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Assouad type dimensions in geometric analysis

Juha Lehrbäck

Abstract We consider applications of the dual pair of the (upper) Assouad dimen-
sion and the lower (Assouad) dimension in analysis. We relate these notions to
other dimensional conditions such as a Hausdorff content density condition and an
integrability condition for the distance function. The latter condition leads to a char-
acterization of the Muckenhoupt Ap properties of distance functions in terms of the
(upper) Assouad dimension. It is also possible to give natural formulations for the
validity of Hardy–Sobolev inequalities using these dual Assouad dimensions, and
this helps to understand the previously observed dual nature of certain cases of these
inequalities.

Key words: Assouad dimension, Lower dimension, Aikawa condition, Mucken-
houpt weight, Hardy–Sobolev inequality
Mathematics Subject Classifications (2010). Primary: 28A75; Secondary: 28A80,
35A23

1 Introduction

Mathematicians working in fractal geometry and related fields are well aware of the
fact that there can not be a unique definition for the concept of dimension of a set,
since different problems require different ways to deal with dimensional information.
In fact, what sometimes may seem like a negligible nuance in the definition might
actually lead to interesting discoveries concerning the fine structure of sets. On the
flip side, the multitude of the notions of dimension may easily create confusion, and
thus it is important to be able to justify the existence of all these concepts via natural
applications.
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2 Juha Lehrbäck

The purpose of this article is to describe some recent observations concerning
the applications of the dual pair of the upper and lower Assouad dimension, often
simply called the Assouad dimension and the lower dimension, respectively. These
notions provide geometric information which is relevant not only in fractal geometry,
but also for instance in harmonic analysis, potential theory, and partial differential
equations. One manifestation of these connections can be seen via the validity of
the so-called Hardy–Sobolev inequalities. Our aim is not so much in presenting any
novelties on the level of the details or techniques, but rather in trying to illustrate
how a new point of view in terms of dimensional conditions may offer clarity and
reveal connections between known results. On the other hand, we do give proofs for
some basic results, hoping that these will help the reader to gain familiarity with the
relevant concepts.

We begin in Section 2 by recalling the definitions of the upper and lower Assouad
dimension and relating them to the more familiar Hausdorff dimension. In particular,
we explain the connection between the lower Assouad dimension and a Hausdorff
content density condition. In Section 3 we study integrability conditions for dis-
tance functions w(x) = d(x, E)−α, where E ⊂ Rn and (usually) 0 < α < n. Such
conditions, originally introduced by Aikawa, can be used to characterize the upper
Assouad dimension, see Theorem 3.5. Next, in Section 4, we ask when a distance
functionw as above belongs to the important class ofMuckenhoupt Ap weights. As it
turns out, the answer can be given in terms of the upper Assouad dimension, using the
integrability conditions from Section 3 as a helpful stepping stone. Finally, Section 5
completes the circle by showing how both upper and lower Assouad dimension play
an important role when examining the validity of the Hardy–Sobolev inequalities in
an open set Ω ⊂ Rn. In particular, a previously observed duality between certain
cases of such inequalities becomes more transparent and natural when the conditions
are formulated in terms of suitable dimensions.

Much of the theory presented in this survey can be extended to more general
metric spaces satisfying standard structural assumptions. We give some comments
and remarks related to such extensions, but for simplicity we focus on the case of
the n-dimensional Euclidean space Rn.

Notation

The open ball with center x ∈ Rn and radius r > 0 is

B(x, r) = {y ∈ Rn : |y − x | < r},

and B(x, r) is the corresponding closed ball. When A ⊂ Rn, we write diam(A) for
the diameter of A, and d(x, A) denotes the distance from a point x ∈ Rn to the set
A. The complement of A is Ac = Rn \ A. If A is (Lebesgue) measurable, then the
Lebesgue measure of A is denoted by |A|. If 0 < |A| < ∞ and f ∈ L1(A), then the
mean value integral of f over A is
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A

f (x) dx =
1
|A|

∫
A

f (x) dx.

As usual, C denotes a constant whose exact value may change at each occurrence.
For simplicity, we use the following versions of Hausdorff contents and measures.

It is easy to see that these are comparable to the more standard definitions in e.g. [9,
30].

Definition 1.1. Let E ⊂ Rn and λ ≥ 0. For 0 < δ ≤ ∞, the λ-dimensional Hausdorff
δ-content of E is

Hλ
δ (E) = inf

{
∞∑
i=1

rλi : E ⊂
∞⋃
i=1

B(xi, ri), 0 < ri ≤ δ

}
.

(In the case λ = 0 we allow also finite summations. ) Then the (spherical) λ-
dimensional Hausdorff measure of E is

Hλ(E) = lim
δ→0+

Hλ
δ (E) = sup

δ>0
Hλ
δ (E),

and the Hausdorff dimension of E is defined as

dimH(E) = inf
{
λ ≥ 0 : Hλ(E) = 0

}
= inf

{
λ ≥ 0 : Hλ

∞(E) = 0
}
.

2 Assouad type dimensions

The definitions of the Assouad type dimensions of a set E ⊂ Rn are based on simple
and natural local covering properties of E: we consider pieces E ∩ B(x, R), with
x ∈ E and 0 < R < diam(E), and ask how many balls of radius 0 < r < R are
needed at most (upper Assouad), or respectively at least (lower Assouad), to cover
such pieces. Thus these concepts reveal the most “extreme” local behavior of sets,
whereas other notions of dimension usually tell more about the “average” properties
of sets.

When A ⊂ Rn is a bounded set and r > 0, we let N(A, r) denote the minimal
number of open balls of radius r that are needed to cover the set A.

Definition 2.1. Let E ⊂ Rn. The upper Assouad dimension dimA(E) is the infimum
of λ ≥ 0 for which there exists a constant C such that

N
(
E ∩ B(x, R), r

)
≤ C

( r
R

)−λ
= C

( R
r

)λ
(2.1)

for every x ∈ E and 0 < r < R < diam(E).

In particular, the estimate in (2.1) holds whenever λ > dimA(E), and possibly
also when λ = dimA(E). If E ⊂ E ′, then clearly dimA(E) ≤ dimA(E ′). It is also
easy to see that 0 ≤ dimA(E) ≤ n for every E ⊂ Rn.
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In the literature, the upper Assouad dimension is often called the Assouad di-
mension and denoted by dimA(E). This concept was used by Assouad in connection
with the bi-Lipschitz embedding problem between metric and Euclidean spaces, see
e.g. [4]. A nice account on the basic properties and history of the Assouad dimension
is given in [29]. See also the survey by Fraser [11] in this same volume (and the
references therein) for recent fractal geometric applications of the (upper) Assouad
dimension and its generalizations.

We illustrate the definition by proving the fact that the Hausdorff dimension
always gives a lower bound for the upper Assouad dimension.

Lemma 2.2. Let E ⊂ Rn. Then dimH(E) ≤ dimA(E).

Proof. By the countable stability of the Hausdorff dimension it suffices to show that

dimH
(
E ∩ B(x, R)

)
≤ dimA(E)

for every x ∈ E and R > 0. Let s > dimA(E), choose λ satisfying dimA(E) < λ < s,
and fix x ∈ E and R > 0. Then E ∩ B(x, R) can be covered by

N ≤ C
( R

r

)λ
balls of radius r , for every 0 < r < R. Thus, by the definition of Hausdorff content,

H s
r

(
E ∩ B(x, R)

)
≤ Nrs ≤ C1Rλrs−λ.

Letting r → 0 givesH s
(
E∩B(x, R)

)
= 0, andwe conclude that dimH

(
E∩B(x, R)

)
≤

dimA(E). ut

Definition 2.3. Let E ⊂ Rn. The lower Assouad dimension dimA(E) is the supre-
mum of λ ≥ 0 for which there exists a constant C such that

N
(
E ∩ B(x, R), r

)
≥ C

( r
R

)−λ
= C

( R
r

)λ
(2.2)

for every x ∈ E and 0 < r < R < diam(E).

In particular, the estimate in (2.2) holds whenever 0 ≤ λ < dimA(E), and possibly
also when λ = dimA(E). In the case E = {x0}, x0 ∈ R

n, we remove the requirement
R < diam(E) from the definition and hence dimA({x0}) = 0. It is easy to verify that
0 ≤ dimA(E) ≤ dimA(E) ≤ n for every E ⊂ Rn. However, it should be noted that,
unlike (most) other natural concepts of dimension, the lower Assouad dimension is
not monotone. For instance, dimA({0} ∪ [1, 2]) = 0, due to the isolated point 0, but
for the subset [1, 2] we have dimA([1, 2]) = 1.

The lower Assouad dimension is often called the lower dimension and denoted
by dimL(E). Thus the pair of Assouad-type dimensions can be referred to as the
(upper) Assouad dimension dimA(E) = dimA(E) and the lower (Assouad) dimen-
sion dimA(E) = dimL(E). Also other names, such as (uniform) metric dimension



Assouad type dimensions in geometric analysis 5

and minimal dimensional number, respectively, have been used. An early reference
concerning the lower (Assouad) dimension is [21], and more recently some basic
properties of this dimension have been discussed e.g. in [10] and [18].

Remark 2.4. It should be noted that in the literature there are some slight differ-
ences in the definitions of the upper and lower Assouad dimensions. In particular,
sometimes the covering inequalities in (2.1) and (2.2) are required to hold only for
0 < r < R ≤ R0, for some fixed R0 < ∞. This change may affect the dimensions of
unbounded sets. Notice also that in (2.1) we may omit the upper bound R < diam(E)
without altering the value of the upper Assouad dimension. On the other hand, if
we omit this upper bound in (2.2), then all bounded sets would have lower Assouad
dimension equal to zero, which is perhaps not so desirable.

Recall that a closed set E ⊂ Rn is called (Ahlfors–David) λ-regular, or a λ-set,
for 0 ≤ λ ≤ n, if there is a constant C ≥ 1 such that

C−1rλ ≤ Hλ (E ∩ B(x, r)
)
≤ Crλ (2.3)

for every x ∈ E and 0 < r < diam(E); for λ = 0 the upper bound r < diam(E) is
omitted.

Examples of λ-regular sets include subspaces of Rn and self-similar fractals
satisfying the open set condition. It is not hard to see that for a λ-regular set E ⊂ Rn

the upper and lower Assouad dimensions agree. More precisely, if E ⊂ Rn is λ-
regular then

dimA(E) = dimA(E) = dimH(E) = λ.

In order to examine the relation between the lower Assouad dimension and the
Hausdorff dimension for more general sets, we consider the following density con-
dition for Hausdorff contents.

Definition 2.5. Let 0 ≤ λ ≤ n. We say that a set E ⊂ Rn satisfies the λ-Hausdorff
content density condition if there exists a constant C such that

Hλ
∞

(
E ∩ B(x, R)

)
≥ CRλ (2.4)

for every x ∈ E and 0 < R < diam(E).

Sometimes the upper bound R < diam(E) is omitted in Definition 2.5, but then a
bounded set can not satisfy this condition for any λ > 0.

The λ-Hausdorff content density condition holds for a set E ⊂ Rn if and only if
there is a constant C such that if {B(xi, ri) : i ∈ N} is a cover of E ∩ B(x, R), for
x ∈ E and 0 < R < diam(E), then

∞∑
i=1

rλi ≥ CRλ. (2.5)

If we only use balls B(xi, r) having a fixed radius 0 < r < R, then (2.5) reads as
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N∑
i=1

rλ ≥ CRλ, or equivalently, N ≥ C
( R

r

)λ
, (2.6)

which is exactly (2.2) for E ∩ B(x, R).
Condition (2.6) might seem a priori much weaker than (2.5). However, when

required to hold uniformly for every x ∈ E and 0 < R < diam(E), these conditions
are almost equivalent for closed sets. That is, the estimate in (2.7), for covers using
balls of fixed radii r , yields a corresponding estimate (2.8) for covers where balls of
all radii are allowed. The price to pay is a small drop in the dimensional parameter λ.

Lemma 2.6. Let E ⊂ Rn be a closed set. Assume that there exist 0 < λ0 ≤ n and a
constant C1 such that

N
(
E ∩ B(x, R), r

)
≥ C1

( R
r

)λ0
(2.7)

for every x ∈ E and 0 < r < R < diam(E). Then, for every 0 < λ < λ0, there exists
a constant C such that

Hλ
∞

(
E ∩ B(x, R)

)
≥ CRλ (2.8)

for every x ∈ E and 0 < R < diam(E).

The proof of Lemma 2.6 requires a bit work. Roughly speaking, the idea is to
construct a Cantor-type set F ⊂ E ∩ B(x, R) by using (2.7) iteratively, and then
deduce (2.8) with the help of the equally distributed probability measure µ on F. We
omit the details, which are similar to those in [17, Theorem 3.1] and [23, Lemma 4.1].

Lemma 2.6 has several important consequences. The following theorem shows
that the lower Assoaud dimension of closed sets can be characterized using the
Hausdorff content density condition.

Theorem 2.7. Let E ⊂ Rn be a closed set and assume that 0 ≤ λ < dimA(E).
Then E satisfies the λ-Hausdorff content density condition. Moreover, dimA(E) is
the supremum of the exponents λ ≥ 0 for which E satisfies the λ-Hausdorff content
density condition.

Proof. Choose λ0 satisfying 0 ≤ λ < λ0 < dimA(E). The definition of the lower
Assouad dimension implies that (2.7) holds with a constant C1 for every x ∈ E and
0 < r < R < diam(E). Thus we obtain from Lemma 2.6 that

Hλ
∞

(
E ∩ B(x, R)

)
≥ CRλ

for every x ∈ E and 0 < R < diam(E); that is, E satisfies the λ-Hausdorff content
density condition.

Assume then that E satisfies the λ-Hausdorff content density condition. Fix x ∈ E
and 0 < r < R < diam(E), and let {B(xi, r) : i = 1, . . . , N} be a cover of E∩B(x, R).
Then

Rλ ≤ CHλ
∞

(
E ∩ B(x, R)

)
≤ C

N∑
i=1

rλ = CNrλ,
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and so N ≥ C
(
R
r

)λ. Since this holds for all such covers, we have

N
(
E ∩ B(x, R), r

)
≥ C

( R
r

)λ
.

Thus dimA(E) ≥ λ, and the proof is complete. ut

Theorem 2.7 yields a comparison between the Hausdorff dimension and the lower
Assouad dimension of a closed set. Such a comparison was first obtained in [21].

Corollary 2.8. Let E ⊂ Rn be a closed set. Then

dimA(E) ≤ dimH
(
E ∩ B(x, r)

)
≤ dimH(E)

for every x ∈ E and r > 0.

Proof. The second inequality follows from the monotonicity of the Hausdorff di-
mension. For the first inequality we may clearly assume that dimA(E) > 0 and
0 < r < diam(E). Fix 0 ≤ λ < dimA(E). By Theorem 2.7, we then have
Hλ
∞

(
E ∩ B(x, r)

)
> 0. Hence λ ≤ dimH

(
E ∩ B(x, r)

)
, and the claim follows. ut

The assumption that E is closed is necessary in Corollary 2.8. Indeed, it is easy
to see that dimA(E) = dimA(E) for all E ⊂ Rn, and hence for instance

dimA(Q
n) = dimA(R

n) = n � 0 = dimH
(
Qn ∩ B(x, r)

)
for every x ∈ Qn and r > 0.

For comparison, we recall also the definitions of theMinkowski (or box-counting)
dimensions of bounded sets. As before, we let N(E, r) be theminimal number of open
balls of radius r that are needed to cover the bounded set E ⊂ Rn. Then the upper
Minkowski dimension of E , dimM(E), can be defined as the infimum of all λ ≥ 0 for
which there exists a constantC such that N(E, r) ≤ Cr−λ for every 0 < r < diam(E).
Correspondingly, the lower Minkowski dimension of E , dimM(E), is the supremum
of all λ ≥ 0 for which there exists a constant C such that N(E, r) ≥ Cr−λ for every
0 < r < diam(E).

It follows easily from these definitions that

dimA(E) ≤ dimM(E) ≤ dimM(E) ≤ dimA(E)

for all bounded sets E ⊂ Rn. Moreover, if E ⊂ Rn is compact, then

dimA(E) ≤ dimH(E) ≤ dimM(E) ≤ dimM(E) ≤ dimA(E).

A typical example with strict inequalities is the set E = { 1
k : k ∈ N} ∪ {0} ⊂ R,

for which dimA(E) = dimH(E) = 0, dimM(E) = dimM(E) = 1
2 , and dimA(E) = 1.
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3 The Aikawa condition

The following integrability condition for the distance function creates a natural link
between the (upper) Assouad dimension and the Muckenhoupt Ap properties of
distance weights, see Section 4. This condition was introduced and used by Aikawa
in connection with the so-called quasiadditivity property of Riesz capacities in [1],
see also [2, Part II, Section 7]. In [20] and [22] this condition was applied in the
context of Hardy inequalities.

Definition 3.1. Let E ⊂ Rn be a non-empty set. We say that E satisfies the Aikawa
condition for α ∈ R, if there exists a constant C (depending on α) such that∫

B(x,r)
d(y, E)−α dy ≤ Crn−α (3.9)

or, equivalently, ∫
B(x,r)

d(y, E)−α dy ≤ Cr−α (3.10)

for every x ∈ E and r > 0. Here we use the convention that 00 = 1, and if α > 0
then we also require that |E | = 0.

We letA(E) denote the set of allα ∈ R forwhich E satisfies theAikawa condition.

It is easy to see that a non-empty set E ⊂ Rn satisfies the Aikawa condition for
all α ≤ 0. On the other hand, if α ≥ n, then∫

B(x,r)
d(y, E)−α dy ≥

∫
B(x,r)

|y − x |−α dy = ∞

for every x ∈ E and r > 0, and thus E does not satisfy the Aikawa condition for any
α ≥ n. Hence we may restrict our attention to the range 0 < α < n in the Aikawa
condition.

We now begin to examine the close connections between the upper Assouad
dimension and the Aikawa condition.

Lemma 3.2. Let E ⊂ Rn. If α ∈ A(E), then dimA(E) ≤ n − α.

Proof. If α ≤ 0, then the claim is clear since dimA(E) ≤ n. Hence we may assume
that 0 < α < n. Fix x ∈ E and 0 < r < R, and write F = E ∩ B(x, R). By
the existence of maximal packings there are pairwise disjoint open balls B(xi, r2 ),
i = 1, . . . , N , with xi ∈ F, such that F ⊂

⋃N
i=1 B(xi, r).

Let Fr be the r-neighborhood of F, that is,

Fr = {y ∈ R
n : d(y, F) < r} ⊂ B(x, 2R).

Using the pairwise disjointness of the balls B(xi, r2 ) ⊂ Fr , the fact that d(y, E) ≤
d(y, F) < r for all y ∈ Fr , and the assumed Aikawa condition (3.9), we obtain
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NCrn ≤
N∑
i=1

��B(xi, r2 )�� ≤ |Fr | ≤ rα
∫
Fr

d(y, E)−α dy

≤ rα
∫
B(x,2R)

d(y, E)−α dy ≤ rαCRn−α = Crn
( R

r

)n−α
.

Thus
N

(
E ∩ B(x, R), r

)
= N(F, r) ≤ N ≤ C

( R
r

)n−α
,

and the claim dimA(E) ≤ n − α follows since n − α > 0. ut

For the converse direction we need to assume a strict upper bound for the dimen-
sion. See, however, also Theorem 3.5 below concerning the strict inequality in the
previous Lemma 3.2.

Lemma 3.3. Let E ⊂ Rn be a non-empty set. If α ∈ R and dimA(E) < n − α, then
α ∈ A(E).

Proof. Again, the claim is clear if α ≤ 0, and so we may assume that α > 0. Choose
dimA(E) < λ < n − α, and let x ∈ E and r > 0. Define

Fj =
{
y ∈ B(x, r) : d(y, E) < 2−j+1r

}
and Aj = Fj \ Fj+1,

for j ∈ N. Since λ > dimA(E), there is a constant C1 such that the set E ∩ B(x, 2r)
can be covered by Nj ≤ C12jλ balls of radius 21−jr , for every j ∈ N. It follows that
each Fj can be covered by at most Nj balls of radius 22−jr . If B j

i , i = 1, . . . , Nj , are
such balls, then

|Fj | ≤

N j∑
i=1

��B j
i

�� ≤ NjC(22−jr)n ≤ C(2−j)n−λrn. (3.11)

Since E ∩ B(x, r) ⊂ Fj for all j ∈ N and λ < n − α < n, by letting j →∞ we see in
particular that |E ∩ B(x, r)| = 0. Here r > 0 is arbitrary, and thus |E | = 0.

If y ∈ Aj , then 2−jr ≤ d(y, E) < 2−j+1r . In addition, Aj ⊂ Fj for all j ∈ N and
the sets Aj cover B(x, r) up to the set E ∩ B(x, r), which has measure zero. By using
estimate (3.11) we obtain∫

B(x,r)
d(y, E)−α dy ≤ C

∞∑
j=1

∫
A j

d(y, E)−α dy ≤ C
∞∑
j=1
|Fj |(2−jr)−α

≤ Crn−α
∞∑
j=1
(2−j)n−λ−α ≤ Crn−α,

where the geometric series converges since λ < n − α. This together with the fact
|E | = 0 shows that α ∈ A(E). ut
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In order to combine the two lemmas above into a characterization, we need the
following improvement property for the Aikawa condition, observed in [20]. It is
easy to see that the Aikawa condition, for 0 < α < n, implies a reverse Hölder
inequality, see (3.12) below. After that we can apply a suitable version of the so-
called Gehring lemma, see [13, Lemma 3], which is a deep result concerning the
improvement of reverse Hölder inequalities. This leads to the Aikawa condition for
an exponent larger than α. (Notice that conversely it is easy to see that the Aikawa
condition, for 0 < α < n, implies Aikawa conditions for all exponents smaller than
α.)

Theorem 3.4. Let E ⊂ Rn and 0 < α < n. If α ∈ A(E), then there exists α < α′ < n
such that α′ ∈ A(E).

Proof. Fix a ball B(x, r) ⊂ Rn and assume first that B(x, 2r)∩E , ∅. Then d(y, E) ≤
3r for every y ∈ B(x, r), and thus the assumed Aikawa condition (3.10) implies∫

B(x,r)
d(y, E)−α dy ≤ Cr−α = C

(
r−

α
2
)2
≤ C

(∫
B(x,r)

d(y, E)−
α
2 dy

)2
.

It is easy to see that the same conclusion holds also in the case B(x, 2r) ∩ E = ∅.
Writing f (y) = d(y, E)−

α
2 , we obtain the reverse Hölder inequality(∫
B(x,r)

f (y)2 dy
) 1

2

≤ C
∫
B(x,r)

f (y) dy, (3.12)

for every ball B(x, r) ⊂ Rn.
By the Gehring lemma, there exists p > 2 such that(∫

B(x,r)
f (y)p dy

) 1
p

≤ C
∫
B(x,r)

f (y) dy ≤ C
(∫

B(x,r)
f (y)2 dy

) 1
2

,

for every ball B(x, r) ⊂ Rn, where the second inequality is just the usual Hölder’s
inequality. Choose α′ = p

2 α > α. Then the estimate above and the assumed Aikawa
condition give(∫

B(x,r)
d(y, E)−α

′

dy
) α

2α′

≤ C
(∫

B(x,r)
d(y, E)−α dy

) 1
2

≤ Cr−
α
2 ,

for every x ∈ E and r > 0, and this implies the Aikawa condition for α′ > α. ut

We are now prepared to characterize the upper Assouad dimension in terms of
the Aikawa condition. This result is essentially from [26], where corresponding
characterizations were obtained also in more general metric spaces.

Theorem 3.5. Let E ⊂ Rn be a non-empty set and let α > 0. Then α ∈ A(E) if and
only if dimA(E) < n − α.
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Proof. If dimA(E) < n − α, then α ∈ A(E) by Lemma 3.3.
Assume then that 0 < α ∈ A(E). Since α < n, by Theorem 3.4 there is α′ > α

such that also α′ ∈ A(E). Thus Lemma 3.2 yields dimA(E) ≤ n − α′ < n − α, as
desired. ut

Notice that the assumption α > 0 in Theorem 3.5 is essential: if E ⊂ Rn and
dimA(E) = n, then 0 ∈ A(E), but dimA(E) ≮ n − 0.

4 Muckenhoupt weights

A measurable function w : Rn → R is called a weight in Rn if w(x) > 0 for almost
every x ∈ Rn and

∫
B
w(x) dx < ∞ for all balls B ⊂ Rn. When w is a weight in Rn

and E ⊂ Rn is a measurable set, we write

w(E) =
∫
E

w(x) dx.

The following classes of Muckenhoupt weights are important tools for instance in
harmonic analysis; we refer to [12, Chapter IV] for a thorough discussion. Mucken-
houpt weighted Rn is also an example of a metric space with a doubling measure
and supporting a p-Poincaré inequality, which are the standard assumptions in anal-
ysis on metric spaces; see for instance [6, 14] and the references therein for more
information.

Definition 4.1. Let w be a weight in Rn. We say that w belongs to the Muckenhoupt
class

(a) Ap , for 1 < p < ∞, if there is a constant C such that(∫
B

w(x) dx
) (∫

B

w(x)−
1

p−1 dx
)p−1

≤ C (4.13)

for every ball B ⊂ Rn.
(b) A1, if there is a constant C such that(∫

B

w(x) dx
)

ess sup
x∈B

1
w(x)

≤ C, (4.14)

for every ball B ⊂ Rn.
(c) A∞, if there are constants C, δ > 0 such that

w(E)
w(B)

≤ C
(
|E |
|B |

)δ
whenever B ⊂ Rn is a ball and E ⊂ B is a measurable set.
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It is easy to verify directly from the Ap condition (4.13) that if 1 < p < ∞ and w

is a weight in Rn, then

w ∈ Ap if and only if w−
1

p−1 ∈ A p
p−1
. (4.15)

Moreover, an application of Hölder’s inequality shows that if 1 ≤ p < q < ∞, then
Ap ⊂ Aq .

The class A∞ can be characterized as the union of all Ap , for 1 ≤ p < ∞, that is,

A∞ =
⋃

1≤p<∞
Ap . (4.16)

Neither of the inclusions in (4.16) is trivial. The main tool for establishing both of
them is a reverse Hölder inequality, but we omit the details; see e.g. [12, Chapter IV,
Section 2]. We do not really need the class A∞ below, since all statements “w ∈ A∞”
could be replaced by the statement “w ∈ Ap for some 1 ≤ p < ∞”.

Example 4.2. Consider the weight w(y) = |y |−α for every y ∈ Rn \ {0}. It is straight-
forward to verify by direct computations that w ∈ A1 if and only if 0 ≤ α < n, and
w ∈ Ap , for 1 < p < ∞, if and only if (1 − p)n < α < n.

Our main interest in this section is in the generalizations of Example 4.2 to more
general distance functions, that is, for weights of the type w(y) = d(y, E)−α, with
E ⊂ Rn satisfying |E | = 0. The Aikawa condition is tailor-made for the study of this
problem; see [1, 2], in particular [2, p. 151].

Theorem 4.3. Let E ⊂ Rn and α ∈ R, and definew(y) = d(y, E)−α for every y ∈ Rn.
Then the following assertions hold.

1. If 0 ≤ α ∈ A(E), then w ∈ Ap for every 1 ≤ p ≤ ∞.
2. If α < 0 and 1 < p < ∞ are such that −αp−1 ∈ A(E), then w ∈ Ap .

Proof. Consider first part 1. If α = 0, then w(y) = 1 for every y ∈ Rn, and it follows
that w ∈ Ap for every 1 ≤ p ≤ ∞. Assume then that 0 < α < n and that (3.9) holds
with a constant C1, that is,∫

B(x,r)
w(y) dy ≤ C1rn−α < ∞

for every x ∈ E and r > 0. This implies that w is locally integrable. Since α ∈ A(E)
and α > 0, we have |E | = 0. Therefore w(x) > 0 for almost every x ∈ Rn, and thus
w is a weight.

Since A1 ⊂ Ap for every p ≥ 1, it suffices to show that w ∈ A1. Fix a ball
B(x, r) ⊂ Rn and assume first that B(x, 2r) ∩ E , ∅. Then B(x, r) ⊂ B(z, 3r), for
some z ∈ E , and so the assumed Aikawa condition (3.10) implies∫

B(x,r)
w(y) dy ≤ C

∫
B(z,3r)

d(y, E)−α dy ≤ C(3r)−α = Cr−α .
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On the other hand, if y ∈ B(x, r) \ E , then

1
w(y)

= d(y, E)α ≤ d(y, z)α ≤ (3r)α = Crα,

since α > 0. By combining the estimates above and recalling that |E | = 0, we obtain(∫
B(x,r)

w(y) dy
)

ess sup
y∈B(x,r)

1
w(y)

≤ C.

This shows that the A1 condition (4.14) holds for the ball B(x, r) if B(x, 2r) ∩ E , ∅.
Assume then that B(x, 2r) ∩ E = ∅. In this case

1
2d(y, E) ≤ d(x, E) ≤ 2d(y, E)

for every y ∈ B(x, r), and thus(∫
B(x,r)

w(y) dy
)

ess sup
y∈B(x,r)

1
w(y)

≤ Cd(x, E)−αd(x, E)α ≤ C.

Hence (4.14) holds also in the case B(x, 2r) ∩ E = ∅, and the proof of part 1 is
complete.

In part 2, we let
σ(y) = w(y)−

1
p−1 = d(y, E)

α
p−1

for every y ∈ Rn. By part 1 we have σ ∈ A1 ⊂ A p
p−1

, and the claim w ∈ Ap follows
from the duality property (4.15) of Ap weights. ut

There is also a partial converse of Theorem 4.3, see Theorem 4.5 below.We recall
that a set E ⊂ Rn is porous, if there exists a constant C such that for every x ∈ Rn

and r > 0 there exists z ∈ Rn such that B(z,Cr) ⊂ B(x, r) \ E . Porosity can also be
characterized using the upper Assouad dimension:

Theorem 4.4. A set E ⊂ Rn is porous if and only if dimA(E) < n.

For the proof of Theorem 4.4, see for instance [29, Theorem 5.2]. Note that by
Theorem 3.5 the conditions in Theorem 4.4 hold if and only if there is α > 0 such
that α ∈ A(E).

Theorem 4.5. Assume that E ⊂ Rn is a non-empty porous set. Let α ∈ R and define
w(y) = d(y, E)−α for every y ∈ Rn. Then the following assertions hold.

1. If α ≥ 0, 1 ≤ p < ∞, and w ∈ Ap , then α ∈ A(E).
2. If α < 0, 1 < p < ∞, and w ∈ Ap , then −αp−1 ∈ A(E).

Proof. In part 1 we may assume that p > 1. Let B0 = B(x, r) be a ball. Since E is
porous, there is z ∈ B0 such that B(z,Cr) ⊂ B(x, r) \E . Then d(y, E) ≥ C

2 r for every
y ∈ B = B(z, C2 r), and since the measures of B0 and B are comparable, we obtain
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B0

w(y)−
1

p−1 dy
)p−1

≥ C
(∫

B

w(y)−
1

p−1 dy
)p−1

≥ C
(∫

B

r
α

p−1 dy
)p−1

≥ Crα .

On the other hand, the Ap condition (4.13) for w ∈ Ap gives(∫
B0

w(y) dy
) (∫

B0

w(y)−
1

p−1 dy
)p−1

≤ C.

By combining the two estimates above we obtain∫
B0

d(y, E)−α dy =
∫
B0

w(y) dy ≤ C
(∫

B0

w(y)−
1

p−1 dy
)1−p

≤ Cr−α,

and thus α ∈ A(E).
Then we consider part 2. If w ∈ Ap , for 1 < p < ∞, we have by the Ap duality

in (4.15) that
d(·, E)−(

−α
p−1 ) = d(·, E)

α
p−1 = w−

1
p−1 ∈ A p

p−1
.

Hence the claim follows from part 1. ut

For porous sets we now have a complete characterization of the Ap properties of
the distance functions.

Theorem 4.6. Let 1 < p < ∞ and assume that E ⊂ Rn is a non-empty porous
set. Let α ∈ R and define w(y) = d(y, E)−α for every y ∈ Rn. Then the following
assertions hold.

1. w ∈ A1 if and only if 0 ≤ α < n − dimA(E).
2. w ∈ Ap if and only if

(1 − p)
(
n − dimA(E)

)
< α < n − dimA(E). (4.17)

Proof. Since E is porous, dimA(E) < n by Theorem 4.4.
We consider first part 2. If 0 ≤ α < n − dimA(E), we have α ∈ A(E) by

Lemma 3.3 and thus part 1 of Theorem 4.3 implies w ∈ Ap . On the other hand, if

(1 − p)
(
n − dimA(E)

)
< α < 0,

then
0 <

−α

p − 1
< n − dimA(E).

FromLemma 3.3we obtain −αp−1 ∈ A(E) and hencew ∈ Ap by part 2 of Theorem 4.3.
Conversely, assume that w ∈ Ap . If α > 0, part 1 of Theorem 4.5 implies

α ∈ A(E), and so α < n − dimA(E) by Theorem 3.5. If α = 0, then (4.17) holds
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since dimA(E) < n by porosity. Finally, if α < 0, then −α
p−1 ∈ A(E) by part 2 of

Theorem 4.5. Theorem 3.5 gives

0 <
−α

p − 1
< n − dimA(E),

showing that (4.17) holds also in this case. The proof of part 2 is complete.
Consider then part 1. If 0 ≤ α < n − dimA(E), the claim w ∈ A1 follows from

Lemma 3.3 and part 1 of Theorem 4.3 just as in part 2. Conversely, if w ∈ A1 and
α > 0, then α < n − dimA(E) by part 1 of Theorem 4.5 and Theorem 3.5. If α = 0,
then 0 ≤ α < n − dimA(E) holds since dimA(E) < n by porosity. Finally, it is easy
to see that α ≥ 0 is necessary in part 1, and this completes the proof. ut

Remark 4.7. The fact that the Ap properties of the weights w(y) = d(y, E)−α depend
on the dimension(s) of E ⊂ Rn has certainly been part of the mathematical folklore,
at least for suitably nice sets E . Aikawa [1, 2] mentions explicitly the connections
between the Aikawa condition and Ap weights. Horiuchi [15, 16] used a different
dimensional condition, called property P(s), in the study of Ap properties of distance
weights and in particular distance weighted Sobolev-type embeddings. It was shown
in [27, Theorem 3.4] that also this property P(s) can be characterized using the upper
Assouad dimension. A sufficient condition in the spirit of Theorem 4.3 was given
in [7, Lemma 3.3] for subsets of λ-regular sets of Rn.

Theorem 4.6 was formulated in [8], where corresponding results were also ob-
tained in metric spaces in terms of the so-called lower Assouad codimension. Metric
space results of this type were considered in [3], as well, but using a completely
different approach and under the stronger assumption that both the space X and the
set E ⊂ X satisfy Ahlfors–David regularity conditions; see [3, Theorems 6 and 7].

5 Hardy–Sobolev inequalities

Hardy–Sobolev inequalities interpolate between the Sobolev inequality and the p-
Hardy inequality. Indeed, for q = p∗ = np

n−p inequality (5.18) is the Sobolev inequal-
ity, while for q = p we recover the p-Hardy inequality.

Definition 5.1. Let 1 < p ≤ q ≤ np
n−p < ∞ and let Ω ( Rn be an open set. We say

that the (q, p)-Hardy–Sobolev inequality holds in Ω if there is a constant C such that(∫
Ω

|u(x)|qd(x,Ωc)
q
p (n−p)−n dx

) 1
q

≤ C
(∫
Ω

|∇u(x)|p dx
) 1

p

(5.18)

for every u ∈ C∞0 (Ω).
We also consider weighted versions of these inequalities and say that the (q, p, β)-

Hardy–Sobolev inequality holds in Ω, for β ∈ R, if there is a constant C such
that
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Ω

|u(x)|qd(x,Ωc)
q
p (n−p+β)−n dx

) 1
q

≤ C
(∫
Ω

|∇u(x)|pd(x,Ωc)β dx
) 1

p

(5.19)

for every u ∈ C∞0 (Ω).

For q = p, the inequality in (5.19) is called the (p, β)-Hardy inequality.
In this final section we formulate (without proofs) sufficient and necessary con-

ditions for Hardy–Sobolev inequalities in Ω ⊂ Rn, given in terms of the upper
and lower Assouad dimensions (and also other dimensions) of the complement
Ωc = Rn \Ω. It has been understood already for a long time that sufficient conditions
for these inequalities naturally split into two cases: either the complement Ωc has to
be sufficiently “thick” or sufficiently “thin”. The thickness has been formulated, for
instance, using capacity density or Hausdorff content density, and thinness using the
Aikawa condition.With Assouad dimensions this duality becomes more transparent:
thickness means that Ωc has large lower Assouad dimension, while thinness means
that Ωc has small upper Assouad dimension.

It can also be shown that suitable combinations of such thick and thin parts give
sufficient conditions for Hardy–Sobolev inequalities, as well, but these cases will not
be discussed in this work; see e.g. [25, Section 7] for details.

In the case of thin complements, the Hardy–Sobolev inequalities can be obtained
by using the following general twoweight embedding result together with theAikawa
condition and the knowledge about the Ap properties of the distance functions.

Theorem 5.2. Let 1 < p ≤ q < ∞ and let (w, v) be a pair of weights such that
w ∈ A∞ and σ = v−

1
p−1 ∈ A∞. Assume that there exists a constant C1 such that(

1
|B |1−

1
n

)p
w(B)

p
q σ(B)p−1 ≤ C1 (5.20)

for all balls B ⊂ Rn. Then there exists a constant C such that(∫
Rn

|u(x)|qw(x) dx
) 1

q

≤ C
(∫

Rn

|∇u(x)|pv(x) dx
) 1

p

for every u ∈ C∞0 (R
n).

Theorem 5.2 can be proved using the mapping properties of Riesz potentials
and maximal operators. Muckenhoupt and Wheeden [31, Theorem 1] gave a single
weight control for the Riesz potential I1 in terms of a fractional maximal operator,
and Pérez [32, Theorem 1.1] proved a two weight Lp–Lq control for such maximal
operators under the assumption in (5.20). The claim of Theorem 5.2 then follows
from the the pointwise estimate |u(x)| ≤ CI1 |∇u|(x) for the Riesz potential and the
boundedness properties of the maximal operator. See also [33] and [8] for discussion
and generalizations of these results to metric spaces.

From Theorem 5.2 we obtain the following weighted global Hardy–Sobolev
inequalities where the integrals can be taken over the whole Rn. This is possible
since dimA(E) < n by the assumptions, and consequently |E | = 0.
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Theorem 5.3. Let E ⊂ Rn be a non-empty closed set and assume that

1 < p ≤ q ≤
np

n − p
< ∞

and
dimA(E) < min

{
q
p
(n − p + β), n −

β

p − 1

}
.

Then the inequality(∫
Rn

|u(x)|qd(x, E)
q
p (n−p+β)−n dx

) 1
q

≤ C
(∫

Rn

|∇u(x)|pd(x, E)β dx
) 1

p

(5.21)

holds for every u ∈ C∞0 (R
n).

In particular, if E = Ωc satisfies the assumptions in Theorem5.3, then the (q, p, β)-
Hardy inequality holds in Ω. The dimensional condition in Theorem 5.3, together
with Theorem 4.3, implies that the weights in (5.21) satisfy the A∞ conditions in
Theorem 5.2, and then (5.20) for these weights can be checked with the help of the
Aikawa condition; see [8, Section 4] for the computations (in the metric setting).

Actually, by the results of Horiuchi [15] (see also [16] and [27, Section 5]) the
bound dimA(E) < n − β

p−1 can be removed if dimA(E) < n − 1, while by [27,
Example 4.4] this bound is really needed when dimA(E) ≥ n − 1 and also sharp at
least when dimA(E) = n−1. The proofs in [15] for the case dimA(E) < n−1 however
require a completely different approach based on relative isoperimetric inequalities.

On the other hand, it is not hard to show that for β ≥ 0 the bound dimA(E) <
q
p (n − p + β) is also necessary for the global Hardy–Sobolev inequality to hold with
respect to E (see [27, Theorem 6.1]). Thus we have the following characterization
in the case β = 0.

Theorem 5.4. Let 1 < p ≤ q <
np
n−p < ∞ and assume that E ⊂ Rn is a non-empty

closed set. Then there exists a constant C such that(∫
Rn

|u(x)|qd(x, E)
q
p (n−p)−n dx

) 1
q

≤ C
(∫

Rn

|∇u(x)|p dx
) 1

p

, (5.22)

for every u ∈ C∞0 (R
n), if and only if

dimA(E) <
q
p
(n − p).

Under some additional conditions the bound dimA(E) <
q
p (n−p+ β) is necessary

also for β < 0, see [27, Theorem 6.2] and compare also to Theorem 5.7 below.
We now turn to the case of thick complements. A well-known sufficient condition

for the unweighted p-Hardy inequality in Ω ⊂ Rn is the uniform p-fatness of the
complement Ωc , see e.g. [28, 34]. Uniform fatness is a density condition for the
variational p-capacity, but in factΩc is uniformly p-fat if and only ifΩc is unbounded
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and satisfies the λ-Hausdorff density condition in Definition 2.5 for some λ > n− p;
see [19, Section 2.4] for a discussion.

The Hausdorff content density condition is a natural assumption also for weighted
Hardy inequalities, but for β ≥ p − 1 an additional accessibility condition for the
boundary ∂Ω is needed. This leads to the following theorem.We omit the details and
refer to [19] and [24] for the definitions and proofs; see also [5] for recent progress
concerning such accessibility conditions.

Theorem 5.5. Let 1 < p < ∞, λ ≥ 0, and β ∈ R be such that λ > n − p + β.
Assume that Ω ⊂ Rn is an open set such that Ωc is unbounded and satisfies the λ-
Hausdorff content density condition. Moreover, if β ≥ p−1, we assume an additional
accessibility condition for ∂Ω. Then the (p, β)-Hardy inequality holds in Ω.

Combining thiswith Theorem2.7 and an interpolation result in [27, Theorem2.1],
we obtain the corresponding Hardy–Sobolev inequalities under an assumption for
the lower Assouad dimension of the complement.

Theorem 5.6. Let 1 < p ≤ q ≤ np
n−p < ∞ and β ∈ R and assume that Ω ⊂ Rn

is an open set such that Ωc is unbounded and dimA(Ω
c) > n − p + β. Moreover,

if β ≥ p − 1, we assume an additional accessibility condition for ∂Ω. Then the
(q, p, β)-Hardy–Sobolev inequality holds in Ω.

Proof. Let λ ≥ 0 be such that dimA(Ω
c) > λ > n − p + β. By Theorem 2.7 the

complement Ωc satisfies the λ-Hausdorff content density condition (2.4) and thus
the (p, β)-Hardy inequality holds inΩ by Theorem 5.5. The (q, p, β)-Hardy–Sobolev
inequality then follows from [27, Theorem 2.1]. ut

We have seen in Theorems 5.3 and 5.6 that the “dual” conditions

dimA(Ω
c) <

q
p
(n − p + β) and dimA(Ω

c) > n − p + β,

possibly together with some additional requirements, are sufficient for the (q, p, β)-
Hardy–Sobolev inequality in Ω ⊂ Rn. As was already mentioned, also suitable
combinations of these conditions suffice for Hardy–Sobolev inequalities, and this
rules out the possibility that the conditions above could characterize the validity
of Hardy–Sobolev inequalities. Nevertheless, these conditions are not that far from
being also necessary, and at least the dimensional bounds q

p (n− p+ β) and n− p+ β
are optimal. This can be seen from the following result, which is [27, Theorem 4.6].
Interestingly, also the Hausdorff dimension and the (lower) Minkowski dimension
are needed here, and they can not be changed to dimA(Ω

c) in the respective bounds.
However, in the case q = p the inequalities in these dimensional lower bounds can
be made strict, see [22]. From this it follows that if

dimH(Ω
c) ≤ n − p + β ≤ dimA(Ω

c),

then the (p, β)-Hardy inequality can not hold in Ω.
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Theorem 5.7. Let 1 < p ≤ q <
np
n−p < ∞ and β ∈ R, and assume that the (q, p, β)-

Hardy–Sobolev inequality (5.19) holds in an open set Ω ⊂ Rn.

1. If β ≥ 0 and q
p (n − p + β) , n, then either

dimA(Ω
c) <

q
p
(n − p + β) or dimH(Ω

c) ≥ n − p + β.

2. If β < 0 and Ωc is compact and porous, then either

dimA(Ω
c) <

q
p
(n − p + β) or dimM(Ω

c) ≥ n − p + β.

Examples in [27] show that for β < 0 the compactness assumption can not be
completely omitted. However, compactness can be relaxed to the condition that
x 7→ d(x,Ωc)β is locally integrable, which in turn holds, for instance, if we assume
that dimM(Ω

c ∩ B) < n + β for all balls B centered at Ωc . It is not known if the
porosity assumption is necessary or if the lower Minkowski dimension (instead of
the Hausdorff dimension) is really needed in the case β < 0.

In conclusion, the moral of this final section is not so much in the actual for-
mulations of all these conditions for Hardy–Sobolev inequalities, but rather in the
fact that all five notions of dimensions mentioned in this article (Hausdorff, upper
and lower Assouad, and upper and lower Minkowski) have made an appearance.
Moreover, in the light of examples at least three of these (Hausdorff, upper and lower
Assouad) are certainly needed in order to state the optimal conditions for the validity
of Hardy–Sobolev inequalities in a somewhat uniform and condensed way.
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