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Abstract

Fluorescence spectroscopy is commonly employed to study the excited-state photophysics of organic
molecules. Planar Fabry-Pérot microcavities play an essential role in such studies and a strategic cavity
design is necessary to attain an enhanced light-matter interaction. In this work, we computationally
study different geometries for a planar metallic Fabry-Pérot microcavity tuned for the absorption of
Sulforhodamine 101, a typical dye for fluorescence spectroscopy. The cavity consists of a polymer
layer enclosed between two silver mirrors, where the thicknesses of all the three layers are varied to
optimize the cavity. Our transfer-matrix and finite-difference time-domain simulations suggest that a
cavity with 30 nm thin top mirror and 200 nm fully reflective thick bottom mirror, thus having only
reflection and absorption and no transmission, is an optimal design for maximizing the Purcell factor
and spectral overlap between the cavity and molecule, while still sustaining an efficient measurability
of the fluorescence.

1. Introduction

Low-Q planar Fabry-Pérot (FP) microcavities, doped with photoactive organic molecules, are essential in
exploring light-matter interactions under weak [ 1-4] and strong coupling limit [5, 6], and often employed in the
studies of excited-state photochemistry [7, 8], photovoltaics [9], and cavity-quantum electrodynamics [10].
Planar metallic FP microcavities are popular in spectroscopy [3, 6] since they are simpler to fabricate and
realize than dielectric cavities [11, 12]. However, implementing them in fluorescence spectroscopy is
challenging, because usually one can tune the cavity resonance and thus the enhancement either for molecular
absorption or emission, but not fully for both. The usual choice has been to do the excitation or detection via
light leaking through a thin enough mirror, which, however, limits the quality factor (Q) of the microcavity to
well below hundred. However, mode volumes (V,,) of the all-metallic microcavities are really small, which in the
case of multimolecule coupling is enough to drive the system even to an ultrastrong coupling regime [13].
Performance of a FP cavity in fluorescence spectroscopy depends on its field-confinements in temporal (Q)
and spatial (V,) domains. Here Q = \y/AM\, where )\, is the wavelength of the cavity resonance and A\ is the

full-width at half-maximum of the resonance peak [14]; and, V,, = [ff |E? dV]/[ max (¢ |E*)], where € is

the dielectric function and E is the electric-field amplitude inside the interaction volume V [15]. Purcell factor
determines the fluorescence enhancement inside the cavityand itis Fp = (3/47%)(\o/1)*(Q/ Vi), where 1 is
the refractive index in V' [16]. Increasing Q and decreasing Vi, readily improves Fp. However, increasing Q often
requires highly reflective mirrors, incurring a reduced cavity transmission, which further reduces the
measurability of the fluorescence. Thus, an optimized compromise is needed.

In addition, the aforementioned Fp is ‘ideal’, assuming—perfect spectral overlap of the cavity mode with the
fluorescence spectrum, and emitter location at the antinode of the cavity mode with its transition dipole aligned
with the local electric field [17]. In reality, matching of the cavity mode of doped microcavities, with the emission
spectrum of an ensemble of emitters spatially distributed within the cavity field with randomly oriented dipoles,
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Figure 1. Schematic of FP microcavity.

can be challenging [18]. Hence, only a fraction of the emission couples to the cavity leading to an effective Fp
much lower than the ideal [4].

Improving the effective Fp can be done by spectral tuning between the cavity mode and the emitter
responses. Increasing the spectral overlap between the molecular emission PL () and the cavity absorption
A (N), i.e. emission overlap & = f A (AN PL(A)d\, will increase the fraction of the emission coupled to the
cavity, resulting in more efficient fluorescence enhancement [19]. Similarly, excitation efficiency of the
fluorescent molecules inside the cavity depends on the spectral overlap between A, (\) and the molecular

absorption A,,()), i.e. absorption overlap ®, = f A.(N) N A, (A)dA, which has to be high for an efficient

cavity-molecular coupling [20].

Taking into account the above excitation efficiency (x @, ) and considering that—only a fraction of the
molecular emission coupled with the cavity absorption (x ®g) is enhanced by a factor of Fp and collected
through a cavity mirror possessing an average transmissivity T,y,, the total integrated fluorescence intensity
measurable outside of the microcavity can be formulated as Iy = FpT,yg®g ®y. Ipr is an estimation of the
measurability of fluorescence, which is not necessarily optimal at optimal Fp. Therefore, a strategic cavity design
isneeded to attain an optimal Fp, ®f, $ and T,y to obtain the best Iz, which we use as our main criteria for the
cavity here.

In this work, we computationally study different geometries for a planar metallic FP microcavity. To
calculate Iz we have chosen sulforhodamine 101 (SR101) dye as our model molecule and tuned the cavities for
its absorption maximum (576 nm). The cavity consists of a polymer layer enclosed between two silver mirrors,
and the thicknesses of all the three layers are varied to optimize the cavity properties. Our transfer-matrix
method (TMM) and finite-difference time-domain (FDTD) based simulations suggest that a reflective (non-
transmitting) cavity is an optimal choice in maximizing Fp, ®,, ®g and especially Ig; . Our findings provide
insights on designing low-Q all-metal FP microcavities for fluorescence spectroscopy.

2. Materials and methods

Planar metallic FP microcavities with different geometries were studied using TMM [21, 22] and FDTD [23, 24]
simulations. The two silver (Ag) mirrors with thicknesses #; and t5, and a layer (thickness #,) of poly-vinyl alcohol
(PVA) embedded in between, form the cavity (see figure 1). PVA was chosen since it is a suitable polymer matrix
for SR101 molecules. The cavity mode was always tuned to the absorption maximum of SR101 (576 nm) by
varying t,. A thin PVA layer (30 nm) was also considered on top of the top Ag mirror as a protection layer, which
prevents the oxidation of Agin ambient condition in the case of real cavities. The glass (SiO,) substrate and the
surrounding medium (air, refractive index is 1.0) were considered as semi-infinite. The material models for Ag,
PVA and SiO, were extracted from [25-27], respectively. The absorption and emission spectra of SR101 were
taken from [28].

Reflection, transmission and absorption (R, T, A) of the modelled microcavities were calculated using
TMM where A = 1 — R — T. The Q values were calculated from the cavity absorption. Electric field
distribution and mode volume in each cavity were computed using 3D-FDTD simulations where normal
incidence of linearly polarized light with polarization defined in figure 1 was considered as an excitation. The
entire radiation zone of the cavity mode, as illustrated by the white dotted boundary in the field-distribution plot
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Figure 2. (a) E-field distribution in the microcavity. (b) T,y as a function of top mirror () thickness. Spectral overlap of cavity
absorption with (c) absorption and (d) emission of SR101. In (a), (c) and (d), the studied cavity is C1 (see table 1).

Table 1. Geometries for
symmetric microcavities.

Cavity t/t;/t:(nm)

Cl 20/132/20
c2 25/138/25
C3 30/142/30
c4 40/146/40
C5 50/148,/50

shown in figure 2(a), was considered as V in V;, calculation. T, were calculated as the average transmission of
the top mirrors (f;) within the SR101 emission (560-700 nm) as reported in figure 2(b). Spectral overlaps (D,
and @) were calculated as an integral of the common area (shaded yellow/magenta regions) under the cavity
absorption (black) and the molecular absorption/emission (blue/red) curves for each cavity, as shown in
figures 2(c), (d).

3. Results and discussions

In our first approach, we designed symmetric cavities where both mirrors had equal thicknesses. Five cavities
(C1-C5) with increasing mirror thicknesses were considered with their geometrical parameters reported in
table 1, while figures 3(a)—(c) show their R, T, A analysis. From figures 3(c), (d), itis clear that an increment in
cavity mirror thickness makes the cavity absorption linewidth narrower, resulting a drastic fall in ®, and ®g.
However, it simultaneously improves cavity Q, Vi, and Fp as shown in figures 3(e), (f). The cavity C5 (50 nm
mirrors) provides highest Fp but it yields poorest spectral overlaps and T, (see figure 2(b)). Consequently, Igy,
drops at the highest Fp.

To overcome this limitation we designed asymmetric cavities where we made one mirror thin (leaky) for
fluorescence collection while keeping the other mirror thick. Five cavities (C6—C10) were considered with
increasing At (At = t3 /1) with their geometrical parameters reported in table 2 and their R, T, A analysis
shown in figures 4(a)—(c).
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Figure 3. (a) Reflection, (b) Transmission, and (c) Absorption of the symmetric cavities. (d) Spectral overlaps, (¢) Q and Vj, (f) Fp and
Ig; as a function of cavity mirror thickness.

Table 2. Geometries for
asymmetric microcavities.

Cavity h/ty/t;(nm)

Cé 60/146/30
c7 45/145/30
Cs 30/145/45
C9 30/145/60
Cl10 30/145/90

Figures 4(c), (d) show that the cavities with thin top and thick bottom mirrors (At > 1: C8-C10) yield
higher cavity absorption and spectral overlaps than the cavities with thick top and leaky bottom mirrors
(At < 1: C6-C7). An increment in At improves cavity Q, Vi, Fp and Iy as shown in figures 4(e), (f). The cavity
C10 (At = 3) provides highest Iy, Fp, ®) and ®. Moreover, the change in the cavity geometry from symmetric
to asymmetric yields 7.54% drop in Fp with 223.33% rise in Iz, on average. Therefore, by making a very thick
bottom mirror with a thin top mirror, one can ensure a healthy trade-off between Fp and Ig; .

Such findings motivated us to design a reflective (non-transmitting) cavity having a very thick bottom
mirror and thin top mirror so that the cavity transmission becomes zero (T ~ 0) and the absorption becomes
A = 1 — R Fivereflective cavities (C11-C15) with increasing top mirror thickness were considered while the
bottom mirror thickness was kept constant. Figures 5(a), (b) present their R, A analysis with their geometries
specified in table 3. Figure 5(c) depicts the leaky transmissivity of the top mirrors used for all the cavities. It was
computed by considering an Aglayer between semi-infinite PVA and air. From C11 to C15, as the top mirror
thickness is increased, the cavity absorption, ®, and ®g are increased with a significant drop in the
transmissivity of the top mirrors, as shown in figures 5(b)—(d). However, a simultaneous improvement in cavity
Q, Vy, and Fpis also observed as depicted in figures 5(e), (f).

In a reflective cavity, due to the non-transmitting bottom mirror, the omnidirectional fluorescence emission
can only exit through the thin top mirror. Therefore, a fall in the leaky mirror transmissivity, as shown in
figure 5(c), directly results a drop in Iy at highest Fp as shown in figure 5(f). Nevertheless, the change in the
cavity geometry from symmetric to reflective results 98.55% rise in Fp alongwith 386.56% rise in Iy on average
and clearly outperformed the asymmetric cavities. Therefore, we can conclude that of the cavities studied here,
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Figure 4. (a) Reflection, (b) Transmission, and (c) Absorption of the asymmetric cavities. (d) Spectral overlaps, (e) Q and V;, (f) Fp
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Table 3. Geometries for
reflective microcavities.

Cavity i/t /t;(nm)

Cl1 20/140/200
c12 25/143/200
C13 30/145/200
Cl4 40/148/200
Cl5 50/149/200

the reflective cavities, and more precisely C13 is the optimal choice for fluorescence spectroscopy of SR101,
providing the best possible I .

4. Conclusions

We computationally investigated different geometries of a planar metallic FP microcavity tuned for the
absorption of SR101. The cavities were modelled using TMM and FDTD simulations to optimize the Purcell
factor, the spectral overlap between the cavity mode and the molecular responses, and the measurability of
fluorescence. To quantify the total fluorescence measurability, we defined Ip;, = Fp T, P Py, which takes into
account all the above properties. However, we also analyzed the different properties separately since they can be
important for other studies.

Our findings revealed that the symmetric cavities are limited in providing high Purcell enhancement along
with an acceptable measurability of fluorescence. Asymmetric cavities can provide more efficient light-matter
interaction while maintaining a pathway to collect the fluorescence through the leaky top mirror. Finally, we
achieved an optimal design, i.e. a reflective cavity (C13) with 30 nm thin/leaky top mirror and 200 nm thick/
non-transmitting bottom mirror, which provides high Purcell factor and spectral overlaps, and most
importantly, the best Ig; for fluorescence spectroscopy of SR101.
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