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ABSTRACT

The analysis of weak gravitational lensing in wide-field imaging surveys is considered to be a major cosmological probe of dark energy. Our
capacity to constrain the dark energy equation of state relies on an accurate knowledge of the galaxy mean redshift 〈z〉. We investigate the
possibility of measuring 〈z〉 with an accuracy better than 0.002 (1 + z) in ten tomographic bins spanning the redshift interval 0.2 < z < 2.2, the
requirements for the cosmic shear analysis of Euclid. We implement a sufficiently realistic simulation in order to understand the advantages and
complementarity, as well as the shortcomings, of two standard approaches: the direct calibration of 〈z〉 with a dedicated spectroscopic sample and
the combination of the photometric redshift probability distribution functions (zPDFs) of individual galaxies. We base our study on the Horizon-
AGN hydrodynamical simulation, which we analyse with a standard galaxy spectral energy distribution template-fitting code. Such a procedure
produces photometric redshifts with realistic biases, precisions, and failure rates. We find that the current Euclid design for direct calibration is
sufficiently robust to reach the requirement on the mean redshift, provided that the purity level of the spectroscopic sample is maintained at an
extremely high level of >99.8%. The zPDF approach can also be successful if the zPDF is de-biased using a spectroscopic training sample. This
approach requires deep imaging data but is weakly sensitive to spectroscopic redshift failures in the training sample. We improve the de-biasing
method and confirm our finding by applying it to real-world weak-lensing datasets (COSMOS and KiDS+VIKING-450).

Key words. dark energy – galaxies: distances and redshifts – methods: statistical

1. Introduction

Understanding the late, accelerated expansion of our Uni-
verse (Riess et al. 1998; Perlmutter et al. 1999) is one of the
most important challenges in modern cosmology. Three lead-
ing hypotheses are: a modification of the laws of gravity, the

introduction of a cosmological constant Λ in the equations
describing the dynamics of our Universe, and the existence
of a dark energy fluid with negative pressure. The last two
hypotheses can be disentangled from each another by measur-
ing the equation of state w of dark energy, which links its
pressure to its density. Only the case w = −1 is compatible
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with a cosmological constant, and therefore any deviation from
this value would invalidate the standard Λ cold dark mat-
ter (ΛCDM) model in favour of dark energy. This makes the
precise measurement of w a key component of future cos-
mological experiments, such as Euclid (Laureijs et al. 2011),
the Vera C. Rubin Observatory Legacy Survey of Space and
Time (LSST; LSST Science Collaboration 2009), and the Nancy
Grace Roman Space Telescope (Spergel et al. 2015).

Cosmic shear (see e.g., Kilbinger 2015; Mandelbaum 2018,
for recent reviews), which is the coherent distortion of galaxy
images by large-scale structures via weak gravitational lensing,
offers the potential to measure w with great precision: The Euclid
survey, in particular, aims at reaching 1% precision on the mea-
surement of w using cosmic shear. One advantage of using lens-
ing to measure w, compared to other probes, is that there exists
a direct link between galaxy image geometrical distortions (i.e.
the shear) and the gravitational potential of the intervening struc-
tures. When the shapes of, and distances to, galaxy sources are
known, gravitational lensing allows one to probe the matter dis-
tribution of the Universe.

This discovery has led to the rapid growth of inter-
est in using cosmic shear as a key cosmological probe, as
evidenced by its successful application to several surveys.
Constraints on the matter density parameter, Ωm, and the
normalisation of the linear matter power spectrum, σ8, have
been reported by the Canada-France-Hawaii Telescope Lensing
Survey (CFHTLenS, Kilbinger et al. 2013), the Kilo Degree Sur-
vey (KiDS, Hildebrandt et al. 2017), the Dark Energy Survey
(DES, Troxel et al. 2018), and the Hyper-Suprime Camera Sur-
vey (HSC, Hikage et al. 2019). These studies typically utilise
so-called cosmic shear tomography (Hu 1999), whereby the cos-
mic shear signal is obtained by measuring the cross-correlation
between galaxy shapes in different bins along the line of sight
(i.e. tomographic bins). Large forthcoming surveys that also
utilise cosmic shear tomography will enhance the precision of
cosmological parameter measurements (e.g., Ωm, σ8, and w)
while also enabling the measurement of any evolution in the
dark energy equation of state, such as that parametrised by
Caldwell et al. (1998): w = w0 + wa (1 − a), where a is the scale
factor.

Tomographic cosmic shear studies require accurate knowl-
edge of the galaxy redshift distribution. The estimation and cal-
ibration of the redshift distribution has been identified as one
of the most problematic tasks in current cosmic shear surveys
since systematic bias in the distribution calibration directly influ-
ences the resulting cosmological parameter estimates. In partic-
ular, Joudaki et al. (2020) show that the Ωm−σ8 constraints from
KiDS and DES can be fully reconciled under consistent redshift
calibration, thereby suggesting that the different constraints from
the two surveys can be traced back to differing methods of red-
shift calibration.

In tomographic cosmic shear, the signal is primarily sensitive
to the average distance of sources within each bin. Therefore,
for this purpose, the redshift distribution of an arbitrary galaxy
sample can be characterised simply by its mean 〈z〉, defined as:

〈z〉 =

∫ ∞
0 z N(z) dz∫ ∞
0 N(z) dz

, (1)

where N(z) is the true redshift distribution of the sample. Fur-
thermore, in cosmic shear tomography, it is common to build the
required tomographic bins using photo-z (see Salvato et al. 2019,
for a review), which can be measured for large samples of galax-
ies with observations in only a few photometric bandpasses.

However these photo-z are imperfect (due to, for example, pho-
tometric noise), resulting in tomographic bins whose true N(z)
extend beyond the bin limits. These ‘tails’ in the redshift distri-
bution are important as they can significantly influence the distri-
bution mean and provide sensitive information (Ma et al. 2006).
For a Euclid-like cosmic shear survey, Laureijs et al. (2011) pre-
dict that the mean redshift 〈z〉 of each tomographic bin must be
known with an accuracy better than σ〈z〉 = 0.002 (1 + z) in order
to meet the precision on w0 (σw0 = 0.015) and wa (σwa = 0.15).

Given the importance of measuring the mean redshift for
cosmic-shear surveys, numerous approaches have been devised
in the last decade. A first family of methods, usually referred
to as ‘direct calibration’, involves weighting a sample of galax-
ies with known redshifts such that they match the colour-
magnitude properties of the target galaxy sample, thereby lever-
aging the relationship between galaxy colours, magnitudes, and
redshifts to reconstruct the redshift distribution of the target
sample (e.g., Lima et al. 2008; Cunha et al. 2009; Abdalla et al.
2008). A second approach is to utilise redshift probability distri-
bution functions (zPDFs), obtained per target galaxy and sub-
sequently stacked to reconstruct the target population N(z).
The galaxy zPDF is typically estimated by either model fit-
ting or via machine learning. A third family of methods uses
galaxy spatial information, specifically galaxy angular cluster-
ing, cross-correlating target galaxies with a large spec-z sam-
ple to retrieve the redshift distribution (e.g., Newman 2008;
Ménard et al. 2013). New methods are continuously developed,
for instance modelling galaxy populations and using forward
modelling to match the data (Kacprzak et al. 2020).

In this paper, we evaluate our capacity to measure the mean
redshift in each tomographic bin at the precision level required
for Euclid based on realistic simulations. We base our study
on a mock catalogue generated from the Horizon-AGN hydro-
dynamical simulation as described in Dubois et al. (2014) and
Laigle et al. (2019). The advantage of this simulation is that the
produced spectra encompass all the complexity of galaxy evo-
lution, including rapidly varying star-formation histories, metal-
licity enrichment, mergers, and feedback from both supernovae
and active galactic nuclei (AGN). By simulating galaxies with the
imaging sensitivity expected for Euclid, we retrieve the photo-z
with a standard template-fitting code, as done in existing surveys.
Therefore, we produce photo-z with realistic biases, precisions,
and failure rates, as shown in Laigle et al. (2019). The simulated
galaxy zPDFs appear as complex as the ones observed in real data.

We further simulate realistic spectroscopic training sam-
ples with selection functions similar to those that are cur-
rently being acquired in preparation for Euclid and other dark
energy experiments (Masters et al. 2017). We introduce possible
incompleteness and failures to mimic those occurring in actual
spectroscopic surveys.

We investigate two of the methods envisioned for the Euclid
mission: direct calibration and zPDF combination. We also pro-
pose a new method to de-bias the zPDF based on Bordoloi et al.
(2010). We quantify their performances in estimating the mean
redshift of tomographic bins and isolate relevant factors that
could impact our ability to fulfil the Euclid requirement. We
also provide recommendations on the imaging depth and training
sample necessary to achieve the required accuracy on 〈z〉.

Finally, we demonstrate the general utility of each of the
methods presented here, not just to future surveys such as Euclid
but also to current large imaging surveys. As an illustration,
we apply these methods to the Cosmic Evolution Survey (COS-
MOS) survey and the fourth data release of KiDS (Kuijken et al.
2019).
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The paper is organised as follows. In Sect. 2, we describe
the mock Euclid-like catalogues generated from the Horizon-
AGN hydrodynamical simulation. In Sect. 3, we test the preci-
sion reached on 〈z〉 when applying the direct calibration method.
In Sect. 4, we measure the 〈z〉 in each tomographic bin using
the zPDF de-biasing technique. We discuss the advantages and
limitations of both methods in Sect. 5. We apply these methods
to the KiDS and COSMOS dataset in Sect. 6. Finally, we sum-
marise our findings and provide closing remarks in Sect. 7.

2. A mock Euclid catalogue

In this section, we present the mock Euclid catalogue used in this
analysis, which is constructed from the Horizon-AGN hydrody-
namical simulated lightcone and includes photometry and pho-
tometric redshift information. A full description of this mock
catalogue can be found in Laigle et al. (2019). Here we sum-
marise its main features and discuss the construction of several
simulated spectroscopic samples, which reproduce a number of
expected spectroscopic selection effects.

2.1. Horizon-AGN simulation

Horizon-AGN is a cosmological hydrodynamical simulation that
was run in a simulation box of 100 h−1 Mpc per side and with a
dark matter mass resolution of 8 × 107 M� (Dubois et al. 2014).
A flat ΛCDM cosmology with H0 = 70.4 km s−1 Mpc−1, Ωm =
0.272, ΩΛ = 0.728, and ns = 0.967 (compatible with WMAP-
7, Komatsu et al. 2011) is assumed. Gas evolution is followed
on an adaptive mesh, whereby an initial coarse 10243 grid is
refined down to 1 physical kiloparsec. The refinement proce-
dure leads to a typical number of 6.5 × 109 gas resolution ele-
ments (called leaf cells) in the simulation at z = 1. Following
Haardt & Madau (1996), heating of the gas by a uniform ultra-
violet background radiation field takes place after z = 10. Gas
in the simulation is able to cool down to temperatures of 104 K
through H and He collision and with a contribution from met-
als as tabulated in Sutherland & Dopita (1993). Gas is converted
into stellar particles in regions where the gas particle number
density surpasses n0 = 0.1 H cm−3, following a Schmidt law, as
explained in Dubois et al. (2014). Feedback from stellar winds
and supernovae (both types Ia and II) are included in the simu-
lation, and it comprises mass, energy, and metal releases. Black
holes (BHs) in the simulation can grow by gas accretion, at a
Bondi accretion rate that is capped at the Eddington limit, and
are able to coalesce when they form a sufficiently tight binary.
They release energy in either the quasar or radio (i.e. heating or
jet) mode, when the accretion rate is respectively above or below
one percent of the Eddington ratio. The efficiency of these energy
release modes is tuned to match the observed BH-galaxy scaling
relation at z = 0 (see Dubois et al. 2012, for more details).

The simulation lightcone was extracted as described in
Pichon et al. (2010). Particles and gas leaf cells were extracted
at each time step depending on their proper distance to the
observer at the origin. In total, the lightcone contains roughly
22 000 portions of concentric shells, which are taken from
about 19 replications of the Horizon-AGN box up to z = 4.
We restricted ourselves to the central 1 deg2 of the lightcone.
Laigle et al. (2019) extracted a galaxy catalogue from the stel-
lar particle distribution using the AdaptaHOP halo finder
(Aubert et al. 2004), where galaxy identification is based exclu-
sively on the local stellar particle density. Only galaxies with
stellar masses M? > 109 M� (which corresponds to around
500 stellar particles) are kept in the final catalogue, resulting in

more than 7 × 105 galaxies in the redshift range 0 < z < 4, with
a spatial resolution of 1 kpc.

A full description of the per-galaxy spectral energy distri-
bution (SED) computation within Horizon-AGN is presented in
Laigle et al. (2019)1; in the following, we only summarise the
key details of the SED construction process. Each stellar par-
ticle in the simulation is assumed to behave as a single stel-
lar population, and its contribution to the galaxy spectrum is
generated using the stellar population synthesis models from
Bruzual & Charlot (2003), assuming a Chabrier (2003) initial
mass function. As each galaxy is composed of a large number of
stellar particles, the galaxy SEDs therefore naturally capture the
complexities of unique star-formation and chemical enrichment
histories. Additionally, dust attenuation is also modelled for each
star particle individually, using the mass distribution of the gas-
phase metals as a proxy for the dust distribution and adopting
a constant dust-to-metal mass ratio. Dust attenuation (neglect-
ing scattering) is therefore inherently geometry-dependent in the
simulation. Finally, the absorption of SED photons by the inter-
galactic medium (i.e. Hi absorption in the Lyman series) is mod-
elled along the line of sight to each galaxy using our knowledge
of the gas density distribution in the lightcone. This, therefore,
introduces variation into the observed intergalactic absorption
across individual lines of sight. Flux contamination by nebu-
lar emission lines is not included in the simulated SEDs. While
emission lines could add some complexity to a galaxy’s pho-
tometry, their contribution can be modelled in a template-fitting
code. Moreover, their impact is mostly crucial at high redshifts
(Schaerer & de Barros 2009) and when using medium bands
(e.g., Ilbert et al. 2009).

Kaviraj et al. (2017) compare the global properties of the
simulated galaxies with statistical measurements available in the
literature (as the luminosity functions, the star-forming main
sequence, or the mass functions). They find an overall fairly
good agreement with observations. Still, the simulation over-
predicts the density of low-mass galaxies, and the median spe-
cific star-formation rate falls slightly below the literature results,
a common trend in current simulations.

2.2. Simulation of Euclid photometry and photometric
redshifts

As described in Laureijs et al. (2011), the Euclid mission
will measure the shapes of about 1.5 billion galaxies over
15 000 deg2. The visible (VIS) instrument will obtain images
taken in one very broad filter (VIS), spanning 3500 Å. This fil-
ter allows extremely efficient light collection and will enable
the VIS instrument to measure the shapes of galaxies as faint
as 24.5 mag with high precision. The near-infrared spectrome-
ter and photometer (NISP) instrument will produce images in
three near-infrared (NIR) filters. In addition to these data, Euclid
satellite observations are expected to be complemented by large
samples of ground-based imaging, primarily in the optical, to
assist the measurement of photo-z.

Euclid imaging has an expected sensitivity, over 15 000 deg2,
of 24.5 mag (at 10σ) in the VIS band, and 24 mag (at 5σ) in each
of the Y , J, and H bands (Laureijs et al. 2011). We associate the
Euclid imaging with two possible ground-based visible imag-
ing datasets, which correspond to two limiting cases for photo-z
estimation performance. The first is DES/Euclid. As a demon-
stration of photo-z performance when combining Euclid with a

1 Horizon-AGN photometric catalogues and SEDs can be downloaded
from https://www.horizon-simulation.org/data.html
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considerably shallower photometric dataset, we combined our
Euclid photometry with that from the DES (Abbott et al. 2018).
The DES imaging is taken in the g, r, i, and z filters, at 10σ
sensitivities of 24.33, 24.08, 23.44, and 22.69, respectively.

The second is LSST/Euclid. As a demonstration of photo-
z performance when combining Euclid with a considerably
deeper photometric dataset, we combined our Euclid photom-
etry with that from the Vera C. Rubin Observatory LSST
(LSST Science Collaboration 2009). The LSST imaging will be
taken in the u, g, r, i, z, and y filters, at 5σ (point source, full
depth) sensitivities of 26.3, 27.5, 27.7, 27.0, 26.2, and 24.9,
respectively.

The DES imaging is completed and meets these expected
sensitivities. Conversely, LSST will not reach the quoted full
depth sensitivities before its tenth year of operation (i.e. start-
ing in 2021), and even then it is possible that the northern
extension of LSST might not reach the same depth. Still, LSST
will already be extremely deep after two years of operation,
being only 0.9 mag shallower than the final expected sensitiv-
ity (Graham et al. 2020). Therefore, these two cases (and their
assumed sensitivities) should comfortably encompass the pos-
sible photo-z performance of any future combined optical and
Euclid photometric dataset.

In order to generate the mock photometry in each of the
Euclid, DES, and LSST surveys, each galaxy SED is first
‘observed’ through the relevant filter response curves. In each
photometric band, we generated Gaussian distributions of the
expected signal-to-noise ratios (S/Ns) as a function of magnitude,
given both the depth of the survey and the typical S/N-magnitude
relation (in the same wavelength range) (see Appendix A in
Laigle et al. 2019). We then used these distributions, per filter,
to assign each galaxy a S/N (based on its magnitude). The S/N
of each galaxy determines its ‘true’ flux uncertainty, which is
then used to perturb the photometry (assuming Gaussian random
noise) and produce the final flux estimate per source. This process
was then repeated for all desired filters.

The galaxy photo-z were derived in the same manner as
with real-world photometry. We used the method detailed in
Ilbert et al. (2013), which is based on the template-fitting code
LePhare (Arnouts et al. 2002; Ilbert et al. 2006). We adopted
a set of 33 templates from Polletta et al. (2007), which was
complemented with templates from Bruzual & Charlot (2003).
Two dust attenuation curves were considered (Prevot et al. 1984;
Calzetti et al. 2000), allowing for a possible bump at 2175 Å.
Neither emission lines nor the adaptation of the zero-points
were considered since they were not included in the simulated
galaxy catalogue. The full redshift likelihood, L(z), is stored for
each galaxy, and the photo-z point-estimate, zp, is defined as the
median of L(z)2. The distributions of (derived) photometric red-
shift versus (intrinsic) spectroscopic redshift for mock galaxies
(in both our DES/Euclid and LSST/Euclid configurations) are
shown in Fig. 1. Several examples of redshift likelihoods are
shown in Fig. 2. We can see realistic cases with multiple modes
in the distribution, as well as asymmetric distributions around
the main mode. The photo-z used to select galaxies within the
tomographic bins are indicated by the magenta lines, which can
differ significantly from the spec-z (green lines).

We wished to remove galaxies with a broad likelihood distri-
bution (i.e. galaxies with truly uncertain photo-z) from our sam-
ple. In practice, we approximated the breadth of the likelihood

2 The median of L(z) could differ from the peak of L(z) or from the
redshift corresponding to the minimum χ2, especially for ill-defined
likelihoods.

Fig. 1. Comparison between the photometric redshifts (zp) and spec-
troscopic redshifts (zs) for the simulated Horizon-AGN galaxy sam-
ple. Each panel shows a two-dimensional histogram with logarithmic
colour scaling and is annotated with both the 1:1 equivalence line (red)
and the |zp − zs| = 0.15 (1 + zs) outlier thresholds (blue) for reference.
Photometric redshifts are computed using both DES/Euclid (left) and
LSST/Euclid (right) simulated photometry, assuming a Euclid-based
magnitude-limited sample with VIS < 24.5.

distribution using the photo-z uncertainties produced by the
template-fitting procedure to clean the sample. LePhare pro-
duces a redshift confidence interval [zmin

p , zmax
p ], per source,

which encompasses 68% of the redshift probability around zp.
We removed galaxies with max(zp − zmin

p , zmax
p − zp) > 0.3, which

we denote σzp > 0.3 in the following for simplicity. We investi-
gate the impact of this choice on the number of galaxies available
for cosmic shear analyses and quantify the impact of relaxing
this limit in Sect. 5.2.

Finally, we generated 18 photometric noise realisations of
the mock galaxy catalogue. While the intrinsic physical prop-
erties of the simulated galaxies remain the same under each of
these realisations, the differing photometric noise allows us to
quantify the role of photometric noise alone on our estimated
〈z〉. We only adopted 18 realisations due to computational lim-
itations; however, our results are stable to the addition of more
realisations.

2.3. Definition of the target photometric sample and the
spectroscopic training samples

All redshift calibration approaches discussed in this paper utilise
a spec-z training sample to estimate the mean redshift of a target
photometric sample. In practice, such a spectroscopic training
sample is rarely a representative subset of the target photometric
sample; rather, it is often composed of bluer and brighter galax-
ies. Therefore, to properly assess the performance of our tested
approaches, we had to ensure that the simulated training sample
is distinct from the photometric sample. To do this, we separated
the Horizon-AGN catalogue into two equally sized subsets: We
defined the first half of the photometric catalogue as our as target
sample and drew variously defined spectroscopic training sam-
ples from the second half of the catalogue. We tested each of our
calibration approaches with three spectroscopic training samples
designed to mimic different spectroscopic selection functions:
(1) a uniform training sample; (2) a self-organising map-based
training sample; and (3) a COSMOS-like training sample.

The uniform training sample is the simplest, most idealised
training sample possible. We sampled 1000 galaxies with VIS <
24.5 mag (i.e. the same magnitude limit as in the target sample)
in each tomographic bin, independently of all other properties.
While this sample is ideal in terms of representation, the sample
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Fig. 2. Examples of galaxy likelihood L(z) (dashed red lines) and de-biased posterior distributions (solid black lines). The spec-z (photo-z) are
indicated with dotted green (magenta) lines. These galaxies are selected in the tomographic bin 0.4 < zp < 0.6 for the DES/Euclid (top panels)
and LSST/Euclid (bottom panels) configurations. These likelihoods are not a random selection of sources, but illustrate the variety of likelihoods
present in the simulations.

size was set to mimic a realistic training sample that could be
obtained from dedicated ground-based spectroscopic follow-up
of a Euclid-like target sample.

Our second training sample follows the current Euclid
baseline to build a training sample. Masters et al. (2017) have
endeavoured to construct a spectroscopic survey, the Complete
Calibration of the Colour-Redshift Relation survey (C3R2),
which completely samples the colour and magnitude space of
cosmic shear target samples. This sample is currently being
assembled by combining data from ESO and Keck facilities
(Masters et al. 2019; Guglielmo et al. 2020). The target selec-
tion is based on an unsupervised machine-learning technique,
the self-organising map (SOM, Kohonen 1982), which they use
to define a spectroscopic target sample that is representative in
terms of the galaxy colours of the Euclid cosmic shear sample.
The SOM allows a projection of a multi-dimensional distribution
onto a lower two-dimensional map. The utility of the SOM lies
in its preservation of higher-dimensional topology: Neighbouring
objects in the multi-dimensional space fall within similar regions
of the resulting map. This allows the SOM to be utilised as a multi-
dimensional clustering tool, whereby discrete map cells associate
sources within discrete voxels in the higher-dimensional space.
We used the method from Davidzon et al. (2019) to construct
a SOM, which involves projecting observed (i.e. noisy) colours
of the mock catalogue onto a map of 6400 cells (with dimen-
sion 80 × 80). We constructed our SOM using the LSST/Euclid
simulated colours, implicitly assuming that the spec-z training
sample is defined using deep calibration fields. If the flux uncer-
tainty is too large (∆mx

i > 0.5, for object i in filter x), the
observed magnitude is replaced by that predicted from the best-
fit SED template, which is estimated while preparing the SOM
input catalogue. This procedure allows us to retain sources that
have non-detections in some photometric bands. We then con-
structed our SOM-based training sample by randomly selecting
Ntrain galaxies from each cell in the SOM. The C3R2 expects
to have ≥1 spectroscopic galaxies per SOM cell available for
calibration by the time the Euclid mission is active. For our
default SOM coverage, we invoked a slightly more idealised
situation of two galaxies per cell and we imposed that these

two galaxies belong to the considered tomographic bin. This
procedure ensures that all cells are represented in the spec-
troscopy. In reality, a fraction of cells will likely not contain
spectroscopy. However, when treated correctly, such misrepre-
sented cells act only to decrease the target sample number density
and do not bias the resulting redshift distribution mean estimates
(Wright et al. 2020). We therefore expect that this idealised treat-
ment will not produce results that are overly optimistic.

Finally, the COSMOS-like training sample mimics a typical
heterogeneous spectroscopic sample, which is currently avail-
able in the COSMOS field. We first simulated the zCOSMOS-
like spectroscopic sample (Lilly et al. 2007), which consists
of two distinct components: a bright and a faint survey. The
zCOSMOS-Bright sample was selected such that it contains only
galaxies at z < 1.2, while the zCOSMOS-Faint sample contains
only galaxies at z > 1.7 (with a strong bias towards select-
ing star-forming galaxies). To mimic these selections, we con-
structed a mock sample whereby half of the sources are brighter
than i = 22.5 (the bright sample) and half of the galaxies reside
at 1.7 < z < 2.4 with g < 25 (the faint sample). We then added to
this compilation a sample of 2000 galaxies that were randomly
selected at i < 25, mimicking the low-z VIMOS Ultra Deep Sur-
vey (VUDS) sample (Le Fèvre et al. 2015), as well as a sample
of 1000 galaxies randomly selected at 0.8 < z < 1.6 with i < 24,
mimicking the sample from Comparat et al. (2015). By construc-
tion, this final spectroscopic redshift compilation exhibits low
representation of the photometric target sample in the redshift
range 1.3 < z < 1.7.

Overall, our three training samples exhibit (by design) dif-
fering redshift distributions and galaxy number densities. We
investigate the sensitivity of the estimated 〈z〉 on the size of the
training sample in Sect. 5.3.

3. Direct calibration

Direct calibration is a fairly straightforward method that can
be used to estimate the mean redshift of a photometric galaxy
sample, and it is currently the baseline method planned for
Euclid cosmic shear analyses. In this section, we describe our
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implementation of the direct calibration method, apply this
method to our various spectroscopic training samples, and report
the resulting accuracy of our redshift distribution mean esti-
mates.

3.1. Implementation for the different training samples

Given our different classes of training samples, we were able to
implement slightly different methods of direct calibration. We
detail here how the implementation of direct calibration differs
for each of our three spectroscopic training samples.

The uniform sample. In the case where the training sample is
known to uniformly sparse-sample the target galaxy distribution,
an estimate of 〈z〉 can be approximated by simply computing the
mean redshift of the training sample.

The SOM sample. By construction, the SOM training sam-
ple uniformly covers the full n-dimensional colour space of the
target sample. The method relies on the assumption that galaxies
within a cell share the same redshift (Masters et al. 2015), which
can be labelled with the training sample. Therefore, we can esti-
mate the mean redshift of the target distribution 〈z〉 by simply
calculating the weighted mean of each cell’s average redshift,
where the weight is the number of target galaxies per cell,

〈z〉 =
1
Nt

Ncells∑
i=1

〈
zi

train

〉
Ni, (2)

where the sum runs over the i ∈ [1,Ncells] cells in the SOM,〈
zi

train

〉
is the mean redshift of the training spectroscopic sources

in cell i, Ni is the number of target galaxies (per tomographic
bin) in cell i, and Nt is the total number of target galaxies in the
tomographic bin. A shear weight associated with each galaxy
can be introduced in this equation (e.g., Wright et al. 2020). As
described in Sect. 2.3, our SOM was consistently constructed
by training on LSST/Euclid photometry, even when studying
the shallower DES/Euclid configuration. We adopted this strat-
egy since the training spectroscopic samples in Euclid will be
acquired in calibration fields (e.g., Masters et al. 2019) with deep
dedicated imaging. This assumption implies that the target dis-
tribution 〈z〉 is estimated exclusively in these calibration fields,
which are covered with photometry from both our shallow and
deep setups, and therefore increases the influence of sample vari-
ance on the calibration.

The COSMOS-like sample. Applying direct calibration to
a heterogeneous training sample is less straightforward than in
the above cases as the training sample is not representative of
the target sample in any respect. Weighting of the spectroscopic
sample, therefore, must correct for the mix of spectroscopic
selection effects present in the training sample, as a function
of magnitude (from the various magnitude limits of the individ-
ual spectroscopic surveys), colour (from their various preselec-
tions in colour and spectral type), and redshift (from dedicated
redshift preselection, such as that in zCOSMOS-Faint). Such a
weighting scheme can be established efficiently with machine-
learning techniques such as the SOM. To perform this weight-
ing, we trained a new SOM using all the information that has
the potential to correct for the selection effects present in our
heterogeneous training sample: apparent magnitudes, colours,
and template-based photo-z. We created this SOM using only
the galaxies from the COSMOS-like sample that belong to the
considered tomographic bin and reduced the size of the map
to 400 cells (20 × 20, because the tomographic bin itself spans

a smaller colour space). Finally, we projected the target sam-
ple into the SOM and derived weights for each training sample
galaxy, such that they reproduce the per-cell density of target
sample galaxies. This process follows the same weighting pro-
cedure as Wright et al. (2020), who extended the direct calibra-
tion method of Lima et al. (2008) to include source groupings
defined via the SOM. In this method, the estimate of 〈z〉 is also
inferred using Eq. (2).

3.2. Results

We applied the direct calibration technique to the mock cata-
logue, which was split into ten tomographic bins spanning the
redshift interval 0.2 < zp < 2.2. To construct the samples
within each tomographic bin, the training and target samples are
selected based on their best-estimate photo-z, zp. We quantified
the performance of the redshift calibration procedure using the
measured bias in 〈z〉, defined as

∆〈z〉 =
〈z〉 − 〈z〉true

1 + 〈z〉true (3)

and evaluated over the target sample. We present the values of
∆〈z〉 that we obtained with direct calibration for each of the ten
tomographic bins in Fig. 3. The figure shows, per tomographic
bin, the population mean (points) and 68% population scatter
(errorbars) of ∆〈z〉 over the 18 photometric noise realisations of
our simulation. The solid lines and yellow region indicate the
|∆〈z〉| ≤ 2 × 10−3 requirement stipulated by the Euclid mission.
Given our limited number of photometric noise realisations, esti-
mating the population mean and scatter directly from the 18 sam-
ples is not sufficiently robust for our purposes. We thus used
maximum likelihood estimation, assuming Gaussianity of the
∆〈z〉 distribution, to determine the underlying population mean
and the scatter. We define these underlying population statistics
as µ∆z and σ∆z for the mean and the scatter, respectively.

We find that, when using a uniform or SOM training sam-
ple, direct calibration is consistently able to recover the target
sample mean redshift to |µ∆z| < 2 × 10−3. In the case of the shal-
low DES/Euclid configuration, however, the scatter σ∆z exceeds
the Euclid accuracy requirement in the highest and lowest tomo-
graphic bins. The DES/Euclid configuration is, therefore, tech-
nically unable to meet the Euclid precision requirement on 〈z〉 in
the extreme bins. In the LSST/Euclid configuration, conversely,
the precision and accuracy requirements are both consistently
satisfied. We hypothesise that this difference stems from the
deeper photometry having higher discriminatory power in the
tomographic binning itself: The N(z) distribution for each tomo-
graphic bin is intrinsically broader for bins defined with shal-
low photometry and therefore has the potential to demonstrate
greater complexity (such as colour-redshift degeneracies), which
reduces the effectiveness of direct calibration.

The direct calibration with the SOM relies on the assumption
that galaxies within a cell share the same redshift (Masters et al.
2015). Noise and degeneracies in the colour-redshift space intro-
duce a redshift dispersion within the cell that impacts the accu-
racy of 〈z〉. Even with the diversity of SEDs generated with
Horizon-AGN, and introducing noise into the photometry, we
find that the direct calibration with a SOM sample is sufficient to
reach the Euclid requirement.

We find that the COSMOS-like training sample is unable to
reach the required accuracy of Euclid. This behaviour is some-
what expected since the COSMOS-like sample contains selec-
tion effects that are not cleanly accessible to the direct calibration
weighting procedure. The mean redshift is particularly biased in
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Fig. 3. Bias on the mean redshift (see Eq. (3)) averaged over the 18
photometric noise realisations. The mean redshifts are measured using
the direct calibration approach. The tomographic bins are defined using
the DES/Euclid and LSST/Euclid photo-z in the top and bottom pan-
els, respectively. The yellow region represents the Euclid requirement
at 0.002 (1 + z) for the mean redshift accuracy, and the dashed blue
lines correspond to a bias of 0.005 (1 + z). The symbols represent the
results obtained with different training samples: (a) uniformly selecting
1000 galaxies per tomographic bin (black circles); (b) selecting two
galaxies per cell in the SOM (red squares); and (c) selecting a sam-
ple that mimics real spectroscopic survey compilations in the COSMOS
field (green triangles).

the bin 1.6 < z < 1.8, where there is a dearth of spectra; the
Comparat et al. (2015) sample is limited to z < 1.6, while the
zCOSMOS-Faint sample resides exclusively at z > 1.7, thereby
leaving the range 1.6 < z < 1.7 almost entirely unrepresented. In
this circumstance, our SOM-based weighting procedure is insuf-
ficient to correct for the heterogeneous selection, leading to bias.
This is typical in cases where the training sample is missing
certain galaxy populations that are present in the target sample
(Hartley et al. 2020). We note, though, that it may be possible
to remove some of this bias via careful quality control during
the direct calibration process, as demonstrated in Wright et al.
(2020). Whether such quality control would be sufficient to meet
the Euclid requirements, however, is uncertain.

We note that, although we are utilising photometric noise
realisations in our estimates of 〈z〉, the underlying mock cata-
logue remains the same. As a result, our estimates of µ∆z and
σ∆z are not impacted by sample variance. In reality, sample
variance affects the performance of the direct calibration, par-
ticularly when assuming that the training sample is directly rep-
resentative of the target distribution (as we do with our uniform
training sample). For fields smaller than 2 deg2, Bordoloi et al.

(2010) showed that Poisson noise dominates over sample vari-
ance (in mean redshift estimation) when the training sample con-
sists of fewer than 100 galaxies. Above this size, sample variance
dominates the calibration uncertainty. This means that, in order
to generate an unbiased estimate of 〈z〉 using a uniform sample
of 1000 galaxies, a minimum of ten fields of 2 deg2 would need
to be surveyed.

The SOM approach is less sensitive to sample variance, as
over-densities (and under-densities) in the target sample popu-
lation relative to the training sample are essentially removed in
the weighting procedure (provided that the population is present
in the training sample, Lima et al. 2008; Wright et al. 2020). In
the cells corresponding to this over-represented target popula-
tion, the relative importance of training sample redshifts will be
similarly up-weighted, thereby removing any bias in the recon-
structed N(z). Therefore, sample variance should only have a
weak impact on the global derived N(z) in this method. Nonethe-
less, sample variance may still be problematic if, for example,
under-densities result in entire populations being absent from the
training sample.

Finally, it is worth emphasising that these results are obtained
assuming a perfect knowledge of training set redshifts. We study
the impact of failures in spectroscopic redshift estimation in
Sect. 5.

4. Estimator based on redshift probabilities

In this section, we present another approach to redshift distribu-
tion calibration that uses the information contained in the galaxy
zPDF, which is available for each individual galaxy of the target
sample. Photometric redshift estimation codes typically provide
approximations to this distribution based solely on the available
photometry of each source. We study the performance of meth-
ods utilising this information in the context of Euclid and test a
method to de-bias the zPDF.

4.1. Formalism

Given the relationship between galaxy magnitudes and colours
(denoted o) and redshift z, one can utilise the conditional proba-
bility p(z|o) to estimate the true redshift distribution N(z) using
an estimator such as that from Sheth (2007), Sheth & Rossi
(2010):

N(z) =

∫
N(o) p(z|o) do =

Nt∑
i

pi(z|o), (4)

where N(o) is the joint n-dimensional distribution of colours
and magnitudes. As made explicit in the above equation, the
N(z) estimator simply reduces to the sum of the individual (per-
galaxy) conditional redshift probability distributions, pi(z|o). A
shear weight associated with each galaxy can be introduced in
this equation (e.g., Wright et al. 2020). It is worth noting that this
summation over conditional probabilities is ideologically similar
to the summation of SOM-cell redshift distributions presented
previously; in both cases, one effectively builds an estimate of
the probability p(z|o) and uses this to estimate 〈z〉. Indeed, it is
clear that the SOM-based estimate of 〈z〉 presented in Eq. (2)
does in fact follow directly from Eq. (4).

Generally, photometric redshift codes output a normalised
likelihood function that provides the probability of the observed
photometry if given the true redshift, L(o|z), or sometimes the
posterior probability distribution, P(z|o) (e.g., Benítez 2000;
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Bolzonella et al. 2000; Arnouts et al. 2002; Cunha et al. 2009).
These two probability distribution functions are related through
the Bayes’ theorem as

P(z|o) ∝ L(o|z) Pr(z), (5)

where Pr(z) is the prior probability.
Photometric redshift methods that invoke template fitting,

such as the LePhare photo-z estimation code, generally explore
the likelihood of the observed photometry given a range of theo-
retical templates, T, and true redshifts, L(o|T, z). The full likeli-
hood,L(o|z), is then obtained by marginalising over the template
set:

L(o|z) =
∑

T

L(o|T, z). (6)

In the full Bayesian framework, however, we are instead inter-
ested in the posterior probability, rather than the likelihood.
In the formulation of this posterior, we first made explicit the
dependence between galaxy colours, c, and magnitude in one
(reference) band, m0: o = {c,m0}. Following Benítez (2000),
we were then able to define the posterior probability distribution
function,

P(z|c,m0) ∝
∑

T

L(c|T, z) Pr(z|T,m0) Pr(T |m0), (7)

where Pr(z|T,m0) is the prior conditional probability of redshift
given a particular galaxy template and reference magnitude and
Pr(T |m0) is the prior conditional probability of each template at
a given reference magnitude. Under the approximation that the
redshift distribution does not depend on the template, and that
the template distribution is independent of the magnitude (i.e.
the luminosity function does not depend on the SED type), one
obtains

P(z|c,m0) ∝
∑

T

L(c|T, z) Pr(z|m0), (8)

∝ L(c|z) Pr(z|m0). (9)

Adding the template dependency in the prior would improve our
results, but this is impractical with the iterative method presented
in Sect. 4 given the size of our sample.

The posterior probability P(z|o) is a photometric estimate of
the true conditional redshift probability p(z|o) in Eq. (4), and
thus we are able to estimate the target sample N(z) via the stack-
ing of the individual galaxy posterior probability distributions,

N(z) =

Nt∑
i

Pi(z|o), (10)

and therefore

〈z〉 =

∫
z
[∑Nt

i Pi(z|o)
]

dz∫ [∑Nt
i Pi(z|o)

]
dz
· (11)

4.2. Initial results

In this analysis, we used the LePhare code, which outputsL(o|z)
for each galaxy as defined in Eq. (6). The redshift distribution
(and thereafter its mean) are obtained by summing galaxy pos-
terior probabilities, which are derived as in Eq. (9). This raises,
however, an immediate concern: In order to estimate the N(z)
using the per-galaxy likelihoods, we require a prior distribution

of magnitude-dependant redshift probabilities, Pr(z|m0), which
naturally requires knowledge of the magnitude-dependent red-
shift distribution.

We tested the sensitivity of our method to this prior choice
by considering priors of two types: a (formally improper) ‘flat
prior’ with Pr(z|m0) = 1; and a ‘photo-z prior’ that is con-
structed by normalising the redshift distribution, estimated per
magnitude bin, as obtained by summation over the likelihoods
(following Brodwin et al. 2006). Formally, this photo-z prior is
defined as

Pr(z|m0) =

Nt∑
i

Li(o|z) Θ(m0,i|m0), (12)

where Θ(m0,i|m0) is unity if m0,i is inside the magnitude bin cen-
tred on m0 and zero otherwise, and Nt is the number of galaxies
in the tomographic bin.

We estimated 〈z〉 in the previously defined tomographic bins
using Eq. (11). In the upper-left panel of Fig. 4, we show esti-
mated (and true) N(z) for one tomographic bin with 1.2 < zp <
1.4, estimated using DES/Euclid photometry. We annotate this
panel with the estimated ∆〈z〉 made when utilising our two dif-
ferent priors. It is clear that the choice of prior, in this circum-
stance, can have a significant impact on the recovered redshift
distribution. We also find an offset in the estimated redshift dis-
tributions with respect to the truth, as confirmed by the asso-
ciated mean redshift biases being considerable, |∆〈z〉| > 0.012,
which is roughly six times larger than the Euclid accuracy
requirement.

The resulting biases estimated for this method in all tomo-
graphic bins, averaged over all noise realisations, is presented
in the left-most panels of Fig. 5 (for both the DES/Euclid and
LSST/Euclid configurations). Overall, we find that this approach
produces mean biases of |µ∆z| > 0.02 (1 + z) and |µ∆z| >
0.01 (1+z), which correspond to roughly ten and five times larger
than the Euclid accuracy requirement for the DES/Euclid and
LSST/Euclid cases, respectively. Such bias is created by the mis-
match between the simple galaxy templates included in LePhare
(in a broad sense, including dust attenuation and intergalactic
medium absorption) and the complexity and diversity of galaxy
spectra generated in the hydrodynamical simulation. Such biases
are in agreement with the usual values observed in the literature
with broadband data (e.g., Hildebrandt et al. 2012). We there-
fore conclude that the use of such a redshift calibration method
is not feasible for Euclid, even under optimistic photometric
circumstances.

4.3. Redshift probability de-biasing

In the previous section, we demonstrated that the estimation
of galaxy redshift distributions via the summation of individ-
ual galaxy posteriors, P(z), estimated with a standard template-
fitting code, is too inaccurate for the requirements of the
Euclid survey. The cause of this inaccuracy can be traced to
a number of origins: colour-redshift degeneracies, template set
non-representativeness, redshift prior inadequacy, and more.
However, it is possible to alleviate some of this bias, statis-
tically, by incorporating additional information from a spec-
troscopic training sample. In particular, Bordoloi et al. (2010)
proposed a method to de-bias P(z) distributions using the
probability integral transform (PIT, Dawid 1984). The PIT
of a distribution is defined as the value of the cumulative
distribution function evaluated at the ground truth. In the case
of redshift calibration, the PIT per galaxy is therefore the value
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Fig. 4. Examples of redshift distributions (left) and PIT distributions (right; see text for details) for a tomographic bin selected to 0.8 < zp < 1
using DES/Euclid photo-z. In these examples, we assume a training sample extracted from a SOM, with two galaxies per cell. Top and bottom
panels: results before and after zPDF de-biasing, respectively. Redshift distributions and PITs are shown for the true redshift distribution (blue)
and redshift distributions estimated using the zPDF method when incorporating photo-z (red) and uniform (black) priors.

of the cumulative P(z) distribution evaluated at source spectro-
scopic redshift zs:

PIT = C(zs) =

∫ zs

0
P(z) dz. (13)

If all the individual galaxy redshift probability distributions are
accurate, the PIT values for all galaxies should be uniformly
distributed between 0 and 1. Therefore, using a spectroscopic
training sample, any deviation from uniformity in the PIT distri-
bution can be interpreted as an indication of bias in individual
estimates of P(z) per galaxy. We define NP as the PIT distribu-
tion for all the galaxies within the training spectroscopic sample
in a given tomographic bin. Bordoloi et al. (2010) demonstrate
that the individual P(z) can be de-biased using the NP as

Pdeb(z) = P(z) × NP[C(z)]
[∫ 1

0
NP(x) dx

]−1

, (14)

where Pdeb(z) is the de-biased posterior probability and the last
term ensures correct normalisation. This correction is performed
per tomographic bin.

This method assumes that the correction derived from the
training sample can be applied to all galaxies of the target sam-
ple. As with the direct calibration method, such an assumption
is valid only if the training sample is representative of the target

sample (i.e. in the case of a uniform training sample), which is
not the case for the COSMOS-like or SOM training samples. In
these cases, we weight each galaxy of the training sample in a
manner equivalent to the direct calibration method (see Sect. 3)
in order to ensure that the PIT distribution of the training sample
matches that of the target sample (which is, of course, unknown).
As for direct calibration, a completely missing population (in
redshift or spectral type) could impact the results in an unknown
manner, but such a case should not occur for a uniform or SOM
training sample.

Until now, we have considered two types of redshift prior
(defined in Sect. 4.2): (1) the flat prior and (2) the photo-z
prior. We have shown that the choice of prior can have a sig-
nificant impact on the recovered 〈z〉 (Sect. 4.2). However, as
already noted by Bordoloi et al. (2010), the PIT correction has
the potential to account for the redshift prior implicitly. In par-
ticular, if one uses a flat redshift prior, the correction essentially
modifies L(z) to match the true P(z) (if the various abovemen-
tioned assumptions are satisfied). This is because the redshift
prior information is already contained within the training spec-
troscopic sample. Nonetheless, rather than assuming a flat prior
to measure the PIT distribution, one can also adopt the photo-z
prior (as in Eq. (12)). This approach has two advantages: (1) It
allows us to start with a posterior probability that is intrinsically
closer to the truth, and (2) it includes the magnitude dependence
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of the redshift distribution within the prior, which is, of course,
not reflected in the case of the flat prior.

Therefore, we improved the de-biasing procedure from
Bordoloi et al. (2010) by including such a photo-z prior. We
added an iterative process to further ensure the correction’s
fidelity and stability. In this process, the PIT distribution is iter-
atively recomputed by updating the photo-z prior. We computed
the PIT for the galaxy as

Cn(zs) =

∫ zs

0
L(z) Prn(z|m0) dz, (15)

where Prn(z|m0) is the prior computed at step n. We can then
derive the de-biased posterior as

Pn
deb(z) = L(z) Prn(z|m0) × Nn

P[Cn(z)], (16)

where Nn
P is the PIT distribution at step n. The prior at the next

step is

Prn+1(z|m0) =

NT∑
i

Pn
deb,i(z|o) Θ(mi|m0), (17)

where mi is the magnitude of the galaxy i. It should be noted
that we assume a flat prior at n = 0. Therefore, the step n =
0 of the iteration corresponds to the de-biasing assuming a flat
prior, as in Bordoloi et al. (2010). We also note that the prior is
computed for the NT galaxies of the training sample in the de-
biasing procedure, while it is computed over all galaxies of the
tomographic bin for the final posterior.

As an illustration, Fig. 2 shows the de-biased posterior dis-
tributions with black lines, which can significantly differ from
the original likelihood distribution. We find that this procedure
converges quickly. Typically, the difference between the mean
redshift measured at step n + 1 and that measured at step n does
not differ by more than 10−3 after two to three iterations.

As described in Appendix A, we also find that the de-biasing
procedure is considerably more accurate when the photo-z uncer-
tainties are overestimated, rather than underestimated. Such a
condition can be enforced for all galaxies by artificially inflat-
ing the source photometric uncertainties by a constant factor in
the input catalogue prior to the measurement of photo-z. In our
analysis, we utilised a factor of two inflation in our photomet-
ric uncertainties prior to the measurement of our photo-z in our
de-biasing technique.

4.4. Final results

We illustrate the impact of the P(z) de-biasing on the recov-
ered redshift distribution in the lower panels of Fig. 4. This
figure presents the case of the redshift bin 0.8 < zp < 1 in
the DES/Euclid configuration. The N(z) and PIT distributions, as
computed with the initial posterior distribution, are shown in the
upper panels (for both of our assumed priors). The distributions
after de-biasing are shown in the bottom panels. We can see the
clear improvement provided by the de-biasing procedure in this
example, whereby the redshift distribution bias ∆〈z〉 (annotated)
is reduced by a factor of ten. We also observe a clear flattening
of the target sample PIT distribution.

We present the results of de-biasing on the mean redshift
estimation for all tomographic bins in Fig. 5. The three right-
most panels show the mean redshift biases recovered by our
de-biasing method, averaged over the 18 photometric noise real-
isations, for our three training samples. The accuracy of the
mean redshift recovery is systematically improved compared to

the case without P(z) de-biasing (shown in the left column). In
the DES/Euclid configuration, for instance (shown in the upper
row), the improvement is better than a factor of ten at z > 1.
In the LSST/Euclid configuration (shown in the bottom row),
we find that the results do not depend strongly on the training
set used: The accuracy of 〈z〉 is similar for the three training
samples, showing that stringent control of the representative-
ness of the training sample is not necessary in this case. In the
DES/Euclid case, however, the SOM training sample clearly out-
performs the other training samples, especially at low redshifts.
Finally, we note that the iterative procedure using the photo-z
prior improves the results when using the SOM training sample
and the DES/Euclid configuration.

Overall, the Euclid requirement on redshift calibration accu-
racy is not reached by our de-biasing calibration method in
the DES/Euclid configuration. The values of µ∆z at z < 1 are
five times too high compared to the Euclid requirement, repre-
sented by the yellow bands in Fig. 5. At best, an accuracy of
|µ∆z| ≤ 0.004 (1+ z) is reached for the SOM training sample with
the photo-z prior. Conversely, the Euclid requirement is largely
satisfied in the LSST/Euclid configuration. In this case, biases of
|µ∆z| ≤ 0.002 (1 + z) are observed in all but the two most extreme
tomographic bins: 0.2 < z < 0.4 and 2 < z < 2.2. We therefore
conclude that, for this approach, deep imaging data are crucial
for reaching the required accuracy on mean redshift estimates
for Euclid.

5. Discussion on key model assumptions

In this section, we discuss how some important parameters
or assumptions impact our results. We start by discussing the
impact of catastrophic redshift failures in the training sample,
the impact of our preselection on photometric redshift uncer-
tainty, and the influence of the size of the training sample on
our conclusions. We also discuss some remaining limitations of
our simulation in the last subsection.

5.1. Impact of catastrophic redshift failures in the training
sample

For all results presented in this work so far, we have assumed
that spectroscopic redshifts perfectly recover the true redshift of
all training sample sources. However, given the stringent limit
on the mean redshift accuracy in Euclid, deviations from this
assumption may introduce significant biases. In particular, mean
redshift estimates are extremely sensitive to redshifts far from
the main mode of the distribution, and therefore catastrophic red-
shift failures in spectroscopy may present a particularly signifi-
cant problem. For instance, if 0.5% of a galaxy population with
a true redshift of z = 1 are erroneously assigned zs > 2, then
this population will exhibit a mean redshift bias of |µ∆z| > 0.002
under direct calibration.

Studies of duplicated spectroscopic observations in deep sur-
veys have shown that there exists, typically, a few percent of
sources that are assigned both erroneous redshifts and high con-
fidences (e.g., Le Fèvre et al. 2005). Such redshift measurement
failures can be due to misidentification between emission lines,
incorrect associations between spectra and sources in photo-
metric catalogues, and/or incorrect associations between spec-
tral features and galaxies (due, for example, to the blending
of galaxy spectra along the line of sight Masters et al. 2017;
Urrutia et al. 2019). Of course, the fraction of redshift measure-
ment failures is dependant on the observational strategy (e.g.,
spectral resolution) and the measurement technique (e.g., the
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Fig. 5. Bias on the mean redshift (see Eq. (3)) estimated using the zPDF method and averaged over the 18 photometric noise realisations. Top and
bottom panels: correspond to the mock DES/Euclid and LSST/Euclid catalogues, respectively. We note the differing scales in the y-axes of the two
panels. Left panels: are obtained by summing the initial zPDF without any attempt at de-biasing. The other panels show the results of summing the
zPDF after de-biasing, assuming (from left to right) a uniform, SOM, and COSMOS-like training sample. The yellow region represents the Euclid
requirement of |∆〈z〉| ≤ 0.002 (1 + z). The red circles and black triangles in each panel correspond to the results estimated using photo-z and flat
priors, respectively.

number of reviewers per observed spectrum). The incorrect asso-
ciation of stars and galaxies can also create difficulties. Further-
more, the frequency of redshift measurement failures is expected
to increase as a function of source apparent magnitude, which is
a particular problem for the faint sources probed by Euclid imag-
ing (VIS < 24.5).

As we cannot know a priori the number (nor location) of
catastrophic redshift failures in a real spectroscopic training
set, we instead estimated the sensitivity of our results to a
range of catastrophic failure fractions and modes. We assumed a
SOM-based training sample and an LSST/Euclid photometric
configuration and distributed various fractions of spectroscopic
failures throughout the training sample, simulating both random
and systematic failures. Generally, though, because these failures
occur in the spectroscopic space, recovered calibration biases are
largely independent of the depth of the imaging survey and the
method used to build the training sample.

We started by testing the simplest possible mechanism of
distributing the failed redshifts, by assigning failed redshifts

uniformly within the interval 0 < z < 4. Resulting calibration
biases for this mode of catastrophic redshift failure are presented
in the left panels of Fig. 6. We find that, for the direct calibra-
tion approach (top panel), the limit to bias the mean redshift by
|µ∆z| > 0.002 at low redshifts in the training sample is as low as
0.2% of failures (by definition, flag 3 in the VIMOS VLT Deep
Survey (VVDS) could include 3% of failures; Le Fèvre et al.
2005). We also find that the bias decreases with redshift and
reaches zero at z = 2. This is a statistical effect; our assumed uni-
form distribution has a z = 2 mean, and so random catastrophic
failures scattered about this point induce no shift in a z ≈ 2 tomo-
graphic bin. For the same reason, biases would be significant in
the two extreme tomographic bins if we were to assume a catas-
trophic failure distribution that followed the true N(z) (which
peaks at z ≈ 1). In contrast, our de-biased zPDF approach is
found to be resilient to catastrophic failure fractions as high as
3.0% (bottom panel). In that case, only an unlikely failure frac-
tion of 10% would bias the mean redshift by |µ∆z| ≥ 0.002 (1+z).
We interpret this result as a demonstration of the low sensitivity
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Fig. 6. Bias on the mean redshift averaged over the 18 photometric noise
realisations in the LSST/Euclid case. We assume a SOM training sam-
ple, and the different symbols correspond to various fractions of failure
introduced in the spec-z training sample. Left and right panels: corre-
spond to different assumptions on how to distribute the catastrophic
failures in the spec-z measurements: uniformly distributed between
0 < z < 4 (left) and assuming the failures are caused by misclassi-
fied emission lines (right). Upper and lower panels: correspond to the
direct calibration and de-biasing methods, respectively.

of the PIT distribution to redshift failures in the training sam-
ple. This is related to the fact that the PIT distribution provides a
global statistical correction that is only weakly sensitive to indi-
vidual galaxy redshifts.

In the previous test, we assigned the failed redshifts uni-
formly within the interval 0 < z < 4, which is not the expected
distribution when redshift failures occur from the misidenti-
fication of spectral emission lines (e.g., Le Fèvre et al. 2015;
Urrutia et al. 2019). This mode of failure leads to a highly
non-uniform distribution of failed redshifts due to the interplay
between the location of spectral emission lines and the redshift
distribution of training sample galaxies. If a line emitted at λtrue
is misclassified as a different emission line at λwrong, the redshift
is therefore assigned to be

zwrong =
λtrue

λwrong
(1 + ztrue) − 1. (18)

We studied the impact of such line misidentifications on our
estimates of 〈z〉 by introducing redshift failures in the simula-
tion with the following four assumptions: (1) If ztrue < 0.5, we
assume that the Hα emission line can be misclassified as [Oii];
(2) if 0.5 < ztrue < 1.4, we assume that [Oii] can be misclassi-
fied as Hα (for bright sources) or Lyα (for faint sources, using
i = 23.5 as a limit); (3) at 1.4 < ztrue < 2.0, we assume that the
redshift is estimated using NIR spectra and therefore that the Hα
line can be misclassified as [Oii]; and (4) for sources at z > 2,
we assume that Lyα can be misclassified as [Oii].

The same fraction of misclassifications is assumed in all the
redshift intervals. The result of this experiment is shown in the
right panels of Fig. 6 and demonstrates that this (more realis-
tic) mode of catastrophic failures results in equivalent levels of

bias as was seen in our simple (uniform) mode, albeit in differ-
ent tomographic bins. This confirms that the sensitivity of the
direct calibration method to catastrophic redshift failures exists
across simplistic and complex failure modes. In this mode, a
failure fraction of 0.2% is sufficient to bias direct calibration at
|µ∆z| ≥ 0.002 (1 + z) in all tomographic bins with zp > 0.6. This
highlights that the calibration bias depends on the exact distri-
bution of failed redshifts: In the case of line misidentification,
incorrectly assigned redshifts consistently bias spectra to higher
redshifts, causing 〈z〉 to be affected more heavily over the full
redshift range.

We compared our result to the simulation of Wright et al.
(2020). They investigate the impact of catastrophic spec-z fail-
ures on the estimate of 〈z〉 (for KiDS cosmic shear analyses)
in the MICE2 simulation (Fosalba et al. 2015). They introduced
1.03% of failed redshifts following various distributions. In par-
ticular, they tested the case of a uniform distribution within
0 < z < 1.4, where z = 1.4 is the limiting redshift of the
MICE2 simulation. They report a bias in their direct calibration
of ∆〈z〉 = 0.0029 for their lowest redshift tomographic bin, and
smaller biases for higher redshift tomographic bins. In our low-
est redshift bin, we observe a bias of ∆〈z〉 = 0.01 for a similar
analysis. We argue that this is entirely consistent with the results
of Wright et al. (2020) given that our considered redshift range
is almost three times larger. Wright et al. (2020) conclude that
spec-z failures are unlikely to influence cosmic shear analyses
with the KiDS survey, which are limited to z < 1.2, but may
be significant for Euclid-like analyses. In this way, our results
also agree; it is clear that direct calibration for next genera-
tion (so-called Stage IV) cosmic-shear surveys such as Euclid
will require careful consideration of the influence of catastrophic
spectroscopic failures.

The training sample for Euclid is currently being built with
the C3R2 survey (Masters et al. 2019; Guglielmo et al. 2020).
Such a sample results from a combination of spectra com-
ing from numerous instruments installed on 8-metre class tele-
scopes (e.g., VIMOS, FORS2, KMOS, DEIMOS, LRIS, and
MOSFIRE) and including data from previous spectroscopic sur-
veys (e.g., Lilly et al. 2007; Le Fèvre et al. 2015; Kashino et al.
2019). The most robust spec-z acquired on the Euclid Deep
Fields with the NISP instrument will be included. Given the
diversity of observations, a careful assessment of the sample
purity is necessary to limit the fraction of failures below 0.2%.
Encouragingly, Masters et al. (2019) do not find any redshift fail-
ures within the 72 C3R2 spec-z with duplicated observations.
Nonetheless, a larger sample of confirmed spectra is necessary to
demonstrate that fewer than 0.2% of spectroscopic redshift mea-
surements suffer catastrophic failure. Finally, it is possible that
the improved reliability of both direct calibration methods and
spectroscopic confidence could decrease the effects seen here:
Wright et al. (2020), for example, advocate a means of clean-
ing cosmic shear photometric samples of sources with poorly
constrained mean redshifts, demonstrating that this can cause a
considerable reduction in calibration biases. Of course, the prob-
lem could possibly be alleviated if one were able to improve the
reliability of the training sample by only including spec-z with
corroborative evidence from, for example, high-precision photo-
z derived from deep photometry in the calibration fields.

5.2. Relaxing the photo-z σzp preselection

Estimates of the redshift distribution mean are also sensitive to
the presence of secondary modes in the redshift distribution, as
well as our ability to reconstruct them. As described in Sect. 2.2,
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Fig. 7. Bias on the mean redshift (see Eq. (3)), averaged over the 18
photometric noise realisations, under different σzp selection thresholds.
Top panels: fraction of the sample retained after having applied different
σzp thresholds. Middle and bottom panels: bias on the mean redshift
using the direct calibration and de-biasing techniques, respectively. The
left and right panels correspond to the DES/Euclid and LSST/Euclid
configurations, respectively. We assume a SOM training sample with 2
galaxies per cell.

all results presented thus far have invoked a selection on the pho-
tometric redshift uncertainty of σzp < 0.3, which reduces the
likelihood of secondary redshift distribution peaks in our analy-
sis. Here we discuss the impact of this adopted threshold on both
the accuracy of our estimates of 〈z〉 and on the fraction of pho-
tometric sources that satisfy this selection (and so are retained
for subsequent cosmic shear analysis). We applied several σzp

thresholds in the range σzp ∈ [0.15, 0.6] to the full photo-z cat-
alogue. For the training sample, we considered the SOM con-
figuration with two galaxies per cell. The results are shown in
Fig. 7 for the DES/Euclid (left) and LSST/Euclid (right) config-
urations. We find that the σzp threshold does not influence our
conclusions regarding the direct calibration approach, which is
largely insensitive to variations in this threshold. We note, how-
ever, that the scatter on the mean redshift (σ∆z, shown by the
errorbars) increases well above the Euclid requirement (for the
DES/Euclid configuration) when selecting photo-z with σzp <
0.15; however, this is primarily because such a selection drasti-
cally reduces the size of the training sample at z > 1.2, increasing
the influence of Poisson noise. Therefore, given the insensitiv-
ity of the direct calibration to this threshold, it is advantageous
to keep galaxies with broad redshift likelihoods in the target
sample when using this method. Conversely, σzp has a decisive
impact on the accuracy of mean redshift estimates inferred from
the de-biased zPDF approach. For instance, in the DES/Euclid
configuration, |µ∆z| is strongly degraded when applying a thresh-
old of σzp < 0.6. Such a threshold on σzp could be relaxed in
the LSST/Euclid configuration, however, primarily because the
sample is already dominated by galaxies with a narrow zPDF.

Not considered in the above, however, is the importance
that the target sample number density plays in cosmic shear

analyses. Cosmological constraints from cosmic shear are
approximately proportional to the square root of the size of the
target galaxy sample, as well as to the mean redshift. Therefore,
optimal lensing surveys require a sufficiently high surface den-
sity of sources, preferentially at high redshifts. In the Euclid
project, 30 galaxies per arcmin2 are required to reach their
planned scientific objectives (Laureijs et al. 2011). As shown in
the top panels of Fig. 7, however, applying a threshold on σzp

naturally introduces a reduction in the size of the target sample.
For instance, we keep fewer than 10% of the galaxies at z > 1.4
by selecting a sample at σzp < 0.15 in the DES/Euclid config-
uration. In the LSST/Euclid case, a threshold of σzp < 0.3 only
has a significant impact in the redshift bins above z > 1.6. A
compromise is therefore needed between the number of sources
retained in the target sample and the accuracy of the mean red-
shift that we estimate for these sources (when using the de-
biasing technique). We have not attempted to estimate what this
optimal selection would be using our simulations as the lumi-
nosity function predicted by Horizon-AGN does not perfectly
reproduce what is found in real data. Nonetheless, we note that
the fraction of galaxies that are removed from the target sample
is likely overestimated here: Modern cosmic shear analyses typ-
ically introduce a weight associated with the accuracy of each
source’s shape measurement (the ‘shear weight’, which is not
included in our simulations), which systematically decreases the
contribution of low signal-to-noise galaxies to the analysis. As
these fainter sources have intrinsically broader photo-z distribu-
tions, they will be the most heavily affected by our cuts on σzp .

5.3. Size of the training sample

The size of the training sample is naturally of the highest impor-
tance when using the direct calibration approach (e.g., Newman
2008). The de-biased zPDF approach, though, is also sensitive
to statistical noise in the PIT distribution. As some ongoing
spectroscopic surveys are designed to produce the training sam-
ples for Stage IV weak-lensing experiments (e.g., Masters et al.
2017), we explore here the minimal size of these samples
required for accurate redshift calibration. To do this, we mod-
ified the size of the training samples (limiting our analysis to the
uniform and SOM training sample cases). We did not consider
the COSMOS-like case that is a patchwork of existing surveys
and which is not specifically designed for weak-lensing experi-
ments. For the uniform training samples, we tested the cases with
500, 1000, and 2000 galaxies per tomographic bin. For the SOM
training samples, we tested the cases corresponding to cells filled
with one, two, or three galaxies.

Figure 8 shows the impact of the training sample size on ∆〈z〉.
We find that the mean bias µ∆z always remains within the Euclid
requirements for the direct calibration approach. The scatter σ∆z
in the bias exceeds the Euclid requirements in a few tomographic
bins, though only when considering the smallest training sam-
ples: The Euclid requirements are fully satisfied in all tomo-
graphic bins when assuming a training sample with more than
1000 galaxies per bin or more than two galaxies per SOM cell.
With the de-biased zPDF approach, we find that increasing the
size of the training sample is not sufficient to reduce the residual
bias in the method; instead, deeper photometry is preferable for
improving the quality of the initial zPDF.

5.4. Catastrophic failures within the photo-z sample

Catastrophic failures in the photo-z sample are a concern
for both of the methods described in this paper. We discuss
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Fig. 8. Bias on the mean redshift (see Eq. (3)) averaged over the 18
photometric noise realisations and the impact of the training sample
size on the mean redshift accuracy in the LSST/Euclid case. Left and
right panels: correspond to uniform and SOM spectroscopic coverage,
respectively. Top panels: number of galaxies used for the training in
the three considered cases. Middle and bottom panels: mean redshift
accuracy using the direct calibration and the optimised zPDF methods,
respectively.

here their impact as well as the remaining limitations of our
simulation.

As shown in Fig. 1, our simulated sample already includes
a significant fraction of photo-z outliers, defined such that |zp −

zs| > 0.15 (1 + zs). We find 16.24% and 0.70% of outliers at
VIS < 24.5 in DES/Euclid and LSST/Euclid, respectively. These
fractions reduce to 1.82% and 0.04% when applying a selection
on the photometric redshift uncertainty at σzp < 0.3. The largest
fraction of these outliers is due to the degeneracies in the colour-
redshift space inherent to the use of low signal-to-noise photom-
etry in several bands. However, less trivial catastrophic failures
are also present in the simulation. In particular, the diversity of
spectra generated by the complex physical processes in Horizon-
AGN is not fully captured by the limited set of SED templates
used in LePhare. This misrepresentation in galaxy SED creates
a significant fraction of zPDFs that are not compatible with the
spec-z. An example of such an L(z) is shown in the bottom-right
panel of Fig. 2. Despite the presence of such failures, our results
show that the Euclid requirement is fulfilled.

Several factors that could potentially create more catas-
trophic failures in the photo-z were ignored. Galaxies with
extreme properties, such as sub-millimetre galaxies (SMGs),
are known to be underrepresented in simulations (e.g.,
Hayward et al. 2021). If galaxies with an extreme dust attenua-
tion fall within the cosmic-shear selection at VIS < 24.5 and are
selected in one tomographic bin, they could have an impact on
our results. Nonetheless, nothing indicates that their zPDF can-
not be correctly established from template fitting, nor that such
a population cannot be isolated in the multi-colour space with a
SOM.

The presence of AGN could also be a problem. These sources
can be isolated from their SEDs (Fotopoulou & Paltani 2018),

identified as point-like sources for quasi-stellar objects, and
identified as X-ray sources with eROSITA (Merloni et al. 2012).
We should, though, fail to isolate AGN with extended morpholo-
gies or that are too faint to be detected in X-ray. Salvato et al.
(2011) find, however, that standard galaxy SED libraries are suf-
ficient to obtain accurate photo-z for such sources.

Residual contamination from stars could also bias 〈z〉. This
population preferentially contaminates specific tomographic
bins. In particular, stars may bias the mean redshift towards
higher values for both the direct calibration and de-biased zPDF
methods. A morphological selection based on high-resolution
VIS images, combined with a colour selection that includes NIR
photometry (e.g., Daddi et al. 2004), is efficient at isolating them
(Fotopoulou & Paltani 2018). A minimal contamination could
bias the mean redshift at a level similar to the one discussed in
Sect. 5.1. Nonetheless, future simulations need to include stellar
and AGN populations to better assess the level of contamination
of the galaxy sample and its impact on the Euclid requirement.

Finally, Laigle et al. (2019) show that the fraction of out-
liers in Horizon-AGN remains underestimated relative to the real
dataset. One source of discrepancy originates from not taking
the uncertainties induced by source extraction in images into
account. Bordoloi et al. (2010) estimate that 10% of the sources
could potentially be blended and that the likelihood of two
blended galaxies with a magnitude difference lower than two is
affected in an unpredictable way. Over the last decade, numerous
source extraction methods have been developed to perform pho-
tometry in crowded fields (De Santis et al. 2007; Laidler et al.
2007; Merlin et al. 2016; Lang et al. 2016), which could miti-
gate the impact of blending. Therefore, a new set of simulations
that include images and such source extraction tools should be
considered in the future.

6. Application to real data

In this section, we apply the two approaches presented in Sects. 3
and 4 to real data. We use existing imaging surveys and associ-
ated photo-z to define several tomographic bins. In each tomo-
graphic bin, we select a sub-sample of spec-z for which the mean
redshift 〈z〉true is known. We refer to this sample as the target
sample, and the goal is to retrieve the mean redshift using only
the photometric catalogue and an independent training sample.
As previously, we measure ∆〈z〉 as defined in Eq. (3) in each
tomographic bin.

6.1. The COSMOS survey

We first investigated a favourable configuration, where the pho-
tometric survey is much deeper than the target sample. We aim
at measuring the mean redshift of the Large Early Galaxy Astro-
physics Census (LEGA-C) galaxies (van der Wel et al. 2016)
selected in the tomographic bin at 0.7 < zp < 0.9. We based
our estimate of 〈z〉 on the COSMOS broadband photometry and
associated zPDF. The imaging sensitivity is three magnitudes
deeper than that of the target sample. All the spec-z available on
the COSMOS field (excluding the LEGA-C ones) are used for
the training. For the direct calibration approach, we obtain a bias
of µ∆z = 0.00032 and a scatter of σ∆z = 0.00135, an accuracy
well within the Euclid requirement. Secondly, we de-biased the
zPDF using the PIT distribution as discussed in Sect. 4.3. In that
case, we obtain a mean redshift with a bias of µ∆z = −0.00046
and a scatter of σ∆z = 0.00073. In the case of a target sample
associated with much deeper photometry, we thus reach the
0.002 (1 + z) accuracy requirement of Euclid, using either the
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Table 1. Differences between the mean redshifts reconstructed with different methods (direct calibration and de-biased zPDF) and 〈z〉true, divided
by (1 + 〈z〉true).

zmin zmax % kept Ntrain Direct zPDF w/ zPDF w/
calib. flat prior photo-z prior
[10−2] [10−2] [10−2]

σzp < 0.3
0.10 0.30 79.80 1192.00 1.72 2.78 0.94
0.30 0.50 72.10 2156.00 0.64 0.33 0.36
0.50 0.70 55.60 1497.00 −0.57 −0.88 −0.28
0.70 0.90 68.70 1822.00 −0.65 −1.38 −0.89
0.90 1.20 62.00 892.00 0.10 0.29 −0.22

σzp < 0.6
0.10 0.30 96.60 1318.00 1.34 3.19 −0.88
0.30 0.50 89.40 2321.00 −0.56 0.48 −0.40
0.50 0.70 80.80 1845.00 −1.26 −2.60 −1.50
0.70 0.90 89.60 2094.00 −0.34 −1.75 −0.79
0.90 1.20 81.70 1057.00 0.38 1.16 −0.03

σzp < 1.2
0.10 0.30 97.80 1326.00 1.37 3.50 −1.01
0.30 0.50 93.90 2357.00 −0.38 0.90 −0.46
0.50 0.70 88.20 1886.00 −0.92 −2.42 −1.63
0.70 0.90 93.70 2131.00 −0.11 −1.67 −0.92
0.90 1.20 90.40 1116.00 1.66 2.67 0.43

Notes. The KiDS+VIKING-450 survey is split into five tomographic bins. We use VVDS/DEEP2 as the target sample and COSMOS as the
training one. In the top part of the table, photo-z are selected with σzp < 0.3, while the bottom parts show a selection at σzp < 0.6 and σzp < 1.2.
The fraction of galaxies kept after this selection is also shown (‘% kept’). We apply the same definition as Wright et al. (2020) to define the loss
of photometric sources (their Eq. (1)), including shear weights.

direct calibration or de-biased zPDF approaches. The details of
this measurement are given in Appendix B.

6.2. The KiDS+VIKING-450 survey

We now study a less favourable case where the photomet-
ric survey has a similar depth as the target sample. We mea-
sured the mean redshift in five tomographic bins extracted from
the KiDS+VIKING-450 imaging survey, which covers 341 deg2

(Wright et al. 2019). The survey combines the ugri-band pho-
tometry from KiDS with the ZY JHKs bands from VISTA Kilo
degree Infrared Galaxy (VIKING) photometry. We adopted the
method described in Sect. 2.2 to measure the photo-z. This leads
to a photo-z quality comparable to that obtained by Wright et al.
(2019), where σNMAD ∼ 0.045 at z < 0.9 and σNMAD ∼ 0.079
at z > 0.9. These photo-z were used to define five tomographic
bins over the photometric redshift interval 0.1 < z < 1.2, as in
Hildebrandt et al. (2020).

The KiDS+VIKING-450 survey encompasses the VVDS
(Le Fèvre et al. 2005) and DEEP2 (Newman et al. 2013) fields,
which contain spectroscopic redshifts. We aim at retrieving the
mean redshift of the VVDS/DEEP2 galaxies. By only select-
ing galaxies with secure spectroscopic redshifts and counter-
parts in the KiDS+VIKING-450 catalogue, we built a target
sample of 5794 galaxies3. The DEEP2 sample was selected at
R < 24.1 and z > 0.7, while the VVDS sample was purely
magnitude-limited at i < 24. Our target sample covers the full

3 We limit the risk of incorrect association between the photomet-
ric and spectroscopic sources by allowing a maximum angular sep-
aration of 0′′.3 in the match between the KiDS-VIKING+450 and
VVDS/DEEP2 catalogues.

redshift range of interest 0.1 < z < 1.2, with magnitude limits
similar to those used for the KiDS+VIKING-450 cosmic shear
analysis (Hildebrandt et al. 2020).

The KiDS+VIKING-450 imaging survey also covers the
COSMOS field, and we used the existing spec-z in the COSMOS
field as the training sample. We note that the training and tar-
get samples are located in different fields. Therefore, the sample
variance may impact our results. The COSMOS training sam-
ple contains 13 817 galaxies from the KiDS+VIKING-450 sur-
vey, after applying a redshift confidence selection. This highly
heterogeneous sample combines various spectroscopic surveys
covering a large range of magnitudes and redshifts (see Sect. 2.3
and Laigle et al. 2016, for more details).

We present our results in Table 1 for the five considered
tomographic bins. The upper section of the table shows the
fiducial case, where a σzp < 0.3 photo-z uncertainty selection
is applied. The direct calibration produces a bias of |∆〈z〉| <
0.01 (1+z), except in the lowest tomographic bin (0.1 < z < 0.3),
where it reaches |∆〈z〉| = 0.02 (1 + z). Using the de-biased
zPDF method, we find |∆〈z〉| . 0.01 (1 + z). In that case, the
σzp < 0.3 selection removes between 20% and 44% of the
full KiDS+VIKING-450 sample4. If we relax the selection on
the photo-z error, as presented in the lower section of Table 1,
the bias ∆〈z〉 increases with the de-biased zPDF approach, as
found in the simulation. Nonetheless, ∆〈z〉 remains around 1%,
which corresponds to an accuracy comparable to that obtain with
direct calibration. We note that the zPDF de-biasing technique
with the photo-z prior performs significantly better than with the
flat prior. Figure 9 illustrates the impact of the photo-z prior in

4 The representation fraction changes in each tomographic bin due to
correlations between spec-z and photo-z uncertainties.
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Fig. 9. Same as Fig. 4, except that this refers to real data from the KiDS+VIKING-450 photometric survey and the VVDS-DEEP2 target sample.
The sample is selected with a σzp < 0.6 threshold in the photo-z uncertainties.

recovering the shape of the redshift distribution, where we can
see a clear improvement below the main mode (bottom-left
panel). This result is confirmed in the other tomographic bins.

The depth of the KiDS imaging survey is similar to the
one we simulated for DES (5σ sensitivity between 23.6 and
25.1), while the VIKING photometry is much shallower than
the Euclid one (between 21.2 and 22.7 for VIKING). It is there-
fore encouraging to find a bias similar to that expected from
the simulation in the DES/Euclid configuration, even with shal-
lower imaging. We emphasise that our estimate is performed in
the worst possible conditions: (1) Our training sample does not
cover the same colour and magnitude space as our target sam-
ple, as shown in Wright et al. (2020), (2) the photometric cali-
bration could vary from field to field, and (3) some failures in
the spec-z target sample could bias the mean redshift consid-
ered as the truth. We know that a fraction of the target spec-z
could include catastrophic failures, possibly biasing our estimate
of 〈z〉true. Indeed, flag 3 in VVDS and DEEP2 are expected to be
97% and 95% correct, respectively, suggesting that a few percent
of failures may be present in those samples, thereby introducing
a bias in the true mean redshift, 〈z〉true, of more than 0.01, accord-
ing to Fig. 7. The presence of such a fraction of failures remains
difficult to verify. A comparison between duplicated observa-
tions in DEEP2 shows that the fraction of failures should be at
maximum 1.6% (Newman et al. 2013).

Finally, we note that our various selections on σzp prevent
us from directly comparing the recovered redshift distributions

with those published in Wright et al. (2019) and Joudaki et al.
(2020). Indeed, our selection on σzp preferentially removes the
faintest galaxies from the sample, thus shifting the intrinsic red-
shift distribution towards redshifts that are lower than expected
for the full KiDS+VIKING-450 sample.

7. Summary and conclusion

This paper investigates the possibility of measuring the mean
redshift 〈z〉 of a target sample of galaxies, in ten tomographic
bins from z = 0.2 to z = 2.2, with an accuracy of |∆〈z〉| <
0.002 (1+z), as stipulated by the Euclid mission requirements on
cosmic shear analysis. Naturally, the conclusions presented here
are equally applicable to all current and future surveys where
redshift calibration is a relevant challenge.

We applied two approaches, which are foreseen for the
Euclid mission: a direct calibration of 〈z〉 with a spectroscopic
training sample and the combination of individual zPDFs to
reconstruct the underlying redshift distribution. This paper anal-
yses in detail several factors that could impact these approaches
and provides recommendations on how to apply them success-
fully.

We used the Horizon-AGN hydrodynamical simulation
(Dubois et al. 2014), which allows a large diversity of modelled
SEDs, and created 18 mock Euclid-like catalogues with dif-
ferent realisations of the photometric noise. We simulated two
possible configurations, which should encompass the range of
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sensitivities of future imaging available for Euclid: (1) a shal-
low configuration combining DES and Euclid and (2) a deep
configuration combining LSST and Euclid. We measured the
photo-z of the simulated galaxies using the template-fitting code
LePhare, as performed in Laigle et al. (2019). Such a procedure
produces photometric redshifts with complex zPDFs, realistic
biases, and catastrophic failures. We also assumed different char-
acteristics for the spectroscopic training samples associated with
the mock catalogues. We considered several selection func-
tions and sample sizes and included possible failures in the
spec-z.

We first tested the direct calibration approach, where the
redshift distribution is directly estimated from existing spectro-
scopic redshifts in a training sample, applying necessary weights
to match this distribution to the target sample. We find that this
approach is efficient in recovering the mean redshift with an
accuracy of 0.002 (1 + z). The method is successful when based
on a representative spectroscopic coverage (uniform or SOM),
but the weighting scheme is not sufficient to correct for the
heterogeneity in the COSMOS-like training sample at the level
required by Euclid. This method is stable and robust and does not
require deep photometry such as that from LSST. However, we
find that the recovered mean redshift is extremely sensitive to the
presence of catastrophic failures in spectroscopic redshift mea-
surement. To recover unbiased estimates of 〈z〉, a careful quality
assessment of the spectroscopic redshifts must guarantee a frac-
tion of failures below 0.2%.

We then investigated the possibility of reconstructing the
redshift distribution from the zPDF produced by a template-
fitting photo-z code. As expected, we find that the quality of
the initial zPDF is not sufficient to measure 〈z〉 with an accu-
racy better than |∆〈z〉| < 0.01. We tested the method from
Bordoloi et al. (2010) to de-bias the zPDF. We improved it
by taking into account an appropriate prior combined with an
iterative correction of the zPDF. Our results are summarised
below.

– The mean redshift accuracy inferred from the de-biased
zPDF is systematically improved when compared to the one
inferred from the initial zPDF (by up to a factor ten).

– This method is weakly sensitive to the fraction of spec-z fail-
ures.

– Imaging depth is the primary factor in determining the effec-
tiveness of the de-biasing technique. We reach the Euclid
requirement when combining Euclid and LSST ground-
based images.

– Insufficient imaging depth can be compensated for by select-
ing well-peaked zPDFs, but it introduces considerable losses
to the target sample number density. A balance should there-
fore be established between the accuracy of 〈z〉 and the sta-
tistical signal of the cosmic shear analysis.

We tested the two approaches on real datasets from COSMOS
and KiDS+VIKING-450 and confirm that a high signal-to-noise
in the photometry is essential for an accurate estimate of 〈z〉
using the de-biased zPDF approach. In the less favourable case
(KiDS+VIKING-450), where the photometric sample and a
spec-z target sample are approximately of equal depth, we reach
an accuracy of around 0.01 (1 + z) on 〈z〉, as expected from the
simulation and other works (e.g., Wright et al. 2020). We con-
firm the trends observed in the simulation and find that includ-
ing the prior in the de-biasing technique produces significantly
better results.

We conclude that both methods could foreseeably provide
independent and accurate inferences of tomographic bin mean

redshifts for Euclid. We find that the current Euclid baseline to
measure 〈z〉 with a direct calibration approach and a SOM train-
ing sample is robust with respect to the imaging survey depth.
However, we recommend that training samples, such as C3R2
(Masters et al. 2019), ensure a purity level above 99.8%. We
also find that the sum of the de-biased zPDFs could be sufficient
to measure 〈z〉 at the Euclid requirement with ongoing spectro-
scopic surveys. However, we recommend this method only in
areas covered with deep optical data. The two methods should be
applied simultaneously with the current planning of the Euclid
survey to provide complementary and independent estimates of
〈z〉.

Finally, our work suffers several limitations that we still need
to investigate. We have neglected the catastrophic failures within
the photo-z sample created by misclassified stars or AGN or by
the galaxy blending. A residual contamination of these popula-
tions in the tomographic bins could affect both approaches to
redshift calibration. Moreover, we have not considered sample
variance effects since the Horizon-AGN simulation covers only
1 deg2. We would benefit from a larger simulated area to test the
impact of sample variance. Nonetheless, our results here present
a largely positive outlook for the challenge of tomographic red-
shift calibration within Euclid.
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Appendix A: Idealised test of the de-biasing
procedure

In this appendix, we present how we generated a simplified mock
catalogue in comparison to the one presented in Sect. 2. We
still used the mock Horizon-AGN catalogue. Rather than using
the photo-z produced by LePhare, however, we generated an
idealised photo-z. We randomised the true redshift assuming a
Gaussian distribution with σ = σtrue, where σtrue is defined as
the median value of the LePhare photo-z errors. We then biased
these photo-z by applying a systematic shift of ∆zp = −0.05. We
associated a likelihood with each galaxy defined as:

L(z) =
1

Aσtrue
√

2π
exp

−1
2

(
z − zp

Aσtrue

)2 , (A.1)

where the factor A allows us to mimic an underestimation (over-
estimation) of the photo-z uncertainties if A < 1 (A > 1). In
this way, we can check, using a simplified simulation, if we are
able to recover the true mean redshift despite having a bias in the
photo-z and their associated likelihood.

We applied the same method as described in Sect. 4.3 to
recover the mean redshift, assuming a flat prior. We selected
galaxies in a tomographic bin at 0.6 < zp < 0.8. Two examples
are given in Fig. A.1. The top (bottom) panels assume A = 0.7
(A = 1.5), that is to say, that photo-z errors are underestimated
(overestimated).

We find that as long as A > 1, the method is efficient in
recovering the mean redshift. However, if the original zPDFs are
too narrow (A < 1), the final correction is unstable. We find the
same result by testing several values of A and several values of
the bias. Therefore, we conclude that photo-z errors should be
preferentially overestimated in the application of the de-biased
zPDF method.

As a result, when applying our template-fitting code to the
simulated Horizon-AGN galaxies, we simply multiply the flux
uncertainties by a constant factor to ensure that we are working
in this regime. Specifically, for comparison to the photo-z mea-
sured by Laigle et al. (2019), we multiply the flux uncertainties
by a factor of 1.5 and impose a minimal error of ∆m = 0.01 in
each band.

Fig. A.1. Example of PIT distribution (left) and redshift distribution (right) for a tomographic bin selected at 0.6 < zp < 0.8. Top and bottom
panels: assume photo-z errors that are underestimated (A = 0.7) and overestimated (A = 1.5), respectively. The PIT distribution used to correct the
zPDF is shown with the solid black line. The inset shows an example of the de-biased zPDF for one galaxy (selected randomly). The resulting PIT
distribution, after de-biasing, is shown in dashed red. The true N(z) is shown with the blue histogram in the right panels. The N(z) reconstructed
using the initial and the de-biased zPDFs are shown with black solid lines and red dashed lines, respectively.
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Appendix B: Mean redshift of the LEGA-C survey in
COSMOS

The goal in this section is to retrieve the mean redshift of the
LEGA-C galaxies (van der Wel et al. 2016) selected in the tomo-
graphic bin 0.7 < zp < 0.9. We based our estimate of 〈z〉 on the
COSMOS photometry and associated spec-z (excluding LEGA-
C spec-z from the training). Then, we compared the estimated
mean redshift with the true one (known from LEGA-C spec-z).
In such a configuration, the photometry is much deeper than the
selection limit of the target sample.

The COSMOS photometry. We used the photometric cata-
logue from Laigle et al. (2016), but keeping only the ten broad
bands: u, B, V , r, i, z, Y , J, H, and K. We adopted the exact same
method as the one described in Sect. 2.2 to compute the photo-z.
As described in Sect. 4.3, we inflated our photometric flux uncer-
tainties within the input photometric catalogue by a factor of two
to allow for better de-biasing.

LEGA-C target sample. We selected a spectroscopic sam-
ple that was as robust as possible to ensure that the uncertainty
on the mean redshift of the target sample (considered as the
truth) is known with an accuracy better than 0.002. The LEGA-
C spectroscopic survey in the COSMOS field provides such a
target sample. This spectroscopic sample is built using the high-
resolution (R = 3000) mode of the VIMOS spectrograph, tar-
geting galaxies at 0.6 < z < 1 selected in the Ks-band to
have a stellar mass M? > 1010 M�. Given the resolution and
the S/N reached by the LEGA-C spectra (with 20 h of expo-
sure per spectrum) and the numerous lines detected, we can
safely assume that this sample does not include any catastrophic
spectroscopic failures. We matched the LEGA-C Data Release
2 galaxies (Straatman et al. 2019) to the COSMOS2015 cata-
logue on-sky, allowing a maximum angular separation of 0′′.2
in the association. This reduced the risk of incorrectly associat-
ing spectra with our COSMOS2015 photometry. Our LEGA-C
target sample thus contains 1213 galaxies, with a median i-band
magnitude of 21.45.

The COSMOS training sample. Since the constraint in
terms of completeness and purity is less stringent for the
training sample, we randomly chose 50% of all the spec-z

available in COSMOS, irrespective of magnitude. We removed
all the LEGA-C sources from the training sample and combined
the spec-z from multiple surveys, namely: zCOSMOS-Bright
and Faint (Lilly et al. 2007), Fiber-Multi Object Spectrograph
(FMOS; Kashino et al. 2019), and C3R2 (Masters et al. 2019).
We selected only spectra with either ‘high confidence’ or ‘cer-
tain’ redshift confidence flags (corresponding to flags 3–4 in
the VVDS redshift confidence flagging system in Le Fèvre et al.
2005) in order to select only the most reliable redshifts for
our training set. Still, the magnitude and colour distributions
differed between the training and the target samples. We thus
applied a weight to each galaxy of the training sample to repro-
duce the global properties of the target sample. Those weights
were derived by projecting the target sample over the SOM,
as described in Sect. 3 for the COSMOS-like sample. We con-
structed our SOM here using the magnitudes, colours, and photo-
z associated with the training sample sources. We adopted a
10 × 10 SOM, smaller than the one used in Horizon-AGN,
because of the limited size of the target sample.

Application. We selected all sources with photo-z in the
range 0.7 < zp < 0.9 (we chose this redshift range since it needs
to overlap with LEGA-C). We created 300 realisations with a
random selection of the training sources. The target sample con-
sisted of 493 galaxies, of which around 5% have σzp > 0.3 and
were subsequently removed. We estimated the mean redshift of
the target sample using the direct calibration, direct zPDF, and
de-biased zPDF approaches, and compared these with the true
〈z〉 of the target sample. For the direct calibration approach, we
obtain a bias of µ∆z = 0.00032 and a scatter of σ∆z = 0.00135,
an accuracy well within the Euclid requirement. Secondly, we
estimated 〈z〉 using the initial zPDF without de-biasing. We
obtain a mean redshift biased by µ∆z > −0.013, which is six
times larger than the Euclid requirement. Finally, we de-bias
the zPDF using the PIT distribution as discussed in Sect. 4.3.
In that case, we obtain a mean redshift with a bias of µ∆z =
−0.00046 (µ∆z = −0.00008) and a scatter of σ∆z = 0.00073
(σ∆z = 0.00074) assuming the photo-z (flat) prior. Therefore, in
the case of a target sample associated with much deeper pho-
tometry, we reach the 0.002 (1 + z) accuracy requirement of
Euclid, using either the direct calibration or de-biased zPDF
approaches.
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