃;
for dimensional reasons, ñ = g̃. This completes the proof that n ⊆ g.

Now suppose that h is a solvable Lie algebra with subalgebras g, g1, and t such that g
is a split-solvable ideal, t is toral, and h = g⊕ t = g1⊕ t; we shall prove that g1 is an ideal.

By the first part of this theorem, n ⊆ g and g is an ideal; now by “Weyl’s unitarian
trick”, we may write g = n ⊕ a, where [t,a] = {0}. Much as before, there is a unique
linear mapping σ ∶ g→ t such that

g1 = {X + σX ∶X ∈ g}.
As g1 is a subalgebra of h, g1 is an ideal if and only if [t,g1] ⊆ g1. Now [t, σg] = {0}, and
g = n⊕ a, where [t,a] = {0}, so

(4.4)
[t,g1] = span{[U,X + σX] ∶ U ∈ t,X ∈ g}= span{[U,X] ∶ U ∈ t,X ∈ g} = [t,g] = [t,n],

and hence g1 is an ideal if and only if [t,n] ⊆ g1.
Much as before, we define

t̃ ∶= t, ñ ∶= n, h̃ ∶= n⊕ t, and g̃ ∶= {X + σX ∶X ∈ n}.
Clearly h̃ is a subalgebra of h and h̃ = g̃ ⊕ t̃. Further, [t,a] = {0} and h = a ⊕ h̃, whence

Z(h̃) ∩ t̃ = Z(h) ∩ t = {0}; moreover, [̃t, g̃] = [̃t, ñ] by the argument used to prove that[t,g1] = [t,g] in (4.4). From Lemma 4.6, g̃ is an ideal in h̃, and

[t,n] = [̃t, ñ] = [̃t, g̃] ⊆ g̃ ⊆ g1,

and hence g1 is an ideal, as required. �
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Corollary 4.11. Suppose that G is a split-solvable subgroup of a connected solvable Lie
group H and T is a toral subgroup of H such that H = G ⋅ T and Z(H) ∩ T = {e}. Then
G is normal in H and hence is the real-radical of H. If G1 is a subgroup of H such that
H = G1 ⋅ T , then G1 is also normal in H.

Proof. We reduce this proof to the previous result by considering the Lie algebras of
the various groups and subgroups. The fact that the Lie algebra g of G is an ideal and
coincides with s establishes that G is normal and the real-radical of H.

Next, if G1 satisfies the hypotheses of the theorem, then h is a solvable Lie algebra
with subalgebras g0, g̃, and t such that g0 is a split-solvable ideal, t is toral, h = g0 + g1,
and h = g0 ⊕ t = g1 ⊕ t. By the preceding theorem g1 is an ideal, and hence G1 is normal
in H. �

4.5. Twisted versions of groups and isometry of solvable groups. We begin by
recalling some results from Section 2 and an observation that arises from the work of
Alekseevskĭı [2].

If a connected, simply connected Lie group G0 acts simply transitively and isomet-
rically on a metric manifold (M,d) and H is an isometry group of (M,d) containing
G0, then we may write H = G0 ⋅K, where K is the stabiliser in H of a base point in
M , and the condition ⋂h∈H(hKh−1) = {eH} holds. We suppose that G0 is normal in H.
If G1 is also contained in H and acts simply transitively and isometrically on M , then
H = G1 ⋅K. Hence there is a continuous bijection T ∶ G1 → G0 and a continuous map
Φ ∶ G1 →K such that g = T(g)Φ(g) for all g ∈ G1. We check that

T(gh)Φ(gh) = gh = T(g)Φ(g)T(h)Φ(h) = T(g)T(h)Φ(g)Φ(g)Φ(h)
for all g, h ∈ G1, where T(h)Φ(g) ∶= Φ(g)T(h)Φ(g)−1; thus Φ is a continuous homomor-
phism and T(g) = gΦ(g)−1, so both maps are smooth; further,

T(gh) = T(g)T(h)Φ(g),
and T is a twisted homomorphism or cocycle. Further, G0 = {gΦ(g)−1 ∶ g ∈ G1}, as T is
a bijection. We summarise this discussion in the following definition and lemma.

Definition 4.12. We write G1 is a twisted version of G0 to mean that there exists a
Lie group H, containing G0 and G1 as closed subgroups, with G0 normal, and a Lie
group homomorphism Φ ∶ G1 → K, where K is a compact subgroup of H, such that
H = G1 ⋅K and G0 = {gΦ(g)−1 ∶ g ∈ G1}. In this case, we also say that Φ is the twisting
homomorphism.

Example 4.13. Let H denote the Lie group (R2⋊SO(2))×R, and define closed subgroups
G0 ∶= (R2 ⋊ {0}) × R and G1 ∶= {(x, y, [α], α) ∶ x, y,α ∈ R}, where [α] denotes the
equivalence class of α in SO(2), which we may identify with R/2πZ. Now both G0 and
G1 are normal subgroups of H. The compact subgroup K = {(0,0)}×SO(2)×{0} and the
homomorphism Φ∶G1 → K defined by (x, y, [α], α) ↦ α satisfy {gΦ(g)−1 ∶ g ∈ G1} = G0,
and hence G1 is a twisted version of G0. In this case, G0 is also a twisted version of G1,
via the twisting homomorphism Φ′ ∶ G0 → K, (x, y,0, α) ↦ −[α]. Thus the semi-direct
product R2 ⋊ R, where R acts on R2 by rotations (embedded as G1), and the direct
product R3 (embedded as G0), are twisted versions of each other.

Note that if G1 is connected and solvable, then the closure (Φ(G1))¯ is connected,
solvable and compact, and so is a torus; we often write T instead of K in this case. This
remark leads to our next result.
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Lemma 4.14. Let (G0, d) be a solvable metric Lie group, H be the connected component
of the identity in Iso(G0, d), K be the stabiliser in H of the point e in G, and T be a
maximal torus of K. Suppose that G0 is normal in H.

Then, for a connected solvable Lie group G, the following are equivalent:

(i) G may be made isometric to (G0, d);
(ii) G may be embedded in G0 ⋊ T in such a way that G ⋅ T = G0 ⋊ T ; and

(iii) G is a twisted version of G0 with a twisting homomorphism Φ ∶ G→ T .

Proof. We recall that maximal tori of compact Lie groups are conjugate; hence the group
G0 ⋊ T does not depend on the choice of T , up to isomorphism.

Suppose that G may be made isometric to (G0, d). From Corollary 2.25, there is an
embedding of G into H such that H = G ⋅K = G0 ⋅K, and G0 ⋅K = G0⋊K by assumption.
The closure of the image of G in the quotient (G0 ⋊K)/G0, which is isomorphic to K, is
solvable, connected, and compact, hence a torus, and so contained in a maximal torus.
This implies that G ⋅ T = G0 ⋊ T .

Conversely, if we may embed G into G0 ⋊ T in such a way that G0 ⋊ T = G ⋅ T , then
we may embed G into G0 ⋊K, and it may be checked that G0 ⋊K = G ⋅K; again from
Corollary 2.25, G may be made isometric to (G0, d0).

The equivalence of (ii) and (iii) follows from the discussion preceding Definition 4.12.
�

In our situation, where we have solvable subgroups G1 and G2 of an isometry group
H that we want to show are algebraically similar, it would seem to be desirable to have
G1 and G2 normal in H, and a way to try to do this is to make H as small as possible.
Our first two lemmas show that H may be taken to be solvable.

Proposition 4.15. Suppose that H is a connected Lie group with a connected compact
subgroup K such that H/K is simply connected and there exists a solvable subgroup G
of H such that H = G ⋅K. Let H0 be a maximal connected solvable subgroup of H that
contains G. Then

(i) H0 is unique up to conjugation in H;
(ii) T ∶=H0 ∩K is a torus, and H0 = G ⋅ T ; and

(iii) if G1 is any connected solvable subgroup of H such that H = G1 ⋅K, then there
is a conjugate Gh

1 of G1 in H that is contained in H0 and H0 = Gh
1 ⋅ T .

If moreover H acts effectively on H/K, then H0 acts effectively on H0/T .

Proof. As usual, denote by h, k, and so on the Lie algebras of H, K and so on.
By hypothesis, h = g⊕k, and a fortiori h = h0+k. If H1 is a maximal connected solvable

subgroup of H that contains G, then h = h1 + k, and by Lemma 3.19, h1 is conjugate to
h0 under the action of the adjoint group of h, whence H1 is conjugate to H0 in H, and
(i) holds.

Consider the action of H0 on the quotient space H/K. Since G acts transitively, H0

does so, and the stabiliser in H0 of the point K in the quotient space H/K is H0 ∩K.
Now H = G ⋅K, so that H0 = G ⋅ (H0 ∩K) = G ⋅ T . Further, T is connected because H0

is connected and H0 = G ⋅ T , solvable because H0 solvable, and compact because it is a
closed subgroup of K. Hence T is a torus.

If G1 is a connected solvable subgroup of H such that H = G1 ⋅K, then h = g1 + k.
If h′ is a maximal solvable subalgebra of h that contains g1, then h = h′ + k, and there
exists h ∈ H such that h0 = Ad(h)h′. It follows that Ad(h)g1 ⊆ h0, and it follows that
hG1h−1 ⊆H0 and H0 = hG1h−1 ⋅ T .

Finally if H acts effectively on H/K, then so does the subgroup H0, and H/K may
be identified with H0/T . �
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Let G1 and G2 be connected simply connected solvable Lie groups, and suppose that
H is a solvable Lie group with a toral subgroup T such that H = G1 ⋅ T = G2 ⋅ T and
Z(H) ∩ T = {e}. Ideally, we would like to deduce that G1 is a twisted version of G2,
or vice versa, but unfortunately this is not quite true; however, from Lemma 4.9, there
is a connected, simply connected group G0 such that H = G0 ⋊ T = G1 ⋅ T = G2 ⋅ T , and
hence both G1 and G2 are twisted versions of G0. In the proof of Lemma 4.9, there were
many possible choices for G0, and it might be hoped that there is a choice with some
additional properties that are useful and make it unique.

For instance, suppose that H is of polynomial growth. One might hope that G0 is
nilpotent, but this is not always so. However, one may define an abelian extension H∗
of H, in which H is a normal subgroup, with a toral subgroup T ∗ containing T , such
that H∗ = G1 ⋅ T ∗ = G2 ⋅ T ∗, whose nilradical N satisfies H∗ = N ⋊ T ∗. Then G1 and G2

are both twisted versions of N , which is known as the nilshadow of both G1 and G2.
We shall describe a construction of the group H∗ like that of Alexopoulos [3], Dungey,
ter Elst and Robinson [21], and Breuillard [14], and show that one choice of G0 is the
real-radical of H∗.
4.6. Hulls and real-shadows. In this section, we sketch the proof of the following
theorem, whose roots are in results of Cornulier [16, Section 2] and of Jablonski [40,
Proposition 4.2], as well as earlier results of Gordon and Wilson [28, 29] and even earlier
work of Auslander and Green [5].

Theorem 4.16. Let G be a connected, simply connected solvable Lie group. Let T be a
maximal torus in a maximal compact subgroup of the automorphism group of G, let H
be the semidirect product G ⋊ T , and let G0 be the real-radical of H. Then H = G0 ⋊ T ;
further, there is a smallest subtorus J of T , unique up to isomorphism, such that

(4.5) G ⋊ J = G0 ⋊ J.
Hence G is a twisted version of G0, with twisting homomorphism into J , and vice versa.

Remark 4.17. Let G∗ = G⋊J = G0⋊J . We call the group G∗ the hull of G and the group
G0 the real-shadow of G; the corresponding Lie algebras are also called the hull and the
real-shadow of g.

Proof. Maximal compact subgroups of Aut(G) are connected and conjugate in Aut(G),
and maximal tori of a given maximal compact subgroup K are conjugate in K. Hence
H is unique up to isomorphism, and so G0 is too.

We now show that H = G0 ⋊ T , using Lie algebra. We choose a maximal torus with
some convenient properties. Let g and n be the Lie algebra of G and its nilradical. Take
a Cartan subalgebra c (see [13, pp. 13–15]) of g. The quotient (n + c)/n is a Cartan
subalgebra of the abelian Lie algebra g/n, by [13, Corollary 2, page 14]; hence n + c = g.
Hence we may take a subspace a of c such that

(4.6) g = n⊕ a.

Denote by πa and πn the corresponding projections of g onto a and n. Then

(a) ads(X)Y = 0 and [ads(X),ads(Y )] = 0 for all X,Y ∈ c; and
(b) the map X ↦ ads(πaX) is a Lie algebra homomorphism from g onto an abelian

subalgebra of der(g), the Lie algebra of derivations of g.

Item (a) is proved as part of the proof of Proposition III.1.1 of [21]; item (b) is Lemma
3.1 of [14]. (To be precise, these authors have a type (R) assumption, but, as they state,
this is not needed.)
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We define the homomorphism ϕ ∶ g→ der(g) by

ϕ(X) = adsi(πaX),
that is, the “imaginary part” (as in Lemma 4.4) of the semisimple derivation ads(πaX)
constructed above. This homomorphism annihilates n, and also s, and its image is a
toral subalgebra of der(g). Consider the closure J in Aut(g) of the analytic subgroup
corresponding to ϕ(a). Hence J is a torus. (It is an abuse of notation to call this torus
J , but we shall later check that it does satisfy (4.5), and so the abuse is justified.)

Let T be a maximal torus of Aut(g) that contains J , and define the Lie algebra h to
be the semidirect sum algebra g⊕ t, with Lie product given by

(4.7) [(X,D), (Y,E)] = ([X,Y ] +D(Y ) −E(X),0)
for all X,Y ∈ g and all D,E ∈ t. In this proof, we write elements of h as ordered pairs
rather than as sums as we feel that this helps understanding. The subspace g0 of g is
defined by

g0 = {(X,−ϕ(X)) ∶X ∈ g}.
(Again, we are abusing notation here, but proving the next claim justifies the abuse.)
We claim that

(a) h = g0 ⊕ t;
(b) the map τ ∶X ↦ (X,−ϕ(X)) is a bijection from g to g0, and further,

[τ(X), τ(Y )] = τ([X,Y ]rrad),
where

(4.8) [X,Y ]rrad = [X,Y ] − ϕ(X)Y + ϕ(Y )X ∀X,Y ∈ g;

(c) g0 is an ideal and is the real-radical of h.

Parts (a) and (b) follow immediately from the definitions.
Third, g0 is an ideal since [h,h] ⊆ n⊕ {0} ⊆ g0, by (4.7) and Remark 4.3. To see that

g0 is split-solvable, we suppose that X ∈ g, Y ∈ gC ∖ {0}, and

([X,Y ] − ϕ(X)Y + ϕ(Y )X,0) = [(X,−ϕ(X)), (Y,−ϕ(Y ))] = λ(Y,−ϕ(Y ));
it will suffice to show that λ is real. If λ ≠ 0, then ϕ(Y ) = 0, so we may suppose that
Y ∈ nC, whence, from (4.7), ad(X)Y − ϕ(X)Y = λY , which implies that

(adsr(πaX) + adn(πaX) + ad(πnX))Y = (ad(πaX) + ad(πnX) − adsi(πaX))Y= λY.
Consider the complexified lower central series of n, that is, n

[0]
C = nC, and n

[j]
C = [nC,n[j−1]

C ]
when j > 0. Since Y ≠ 0, there exists j ∈ N such that Y ∈ n[j] ∖ n[j+1]. Now all the
spaces n[j] are invariant under all derivations of nC, and in particular under adsr(πaX),
adn(πaX) and ad(πnX)). Thus these operators have quotient actions on the quotient
algebra n[j]/n[j+1], which we write as qadsr(πaX), qadn(πaX) and qad(πnX)). Evidently,
qad(πnX)) = 0, qadsr(πaX) is semisimple with real eigenvalues, qadn(πaX) is nilpotent,
and the last two quotient operators commute. The eigenvalues of qadsr(πaX) and of
qadsr(πaX)+qadn(πaX) coincide by [11, Theorem 1, p. A.VII.43]. So all the eigenvalues
of ad(X,−ϕ(X)) are real, and g0 is indeed split-solvable.

From Theorem 4.10, g0 is the real-radical of h; we shall now write it as g0.
Next, we consider the groups that correspond to these Lie algebras. We have already

seen that T is a torus. By Lemma 3.11, the connected analytic subgroup G0 of H whose
Lie algebra is g0 is closed and H = G0 ⋅ T . Further, G0 is normal in H as g0 is an ideal
in h. Thus H = G ⋊ T = G0 ⋊ T .
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We organised matters so that h = g⊕ t = g0⊕ t; however, by construction, g⊕ j = g0⊕ j,
where j is the Lie algebra of J , and there is no proper subtorus of J whose Lie algebra
has this property. At group level, H/G may be identified with T in Aut(G) and J is the
smallest subtorus of T that may be identified with the closure of G0G/G therein. Thus

G ⋊ J = G0 ⋊ J,
as required. We have seen that H and hence G0 are unique up to isomorphism: it follows
that J is too. �

We note that if G is split-solvable, then it is isomorphic to its real-shadow. If G is of
polynomial growth, then its real-shadow coincides with its nilshadow, since in this case
the real-radical and the nilradical of the hull are the same.

Remark 4.18. Suppose that G0 is split-solvable, T0 is a torus of automorphisms of G0,
and H ∶= G0⋊T0. If G is a subgroup of H such that H = G ⋅T0, then G0 is the real-shadow
of G.

This would be obvious if G were normal in H, but we have not assumed that this is
true. However, if we take the smallest subtorus T1 of T0 such that G ⊆ G0 ⋊ T1, then G
is normal in G0 ⋊ T1 by Corollary 4.11, and hence G0 is the real-shadow of G.

4.7. Applications to metric Lie groups. Now we look at some of the consequences
of the theory that we have developed, not only in Section 4, but also earlier.

We recall that a connected solvable Lie group is simply connected if and only if it
is contractible. Thus a Lie group that may be made isometric to a connected simply
connected solvable Lie group is contractible. By Remark 3.16, a contractible Lie group G
may be written as R⋊L, where the radical R is simply connected and the Levi subgroup L
is a direct product of finitely many (possibly zero) copies of the universal covering group
of SL(2,R). Conversely, Theorem 3.24 shows that a Lie group G with the structure just
described may be made isometric to a solvable Lie group. By contrast, if a Lie group G
may be made isometric to a connected simply connected nilpotent Lie group, then G is
contractible and of polynomial growth, and by Lemma 3.20, G is solvable.

These observations are the reason why we include a solvability hypothesis in many
but not all of the upcoming results.

Corollary 4.19. Let (G,d) be a connected simply connected solvable metric Lie group,
H be a maximal connected solvable subgroup of Iso(G,d) containing G, and T be the
stabiliser in H of the point eG in G. Let G0 be a normal subgroup of H such that
H = G0 ⋊ T , as in Lemma 4.9, and let G1 be a connected solvable Lie group. Then the
following are equivalent:

(i) G1 may be made isometric to (G,d);
(ii) G1 may be embedded in H in such a way that H = G1 ⋅ T ; and

(iii) G and G1 are both twisted versions of G0 with twisting homomorphisms into T .

Proof. If G1 may be made isometric to (G,d), then G1 is simply connected and there is
an embedding of G1 in Iso(G,d), by Theorem 2.21, hence an embedding of G1 in H by
Proposition 4.15, and so H contains closed disjoint subgroups G1 and T , and H = G1 ⋅T .
Conversely, if G1 may be embedded in H in such a way that H = G1 ⋅ T , then G1 may
be made isometric to (G,d) by Corollary 2.25.

The equivalence of (ii) and (iii) follows from Theorem 4.16. �
Corollary 4.20. Let (G,d) be a connected simply connected solvable metric Lie group.
Let G∗ and G0 be the hull and the real-shadow of G, and write G∗ = G⋊J , as in Theorem
4.16. Then the following are equivalent:
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(i) G0 may be made isometric to (G,d); and
(ii) d is invariant under conjugation by elements of J .

Proof. If d is invariant under conjugation by elements of J , that is, if d(jgj−1, jhj−1) =
d(g, h) for all g, h ∈ G and all j ∈ J , then we may view d as a G∗-invariant metric on
G∗/J , hence as a G0-invariant metric on G∗/J , and hence as a metric on G0.

Conversely, if G0 may be made isometric to (G,d), then we may embed G and G0 into
a maximal connected solvable subgroup H of Iso(G,d), by Proposition 4.15, and write
H = G0 ⋅T = G ⋅T for a suitable torus T . By Corollary 4.11, H = G0 ⋊T . We may take a
smaller subgroup H0 of H of the form G0⋊J , where J is a subtorus of T , that is minimal
subject to the requirement that G ⊆ H0, and then, by Remark 4.18, G is normal in H0,
and H0 and G0 are the hull and real-shadow of G. We may identify G with H0/J and
the metric d is H0-invariant, and a fortiori is J-invariant. �

We now restate (and expand slightly) Theorem C.

Theorem 4.21. Let G0 be a connected simply connected split-solvable Lie group, T be a
maximal torus in Aut(G0), and d0 be a T -invariant metric on G0. Let G1 be a connected
simply connected solvable Lie group. Then the following are equivalent:

(i) G1 may be made isometric to G0;
(ii) G1 may be made isometric to (G0, d0);

(iii) G0 is the real-shadow of G1;
(iv) G1 may be embedded in H ∶= G0 ⋊ T in such a way that H = G1 ⋅ T ; and
(v) G1 is a twisted version of G0 with twisting homomorphism into T .

Proof. Before we start our proof, we note that the existence of a T -invariant metric d0

on G0 is shown in Corollary 2.18.
The equivalence of (ii), (iv) and (v) may be found in Lemma 4.14. The equivalence of

(iii) and (iv) follows from Theorem 4.16 and Remark 4.18.
Evidently (ii) implies (i), so it will suffice to show that (i) implies (iii). If (i) holds,

there is a metric d0 on G0 such that G1 may be made isometric to (G0, d0); hence G1

may be embedded in H, the connected component of the identity in Iso(G0, d0). By
Proposition 4.15, there is a connected solvable subgroup H0 of H and a torus T0 in
H0 such that H0 = G0 ⋅ T0, and G1 may also be embedded in H0 in such a way that
H0 = G1 ⋅ T0. By Corollary 4.11, H0 = G0 ⋊ T0, and now G0 is the real-shadow of G1 by
Remark 4.18. �

The following are corollaries of Theorem 4.21 and the theory that we have developed.
This first follows immediately from the riemannian version of Corollary 2.18 (which is
well known) and Theorem 4.21

Corollary 4.22. Let G0 be a connected simply connected split-solvable Lie group. Then
there exists a riemannian metric d0 on G0 such that every connected simply connected
solvable Lie group that may be made isometric to G0 may be made isometric to (G0, d0).

Part of the next corollary also follows immediately from Theorem 4.21.

Corollary 4.23. Let G1 and G2 be connected, simply connected solvable Lie groups.
Then G1 and G2 may be made isometric if and only if their real-shadows are isomorphic.

Proof. First, suppose that G0 is the real-shadow of both G1 and G2, and take a metric
d0 on the real-shadow G0 that is invariant under a maximal torus T of Aut(G0). Then
both G1 and G2 may be made isometric to (G0, d0).

Conversely, suppose that G1 and G2 are connected simply connected solvable Lie
groups that admit admissible left-invariant metrics d1 and d2 such that (G1, d1) and
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(G2, d2) are isometric. Let H be a maximal connected solvable subgroup of the Lie
group Iso(G1, d1), and T be the stabiliser of the identity e of G1 in H. By Corollary
4.19, there is a normal subgroup G of H such that

H = G ⋊ T = G1 ⋅ T = G2 ⋅ T.
Let T ∗ be a maximal torus of Aut(G) that contains T , and let G0 be the real-radical

of H∗ ∶= G⋊T ∗, so that H∗ = G0 ⋊T ∗ by Theorem 4.16. Now G1 ⊆H0 ⊆H∗ and G2 ⊆H∗
similarly. We may check that H∗ ∶= G1 ⋅T ∗ = G2 ⋅T ∗, using Lie algebra and Lemma 3.11.
By Theorem 4.21, G0 is the real-shadow of G1 and of G2. �

Of course, if G1 and G2 have the same real-shadow G0, then not only may they be
made isometric to G0, but to (G0, d0), where d0 is the metric of Corollary 4.22.

We have already observed that in the nilpotent case, stronger results are possible.

Corollary 4.24. Let G1 and G2 be simply connected Lie groups and assume that G1 is
nilpotent. The following are equivalent:

(i) G2 and G1 may be made isometric;
(ii) G2 is solvable and of polynomial growth and G1 is its nilshadow.

Proof. Since G1 is simply connected and nilpotent, it is contractible and of polynomial
growth. If G1 and G2 may be made isometric, then G2 is contractible and of polynomial
growth by Lemma 2.27, so is solvable by Lemma 3.20. Now (ii) follows from Theorem
4.21. It is immediate from Theorem 4.21 that (ii) implies (i). �

This leads to the following, which should be compared to a result of Kivioja and Le
Donne [44].

Corollary 4.25. If G1 and G2 are connected, simply connected nilpotent Lie groups, and
both may be made isometric to the same connected Lie group G (not a priori solvable,
and possibly with different metrics), then G is solvable and G1 and G2 are isomorphic.

Proof. By the previous corollary, G is solvable and of polynomial growth, and both G1

and G2 are isomorphic to the nilshadow of G. �
In the preceding corollary, if “nilpotent” is replaced with “split-solvable”, we cannot

deduce that G must be solvable. However, if we replace “nilpotent” with “split-solvable”
and we assume a priori that G is solvable, then the conclusion that G1 and G2 are
isomorphic still holds, as they are both isomorphic to the real-shadow of G.

There are examples in the work of Gordon and Wilson [29, 28] and of Jablonski
[40] where stronger results hold for split-solvable groups if an a priori assumption of
unimodularity is included.

Our final corollaries are concerned with quasi-isometry rather than isometry. A general
observation is that if two Lie groups may be made isometric using arbitrary admissible
left-invariant metrics, then they may be made isometric for the derived semi-intrinsic
metrics of (2.5), or for suitable riemannian metrics, as in Corollary 3.4, and hence they
are quasi-isometric when equipped with admissible left-invariant proper quasigeodesic
metrics, as all such metrics on a given group are quasi-isometric. We recall from Theo-
rem 3.24 that a contractible homogeneous metric manifold (M,d) is homeomorphically
roughly isometric to a connected, simply connected solvable metric Lie group. With an
additional hypothesis of polynomial growth, more may be said.

Corollary 4.26. Let (M,d) be a contractible homogeneous metric manifold. Suppose
further that d is proper quasigeodesic and that M is of polynomial growth, as in (2.14).
Then (M,d) is quasi-isometrically homeomorphic to a simply connected riemannian
nilpotent Lie group.
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Proof. Theorem 3.24 shows that (M,d) is roughly isometrically homeomorphic to a sim-
ply connected solvable metric Lie group (H,dH); by construction, (H,dH) is proper
quasigeodesic.

Let N be the nilshadow of H. By Theorem 4.21, there are metrics d′H and d′N on H
and N such that (H,d′H) and (N,d′N) are isometric. We may assume that d′H and d′N
are riemannian, by Corollary 4.22.

Finally, d is proper quasigeodesic and all admissible left-invariant proper quasigeodesic
metrics on a Lie group are quasi-isometric, so the identity map on H is a quasi-isometry
from dH to d′H . �

With a slightly weaker hypothesis, we obtain a slightly weaker conclusion.

Corollary 4.27. Let (M,d) be a homogeneous metric space of polynomial growth, and
suppose that the metric d is proper quasigeodesic. Then (M,d) is quasi-isometric to a
connected simply connected nilpotent riemannian Lie group.

Proof. Theorem 3.24 shows that (M,d) is roughly isometric to a simply connected solv-
able metric Lie group (H,dH), which is a metric quotient of (N,d) with compact fibre,
and hence also of polynomial growth.

We now repeat the argument of the previous corollary. �

If (M,d) is a homogeneous metric space of polynomial growth, then the argument
above shows that there is an admissible metric d′ on M , such that (M,d′) is of polynomial
growth and quasi-isometric to a connected simply connected nilpotent riemannian Lie
group. For example, we may take d′ to be a derived semi-intrinsic metric, as defined just
before Lemma 2.3.

4.8. Notes and remarks.

4.3. Modifications. In the terminology of Gordon and Wilson [29], our Lemma 4.6 states
that modifications of nilpotent Lie ideals are normal. Gordon and Wilson [29] proved
the stronger result that modifications of nilpotent subalgebras are normal. However,
our Theorem 4.10 shows that nilpotent subalgebras of solvable Lie algebras with a toral
complement are ideals, and so our two results combined include their theorem.

4.4. Split-solvability and the real-radical. The real-radical, at the Lie algebra level, ap-
pears in the work of Jablonski [40]. In particular, the Lie algebra part of Theorem 4.7
and Theorem 4.10 are due to him. In the language of Gordon and Wilson [29], [28],
the second part of Theorem 4.10 states that modifications of split-solvable groups are
normal.

It was shown by Wolf [72] that a connected riemannian nilpotent group is normal
in its isometry group. On the other hand, the examples of symmetric spaces of the
noncompact type show that a riemannian split-solvable connected Lie group G need not
be normal in its isometry group H; we may write H = G ⋅K, where K is the stabiliser of
a base-point, but it is certainly false that H = G ⋊K. So Theorem 4.10 and Corollary
4.11 are perhaps a little surprising.

One important way in which our approach differs from that of Gordon and Wilson is
that we use Mostow’s theorem [57] on maximal solvable subgroups to reduce questions of
possible isometry of solvable groups to questions of possible isometry of solvable groups
in a solvable supergroup. This enables us to avoid some of the complications that arise
in dealing with general Lie groups and algebras.
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4.5. Twisted versions of groups and isometry of solvable groups. Definition 4.12 is close
to a proposal of Alekseevskĭı [2], who used the expression twisting rather than twisted ver-
sion (or rather his translator did). Actually, he considered the related question whether{gΦ(g)−1 ∶ g ∈ G1} is a subgroup if G1 is normal and Φ ∶ G1 → K is a homomorphism.
His answer is not definitive, but the situation is now clearer due to the contributions of
Gordon and Wilson [28, 29], who looked at the corresponding question at the Lie algebra
level, namely, when {X + ϕ(X) ∶X ∈ g1} is a subalgebra.

4.6. Hulls and real-shadows. The idea of using a Cartan subalgebra of g to find a good
complement of nil(g), as in Theorem 4.16, or to construct the nilshadow, seems to be
due to Alexseevskĭı. However, his class of solvable groups is restricted to those which
arise in the study of riemannian homogeneous spaces of nonpositive curvature, and for
these groups, the Cartan subalgebra a is abelian; extra ideas are needed to deal with
general solvable Lie groups. These are due to Alexopoulos (in the polynomial growth
case).

The following example shows that not all the Cartan subalgebras that appear in the
“shadow construction” are abelian. We take the Lie algebra g with basis {U,V,X,Y,Z}
and commutation relations determined by linearity, antisymmetry and the nonzero basis
commutation relations

[X,Y ] = Z, [X,U] = U, [Y,V ] = V.
This is a solvable extension of the abelian algebra span{U,V } by the nilpotent algebra
span{X,Y,Z}. The Cartan subalgebra span{X,Y,Z} is nilpotent and not abelian.

The nilshadow appears in work of Auslander and Green [5], where the group G∗ is
called the hull of G; it seems that the term nilshadow was first used in [6]. Interestingly,
it seems that type (R) also appeared for the first time in [5]. Their construction of the
nilshadow used ideas from the theory of algebraic groups. An alternative construction
of the nilshadow, based on Lie algebras, appears in the work of Gordon and Wilson
[28, 29], phrased in the language of modifications; their work was not restricted to
groups of polynomial growth, and perhaps for this reason they did not make explicit the
connection with the construction of Auslander and Green. The Lie algebraic construction
of the nilshadow was found later by Alexopoulos [3], and developed by Dungey, ter Elst,
and Robinson [21] and by Breuillard [14]. The nilshadow has been used quite extensively
in the area of harmonic analysis on Lie groups, and in applications to nonriemannian
metric geometry of Lie groups.

What we call the real-shadow is more recent. For groups that need not be of polynomial
growth, the detailed investigation of Gordon and Wilson [28, 29] identified a special
subgroup G0, said to be in standard position, that is sometimes split-solvable. Cornulier
[16] developed an object that he called the trigshadow, using techniques closer to those
of Auslander and Green, and in particular working at group level rather than algebra
level. In the recent work of Jablonski [40], which has roots in the work of Gordon and
Wilson, the idea of a maximal split-solvable ideal appears and the real-shadow as viewed
as a maximal split-solvable ideal of a larger Lie algebra.

We describe a construction of the hull G∗ like that of Alexopoulos, Dungey, ter Elst
and Robinson, and Breuillard.

Recall from Lemma 4.9 that if H is a solvable Lie group with a toral subgroup T
such that Z(H) ∩ T = {e} and H/T is simply connected, then we may find a normal
subgroup G0 of H such that H = G0 ⋊ T . Gordon and Wilson [28, 29] spend some effort
on finding a choice of G0 “in standard position”. Essentially this is a group which is “as
real as possible”. From our point of view, the construction of G0 proceeds, using Lie



58 COWLING, KIVIOJA, LE DONNE, NICOLUSSI, AND OTTAZZI

algebras, as follows: first, take a Cartan subalgebra c of h containing t (this is possible),
and then a subspace a of c such that h = n⊕ a⊕ t. Replace any X ∈ a such that adsi(X),
the imaginary part of the semisimple part of ad(X), as in Corollary 4.5, coincides with
ad(U) for some U in t by X −U . This produces a new subspace ã such that h = n⊕ ã⊕ t.
Let g0 be n⊕ ã.

A tool often used by Gordon and Wilson to construct nice subalgebras, such as the
nilshadow of a solvable Lie algebra, is the Killing form, and orthogonal complements of
compact subalgebras appear in their development, much as in Corollary 3.22.

4.7. Consequences and applications. Gordon and Wilson [29, Example 2.8] give examples
of nonisomorphic connected simply connected solvable Lie groups G1 and G2 that are
isometric, but they are not isometric to their real-shadow.

The universal covering group H of the group R2⋊SO(2) of orientation-preserving rigid
motions of R2 is a simply connected three-dimensional solvable Lie group that admits
a left-invariant subriemannian metric d such that (H,d) is not bi-Lipschitz equivalent
to any nilpotent group. Indeed, the two simply connected three-dimensional nilpotent
Lie groups are the abelian group R3, which is the nilshadow of H, and the nonabelian
Heisenberg group H. However, if d is a suitable left-invariant subriemannian metric
on H, then (H,d) is not even quasiconformally equivalent to either R3 or H; see [23].
Nevertheless, (H,d) is locally bi-Lipschitz to H with the standard subriemannian metric.

Apropos of Theorem 4.10 and Corollary 4.11, in the riemannian case, the normality of
a nilpotent Lie group N in its isometry group was proved by Wolf [72] and rediscovered
by Wilson [71].

In the special case where (M,d) is of polynomial growth, so is every group G that acts
simply transitively and isometrically on (M,d). If any such group G is nilpotent, then
G is normal in Iso(M,d) by a theorem of Wolf [72], which is formulated for riemannian
metrics but which extends to the case of general metrics by Corollary 3.4. This was
extended to unimodular split-solvable groups by Gordon and Wilson [28, 29].

Corollary 4.25 was known for nilpotent G and arbitrary metrics, and for solvable
G with riemannian metrics; see [2, 28, 29, 44, 71, 72]. Kivioja and Le Donne also
showed that isometries of nilpotent metric Lie groups are affine, that is, are composed
of translations and group automorphisms.

5. Characterisation of metrically self-similar Lie groups

In this section we prove Theorem D, which we renumber as Theorem 5.5.
One well known motivation of the study of metrically self-similar Lie groups is their

appearance as stratified groups [24] or Carnot groups [59]. Another, perhaps less well
known, is their appearance as the parabolic visual boundaries of negatively curved ho-
mogeneous riemannian manifolds. More precisely, Heintze [35] showed that every simply
connected negatively curved homogeneous riemannian manifold is isometric to a rie-
mannian Lie group (G,g) that is a semidirect product N ⋊A R, where N is a simply
connected nilpotent Lie group and at the Lie algebra level, R acts on n by a derivation
A whose eigenvalues have strictly positive real parts.

The parabolic visual boundary of (G,g) may be identified with the Lie group N , as
we now explain. Let ξ be the geodesic ray whose support is {eN} ×R+ in N ⋊A R. The
parabolic visual boundary is the set of infinite geodesics γ∶R→ (G,g) that are asymptotic
to ξ as t → +∞ and satisfy limt→∞ d(γ(t), ξ(t)) = 0. This set may be equipped with the
Hamenstädt metric (see [36, p. 384])

d(α,β) = exp(−1
2 lim
t→+∞(2t − dg(α(−t), β(−t)))),
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where dg is the riemannian metric induced by g. Identification of the horosphere centered
at ξ with the subset N×{0} gives a natural identification of the parabolic visual boundary
and the Lie group N . Using this identification, one may show by direct computation
that for every t ∈ R+ the automorphism of N with differential etA is a metric dilation of(N,d). Thus (N,d) is a metrically self-similar group.

We remark that the metric d need not be riemannian, or even geodesic. A simple
example is when N = R2 and A is the diagonal matrix with diagonal entries 1 and
2. Here the group R2 ⋊A R may be given a negatively curved left-invariant riemannian
metric that induces on its parabolic visual boundary, which is the topological space R2,
a metric d that is bi-Lipschitz-equivalent to the product of R equipped with the usual
metric and R equipped with the square root of the usual metric. Then (R2, d) is a
metrically self-similar group that is not geodesic. See [73] for more examples along these
lines.

The structure of this section is the following. We show that a metric space satisfying
the hypotheses of the theorem is doubling. Then we show that its isometry group G is a
Lie group of polynomial growth, whence every Levi subgroup of G is compact. However,
the metric space is contractible, so the stabiliser K of a point is a maximal compact
subgroup, which contains the Levi subgroup. This allows us to find a subgroup S of G
that is transverse to K, and this subgroup S induces the group structure on the metric
space.

5.1. Properties of metrically self-similar Lie groups. We recall the definition of
metrically self-similar Lie group and we present some examples and properties.

Definition 5.1. A metrically self-similar Lie group is a triple (G,d, δ), where G is a con-
nected Lie group, d is an admissible left-invariant metric on G, and δ is an automorphism
of G such that d(δx, δy) = λd(x, y) for some λ ≠ 1.

The basic examples of metrically self-similar Lie groups are normed vector spaces of
finite dimension where the dilation is scalar multiplication. Several other examples are
already available when G = R2.

If α,β ≥ 1, then the automorphisms δλ corresponding to the matrix

(λα 0
0 λβ

)
are all dilations of factor λ for metrics including

d((x, y), (x′, y′)) = max{∣x − x′∣1/α, ∣y − y′∣1/β}
or, when α = β,

d(x, y) = ∥x − y∥1/α
where ∥ ⋅ ∥ is any norm on R2. In [48, Proposition 5.1], it is shown that there exists a
homogeneous metric d whose spheres are fractals in R2 when α = 2.

When α ≥ 1, the automorphisms δλ corresponding to the matrix

λα (cos(logλ) − sin(logλ)
sin(logλ) cos(logλ) )

are dilations of factor λ for the metric d(x, y) = ∥x − y∥1/α, where ∥ ⋅ ∥ is the euclidean
norm.

If α > 1, then there is a left-invariant metric d on R2 for which the automorphisms δλ
corresponding to the matrices

(λα λα log(λα)
0 λα

)
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are dilations of factor λ. These dilations appear in [10] in the study of visual boundaries
of Gromov hyperbolic spaces. See also [73] for further results and examples in Rn.

Definition 5.2. A (positive) grading of a Lie algebra g is a splitting g = ⊕t∈R+ vt such
that [vs,vt] ⊆ vs+t for all s, t ∈ R+. A Lie group G is gradable if it is simply connected
and its Lie algebra admits a grading.

Note that finitely many vt have positive dimension, because g has finite dimension;
further, a gradable group is nilpotent. When G is a gradable Lie group with Lie algebra
grading g =⊕t∈R+ vt, we may define the standard dilations δλ ∶ G → G by requiring that(δλ)∗V = λtV for all V ∈ vt. It is known that a metric d exists on G so that (G,d, δλ) is
a metrically self-similar group if and only if vt = {0} for all t ∈ (0,1), see [26]. For much
more on gradable groups, see [50] and the references cited there.

Gradable groups are the only Lie groups that support a dilation, by the following
theorem of Siebert [65].

Theorem 5.3. Let G be a connected Lie group and suppose that there exists a Lie group
automorphism δ ∶ G→ G such that

lim
n→+∞ δng = eG ∀g ∈ G.

Then G is gradable, nilpotent and simply connected.

Corollary 5.4. If (G,d, δ) is a metrically self-similar Lie group, then G is gradable,
nilpotent and simply connected. Moreover, all metric dilations on (G,d) are Lie group
automorphisms of G.

Proof. Since a metrically self-similar Lie group admits a contractive automorphism, the
first statement follows from Theorem 5.3. Recall that a metric dilation on a metric
space (G,d) is a bijection f ∶ G → G such that d(f(x), f(y)) = µd(x, y) for all x, y ∈ G
and some µ ∈ (1,+∞). Such a map is also an isometry from (G,µd) to (G,d), and
by [44, Proposition 2.4], isometries between connected nilpotent Lie groups are group
isomorphisms composed with translations. �

5.2. Proof of Theorem D. We restate Theorem for the reader’s convenience.

Theorem 5.5. If a homogeneous metric space admits a metric dilation, then it is iso-
metric to a metrically self-similar Lie group. Moreover, all metric dilations of a metri-
cally self-similar Lie group are automorphisms.

The last sentence in Theorem 5.5 was proved in Corollary 5.4. Throughout this section,
we assume that (M,d) is a homogeneous metric space, λ ∈ (1,+∞), and δ is a bijection
of M such that d(δx, δy) = λd(x, y) for all x, y ∈ M . Since M is locally compact and
isometrically homogeneous, it is complete, and the Banach fixed point theorem shows
that δ has a unique fixed point, o say. We prove a few preliminary results.

Lemma 5.6. The metric space (M,d) is proper and doubling.

Proof. The ball B(o, r) is relatively compact for all sufficiently small r; using the dilation
we see that this holds for all r ∈ R, and (M,d) is proper.

We now show that (M,d) is a doubling metric space. Since the closed ball B̆(o, λ) is

compact, there are points x1, . . . , xk ∈ B̆(o, λ) such that

B̆(o, λ) ⊆ k⋃
i=1

B(xi,1/2).
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Take R ∈ R+, and define n ∶= ⌊logλR⌋, so that 1 ≤ λ−nR < λ. Then

δnB(xi,1/2) ⊆ δnB(xi, λ−nR/2) = B(δnxi,R/2),
and so

B(o,R) = δn(B(o, λ−nR)) ⊆ δn(B(o, λ)) ⊆ k⋃
i=1

B(δnxi,R/2).
Since (M,d) is isometrically homogeneous, (M,d) is doubling. �

Let H denote the connected component of the identity in Iso(M,d).
Lemma 5.7. The space M is contractible, and H and M may be given analytic struc-
tures, compatible with their topologies, such that the Lie group H acts on M analytically
and transitively. Moreover H is of polynomial growth.

Proof. Define π ∶ H → M by πh ∶= ho and T ∶ H → H by Th ∶= δ ○ h ○ δ−1; then
π ○ T = δ ○ π. Let K be the maximal compact normal subgroup of H. Note that
T (K) =K, since T is an automorphism of H. Then π(K) is a compact subset of M : let
r ∶= max{d(o, p) ∶ p ∈ π(K)}. Then

π(K) = πT −1(K) = δ−1π(K) ⊆ B(o, λ−1r),
which implies that r = 0. Therefore π(K) = {o}, and K is contained in the stabiliser in
H of the point o in M ; by Remark 2.5, K = {eH}. By Montgomery–Zippin structure
theory (as in Theorem 3.1 and Corollary 3.3), H and M may be given analytic structures,
compatible with their topologies, such that M is a manifold and the action of H on M
is analytic.

Since M is a manifold and admits a metric dilation, it is compactly contractible,
and hence contractible by Lemma 3.6. Since moreover M is doubling and proper by
Lemma 5.6, it is of polynomial growth by Remark 2.30. By Lemma 2.27, H is a group
of polynomial growth. �
Proof of Theorem 5.5. Let (M,d) be a homogeneous metric space. Let δ be a metric
dilation of factor λ ∈ (1,+∞) and with fixed point o. Let H denote the connected
component of the identity in Iso(M,d). By Lemma 5.7, H is a Lie group of polynomial
growth (and hence is amenable) and M may be identified with H/K, where K is the
stabiliser of o in H; further, M is contractible, so K is a maximal compact subgroup by
Lemma 3.6.

We may now apply Lemma 3.22, and deduce that there exists a connected Lie subgroup
G of H such that the restricted quotient map h↦ h(o) from G to M is a homeomorphism.
We use this homeomorphism to make G into a metrically self-similar Lie group isometric
to (M,d).

Define the metric dG on G by dG(h,h′) = d(h(o), h′(o)). It is clear that this is an
admissible metric, and it is left-invariant because

dG(hh′, hh′′) = d(h(h′(o)), h(h′′(o))) = d(h′o, h′′o) = dG(h′, h′′)
for all h,h′, h′′ ∈ G. Further, define the map T on H by

Tg ∶= δ ○ g ○ δ−1.

Then T is a Lie group automorphism of H. Since TK = K, Lemma 3.22 implies that
TG = G. Thus T ∣G is a Lie group automorphism of G.

We note that after the identification of G with M , the map T ∣G coincides with δ.
Indeed, (Th)(o) = (δhδ−1)(o) = δ(ho),
and the proof is complete. �
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Abstract. We approach the quasi-isometric classification questions on Lie groups
by considering low dimensional cases and isometries alongside quasi-isometries.
First, we present some new results related to quasi-isometries between Heintze
groups. Then we will see how these results together with the existing tools re-
lated to isometries can be applied to groups of dimension 4 and 5 in particular.
Thus we take steps towards determining all the equivalence classes of groups up to
isometry and quasi-isometry. We completely solve the classification up to isometry
for simply connected solvable groups in dimension 4, and for the subclass of groups
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0. Introduction

This paper is a contribution to various metric classifications of Lie groups. The
study of quasi-isometries between solvable groups is an active area of research [Pan89,
Sha04, Sau06, dC18, EFW12, EFW13, Dym10, Xie14, Xie15, CPS17, Pia17, Pal20].
Distinguished examples of solvable groups are Heintze groups, i.e., those solvable
simply connected Lie groups that admit left-invariant Riemannian structures with
negative sectional curvatures [Hei74]. Every Heintze group G is a semidirect product
of R and a nilpotent graded Lie group N . The parabolic visual boundary of G has
a structure of homogeneous group. Namely, the boundary may be identified with N
equipped with a distance that has dilation properties. Moreover, a quasi-isometry be-
tween two Heintze groups induces a quasisymmetry between the associated nilpotent
groups and vice versa [Pau96, BS00, dC18]. These quasisymmetries are, or induce,
biLipschitz maps between the boundaries equipped with suitable homogeneous struc-
tures [LDX16, Pia17].
The main aim of this article is twofold: First, we introduce quasi-isometry invariants

that finally distinguish some low dimensional Heintze groups. Second, we study a finer
metric classification. We say that two Lie groups G and H can be made isometric if
there are left-invariant Riemannian metrics ρG and ρH so that (G, ρG) is isometric to
(H, ρH). This is an equivalence relation among simply connected solvable groups, and
we find the equivalence classes in low dimension: we consider all simply connected
solvable Lie groups in dimension 4 and those with polynomial growth in dimension 5.
For each equivalence class, there is a Riemannian manifold for which each element
of the class acts isometrically and simply transitively. In our construction, such a
Riemannian manifold is a Lie group, which we call the “real-shadow”. In particular,
we make a contribution to the conjecture that claims that every two Heintze groups
are either not quasi-isometric or they can be made isometric.

0.1. Quasi-isometries of Heintze groups. First we present our results related to
distinguishing Heintze groups up to quasi-isometry equivalence. We work on the level
of parabolic visual boundaries, thus our objects of interest are homogeneous groups,
by which we mean pairs (N,α) where N is a simply connected nilpotent Lie group
and α is a derivation of N , such that NoαR defines a Heintze group. We may assume
that N oα R is purely real, i.e., that all the eigenvalues of α are real numbers. For a
homogeneous group (N,α), we always consider the biLipschitz class of distances that
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are homogeneous under the one-parameter subgroups of automorphisms induced by
the derivation α. This class may be empty in some cases, see Remark 1.3.
Below we use the following notation: If (N,α) is a homogeneous group and

⊕
λ>0 V

α
λ

is the decomposition of the Lie algebra of N by the generalised eigenspaces of the
derivation α, then for every s > 0 we denote by (N,α)(s) the subgroup of N with the
Lie algebra LieSpan(

⊕
s≥λ>0 V

α
λ ).

Theorem A. Let (N1, α) and (N2, β) be purely real homogeneous groups that are
biLipschitz equivalent via a map F : N1 → N2.

(i) Then N1 and N2 are quasi-isometric as Riemannian Lie groups.
(ii) For every p ∈ N1 and every s ≥ 1 we have F (p(N1, α)(s)) = F (p)(N2, β)(s)

and the same holds for all the iterated normalisers of the subgroups (N1, α)(s)

and (N2, β)(s), respectively.

The proof of this result, which is inspired by the results of [CPS17], is presented
in Section 2. We also present some examples to illustrate how this result helps to
distinguish some particular pairs of low dimensional Heintze groups up to quasi-
isometry. Notice that part (i) implies via [Pan89] that the Carnot groups associated
to N1 and N2 as their asymptotic cones are isomorphic. In particular, the nilpotency
steps of N1 and N2 agree.

0.2. On the classification up to isometries. To motivate and give some back-
ground, let us compare the state of the art of the classification up to isometry and
quasi-isometry for two distinct subclasses of the class of solvable simply connected
Lie groups: Heintze groups and solvable groups of polynomial growth (with nilpotent
groups as main examples). These subclasses have some similarities when it comes to
isometries and quasi-isometries. In both cases every group has “a representative with
real roots” and those representatives are known to be distinguished by isometries, and
are conjectured to be distinguished by quasi-isometries. More precisely, we have the
following facts and folklore conjectures:

Proposition H1 (Alekseevskĭı [Ale75]). Every Heintze group can be made isometric
to a purely real Heintze group.

Proposition H2 (Gordon–Wilson [GW88]). If two purely real Heintze groups can be
made isometric, then they are isomorphic.

Conjecture H3. If two purely real Heintze groups are quasi-isometric then they are
isomorphic.

Proposition P1 (Breuillard [Bre14]). Every simply connected solvable Lie group of
polynomial growth can be made isometric to a nilpotent group.

Proposition P2 (Wolf [Wol63]). If two simply connected nilpotent Lie groups can be
made isometric, then they are isomorphic.

Conjecture P3. If two simply connected nilpotent Lie groups are quasi-isometric
then they are isomorphic.
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Recently, the articles [CKL+21] and [Jab19] clarified quite a bit this field, when it
comes to isometries. Now we know that to every simply connected solvable Lie group
it is possible to canonically associate a completely solvable (a.k.a. split-solvable or
real triangulable) Lie group, so called “real-shadow” of the group, which is unique up
to isomorphism. In particular, this construction satisfies the following theorem.

Fact 0.1 (Corollary 4.23 in [CKL+21]). Let G and H be simply connected solvable
Lie groups. Then G can be made isometric to H if and only if the real-shadows of G
and H are isomorphic.

This result, besides containing the information of propositions H1-2 and P1-2 above,
implies that “can be made isometric” is an equivalence relation within the class of
simply connected solvable Lie groups. Moreover, it implies that the isometric clas-
sification of such groups boils down to the algebraic problem of calculating their
real-shadows. Remark that it is not known if Fact 0.1 holds when isometries are
replaced by quasi-isometries. This is because the more general version, due to Y.
Cornulier [dC18, Conjecture 19.113], of Conjecture H3 and Conjecture P3 is also
open: whether two quasi-isometric completely solvable simply connected Lie groups
are necessarily isomorphic or not.
Since Lie groups that can be made isometric are necessarily quasi-isometric, we

are led to study the following problem: Which pairs of groups in the same quasi-
isometry class can be made isometric? This problem is completely solved for groups
of dimension 3 and it is surveyed in [FLD21]. One of the main contributions of the
present article is to push towards a solution for simply connected groups of dimen-
sion 4. While we are not able to completely solve the quasi-isometry relations of
4-dimensional groups, we can solve the isometry relations: it is clear that Fact 0.1
is enough for that. However, we will also prove Theorem B below, which is a more
explicit result and can be proved with elementary methods. In its statement, we
denote by α0 = αsr +αnil the real part of the derivation α: we shall recall the relevant
decomposition more precisely in Proposition 1.12.

Theorem B. Let H be a simply connected Lie group and α a derivation of H. Then
the Lie group H oα R can be made isometric to the Lie group H oα0 R, where α0 is
the real part of α.

In the category of solvable groups, the above result is a special case of Fact 0.1, but
it may also provide information about isometry questions of non-solvable semidirect
products. Notice that there is no assumptions on the eigenvalues of α.
Theorem B has practical value also within the family of solvable Lie groups: In Sec-

tion 4 we find all the pairs of Lie groups that can be made isometric within the family
of 4-dimensional simply connected solvable Lie groups. In Section 5 we do the same
within the family of 5-dimensional simply connected solvable Lie groups of polyno-
mial growth. The method is described as follows. Since the algebraic classification of
Lie groups is known within these families, we first indicate all the completely solvable
ones: these are the groups that are isomorphic to their real-shadows. Then for each
solvable group G that is not completely solvable, we find a completely solvable group
to which it is isometric by finding a suitable decomposition of G as a semi-direct
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product H oα R where H is completely solvable. This happens to be always possible
within the families we investigate. Now we know from Theorem B that such a group
G can be made isometric to the completely solvable group H oα0 R, while Fact 0.1
then guarantees that H oα0 R is the real-shadow of G, and any other solvable group
G′ that can be made isometric to G must also have H oα0 R as the real-shadow.
The result we get in dimension 4 is summarised in the theorem below.

Theorem C. Let G and H be simply connected solvable Lie groups of dimension 4.
If G and H are both completely solvable, then they can be made isometric if and only
if they are isomorphic. Instead, if at least one of them is not completely solvable, then
they can be made isometric if and only if they belong to the same set of groups in the
following list (the notation is w.r.t. the classification given by [PSWZ76]):

(I) {R4, R× A3,6},
(II) {R× A3,1, A4,10},
(IIIλ) {Aλ,λ4,5 } ∪ {Aa,b4,6 : λ = sign(ab) min(|b/a|, |a/b|)},
(IV) {A1

4,9} ∪ {Aa4,11 : a ∈ ]0,∞[ },
(V) {R× A3,3, A4,12} ∪ {R× Aa3,7 : a ∈ ]0,∞[ },
(VI) {R2 × A2} ∪ {Aa,04,6 : a ∈ R}

Here (IIIλ) stands for distinct sets depending on parameter λ ∈ R\{0}. Hence the
above list contains 5 sets (2 finite and 3 infinite) and one family of sets depending on
a parameter.

In Section 5 we find similar classification for simply connected solvable groups of
polynomial growth in dimension 5. Table 3 in Section 5 summarises the results within
this family.

Acknowledgements. We thank Pierre Pansu and Matias Carrasco Piaggio for con-
structive comments. In particular, Pansu helped us to strengthen an early version of
Theorem A.(i).

1. Preliminaries

1.1. Homogeneous groups. We shall approach the quasi-isometric classification
problems in Heintze groups by studying the biLipschitz maps on their boundary, and
we now define precisely the terminology of this setting.
In this paper, we will always use the convention that if N,H,G, . . . are Lie groups,

then the fraktur letters n, h, g, . . . denote their Lie algebras, and vice versa.

Definition 1.1. A pair (N,α) is a homogeneous group if N is a simply connected
nilpotent Lie group and α is a derivation of N so that for each eigenvalue λ of α it
holds Re(λ) > 0. Further, we say that a homogeneous group (N,α) is

• purely real, if the eigenvalues of α are real numbers,
• of Carnot type if it is purely real, if α is diagonalisable over R, and if the
eigenspace corresponding to the smallest of the eigenvalues Lie-generates n.
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Two homogeneous groups (N1, α) and (N2, β) are isomorphic (as homogeneous groups)
if there is an isomorphism of Lie groups F : N1 → N2 so that β ◦ F∗ = F∗ ◦ α, where
F∗ is the Lie algebra isomorphism induced by F .

The data defining homogeneous groups exactly coincide with the data defining
Heintze groups. The terms purely real Heintze group and Heintze group of Carnot
type appear in the literature and correspond to the terms above, see for example
[CPS17] and [dC18].
For purposes of classifications up to isometry or quasi-isometry, only the purely

real homogeneous groups play a role due to the result of [Ale75] presented here as
Proposition H1 in the introduction. Hence we will always assume that the derivation
has real eigenvalues even in the cases when it would be not strictly necessary.
Next we discuss homogeneous distances on homogeneous groups.

Definition 1.2. Let (N,α) be a homogeneous group. A distance function ρ on the set
N is said to be homogeneous (for (N,α)), if ρ is left-invariant, induces the manifold
topology of N , and for all λ > 0 we have ρ(δλx, δλy) = λρ(x, y) for all x, y ∈ N , where
δλ is the automorphism of N with the differential (δλ)∗ = elog(λ)α. The triple (N,α, ρ)
is called a homogeneous metric group if the distance function ρ is homogeneous for
(N,α).

Remark 1.3. In [LDNG19, Theorem B] it is characterised when a purely real homo-
geneous group (N,α) admits a distance ρ making it a homogeneous metric group:
denoting by ν the smallest eigenvalue of α, a distance exists if and only if ν ≥ 1
and the restriction of α to its generalised eigenspace of eigenvalue 1 is diagonalisable
over R. Consequently, if (N,α) is a homogeneous group, then for every λ > 1/ν,
the homogeneous group (N, λα) admits a distance ρ making it a homogeneous metric
group, and this may or may not be true for λ = 1/ν.

Remark 1.4. Given a homogeneous group (N,α), all the distance functions that are
homogeneous for (N,α) are biLipschitz equivalent via the identity map. More gen-
erally, it is straightforward to prove the following statement. Let ρ and ρ′ be two
distances metrising the same topological space M . Suppose there is a transitive
group of homeomorphisms acting by isometries for both of the distances. Suppose
there is o ∈M and a bijection δ : M →M , fixing the point o, and λ ∈ ]0, 1[ with

ρ(δ(x), δ(y)) = λρ(x, y) and ρ′(δ(x), δ(y)) = λρ′(x, y) , ∀x, y ∈M .

Then ρ and ρ′ are biLipschitz equivalent via the identity map of M .

Due to Remark 1.4, when considering biLipschitz maps between two homogeneous
groups, it is not necessary to specify the homogeneous distance functions, provided
they exist, for which we refer to Remark 1.3. Whenever we assume that two ho-
mogeneous groups are biLipschitz equivalent we mean that on both of them some
homogeneous distances exist for which the metric spaces are biLipschitz equivalent.
The following result summarises the known correspondence between the quasi-iso-

metries of Heintze groups and the biLipschitz maps on their boundaries. For a good
exposition and list of references, see [CPS17, p.6].
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Proposition 1.5. Let (N1, α) and (N2, β) be homogeneous groups. Then the Heintze
groups N1 oαR and N2 oβ R are quasi-isometric if and only if there exists λ1, λ2 > 0
so that (N1, λ1α) and (N2, λ2β) are biLipschitz equivalent.

Proof. The two Heintze groups N1oαR and N2oβR are quasi-isometric if and only if
there are λ1, λ2 > 0 so that (N1, λ1α) and (N2, λ2β) are quasisymmetric [Pau96, BS00,
dC18]. The constants are needed to ensure the existence of homogeneous distances,
rather than quasidistances, see Remark 1.3.
If (N1, λ1α) and (N2, λ2β) are biLipschitz equivalent, then they are quasisymmet-

ric. Vice versa, suppose that (N1, λ1α) and (N2, λ2β) are quasisymmetric. Without
changing their biLipschitz class, we may assume that α and β have only real eigen-
values, see [LDNG19, Theorem C]. Up to changing the constants, we may assume
that the smallest of the eigenvalues of λ1α and λ2β agree.
If (N1, λ1α) is of Carnot type, then by [Pan89, Pia17, LDX16] we have that (N1, λ1α)

and (N2, λ2β) are isomorphic as homogeneous groups and thus biLipschitz equivalent.
If (N1, λ1α) is not of Carnot type, then the quasisymmetry from (N1, λ1α) to (N2, λ2β)
is a biLipschitz map, by [Pia17, LDX16]. �

Next, we translate to our language Lemma 5.1 of [CPS17].

Proposition 1.6 ([CPS17]). Let (N,α, ρ) be a purely real homogeneous metric group,
and let λ1 be the smallest of the eigenvalues of α. Then the Hausdorff dimension of
any non-constant curve on N is at least λ1, and the curve t 7→ exp(tX) has Hausdorff
dimension λ1 if X is an eigenvector of α with eigenvalue λ1.

The next result is also a consequence of the work of [CPS17]. It tells us that
whenever one is able to prove that some subgroups are preserved in the sense that all
their left cosets are preserved, then the normalisers of these subgroups provide new
invariants.

Proposition 1.7 ([CPS17]). Let F : (N1, α)→ (N2, β) be a biLipschitz map between
homogeneous groups, and suppose A1 and A2 are subgroups of N1 and N2, respectively.
Let N (Ai) be the normaliser of Ai, for i ∈ {1, 2}. If for all p ∈ N1 we have F (pA1) =
F (p)A2, then it holds F (pN (A1)) = F (p)(N (A2)) for all p ∈ N1.

Proof. Fix p, q ∈ N1. Then the following are equivalent statements

(i) q ∈ pN (A1).
(ii) Hausdorff distance of qA1 and pA1 is finite.
(iii) Hausdorff distance of F (qA1) = F (q)A2 and F (pA1) = F (p)A2 is finite.
(iv) F (q) ∈ F (p)N (A2).

Indeed, the equivalences (i)⇔(ii) and (iii)⇔(iv) are given by [CPS17, Lemma 3.2].
The equivalence (ii)⇔(iii) is a consequence of F being a biLipschitz map. �

We will need to understand quotients of homogeneous groups: for that the impor-
tant lemma is the following straightforward consequence of the ideas of [LDR16] (see
their results 2.8 and 2.10 in particular).
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Lemma 1.8. Suppose H is a normal subgroup of a homogeneous group (N,α). If h
is preserved under α, then the quotient N/H is a homogeneous group when equipped
with the induced derivation α̂. Moreover, if ρ is a homogeneous distance on (N,α),
then ρ̂ given by

ρ̂(nH,mH) = inf{ρ(n,mh) : h ∈ H}

is a homogeneous distance on (N/H, α̂) for which the projection N → N/H is a
1-Lipschitz map.

1.2. Isometries of not necessarily solvable groups. Above we said that two
connected Lie groups G and H can be made isometric if there are left-invariant Rie-
mannian metrics ρG and ρH so that (G, ρG) is isometric to (H, ρH). By [KLD17,
Proposition 2.4] requiring the distances ρG and ρH to be Riemannian is not restric-
tive: We could suppose only that the distances are left-invariant and induce the
respective manifold topologies. In any case, while quasi-isometries give a transitive
relation between Lie groups, the relation by isometries is not transitive; we next wish
to show an instructive example.

Proposition 1.9. Both the groups SL(2,R) and PSL(2,R) can be made isometric
to the group S1 × Aff(R)+, but the groups SL(2,R) and PSL(2,R) cannot be made
isometric (to each other).

The argument for the fact that the groups SL(2,R) and PSL(2,R) cannot be made
isometric is readily recorded in [FLD21, Proposition 2.11], but it goes back to Cor-
nulier, and eventually to [Gor81, Theorem 2.2]. The first part of Proposition 1.9
may be deduced from [CKL+21, Theorem 3.24], but in this particular example the
argument of [CKL+21] simplifies so much that we feel it is worth giving the following
elementary proof.

Proof of the first part of Proposition 1.9. Let G denote either SL(2,R) or PSL(2,R),
and let d be a left-invariant admissible distance on G. In either case, G has the
Iwasawa decompositionG = ANK, where the factorAN forms a subgroup isomorphic
to Aff(R)+ and K is instead isomorphic to S1. Our aim is to construct from d a
new metric d′ in G and find a metric d′′ on AN × K so that (G, d′) is isometric to
(AN ×K, d′′).
We define, taking the advantage of the compactness of K, a new distance function

on G by the formula

d′(g, h) = sup
k∈K

d(gk, hk) .

It is trivial that d′ satisfies the axioms of a distance function and that it is left-
invariant. One may also see by a straightforward argument that any open d′-ball
contains an open d-ball. Consequently, as d′(g, h) ≥ d(g, h) for all g, h ∈ G, then the
distance d′ induces the same topology as d.
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We define d′′ to be the pull-back distance on AN × K via the homeomorphism
ω : (AN × K) → ANK given by ω(s, k) = sk−1. The resulting distance is left-
invariant since for any fixed k, k1, k2 ∈ K and s, s1, s2 ∈ AN we have

d′′((s, k)(s1, k1), (s, k)(s2, k2)) = d′(ss1(kk1)
−1, ss2, (kk2)

−1)

= sup
k′∈K

d(ss1k
−1
1 k−1k′, ss2, k

−1
2 k−1k′)

= sup
k′′∈K

d(ss1k
−1
1 k′′, ss2, k

−1
2 k′′)

= sup
k′′∈K

d(s1k
−1
1 k′′, s2, k

−1
2 k′′)

= d′(s1k
−1
1 , s2, k

−1
2 ) = d′′((s1, k1), (s2, k2)) .

In conclusion, the map ω is an isometry between (G, d′) and (AN ×K, d′′). �

The proof of the following fact is just slightly more involved, and the details are
recorded in [CKL+21, Theorem 3.24]. The main difference is that one does not have a
compact factor K in the Iwasawa decomposition, but instead there is a non-compact
central group involved.

Proposition 1.10. The universal cover of the group SL(2,R) can be made isometric
to the group R× Aff(R)+.

Even if the transitivity of isometry-relation is shown by Proposition 1.9 to be false
in general, we are not aware of counterexamples in the class of simply connected Lie
groups. Moreover, Fact 0.1 implies the transitivity among simply connected solvable
Lie groups. Despite Fact 0.1 some questions remain unanswered, like the following.

Question 1.11. Is there a non-solvable simply connected group G and two solvable
groups S1, S2, so that both S1 and S2 can be made isometric to G (with different met-
rics) and S1 and S2 have different real-shadow, i.e., they cannot be made isometric?

1.3. Algebraic tools for isometries. The aim of this section is to recall the results
related to the real-shadow of a simply connected solvable Lie group, so that after
proving Theorem B in Section 3, we are able to link it to Fact 0.1 and real-shadows.
We will make the link explicit in Corollary 3.1.
We start by recalling a decomposition result which is necessary both for the con-

struction of the real-shadow and also for the statement of Theorem B. The ingredients
of its proof are recorded in [LDNG19, Section 2] while it might be considered well
known.

Proposition 1.12. Let α be a derivation on a Lie algebra g. Then there are deriva-
tions αsr, αsi and αnil on g satisfying the following properties:

(i) The maps α, αsr, αsi and αnil all pairwise commute.
(ii) α = αsr + αsi + αnil.
(iii) The map αnil is the nilpotent part of α.
(iv) The maps αsr and αsi are semisimple.
(v) The spectrum of αsr is real, and the spectrum of αsi is purely imaginary.
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If α = adX for a vector X of a Lie algebra, we denote ads(X) = αsr + αsi and
adsi(X) = αsi; In the latter, “si” stands for semisimple and imaginary.
We recall some standard terminology: A Lie algebra g is said to be of type (R) if

all the eigenvalues of adX are purely imaginary for all X ∈ g. Instead, a Lie algebra
is said to be completely solvable, if it is solvable and all these eigenvalues are real.
The Lie algebra of a simply connected Lie group G is of type (R) if and only if G
has polynomial growth [Jen73, Theorem 1.4], i.e., the Haar measure of the powers of
neighbourhoods of identity grows bounded by a polynomial.
We recall here, using a slightly different viewpoint, the method of [CKL+21] to

determine the real-shadow of a simply connected solvable Lie group. The arguments
may be found inside the proof of Theorem 4.16 in [CKL+21].

Lemma 1.13. Let g be a solvable Lie algebra with nilradical n. Then there is a vector
subspace a ⊆ g so that

(i) n⊕ a = g,
(ii) ads(X)(Y ) = 0 for all X, Y ∈ a, and
(iii) [ads(X), ads(Y )] = 0 for all X, Y ∈ a.

Such a subspace a is found by noticing that there is a Cartan subalgebra c of g so
that g = c + n; then a may be chosen inside c to complement n.
The following statement gives naturally a very constructive definition of the real-

shadow in the level of Lie algebras.

Proposition 1.14. Let g be a solvable Lie algebra. Choose a vector subspace a ⊆ g
with the properties of Lemma 1.13 and let πa denote the projection to a along n.
Define a map

ϕa : g→ der(g) ϕa(X) = −adsi(πa(X))

Then

(i) ϕa is a homomorphism of Lie algebras, with Abelian image,
(ii) the graph of ϕa, Gr(ϕa) = {(X,ϕa(X)) | X ∈ g}, is a completely solvable
subalgebra of go der(g),
(iii) if the vector space g is equipped with the operation defined by

[X, Y ]R = [X, Y ] + ϕa(X)(Y )− ϕa(Y )(X)

then the map X 7→ (X,ϕa(X)) is a Lie algebra isomorphism from (g, [·, ·]R) to
Gr(ϕa).

Moreover, for every vector subspace a′ ⊂ g as in Lemma 1.13 we have that Gr(ϕa) is
isomorphic to Gr(ϕa′).

Definition 1.15. Let g be a solvable Lie algebra. Its real-shadow is the Lie algebra
Gr(ϕa) constructed as in Proposition 1.14.

The main result of [CKL+21] regarding this construction is that Fact 0.1 indeed
holds for such a construction.
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Remark 1.16. In many applications of low dimension, there is an Abelian subalgebra
a complementary to the nilradical n of g. Then such a trivially satisfies Lemma 1.13
and can be used to construct the real-shadow. Another remark is that if g is of type
(R), then adsi(X) = ads(X) for any X ∈ g, and consequently, the real-shadow of a
Lie algebra of type (R) is its nilshadow as defined in [DtER03].

1.4. Algebraic tools for quasi-isometries. When considering the class of simply
connected solvable Lie groups, the algebraic tools relevant for our study of groups of
dimension 4 and 5 up to quasi-isometry are the following invariants:

(Inv-1) Carnot groups are quasi-isometrically distinct among themselves by Pansu’s
Theorem [Pan89]. More generally, [Pan89] implies that if two simply con-
nected nilpotent Lie groups are quasi-isometric, their associated Carnot groups
are isomorphic.

(Inv-2) For nilpotent groups, the Betti numbers (by [Sha04]) and more generally the
Lie algebra cohomology rings (by [Sau06]) are quasi-isometry invariants.

(Inv-3) For the groups of polynomial growth, their degree of growth is quasi-isometry
invariant. It is because this degree is the Hausdorff dimension of the asymp-
totic cone.

(Inv-4) Two simply connected solvable groups are quasi-isometric if and only if their
real-shadows are quasi-isometric. This is because these groups are quasi-
isometric to their real-shadows by Fact 0.1.

(Inv-5) Topological dimension of the asymptotic cone, called cone dimension, is a
quasi-isometry invariant.

As nilshadows were already treated above, we turn the attention here to the cone
dimension. Cornulier proved in [dC08] that the cone dimension of a simply connected
solvable Lie group agrees with the dimension of the exponential radical of the group.
We turn this result into the following observation.

Proposition 1.17. Let G be a simply connected completely solvable Lie group with
Lie algebra g. Then the cone dimension of G equals the codimension of the subspace⋂
n≥1 g

n of g, where the subspace gn denotes the nth term in the lower central series
of g.

Proof. By [Osi02] (see also [dC08, Theorem 6.1]), the exponential radical R of G is
a closed connected normal subgroup of G, the quotient group G/R has polynomial
growth, and there is no closed connected normal subgroup R′ so that the quotient
G/R′ would be of polynomial growth and have strictly larger dimension.
By [dC08, Theorem 1.1], the cone dimension of G, denoted by conedim(G), equals

to the codimension of the exponential radical of G. By the above

conedim(G) = max{dim(g/r) : r ideal of g and g/r is of type (R)}
Moreover, since G is completely solvable, a quotient of g is of type (R) if and only if
it is nilpotent.
The terms of the lower central series are nested vector subspaces of g, and the

condition gn = gn+1 for some n implies that gn = gk for all k ≥ n. Thus there is
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N ∈ N so that
⋂
n≥1 g

n = gN . The quotient g/gN is nilpotent, and we will show its
dimension is maximal. Let q be an ideal of g so that g/q is nilpotent of step s. It is
enough to show gN ⊂ q. Assuming the contrary, we have a non-zero vector X ∈ gN\q.
Because gN = gk for all k ≥ N , we may express X as a bracket of arbitrary length.
More precisely X may be expressed as a linear combination of a terms of the form
adX1 ◦ · · · ◦ adXs(Xs+1) for some Xi ∈ g. It holds Xi 6∈ q since q is an ideal. Hence
when X is considered as a non-zero element of the quotient g/q, it can be expressed
as a bracket of length s+1, which contradicts the nilpotency step of the quotient. �

The above result implies that the cone dimension can be algorithmically calculated
at the Lie algebra level.

2. On biLipschitz maps of homogeneous groups

It is conjectured that if two purely real Heintze groups are quasi-isometric, then
they are isomorphic. Many quasi-isometry invariants are known, but still there are
non-isomorphic pairs of purely real Heintze groups that are not distinguished by
those invariants. In this section we present new quasi-isometry invariants for purely
real Heintze groups: we prove Theorem A. Our analysis is based on the fact that two
purely real Heintze groups are quasi-isometric if and only if their parabolic boundaries
are biLipschitz equivalent, see Proposition 1.5.

In Section 2.1 we prove Theorem A.(i) stating that biLipschitz equivalent homoge-
nous groups are quasi-isometric when equipped with Riemannian distances. One im-
portant consequence, see also Theorem 6.4 in appendix, is that the family of purely
real Heintze groups with Abelian nilradical is closed under quasi-isometries among the
family of purely real Heintze groups. In addition, the quasi-isometry relations within
the family of purely real Heintze groups with Abelian nilradical are completely un-
derstood by the results of Xie [Xie14].

In Section 2.2, we prove that on the level of the boundary, the set of points reachable
by curves of a given Hausdorff dimension can be algebraically computed and hence
used as an invariant. This leads to Theorem A.(ii). Such a result will enable us to
distinguish up to quasi-isometry some examples of low dimension that we discuss in
Section 2.3.

We recall that in this paper, we will always use the convention that if N,H,G, . . .
are Lie groups, then the fraktur letters n, h, g, . . . denote their Lie algebras, and vice
versa.

2.1. Homogeneous biLipschitz implies Riemannian quasi-isometric. In this
section we prove Theorem A.(i). We follow a suggestion of Pansu for treating arbitrary
homogeneous groups. However, in Section 6, we consider the case where one of the
groups is Abelian. It is a less general setting, but the proof is direct and might be of
independent interest.
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Proof of Theorem A.(i). Given a metric space (M,d) and ` > 0, we recall from
[CKL+21] the definition of derived semi-intrinsic metric with parameter ` as

d[`](p, q) = inf
{ k∑

j=1

d(xj, xj−1) | x0, . . . , xk ∈M, x0 = p, xk = q, d(xj, xj−1) ≤ `
}
.

It follows immediately from the definition, that if a map f : (M,d) → (M ′, d′) is
an L-Lipschitz-map with L ≥ 1, then d′[`](f(p), f(q)) ≤ Ld[`/L](p, q). By [CKL+21,
Lemma 2.3], for a homogeneous metric group (N, d) and ` > 0, the function d[`] is
a proper quasi-geodesic distance function inducing the topology of N . Thus, d[`] is
quasi-isometric to any left-invariant Riemannian distance on N .
We conclude that if F : N1 → N2 is an L-biLipschitz map between homogeneous

metric groups (N1, α, d
α) and (N2, β, d

β), then the derived semi-intrinsic metrics sat-
isfy the following inequalities:

1

L
dα[L`](x, y) ≤ dβ[`](F (x), F (y)) ≤ Ldα[`/L](x, y) .

Therefore, if D1 and D2 are left-invariant Riemannian distances, then the map
F : (N1, D1)→ (N2, D2) is a quasi-isometry. �

2.2. Reachability sets. Considering homogeneous groups up to biLipschitz equiva-
lence, one obvious invariant is the set of those points that can be reached by curves
starting from the identity element and having Hausdorff dimension at most s, for
some fixed s ≥ 1 (notice that curves have Hausdorff dimension at least 1). When
(N,α) is a homogeneous group, we denote

R(s) = {γ(1) | γ ∈ C0([0, 1], N), γ(0) = 1N , H-dim(γ([0, 1])) ≤ s}
As one might expect and as we shall now prove, such a set may be computed as the
subgroup (N,α)(s) < N corresponding to the subalgebra LieSpan(

⊕
0<λ≤s Vλ). Here

n =
⊕

λ>0 Vλ is the decomposition of the Lie algebra by the generalised eigenspaces
of the derivation α. The fact that Rα(s) = (N,α)(s) makes this set into a practically
usable invariant.

Theorem 2.1. Let (N,α) be a purely real homogeneous group. Then R(s) = (N,α)(s)

for every s ≥ 1.

Proof. Fix s ≥ 1. Using the Orbit Theorem, one may show (see [BL19, Proposi-
tion 2.26]) the following. Suppose W is subset of a Lie algebra g so that W is invari-
ant under scalar multiplication, i.e., RW = W , and so that no proper subalgebra of g
contains W . Then

⋃∞
k=1(exp(W ))k has non-empty interior in G, and since it is also a

subgroup it holds
⋃∞
k=1(exp(W ))k = G. Applying this observation to W =

⋃
0<λ≤s Vλ

and G = (N,α)(s), we get that every element of (N,α)(s) is a finite product of ex-
ponentials of vectors X ∈ ⋃

0<λ≤s Vλ. Thus, to show that R(s) ⊃ (N,α)(s), we only
need to see that the flow lines t 7→ exp(tX) have Hausdorff dimension at most s, for
X ∈ ⋃

0<λ≤s Vλ. By [CPS17, Lemma 5.1], we may assume that X is an eigenvector
of α with eigenvalue λ ≤ s. Fix a homogeneous distance ρ, and set L = exp(RX).
Identifying L with R, we get a distance to R that is homogeneous under the family
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of dilations induced by α. Hence by Remark 1.4, (L, ρ) is biLipschitz equivalent to
(R, ‖·‖1/λ) and hence it has Hausdorff dimension λ.
To prove that R(s) ⊂ (N,α)(s), denote H0 = (N,α)(s) and let then recursively Hk

denote the normaliser of Hk−1. Consider the finite chain of subgroups (N,α)(s) =
H0 < H1 < · · · < Hm = N , where m ≥ 1 is the first integer so that the repeated
normaliser is the full space. Since nilpotent Lie algebras don’t have non-trivial self-
normalising subalgebras, such m exists. Fix a continuous curve γ : [0, 1] → N with
H-dim(γ([0, 1])) ≤ s and γ(0) = 1N . We shall prove inductively that γ does not leave
Hk for any 0 ≤ k ≤ m.
The case k = m of the induction is trivial. So we assume γ does not leave Hk for

some k ≤ m. Since Hk−1 is normal in Hk, we may consider the quotient Hk/Hk−1.
Observe that if a derivation α preserves a subalgebra q < n, then α necessarily pre-
serves the normaliser of q. Therefore, since α preserves (N,α)(s), then, by induction
and Lemma 1.8, the quotient Hk/Hk−1 is a homogeneous group. Moreover, the curve
γ projects to the curve π ◦ γ of Hk/Hk−1, and Lemma 1.8 guarantees that the Haus-
dorff dimension of π(γ([0, 1])) is at most the Hausdorff dimension of γ([0, 1]), so at
most s.
Next, remark that all the generalised eigenspaces of α corresponding to eigenvalues

less or equal to s are contained in the Lie algebra of (N,α)(s), thus they are contained
in Hk−1. This shows that all the eigenvalues of the derivation induced to Hk/Hk−1
are strictly larger than s. Therefore, by Proposition 1.6, either π ◦ γ is constant or
the Hausdorff dimension of π(γ([0, 1])) is strictly larger than s. Since the second
case is ruled out, the curve π ◦ γ must be constant, i.e., γ([0, 1]) ⊂ Hk−1 as the
induction requires. We conclude that γ does not leave H0 = (N,α)(s) and hence
R(s) ⊂ (N,α)(s). �

Proof of Theorem A.(ii). As the set R(s) is metrically defined, we get Theorem A.(ii)
as immediate corollary of Theorem 2.1 when applying also Proposition 1.7. �

2.3. Examples. In this section we present some examples of pairs of Heintze groups
trying to distinguish them up to quasi-isometry using the results that we proved.

Ex 2.2 This is a pair of 7-dimensional Heintze groups with identical nilradical and
derivations with identical diagonal form. Theorem A.(ii) distinguishes them.

Ex 2.3 This is a pair of 5-dimensional Heintze groups with identical nilradical. This
pair cannot be distinguished even with the new invariants we presented.

Ex 2.4 This is a pair of 7-dimensional Heintze groups with different nilradical, but
identical diagonal derivation. Theorem A.(i) distinguishes them.

Ex 2.5 This is a pair of 10-dimensional Heintze groups with identical nilradical and
derivations with identical diagonal form. Here the reachability sets don’t
distinguish the pair directly, but the normalisers can be used to distinguish
them.

Ex 2.6 This is a pair of 7-dimensional Heintze groups with different nilradical, but
identical diagonal derivation. This pair cannot be distinguished even with the
new invariants we presented.
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In the next examples, we use the notation Heis for the standard Heisenberg group
and Heis(5) for the 5-dimensional Heisenberg group. These are indexed by A3,1 and
A5,4, respectively, in [PSWZ76], see also Section 4 and Section 5 later.

Example 2.2. Consider the Lie group N = Heis× R3 and two derivations on it
α = diag(1, 2, 3, 4, 5, 9) and β = diag(4, 5, 9, 1, 2, 3)

Then the Heintze groups NoαR and NoβR are not isomorphic: if they were, then α
should be conjugate to β by an automorphism of n (see for example [HKMT20, Propo-
sition 4.7]). However, there is a unique linear endomorphism of n that conjugates α
to β and it is not an automorphism.
The invariant R(2) distinguishes these homogeneous groups (N,α) and (N, β) by

Theorem 2.1, as these sets have topological dimension 3 for (N,α) and 2 for (N, β).

Example 2.3. Consider the 4-dimensional Lie algebra Heis × R given by a basis
X1, . . . , X4 with the only non-trivial bracket being [X1, X2] = X3. Consider, for
every parameter a > 1, the two linear maps given by matrices

α =




a− 1 0 0 0
0 1 0 0
0 0 a 1
0 0 0 a


 and β =




a− 1 0 0 0
0 1 0 0
0 0 a 0
0 0 0 a




Both these maps are derivations of Heis×R with strictly positive eigenvalues, hence
they define two 5-dimensional Heintze groups (Heis×R) oα R and (Heis×R) oβ R.
These Heintze groups are non-isomorphic, as they are the groups Aa5,20 and Aa,a5,19

in the classification [PSWZ76]. We are not aware of any method of distinguishing
these Heintze groups up to quasi-isometry. We remark that while the Jordan-forms
of the derivations are different, the Jordan form is not proven to be invariant in this
generality. We also remark that these groups are sublinearly biLipschitz equivalent,
by a result of Cornulier [dC11, Theorem 1.2], see also [Pal20, Theorem 3.2].

X2 X3 V1

X1 X4 V2

X5 X6 V3

Figure 1. The graph representing schematically the bracket relations
and positive gradings V1 ⊕ V2 ⊕ V3 of Example 2.4.

Example 2.4. Consider the 6-dimensional vector space with a basis X1, . . . , X6 with
two different structures of Lie algebra: Let n1 be the Lie algebra given by the non-
trivial bracket relations

[X1, X2] = X5 [X2, X4] = X6
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This is denoted by L6,8 = L5,8 × R in the classification [dG07]. Let n2 be instead
given by

[X1, X2] = X5 [X2, X4] = X6 [X3, X4] = X5

This is denoted by L6,22(0) in the classification [dG07].
The linear map α = diag(2, 1, 1, 2, 3, 3) in this basis is a derivation for both of these

Lie algebra structures. For a schematic presentation, see Figure 1.
The homogeneous groups (N1, α) and (N2, α) cannot be biLipschitz-distinguished

by Theorem A.(ii) but they can by Theorem A.(i) since the Lie algebras in question
are stratifiable (even though homogeneous structures given are not of Carnot type).

Example 2.5. Consider the 10-dimensional Lie algebra N = Heis(5) × Heis(5) ex-
pressed as a vector space spanned byX1, . . . , X10 with the non-trivial bracket relations

[X1, X2] = X5 [X3, X4] = X5 [X6, X7] = X10 [X8, X9] = X10

Consider the two derivations given by matrices
α = diag(1, 7, 3, 5, 8, 2, 6, 4, 4, 8) and β = diag(1, 7, 4, 4, 8, 2, 6, 3, 5, 8)

The resulting Heintze groups Gα = N oα R and Gβ = N oβ R are not isomorphic: If
they were, α and β should be conjugate by an automorphism of N (again, [HKMT20,
Proposition 4.7]), but this is impossible. Indeed, the conjugating automorphism is
forced to map X3 7→ X8 and X4 7→ X9 while in the same time keeping the basis-
vectors X1 and X2 fixed, which is not conceivable.
Distinguishing these spaces is a bit more involved and demonstrates the combined

power of Theorem 2.1 and Lemma 1.7. We cannot distinguish them directly via the
reachability sets of prescribed Hausdorff dimension. However, the following works.
Suppose F : (N,α) → (N, β) is a biLipschitz map. Then F must map (N,α)(6)

to (N, β)(6). By Theorem 2.1, (N,α)(6) and (N, β)(6) both agree with the subgroup
spanned by all the other basis vectors except X2. This subgroup is again a homoge-
neous group, and it is Lie isomorphic to R×Heis×Heis(5). The original biLipschitz
map induces a biLipschitz map of this subgroup equipped with the two different ho-
mogeneous structures (the derivations), call these groups (N0, α0) and (N0, β0). For
these two homogeneous groups, consider now the subgroups

(N0, α0)
(4) = 〈X1, X3, X6, X8, X9, X10〉 and (N0, β0)

(4) = 〈X1, X3, X4, X5, X6, X8〉
These are both isomorphic to the group R3 ×Heis, so we did not yet distinguish the
groups. However, the normalisers of these subgroups inside (N0, α0) and (N0, β0) are
preserved by Lemma 1.7. These normalisers are

N ((N0, α0)
(4)) = (N0, α0)

(4) ⊕ 〈X5, X7〉 and N ((N0, β0)
(4)) = (N0, β0)

(4) ⊕ 〈X10〉
which have different topological dimension and this prevents the existence of a
biLipschitz map.

Example 2.6. Consider the 6-dimensional vector space with a basis X1, . . . , X6 with
two different structures of Lie algebra: Let n1 be the Lie algebra given by the non-
trivial bracket relations

[X1, X2] = X3 [X1, X3] = X5 [X1, X4] = X6 [X2, X4] = X5 .
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X1 X2 V1

X4 X3 V2

X6 X5 V3

Figure 2. The graph representing schematically the bracket relations
and positive gradings V1 ⊕ V2 ⊕ V3 of Example 2.6.

This is denoted by L6,23 in the classification [dG07]. Let n2 be instead given by only
the first three from above, i.e.,

[X1, X2] = X3 [X1, X3] = X5 [X1, X4] = X6 .

This is denoted by L6,25 in the classification [dG07].
The linear map α = diag(1, 1, 2, 2, 3, 3) in this basis is a derivation for both of these

Lie algebra structures. For a schematic presentation, see Figure 2.
The homogeneous groups (N1, α) and (N2, α) cannot be biLipschitz-distinguished

by any method we know: The Lie algebra L6,25 is the associated Carnot algebra of
L6,23 and the simply connected nilpotent Lie groups associated are not distinguished
by the known quasi-isometric invariants, see [dC18, p. 339]. This rules out the usage
of Theorem A.(i).
The only non-trivial reachability set is the reachability set for Hausdorff dimen-

sion 1, and it is the same subspace 〈X1, X2, X3, X5〉 for both. Its normaliser contains
in addition X6 in both cases, and not X4, the next repeated normaliser being the full
space. This rules out the usage of Theorem A.(ii).

3. On isometries of semi-direct products

In this section we focus in proving Theorem B. We restate it for the reader’s con-
venience in a longer form.

Theorem (Theorem B). Let H be a simply connected Lie group and α a derivation
of H. Let α = αsr + αsi + αnil be the decomposition to real, imaginary and nilpotent
parts as in Proposition 1.12, and denote α0 = αsr + αnil Then the Lie group H oα R
can be made isometric to the Lie group H oα0 R.

While Theorem B may be applied outside the family of solvable groups, also within
the family of solvable groups sometimes it might be practical to directly apply The-
orem B to find isometries between two solvable groups when neither of them is com-
pletely solvable. Indeed, we remark that H oα0 R does not need to be completely
solvable when H is not completely solvable. This approach would avoid the work to
find their common real-shadow as in Fact 0.1.



18 KIVIOJA, LE DONNE, AND GOLO

Proof of Theorem B. The groups HoαR and Hoα0 R may be seen as acting by left-
translations on the manifold H ×R. Hence, the statement is proven by constructing
a Riemannian metric on the manifold H × R for which both these actions are by
isometries. Denoting by 1 the element (1H , 0) ∈ H × R, it is enough to construct a
scalar product ρ on the tangent space T1(H × R) with the following property (J)

(J) whenever two elements g1 ∈ H oα R and g2 ∈ H oα0 R satisfy g1(1) = g2(1),
then the differential of g−11 ◦ g2 is an isometry of the scalar product ρ

If ρ satisfies the property (J), then it can be transported to a Riemannian metric on
H × R with the desired properties.
For a derivation B on the Lie algebra of H, the map ηBt will denote the automor-

phism with the differential etB for t ∈ R. This automorphism is well defined and
unique since H is assumed to be simply connected, and we have ηBt ◦ ηBs = ηBt+s.
Remark that, since αsi is a semisimple map with purely imaginary eigenvalues, the
subgroup W = {ηαsi

t × Id : t ∈ R} ⊂ Aut(H) × {Id} is precompact. Thus we may
choose a scalar product ρ on T1(H × R) that is invariant under (the differentials of)
the maps in the closure of W . We will next see that ρ has the property (J), thus
finishing the proof.
A point (h, t) ∈ H × R acts by left-translations with respect to the group law of

H oα R on the manifold H × R as

(1) Lα(h,t)(m, s) = (h ∗ ηαt (m), t+ s)

and similarly for H oα0 R by replacing α with α0. We deduce that if Lα(h,t)(1) =

Lα0

(h′,t′)(1), then (h, t) = (h′, t′). Therefore, to establish the property (J), it is enough
to show that the differential of the map

Q(h,t) = (Lα(h,t))
−1 ◦ Lα0

(h,t)

is an isometry for the scalar product ρ for every (h, t). By a straightforward compu-
tation one now finds

Q(h,t)(m, s) = (ηα−t(η
α0
t (m)), s) = (ηαsi

−t (m), s) .

This formula means that Q(h,t) ∈ W , and since ρ was chosen to be invariant under
W , we are done. �

We get the following corollary when combining Theorem B and Fact 0.1.

Corollary 3.1. Let g be a Lie algebra of the form g = hoα R, where h is completely
solvable. Let α = αsr + αsi + αnil be the decomposition of α as in Proposition 1.12.
Then for α0 = αsr + αnil it holds that the Lie algebra hoα0 R is the real-shadow of g.

4. Dimension 4

The aim of this section is to prove Theorem C. Namely, we find all pairs of solvable
simply connected 4-dimensional Lie groups that can be made isometric. We start
from dimension 4 because dimensions 3 and below are already solved (for a survey,
see [FLD21]).
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4.1. Solvable groups up to isometry. The isomorphism classes of all simply con-
nected solvable Lie groups are known in dimension 4. Thus determining within this
family the pairs of non-isomorphic groups that can be made isometric reduces by
Fact 0.1 to the determination of real-shadows of those solvable groups that are not
completely solvable. Recall that by Fact 0.1 the relation “can be made isometric” is
transitive, and hence isometry (equivalence) classes of groups are well defined objects.
The classification of simply connected Lie groups is equivalent to the classification

of finite dimensional Lie algebras over R. The list we shall use is given by Patera
et al. [PSWZ76, Table I, p. 988], which in turn is based on the classification of
Mubarakzjanov [Mub63a, Mub63b]. The list only contains the Lie algebras that are
not direct products from lower dimension, and they are indexed from A4,1 to A4,12

with possible superscripts indicating one-parameter families. Table I in [PSWZ76]
also contains the classification of 3D Lie algebras; in what follows we shall use those
names from A3,1 to A3,9 together with Rn denoting the n-dimensional Abelian Lie
algebra and A2 denoting the unique non-Abelian 2D Lie algebra: the Lie group
corresponding to A2 was denoted by Aff+(R) earlier.
In Table 1 we list all the simply connected completely solvable Lie groups of dimen-

sion 4. None of them can be made isometric to any other, and all the non-completely
solvable groups (which in turn are listed in Table 2) can be made isometric to ex-
actly one of these. In order to be able to divide the groups into families that seem
to suit the purpose of classification up to isometry and quasi-isometry the best, in
Table 1 we have relabelled the families in the left-most column, and we have written
the unique completely solvable representative of the isometry class, in the notation
of Patera et al., to the 2nd column. So the two left-most columns of Table 1 serve as
a dictionary. We indicate the range of parameters immediately after the labels. Two
concrete examples on how to read the table: our label (2) denotes the Lie algebra
R × A3,1 which is the direct product of the one-dimensional Abelian group and the
Heisenberg group; instead, Lie algebra (6, 1

2
, 1) denotes the Lie algebra A1/2,1

4,5 of the
classification of [PSWZ76].
The right-most column of Table 1 has a mark X if and only if the isometry class of

this group consists of more than one isomorphism classes of simply connected solvable
Lie groups. The third column is about quasi-isometric classification, and we come
back to it in Section 4.3.
Table 2 lists all the remaining solvable Lie algebras of dimension 4. Namely, it

lists those Lie algebras that are not completely solvable. Each of them has some
completely solvable representative in its isometry class, namely the real-shadow. This
real-shadow is indicated on the middle column, and our label for its isometry class is
written in the right-most column. The computation of the real shadow is very simple
after Corollary 3.1.

4.2. Dropping the assumption of solvability. We do not have many tools to
treat non-solvable simply connected Lie groups. However, in dimension 4 there are
no Levi decompositions other than the direct products (see [Mac99, p. 301]), and
hence the only two non-solvable Lie groups are R × S3 and R × S̃L(2), and we can
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Our labelling [PSWZ76] QI-type ∗
(1) R4 poly growth X

(2) R× A3,1 poly growth X

(3) A4,1 poly growth

(4, a) a ∈ ]0,∞[ Aa4,2 Heintze

(5) A4,4 Heintze

(6, a, b) a, b ∈ ]0, 1], b > a Aa,b4,5 Heintze

(7, a) a ∈ ]0, 1] Aa,a4,5 Heintze X

(8) A4,7 Heintze

(9, a) a ∈ ]0, 1[ Aa4,9 Heintze

(10) A1
4,9 Heintze X

(11, a) a ∈ ]−∞, 0[ Aa4,2 conedim 1

(12, a, b) a, b ∈ ]−1, 1[\{0}, b > a, a < 0 Aa,b4,5 conedim 1

(13, a) a ∈ [−1, 0[ Aa,a4,5 conedim 1 X

(14, a) a ∈ ]−1, 0[ Aa4,9 conedim 1

(15) A4,8 conedim 1

(16) A0
4,9 conedim 2

(17) R× A3,2 conedim 2

(18) R× A3,3 conedim 2 X

(19) A2 × A2 conedim 2

(20, a) a ∈ ]−1, 1[\{0} R× Aa3,5 conedim 2

(21) R× A3,4 conedim 2

(22) A4,3 conedim 3

(23) R2 × A2 conedim 3 X

Table 1. Completely solvable Lie algebras of dimension 4.

say something about these. We are thus interested if either of these two groups can
be made isometric to some solvable groups, or if they can be made isometric to each
other. For topological reasons, R× S3 cannot be made isometric to any other simply
connected 4-dimensional group: it is the only group not homeomorphic to R4. The
case of the group R× S̃L(2) however is more involved, and we will see next what we
can say about it.
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Lie algebra real-shadow isometry class
R× A3,6 R4 (1)

A4,10 R× A3,1 (2)

Aa,b4,6 a, b ∈ ]0,∞[, a ≤ b A
a/b,a/b
4,5 (7, a/b)

Aa,b4,6 a, b ∈ ]0,∞[, a > b A
b/a,b/a
4,5 (7, b/a)

Aa4,11 a ∈ ]0,∞[ A1
4,9 (10)

A−a,b4,6 a, b ∈ ]0,∞[, a ≤ b A
−a/b,−a/b
4,5 (13,−a/b)

Aa,−b4,6 a, b ∈ ]0,∞[, b < a A
−b/a,−b/a
4,5 (13,−b/a)

R× Aa3,7 a ∈ ]0,∞[ R× A3,3 (18)

A4,12 R× A3,3 (18)

Aa,04,6 R2 × A2 (23)

Table 2. Solvable but not completely solvable Lie algebras of dimen-
sion 4, and their real-shadows.

We know from Proposition 1.10 that S̃L(2) can be made isometric to R×A2, hence
the groups R× S̃L(2) and R2 × A2 can be made isometric. Consequently, R× S̃L(2)
must have cone dimension 3, which is the cone dimension of R2 ×A2 as one may see
from Proposition 1.17. Thus, checking the cone dimensions of solvable groups from
Table 1, only the question remains whether or not R× S̃L(2) can be made isometric
also to the group A4,3 or to some groups in the family Aa,04,6 for a ∈ R. Notice for
example that the fact that A4,3 and R2 ×A2 cannot be made isometric does not rule
out that R× S̃L(2) and A4,3 can be made isometric, because R× S̃L(2) is not solvable.
Similarly, if R × S̃L(2) can be made isometric to Aa,04,6 for some a ∈ R, it does not
imply anything for Aa

′,0
4,6 with a′ 6= a. One might wish to compare this phenomenon

to [CKL+21, Theorem 4.21].

4.3. Quasi-isometric classification of 4-dimensional groups. We don’t have a
complete quasi-isometric classification of simply connected 4-dimensional Lie groups.
In this section we show what is known about it. Recall that quasi-isometry equivalence
classes are necessarily unions of the isometry classes, and these isometry classes we
just established for simply connected solvable groups. Hence it is enough to consider
the groups in Table 1 and the two non-solvable groups R× S3 and R× S̃L(2).

Recall that the degree of polynomial growth is a quasi-isometric invariant. The
degree of polynomial growth for R× S3 is 1, so it cannot be quasi-isometric either to
any group in Table 1 or the group R× S̃L(2). Consequently, the quasi-isometry class
of R× S3 within the family of simply connected 4-dimensional groups, is a singleton.
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About the group R× S̃L(2), the only thing that we are able to say is that since it
can be made isometric to R2 × A2, then it must have cone dimension 3.
For all completely solvable groups that are not Heintze groups and do not have

polynomial growth, we have calculated, using Proposition 1.17, their cone dimensions
and marked them to the third column titled “QI-type” of Table 1. The cone dimensions
are quasi-isometry invariants by [dC11].
Recall that while Heintze groups have cone dimension 1, they are quasi-isometrically

distinct from the non-Heintze groups of cone dimension 1 since in dimension 4 only
the Heintze groups are Gromov hyperbolic by [dCT11] (see also [dC18, p. 277]).
The quasi-isometric classification of 4-dimensional purely real Heintze groups can be

done by case-by-case study. However, a direct argument follows from Theorem A.(i),
Proposition 1.5 and the results of Xie [Xie14], Carrasco Piaggio and Sequeira [CPS17,
Theorem 1.3]: The purely real Heintze groups in Table 1 split into two categories

nilradical R3 (4, a) (5) (6, a, b)

nilradical Heis (8) (9, a) (10)

Those with nilradical R3 are quasi-isometrically distinct from each other by [Xie14].
Those with nilradical Heis are quasi-isometrically distinct from each other by [CPS17,
Theorem 1.3]. All the quasi-isometry relations between these two classes are excluded
by Theorem A.(i). Thus, the quasi-isometry classes, isometry classes, and isomor-
phism classes all agree for purely real Heintze groups of dimension 4.
For the groups of polynomial growth, our classes (1), (2) and (3) are known to

be quasi-isometry equivalence classes, because the completely solvable representa-
tives (in this case, nilpotent representatives) are Carnot groups and quasi-isometric
classification of Carnot groups is solved by Pansu [Pan89].
As a conclusion, we may present the following proposition.

Proposition 4.1. Let G be the family of the isomorphism classes of 4-dimensional
simply connected solvable groups that either have polynomial growth or are Heintze
groups. Then two elements G,H ∈ G are quasi-isometric if and only if they can
be made isometric. If the groups G and H are completely solvable, then they are
quasi-isometric if and only if they are isomorphic.

5. Dimension 5

The classification of real solvable Lie algebras is known in dimensions five also, see
[PSWZ76]. However, due to the multitude of isomorphism classes, we rather restrict
our attention to the groups of polynomial growth.
The first task is to determine a list of all simply connected solvable Lie groups of

polynomial growth in dimension 5. We are not aware of a reference where this is done,
so we have to do it by ourselves using the classification of real solvable Lie algebras
presented in Patera et al. [PSWZ76, p. 989]. Notice that one can pretty quickly find
all the candidates for groups of polynomial growth by excluding the Lie algebras with
a bracket relation of the type [ei, ej] = λej for λ 6= 0: This is an obstruction of being
polynomial growth, since all the eigenvalues of all the adjoint maps should be purely
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Patera et al. de Graaf nilshadow G∞

R5

R2 × A3,1

R× A4,1

A5,1 L5,8

A5,2 L5,7

A5,3 L5,9

A5,4 L5,4

A5,5 L5,5 R× A4,1

A5,6 L5,6 A5,2

R2 × A3,6 R5

R× A4,10 R2 × A3,1

As,0,05,17 s 6= 0 R5

A0
5,14 R2 × A3,1

A0,ε
5,26 ε = ±1 A5,4

A0
5,18 A5,1

Table 3. Solvable Lie algebras of type (R) in dimension 5.

imaginary (see Section 1.3). The candidates so found are possible to check by hand
if they have polynomial growth or not.
Taking into account the direct products, the full list of solvable simply connected

Lie groups of polynomial growth is presented in Table 3. In the first 2 columns,
we have recalled a dictionary between classifications presented in Patera et al. and
that by de Graaf [dG07] for nilpotent Lie algebras. For nilpotent algebras that are
not Carnot algebras, we have indicated their associated Carnot algebras in the 4th
column. For non-nilpotent Lie algebras, we have indicated their nilshadow in the 3rd
column.
From the algebraic classification given in Table 3 one may directly deduce the clas-

sification up to isometries and quasi-isometries (up to one open case we will mention
soon) using the list of invariants we recorded in beginning of Section 1.4. Indeed, re-
calling invariant (Inv-4) and Remark 1.16, every group is isometric to its nilshadow,
and in dimension 4 it happens that the nilshadows are always Carnot groups (Carnot
groups are those with empty field both in “nilshadow” and in “G∞”). Moreover, the
nilshadows happen to be those Carnot groups that are not associated Carnot groups
of some nilpotent non-Carnot groups. Hence the classification up to isometry and
quasi-isometry is ready for the groups of polynomial growth and those Carnot groups
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that appear as their nilshadows. Only problem that remains after applying (Inv-1)
is if A5,5 or A5,6 are quasi-isometric to their associated Carnot groups, recall that
by [Wol63] isometries between non-isomorphic nilpotent groups cannot exist. The
invariant (Inv-2) tells that A5,5 is not quasi-isometric to its associated Carnot group
R×A4,1 (see [dC18, Section 19.7]), but the possible quasi-isometry relation between
A5,6 and A5,2 remains unanswered by this analysis.
In conclusion, as was the case for the family of simply connected solvable Lie groups

of dimension 4, we are unable to completely classify simply connected Lie groups of
polynomial growth in dimension 5. However, here it is only one pair of groups whose
possible quasi-isometry relation remains open: whether or not the Lie group A5,6 is
quasi-isometric to its associated Carnot group A5,2. This question cannot be answered
by the community for now.

6. Appendix: A direct proof in Abelian case

In this section we prove Theorem 6.4. It is a less general statement than Theo-
rem A.(i), but the proof is completely different in spirit and might have independent
interest and possibilities to generalise. The proof is highly inspired by the results of
[CPS17].
The following definition appeared implicitly in [CPS17], but we prefer to have a

name for it.

Definition 6.1. The characteristic subalgebra for a purely real homogeneous group
(N,α) is the subalgebra hα of n constructed as follows. Consider a basis of n where α
is in Jordan form, and let λ1 denote the smallest of the eigenvalues of α. Let Vλ1 be the
subspace corresponding to the Jordan-blocks of α of eigenvalue λ1 (i.e., the generalised
eigenspace of eigenvalue λ1). Let V̂1 ⊂ Vλ1 be the sum of the subspaces corresponding
to the Jordan blocks in Vλ1 of maximal size. Next, let V1 consist of eigenvectors of
eigenvalue λ1 inside V̂1, and finally define hα = LieSpan(V1). We further denote by
Hα the subgroup of N with Lie algebra hα and call it the characteristic subgroup of
(N,α).

Remark 6.2. Equivalently, the characteristic subalgebra is defined as follows: Let
k ∈ N be the unique integer such that (α|Vλ1 − λ1Id)k 6= 0 and (α|Vλ1 − λ1Id)k+1 = 0.
Then V1 = Im(α|Vλ1 − λ1Id)k and hα = LieSpan(V1).

In the following, we list some facts related to characteristic subalgebras and sub-
groups.

Proposition 6.3. (i) hα = n if and only if (N,α) is of Carnot type.
(ii) hα is preserved under α.
(iii) Suppose F : (N1, α)→ (N2, β) is a biLipschitz map between two purely real
homogeneous groups, and suppose F (1N1) = 1N2. Then F (Hα) = Hβ.

Proof. The part (i) follows by observing that both of the claims are equivalent to the
condition Vλ1 = V1.
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The part (ii) is proven by a straightforward induction on the length of a bracket
in hα, using that V1 is preserved under α by construction.
The part (iii) is proven in [Pia17], see also [CPS17, p. 6] �

Theorem 6.4. Let (N1, α) and (N2, β) be purely real homogeneous groups that are
biLipschitz equivalent. If N1 is Abelian, so is N2. Consequently (N1, α) and (N2, β)
are isomorphic as homogeneous groups, by [Xie14].

Proof. We prove the claim inductively on the topological dimension of the groups in
question. The case n = 1 (and also n = 2) is true due to the lack of non-Abelian
nilpotent groups. So assume the claim holds for groups of dimension k and less and

(2) dim(N1) = dim(N2) = k + 1 .

Let F : N1 → N2 be a biLipschitz map, which after post-composing with a left-
translation we may assume to satisfy F (1N1) = 1N2 . Thus, when Hα and Hβ denote
the respective characteristic subgroups, by Proposition 6.3.(iii) it holds

(3) F (Hα) = Hβ .

If Hα = N1, then by Proposition 6.3.(i) the homogeneous group (N1, α) is of Carnot
type, and as a consequence of [Pia17, Theorem 1.9] the homogeneous group (N2, β)
is also of Carnot type. In this case, by Pansu’s Theorem [Pan89], (N1, α) and (N2, β)
are isomorphic as homogeneous groups. We are left to consider the case

(4) Hα ( N1 .

From (2) and (4) we have dim(Hα) ≤ k. Thus the induction assumption and (3)
gives that Hβ is Abelian because Hα is Abelian.
Moreover we claim that Hβ is normal in N2. Indeed, the normaliser of Hα is N1

since N1 is Abelian, hence by Proposition 1.7 the normaliser of Hβ is N2.
Next, we claimHβ is central inN2. By the definition of the characteristic subalgebra

we have hβ = LieSpan(V1), where V1 ⊂ Vλ1 , as in Definition 6.1. We know now that
hβ is an Abelian ideal, so V1 is Abelian and hβ ⊂ Vλ1 . Using the grading given by the
generalised eigenspaces Vλ of β (see [Bou75, p. 16 Prop. 12]) and the fact that hβ is
an ideal of n2 we get for all H ∈ hβ and X ∈ n2 that

[X,H] ∈ hβ ∩
⊕

λ>λ1

Vλ = {0} .

Hence hβ is central in n2.
Take W to be a complementary subspace to V1 inside Vλ1 . Define

sβ = W ⊕
⊕

λ>λ1

Vλ ,

which is an ideal because it contains [n2, n2]. The subspaces sβ and hβ are in direct
sum and they are both ideals, so the Lie algebra n2 is the direct product of these two
subalgebras: n2 = sβ × hβ. On the N1 side, the same construction works but it is
simpler because N1 is Abelian. Anyway, we may decompose n1 = hα × sα, where sα
is an arbitrary complementary subspace to hα.
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By Proposition 6.3.(ii) and the concrete formula for a homogeneous distance on the
quotient given in Lemma 1.8, we have that the quotient groups N1/Hα and N2/Hβ are
biLipschitz equivalent purely real homogeneous groups. Their dimension is at most
k, since the characteristic subgroups have at least dimension 1. Hence by induction,
N2/Hβ is Abelian since N1/Hα is Abelian. By the structure of direct products, N2/Hβ

and Sβ are isomorphic as Lie groups, hence Sβ is Abelian. Since N2 is a direct sum
of two Abelian normal subgroups Hβ and Sβ, then N2 is Abelian.
For the final statement, [Xie14, Theorem 1.1] tells that the Jordan forms of α and

β are proportional. On the other hand, since the homogeneous groups are biLipschitz
equivalent, the smallest of the eigenvalues of α and β must agree since by Proposi-
tion 1.6 we have that the common smallest eigenvalue λ1 is the minimal Hausdorff
dimension of curves. Therefore the Jordan forms of α and β agree and this is enough
to give an isomorphism of homogeneous groups in the Abelian case. �
Remark 6.5. The proof above does not give a new proof of the main result of [Xie14],
since it may happen that the complementary subspace W cannot be chosen to be
preserved under the derivation β. Therefore, while N2/Hβ has a structure of a ho-
mogeneous group induced by β, the subgroup Sβ is not preserved under β and does
not inherit a structure of a homogeneous group.

Remark 6.6. Theorem 6.4 may also be proven from Theorem A.(ii) by an argument
that we will next sketch, thereby giving a third proof for Theorem 6.4. A homoge-
neous group (N,α) is non-Abelian if and only if for some s > 0 the reachability set
(N,α)s is strictly larger than the subgroup corresponding to

⊕
0<λ≤s Vλ. Suppose

that homogeneous groups (N1, α) and (N2, β) are biLipschitz equivalent. On the one
hand, the characteristic polynomials of α and β agree by [CPS17], and hence the di-
mensions of the generalised eigenspaces of the same eigenvalues agree. On the other
hand, (N1, α)s and (N2, β)s have the same dimension for every s by Theorem A.(ii).
We conclude that, if N1 is Abelian, then also N2 is Abelian.
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1. Introduction

1.1. Overview. A grading of a Lie algebra g is a direct sum decom-
position

(1) g =
⊕

α∈S
Vα

indexed by some set S in such a way that for each pair α, β ∈ S there
exists γ ∈ S such that

[Vα, Vβ] ⊂ Vγ.
In this paper, we will focus on Lie algebras defined over fields of char-
acteristic zero and gradings indexed over torsion-free abelian groups,
where the element γ is given by γ = α + β.

An important example of a Lie algebra grading is the so called max-
imal grading (also known as fine grading), that is a grading that does
not admit any proper refinement into smaller subspaces Vα. A classical
example of such a maximal grading is the Cartan decomposition, which
plays a fundamental role in representation theory and the classification
of semisimple Lie algebras over C, see for example [Hum78]. There has
been a growing interest in the study of (maximal) gradings of semisim-
ple Lie algebras since the paper [PZ89], see the survey [Koc09] or the
monograph [EK13] for an overview. Moreover, a classification of max-
imal gradings of simple classical Lie algebras over algebraically closed
fields of characteristic zero can be found in [Eld10].

Regarding nilpotent Lie algebras over algebraically closed fields of
characteristic zero, an in depth study of maximal gradings over torsion-
free abelian groups was carried out in [Fav73]. One of the main results
in [Fav73] is that, considering the family of nilpotent Lie algebras g of
nilpotency step s and with abelianization g/[g, g] of dimension r, there
are only finitely many torsion-free maximal gradings, up to automor-
phisms of the free nilpotent Lie algebra of step s with r generators.
This finiteness in the number of maximal gradings is in contrast with
the existence of an uncountable number of non-isomorphic nilpotent
Lie algebras in dimension 7 and higher.

There are two other special types of gradings of particular interest in
the case of nilpotent Lie algebras: positive gradings and stratifications
(also called Carnot gradings). A positive grading is a grading indexed
over the reals such that in the direct sum decomposition (1) all the
non-zero spaces Vα have positive indices α > 0. A stratification is a
positive grading for which V1 generates g as a Lie algebra.

Lie algebras with a stratification are the Lie algebras of Carnot
groups. These groups have played a central role in the fields of geo-
metric analysis, geometric measure theory, and large scale geometry,
see [LD17] for a long list of references.

Positive gradings are important within the study of homogeneous
spaces, as they appear directly in characterizations of such spaces.
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First, any negatively curved homogeneous Riemannian manifold is a
Heintze group GoR [Hei74], where G is a nilpotent Lie group and the
action of R on G is given by a one-parameter family of automorphisms
associated with a positive grading of G. Second, any connected locally
compact group that admits a contracting automorphism is a positively
gradable Lie group [Sie86]. In this latter result, the group structure and
contracting automorphism may also be replaced by a metric structure
and a dilation, see [CKLD+17].

Another active area of research that contains several open problems
related to positively gradable Lie groups is the quasi-isometric clas-
sification of locally compact groups. A survey on the topic can be
found in [Cor18]. For instance, it is not known whether there exists
a non-stratifiable positively gradable Lie group that is quasi-isometric
to its asymptotic cone, nor whether all large-scale contractible groups
are positively gradable, see [Cor19, Question 7.9]. The quasi-isometric
classification is open also for Heintze groups, see [CPS17] for some
known results.

1.2. Main results. In all of the following statements, let g be a finite
dimensional Lie algebra defined in terms of its structure coefficients
and let F be the base field of g. That is, we assume we have a fixed
basis X1, . . . , Xn of g and a family of coefficients {ckij ∈ F : i, j, k ∈
{1, . . . , n}} such that the Lie bracket is defined as

[Xi, Xj] =
n∑

k=1

ckijXk.

Our main result is the following.

Theorem 1.1. Suppose the base field F is algebraically closed. Then
there exists an algorithm that constructs a maximal grading of g.

We also give explicit constructions for stratifications and positive
gradings.

Theorem 1.2. There exists an algorithm that constructs a stratifica-
tion of g or determines that one does not exist.

Theorem 1.3. Suppose the base field F is algebraically closed. Then
there exists an algorithm that constructs a positive grading of g or de-
termines that one does not exist.

Theorem 1.2 and Theorem 1.3 are constructive versions of the char-
acterizations of stratifiability in [Cor16, Lemma 3.10] and existence of
a positive grading in [Cor16, Proposition 3.22].

Using Theorem 1.1, we are able to enumerate all torsion-free grad-
ings.
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Theorem 1.4. Suppose the base field F is algebraically closed. Then
there exists an algorithm to compute a finite collection of gradings con-
taining up to equivalence all the torsion-free gradings of g.

A torsion-free grading is a grading that can be indexed over a torsion-
free abelian group, and gradings are considered equivalent if there is an
automorphism of the Lie algebra mapping layers of one grading to layers
of the other. The precise definitions can be found in Section 2. The
finite set we construct in Theorem 1.4 will in general contain redundant
gradings, i.e., there may exist equivalent gradings in the collection.
We eliminate this redundancy in the case of nilpotent Lie algebras of
dimension up to 6 to find a complete classification up to equivalence of
torsion-free gradings.

For applications related to positive gradings, we also give a method
to extract from the complete list of Theorem 1.4 of all torsion-free
gradings those that admit a positive realization, i.e., can be indexed
over the positive reals:

Theorem 1.5. Let g =
⊕

α∈S Vα be a grading of g.
(i) There exists an algorithm that constructs a positive realization

of the grading or determines that one does not exist.
(ii) If S is a finitely generated abelian group, then there exists an al-

gorithm that constructs a positive realization such that the rein-
dexing S → R of layers is a homomorphism, or determines that
one does not exist.

We also give two applications of the enumeration of positive grad-
ings obtained from the above results. First, we show that all non-
equivalent positive gradings define non-isomorphic Heintze groups, see
Proposition 4.7. In this way we are able to enumerate diagonal Heintze
groups. Thus we give methods to tackle the problem of finding all
Heintze groups with prescribed nilradical, which is a question already
posed by Heintze in [Hei74].

Second, the enumeration of positive gradings gives a method to find
better estimates for the non-vanishing of the `q,p cohomology of a nilpo-
tent Lie group, which is a quasi-isometry invariant.

1.3. Structure of the paper. In Section 2 we recall various defini-
tions and terminology related to gradings. The core concepts of re-
alization, push-forward, and equivalence are defined in Subsection 2.1
and universal realizations are recalled in Subsection 2.2. Subsection 2.3
recalls how to study torsion-free gradings of a Lie algebra g in terms of
subtori of the derivation algebra der(g). Maximal gradings and their
universal property are covered in Subsection 2.4. Subsection 2.5 re-
duces Theorem 1.4 on enumeration of gradings to proving Theorem 1.1
on algorithmic construction of a maximal grading.
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In Section 3 we give the remaining constructions for our main results.
Subsection 3.1 covers Theorem 1.2 on stratifiability. Subsection 3.2 cov-
ers Theorem 1.3 and Theorem 1.5 on positive gradings. An alternate
approach to deciding the existence of a positive realization is also de-
scribed in Appendix A. Subsection 3.3 covers Theorem 1.1 on maximal
gradings.

In Section 4 we give various applications of gradings to the study
of Lie algebras and Lie groups. Subsection 4.1 shows how to use the
maximal grading of a Lie algebra as a tool to detect decomposability of
a Lie algebra, and how to reduce the dimensionality of the problem of
deciding whether two Lie algebras are isomorphic. In Subsection 4.2 we
classify up to equivalence the gradings of low dimensional nilpotent Lie
algebras over C. In Subsection 4.3 we cover the results on enumeration
of Heintze groups. Finally, in Subsection 4.4 we present the method to
find improved bounds for the non-vanishing of the `q,p cohomology.

2. Gradings

The contents of this section can, up to some modifications, be found
in [Koc09, Section 3-4]. We nonetheless give here a self-contained pre-
sentation to better fit our constructive approach.

2.1. Gradings and equivalences. In this section we define some key
notions related to gradings of Lie algebras, including equivalence, push-
forwards and coarsenings. We also make a distinction between two
different notions of grading, with the difference being whether the in-
dexing plays a role or not.

Definition 2.1. A grading of a Lie algebra g is a direct sum decompo-
sition V : g =

⊕
α∈S Vα such that for each α, β ∈ S either [Vα, Vβ] = 0

or there exists a unique γ ∈ S such that [Vα, Vβ] ⊂ Vγ. When S is an
abelian group A such that the unique element γ is given by γ = a+ b,
we say that the grading V is over A, or that V is an A-grading. In this
case, A is the grading group of the grading V .

The subspaces Vα are called the layers of the grading V and the
elements α ∈ S such that Vα 6= 0 are called the weights of V . We
will usually denote the set of weights by Ω. A basis of g is said to be
adapted to V if every element of the basis is contained in some layer of
V .
Definition 2.2. Suppose the indexing set S of a grading V : g =⊕

α∈S Vα can be embedded into an abelian group A such that [Vα, Vβ] ⊂
Vα+β for all α, β ∈ A, where we define Vα = 0 for α /∈ S. Then the
resulting A-grading is called a realization of the grading V .
Definition 2.3. A grading is called torsion-free if it admits a realiza-
tion over a torsion-free (abelian) group.
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In this paper, the notation 〈X〉 always refers to the span of X in the
appropriate sense.

Example 2.4. Consider the 6-dimensional Lie algebra spanned by the
vectors X1, Y1, Z1, X2, Y2, Z2 with the non-trivial bracket relations

[X1, Y1] = Z1 [X2, Y2] = Z2.
The subspace decomposition

Va = 〈X1〉, Vb = 〈X2〉, Vc = 〈Y1, Z2〉, Vd = 〈Z1, Y2〉
defines a grading. It can be realized over Z2 with the embedding

a 7→ (1, 0), b 7→ (−1, 0), c 7→ (0, 1), d 7→ (1, 1).

Definition 2.5. Let V : g =
⊕

α∈A Vα be an A-grading for some
abelian group A. Given an automorphism Φ ∈ Aut(g), an abelian
group B and a homomorphism f : A→ B, we define the push-forward
grading f∗Φ(V) : g =

⊕
β∈BWβ over B, where

Wβ =
⊕

α∈f−1(β)

Φ(Vα).

When Φ = Id, we simply denote f∗ Id(V) = f∗V .
It is readily checked that the push-forward grading is indeed a B-

grading in the sense of Definition 2.1.

Definition 2.6. Let g be a Lie algebra and let V : g =
⊕

α∈S1
Vα and

W : g =
⊕

β∈S2
Wβ be two gradings. If for every α ∈ S1 there exists

β ∈ S2 such that Vα ⊂ Wβ, then we say that V is a refinement of W ,
and that W is a coarsening of V .
Remark 2.7. If W = f∗V for some homomorphism f , then W is a
coarsening of V . Such a map f is injective on the weights if and only
if V and W are realizations of the same grading.

There are several different notions of equivalence of gradings in the
literature. The two that we shall use are distinguished as equivalence
and group-equivalence in [Koc09]. For brevity, we will refer to both
notions as equivalence. Stated in terms of push-forwards, the group-
equivalence notion of [Koc09] takes the following form:

Definition 2.8. An A-grading V and a B-grading W are said to be
equivalent if there exist an automorphism Φ ∈ Aut(g) and a group
isomorphism f : A→ B such that W = f∗Φ(V).

For gradings that admit realizations, the equivalence notion of [Koc09]
can be rephrased through the previous notion as follows.

Definition 2.9. A grading g =
⊕

α∈S1
Vα and a grading g =

⊕
β∈S2

Wβ

over arbitrary indexing sets S1, S2 are said to be equivalent if they admit
realizations as an A-grading and a B-grading that are equivalent in the
sense of Definition 2.8.
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Example 2.10. Consider two gradings V1 ⊕ V2 and V1 ⊕ V3 of R2

over Z with the same one-dimensional layers. The two gradings are
equivalent in the sense of Definition 2.9, since the former is a realization
of the second by the embedding {1, 3} ↪→ {1, 2} ⊂ Z, but they are not
equivalent as Z-gradings in the sense of Definition 2.8 as there does not
exist an automorphism of Z mapping {1, 3} → {1, 2}.

In the following lemma we demonstrate that, after possibly shrinking
the grading groups, an A-grading and a B-grading are equivalent if and
only if they are push-forwards of each other.

Lemma 2.11. Let V : g =
⊕

α∈A Vα be an A-grading and W : g =⊕
β∈BWβ be a B-grading such that the weights of V and W generate

the abelian groups A and B, respectively. If there exist homomorphisms
f : A → B and g : B → A such that W = f∗V and V = g∗W, then V
and W are equivalent.

Proof. Let us denote by ΩA and ΩB the sets of weights of V and W .
Notice first that by definition of the push-forward, f(ΩA) = ΩB and
g(ΩB) = ΩA, so both f and g are injective on weights. Moreover, we
have for every α ∈ ΩA and β ∈ ΩB the correspondence

Vα = Wf(α) = Vg(f(α)) and Wβ = Vg(β) = Wf(g(β)).

Hence f : ΩA → ΩB is a bijection and f−1 = g on ΩB. Since ΩA and
ΩB generate A and B as groups, we get that f−1 = g on whole B. �

Notice that the assumption that the weights generate is indeed nec-
essary: for instance, the gradings R = V1 over Z and R = V(1,0) over Z2

are push-forward gradings of each other, but they are not equivalent.

2.2. Universal gradings. We do not in general require that the weights
of an A-grading generate the grading group A in order to include e.g.
gradings over A = R in the discussion. Moreover, weights of a grading
may have additional relations coming from the ambient group struc-
ture, even when the corresponding layers are unrelated, see for instance
Example 3.13. To build a satisfactory theory using homomorphisms be-
tween grading groups, we consider the notion of an (abelian) universal
realization, see [Koc09, Section 3.3].

Definition 2.12. Let V be a grading of g. A universal realization of
V is a realization Ṽ as an A-grading such that for every realization of
V as a B-grading with B abelian, there exists a unique homomorphism
f : A→ B such that the B-grading is the push-forward grading f∗Ṽ .

Observe that by Lemma 2.11, the universal realization of a grading
is unique up to equivalence.

If a grading admits a realization, then it also admits a universal
realization. The universal realization can be constructed by considering
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the free abelian group generated by the weights and quotienting out
the grading relations, as described by the following algorithm.

Algorithm 2.13 (Universal realization). Input: a grading V that has
a realization. Output: a universal realization Ṽ of V.

(1) Let Ω = {α1, . . . , αn} be the set of weights of V and let B =
{e1, . . . , en} be the canonical basis of Zn. Set R = ∅.

(2) Repeat for all pairs αi, αj ∈ Ω: If 0 6= [Vαi , Vαj ] ⊆ Vαk for some
αk ∈ Ω, extend R by ei + ej − ek.

(3) For all i = 1, . . . , n, set Ṽπ(ei) = Vαi, where π : Zn → Zn/〈R〉 is
the projection. Return the obtained Zn/〈R〉-grading.

Proof of correctness. Consider a realization of V over an abelian group
A and the homomorphism φ : Zn → A defined by φ(ei) = αi for all
1 ≤ i ≤ n. Observe that by construction R ⊂ ker(φ). Then the
grading Ṽ is well-defined: if π(ei) = π(ej), then ei − ej ∈ 〈R〉 and we
have αi = φ(ei) = φ(ej) = αj. Moreover, the obtained Zn/〈R〉-grading
is a universal realization of V by the universal property of quotients
and arbitrariness of A. �

In the rest of the paper we will focus on gradings that admit torsion-
free realizations. For such gradings, the universal realizations are grad-
ings over some Zk, as demonstrated by the following lemma.

Lemma 2.14. If V is a torsion-free grading, then the grading group of
the universal realization of V is isomorphic to some Zk.

Proof. Let Ṽ be the universal realization of V . By Algorithm 2.13, Ṽ
is a Zn/〈R〉-grading for some subset R ⊂ Zn. The quotient Zn/〈R〉 is
isomorphic to a group Zk ×Gt, where Gt is some torsion group.

By assumption there exists a realization of V as an A-grading with
A torsion-free. Since the image of Gt under a homomorphism must
vanish in A, we conclude that there are no non-zero weights in Gt.
Since a universal realization is generated by its weights, we conclude
that Gt = 0, and Ṽ is a Zk-grading. �

The following lemma is a part of [Koc09, Proposition 3.15], and we
record it for later usage.

Lemma 2.15. If a grading V is a coarsening of a grading W, then
every realization of V is a push-forward grading of the universal real-
ization of W.

2.3. Gradings induced by tori. In this subsection we describe the
correspondence between gradings of a Lie algebra g and the split tori
of its derivation algebra der(g). In general, gradings of a Lie algebra g
are in one-to-one correspondence with algebraic quasitori, see [Koc09,
Section 4]. However, in this study we are only interested in cases when
g is a finite-dimensional Lie algebra over a field of characteristic zero
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and the gradings are over torsion-free abelian groups. In this setting,
the characterization of gradings in terms of algebraic quasitori can be
reduced to studying algebraic subtori of the derivation algebra der(g).

For computational reasons, we will drop the algebraicity requirement
for the subalgebras of der(g). This means we lose the one-to-one corre-
spondence described in [Koc09], but the less restrictive definition will
be sufficient for our purposes. In particular, it will simplify the explicit
construction of maximal gradings in terms of tori, see Subsection 3.3.

We start by defining split tori and gradings induced by them in the
sense of [Fav73].

Definition 2.16. An abelian subalgebra t of semisimple derivations of
g is called a torus of der(g). If the torus t is diagonalizable over the
base field of g, it is called a split torus.

Lemma 2.17. Let t be a split torus of der(g) and let t∗ be its dual as
a vector space. For each α ∈ t∗ define the subspace

Vα = {X ∈ g : δ(X) = α(δ)X ∀δ ∈ t}.
Then g =

⊕
α∈t∗ Vα is a t∗-grading.

Proof. Let X1, . . . , Xn be a basis of g that diagonalizes t. Since each
vector Xi is an eigenvector of every derivation δ ∈ t, there are well
defined linear maps α1, . . . , αn ∈ t∗ determined by

δ(Xi) = αi(δ)Xi, i = 1, . . . , n.

By construction Xi ∈ Vαi , so the direct sum
⊕

α∈t∗ Vα spans all of the
Lie algebra g. The inclusion [Vα, Vβ] ⊂ Vα+β follows by linearity from
the Leibniz rule δ([X, Y ]) = [δ(X), Y ] + [X, δ(Y )] for all derivations
δ ∈ t and vectors X ∈ Vα and Y ∈ Vβ. �

Definition 2.18. The t∗-grading of g defined in Lemma 2.17 is called
the grading induced by the split torus t.

See Example 3.13 for some gradings induced by tori in the Heisenberg
Lie algebra.

For the purposes of Subsection 2.4, we need the following two lem-
mas. In Lemma 2.19 we link equivalences and push-forwards of grad-
ings to relations between the inducing tori.

Lemma 2.19. Let t1 and t2 be two split tori of der(g) with respective
induced t∗1-grading V and t∗2-grading W.

(i) If there exists an automorphism Φ ∈ Aut(g) such that Φ ◦ t1 ◦
Φ−1 = t2, then V and W are equivalent.

(ii) If t1 ⊂ t2, then there exists a homomorphism f so that V =
f∗W.
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Proof. To show (i), suppose that AdΦ t1 = Φ ◦ t1 ◦ Φ−1 = t2 for some
automorphism Φ ∈ Aut(g). Let f : t∗1 → t∗2 be the linear isomorphism
f = Ad∗Φ−1 given by f(α)(δ) = α(Φ−1 ◦ δ ◦ Φ). Then

Φ(Vα) = {Φ(X) : δ(X) = α(δ)X ∀δ ∈ t1}
= {Y : Φ ◦ δ ◦ Φ−1(Y ) = α(δ)Y ∀δ ∈ t1}
= {Y : η(Y ) = f(α)(η)Y ∀η ∈ t2} = Wf(α).

Hence the gradings V and W are equivalent, as claimed.
Regarding (ii), suppose that t1 ⊂ t2. We claim that V = g∗W

through the restriction map g : t∗2 → t∗1, g(β) = β|t1 . Indeed, fix a
basis X1, . . . , Xn of g that diagonalizes the split torus t2 (and hence
also the subtorus t1). Let β1, . . . , βn ∈ t∗2 be the maps defined by
δ(Xi) = βi(δ)Xi and define αi = βi|t1 . By construction Xi ∈ Wβi ,
Xi ∈ Vαi , and g(βi) = αi, proving that V = g∗W . �

Finally, we observe that any torsion-free grading has a realization
induced by a split torus.

Lemma 2.20. Let V be a torsion-free grading. Then there exists a
split torus t whose induced t∗-grading is a realization of V.
Proof. Let V : g =

⊕
α∈A Vα be a realization of V over a torsion-free

abelian group A and let A∗ be the space of homomorphisms A → F ,
where F is the base field of g. By reducing to the subgroup generated
by the weights, we may assume A is isomorphic to Zm for some m ≥ 1.
For each ϕ ∈ A∗ define the linear map

δϕ : g→ g, δϕ(X) = ϕ(α)X ∀X ∈ Vα.
We claim that t = {δϕ : ϕ ∈ A∗} is a split torus that induces a
realization for V . Indeed, a direct computation shows that all the
maps δϕ are derivations. They are diagonalizable since by construction
they are multiples of the identity on each layer Vα. Hence t is a split
torus.

Let then W : g =
⊕

β∈t∗ Wβ be the t∗-grading induced by t. Denote
by Ω the set of weights of V , and define a map f : Ω→ t∗ by f(α)(δϕ) =
ϕ(α). Then f is well-defined: if ϕ, φ ∈ A∗ are such that δϕ = δφ, then
by the definition of t we have ϕ(α) = φ(α) for all weights α ∈ Ω.

First, we show that Vα ⊂ Wf(α) for every α ∈ A. By the construction
of the torus t, for each X ∈ Vα we have that

δϕ(X) = ϕ(α)X = f(α)(δϕ)X ∀δϕ ∈ t.

By the definition of the grading W , we then have X ∈ Wf(α) and so
Vα ⊂ Wf(α).

Next, we show that the map f is injective, which would prove that
Vα = Wf(α) for all α ∈ Ω and so W would be a realization of V , as
claimed. Note that since A is isomorphic to Zm, for every non-zero α ∈
A there exists a homomorphism ϕ ∈ A∗ such that ϕ(α) 6= 0. Therefore,
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if α, α′ ∈ Ω are such that f(α) = f(α′), then by the construction of
the map f we have

ϕ(α− α′) = ϕ(α)− ϕ(α′) = f(α)(δϕ)− f(α′)(δϕ) = 0

for every homomorphism ϕ : A → F . So α = α′ and f is injective,
proving that W is a realization of V . �

2.4. Maximal gradings. We now present the notion of maximal grad-
ing using maximal split tori and prove that a maximal grading has the
universal property of push-forwards (see Proposition 2.23). The formu-
lation through the derivation algebra will be convenient in the construc-
tion of maximal grading in Subsection 3.3. The universal property will
be exploited in Subsection 2.5 where we give a method to construct all
gradings over torsion-free abelian groups of a Lie algebra from a given
maximal grading.

Definition 2.21. Let g be a Lie algebra. A maximal grading of g is the
universal realization of the grading induced by a maximal split torus
of der(g).

Remark 2.22. The maximal grading of a Lie algebra is unique up to
equivalence, since maximal split tori are all conjugate (see for instance,
[Spr09, Theorem 15.2.6.]). Indeed, by Lemma 2.19(i) the conjugacy
implies that any two maximal split tori induce equivalent gradings, so
also their universal realizations are equivalent.

Proposition 2.23. Let W be a maximal grading of g and V a grading
of g. Then every torsion-free realization of V is a push-forward of W.

Proof. Let V ′ be the realization of V as a t∗-grading induced by a split
torus t given by Lemma 2.20. Let also t′ ⊃ t be a maximal split torus in
der(g) with the induced grading W ′. By Lemma 2.19.(ii), the grading
V ′ is a push-forward of W ′. In particular, V is a coarsening of W ′.

Since the maximal grading is unique up to equivalence by Remark 2.22,
we may assume thatW is the universal realization ofW ′. Therefore, by
Lemma 2.15 every realization of V is a push-forward grading ofW . �

Remark 2.24. It follows from Proposition 2.23 and the discussion in
[Koc09, Section 3.6] that maximal gradings are universal realizations
of fine gradings. In [Cor16, Definition 3.18], maximal gradings are
defined as the gradings induced by maximal split tori in the automor-
phism group Aut(g). [Cor16, Proposition 3.20] states that maximal
gradings in the sense of [Cor16] have a universal property equivalent
to Proposition 2.23, so by Lemma 2.11 any such grading is maximal
also in the sense of Definition 2.21. The maximal gradings considered
in [Fav73] are the gradings induced by maximal split tori.
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2.5. Enumeration of torsion-free gradings. Following the method
suggested in [Koc09, Section 3.7], we now give a simple way to enu-
merate a complete (and finite) set of universal realizations of gradings
of a Lie algebra using the maximal grading. This reduces the proof of
Theorem 1.4 to the construction of a maximal grading, which we cover
in Subsection 3.3.

For the rest of this section, let g be a Lie algebra and let W : g =⊕
n∈ZkWn be a maximal grading of g with weights Ω. Denote by Ω−Ω

the difference set Ω−Ω = {n−m | n,m ∈ Ω}. For a subset I ⊂ Ω−Ω,
let

πI : Zk → Zk/〈I〉
be the canonical projection. We define the finite set

Γ = {(πI)∗W | I ⊂ Ω− Ω, Zk/〈I〉 is torsion-free}.
Proposition 2.25. The set Γ is, up to equivalence, a complete set of
universal realizations of torsion-free gradings of g.

Proof. Let V be the universal realization of some torsion-free grad-
ing. Due to Lemma 2.14, the grading group of V is some Zm. By
Proposition 2.23, there exists a homomorphism f : Zk → Zm and an
automorphism Φ ∈ Aut(g) such that V = f∗Φ(W). Let

I = ker(f) ∩ (Ω− Ω).

We are going to show that V ′ = (πI)∗(W) is equivalent to V . Then,
a posteriori, Zk/〈I〉 is torsion-free and we have V ′ ∈ Γ, proving the
claim.

First, since ker(πI) = 〈I〉 ⊆ ker(f), by the universal property of
quotients there exists a unique homomorphism φ : Zk/〈I〉 → Zm such
that f = φ ◦ πI . In particular,

V = f∗Φ(W) = φ∗(πI)∗Φ(W) = φ∗Φ(V ′),
so V is a push-forward grading of V ′.

Secondly, since also ker(f) ∩ (Ω − Ω) = I ⊆ ker(πI) ∩ (Ω − Ω), we
deduce that V and Φ(V ′) are realizations of the same grading. Since
V is a universal realization, it follows that Φ(V ′) is a push-forward
grading of V . Consequently, V ′ is a push-forward grading of V . Since
the grading group of a universal realization is generated by the weights,
we get that the gradings V and V ′ are equivalent by Lemma 2.11, as
wanted. �

Notice that some of the Zk/〈I〉-gradings in Γ are typically equiv-
alent to each other. From the classification point of view, a more
challenging task is to determine the equivalence classes once the set
Γ is obtained. In low dimensions, naive methods are enough to sep-
arate non-equivalent gradings, and for equivalent ones the connecting
automorphism can be found rather easily.
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In [HKMT20] we give a representative from each equivalence class
of Γ for every 6-dimensional nilpotent Lie algebra over C and for an
extensive class of 7-dimensional Lie algebras over C. The results and
the methods for distinguishing the equivalence classes of the obtained
gradings are described in more detail in Subsection 4.2.

3. Constructions

3.1. Stratifications.

Definition 3.1. A stratification (a.k.a. Carnot grading) is a Z-grading
g =

⊕
n∈Z Vn such that V1 generates g as a Lie algebra. A Lie algebra

g is stratifiable if it admits a stratification.

In this section we show that constructing a stratification for a Lie
algebra (or determining that one does not exist) is a linear problem
and, consequently, prove Theorem 1.2. Our method is based on [Cor16,
Lemma 3.10], which gives the following characterization of stratifiable
Lie algebras:

Lemma 3.2. A nilpotent Lie algebra g is stratifiable if and only if
there exists a derivation δ : g→ g such that the induced map g/[g, g]→
g/[g, g] is the identity map. Moreover, a stratification is given by the
layers Vi = ker(δ − i).

The condition of Lemma 3.2 is straightforward to check in a basis
adapted to the lower central series.

Definition 3.3. The lower central series of a Lie algebra g is the de-
creasing sequence of subspaces

g = g(1) ⊃ g(2) ⊃ g(3) ⊃ · · · ,

where g(i+1) = [g, g(i)]. A basis X1, . . . , Xn of a Lie algebra g is adapted
to the lower central series if for every non-zero g(i) there exists an index
ni ∈ N such that Xni , . . . , Xn is a basis of g(i). The degree of the basis
element Xi is the integer wi = max{j ∈ N : Xi ∈ g(j)}.

Proposition 3.4. Let X1, . . . , Xn be a basis adapted to the lower cen-
tral series of a nilpotent Lie algebra g defined over a field F . Let
w1, . . . , wn be the degrees of the basis elements and let ckij ∈ F be the
structure coefficients in the basis. A linear map δ : g → g is a deriva-
tion that restricts to the identity on g/[g, g] if and only if

(2) δ(Xi) = wiXi +
∑

wj>wi

aijXj
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such that, for each triple of indices i, j, k such that wk > wi + wj, the
coefficients aij ∈ F satisfy the linear equation

ckij(wk − wi − wj) =
∑

wi<wh≤wk−wj
aihc

k
hj +

∑

wj<wh≤wk−wi
ajhc

k
ih(3)

−
∑

wi+wj≤wh<wk
chijahk.

Proof. If δ : g → g is a derivation that restricts to the identity on
g/[g, g], then by Lemma 3.2 g admits a stratification

g = V1 ⊕ · · · ⊕ Vs
such that δ|Vi = i · id. Since the terms of the lower central series are
given in terms of the stratification as g(i) = Vi⊕· · ·⊕Vs, it follows that
δ(Y ) ∈ i ·Y + g(i+1) for any Y ∈ g(i). That is, a derivation δ restricting
to the identity on g/[g, g] is of the form (2) for some coefficients aij ∈ F .

It is then enough to show that (3) is equivalent to the Leibniz rule

δ([Xi, Xj]) = [δ(Xi), Xj] + [Xi, δ(Xj)], ∀i, j ∈ {1, . . . , n}.
Indeed, this would prove that a linear map defined by (2) is a derivation
if and only if the coefficients aij satisfy the linear system (3).

Since the basis Xi is adapted to the lower central series, only the
structure coefficients with large enough degrees are non-zero, i.e., we
have

(4) [Xi, Xj] =
∑

wk≥wi+wj
ckijXk.

By direct computation using (2) and (4) we get the expressions

[δ(Xi), Xj] =
∑

wk≥wi+wj
ckijwiXk +

∑

wh>wi

∑

wk≥wh+wj

aihc
k
hjXk

[Xi, δ(Xj)] =
∑

wk≥wi+wj
ckijwjXk +

∑

wh>wj

∑

wk≥wi+wh
ajhc

k
ihXk

δ([Xi, Xj]) =
∑

wk≥wi+wj
ckijwkXk +

∑

wh≥wi+wj

∑

wk>wh

chijahkXk

Denoting
∑

k B
k
ijXk = δ([Xi, Xj]) − [δ(Xi), Xj] − [Xi, δ(Xj)], we find

that the equation Bk
ij = 0 is up to reorganizing terms equivalent to (3).

Finally, we observe that when wk ≤ wi + wj, the condition Bk
ij = 0

is automatically satisfied: for wk < wi + wj all of the sums are empty,
and for wk = wi + wj, the only remaining terms from the sums cancel
out as

Bk
ij = ckijwk − ckijwi − ckijwj = 0. �

The concrete criterion of Proposition 3.4 provides the algorithm of
Theorem 1.2.
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Algorithm 3.5 (Stratification). Input: A nilpotent Lie algebra g. Out-
put: A stratification of g or the non-existence of one.

(1) Construct a basis X1, . . . , Xn adapted to the lower central series.
(2) Find a derivation δ as in (2) solving the linear system (3). If

the system has no solutions, then g is not stratifiable.
(3) Return the stratification with the layers Vi = ker(δ − i).

3.2. Positive gradings.

Definition 3.6. An R-grading V : g =
⊕

α∈R Vα is positive if α > 0 for
all the weights of V . If such a grading exists for g, then g is said to be
positively gradable.

One of our main goals is to determine when a grading admits a
positive realization, i.e., can be realized as a positive grading. A char-
acterization is given in [Cor16, Proposition 3.22]. In the lemma and
proposition below, we provide constructive proofs for this characteri-
zation.

Lemma 3.7. Let m ≥ 1 and let V be a Zm-grading of a Lie algebra
g. Suppose the convex hull of the set of weights of V does not contain
the origin. Then there exists a homomorphism f : Zm → Z whose
restriction on the weights is injective and positive.

Proof. Let us consider the natural embedding of Zm into Qm. Using the
canonical inner product 〈·, ·〉 on Qm, we define for each vector v ∈ Qm,
the corresponding open half-space

Mv = {x ∈ Qm : 〈v, x〉 > 0}.
Denote by Ω = {α1, . . . , αN} the set of weights of V . Recall that

the convex hull of a set is the intersection of all the affine half-spaces
containing the set. Hence, because the convex hull of Ω does not contain
the origin, it is contained in an open half-space Mv0 ⊂ Qm. Moreover,
there exists a neighborhood B of v0 such that the convex hull of Ω is
contained in every half-space Mv with v ∈ B.

By construction all the inner products 〈v, αi〉 with αi ∈ Ω and v ∈ B
are strictly positive. Since B has non-empty interior, we may choose
some v ∈ B such that all the numbers 〈v, α1〉, . . . , 〈v, αN〉 are strictly
positive and distinct. Rescaling v to eliminate denominators, we obtain
a vector ṽ ∈ Zm, and the map f(·) = 〈ṽ, ·〉 is the required homomor-
phism Zm → Z. Concretely, a valid vector ṽ can be found directly by
just enumerating the points of Zk with increasing distance from the
origin and testing one by one if all the inner products with the weights
are positive and distinct. �
Proposition 3.8. Let W be a torsion-free grading. Then W admits a
positive realization if and only if the convex hull of the set of weights
of the universal realization of W does not contain the origin.
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Proof. We only need to prove the forward implication due to Lemma 3.7.
Let V be a positive realization of W and let W̃ be the universal real-
ization of W , which by Lemma 2.14 is a Zk-grading. Then by the def-
inition of a universal realization there is a homomorphism f : Zk → R
such that V = f∗W̃ . Consider the vector v = (f(e1), . . . , f(ek)) ∈ Rk,
where e1, . . . , ek are the standard basis vectors of Zk, and express f as
f(·) = 〈v, ·〉. Since V is a positive grading, then for all weights α of
W̃ we have f(α) > 0, that is, 〈v, α〉 > 0. Hence all the weights belong
to the open half-space determined by the vector v, and so the origin is
not contained in their convex hull. �

The above results give the following algorithm for Theorem 1.5.(i).
We stress that we do not need to assume that the base field of g is
algebraically closed.

Algorithm 3.9 (Positive realization). Input: A torsion-free grading V
for a Lie algebra g. Output: A positive realization of V or the non-
existence of one.

(1) Compute the universal realization Ṽ of V using Algorithm 2.13.
Let Zk be the grading group of Ṽ.

(2) If the convex hull of the weights of Ṽ contains the origin, then
no positive realization exists.

(3) Otherwise, find a vector v ∈ Zk so that the homomorphism
f : Zk → Z, f(·) = 〈v, ·〉 maps all weights of Ṽ to distinct
positive integers.

(4) Return the push-forward grading f∗Ṽ.
The algorithm for Theorem 1.5.(ii) is somewhat similar to Algo-

rithm 3.9. Suppose we have an S-grading V for a finitely generated
abelian group S, and we want to find a homomorphism S → R turning
it into a positive grading. If some element of S has torsion, then no
such homomorphism can exist. Otherwise, S is isomorphic to Zk for
some k ≥ 1 and we may follow steps 2-3 of the above algorithm to ob-
tain a homomorphism S → R giving a positive realization if one exists.

Remark 3.10. The argument of Lemma 3.7 can also be used to find a
realization over Z for any torsion-free grading V . Indeed, first consider
the universal realization of V over some Zk. Then disregarding the
discussion about half-spaces and positivity, find a push-forward to Z
by constructing a vector v for which the projection is injective on the
weights.

Remark 3.11. The results we have established can also be used to ex-
plicitly enumerate the positive gradings of a given Lie algebra g over
an algebraically closed field, in two different senses.
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(i) Consider the maximal grading V of g over Zk. Up to automor-
phism, positive gradings of g are given by the projections from
Zk to R mapping the weights of V to strictly positive numbers.
A parametrisation of these projections gives a parametrisation
of positive gradings.

(ii) Construct all the gradings of g as in Proposition 2.25 (using a
maximal grading constructed in Algorithm 3.12). Then check
one by one which of them admit positive realizations. This
produces a finite list of positive gradings so that every positive
grading of g is equivalent in the sense of Definition 2.9 to one
of the elements on the list.

The algorithm of Theorem 1.3 is given by applying Algorithm 3.9 to
the maximal grading of a Lie algebra. Indeed, if some grading admits a
positive realization, then by Proposition 2.23 the maximal grading ad-
mits a positive realization as well. For the maximal grading, a positive
realization if one exists is given by Algorithm 3.9.

The existence of a positive realization of a grading can also be
phrased as the existence of a solution to a linear system. This viewpoint
gives rise to an alternate elementary algorithm to determine whether a
positive realization exists, as we explain in Appendix A.

3.3. Maximal gradings. In this section we prove Theorem 1.1 by
providing an algorithm to construct a maximal grading for a Lie algebra
g defined over an algebraically closed field of characteristic zero. In this
setting, every torus is split. The method we use to compute maximal
gradings is the following.

Algorithm 3.12 (Maximal grading). Input: A Lie algebra g over an
algebraically closed field F . Output: A maximal grading of g.

(1) Compute a basis for the derivation algebra der(g). Set B = ∅.
(2) Determine the t∗-grading V : g =

⊕
λ Vλ induced by the torus

t = 〈B〉.
(3) Compute a basis A1, . . . , An for the centralizer C(t) ⊂ der(g).
(4) Compute the adjoint representation ad: C(t)→⊕

λ gl(gl(Vλ)).
(5) Compute a basis K1, . . . , Km for ker(ad) ⊂ C(t). If Ki /∈ t for

some i = 1, . . . ,m, extend t by Ki and go back to step 2.
(6) Repeat for each A = Ai and A = Ai + Aj, i, j = 1, . . . , n:

compute the Jordan decomposition A = As + An. If As /∈ t,
extend t by As and go back to step 2.

(7) Compute and return the universal realization of the grading V.
The rest of the section is devoted to proving the correctness of Al-

gorithm 3.12 and to explaining the steps in more detail. Step 6 is the
most involved part.

Step 1 is straightforward linear algebra. In step 2, the grading in-
duced by the torus t has a concrete description in terms of a fixed basis
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of t. Namely, a basis δ1, . . . , δk defines an isomorphism t∗ → F k and
hence an equivalent push-forward grading over F k. Expanding out the
construction of Lemma 2.17 shows that the push-forward grading has
the layers

Vλ = V(λ1,...,λk) =
k⋂

i=1

Eλi
δi
,

where Eλi
δi

is the (possibly zero) eigenspace for the eigenvalue λi of the
derivation δi.

Step 3 is another straightforward linear algebra computation. In
step 4, the key observation is that any linear map A ∈ C(t) preserves
the eigenspaces of all the derivations δ ∈ t. Hence such a linear map A
also preserves the layers Vλ of the F k-grading. It follows that each map
ad(A) restricts to a linear map ad(A) : gl(Vλ)→ gl(Vλ) for each weight
λ. The direct sum of these representations gives the representation
ad: C(t)→⊕

λ gl(gl(Vλ)).
Step 5 captures the situation when the torus t can be extended with-

out refining the grading. Indeed, the elements of the kernel of ad are
the elements A ∈ C(t) whose restrictions commute with all other maps
in gl(Vλ) for each weight λ. That is, they are the maps A ∈ C(t) such
that each A|Vλ is a multiple of the identity. The eigenspaces of such
maps are sums of the layers Vλ, so they do not further refine the grading
induced by t, as seen in the following example.

Example 3.13. Let h be the Heisenberg Lie algebra with the only
bracket [X, Y ] = Z. Consider the derivation

δ : h→ h, δ(X) = X, δ(Y ) = 2Y, δ(Z) = 3Z.

The grading induced by δ is h = V1 ⊕ V2 ⊕ V3 = 〈X〉 ⊕ 〈Y 〉 ⊕ 〈Z〉.
The centralizer of δ in der(h) is the two-dimensional space C(δ) =
〈δ1, δ2〉, where the two basis derivations are defined by

δ1(X) = X, δ1(Y ) = 0, δ1(Z) = Z,

δ2(X) = 0, δ2(Y ) = Y, δ1(Z) = Z.

The one-dimensional Lie algebras gl(Vi) are all abelian, so the adjoint
representation ad: C(δ)→ gl(gl(V1))⊕gl(gl(V2))⊕gl(gl(V3)) is just the
zero map. Both {δ, δ1} and {δ, δ2} span strictly bigger tori than {δ},
but neither torus further refines the original grading h = V1 ⊕ V2 ⊕ V3:
for instance, the grading induced by 〈δ, δ1〉 is V(1,1) ⊕ V(2,0) ⊕ V(3,1) =
〈X〉 ⊕ 〈Y 〉 ⊕ 〈Z〉.

Step 6 is the most intricate part of Algorithm 3.12. To prove its
correctness, we need to show that if As ∈ t for all basis elements A = Ai
and all their sums A = Ai+Aj, then the torus t is maximal. The proof
is based on the efficient criterion of [dG17, Proposition 2.6.11]:
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Lemma 3.14. Let c be a Lie algebra and let X1, . . . , Xn be a basis of
c. If ad(Xi) is nilpotent for 1 ≤ i ≤ n and ad(Xi +Xj) is nilpotent for
all 1 ≤ i < j ≤ n, then ad(X) is nilpotent for all X ∈ c.

To make use of the criterion Lemma 3.14, we also need the fact that
the Jordan decomposition is preserved by the adjoint representation.

Lemma 3.15. Let F be a field of characteristic zero. Let A ∈ gl(n, F )
be any linear map and A = As + An its Jordan decomposition. Then
ad(A) = ad(As) + ad(An) is the Jordan decomposition of the map
ad(A) : gl(n, F )→ gl(n, F ).

Proof. By [dG17, Proposition 2.2.5], since the field F is perfect (as a
field of characteristic zero), the adjoint map preserves both semisim-
plicity and nilpotency, so the map ad(As) is semisimple and the map
ad(An) is nilpotent. Moreover, since the maps As and An commute,
the Jacobi identity implies that the maps ad(As) and ad(An) also com-
mute. The claim follows from the uniqueness of the Jordan decompo-
sition. �

With the above results, we are able to conclude that if the semisimple
parts of Ai and Ai + Aj are contained in t for all basis elements Ai,
then the torus t in step 6 of Algorithm 3.12 is maximal. First, by
step 5 we have t = ker(ad) for the restricted adjoint representation
ad: C(t)→⊕

λ gl(gl(Vλ)) defined in step 4. Then for any A ∈ C(t) by
Lemma 3.15 we find that As ∈ t if and only if ad(A) = ad(An), that
is, if and only if ad(A) is nilpotent. By Lemma 3.14, if all ad(Ai) and
ad(Ai + Aj) are nilpotent, then ad(A) is nilpotent for all A ∈ C(t).
Hence As ∈ t for all A ∈ C(t). In other words, no semisimple element
As ∈ C(t) \ t exists, so t is maximal.

The final part of Algorithm 3.12 is step 7, where we replace the
indexing by eigenvalues of the derivations of t with indexing over some
Zk given by the universal realization. The precise method was described
earlier in Algorithm 2.13. Since the construction of the first six steps of
Algorithm 3.12 leads to a maximal torus of der(g), by Definition 2.21
the output is a maximal grading of g.

Remark 3.16. The only part where we use the assumption that the base
field is algebraically closed is in step 6. The significance of the assump-
tion is that the Jordan decomposition and [dG17, Proposition 2.6.11]
give us an efficient method to construct semisimple elements in C(t)\ t.

If the base field is not algebraically closed, we need to explicitly
require that the constructed elements of C(t) \ t are diagonalizable.
The subset of diagonalizable elements of C(t) \ t is a semialgebraic
set, and constructions to extract points from such sets exist, see for
instance [BPR06, Section 13] on the existential theory of the reals. The
problem is that these methods are practical only in low dimensions, and
the construction would be needed in dimension dim gl(g) = dim(g)2.
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For Lie algebras defined over finite fields, more efficient randomized
algorithms to find split tori exist, see [CM09] and [Roo13].

4. Applications

4.1. Structure from maximal gradings. In this subsection we show
how maximal gradings may be used to find some structural information
of Lie algebras. We start by studying how maximal gradings reveal the
structure of a direct product. A similar result can be found in 1.6.5 of
[Fav73].

Example 4.1. Consider the Lie algebra L6,22(1) in [CdGS12] with
basis {X1, . . . , X6}, where the only non-zero bracket relations are

[X1, X2] = X5, [X1, X3] = X6, [X2, X4] = X6, [X3, X4] = X5.

In a basis {Y1, . . . , Y6} adapted to the maximal grading, the bracket
relations are

[Y1, Y2] = Y3, [Y4, Y5] = Y6.
From these bracket relations one sees more easily that the Lie algebra
L6,22(1) is isomorphic to L3,2 × L3,2, where L3,2 is the first Heisenberg
Lie algebra.

We say that a split torus t ⊂ der(g) is non-degenerate if the inter-
section of the kernels of the maps D ∈ t is trivial. That is, a split torus
is non-degenerate if and only if the t∗-grading it induces does not have
zero as a weight.

We expect that the following result is known even without the non-
degeneracy assumption, however we have been unable to locate a ref-
erence. We will therefore give a direct proof of the simpler claim.

Lemma 4.2. Let t1 ⊂ der(g1) and t2 ⊂ der(g2) be non-degenerate
maximal split tori. Then t1×t2 is a maximal split torus in der(g1×g2).

Proof. Denoting t = t1× t2, let D ∈ C(t) be a diagonalizable derivation
in the centralizer C(t). To show the maximality of t, it suffices to show
that D ∈ t. In a basis adapted to the product we may represent

D =

[
E1 F1

F2 E2

]
,

where E1 ∈ der(g1), E2 ∈ der(g2), and F1 : g2 → g1 and F2 : g1 → g2

are some linear maps. We are going to demonstrate that E1 ∈ t1,
E2 ∈ t2 and F1 = F2 = 0, which would prove that D = E1 × E2 ∈ t.

LetD1 ∈ t1. By assumptionD commutes withD1×0 ∈ t, so a simple
computation shows that E1 commutes with D1 and D1F1 = 0. Since
D1 is arbitrary, we obtain E1 ∈ C(t1). From the fact that D1F1 = 0
for every D1 ∈ t1 we get

Im(F1) ⊂
⋂

D1∈t1
ker(D1) = {0},
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where the last equality follows from the non-degeneracy of t1. Conse-
quently, F1 = 0.

A similar argument shows that E2 ∈ C(t2) and F2 = 0. Since D is
assumed diagonalizable, it follows that E1 and E2 are diagonalizable.
Then by maximality of t1 and t2 we have E1 ∈ t1 and E2 ∈ t2, which
shows that D = E1 × E2 ∈ t. �

For gradings, the above lemma implies the following. Suppose V :
g1 =

⊕
α∈A Vα and W : g2 =

⊕
β∈BWβ are maximal gradings of Lie

algebras g1 and g2, and suppose zero is not a weight for either V orW .
Then

(5) V ×W :
( ⊕

(α,0)∈A×B
Vα × {0}

)
⊕
( ⊕

(0,β)∈A×B
{0} ×Wβ

)

is a maximal grading of g = g1×g2. Indeed, the gradings V andW are
the universal realizations of gradings induced by the respective maximal
split tori t1 and t2 of the Lie algebras g1 and g2. By Lemma 4.2,
the product torus t1 × t2 is maximal. The universal realization of the
grading induced by t1 × t2 is equivalent to the product grading (5).

For a grading g =
⊕

α∈Ω Vα, consider the graph with vertices Ω de-
fined as follows: Whenever 0 6= [Vα, Vβ] ⊂ Vγ, we define edges between
all the three vertices α, β, γ ∈ Ω. If the graph Ω admits a partition
Ω = Ω1 t Ω2 such that no edges exist between Ω1 and Ω2, then the
Lie algebra g is a direct product of the ideals g1 =

⊕
α∈Ω1

Vα and
g2 =

⊕
β∈Ω2

Vβ. In this situation we say the grading V detects the
product structure g1 × g2 of the Lie algebra g. We gather the observa-
tions made above into the following proposition.

Proposition 4.3. If a Lie algebra g is decomposable and the maximal
gradings of the factor Lie algebras do not have zero as a weight, then
the maximal grading of g detects the product structure.

We remark that while maximal gradings are able to detect product
structures as indicated above, they are not able to detect some other
algebraic properties. The Lie algebra L6,24(1) in [CdGS12] provides
examples of two such phenomena. First, the layers of its maximal
grading are not contained in the terms of its lower central series (this
behavior can be also achieved by examples where the maximal grading
is very coarse). Secondly, this Lie algebra has a “nice” basis (see [CR19]
for the precise definition and its motivation), but it can be shown that
no basis adapted to a maximal grading is nice.

Despite these negative results, maximal gradings have another struc-
tural application in simplifying the problem of deciding whether two
Lie algebras are isomorphic or not.

Remark 4.4. If two Lie algebras g1 and g2 are isomorphic, then any
isomorphism maps the maximal grading of g1 to a maximal grading
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of g2. Therefore, if the maximal gradings of g1 and g2 are given, then
deciding if g1 and g2 are isomorphic reduces to determining the exis-
tence of an isomorphism between the maximal gradings. In many cases
this is significantly easier than naively solving the original isomorphism
problem. For example, in low dimensions, the majority of the layers of
the maximal grading are one-dimensional, in which case searching for
possible isomorphisms becomes a combinatorial problem.

4.2. Classification of gradings in low dimension. Following the
strategy outlined in [Koc09, Section 3.7], we classify torsion-free grad-
ings, i.e., gradings that admit a torsion-free realization, in nilpotent
Lie algebras of dimension up to 6 over C. The main part of the classi-
fication is the construction of a maximal grading (Algorithm 3.12) and
the enumeration of torsion-free gradings (Proposition 2.25). Here we
will give a brief overview of the gradings of each Lie algebra.

We give a complete listing of the universal realizations for the 669
equivalence classes of gradings for the 46 complex Lie algebras of di-
mension up to 6 in [HKMT20]. We also include a similar listing for an
extensive (but incomplete) family of 7 dimensional Lie algebras over C.
The listing in dimension 7 is incomplete because there are a few un-
countable families of 7 dimensional complex Lie algebras that depend
on a complex parameter λ. In these cases, following the study carried
out in [Mag08], we focus on those singular values of λ for which either
the Lie algebra cohomology or the adjoint cohomology have different
dimensions compared to the rest of the Lie algebras in the same fam-
ily. We will also include a few examples corresponding to non-singular
values.

As a starting point we used the classifications of nilpotent Lie alge-
bras given in [dG07] for dimensions less than 6, [CdGS12] for dimension
6, and [Gon98] for dimension 7. The classification up to dimension
6 has a pre-existing computer implementation in the GAP package
[CdGSGT18]. However these Lie algebras are not always given in a ba-
sis adapted to any maximal grading, so we first compute the maximal
grading using the methods described in Subsection 3.3 and switch to a
basis adapted to the resulting grading.

The presentations we use for the nilpotent Lie algebras up to dimen-
sion 6 are listed in Table 1. The Lie brackets [Ya, Yb] = Yc are listed in
the condensed form ab = c. Lie algebras g × Rd with abelian factors
have identical structure coefficients with the nonabelian factor g and
are omitted from the list. For example L4,2 = L3,2 × R has the basis
Y1, . . . , Y4 with the bracket relation [Y1, Y2] = Y3 from L3,2.

With all the maximal gradings computed, we enumerate all torsion-
free gradings as in Proposition 2.25. For the classification up to equiv-
alence, we first introduce some easy-to-check invariants for gradings.
Recall that by Lemma 2.14, the grading groups of the obtained grad-
ings are isomorphic to some groups Zk. The dimension k is called the
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L3,2 12 = 3
L4,3 12 = 3 13 = 4
L5,4 41 = 5 23 = 5
L5,5 13 = 4 14 = 5 32 = 5
L5,6 12 = 3 13 = 4 14 = 5 23 = 5
L5,7 12 = 3 13 = 4 14 = 5
L5,8 12 = 3 14 = 5
L5,9 12 = 3 23 = 4 13 = 5
L6,10 23 = 4 51 = 6 24 = 6
L6,11 12 = 3 13 = 5 15 = 6 23 = 6 24 = 6
L6,12 23 = 4 24 = 5 31 = 6 25 = 6
L6,13 13 = 4 14 = 5 32 = 5 15 = 6 42 = 6
L6,14 12 = 3 13 = 4 14 = 5 23 = 5 25 = 6 43 = 6
L6,15 12 = 3 13 = 4 14 = 5 23 = 5 15 = 6 24 = 6
L6,16 12 = 3 13 = 4 14 = 5 25 = 6 43 = 6
L6,17 21 = 3 23 = 4 24 = 5 13 = 6 25 = 6
L6,18 12 = 3 13 = 4 14 = 5 15 = 6
L6,19(−1) 12 = 3 14 = 5 25 = 6 43 = 6
L6,20 12 = 3 14 = 5 15 = 6 23 = 6
L6,21(−1) 12 = 3 23 = 4 13 = 5 14 = 6 25 = 6
L6,22(0) 24 = 5 41 = 6 23 = 6
L6,22(1) 12 = 3 45 = 6
L6,23 12 = 3 14 = 5 15 = 6 42 = 6
L6,24(0) 13 = 4 34 = 5 14 = 6 32 = 6
L6,24(1) 12 = 3 23 = 5 24 = 5 13 = 6
L6,25 12 = 3 13 = 4 15 = 6
L6,26 12 = 3 24 = 5 14 = 6
L6,27 12 = 3 13 = 4 25 = 6
L6,28 12 = 3 23 = 4 13 = 5 15 = 6

Table 1. Lie algebras of dimension up to 6 over C in a
basis adapted to a maximal grading.

rank of the grading. We recall also an invariant from [Koc09, Sec-
tion 3.2]: The type of a grading is the tuple (n1, n2, . . . , nk), where
k is the dimension of the largest layer, and each ni is the number of
i-dimensional layers.

From the full list of torsion-free gradings, we initially collect together
gradings using the following criteria:

(1) The ranks of the gradings are equal.
(2) The types of the gradings are equal.
(3) There exists a homomorphism between the grading groups of

the universal realizations mapping layers to layers of equal di-
mensions.
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In this way we get for each Lie algebra families I1, I2, . . . , Ik of gradings
such that the gradings of Ii and Ij are not equivalent for i 6= j.

To compute the precise equivalence classes, we naively check if the
gradings within each family Ii are equivalent. For each pair of an A-
grading g =

⊕
α∈A Vα and a B-grading g =

⊕
β∈BWβ, there are usually

only a few homomorphisms f : A → B with dimVα = dimWf(β). For
each such homomorphism f , we need to check whether there exists an
automorphism Φ ∈ Aut(g) such that Φ(Vα) = Wf(β) for all weights α.
These identities define a system of quadratic equations. Since we are
working over an algebraically closed field, the system has no solution
if and only if 1 is contained in the ideal defined by the polynomial
equations. The dimensions of the layers are generally quite small in
the cases we need to check, so Gröbner basis methods work well.

For nilpotent Lie algebras of dimension up to 6, an overview of our
classification of gradings is compiled in Table 2. For each Lie algebra,
we list its label in the classification of [CdGS12], the rank of its maximal
grading (k), whether it is stratifiable or not (s?), the number of gradings
(#), and the number of gradings with a positive realization (#Z+).
Example 4.5. We present our method of classifying gradings explicitly
in the simple case of the Lie algebra L4,2 = L3,2 ×R given in the basis
Y1, . . . , Y4 with the only bracket [Y1, Y2] = Y3. The maximal grading is
over Z3 with the layers
V(1,0,0) = 〈Y1〉, V(0,1,0) = 〈Y2〉, V(1,1,0) = 〈Y3〉, V(0,0,1) = 〈Y4〉.
Ignoring scalar multiples, the difference set Ω−Ω of weights consists

of the 6 elements e1, e2, e1 − e2, e1 − e3, e2 − e3, and e1 + e2 − e3,
where e1, e2, e3 are the standard basis elements of Z3. Subsets of these
points span the trivial subspace, 6 one-dimensional subspaces, 7 two-
dimensional subspaces 〈e1, e2〉, 〈e1, e3〉, 〈e2, e3〉, 〈e1 − e3, e2〉, 〈e1, e2 − e3〉,
〈e1 − e3, e2 − e3〉, 〈2e1 − e3, 2e2 − e3〉, and the full space Z3.

In this case, each of these 15 subspaces S defines a torsion-free
quotient Z3/S. For instance parametrizing the quotient π : Z3 →
Z3/〈e1 − e3, e2 − e3〉 as Z using the complementary line Ze3 gives the
weights

π(e1) = π(e2) = π(e3) = 1, π(e1 + e2) = 2,
so a push-forward grading for the quotient Z3/〈e1 − e3, e2 − e3〉 is the
Z-grading

V1 = 〈Y1, Y2, Y4〉, V2 = 〈Y3〉.
To determine the distinct equivalence classes out of the 15 gradings,

we first consider the simple criteria listed earlier. The trivial grading
and the maximal grading are distinguished by the rank. The six Z2-
gradings all have 2 one-dimensional layers and 1 two-dimensional layer.
There exists a homomorphism that preserves the dimensions of the
layers for two pairs of the gradings: one between the quotients by 〈e1〉
and 〈e2〉, and one between the quotients by 〈e1 − e3〉 and 〈e2 − e3〉.



GRADINGS FOR NILPOTENT LIE ALGEBRAS 25

Name k s? # #Z+

L2,1 2 X 2 2
L3,1 3 X 3 3
L3,2 2 X 4 2
L4,1 4 X 5 5
L4,2 3 X 11 6
L4,3 2 X 6 2
L5,1 5 X 7 7
L5,2 4 X 26 15
L5,3 3 X 22 9
L5,4 3 X 9 4
L5,5 2 7 3
L5,6 1 2 1
L5,7 2 X 7 2
L5,8 3 X 14 6
L5,9 2 X 5 2
L6,1 6 X 11 11
L6,2 5 X 52 31
L6,3 4 X 60 27
L6,4 4 X 29 13
L6,5 3 29 15
L6,6 2 8 6
L6,7 3 X 31 11
L6,8 4 X 52 25

Name k s? # #Z+

L6,9 3 X 17 8
L6,10 3 23 8
L6,11 1 2 1
L6,12 2 9 4
L6,13 2 8 3
L6,14 1 2 1
L6,15 1 2 1
L6,16 2 X 8 2
L6,17 1 2 1
L6,18 2 X 8 2
L6,19(−1) 3 X 21 6
L6,20 2 X 8 3
L6,21(−1) 2 X 6 2
L6,22(0) 3 X 18 8
L6,22(1) 4 X 32 15
L6,23 2 8 4
L6,24(0) 2 8 4
L6,24(1) 2 5 2
L6,25 3 X 29 11
L6,26 3 X 10 5
L6,27 3 X 32 13
L6,28 2 X 8 3

Table 2. Gradings of Lie algebras up to dimension 6
over C

Out of the seven Z-gradings, the four quotients by

〈e1, e2〉, 〈e1 − e3, e2〉, 〈e1, e2 − e3〉, 〈e1 − e3, e2 − e3〉
define gradings with 1 one-dimensional layer and 1 three-dimensional
layer, and the three quotients by

〈e1, e3〉, 〈e2, e3〉, 〈2e1 − e3, 2e2 − e3〉
define gradings with 2 two-dimensional layers. In both families there
is exactly one pair of gradings admitting a homomorphism: the pair
〈e1 − e3, e2〉 and 〈e1, e2 − e3〉, and the pair 〈e1, e3〉 and 〈e2, e3〉.

In all of these cases, the homomorphism between the quotients is
induced by the isomorphism f : Z3 → Z3 swapping e1 and e2. All of
the mentioned pairs of Z2- and Z-gradings are in fact equivalent, since
there is a corresponding Lie algebra automorphism swapping the basis
elements Y1 and Y2 that preserves the subspaces 〈Y3〉 and 〈Y4〉. This
reduces the list of 15 gradings down to 11 distinct equivalence classes.
Universal realizations for each equivalence class of torsion-free gradings
are listed in Table 3.
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rank type layers
3 (4) V1,0,0 ⊕ V0,1,0 ⊕ V1,1,0 ⊕ V0,0,1 = 〈Y1〉 ⊕ 〈Y2〉 ⊕ 〈Y3〉 ⊕ 〈Y4〉
2 (2, 1) V0,0 ⊕ V1,0 ⊕ V0,1 = 〈Y2〉 ⊕ 〈Y4〉 ⊕ 〈Y1, Y3〉
2 (2, 1) V1,0 ⊕ V0,1 ⊕ V0,2 = 〈Y4〉 ⊕ 〈Y1, Y2〉 ⊕ 〈Y3〉
2 (2, 1) V1,0 ⊕ V0,1 ⊕ V1,1 = 〈Y1, Y4〉 ⊕ 〈Y2〉 ⊕ 〈Y3〉
2 (2, 1) V1,−1 ⊕ V0,1 ⊕ V1,0 = 〈Y1〉 ⊕ 〈Y2〉 ⊕ 〈Y3, Y4〉
1 (0, 2) V0 ⊕ V1 = 〈Y1, Y4〉 ⊕ 〈Y2, Y3〉
1 (0, 2) V1 ⊕ V2 = 〈Y1, Y2〉 ⊕ 〈Y3, Y4〉
1 (1, 0, 1) V1 ⊕ V2 = 〈Y1, Y2, Y4〉 ⊕ 〈Y3〉
1 (1, 0, 1) V0 ⊕ V1 = 〈Y1, Y2, Y3〉 ⊕ 〈Y4〉
1 (1, 0, 1) V0 ⊕ V1 = 〈Y1〉 ⊕ 〈Y2, Y3, Y4〉
0 (0, 0, 0, 1) V0 = 〈Y1, Y2, Y3, Y4〉

Table 3. Gradings of the Lie algebra L4,2

4.3. Enumerating Heintze groups. In this section, we present how
our complete list of gradings for a given nilpotent Lie algebra g can be
used to determine a list of Heintze groups over g.

Definition 4.6. A Heintze group is a simply connected Lie group over
R whose Lie algebra is a semidirect product of a nilpotent Lie algebra
g and R via a derivation α ∈ der(g) whose eigenvalues have strictly
positive real parts.

Positive gradings for a given Lie algebra are naturally identified with
diagonalizable derivations with strictly positive eigenvalues, see Sub-
section 2.3. Hence, to any positively graded Lie algebra g we may
associate a Heintze group over g. We shall call these groups diagonal
Heintze groups.

The quasi-isometric classification of Heintze groups reduces to the
study of so called purely real Heintze groups, for which the associ-
ated derivation has real eigenvalues. Purely real Heintze groups are
equivalent to diagonal Heintze groups under a slightly weaker notion
of equivalence (sublinear biLipschitz-equivalence, see [Cornulier Thm
1.2] and [Pal19, Thm 3.2]). Moreover, by [CPS17] if two diagonal
Heintze groups are quasi-isometric, then their associated derivations
are proportional. Hence, the quasi-isometric classification problem of
diagonal Heintze groups can be approached by treating the algebraic
problem of finding all the possible derivations defining non-isomorphic
diagonal Heintze groups.

Proposition 4.7 is a tool for tackling the above mentioned algebraic
problem using positive gradings. We will prove this result later in this
section after discussing its role in the enumeration of Heintze groups.

Proposition 4.7. Let g be a nilpotent Lie algebra and α, β ∈ der(g)
diagonalizable derivations with strictly positive eigenvalues. If α and
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β define isomorphic Heintze groups, then they define equivalent R-
gradings.

The enumeration of positive gradings we have established immedi-
ately gives the corresponding enumeration of diagonal Heintze groups
over g. The enumeration of positive gradings can be understood in two
different ways, see Remark 3.11. The corresponding enumeration of
Heintze groups has similar character: it is either a parametrization via
the projections or a finite list that does not contain all the isomorphism
classes of Heintze groups but a representative for each family in terms
of the layers. If one is able to eliminate equivalent gradings from the
enumeration of positive gradings, then by Proposition 4.7 the corre-
sponding list of Heintze groups does not contain isomorphic Heintze
groups.

Remark 4.8. The enumeration of Heintze groups has a few caveats:
(i) Already over g = R2 there are uncountably many isomorphism

classes of Heintze groups given by the projections (1, 0) 7→ 1
and (0, 1) 7→ a with a > 0.

(ii) Our methods are in general able to find maximal gradings only
for Lie algebras over algebraically closed fields. On the contrary,
the base field of Heintze groups is R.

Before proving Proposition 4.7, we need the following lemmas.

Lemma 4.9. Let g be a Lie algebra. Let δ ∈ der(g) be a diagonalizable
derivation and let X ∈ g be an eigenvector of δ. Then

Adexp(X) ◦δ ◦ Adexp(−X) = δ − adδ(X) .

Proof. Let Y1, . . . , Yn be a basis of g that diagonalizes δ. Fix some Y =
Yi and let wY and wX be the eigenvalues of the eigenvectors Y and X.
Since δ is a derivation and X and Y are eigenvectors, the vectors adkX Y
are also eigenvectors, and have the eigenvalues kwX + wY . Using this
fact, and recalling that Adexp(X) = eadX , see [Kna02, Proposition 1.91],
we compute

δ ◦ Adexp(−X)(Y ) = δ
( ∞∑

k=0

1

k!
adk−X Y

)

=
∞∑

k=0

1

k!
(kwX + wY ) adk−X Y

=
∞∑

k=1

1

(k − 1)!
adk−1
−X [−wXX, Y ] +

∞∑

k=0

1

k!
adk−X(wY Y )

=
∞∑

k=0

1

k!
adk−X(−[wXX, Y ] + wY Y )

= Adexp(−X)(− adδ(X) Y + δ(Y )).
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By cancellation of Adexp(X) and Adexp(−X), the claimed formula follows.
�

Lemma 4.10. Let X, Y ∈ g be two vectors of a Lie algebra g. Then

Adexp(X) ◦ adY ◦Adexp(−X) = adAdexp(X) Y .

Proof. Since the map Adexp(X) is a Lie algebra homomorphism and is
the inverse of Adexp(−X), we have

Adexp(X)[Y,Adexp(−X) Z] = [Adexp(X) Y, Z]

for every Z ∈ g. �
Lemma 4.11. Let δ ∈ der(g) be a diagonalizable derivation with all
eigenvalues strictly positive. Then for every vector Y ∈ g there exists
a vector X ∈ g such that Adexp(X) ◦δ ◦ Adexp(−X) = δ − adY .

Proof. For a vector X ∈ g, denote by CX : der(g)→ der(g) the conju-
gation map

CX(η) = Adexp(X) ◦η ◦ Adexp(−X) .
Let X1, . . . , Xn be a basis of g that diagonalizes δ. Consider the map

Φ: Rn → der(g), Φ(x1, . . . , xn) = CxnXn ◦ · · · ◦ Cx1X1(δ).

By repeated application of Lemma 4.9 and Lemma 4.10, it follows that
Φ(x) = δ − adφ(x), where φ : Rn → g is the map

φ(x1, . . . , xn) = δ(xnXn) + Adexp(xnXn) δ(xn−1Xn−1) + · · ·(6)
+ Adexp(xnXn) Adexp(xn−1Xn−1) · · ·Adexp(x2X2) δ(x1X1).

Since the composition of conjugations is a conjugation, it suffices to
prove that the map φ is surjective.

Let w1, . . . , wn > 0 be the eigenvalues of the vectors X1, . . . , Xn for
the derivation δ. Since the maps xi 7→ sign(xi) |xi|wi are all invertible,
the map φ : Rn → g is surjective if and only if the map φ̃ : Rn → g
defined by

(7) φ̃(x1, . . . , xn) = φ(sign(x1) |x1|w1 , . . . , sign(xn) |xn|wn)

is surjective.
Let Dλ ∈ Aut(g), λ > 0, be the one-parameter family of dilations

defined by the derivation δ, i.e., Dλ = exp(δ log λ). Then for each
i = 1, . . . , n the dilation is given by Dλ(Xi) = λwiXi and we have the
dilation equivariance

Adexp(λwiXi) ◦Dλ = Dλ ◦ Adexp(Xi) .

Applying the above equivariance to the definition (7) we find that
the map φ̃ is Dλ-homogeneous, i.e., φ̃(λx) = Dλ(φ̃(x)) for all x ∈ Rn

and λ > 0. Since
⋃
λ>0Dλ(U) = g for any neighborhood U of the

identity it follows that the map φ̃ is surjective if and only if it is open
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at zero. Since the change of parameters in (7) is a homeomorphism,
the same is true also for the map φ.

By the definition (6), the map φ is smooth. The derivative of each
summand Adexp(xnXn) · · ·Adexp(xi+1Xi+1) δ(xiXi) at zero is the map x 7→
δ(xiXi), so the derivative D0φ of the map φ at zero is

D0φ(x1, . . . , xn) = δ(x1X1 + · · ·+ xnXn).

By the strictly positive eigenvalue assumption, the map δ is invertible.
Since X1, . . . , Xn is a basis of g, it follows that the map φ is open at
zero, concluding the proof. �
Proof of Proposition 4.7. Rescaling the derivations by a scalar, we may
assume the smallest of the eigenvalues for both the derivations to be 1.
Since the Heintze groups are assumed to be isomorphic, it is straight-
forward to see that there is a vector X ∈ g so that the derivation
α is conjugate by a Lie algebra automorphism of g to the derivation
β + adX . We use Lemma 4.11 to find that actually α and β are con-
jugate. Applying Lemma 2.19(i) to the split tori spanned by α and β
gives the desired result. �

4.4. Bounds for non-vanishing `q,p cohomology. Knowing all the
possible positive gradings of a nilpotent Lie algebra g has one further
application in the realm of quasi-isometric classifications. Different
positive gradings can be used to obtain better estimates in the com-
putation of the `q,p cohomology of a nilpotent Lie group, which is a
well-known quasi-isometry invariant.

By definition, the `q,p cohomology of a Riemannian manifold with
bounded geometry is the `q,p cohomology of every bounded geometry
simplicial complex quasi-isometric to it. A crucial result of [PR18]
shows that in the case of contractible Lie groups, the `q,p cohomology
of the manifold is isomorphic to its Lq,p cohomology.

Definition 4.12. The Lq,p cohomology of a nilpotent Lie group G is
defined as

Lq,pH•(G) =
{closed forms in Lp}
d
(
{forms in Lq}

)
∩ Lp .

In [PR18, Theorem 1.1] it is shown that the Rumin complex con-
structed on a Carnot group allows for sharper computations regarding
Lq,pH•(G) when compared to the usual de Rham complex. Defining
and reviewing the properties of the Rumin complex (E•0 , dc) goes be-
yond the scope of this paper. For the following discussion, it is sufficient
to know that the space of Rumin h-forms Eh

0 is a subspace of the space
of smooth differential h-forms of the underlying nilpotent Lie group G.

Definition 4.13. Let us consider a positive grading V : g =
⊕

α∈R Vα.
Then a left-invariant 1-form θ has weight α, that is w(θ) = α, if θ = X∗
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for X ∈ Vα. In other words, θ is the dual of a vector field belonging to
the subspace Vα at the identity of the group. In general, given a left-
invariant h-form, we will say that it has weight p if it can be expressed
as a linear combination of left-invariant h-forms θi1,...,ih = θi1 ∧ · · · ∧ θih
such that w(θi1) + · · ·+ w(θih) = p.

Given a positive grading V : g =
⊕

α∈R Vα, we call the quantity

Q =
∑

α∈R+

α dimVα

the homogeneous dimension of V . We also define for each degree h the
number

δNmin(h) = min
θ∈Eh0

w(θ)− max
θ̃∈Eh−1

0

w(θ̃) .

The following is [PR18, Theorem 1.1(ii)].

Theorem 4.14. Let G be a Carnot group of homogeneous dimen-
sion Q. If

1 ≤ p, q ≤ ∞ and
1

p
− 1

q
<
δNmin(h)

Q
then the Lq,p cohomology of G in degree h does not vanish.

Moreover, in Theorem 9.2 of the same paper it is shown how the
non-vanishing statement has a wider scope, as it can be applied to
Carnot groups equipped with a homogeneous structure that comes from
a positive grading. This result has been further extended in [Tri20] to
arbitrary positively graded nilpotent Lie groups.

A natural question that stems from these considerations is whether
it is possible to identify which choice of positive grading will yield the
best interval for non-vanishing cohomology. This problem can be easily
presented in terms of maximising the value of the fraction δNmin(h)/Q
among all the possible positive gradings for a given Lie group G.

Let us describe the maximization procedure in more detail. Let
W : g =

⊕
n∈ZkWn be a maximal grading of g and let Ω be the set

of weights of W . For a = (a1, . . . , ak) ∈ Rk, let πa : Zk → R be the
projection given by πa(ei) = ai. Let

(8) A+ = {a ∈ Rk : πa(n) > 0 ∀n ∈ Ω}.
The push-forward πa

∗ (W) is a positive grading if and only if a ∈ A+.
In the sequel we shall identify any positive grading of g with the

corresponding vector a ∈ A+. In particular, if θ is the dual of X ∈ Wn,
then the weight of θ with respect to the grading πa

∗ (W) is w(θ)a =
πa(n). Then we want to find the value of the following expression for
each degree h:

max
a∈A+

{
minθ∈Eh0 w(θ)a −maxθ̃∈Eh−1

0
w(θ̃)a

Qa

}
,
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where Qa is the homogeneous dimension of πa
∗ (W).

A problem of this form can be converted into a linear optimization
problem as follows:

1. replace minθ∈Eh0 w(θ)a with a new variable x, and add the con-
straint x ≤ w(θ)a for each θ ∈ Eh

0 ;
2. replace maxθ̃∈Eh−1

0
w(θ̃) with a new variable y, and add the con-

straint y ≥ w(θ̃)a for each θ̃ ∈ Eh−1
0 ;

3. normalize the expression by imposing Qa = 1.

We are then left with the following expression for our original maxi-
mization problem

Maximize x− y
subject to x ≤ w(θ)a ∀ θ ∈ Eh

0 ,

y ≥ w(θ̃)a ∀θ̃ ∈ Eh−1
0 ,

Qa = 1, a ∈ A+

which can easily be solved by a computer, yielding the optimal bound
for non-vanishing cohomology using the method of Theorem 4.14.

Example 4.15. Let us consider the non-stratifiable Lie group G of
dimension 6, whose Lie algebra is denoted as L6,10 in [dG07], with the
non-trivial brackets

[X1, X2] = X3 , [X1, X3] = [X5, X6] = X4.

The space of Rumin forms in G is

E1
0 = 〈θ1, θ2, θ5, θ6〉;

E2
0 = 〈θ5,6 − θ1,3, θ1,5, θ1,6, θ2,3, θ2,5, θ2,6〉;

E3
0 = 〈θ2,5,6 + θ1,2,3, θ2,3,5, θ2,3,6, θ1,3,4 − θ4,5,6, θ1,4,5, θ1,4,6〉.

For the Lie algebra L6,10, the maximal grading is over Z3 with the
layers

V(0,1,0) = 〈X1〉, V(0,0,1) = 〈X2〉, V(0,1,1) = 〈X3〉
V(0,2,1) = 〈X4〉, V(1,0,0) = 〈X5〉, V(−1,2,1) = 〈X6〉.
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The family of projections πa : Z3 → R giving positive gradings is
parametrized by (a1, a2, a3) = a ∈ A+ as in (8). The weights of left-
invariant 1-forms are

w(θ1)a = πa(0, 1, 0) = a2;

w(θ2)a = πa(0, 0, 1) = a3;

w(θ3)a = πa(0, 1, 1) = a2 + a3;

w(θ4)a = πa(0, 2, 1) = 2a2 + a3;

w(θ5)a = πa(1, 0, 0) = a1;

w(θ6)a = πa(−1, 2, 1) = 2a2 + a3 − a1.

From this computation we get the explicit expression

A+ = {a ∈ R3 : a1 > 0, a2 > 0, a3 > 0, −a1 + 2a2 + a3 > 0}
and the homogeneous dimension Qa = 6a2 + 4a3.

Let us first consider the bound for non-vanishing cohomology in de-
gree 1. We express

max
a∈A+

{
δNmin(1)

Qa

}
= max

a∈A+

{
min{a1, a2, a3, 2a2 + a3 − a1}

6a2 + 4a3

}
.

as the linear optimization problem

Maximize x

subject to x ≤ a1, x ≤ a2, x ≤ a3,

x ≤ 2a2 + a3 − a1,

1 = 6a2 + 4a3,

a1, a2, a3 > 0, 2a2 + a3 − a1 > 0.

A solver finds the solution 1
10
, which is obtained by choosing a1 = a2 =

a3 = 1
10
. Since the quantity δNmin(1)

Qa
is scaling invariant, we find that

the grading defined by a1 = a2 = a3 = 1 gives `q,pH1(G) 6= 0 with the
optimal bound 1

p
− 1

q
< 1

10
.

Similarly, once we re-express

max
a∈A+

{
δNmin(2)

Qa

}
.

as a linear optimization problem and feed it into a solver, we get the
result 1

10
, obtained (up to rescaling) by taking a2 = a3 = 2 and a1 = 3.

Therefore `q,pH2(G) 6= 0 for 1
p
− 1

q
< 1

10
.

Likewise, we obtain the optimal bound 1
p
− 1

q
< 1

10
for `q,pH3(G) 6= 0

by taking a1 = a2 = a3 = 1.
Finally, by Hodge duality, see [Tri20, Theorem 7.3], we obtain the

optimal bounds for `q,p cohomology in complementary degree, that is
`q,pH4(G) 6= 0, `q,pH5(G) 6= 0, and `q,pH6(G) 6= 0, for 1

p
− 1

q
< 1

10
.
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Remark 4.16. [PR18, Example 9.5] describes an explicit positive grad-
ing in the Engel group that gives an improved bound for the non-
vanishing of the Lq,p cohomology in degree 2. By a similar computation
as the one shown in Example 4.15, one can verify that the value given
in [PR18, Example 9.5] is indeed the optimal bound.

Appendix A. Existence of a positive realization

Example 2.4 motivates an alternate approach for deciding the exis-
tence of a positive realization. The grading in the example does not
admit a positive realization: suppose by contradiction that there is
an injection {a, b, c, d} → R that gives a positive realization. The
bracket relations of the Lie algebra imply the equations a+ c = d and
b + d = c, which are impossible for strictly positive weights. Here the
non-existence of a positive realization is found simply by considering
the equations implied by the bracket relations of the layers.

In general, a grading can be realized over some abelian group A with
the set of weights {λ1, . . . , λk} if and only if certain system of equations
of the type λi + λj = λh has a solution (λ1, . . . , λk) whose components
are all distinct. This system consists of equations coming from the
non-trivial bracket relations among the layers of the grading, see step 2
of Algorithm 2.13. A positive realization exists if and only if there is a
solution in the group A = R with all weights strictly positive. Indeed,
if there is a positive solution, then there is also a positive solution with
distinct components as we shall see in the proof of Algorithm A.4.

Deciding if a solution exists with all components strictly positive is a
classical problem in linear programming. By rescaling, we may replace
the open conditions λi > 0 with the closed conditions λi ≥ 1. By a
change of variables µi = λi − 1, we find that the linear problem for
the existence of a positive realization is equivalent to an affine problem
µi + µj − µh = −1 with all the components µi non-negative.

Let A be the N × k-matrix of coefficients of the affine problem and
let b = (−1, . . . ,−1) ∈ RN . By getting rid of linearly dependent
equations, we may assume that rank(A) = N ≤ k. Our goal is then an
algorithm that either produces an element of the set

(9) P = {x ∈ Rk | Ax = b and x ≥ 0}

or indicates that the set P is empty. Here we use the shorthand notation
x ≥ 0 to mean that all the components of the vector x are non-negative.
Notice that the set P of solutions is closed and convex.

There is a vast literature on how to solve linear programming prob-
lems, and we refer to the book [FP93]. This approach and in particular
Lemma A.3 below are essentially from section 2.4 of that book. We
state them here for completeness.
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Definition A.1. Let K ⊂ Rn be a convex set. We say that a point
x ∈ K is an extremal point if it cannot be expressed as a non-trivial
convex combination of the points of K.

Lemma A.2. Let K ⊂ Rn be a closed convex non-empty set for which
x ≥ 0 for all x ∈ K. Then K contains at least one extremal point.

Proof. Consider the lexicographic order ≺ on Rn, where x ≺ y if there
exists some index i ∈ {1, . . . , n} such that xj = yj for all j < i and
xi < yi. Observe that if x ≺ y, then

(10) x ≺ tx + (1− t)y
for every 0 < t < 1. Since x ≥ 0 for all x ∈ K, there exists a
lexicographic minimum xmin ∈ K. It follows from (10) that the point
xmin cannot be expressed as a non-trivial convex combination. �
Lemma A.3. Let P be the set of non-negative solutions of a system
Ax = b as in (9). Let x ∈ Rk be an extremal point of P . Then
there exists an invertible N × N matrix B whose columns are chosen
from the matrix A, such that up to a permutation of components, x =
(B−1(b), 0, . . . , 0) ∈ Rk.

Proof. By permuting the basis, we can express x = (x+, 0, . . . , 0),
where x+ ∈ Rp for some p ≤ k and x+ > 0. Let A+ be the ma-
trix consisting of the first p columns of A. First we show that the
matrix A+ has rank p. Suppose towards a contradiction that there is
a non-zero vector w ∈ Rp such that A+w = 0. Let δ > 0 be so small
that the vectors

z1 = x+ + δw z2 = x+ − δw
both satisfy z1, z2 ≥ 0. For both i ∈ {1, 2}, let ui = (zi, 0, . . . , 0) ∈ Rk.
Then

Aui = A+zi = A+x+ = Ax = b,
so ui ∈ P are both solutions. Now the solution x can be represented
as a non-trivial convex combination x = 1

2
u1 + 1

2
u2 of solutions, which

contradicts the assumption that x is an extremal point. We conclude
that the rank of A+ must be p. Since rank(A) = N , we deduce also
p ≤ N .

If p < N , then since rank(A) = N it is possible to form an invertible
matrix B by adding some further columns of A to the matrix A+. If
instead p = N , then continue with B = A+. Let x̄ = (x+, 0, . . . , 0) ∈
RN . Then

Bx̄ = A+x+ = Ax = b

so x̄ = B−1(b) and the claim follows. �
Algorithm A.4 (Existence of a positive realization). Input: A grad-
ing V of a Lie algebra g. Output: Decision if V admits a positive
realization.



GRADINGS FOR NILPOTENT LIE ALGEBRAS 35

(1) Form the N × k matrix A associated with the problem and set
b = (−1, . . . ,−1) ∈ RN .

(2) For each invertible N×N matrix B formed from the columns of
the matrix A do the following: Compute x = B−1(b). If x ≥ 0,
then the grading admits a positive realization.

(3) Otherwise, the grading has no positive realization.

Proof of correctness. Let P be as in (9). Lemma A.3 implies that step 2
constructs all the extremal points of P . By Lemma A.2, if no extremal
points are found, the set P is empty and no positive realization exists.
We still need to argue that if P is non-empty, then a positive realization
exists.

A priori, even if some x = B−1(b) ≥ 0, the corresponding weights
xi + 1, . . . , xk + 1 do not necessarily define a realization of the original
grading, since in general these weights are non-distinct and hence define
a coarser grading. By Lemma 2.15 this coarser grading is a push-
forward grading of the universal realization of the original grading, via
a homomorphism from some Zm to R mapping the weights to x1 +
1, . . . , xk + 1. The homomorphism is realized as a projection to some
line of Rm, as in the proof of Lemma 3.7. By perturbing this line, it is
always possible to find another homomorphism that is injective on the
weights and maps all the weights to strictly positive reals. Hence there
is also a positive realization of the original grading. �
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