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Abstract: The abundance of microplastics (MPs) in the atmosphere, on land, and especially in water
bodies is well acknowledged. In this study, we establish an optical method based on three different
techniques, namely, specular reflection to probe the medium, transmission spectroscopy measure-
ments for the detection and identification, and a speckle pattern for monitoring the sedimentation of
MPs filtrated from wastewater sludge and suspended in ethanol. We used first Raman measurements
to estimate the presence and types of different MPs in wastewater sludge samples. We also used
microscopy to identify the shapes of the main MPs. This allowed us to create a teaching set of samples
to be characterized with our optical method. With the developed method, we clearly show that MPs
from common plastics, such as polypropylene (PP), polyethylene terephthalate (PET), polystyrene
(PS), and polyethylene (PE), are present in wastewater sludge and can be identified. Additionally,
the results also indicate that the density of the plastics, which influences the sedimentation, is an
essential parameter to consider in optical detection of microplastics in complex natural environments.
All of the methods are in good agreement, thus validating the optics-based solution.

Keywords: microplastics; sludge; wastewater; Raman spectroscopy; laser speckle pattern; transmit-
tance; sedimentation

1. Introduction

The recent increase in publications shows that research on microplastics (MPs) is a
topic of utmost importance for the environment and health despite the recent emergence
and recognition of the problem by the scientific community [1–7]. The multi-disciplinary
character of the topic makes the homogenization of the research complex. Although there
are still some inconsistencies in the sampling methods [8] and sample processing of the
microplastics, as well as in the analysis methods, a trend can be seen in the uniformity
of the techniques. Another study emphasized the issue of discrepancies between plastic
particle types, size ranges, and concentrations in tests that were carried out either in a
laboratory or in real aquatic environments [1]. According to Alexy et al. [1], there is
a need to harmonize the methods for better comparability of the results as well as a
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requirement to have automated sensors for real-time and/or continuous measurements
and data processing.

Many analysis methods and techniques have been developed for the identification of
MPs [9,10]. Through Fourier-transform-infrared (FTIR) [11] and Raman [12] spectroscopies,
optics are widely used, although these two techniques still require sample harvesting and
preparation prior to measurements. Regarding the automated and real-time detection of
microplastics, optical methods are among the most powerful alternatives and offer many
different opportunities based on well-established concepts. However, there is often the
remaining problem of sampling microplastics, which are usually required in the form of
dry samples for measurements [13].

Plastics can be identified using the spectral fingerprints of synthetic hydrocarbons in
the near-infrared (NIR) spectral range. Applying spectral techniques in this wavelength
range in the detection of plastics in an aquatic environment is rather complicated due to
the strong NIR absorption by water, which interferes with the method of plastic detection
and identification. To navigate this problem, dry sample measurements are, therefore,
preferred. However, in the vicinity of λ = 1200 nm, water absorption is weaker, and
methods such as airborne detection of floating microplastics have been suggested, but for
harvested samples only [14]. An important step forward for understanding the behavior
of microplastics in aquatic environments using optical sensing is to realize in situ and
real-time measurement methods that require no harvesting or sample treatment of any
kind. This is a challenging task, however, due to the relatively low concentration of MPs—
with partial or full transparency in some cases—as well as the complex and changing
environments. Moreover, most of the current optical techniques for MPs are powerful when
used separately. However, for an accurate identification, quantification, and classification
of MPs, the development of a multifunctional sensor based on the clever integration of
the individual optical methods is necessary for in situ monitoring. Therefore, simulations
and tests on different types of optical phenomena in controlled laboratory conditions are
needed to progress in the design and development of such in situ optical detectors.

In this paper, we combine spectroscopic methods based on transmittance and laser-
based measurements to identify and validate MP detection in a complex matrix. The
method is verified with Raman measurements. We demonstrate that this approach is a
promising tool in the detection of low concentrations of different MPs in complex environ-
ments and for implementation in real-time measurements. Moreover, the study validates
the technique, which could serve as a qualitative control in wastewater treatment processes
in order to monitor the MPs after treatment [13,15]. The microplastics were obtained
from wastewater sludge samples and suspended in ethanol (filtrated and suspended in
ethanol MPs: FEMPs). Ethanol, like water, has a spectral fingerprint in the NIR region
and, therefore, presents similar challenges for in situ optical detection of MPs in aquatic
environment. In addition, ethanol improves the measurement safety, as it kills harmful
bacteria and viruses [16], which can exist in wastewaters.

Detecting particles in wastewater sludge is easy; detecting one specific type of particle
is the key challenge of current research in this field. To perform such an analysis in the
field, we have established a set of samples to be used to learn the behavior of the MP
particles coming from such a harsh environment. The outcomes of the investigations on
this teaching sample set with our newly developed optical method(s) can then be used in
real conditions, i.e., outside the laboratory, and can serve as a basis for the determination
of a new detection methodology. The goal is, therefore, to first determine the presence of
MPs in wastewater samples through Raman spectroscopy, as well as their shape through
microscopy, in order to establish our teaching test set. Further, we used this teaching set
to determine whether our optical methods are suitable for detecting the same MPs in the
same samples.
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2. Materials and Methods

In this section, we give a detailed description of the sample preparation and optical
detection schemes that could be an alternative to the time-consuming Raman spectroscopy
detection method for MPs. However, as a reference for a comparative study, we use data
from a Raman spectrometer that was exploited in the identification of MPs of different
plastic types that originated from a municipal wastewater plant. The advantage of the
different proposed optical method(s) is the relatively quick measurement time and the ease
of combining them in a multi-functional optical device to be used for quality inspections in
wastewater treatment.

2.1. Sample Preparation

To obtain the microplastics (20–5000 µm), cake samples of anaerobically digested and
dried wastewater sludge from the Nenäinniemi wastewater treatment plant (Jyväskylä, Fin-
land) were collected in aluminum foil and stored at +4 ◦C in 1 L plastic boxes. Subsamples
of 40–42 g wet weight (11–14 mg dry weight) were purified with hydrogen peroxide (30%,
WVR International) and enzymes (ASA Special enzyme GmbH, Wolfenbüttel, Germany)
in 250 mL glass bottles according to the universal purification protocol developed and
validated in [17]. The final step in the protocol was the density separation of microplastics
with ZnCl2 solution (ρ = 1.6–1.8 g cm−3). Before the purification protocol, hydrogen perox-
ide and the enzymes were pre-filtered through GF/A filters (Whatmann, Maidstone, UK)
to remove possible microplastic contaminants. The ZnCl2 solution was filtered through a
20 µm stainless-steel filter because it easily blocked the GF/A filters.

The high dry matter content of our samples prevented the direct application of the
vacuum filtration described by Löder et al. (2017) [17]. Instead, we washed the samples
by centrifugation between each step as follows: Samples were poured in 50 mL centrifuge
tubes, covered with foil, and centrifuged at 3000 rcf for 2 min. The supernatant was then
filtered using 20 µm mesh-sized stainless-steel filters. The remaining pellet was again
centrifuged using ultrapure water to clean the sample, and the supernatant was filtered.
The filter and the pellet were transferred to the 250 mL glass bottle and submerged with
the reagent of the next step. Another modification introduced to the method of Löder et al.
(2017) was the replacement of sodium dodecyl sulfate (SDS) in step 1 with 30% hydrogen
peroxide due to the extensive foaming of SDS. Hydrogen peroxide incubations were done
at 60 ◦C.

Finally (step 8, Table 1), the microplastics were rinsed with ZnCl2 (ρ = 1.6–1.8 g·cm−3)
from the steel filter into a glass separation funnel. Sand and other relatively heavy materials
were separated by incubating for 1–3 days. Microplastics remaining in the ZnCl2 were
collected on the steel filter and eluted with ethanol (70% in water) in glass bottles for
storage. The resulting mixture was a diluted concentration of different MPs filtrated and
preserved in ethanol (FEMPs). Figure 1 shows images of the MPs during the preparation
process (left) and contained in the measured samples (in the white circle, middle). One can
appreciate their various sizes and irregular shapes, e.g., “hook-like”, fibers, fragments, and
aggregates. Despite the filtering process, other unidentified organic materials than MPs
were clearly present (right) after preparation. Such particles are typical of wastewater and
natural environments, and they add to the complexities of the matrix. More information
and details are given in the dataset published by P. Salmi et al. [18].

Table 1. Sequence of reagents used to purify the microplastic samples according to Löder et al. (2017) [17].

Step Reagent Incubation Temperature and Time

1 Hydrogen peroxide 30% 60 ◦C, 1 d
2 Protease in Tris-HCl buffer (1:5, pH = 9) 50 ◦C, 1 d
3 Lipase in Tris-HCl buffer (1:20, pH = 9) 40 ◦C, 1 d
4 Cellulase in NaOAc buffer (1:4, pH = 5) 40 C, 3 × 1 d
5 Hydrogen peroxide 30% 60 C, 1 d
6 Chitinase in NaOAc (1:20, pH = 5) 37 ◦C, 1 d
7 Hydrogen peroxide 30% 60 ◦C, 1 d
8 Density separation with ZnCl2 (ρ = 1.6–1.8 g.cm−3) Room temperature, 1–3 d
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Figure 1. Micrograph of microplastics (MPs) during preparation (left) with different shapes and sizes and those identified
in the measured sample (middle). In the white circle, a hook-shaped MP is highlighted, and the other black spots are air
bubbles and unidentified organic materials (also in the right image).

2.2. Counting and Characterization of Microplastics with Raman Microscopy

Subsamples of 5 mL of the FEMP samples were filtered on aluminum oxide filters
(Anodisc, Whatmann, Maidstone, UK). Microplastics were manually counted on at least
15% of the area of the filter, and the plastic type was analyzed from the field of view of a
Raman microscope (Thermo Fischer Raman DXR 2xi, Waltham, MA, USA). Table 2 gives
the numbers of particles and subsampling ratios. The Raman spectra of microplastics were
obtained with 758 nm laser excitation (20 mW power), an objective with ×10 magnification,
a 50 µm slit aperture, and an exposure time of 0.1 s for 20 scans. The acquired spectra
were compared to commercial material libraries using the OMNIC xi software (Thermo
Fischer Scientific, Waltham, MA, USA). For pristine samples, the match to library spectra
was expected to be higher than 70%; however, due to matrix interference, a 50–70% match
was obtained based on the Raman peak positions. The particles characterized as plastic
were categorized as fragments or fibers based on the deviation from the sting-shaped form
of the fibers. Counts were converted to microplastics per gram of dry weight (MP g−1 DW)
according to Equation (1).

MP g−1 DW = [(N × k) / m] × df, (1)

where N is the number of particles counted, k is the ratio of the filtration area to the area
where the particles were counted from, m is the dry mass of the processed sample, and df is
the dilution factor because the whole processed sample was not filtered with the aluminum
oxide filter.

Table 2. Identified MP types and quantities per dry weight (DW) from Raman microscopy and average densities in pristine
form. MPs g−1 DW: Microplastics per gram of dry weight. MPs/mL: Microplastics per millilitre ethanol. Particle (P) or
fiber (F).

Sample A Sample B Sample C

Dry Weight [g] 11.5 13.8 13.9
Proportion of DW analyzed

with Raman [%] 0.9 0.9 2

Fibers counted 6 4 15
Particles counted 8 7 6

MPs g−1 DW 130 85 85
MPs/mL 19 15 17

MP types F P F P F P Density in pristine form [g cm−3]

PP 0 3 0 1 0 3 0.85
PE 1 0 0 1 3 0 0.94

PET 5 1 4 2 12 1 1.38
PS 0 1 0 0 0 1 1.05

POM 0 3 0 3 0 1 1.42
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2.3. Three Optics-Based Alternatives for a New Detection Method

The same samples were also characterized—benchmarking with ethanol—with three
other devices to compare with the results of Raman spectroscopy and to determine the
dynamic light scattering of the identified MPs. The devices were (1) a spectrophotometer
(UV 3600, Shimadzu, Kyoto, Japan) for obtaining the spectral fingerprints, (2) a handheld
diffractive optical element (DOE, MGM Devices, Finland)-based optical sensor [19], and,
finally, (3) a “basic” optical setup consisting of a Helium–Neon (HeNe) laser light source
(5 mW, λ = 632.8 nm) and a charge-coupled device (CCD, Thorlabs, Newton, NJ, USA)
camera for probing the samples. Both the basic setup and DOE-based sensors were used
for the determination of the dynamic light scattering properties of the FEMP samples.

One of our novel methods is based on the modification of an original handheld
glossmeter to create a DOE-based optical sensor. A detailed description of the device
is given in [19]. It consists of a handheld glossmeter with a single-cell photodiode for
recording the specular reflection and an attached CCD camera—without an objective
lens—for recording the forward-scattered light. Moreover, for liquid samples, there is a
compartment designed with an 800 µL inner volume to contain the liquid for measurement.
The liquid compartment consists of a glass disk base (with either both sides smooth or
one side rough) and a black surrounding cup. The use of the rough glass disk enables
the generation of a speckle pattern—see Figure 2a—with a coherent laser light source for
probing liquid-based samples. The laser speckle pattern is formed due to coherent laser
light scattering from microscopic objects, such as MPs in water or in other host liquids.
This pattern is sensitive to the local displacement of particles, i.e., sinking or moving in the
direction of the beam. The presence of MPs is, therefore, expected to modify this original
speckle pattern, leading to the detection of the presence of the MPs. The extent of the
speckle pattern modification by the MPs depends on the properties of the MPs, such as
the size, volume properties, and surface texture [20,21], as well as the refractive index (RI)
mismatch between the present material and the ambient medium. For very small MP sizes,
as considered in this study, few modifications to the speckle and interference patterns
are expected. Replacing the rough disk with smooth glass leads to the transmission of
an interference pattern; see [19]. Connecting the DOE-based sensor, which is equipped
with a semiconductor laser light source (0.8 mW, λ = 635 nm), to a computer enables
time-dependent measurements [22], which may be essential for studies in the field.
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Figure 2. (a) Speckle pattern of samples on a rough glass surface for samples of ethanol (left) and MPs filtrated and
preserved in ethanol (FEMPs) (right). The recorded static images (patterns) are very similar to the naked eye for both
samples. (b) Basic optical experimental setup for recording the beam profile after propagation through the FEMP sample.

The speckle contrast [23], C = [< I2 > − < I >]1/2 / < I >, was calculated to obtain
information on the dynamics of the samples as a result of the modification to the initially
generated speckle pattern with time. I and < . . . >. represent the intensity of the speckle
pattern and the ensemble average, respectively. The speckle contrast was calculated
using the intensity of the red channel from the red–green–blue (RGB) pattern captured
on the CCD camera after correcting with the measured stray light. C has values ranging
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from 0 to 1 for undeveloped and fully developed speckles, respectively. It has a long
history of applications ranging from surface roughness characterization [21,24] to flow
rate determination [25]. In this study, we employed it in the qualitative identification of
the presence of microplastics. The data obtained with these optical methods, which are
presented in Figure 2, will be treated in the last part of the manuscript while describing the
detection of the sedimentation of MPs.

2.4. Measurement Procedure with the Spectrophotometer and the New Optical Devices

First, the transmittance of the FEMPs and the reference ethanol samples was mea-
sured with the spectrophotometer in the visible-near-infrared (Vis-NIR) spectral range
of 500–2500 nm, where most plastics have spectral fingerprints [26–28]. Additionally, a
standard spectroscopic cuvette with inner dimensions of 10 mm × 5 mm × 35 mm and an
inner volume of ca. 1750 µL was filled with the FEMP sample. The cuvette was set so that
light propagated along the 5 mm direction in the sample. The transmittance as a function
of time at a fixed wavelength λ = 800 nm was then measured after shaking the sample
in the cuvette. The settling of the MPs after shaking was to simulate the sedimentation
process of the different MPs due to variation in densities. In both measurements, an empty
cuvette was used for the baseline measurements.

Next, the “basic” laser-based optical setup was used to measure the pure ethanol and
the FEMP samples in another standard spectroscopic quartz cuvette with dimensions of
10 mm × 10 mm × 35 mm (ca. 3500 µL). The covered cuvette was shaken and illuminated
with a Helium–Neon (HeNe) laser light source with a 0.81 mm beam diameter. The
corresponding transmitted beam was also recorded with time on a CCD camera—also
without an objective lens—placed 60 cm from the cuvette to determine the dynamic laser-
light-scattering properties of the particles in the FEMP sample.

Lastly, using the smooth glass disk base in the modified portable handheld device,
we introduced a 15 µL drop of the filtrated sample into the volume compartment of the
DOE-based sensor with a glass pipette to measure the specular reflection of the sample
with time. Since there was very little probability of having any MPs in such a small volume,
we were only able to obtain information on the effective optical medium of the FEMP
sample after the preparation process based on the specular reflection. To further probe the
dynamic light-scattering properties of the samples in a relatively larger volume, using the
same device but with a rough glass disk base, the 800 µL (for an approximate height of
2.8 mm and glass disk diameter of 20 mm) volume compartment was filled with 700 µL of
the pure ethanol and the FEMP sample, and the transmitted pattern was again measured
with time on the CCD camera. Static images of the recorded speckle patterns are shown in
Figure 2a. It is worth mentioning that the images are very similar for both the ethanol and
FEMP samples. This optical method simultaneously detected the presence of various types
and sizes of mostly irregularly shaped MPs in the liquid matrix.

For comparison, we also performed similar measurements for pure ethanol (96%), in
which the FEMPs were preserved. We noted that the speckle pattern measurements with the
DOE-based sensor and the HeNe laser setup differed. These gave different transmittance
schemes and possibly different numbers of particles in the considered sample volumes.
However, both methods showed similar dynamic activity of the FEMP samples. The
probing laser light beam was limited by an aperture of 2 mm at the bottom of the glass
disk in the DOE-based sensor. In the same device, the FEMP samples were introduced
directly on the light beam’s path. Hence, the motion of the FEMPs was preferentially falling
parallel to the direction of the beam, whereas in the other schemes, the FEMPs were falling
orthogonal to it. Therefore, in the case of the recorded speckle pattern, the DOE-based
sensor monitored variations in the speckle pattern with time because of local variations in
the surface roughness of the glass disk base.

It is to be noted that the use of the spectrophotometer (detection of the transmission
spectrum) prevents its use for several minutes or seconds for other purposes, such as
monitoring the sedimentation. For this reason, we needed a laser-based sensor that, thanks
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to coherent radiation, was very sensitive in order to detect any small changes along the
path of the laser beam, e.g., an MP passing in the beam.

3. Results and Discussion
3.1. Raman Microscopy

The analysis of the Raman microscopy spectra led to the identification of the following
MPs in the FEMP sample: polypropylene (PP), polyethylene (PE), polyethylene terephtha-
late (PET), polystyrene (PS), and polyoxymethylene (POM). The numbers of MPs counted
for each shape of the identified plastic types are presented in Table 2 for the three sets of
FEMP samples that were measured (Samples A, B, and C). The corresponding estimated
concentrations of the MPs (mean = 17 MPs/mL, SD = 2) from the Raman measurements are
indicated for the samples. The average densities of the identified MPs are also presented in
the same table to aid in a later discussion of the other results. By comparing the measured
Raman spectra to the commercial material library, MPs of five (5) different plastic types
could be identified in the FEMP samples, which is in accordance with the most abundant
MPs in wastewater [29].

Raman spectroscopy provided a clear picture of the nature and types of MPs in the
samples to be investigated with our novel optical method. First, one can remark that PET
fibers are predominant. Second, the number of fibers is negligible for PP, PS, and POM. No
particles, but only fibers and in a very small amount, were detected for PE.

These results, which were obtained with a recognized method for MP identification,
allowed us first to determine the presence and types of MPs in the prepared samples,
second, to establish a set of known samples obtained from a wastewater treatment plant,
and, third, to further validate our simpler optical methods.

3.2. Specular Reflection Signal

Figure 3 shows the reflection signal detected with the DOE-based sensor after intro-
ducing 15 µL of the FEMP sample on the smooth glass disk base. The recorded specular
reflection signal had an accuracy of ca. 0.10%. We observe that both the pure ethanol and
FEMP samples showed lower reflection signals than with the smooth glass only, with that
of pure ethanol being higher than that of the FEMP sample. The clear difference in the
magnitudes of the reflection signals between the pure ethanol and FEMP samples was
more likely due to the difference in the refractive indexes of the two samples. Pure ethanol
has a refractive index (RI) of n = 1.36; by preserving the filtrated sample in ethanol, we
changed the effective refractive index of the resultant mixture, which yielded a change in
the reflection signal. Obtaining a lower reflection signal than that of pure ethanol indicates
that the FEMP sample had a higher effective RI than the pure ethanol. However, we note
that, by measuring the specular reflection of such a small volume on the smooth glass, we
obtained information on the ambient medium of the FEMP sample rather than on the MPs,
the reason being that such a small volume of the FEMP sample has very little probability
of containing an MP, although it may contain other particles (see Figure 1) that also affect
the effective RI. Additionally, considering the fairly constant nature of the reflection signal
with time, one can conclude that both liquids rarely spread over the smooth glass [22,30].
This is especially true for the FEMP sample due to its slightly more viscous nature than
that of the pure ethanol.

3.3. Transmission Spectra

The transmission spectra of pure ethanol and the FEMPs are shown in Figure 4a.
From the Raman measurements, we know that FEMP samples A, B, and C contained five
different plastic types. The measured transmittance is, therefore, a combination of their
weighted spectral features. For λ < 900 nm, both samples showed T > 100%, which is due to
the use of air for the baseline correction. Pure ethanol showed a higher transmittance than
the FEMP samples across almost all wavelengths, with dominant features for λ > 1100 nm.
The magnitude of MP transmittance in a liquid medium is highly dependent on the
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concentration [26]. To identify and classify the different MPs in the FEMP samples based
on the spectral features, we subtracted the transmittance of pure ethanol from that of the
FEMP samples. Figure 4b shows the resulting difference in transmittance, ∆T, where the
spectral features, seen as dips, consisting of first-third overtones of C–H vibrations [31], are
more visible. In comparison to earlier studies [26–28], these observed spectral features can
be attributed to MPs from known plastic types. In the study by Peiponen et al. (2019) [26],
where the spectral features of plastics were studied in both air and water, it was observed
that the maximum deviation of an identified absorption peak is about 4 nm, despite the
relatively large difference in RI mismatch. In some cases, no deviations were observed for
some peaks of the same plastic type.
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Imposing similar constraints and considering the small difference in the dispersion
of ethanol and water, we can therefore attribute some of the identified spectral dips as
follows: 1158 (PS), 1396 (PE), and 1660 nm (PET). This identification and classification, such
as in the case of PET, is in close agreement with the results of [28], who performed spectral
measurements of plastics in air at NIR and mid-infrared. As is evident from [28], POM
shows no spectral features in the Vis-NIR spectral range; hence, none of the fingerprints
can be attributed to it, but due to its density, it will contribute to the sedimentation process.
Based on these observations, we can classify the mixture of MPs by simply combining
transmittance measurements with an a priori library of MP spectral properties, such as
that presented in [28]. The creation of such a rich library of intrinsic spectral properties of
plastics could also be beneficial in quantifying the concentrations of the different plastic
types using chemometric tools, such as principal component analysis [31]. However,
we remark that for real-time monitoring and detection of plastics in open water, the
problem of suppressing the spectral fingerprints of water absorption could persist [26]. The
unattributed dips at 978, 1530, and 1868 nm can be due to the water content present in the
preserving ethanol (ca. 30%).

Thus far, based on the transmission and the Raman measurements, similar types of
MPs could be identified in the FEMP sample—excluding the POM, which showed no
spectral features in the measured range. Although the shapes of the identified MPs could
not be distinguished in the transmission measurements, combining both techniques in a
sensor promises a more quantitative means of identifying and validating detected MPs in
natural environment with higher confidence.

3.4. Sedimentation

We consider the case of MP sedimentation from the three measurement schemes,
where the densities of the MPs play a major role. Figure 5a illustrates the evolution of the
transmittance with the time measured with the spectrophotometer when the light beam
passed through the shaken liquid. Figure 4a shows that the probing wavelength selected for
the sedimentation investigations, λ = 800 nm, ensures that the measured transmittance of
the FEMP sample is predominantly due to the scattering and diffraction (depending on the
polydisperse particles) rather than absorption. The red dots are the measured transmittance
with time, whereas the red curve is the exponential fit of the data points. Similarly, the
observed T > 100%, which is due to the use of air for the baseline correction, still exists. It
is obvious that the transmittance increases as a function of time. This is attributed to the
sedimentation of the MPs in ethanol. Ethanol has a relatively lower density of 0.81 g cm−3,
and the densities of the MPs in the FEMPs suggest that they will settle at different depths.
However, after shaking the cuvette, the FEMPs are first in a dynamic state before starting
to settle, depending on the densities. Based on the densities, most of the MPs will settle
at the bottom, leaving fewer particles of PS and some available organic materials with
lower density to interact with the probing light after some time has elapsed. Indeed, the
curve tends to saturate after 4 min. Thus, the exponential growth of the curve is strongly
influenced by the types of particles available.

Next, we consider the case of DOE-based sensor with the full volume (700 µL). The
recorded speckle patterns of the pure ethanol and FEMP samples are very similar and
indistinguishable to the naked eye, as seen in Figure 2a. However, due to the sensitivity
of the speckle pattern to the local variation and the polydisperse particle sizes, the little
variations in the pattern may be revealed in the speckle contrast, C.

Figure 5b shows the speckle contrast, with error bars, calculated from the recorded
speckle pattern using the DOE-based sensor with a rough glass disk base for the case of
700 µL of pure ethanol and FEMP samples. We observed a fairly constant mean value of
C with time in the case of pure ethanol, whilst a similar nonlinear relationship, as seen
in Figure 5a, exists between the mean of C and the time for the FEMP sample. The larger
variation in C for the pure ethanol could be due to its volatility over longer durations,
which is not the case for the FEMP slurry sample. In the absence of any particles in pure



Polymers 2021, 13, 871 10 of 14

ethanol, the scattering is influenced by the RI difference between the (rough) glass and
the ethanol, which does not change with time; hence, the horizontal nature of the speckle
contrast is as one would expect. However, the FEMP sample is rather complicated, as the
scattering, in addition to the RI of the ambient medium, is also influenced by the presence,
sizes, and irregular shapes of the MPs and their refractive indices. The different RI values
of the MPs cause local changes in the RI for the probing beam, thus modifying the speckle
pattern at the detection plane. Further increases in the speckle contrast can also be because
of the falling of heavier MPs, such as POM, PS, PET, and PE, and random movement of
less dense MPs, such as PP, thus modifying the speckle pattern in similar manner to that
found when increasing the surface roughness. In such a small height of 2.8 mm, the speckle
contrast tends to be sensitive to such sedimentation dynamics of the particles. Considering
the speckle pattern as a transmission component of the DOE-based sensor, the positions
of the specular reflection signals and the speckle contrast for the ethanol and the FEMP
samples are in good agreement.
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Comparing the integrated transmittance in Figure 5a and the speckle contrast curves
in Figure 5b, we observe that both display dynamic activity in the system, which can
be attributed to the presence of the MPs in the FEMP sample. However, the integrated
transmittance curve saturates at a much longer time (after 4 min), which could be due to
the different shapes of the respective containers. In addition to the possible higher number
of MPs with the increased sample volume, the height of the cuvette (35 mm) and the area
of the sensing beam (3 × 8 mm2) contribute to the longer saturation time in the case of
the transmittance measurements, unlike in the DOE-based sensor with a 2.8 mm height
of the volume compartment. Regarding the simultaneous presence of both regularly and
irregularly shaped MPs with different densities, the particles are likely to spend a longer
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time in the narrow cuvette, leading to a longer saturation time than that for the wider cup
of the DOE-based sensor with a much shorter sedimentation height.

The images in Figure 5c were obtained using the optical setup described in Figure 2b.
Figure 5c shows static images related to similar measurements, but using the HeNe laser
beam and a 10 mm cuvette. In Figure 5c (i), the pattern recorded for pure ethanol, which
was stable for various durations, is shown. We observe regular and symmetric annular
interference fringes, which could result from the thermo-optic properties of ethanol and
the Gaussian intensity profile of the HeNe laser [32–34]. The presence of the annular rings
serves as a measure of the extent of distortion of the incident beam by the FEMP sample.
Figure 5c (ii) and (iii), on the other hand, show an obviously distorted beam even after
60 s of shaking the cuvette. The distortion of the beam evolves with time. The pattern,
however, becomes steady after 220 s, as shown in Figure 5c (iv) with secondary circular
rings. Although the macroscopic patterns in Figure 5c (i) and (iv) resemble each other, we
assume that the haziness is due to the scattering of light from small particles—possibly
micrometer-sized MPs. The patterns taken at 0 and 60 s show that the beam interacted with
some particles, which we attribute to the MPs due to the low concentration of the organic
matter present in the FEMP sample.

The amplitude of the distortion can be greatly influenced by the properties of the
particles, such as the size, number, shape, and surface texture, interacting with the beam.
For example, a relatively large particle compared to the beam diameter with some surface
roughness can lead to a speckle pattern. In principle, smaller particles can also lead to
edge diffraction and interference fringes for thin and long particles [35,36]. Considering
the different and complex shapes and sizes of the MPs in the micrograph (Figure 1a), one
would expect non-conventional light scattering, resulting in the complex combination of the
above-stated optical phenomena, to be at play, with no particularly dominant phenomenon
as observed in the 0 and 60 s patterns. In both cases of the transmittance (with time) and
beam profile measurements, we observed the effect of the density of the MPs, as well as
their relative positions during the sedimentation process with respect to the probing beam’s
position. In general, the sedimentation process of MPs in a natural aquatic environment
can be complex, as the density of plastics is influenced by aging [37,38] and the flow of
water, which is constantly changing. It is, therefore, evident that in the design of an optical
sensor for the detection of MPs in their natural environments, such as rivers and lakes,
where the situation in constantly changing, the density of the particles should be taken into
consideration. This can be done by combining the measurements of the intensity and size
of the speckle in addition to the contrast [39]. All variations are nonlinear, but they can be
detected with optical sensors through a referencing scheme. The movement as well as the
nature of the plastic can thus be determined.

3.5. Discussion of the Methods

Raman microscopy allowed us to determine the different plastic types present in the
samples with high precision. The first step in our optical method(s) is to examine the
optical medium of the sample with specular reflection after the filtration and suspension
in ethanol to determine whether we can detect a change in the samples due to the sample
preparation. This is confirmed by the results presented in Section 3.2. The results from the
transmission spectroscopy of MPs in the liquid are in good agreement with those of the
Raman spectroscopy, since most of the plastic types were optically identified by the former.
Finally, the most important conclusion to be drawn is the influence of the shape of the MP
particles on their sedimentation as a result of their complex light scattering. We clearly see
from this set of samples that the time evolution of the speckles is a very good indicator
of the plastic shape, which is convoluted with the density of the plastics, i.e., their types.
These complementary observations justify the use of several optical methods.
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4. Conclusions

Microplastics extracted from wastewater sludge and suspended in ethanol were in-
vestigated using Raman microscopy and transmission measurements, as well as novel
laser-based techniques. It was demonstrated that combining Raman and transmission
techniques is a promising tool in the quantitative identification and validation of common
microplastics, such as polypropylene (PP), polyethylene terephthalate (PET), polystyrene
(PS), and polyethylene (PE), that are present in processed wastewater sludge samples.
Moreover, the results also show that basic laser-based measurement can be a useful tech-
nique for qualitatively studying the dynamic properties of microplastics based on their
complex light-scattering behavior. Additionally, the results indicate that the density of MPs
plays a vital role in the dynamic properties and can affect their detection in natural environ-
ments. This study represents a step towards the development of a multifunctional optical
sensor for the detection of microplastics and their dynamic properties of light scattering in
natural environments based on their spectral features and speckle metrology. Such a device
could serve as a qualitative control in wastewater treatment processes by monitoring MPs
after treatment. A lack of reliable methods for the detection of complex shapes, which
are most common in wastewater, appears in current research on MPs. Most of the optical
methods used so far are mainly based on Mie light scattering, which is valid only for
spherical particles. Thus, the development of a multifunctional optical sensor that employs
both spectroscopic and non-spectroscopic methods, as described in this work, could be
useful in the monitoring of micro-or nanoplastics and their essential characteristics, such
as complex shapes, sizes, and sedimentation in situ in real field conditions. Studies are
ongoing in order to establish further correlations between the proposed techniques and
conventional methods and to integrate different optical techniques for the development of
a multifunctional optical sensor for the identification of MPs in aquatic environments.
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