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Abstract
We consider decoupling inequalities for random variables taking values in a Banach
space X . We restrict the class of distributions that appear as conditional distribu-
tions while decoupling and show that each adapted process can be approximated by a
Haar-type expansion in which only the pre-specified conditional distributions appear.
Moreover, we show that in our framework a progressive enlargement of the underlying
filtration does not affect the decoupling properties (in particular, it does not affect the
constants involved). As a special case, we deal with one-sided moment inequalities for
decoupled dyadic (i.e., Paley–Walsh) martingales and show that Burkholder–Davis–
Gundy-type inequalities for stochastic integrals of X -valued processes can be obtained
from decoupling inequalities for X -valued dyadic martingales.

Keywords Decoupling in Banach spaces · Regular conditional probabilities · Dyadic
martingales · Stochastic integration

Mathematics Subject Classification 60E15 · 60H05 · 46B09

1 Introduction

The UMD property is crucial in harmonic and stochastic analysis in Banach spaces,
see, e.g., [17,18]. A Banach space X is said to satisfy the UMD property if there
exists a constant c(1) ≥ 1 such that for every X -valued martingale difference sequence
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(dn)N
n=1 one has that

∥
∥
∥
∥
∥

N
∑

n=1
dn

∥
∥
∥
∥
∥
L2(P;X)

≤ c(1)

∥
∥
∥
∥
∥

N
∑

n=1
θndn

∥
∥
∥
∥
∥
L2(P;X)

(1)

for all signs θn ∈ {−1, 1}, i.e., one has Unconditional Martingale Differences. It
follows from Maurey [27], that, in order to verify the UMD property of the Banach
space X , it is sufficient to consider X -valued Haar- or dyadic martingales (dyadic
martingales are also known as Paley–Walsh martingales).

On the other hand, McConnell [28, Theorem 2.2] (see also Hitczenko [15]) proved
that the UMD property is equivalent to the existence of a c(2) ≥ 1 such that

∥
∥
∥
∥
∥

N
∑

n=1
dn

∥
∥
∥
∥
∥
L2(P;X)

≤ c(2)

∥
∥
∥
∥
∥

N
∑

n=1
en

∥
∥
∥
∥
∥
L2(P;X)

(2)

for all N ∈ N and all X -valued (Fn)
N
n=1-martingale difference sequences (dn)N

n=1
and (en)N

n=1 such that L(dn |Fn−1) = L(en |Fn−1), i.e., (en)N
n=1 and (dn)N

n=1 are
tangent. Imposing additional assumptions on either (en)N

n=1 or (dn)N
n=1 in (2) results

in an (a priori) weaker Banach space property, e.g., imposing that (en)N
n=1 in (2) is

the decoupled tangent sequence of (dn)N
n=1 (see Definition 2.5) results in the lower

decoupling property for tangent martingales. The Banach space L1 satisfies the lower
decoupling property for tangent martingales (see Cox and Veraar [9, Example 4.7]),
but fails to have the UMD property (see, e.g., [17, Example 4.2.20]). The notion of
decoupled tangent sequences was introduced by Kwapień and Woyczyński [23,24].
The decoupled tangent sequence (en)N

n=1 of a sequence (dn)n∈N (adapted to a filtration
(Fn)n∈N) is unique in distribution and replaces parts of the dependence structure of
(dn)N

n=1 by a sequence of conditionally independent random variables. Although the
definition of decoupling might not be explicit, there are canonical representations of
a decoupled tangent sequence, see Kwapień and Woyczyński [24] and Montgomery-
Smith [29].

Inequalities (1) and (2) describe two-sided decoupling properties due to the sym-
metry between the left- and right-hand side. The lower decoupling property for tangent
martingales however is an example of a one-sided decoupling property. An a priori
different one-sided decoupling property is obtained by considering (1) where (θn)N

n=1
is replaced by a Rademacher sequence that is independent of (dn)N

n=1. This one-sided
decoupling property was first studied explicitly in [13] and is also satisfied by L1. The
goal of this article is to gain insight into the relation between these different kinds of
one-sided decoupling properties. First, however, let us discuss some instances in the
literature where decoupling inequalities play a crucial role.

The proofs by Burkholder [4] and Bourgain [2] of the equivalence of the UMD
property of a Banach space X and the continuity of the X -valued Hilbert transform
use that X has the UMDproperty if and only if it has both a lower- and an upper decou-
pling property. For certain applications, only a single one-sided decoupling property is
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needed. For example, the lower (resp. upper) decoupling property for martingales and
the type (resp. cotype) property imply martingale type (resp. cotype) and therefore by
Pisier [31] an equivalent re-norming of the Banach space with a norm having a certain
modulus of continuity (resp. convexity). A classical case of decoupling, studied on
its own, concerns randomly stopped sums of independent random variables, see for
example the results of Klass [21,22].

Another application for decoupling is stochastic integration. Indeed, only the lower
decoupling property is needed to obtain sufficient conditions for the existence of
stochastic integrals. This can be inferred from [12, the proof of Theorem 2], where
stochastic integration of UMDBanach space-valued processes with respect to a Brow-
nianmotion is considered.One-sided decoupling is usedmore explicitly in [24, Section
6], where the existence of decoupled tangent processes for left quasi-continuous pro-
cesses in the Skorokhod space is studied. In [34] and [9, Section 5], decoupling
inequalities were used to give sufficient conditions for the existence of a Banach space-
valued stochastic process with respect to a cylindrical Brownianmotion. Very recently,
Kallenberg [20] proved the existence of decoupled tangent semi-martingales and
two-sided decoupling inequalities, and considered applications to multiple stochastic
integrals. Moreover, quasi-Banach spaces fail to satisfy the UMD property, but may
satisfy decoupling inequalities, see [7, Section 5.1] and e.g. [9, Example 4.7]. Sec-
tion 5 contains our contribution to this topic, see also Theorem 1.7 and Remark 5.6.
Before discussing this contribution, let us turn to the open problem that motivated our
research:

Open Problem 1.1 If a Banach space X has the lower decoupling property for tangent
dyadic martingales, does it also have the lower decoupling property for general tangent
martingales?

Wewere not able to answer this question in this generality. However, ourmain result
(Theorem 1.4) provides a reduction of this problem to simple Haar-type series and
gives a partial answer (see Corollary 1.6 for a special case). The proof of Theorem 1.4
is inspired by the aforementioned work by Maurey [27]. Open Problem 1.1 can be
split into two subproblems; consequently, our proof of Theorem 1.4 consists of two
parts [completely solving subproblem (A) and partially solving subproblem (B)]:

(A) If a Banach space X has a lower (upper) decoupling property for X -valued
sequences of random variables adapted to a (in a certain sense) natural minimal
filtration (Fn)∞n=1 and with conditional distributions in a set of measures P , does
X also have a lower (upper) decoupling property for X -valued sequences adapted
to any filtration (Fn)

∞
n=1 and with conditional distributions in P?

(B) Given that X has a lower (resp. upper) decoupling property for X -valued sequences
with conditional distributions in a certainP , does X also have a lower (resp. upper)
decoupling property for general X -valued sequences?

Problem (A) is of fundamental importance in stochastic integration theory as, given
the driving process, the underlying filtration determines the set of integrands we may
use. We now describe the content of the article in more detail:

Section 3: Theorem 3.1 provides a factorization of a random variable along
regular conditional probabilities. With this result, we contribute to the results of
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Montgomery-Smith [29] (see also Kallenberg [19, Lemma 3.22]). This result is the
key to approximate our adapted processes in terms of Haar-like series.

Section 4: this section is devoted to our main results, Theorem 4.3 and its corollary,
Theorem 1.4. It contains the key ingredients for the proofs and some examples.
To formulate Theorem 1.4, we recall some definitions. For a separable Banach space
X , we denote by B(X) the σ -algebra generated by the norm-open sets. By P(X), we
denote the set of all probability measures on (X ,B(X)), for p ∈ (0,∞) we let

Pp(X) :=
{

μ ∈ P(X) :
∫

X
‖x‖p

X dμ(x) < ∞
}

,

and δx ∈ P(X) stands for the Dirac measure at x ∈ X . The next definition concerns
a set of admissible adapted processes characterized by an assumption on the regular
versions of the—in a sense—predictable projections:

Definition 1.2 Let X be a separable Banach space, p ∈ (0,∞), ∅ �= P ⊆ Pp(X), and
(�,F , P, (Fn)∞n=0) be a stochastic basis. We denote by Ap(�, (Fn)∞n=0; X ,P) the
set of (Fn)

∞
n=1-adapted sequences (dn)∞n=1 in Lp(P; X) with the property that for all

n ≥ 1 there exists an �n−1 ∈ F satisfying P(�n−1) = 1 and κn−1[ω, ·] ∈ P for all
ω ∈ �n−1, where κn−1 is a regular conditional probability kernel for L(dn |Fn−1).

The concept of regular conditional probability kernels is recalled in Sect. 2.2. Next,
we introduce an extension of a given set of probability measures that is natural in our
context:

Definition 1.3 For a separable Banach space X , p ∈ (0,∞) and ∅ �= P ⊆ Pp(X) we
let

Pp-ext :=
{

μ ∈ Pp(X) : ∀ j ≥ 1 ∃ K j ≥ 1 and μ j,1, . . . , μ j,K j ∈ P

such that μ j,1 ∗ · · · ∗ μ j,K j

w∗→ μ as j →∞
and

(

μ j,1 ∗ · · · ∗ μ j,K j

)

j∈N is uniformly Lp-integrable
}

.

The convergence of the convolutions μ j,1 ∗ · · · ∗μ j,K j toward μ in Definition 1.3
is known to be the convergence in the p-Wasserstein distance if p ∈ [1,∞) (cf. [6,
Theorem 5.5, p. 358]).

Theorem 1.4 Let X , Y , Z be Banach spaces, where X is separable, let S : X → Y
and T : X → Z be linear and bounded, p ∈ (0,∞), � an index set, let 	 : [0,∞) →
[0,∞) be upper semi-continuous, and let 	λ : [0,∞) → [0,∞), λ ∈ �, be a family
of lower semi-continuous functions such that

sup
ξ∈(0,∞)

(1+ |ξ |)−p	(ξ) < ∞ and sup
ξ∈(0,∞)

(1+ |ξ |)−p	λ(ξ) < ∞ (3)

for all λ ∈ �. Then, for a set P ⊆ Pp(X) with δ0 ∈ P , the following assertions are
equivalent:
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(i) For every stochastic basis (�,F , P, (Fn)∞n=1) and finitely supported1 (dn)∞n=1∈ Ap(�, F; X ,Pp-ext), it holds that

sup
λ∈�

E	λ

(∥
∥
∥
∥
∥

∞
∑

n=1
Sdn

∥
∥
∥
∥
∥

Y

)

≤ E	

(∥
∥
∥
∥
∥

∞
∑

n=1
T en

∥
∥
∥
∥
∥

Z

)

, (4)

whenever (en)n∈N is an F-decoupled tangent sequence of (dn)n∈N.
(ii) For every sequence of independent random variables (ϕn)N

n=1 ⊂ Lp(P; X), N ≥
1, satisfying L(ϕn) ∈ P, and every A0 ∈ {∅,�}, An ∈ σ(ϕ1, . . . , ϕn), n ∈
{1, . . . , N }, it holds that

sup
λ∈�

E	λ

(∥
∥
∥
∥
∥

N
∑

n=1
1An−1 Sϕn

∥
∥
∥
∥
∥

Y

)

≤ E	

(∥
∥
∥
∥
∥

N
∑

n=1
1An−1T ϕ′n

∥
∥
∥
∥
∥

Z

)

, (5)

where (ϕ′n)N
n=1 is an independent copy of (ϕn)

N
n=1.

Some remarks concerning Theorem 1.4 are at place:

(1) The condition that δ0 ∈ P ensures that finitely supported sequences fit in our
setting and is used at several instances in the proof.

(2) The condition that X is separable is mainly to simplify our presentation: after all,
we can apply Theorem 1.4 whenever (dn)n∈N is a sequence of random variables
taking values in a separable subspace X of some non-separable space X̃ .

(3) The table below provides some typical choices for �, 	, and (	λ)λ∈� given
p ∈ (0,∞) (here C ∈ (0,∞) and f , g are R-valued random variables):

� 	λ(ξ) 	(ξ) p
√

supλ∈� E	λ( f ) ≤ p√
E	(g)

card(�) = 1 ξ p C pξ p ‖ f ‖Lp(P) ≤ C‖g‖Lp(P)

card(�) = 1 1{ξ>μ}, μ ≥ 0 C pξ p p√
P( f > μ) ≤ C‖g‖Lp(P)

(0,∞) λp1{ξ>λ} C pξ p ‖ f ‖Lp,∞(P) ≤ C‖g‖Lp(P)

(4) For relevant choices forP , see Examples 4.5–4.8; Corollary 1.6 uses Example 4.8.
(5) Theorem 1.4 remains valid if one exchanges (dn)N

n=1 with (en)N
n=1 in (4) and

(ϕn)N
n=1 with (ϕ′n)N

n=1 in (5), respectively.

Section 5: we use Theorem 1.4 to obtain relevant upper bounds for stochastic
integrals, see Theorem 1.7. In order to formulate that theorem, we need the following
definition:

1 There are only finitely many n for which dn �≡ 0.
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Definition 1.5 If p ∈ (0,∞) and if X is a separable Banach space X , then we let
Dp(X) := inf c, where the infimum is taken over all c ∈ [0,∞] such that

∥
∥
∥
∥
∥

N
∑

n=1
rnvn−1

∥
∥
∥
∥
∥
Lp(P;X)

≤ c

∥
∥
∥
∥
∥

N
∑

n=1
r ′nvn−1

∥
∥
∥
∥
∥
Lp(P;X)

(6)

for all N ≥ 2, v0 ∈ X and vn := hn(r1, . . . , rn) with hn : {−1, 1}n → X , n ∈
{1, . . . , N − 1}, where the (rn)

N
n=1 are independent and take the values−1 and 1 with

probability 1/2, and (r ′n)N
n=1 is an independent copy of (rn)

N
n=1.

The process (
∑n

k=1 rkvk−1)N
n=1 in Definition 1.5 is a dyadic martingale. Theo-

rem 1.4 with X = Y = Z , S = T = Id, � = {λ}, and 	(ξ) = 	λ(ξ) = ξ p

implies:

Corollary 1.6 Let X be a separable Banach space, let p ∈ (0,∞) be such that
Dp(X) < ∞, and let P := { 12 (δ−x + δ−x ) : x ∈ X}. Then,

∥
∥
∥
∥
∥

N
∑

n=1
dn

∥
∥
∥
∥
∥
Lp(P;X)

≤ Dp(X)

∥
∥
∥
∥
∥

N
∑

n=1
en

∥
∥
∥
∥
∥
Lp(P;X)

(7)

for all N ≥ 1, every stochastic basis (�,F , P, (Fn)N
n=0), every strongly p-integrable

and (Fn)
N
n=1 adapted sequence of random variables (dn)N

n=1 such that, on a set of
measure one, theFn−1-conditional laws of all dn belong toPp-ext, and every decoupled
tangent sequence (en)N

n=1 of (dn)N
n=1.

Cox and Geiss [8, Section 5] contains a characterization of Pp-ext when P :=
{ 12 (δ−x + δ−x ) : x ∈ R}. Corollary 1.6 combined with the Central Limit Theorem
results in Theorem 1.7. For details, see the proof of Part (ii) of Theorem 5.2. The-
orem 1.7 extends both [9, Theorem 5.4] and [12, Theorem 2]: see Remark 5.6 for
details.

Theorem 1.7 For a separable Banach space X and p, q ∈ (0,∞), the following
assertions are equivalent:

(i) Dp(X) < ∞.
(ii) For every stochastic basis (�,F , P, F = (Ft )t∈[0,∞)), every F-Brownian

motion W = (W (t))t∈[0,∞), and every simple F-predictable X-valued process
(H(t))t∈[0,∞) it holds that

∥
∥
∥
∥

∫ ∞

0
H(t)dW (t)

∥
∥
∥
∥Lq (P;X)

≤ K p,2Dp(X) ‖S(H)‖Lq (P)

with the square function S(H)(ω) := ‖ f �→ ∫∞
0 f (t)H(t, ω)dt‖γ (L2((0,∞);X)

and K p,2 the constant in theLp-to-L2 Kahane–Khintchine inequality (see Sect. 5.1
for details on the γ -radonifying norm γ (L2((0,∞); X)).
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2 Preliminaries

2.1 Some General Notation

We let N = {1, 2, . . .} and N0 = {0, 1, 2, . . .}. For a vector space V and B ⊆ V ,
we set −B := {x ∈ V : − x ∈ B}. Given a non-empty set �, we let 2� denote
the system of all subsets of � and use A�B := (A\B) ∪ (B\A) for A, B ∈ 2�. A
system of pair-wise disjoint subsets (Ai )i∈I of � is a partition of �, where I is an
arbitrary index set and Ai = ∅ is allowed, if⋃i∈I Ai = �. If (M, d) is a metric space
we define d : M × 2M → [0,∞] by setting d(x, A) := inf{d(x, y) : y ∈ A} for all
(x, A) ∈ M×2M . If V is a Banach space and (M, d) a metric space, then C(M; V ) is
the space of continuous maps from M to V , and Cb(M; V ) the subspace of bounded
continuous maps from M to V .

Banach Space-Valued random variables: For a Banach space X , we let
B(X) denote the Borel σ -algebra generated by the norm-open sets. For x ∈ X and
ε > 0, we set Bx,ε := {y ∈ X : ‖x − y‖X < ε}. For B ∈ B(X), we let B̄ denote
the norm-closure of B, we let Bo denote the interior and ∂ B := B̄\Bo. Given a
probability space (�,F , P) and a measurable space (S, �), an F/�-measurable
mapping ξ : � → S is called an S-valued random variable. For a random variable
ξ : � → S, the law of ξ is denoted by L(ξ)(A) := P(ξ ∈ A) for A ∈ �.

Lebesgue spaces: For X a separableBanach space and (S, �) ameasurable space,
we define L0((S, �); X) to be the space of �/B(X)-measurable mappings from S to
X . If (S, �) is equipped with a σ -finite measure μ and p ∈ (0,∞), then we define

Lp((S, �,μ); X):=
{

ξ∈L0((S, �,μ); X) : ‖ξ‖p
Lp((S,�,μ);X)

:=
∫

S
‖ξ‖p

X dμ < ∞
}

.

If there is no risk of confusion, we write for example Lp(μ; X) or Lp(�; X) as short-
hand notation for Lp((S, �,μ); X), and we set Lp((S, �,μ)) := Lp((S, �,μ);R).

Probability measures on Banach spaces:

(1) Given an index set I �= ∅, a family (μi )i∈I ⊆ Pp(X) (Pp(X) was introduced in
Sect. 1) is uniformly Lp-integrable if

lim
K→∞ sup

i∈I

∫

{‖x‖X≥K }
‖x‖p

Xdμi (x) = 0.

Accordingly, a family of X -valued random variables (ξi )i∈I is uniformly Lp-
integrable if (L(ξi ))i∈I is uniformly Lp-integrable.

(2) For μ ∈ P(X) and μn ∈ P(X), n ∈ N, we write μn
w∗→ μ as n → ∞ if μn

converges weakly to μ, i.e., if limn→∞
∫

X f (x) dμn(x) = ∫

X f (x) dμ(x) for all
f ∈ Cb(X;R). Moreover, for a sequence of X -valued random variables (ξn)n∈N
and an X -valued random variable ξ (possibly defined on different probability

spaces) we write ξn
w∗→ ξ as n →∞ provided that L(ξn)

w∗→ L(ξ) as n →∞.

We shall frequently use the following well-known result, which relatesLp-uniform
integrability and convergence of moments:
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Lemma 2.1 Let p ∈ (0,∞), let X be a separable Banach space, and let μ, (μn)n∈N
be a sequence in Pp(X) such that μn

w∗→ μ. Then, the following are equivalent:

(i)
∫

X ‖x‖p dμn →
∫

X ‖x‖p dμ.
(ii) (μn)n∈N is uniformly Lp-integrable.

Proof Apply, e.g., [19, Lemma 4.11 (in (5) lim sup can be replaced by sup)] to the
randomvariables ξ, ξ1, ξ2, . . .where ξ = ‖ζ‖p

X and ξn = ‖ζn‖p
X , andwhereL(ζ ) = μ

and L(ζn) = μn . ��
Stochastic basis: We use the notion of a stochastic basis (�,F , P, F), which is

a probability space (�,F , P) equipped with a filtration F = (Fn)n∈N0 , F0 ⊆ F1 ⊆
· · · ⊆ F , and where we setF∞ := σ

(⋃

n∈N0
Fn
)

. For measurable spaces (�,F) and
(S,S), and ξ = (ξn)n∈N a sequence of S-valued random variables on (�,F), we let
F

ξ = (F ξ
n )n∈N0 denote the natural filtration generated by ξ , i.e., F ξ

0 := {∅,�} and
F ξ

n := σ(ξ1, . . . , ξn) for n ∈ N, and F ξ∞ := σ(ξn : n ∈ N).

2.2 Stochastic Kernels

We provide some details for regular versions of conditional probabilities we shall use
later.

Definition 2.2 Let X be a separable Banach space and (S, �) a measurable space. A
mapping κ : S × B(X) → [0, 1] is a �/B(X)-measurable kernel if and only if the
following two conditions hold:

(i) For all ω ∈ S, it holds that κ[ω, ·] ∈ P(X).
(ii) For all B ∈ B(X), the map ω → κ[ω, B] is �/B(R)-measurable.

Remark 2.3 Let the space (S, �) be equipped with a probability measure P and let
� ⊆ B(X) be a countable π -system that generates B(X). For two kernels κ, κ ′ : S →
P(X), the following assertions are equivalent:

(i) κ[ω, B] = κ ′[ω, B] for P-almost all ω ∈ S, for all B ∈ �.
(ii) κ[ω, ·] = κ ′[ω, ·] for P-almost all ω ∈ S.

We need the existence of kernels describing conditional probabilities:

Theorem 2.4 [19, Theorem 6.3] Let X be a separable Banach space, (�,F , P) a
probability space, G ⊆ F a sub-σ -algebra, and let ξ : � → X be a random variable.
Then, there is a G/B(P(X))-measurable kernel κ : � → P(X) satisfying

κ[·, B] = P(ξ ∈ B |G) a.s.

for all B ∈ B(X). If κ ′ : � → P(X) is another kernel with this property, then κ ′ = κ

a.s.

We refer to κ as a regular conditional probability kernel for L(ξ |G).
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2.3 Decoupling

Webriefly recall the concept of decoupled tangent sequences as introducedbyKwapień
and Woyczyński [24]. For more details, we refer to [10,25] and the references therein.

Definition 2.5 Let X be a separable Banach space, let (�,F , P, (Fn)n∈N0) be a
stochastic basis, and let (dn)n∈N be an (Fn)n∈N-adapted sequence of X -valued ran-
dom variables on (�,F , P). A sequence of X -valued and (Fn)n∈N-adapted random
variables (en)n∈N on (�,F , P) is called an (Fn)n∈N0 -decoupled tangent sequence of
(dn)n∈N provided there exists a σ -algebra H ⊆ F satisfying σ((dn)n∈N) ⊆ H such
that the following two conditions are satisfied:

(i) Tangency: For all n ∈ N and all B ∈ B(X), one has

P(dn ∈ B |Fn−1) = P(en ∈ B |Fn−1) = P(en ∈ B |H) a.s.

(ii) Conditional independence: For all N ∈ N and B1, . . . , BN ∈ B(X) one has

P(e1 ∈ B1, . . . , eN ∈ BN |H) = P(e1 ∈ B1 |H) . . . P(eN ∈ BN |H) a.s.

A construction of a decoupled tangent sequence is presented in [25, Section 4.3].

Example 2.6 Let (�,F , P, (Fn)n∈N0) be a stochastic basis, (ϕn)n∈N and (ϕ′n)n∈N two
independent and identically distributed sequences of independent, R-valued random
variables such that ϕn and ϕ′n are Fn-measurable and independent of Fn−1 for all
n ∈ N, and let (vn)n∈N0 be an (Fn)n∈N0 -adapted sequence of X -valued random vari-
ables independent of (ϕ′n)n∈N. Then, (ϕ′nvn−1)n∈N is an (Fn)n∈N0 -decoupled tangent
sequence of (ϕnvn−1)n∈N, where one may take

H := σ((ϕn)n∈N, (vn)n∈N0).

Similarly, (ϕn)n∈N and (ϕ′n)n∈N could be X -valued random variables and (vn)n∈N0

R-valued.

3 A Factorization for Regular Conditional Probabilities

Theorem 3.1 extends [19, Lemma 3.22] and can be viewed as a strong version of
Montgomery-Smith’s distributional result [29, Theorem 2.1]. Theorem 3.1 is used to
prove Theorem 4.3, where it yields a refined argument for the existence of a decoupled
tangent sequence. In this sense, it also contributes to [24] (cf. [10, Proposition 6.1.5]).

Theorem 3.1 Let (�,F , P) be a probability space, G ⊆ F be a σ -algebra, let
d ∈ L0(F;R) satisfy d(�) ⊆ [0, 1), and let κ : � × B([0, 1)) → [0, 1] be a reg-
ular conditional probability kernel for L(d |G). Let (�̄, F̄ , P̄) := (� × (0, 1],F ⊗
B((0, 1]), P⊗ λ), where λ is the Lebesgue measure on B((0, 1]). Set [0, 0) := ∅ and
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define H : �̄ → [0, 1], d0 : �× [0, 1] → [0, 1] by

H(ω, s) := κ[ω, [0, d(ω))] + sκ[ω, {d(ω)}], (8)

d0(ω, h) := inf{x ∈ [0, 1] : κ[ω, [0, x]] ≥ h}. (9)

Then,

(i) H is F̄/B([0, 1])-measurable, independent of G⊗{∅, (0, 1]}, and uniformly [0, 1]
distributed,

(ii) d0 is G ⊗ B([0, 1])/B([0, 1])-measurable, and
(iii) there is an N ∈ F with P(N ) = 0 such that d0(ω, H(ω, s)) = d(ω) for all

(ω, s) ∈ (�\N )× (0, 1].
Before we prove this theorem, let us comment on Item (i). There are two extreme

cases. The first one is G := {∅,�}. In this case, we get that κ[ω; (−∞, x]] is the
distribution function of the law of d and here it is known that the distribution of H is
the uniform distribution on [0, 1]. The other extreme case is G = F and here we can
take κ[ω, B] := 1{d(ω)∈B} which implies that H(ω, s) = s. Our result interpolates
between these two extreme cases.

Proof of Theorem 3.1 (i) For all n ∈ N and � ∈ {1, . . . , 2n}, let An,� := [(� −
1)2−n, �2−n). Define Hn : �̄ → [0, 1] by

Hn(ω, s) :=
2n
∑

�=1
1{d∈An,�}(ω)

(

κ[ω, [0, (�− 1)2−n)] + sκ[ω, An,�]
)

,

so that for all (ω, s) ∈ �̄ it holds that

|Hn(ω, s)− H(ω, s)| ≤
2n
∑

�=1
1{d∈An,�}(ω)(1+ s)κ[ω, An,�\{d(ω)}] → 0 as n →∞.

The Hn are F̄/B([0, 1])-measurable, so H is as point-wise limit (themeasurability
of H can be seen directly as well). Let n ∈ N, G ∈ G and B ∈ B([0, 1]). Because
b
∫ 1
0 1{a+sb∈B} ds = λ(B ∩ [a, a + b]) for a, b ∈ [0, 1] with a + b ≤ 1 (where λ

denotes the Lebesgue measure), we get

P̄((G × (0, 1]) ∩ {Hn ∈ B}) =
2n
∑

�=1

∫

G
λ
(

B ∩ [κ[·, [0, (�− 1)2−n)], κ[·, [0, �2−n)]]) dP

= P(G) · λ(B).

This proves that Hn is uniformly [0, 1] distributed and independent of G ⊗
{∅, (0, 1]} for all n ∈ N. This completes the proof of (i), as H is the point-wise
limit of (Hn)n∈N (two R-valued random variables ξ1, ξ2 are independent if and
only if for all f , g ∈ Cb(R) it holds that E[ f (ξ1)g(ξ2)] = E[ f (ξ1)]E[ f (ξ2)]).
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(ii) For all x ∈ [0, 1], note that

{d0 ≤ x} = {(ω, h) ∈ �× [0, 1] : κ[ω, [0, x]] − h ≥ 0} ∈ G ⊗ B([0, 1]). (10)

(iii) It follows from (10) and the definition of H that we have, for all x ∈ [0, 1], that

{(ω, s) ∈ �̄ : d0(ω, H(ω, s)) ≤ x}
= {(ω, s) ∈ �̄ : κ[ω, [0, x]] ≥ κ[ω, [0, d(ω))] + sκ[ω, {d(ω)}]}

can be written as Bx × (0, 1] for some unique Bx ∈ F and that we have that

Bx × (0, 1] ⊇ {(ω, s) ∈ �̄ : d(ω) ≤ x} =: Cx × (0, 1].

On the other hand from the fact that the image measure of the map (ω, s) �→
(ω, H(ω, s)) as a map from � into � × [0, 1] equals P ⊗ λ, we obtain, for all
x ∈ [0, 1], that

P(Bx ) = P(Bx × (0, 1]) = E

∫ 1

0
1{d0(ω,h)≤x} dh dP(ω)

= E

∫ 1

0
1{κ[ω,[0,x]]≥h} dh dP(ω) = Eκ[·, [0, x]] = P(Cx ).

It follows that P(Bx\Cx ) = 0 for all x ∈ [0, 1]. Let N := ∪q∈Q∩[0,1)(Bq\Cq)

so that P(N ) = 0. Then, observing that Bx = ∩q∈Q∩[x,1) Bq (this follows
from Bx × (0, 1] = {d0(·, H(·, ·)) ≤ x} = ∩q∈Q∩[x,1){d0(·, H(·, ·)) ≤ q} =
(∩q∈Q∩[x,1) Bq) × (0, 1] and the uniqueness of the sets Br , r ∈ [0, 1]) and
Cx = ∩q∈Q∩[x,1)Cq for all x ∈ [0, 1), we have for all (ω, s) ∈ (�\N ) × (0, 1]
that d0(ω, H(ω, s)) = d(ω). ��

Corollary 3.2 Let (�,F , P) be a probability space,G ⊆ F a σ -algebra, X a separable
Banach space, d ∈ L0(F; X). Let (�̄, F̄ , P̄) := (�× (0, 1],F ⊗ B((0, 1]), P⊗ λ),
where λ is the Lebesgue measure on B((0, 1]). Then, there exist random variables
H : �̄ → [0, 1], d0 : �× [0, 1] → X such that

(i) H is uniformly [0, 1] distributed and independent of G ⊗ {∅, [0, 1]},
(ii) d0 is G ⊗ B([0, 1])/B(X)-measurable, and
(iii) there is an N ∈ F with P(N ) = 0 such that d(ω) = d0(ω, H(ω, s)) for all

(ω, s) ∈ (�\N )× (0, 1].
Proof This is an immediate consequence of Theorem 3.1 and the fact that that X is
Borel-isomorphic to [0, 1), see, e.g., [11, Theorem 13.1.1]. ��

4 A Reduction of General Decoupling to Haar-Type Series

Before we turn to our main Theorem 4.3, we discuss some properties of the extension
of P to Pp-ext (see Definition 1.3). For this, we need
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Lemma 4.1 Assume a metric space (M, d) and a continuous map ∗ : M × M → M
with (x ∗ y) ∗ z = x ∗ (y ∗ z) for x, y, z ∈ M. Let ∅ �= P ⊆ M and

P∗ := cld({x1 ∗ · · · ∗ xL : x1, . . . , xL ∈ P, L ∈ N})

where the closure on the right side is taken with respect to d. Then, one has (P∗)
∗ = P∗

and P∗ is the smallest d-closed set Q with Q ⊇ P and μ ∗ ν ∈ Q for all μ, ν ∈ Q.

Proof The equality (P∗)
∗ = P∗ follows from the continuity of ∗ and a standard

diagonalization procedure. This also implies that μ ∗ ν ∈ P∗ for all μ, ν ∈ P∗. Now
let us assume a setQ as in the assertion. Then, x1∗· · ·∗xL ∈ Q for all x1, . . . , xL ∈ P .
As Q is closed we deduce P∗ ⊆ Q. ��

Lemma 4.2 reveals some basic properties of Pp-ext. To this end, for p ∈ (0,∞) we
introduce on Pp(X) ⊆ P(X) the metric

dp(μ, ν) := d0(μ, ν)+
∣
∣
∣
∣

∫

X
‖x‖p dμ(x)−

∫

X
‖x‖p dν(x)

∣
∣
∣
∣

(11)

whered0 is a fixedmetric onP(X) thatmetricizes thew∗-convergence, see for example
[30, Theorem II.6.2].

Lemma 4.2 Let X be a separable Banach space, p ∈ (0,∞), and let P ⊆ Pp(X) be
non-empty. Then,

(i) (Pp-ext)p-ext = Pp-ext and
(ii) Pp-ext is the smallest dp-closed set Q with Q ⊇ P and μ∗ν ∈ Q for all μ, ν ∈ Q.

Proof Wewill verify that the convolution is continuouswith respect to dp , the assertion
then follows from Lemma 4.1. To verify this, we let μ, ν, μn, νn ∈ Pp(X), n ∈ N,

such that limn→∞ dp(μ,μn) = limn→∞ dp(ν, νn) = 0. It is know that μn ∗ νn
w∗→

μ ∗ ν as well (one can use [19, Theorem 4.30]). Because for K > 0 we have, with
h(x, y) := max{‖x‖X , ‖y‖X },
∫

{‖x+y‖X≥K }
‖x + y‖p

Xdμn(x)dνn(y) ≤ 2p
∫

{h(x,y)≥K/2}
h p(x, y)dμn(x)dνn(y)

≤ 2p
∫

{‖x‖X≥K/2}
‖x‖p

Xdμn(x)+ 2p
∫

{‖y‖X≥K/2}
‖y‖p

Xdνn(y),

cf. [1, p. 217], by Lemma 2.1 we get that μn ∗ νn is uniformly Lp-integrable and thus,
again by Lemma 2.1, we obtain the convergence of the p-th moments. ��

Nowwe formulate themain result of this section. SeeDefinition1.2 for the definition
of Ap(�, F; X ,Pp-ext).
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Theorem 4.3 Let X be a separable Banach space and let �λ ∈ C(X × X;R), λ ∈ �,
for an arbitrary non-empty index set �. Suppose that there exist a p ∈ (0,∞) and
constants Cλ ∈ (0,∞), λ ∈ �, such that

|�λ(x, y)| ≤ Cλ(1+ ‖x‖p
X + ‖y‖p

X )

for all (x, y) ∈ X×X, and letP ⊆ Pp(X) with δ0 ∈ P . Then, the following assertions
are equivalent:

(i) For every stochastic basis (�,F , P, F) with F = (Fn)n∈N0 and every finitely
supported2 (dn)n∈N ∈ Ap(�, F; X ,Pp-ext) it holds that

sup
λ∈�

E�λ

( ∞
∑

n=1
dn,

∞
∑

n=1
en

)

≤ 0, (12)

provided that (en)n∈N is an F-decoupled tangent sequence of (dn)n∈N.
(ii) For every probability space (�,F , P), every finitely supported sequence of inde-

pendent random variables ϕ = (ϕn)n∈N in Lp(P; X) satisfying L(ϕn) ∈ P for all
n ∈ N, and every An ∈ Fϕ

n , n ∈ N0, it holds that

sup
λ∈�

E�λ

( ∞
∑

n=1
ϕn1An−1 ,

∞
∑

n=1
ϕ′n1An−1

)

≤ 0, (13)

where (ϕ′n)n∈N is an independent copy of (ϕn)n∈N.

Proof Proof of (i)⇒ (ii). In (ii), we have (1An−1ϕn)n∈N ∈ Ap(�, F
ϕ,ϕ′ ; X ,P) with

F
ϕ,ϕ′ = (Fϕ,ϕ′

n )n∈N0 where Fϕ,ϕ′
0 := {∅,�} and Fϕ,ϕ′

n := σ(ϕ1, ϕ
′
1, . . . , ϕn, ϕ′n) for

n ∈ N. Therefore, the implication (ii)⇒ (i) follows by Example 2.6. ��
The implication (ii)⇒ (i) will be proved in Appendix A. Theorem 4.3 allows us to
prove Theorem 1.4 from Sect. 1:

Proof of Theorem 1.4 The statement for general � follows from the case � = {λ0} so
that we may assume this case and let 	 := 	λ0 and 	 := 	. By the lower and upper

semi-continuity, we can find continuous 	�,	
� : [0,∞) → [0,∞), � ∈ N, such

that 	�(ξ) ↑ 	(ξ) and C(1 + |ξ |p) ≥ 	
�
(ξ) ↓ 	(ξ) for all ξ ∈ [0,∞). Next, we

set ��(x, y) := 	�(‖Sx‖Y )−	
�
(‖T y‖Z ), � ∈ N. Then, the monotone convergence

theorem implies that for all ξ, η ∈ Lp(X) the conditions sup�∈N E��(ξ, η) ≤ 0 and
E
[

	(‖Sξ‖Y )−	(‖T η‖Z )
] ≤ 0 are equivalent. ��

Let us list some common choices of P in the setting of decoupling inequalities. To
do so, we exploit the following lemma:

2 Recall that this means that there is an N ∈ N with dn ≡ 0 for n > N .
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Lemma 4.4 Let C, p ∈ (0,∞), let X be a separable Banach space, let (�,F , P) be
a probability space, and let � ∈ C(X;R) be such that

|�(x)| ≤ C(1+ ‖x‖p
X ) (14)

for all x ∈ X. Assume ξ, ξn ∈ Lp(P; X), n ∈ N, such that ξn
w∗→ ξ as n → ∞ and

that (ξn)n∈N is uniformly Lp-integrable. Then,

lim
n→∞E�(ξn) = E�(ξ). (15)

Proof It follows from the uniform Lp-integrability of (ξn)n∈N and estimate (14) that

(�(ξn))n∈N is uniformly L1-integrable. Moreover, note that �(ξn)
w∗→ �(ξ) as n →

∞, so that we may apply Lemma 2.1 for p = 1. ��
Note that if ξn → ξ in Lp(P; X), ξn, ξ ∈ Lp(P; X), then the assumptions on

(ξn)n∈N and ξ in Lemma 4.4 are satisfied (see [19, Lemma 4.7]).

Example 4.5 (Adapted processes) If p ∈ (0,∞) and P = Pp(X), then Pp-ext =
P by Lemma 4.4 and the space Ap(�, F; X ,P) consists of all (Fn)n∈N-adapted
processes (dn)n∈N in Lp(P; X).

Example 4.6 (Lp-martingales) If p ∈ [1,∞) and P consists of all mean zero mea-
sures in Pp(X), then Pp-ext = P by Lemma 4.4 (one can test with �(x) := 〈x, a〉,
where a ∈ X ′ and X ′ is the norm-dual) and Ap(�, F; X ,P) consists of all Lp-
integrable F-martingale difference sequences.

Example 4.7 (Conditionally symmetric adapted processes) Suppose p ∈
(0,∞) and P consists of all symmetric measures in Pp(X). As a measure μ ∈ P(X)

is symmetric if and only if for all f ∈ Cb(X;R) it holds that
∫

X f (x) dμ(x) =
∫

X f (−x) dμ(x), it follows that Pp-ext = P . Moreover, the set Ap(�, F; X ,P) con-
sists of all sequences of X -valued (Fn)n∈N-adapted sequences of random variables
(dn)n∈N such that dn ∈ Lp(P; X) and dn is Fn−1-conditionally symmetric for all
n ∈ N, i.e., for all n ∈ N and all B ∈ B(X) it holds that P(dn ∈ B |Fn−1) = P(dn ∈
−B |Fn−1) a.s.

Example 4.8 (One- dimensional laws) If p ∈ (0,∞), ∅ �= P0 ⊆ Pp(R), and

P = P(P0, X) := {

μ ∈ Pp(X) : ∃μ0 ∈ P0, x ∈ X : μ(·) = μ0
({r ∈ R : r x ∈ ·})} ,

then an X -valued random variable ϕ satisfies L(ϕ) ∈ P if and only if there exists
an x ∈ X and a R-valued random variable ϕ0 such that ϕ = xϕ0 and L(ϕ0) ∈ P0.
Moreover, Ap(�, F; X ,P) contains all sequences of the form (ϕnvn−1)n∈N where
(ϕn)n∈N is an (Fn)n∈N-adapted sequence of R-valued random variables such that ϕn

is independent of Fn−1 and L(ϕn) ∈ P0, and vn−1 ∈ Lp(Fn−1; X) for all n ∈ N.
Finally, it holds that P((P0)p-ext, X) ⊆ Pp-ext.
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5 Decoupling for Dyadic Martingales and Stochastic Integration

In this section, we consider the case of decoupling of dyadic martingales and combine
our main result, i.e., Theorem 4.3, with a standard extrapolation argument to obtain a
decoupling result that is useful for the theory of stochastic integration of vector-valued
stochastic processes, see Theorem 5.2.

5.1 Stochastic Integrals and �-Radonifying Operators

Let X be a separable Banach space, let (�,F , P, (Ft )t∈[0,∞)) be a stochastic basis,
and let W = (Wt )t≥0 be an (Ft )t∈[0,∞)-Brownian motion, i.e., a centered R-valued
Gaussian process such that for all 0 ≤ s ≤ t < ∞ it holds that Wt is Ft -measurable,
Wt − Ws is independent of Fs , and EWs Wt = s. We say that H : [0,∞) × � → X
is a simple predictable stochastic process if there exist 0 = t0 < · · · < tN < ∞ and
random variables vn ∈ L∞(Ftn ; X), n ∈ {0, . . . , N − 1}, such that for all t ∈ [0,∞)

it holds that

H(t, ω) =
N
∑

n=1
1(tn−1,tn ](t)vn−1(ω).

For H : [0,∞) × � → X an X -valued simple predictable process, we define the
stochastic integral

∫∞
0 H(s)dW (s) in the usual way and we define

u H : L2((0,∞))×� → X by u H ( f )(ω) :=
∫ ∞

0
f (t)H(t, ω)dt .

Note that for all ω ∈ � we obtain a finite rank operator u H (ω) : L2((0,∞)) → X .
Given a finite rank operator T : L2((0,∞)) → X , one can define the γ -radonifying
norm ‖·‖γ (L2((0,∞));X) by

‖T ‖γ (L2((0,∞));X) :=
∥
∥
∥
∥
∥

∞
∑

n=1
γnT en

∥
∥
∥
∥
∥
L2(P′,X)

,

where (en)n∈N is an orthonormal basis of L2((0,∞)) and (γn)n∈N is a sequence
of independent standard Gaussian random variables on some probability space
(�′,F ′, P

′). The γ -radonifying norm is independent of the chosen orthonormal basis.
For more information about the γ -radonifying norm, see, for example, [32, Chapter 3]
or the survey article [35]. For the relevance of γ -radonifying norms to the definition
of vector-valued stochastic integrals, see the definition of and results on Wp(X) in
Definition 5.1 and Theorem 5.2, or see [36] for more details.
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5.2 Decoupling Constants

In order to state our result (Theorem 5.2), we first recall that a random variable f ∈
L0((�,F , P); X) is conditionally symmetric given a sub-σ -algebra G if P({ f ∈ B}∩
G) = P({ f ∈ −B} ∩ G) for all B ∈ B(X) and G ∈ G. In addition to the constant
Dp(X) from Definition 1.5, we introduce two more constants:

Definition 5.1 Assume a separable Banach space X and p ∈ (0,∞).
Wp(X) : Let Wp(X) ∈ [0,∞] be the infimum over all c ∈ [0,∞] such that for

every stochastic basis (�,F , P, (Ft )t∈[0,∞)), every (Ft )t∈[0,∞)-Brownian motion W ,
and every (Ft )t∈[0,∞)-simple predictable process H : [0,∞)×� → X one has that

∥
∥
∥
∥

∫ ∞

0
H(s)dW (s)

∥
∥
∥
∥Lp(P;X)

≤ c
∥
∥‖u H‖γ (L2((0,∞));X)

∥
∥Lp(P)

.

UMD−,s
p (X) : Let UMD−,s

p (X) ∈ [0,∞] be the infimum over all c ∈ [0,∞]
such that for every stochastic basis (�,F , P, (Fn)n∈N) and every finitely supported
sequence of X -valued random variables (dn)∞n=1 such that dn ∈ Lp(Fn; X) and dn is
Fn−1-conditionally symmetric for all n ∈ N it holds that

∥
∥
∥
∥
∥

∞
∑

n=1
dn

∥
∥
∥
∥
∥
Lp(P;X)

≤ c

∥
∥
∥
∥
∥

∞
∑

n=1
rndn

∥
∥
∥
∥
∥
Lp(P⊗PD;X)

. (16)

Theorem 5.2 Let X be a separable Banach space and p ∈ (0,∞).

(i) If Dp(X) < ∞, then Dq(X) < ∞ for all q ∈ (0,∞).
(ii) If K p,2 is the constant in the Lp-to-L2 Kahane–Khintchine inequality, then

Wp(X) ≤ K p,2Dp(X).

Conversely, if Wp(X) < ∞, then Dp(X) < ∞.
(iii) Dp(X) = UMD−,s

p (X).

For the proof, we use two lemmas. For the formulation of the first one, we introduce,
for ν ∈ P(R) and a separable Banach space X , the notation (see also Example 4.8):

P(ν, X) := {

μ ∈ P(X) : ∃x ∈ X : μ(·) = ν
({r ∈ R : r x ∈ ·})}.

Lemma 5.3 Let X be a separable Banach space, p ∈ [2,∞), let μ ∈ Pp(R) satisfy
∫

R
rdμ(r) = 0, σ 2 := ∫

R
|r |2 dμ(r) ∈ (0,∞), and let γ ∈ P(R) be the standard

Gaussian law. Then, P(γ, X) ⊆ (P(μ, X))p-ext.

Proof Let (ξn)n∈N be a sequence of independent, μ-distributed random variables, and
let μn := L((σ

√
n)−1

∑n
k=1 ξk). Observe that L((σ

√
n)−1ξ1) ∈ P(μ, R). More-

over, it follows from, e.g., [3, Theorem 5] that μn
w∗→ γ and that

∫

R
|r |p dμn(r) →

∫

R
|r |p dγ (r). It thus follows from Lemma 2.1 that γ ∈ (P(μ, R))p-ext and hence

P(γ, X) ⊆ (P(μ, X))p-ext. ��
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Lemma 5.4 Let (�,F , P) be a probability space, let X be a separable Banach space,
let p ∈ (0,∞), let G ⊆ F be a σ -algebra, and let f ∈ Lp(F; X) be G-conditionally
symmetric. Then, there exists a sequence of G-conditionally symmetric F-simple func-
tions ( fn)n∈N such that limn→∞ ‖ f − fn‖Lp(P;X) = 0.

Proof Let (gn)n∈N be a sequence of σ( f )-simple functions such that limn→∞ ‖ f −
gn‖Lp(P;X) = 0. For n ∈ N, let mn ∈ N and Bn,k ∈ σ( f ), xn,k ∈ X ,
k ∈ {1, . . . , mn}, be such that gn = ∑mn

k=1 xn,k1{ f ∈Bn,k }. Define, for n ∈ N,
fn = 1

2

∑mn
k=1 xn,k(1{ f ∈Bn,k } − 1{− f ∈Bn,k }) and observe that fn is G-conditionally

symmetric because f is G-conditionally symmetric. Moreover, the conditional sym-
metry of f implies that L( f ) = L(− f ), whence

‖ f − fn‖Lp(P;X)

=
∥
∥
∥
∥
∥

1
2

(

f −
mn∑

k=1
xn,k1{ f ∈Bn,k }

)

− 1
2

(

− f −
mn∑

k=1
xn,k1{− f ∈Bn,k }

)∥
∥
∥
∥
∥
Lp(P;X)

≤ 2

(
1
p−1

)+ ∥∥
∥
∥
∥

f −
mn∑

k=1
xn,k1{ f ∈Bn,k }

∥
∥
∥
∥
∥
Lp(P;X)

= 2

(
1
p−1

)+
‖ f − gn‖Lp(P;X).

��

Proof of Theorem 5.2 Part (i) follows from [14] and can be found in [8, Proposition
B.1] for the convenience of the reader.

Part (ii): first, we check Wp(X) ≤ K p,2Dp(X). For 0 = t0 < · · · < tN < ∞
Lemma5.3 applied toμ := 1

2 (δ−1 + δ1) andTheorem1.4give (see alsoCorollary 1.6)

∥
∥
∥
∥
∥

N
∑

n=1
(Wtn − Wtn−1)vn−1

∥
∥
∥
∥
∥
Lp(P;X)

≤ Dp(X)

∥
∥
∥
∥
∥

N
∑

n=1
(W ′

tn − W ′
tn−1)vn−1

∥
∥
∥
∥
∥
Lp(P⊗P′;X)

for all Lp-integrable and Ftn−1 -measurable random variables vn−1 : � → X where
(W ′

t )t≥0 is a Brownian motion defined on an auxiliary basis (�′,F ′, P
′, (F ′

t )t∈[0,∞)).
Exploiting the Kahane–Khintchine inequality gives that

∥
∥
∥
∥
∥

N
∑

n=1
(W ′

tn − W ′
tn−1)vn−1

∥
∥
∥
∥
∥
Lp(P⊗P′;X)

≤ K p,2

⎛

⎜
⎝

∫

�

⎛

⎝

∫

�′

∥
∥
∥
∥
∥

N
∑

n=1
(W ′

tn (ω
′)− W ′

tn−1(ω
′))vn−1(ω)

∥
∥
∥
∥
∥

2

X

dP
′(ω′)

⎞

⎠

p
2

dP(ω)

⎞

⎟
⎠

1
p

.
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For H :=∑N
n=1 1(tn−1,tn ]vn−1, the result follows by the known relation

⎛

⎝

∫

�′

∥
∥
∥
∥
∥

N
∑

n=1
(W ′

tn (ω
′)− W ′

tn−1(ω
′))vn−1(ω)

∥
∥
∥
∥
∥

2

X

dP
′(ω′)

⎞

⎠

1
2

= ‖u H (ω)‖γ (L2((0,∞));X).

Conversely, let us assume that Wp(X) < ∞. Now we use [37, Lemma 2.5] to deduce
that X has finite cotype. (In [37, Lemma 2.5] it is assumed that p ∈ [1,∞), however
in the 5th line of the proof of this lemma it is shown that ‖ ∫∞0 φ(t)dW (t)‖ = N a.s.,
which implies the desired conclusion for p ∈ (0,∞), see also [8, Lemma 6.1].) Thus,
the proof of [37, Theorem 2.2] guarantees that Dp(X) < ∞. Here, we exploit that
[26, Proposition 9.14] works (in their notation) with r ∈ (0, 1) as well: one starts on
the left-hand side with Lr , estimates this by L1, applies [26, Proposition 9.14], and
uses [26, Proposition 4.7] (Khintchine’s inequality for a vector-valued Rademacher
series) to change L1 back to Lr on the right-hand side.

Part (iii) is divided into several steps:

Proof of Dp(X) ≤ UMD−,s
p (X): this inequality follows from the following two

observations: firstly, dyadicmartingales are conditionally symmetric, and secondly
if (dn)∞n=1 = (rnvn−1)∞n=1 is a dyadic martingale and (r ′n)∞n=1 is Rademacher
sequence independent of (rn)

∞
n=1, then (r ′nrnvn−1)∞n=1 and (r ′nvn−1)∞n=1 are equal

in distribution.
Proof of UMD−,s

p (X) ≤ Dp(X): using Lemma 5.4, we approximate each dn in
Lp(Fn; X) so that we may assume that the dn take finitely many values only. Let

ε0 := inf{‖dn(ω)‖X : n = 1, . . . , N , ω ∈ �, dn(ω) �= 0} > 0

where inf ∅ := 1. Take an x ∈ X with 0 < ‖x‖X < ε0 and let r = (rn)N
n=1

be a Rademacher sequence on a probability space (�D,FD, PD). If we define
d̃n : � × �D → X by d̃n(ω, ωD) := dn(ω) + rn(ωD)x , then d̃n(ω, ωD) �= 0 for
all (ω, ωD) ∈ � × �D and d̃n is conditionally symmetric given the σ -algebra
Fn−1 ⊗Fr

D,n−1, where (Fr
D,n)N

n=0 is the natural filtration of (rn)
N
n=1. Because we

may let ‖x‖ ↓ 0, it suffices to verify the statement for (d̃n)N
n=1 or, in other words,

we may assume without loss of generality that for all n ∈ N the range of dn is a
finite set that does not contain 0.

Note that by removing all (i.e., at most finitely many) atoms of measure zero in the
σ -algebra Fd

N and ‘updating’ the definition of (dn)N
n=1 accordingly, we may assume

that the filtration (Fd
n )N

n=1 has the property thatFd
n is generated by finitelymany atoms

of positive measure.
Bearing in mind that for all n ∈ {1, . . . , N } the random variable dn takes only

finitely many values, each nonzero, and each with positive probability, one may check
that for every atom A ∈ Fd

n−1, n ∈ {1, . . . , N }, there exist disjoint sets A+, A− ∈ Fd
n

such that A = A+ ∪ A−, P(A+) = P(A−), and L(dn | A+) = L(−dn | A−). Now we
introduce a Rademacher sequence (ρn)N

n=1, ρn : � → {−1, 1}, defined as follows: for
each atom A of Fd

n−1 we set ρn|A+ ≡ 1, and ρn|A− ≡ −1, where A+ and A− form
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a partition of A as described above. Moreover, we let vn := ρndn so that dn = ρnvn .
By construction, ρn is independent from Fd

n−1 ∨ σ(vn). It follows from the definition
of Dp(X) and Theorem 1.4 (see also Example 2.6) that

∥
∥
∥
∥
∥

N
∑

n=1
dn

∥
∥
∥
∥
∥
Lp(P;X)

=
∥
∥
∥
∥
∥

N
∑

n=1
ρnvn

∥
∥
∥
∥
∥
Lp(P;X)

≤ Dp(X)

∥
∥
∥
∥
∥

N
∑

n=1
r ′nvn

∥
∥
∥
∥
∥
Lp(P⊗PD;X)

= Dp(X)

∥
∥
∥
∥
∥

N
∑

n=1
r ′nrnvn

∥
∥
∥
∥
∥
Lp(P⊗PD;X)

= Dp(X)

∥
∥
∥
∥
∥

N
∑

n=1
r ′ndn

∥
∥
∥
∥
∥
Lp(P⊗PD;X)

.

��
We conclude with some remarks regarding Theorem 5.2.

Remark 5.5 (1) Let (hn)n∈N be the Haar system forL2((0, 1])with ess sup(|hn|) = 1,
and let Hp(X) ∈ [0,∞] be the infimumover all c ∈ [0,∞] such that for all finitely
supported sequences (xn)n∈N in X one has that

∥
∥
∥
∥
∥

∞
∑

n=1
hn xn

∥
∥
∥
∥
∥
Lp((0,1]);X)

≤ c

∥
∥
∥
∥
∥

∞
∑

n=1
rnhn xn

∥
∥
∥
∥
∥
Lp((0,1]×D;X)

.

Let |H |p(X) ∈ [0,∞] be defined as above but with hn replaced by |hn|. Then, it
is straightforward to see that Dp(X) = Hp(X) = |H |p(X).

(2) Garling [13] introduced the constantUMD−p (X), which is defined like the constant

UMD−,s
p (X) in Definition 5.1 but without the condition conditionally symmetric.

In general, the constants UMD−p (X) and UMD−,s
p (X) behave differently: it fol-

lows from Hitczenko [16, Theorem 1.1] that supp∈[2,∞) Dp(R) < ∞ and thus,

by Theorem 5.2, supp∈[2,∞) UMD−,s
p (R) < ∞. On the other hand, as outlined

in [9, p. 348], one has UMD−p (R) ! √
p as p → ∞ by combining the result

of Burkholder [5, Theorem 3.1] about the optimal behavior of the constant in
the square function inequality and the behavior of the constant in the Khintchine
inequality for Rademacher variables.

Remark 5.6 Part (ii) of Theorem 5.2 is an extension of Garling’s [12, Theorem 2]:
whereas Garling requires the integrands to be adapted with respect to the filtration
generated by the Brownianmotion, we can allow for any filtration. In the development
of stochastic integration theory in Banach spaces (as presented in, e.g., [9,34]), the
issue regarding the undesirable assumption on the filtration in [12] was known to the
authors. In those articles, the problem was circumvented in two ways:

(a) In [34, Lemma 3.4], a decoupling argument due to Montgomery-Smith [29] is
used to prove Wp(X) ≤ βp(X) for p ∈ (1,∞), where βp(X) is the Lp-UMD
constant of X . This approach does not cover p ∈ (0, 1] and the UMD property
seems to be too strong as Wp(L1) < ∞ for p ∈ (0,∞) (see also [9]).
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(b) In [9, Theorem 5.4], it is observed that Wp(X) < ∞ if Dgen
p (X) < ∞, where

Dgen
p (X) is the infimum over all c ∈ [0,∞] such that

∥
∥
∥
∥
∥

∞
∑

n=1
dn

∥
∥
∥
∥
∥
Lp(P;X)

≤ c

∥
∥
∥
∥
∥

∞
∑

n=1
en

∥
∥
∥
∥
∥
Lp(P;X)

whenever (en)n∈N is an F-decoupled tangent sequence of a finitely supported
Lp-integrable X -valued F-adapted sequence of random variables (dn)n∈N.

The approach in [9] leads us to wonder: is that true that Dp(X) < ∞ implies
Dgen

p (X) < ∞? (See Open Problem 1.1.) Although we could not fully answer this
question, Theorem 5.2 resolves the issue regarding the filtration in [12] and thereby
provides a direct approach for vector-valued stochastic integration.
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Appendix A: Proof of Theorem 4.3

Theorem 4.3 is proved in Sect. A.2, and Sect. A.1 provides some necessary tools.

A.1 Technical lemmas

We begin with Lemmas A.1 and A.2 that are obtained by an adaptation of [33, Lemma
12.8], in which the dyadic setting is considered and which simplifies the procedure
originally sketched in [27].

Recall that a probability space (�,F , P) is called divisible if for every A ∈ F and
every θ ∈ (0, 1) there exists an Aθ ∈ F such that Aθ ⊂ A and P(Aθ ) = θP(A).

Lemma A.1 Let (�,F , P) be a divisible probability space, X be a separable Banach
space, F ∈ F , and let μ ∈ P(X) be of the form μ = ∑n

k=1 αkδxk for some n ∈ N,
α1, . . . , αn ∈ (0, 1), and some distinct x1, . . . , xn ∈ X. Let G ⊆ F be a σ -algebra
generated by a finite partition (Ai )

k
i=1 of � with P(Ai ) > 0. Then, there exists an
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F-measurable, μ-distributed random variable ϕ that is independent of G, for which
there exist H1, H2 ∈ σ(G, ϕ) satisfying H1 ⊆ F ⊆ H2 and

P(H2\H1) ≤
[

max
j∈{1,...,n}α j

]

min
{

P(G2\G1) : G1, G2 ∈ G, G1 ⊆ F ⊆ G2
}

.

Proof As (�,F , P) is divisible, we can construct a partition (Ai, j ) i∈{1,...,k}
j∈{1,...,n}

of � with

Ai, j ∈ F for all i, j , such that Ai = ⋃n
j=1 Ai, j for all i ∈ {1, . . . , k}, and such that

P(Ai, j ) = α j P(Ai ) for all j ∈ {1, . . . , n} and all i ∈ {1, . . . , k}.
The partition (Ai, j ) i∈{1,...,k}

j∈{1,...,n}
is assumed to satisfy some conditions with respect to

the set F which we shall explain below. Before doing so, we observe that given such
a partition, the random variable ϕ defined by ϕ :=∑k

i=1
∑n

j=1 x j1Ai, j has the law μ

and is independent of G = σ((Ai )
k
i=1), and

σ(G, ϕ) = σ
({

Ai, j : i ∈ {1, . . . , k}, j ∈ {1, . . . , n
})

.

Let I0 ⊆ {1, . . . , k} be such that i ∈ I0 if and only if Ai ∩ F = ∅, and I1 ⊆ {1, . . . , k}
be such that i ∈ I1 if and only if Ai ⊆ F . Set Imix = {1, . . . , k}\(I0 ∪ I1) (one or two
of the sets I0, I1, Imix may be empty). Observe that

∑

i∈Imix

P(Ai ) = min
{

P(G2\G1) : G1, G2 ∈ G, G1 ⊆ F ⊆ G2
}

. (17)

For i ∈ I0∪ I1, we simply partition the set Ai into sets (Ai, j )
n
j=1 that satisfy Ai, j ∈ F

and

P(Ai, j ) = α j P(Ai )

for all j ∈ {1, . . . , n}. For i ∈ Imix we choose the partition (Ai, j )
n
j=1 not only such

that it satisfies Ai, j ∈ F and

P(Ai, j ) = α j P(Ai )

for all j ∈ {1, . . . , n}, but also such that there is at most one j ∈ {1, . . . , n} such that
∅ �= F ∩ Ai, j � Ai, j . It follows from this construction and from (17) that

min
{

P(H2\H1) : H1, H2 ∈ σ(G, ϕ), H1 ⊆ F ⊆ H2
}

≤
∑

i∈Imix

[

max
j∈{1,...,n}α j

]

P(Ai )

=
[

max
j∈{1,...,n}α j

]

min
{

P(G2\G1) : G1, G2 ∈ G, G1 ⊆ F ⊆ G2
}

.

��
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Lemma A.2 Let (�,F , P) be a divisible probability space, X be a separable Banach
space and let μ ∈ P(X) be of the form μ =∑n

k=1 αkδxk for some n ∈ N, α1, . . . , αn ∈
(0, 1), and some distinct x1, . . . , xn ∈ X. Let G ⊆ F be a σ -algebra generated
by a finite partition of atoms with positive measure. Then, for every A ∈ F and
every ε > 0 there exists an m ∈ N and F-measurable independent μ-distributed
random variables (ϕ1, . . . , ϕm) that are independent of G such that there exists an
Aε ∈ σ(G, ϕ1, . . . , ϕm) satisfying E|1A − 1Aε | < ε.

Proof Let A ∈ F and ε > 0 be given. Define δ := max j∈{1,...,n} α j ∈ (0, 1) and let
m ∈ N be such that δm < ε.

Step 1 Apply Lemma A.1 with G and F as given to find an F-measurable, μ-
distributed randomvariableϕ1 that is independent ofG, and sets H1,1, H1,2 ∈ σ(G, ϕ1)

such that H1,1 ⊆ A ⊆ H1,2 and P(H1,2\H1,1) ≤ δ. Define G1 := σ(G, ϕ1) that is, by
construction, a σ -algebra generated by a finite partition of sets of positive measure.

Step i , i = 2, . . . , m Apply Lemma A.1 with G := Gi−1, and with F as given, to
find an F-measurable, μ-distributed random variable ϕi that is independent of Gi−1,
and sets Hi,1, Hi,2 ∈ σ(Gi−1, ϕi ) such that Hi,1 ⊆ A ⊆ Hi,2 and

P(Hi,2\Hi,1) ≤ δP(Hi−1,2\Hi−1,1) ≤ δi .

Set Gi := σ(Gi−1, ϕi ).
We have now obtained a sequence of independent, F-measurable, μ-distributed

random variables (ϕ1, . . . , ϕm) that are independent of G, and sets Hm,1, Hm,2 ∈
Gm = σ(G, ϕ1, . . . , ϕm) such that Hm,1 ⊆ A ⊆ Hm,2 and

P(Hm,2\Hm,1) ≤ δm < ε.

Setting Aε = Hm,1, we obtain that E|1A − 1Aε | < ε. ��
Lemmas A.3, A.4, and A.5 concern approximation procedures:

Lemma A.3 Let X be a separable Banach space, C, p ∈ (0,∞), and let � ∈ C(X ×
X , R) satisfy

|�(x, y)| ≤ C(1+ ‖x‖p
X + ‖y‖p

X ) (18)

for all (x, y) ∈ X × X, let N ∈ N, and let μ1, . . . , μN ∈ Pp(X). Then, for all
ε > 0 there exists a measurable mapping Pε : X → X with finite range such that
for every sequence of independent random variables (ϕ1, . . . , ϕN , ϕ′1, . . . , ϕ′N ) on a
probability space (�,F , P) such that L(ϕn) = L(ϕ′n) = μn, n ∈ {1, . . . , N }, and for
all F1, . . . , FN ∈ F it holds that

E

∣
∣
∣
∣
∣
�

(
N
∑

n=1
ϕn1Fn ,

N
∑

n=1
ϕ′n1Fn

)

−�

(
N
∑

n=1
Pε(ϕn)1Fn ,

N
∑

n=1
Pε(ϕ

′
n)1Fn

)∣
∣
∣
∣
∣
< ε. (19)

Moreover, if for some n ∈ {1, . . . , N } it holds that μn is not a Dirac measure, then Pε

may be chosen such that μn ◦ P−1ε is not a Dirac measure.
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Proof Fix ε > 0, set Mp =∑N
n=1

∫

X ‖x‖p
X dμn(x) and let K ⊆ X be a compact set

such that

sup
n∈{1,...,N }

∫

K c
(1+ N p Mp + N p‖x‖p

X ) dμn(x) < 2−(p−1)+(8C N )−1ε, (20)

where C is as in (18). (Note that such a set K exists as X is separable and hence
μ1, . . . , μN are Radon measures, and moreover μ1, . . . , μN ∈ Pp(X).) It follows
that for K N = K × . . .× K (N times) one has

∫

(K N )c

(

1+ N p
N
∑

n=1
‖xn‖p

X

)

dμ1(x1) . . . dμN (xN )

≤
N
∑

j=1

∫

{x j∈K c}

(

1+ N p
N
∑

n=1
‖xn‖p

X

)

dμ1(x1) . . . dμN (xN )

≤
N
∑

j=1

∫

{x j∈K c}
(

1+ N p‖x j‖p
X

)

dμ1(x1) . . . dμN (xN )

+
N
∑

j=1

N
∑

n=1,n �= j

∫

{x j∈K c}
N p‖xn‖p

X dμ1(x1) . . . dμN (xN )

≤
N
∑

j=1

∫

{x j∈K c}
(

1+ N p Mp + N p‖x j‖p
X

)

dμ1(x1) . . . dμN (xN )

< 2−(p−1)+(8C)−1ε. (21)

As � is continuous, it is uniformly continuous on K × K and hence there exists a
δ ∈ (0,∞) such that if x1, y1, x2, y2 ∈ K and ‖x1− x2‖X < δ, ‖y1− y2‖X < δ, then
it holds that |�(x1, y1)−�(x2, y2)| < ε

2 . Note that without loss of generality we may
assume that δ ≤ N−1/p and that K �= ∅. Now let M ∈ N and {U1, . . . , UM } ⊆ B(X)

be a partition of K such that for all m ∈ {1, . . . , M} it holds that Um �= ∅ and

sup
m∈{1,...,M}

sup
x,y∈Um

‖x − y‖X < N−1δ.

Let x1, . . . , xM ∈ X be such that xm ∈ Um , m ∈ {1, . . . , M}. Let x0 ∈ {x ∈
X : ‖x‖X = N−1δ}\{x1, . . . , xM } (this will be important for the last part of the proof
of the lemma). Define Pε : X → X by

Pε(x) =
{

xm; x ∈ Um,

x0; x /∈ K .
(22)
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Observe that by construction for all x ∈ X it holds that

‖Pε(x)‖X ≤ ‖x‖X + N−1δ ≤ ‖x‖X + N−(1+ 1
p ) (23)

and for all x ∈ K it holds that

‖x − Pε(x)‖X < N−1δ. (24)

We verify that Pε satisfies the desired properties. Indeed, clearly Pε has finite range.
Moreover, let (�,F , P) be a probability space and let (ϕ1, . . . , ϕN , ϕ′1, . . . , ϕ′N ) be
random variables on this space such that L(ϕn) = L(ϕ′n) = μn , n ∈ {1, . . . , N },
and let F1, . . . , FN ∈ F . For simplicity of notation, define ξ = ∑N

n=1 ϕn1Fn , ξ ′ =
∑N

n=1 ϕ′n1Fn , ξε =∑N
n=1 Pε(ϕn)1Fn , and ξ ′ε =

∑N
n=1 Pε(ϕ

′
n)1Fn . Define

Kϕ = {ω ∈ � : (ϕ1, . . . , ϕN , ϕ′1, . . . , ϕ′N ) ∈ K 2N }.

Observe that by (24) for ω ∈ Kϕ it holds that

‖ξ(ω)− ξε(ω)‖X ≤
N
∑

n=1
‖ϕn − Pε(ϕn)‖X < δ,

and similarly ‖ξ ′(ω)− ξ ′ε(ω)‖X < δ, whence for all ω ∈ Kϕ it holds that

|�(ξ(ω), ξ ′(ω))−�(ξε(ω), ξ ′ε(ω))| < ε

2
. (25)

By the estimate above, Assumption (18), and inequalities (23) and (21) it now follows
that

E|�(ξ, ξ ′)−�(ξε, ξ
′
ε)|

=
∫

Kϕ

|�(ξ, ξ ′)−�(ξε, ξ
′
ε)| dP+

∫

K c
ϕ

|�(ξ, ξ ′)−�(ξε, ξ
′
ε)| dP

<
ε

2
+ C

∫

K c
ϕ

(2+ ‖ξ‖p
X + ‖ξ ′‖p

X + ‖ξε‖p
X + ‖ξ ′ε‖p

X ) dP

≤ ε

2
+ 2C

∫

K c
ϕ

(

1+ N p

(
N
∑

n=1
‖ϕn‖p

X +
N
∑

n=1
‖Pε(ϕn)‖p

X

))

dP

≤ ε

2
+ 2(p−1)+4C

∫

K c
ϕ

(

1+ N p
N
∑

n=1
‖ϕn‖p

X

)

dP < ε.

Recalling the definition of ξ, ξ ′, ξε and ξ ′ε, this completes the proof of estimate (19).
In order to prove the final statement in the lemma,wemake someminor adjustments

to the proof above. Indeed, suppose that for some n ∈ {1, . . . , N } it holds that μn is
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not a Dirac measure. It follows that there exists a compact set F ∈ B(X) such that
μn(F) ∈ (0, 1). Now proceed as above, but with the additional assumption that the
set K satisfying (20) also satisfies F ⊆ K , and that the partition {U1, . . . , UM } is
chosen such that Um ∩ F ∈ {Um,∅} for all m ∈ {1, . . . , M}. As x0, x1, . . . , xM are
all distinct values by construction, this ensures that there exists a set G ∈ B(X) such
that P−1ε (G) = F . ��
Lemma A.4 Let X be a separable Banach space, μ ∈ P(X), and let Bμ-cont(X) =
{B ∈ B(X) : μ(∂ B) = 0}. Then, for all B ∈ B(X) and all ε > 0 there exists an
Bε ∈ Bμ-cont(X) such that μ(B�Bε) < ε.

Proof If A := {

B ∈ B(X) : ∀ε > 0 ∃Bε ∈ Bμ-cont(X) with μ(B�Bε) < ε
}

, then we
may check thatA is a Dynkin-system and thatA contains all closed sets. Whence the
result follows by the π -λ-Theorem. ��
Lemma A.5 For N ∈ N and a separable Banach space X let ϕ1, . . . , ϕN : � → X
and ϕ1,k, . . . , ϕN ,k : �k → X, k ∈ N, be families of independent random variables
with w∗ − limk→∞ ϕn,k = ϕn for n ∈ {1, . . . , N }. Let (ϕ′n)N

n=1 : � → X N and
(ϕ′n,k)

N
n=1 : �k → X N be independent copies of (ϕn)

N
n=1 and (ϕn,k)

N
n=1, respectively,

v0 ∈ R, and Bn ∈ B(Xn) such that P((ϕ j )
n
j=1 ∈ ∂ Bn) = 0 for n ∈ {1, . . . , N − 1}.

Then, for the w∗-convergence in X × X it holds that

w∗ − lim
k→∞

(

ϕ1,kv0 +
N
∑

n=2
ϕn,k1{(ϕ j,k )

n−1
j=1∈Bn−1}, ϕ

′
1,kv0 +

N
∑

n=2
ϕ′n,k1{(ϕ j,k )

n−1
j=1∈Bn−1}

)

=
(

ϕ1v0 +
N
∑

n=2
ϕn1{(ϕ j )

n−1
j=1∈Bn−1}, ϕ

′
1v0 +

N
∑

n=2
ϕ′n1{(ϕ j )

n−1
j=1∈Bn−1}

)

.

Proof This result follows by an application of the Skorokhod theorem (see, e.g., [19,
Theorem 4.30]) and the Portmanteau theorem (see, e.g., [19, Theorem 4.25]). ��

In addition to the spaceAp(�, F; X ,P) introduced in Definition 1.2, we shall need
the following one:

Definition A.6 Let X be a separable Banach space, p ∈ (0,∞), ∅ �= P ⊆ Pp(X),
and let (�,F , P, (Fn)N

n=0), N ∈ N, be a stochastic basis. We shall denote by
Ap-simple(�, (Fn)N

n=0; X ,P) the set of (Fn)N
n=1-adapted sequences (dn)N

n=1 such

that for all n ∈ {1, . . . , N } there exist Kn ∈ N, a partition (An−1,k)Kn
k=1 ⊆ Fn−1

of � consisting of sets of positive measure, and μn,1, . . . , μn,Kn ∈ P such that
∑Kn

k=1 1An−1,k μn,k is a regular version of P(dn ∈ · |Fn−1).

To deal with this class of processes, we use the following two lemmas:

Lemma A.7 Let (�,F , P) be a probability space, let K ∈ N and let Ak ∈ F , k ∈
{1, . . . , K }, be such that (Ak)

K
k=1 is a partition of � and P(Ak) > 0 for all k ∈

{1, . . . , K }. Let X be a separable Banach space and let d : � → X be a random
variable. Let κ : � → P(X) be a regular version of P(d ∈ · | σ((Ak)

K
k=1)), i.e.,
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κ = ∑K
k=1 μk1Ak for some μ1, . . . , μK ∈ P(X). Let (�′,F ′, P

′) be an auxiliary
probability space and let (d ′k)K

k=1 be a sequence of independent X-valued random
variables on (�′,P ′,F ′) satisfying L(d ′k) = μk , and let, for all k ∈ {1, . . . , K },
dk : (�,F , P)× (�′,F ′,P ′) → X be a random variable defined by

dk(ω, ω′) = d(ω)1Ak (ω)+ d ′k(ω′)1�\Ak (ω) (26)

for all (ω, ω′) ∈ � × �′. Let G ⊆ F be a σ -algebra such that σ((Ak)
K
k=1) ⊆ G.

Define G0 = G ⊗ {∅,�′} and for k ∈ {1, . . . , K } define

Gk = σ(G0, d1, . . . , dk). (27)

Then, the following holds:

(i) For all (ω, ω′) ∈ �×�′ it holds that d(ω) =∑K
k=1 dk(ω, ω′)1Ak (ω).

(ii) (dk)
K
k=1 is (Gk)

K
k=1-adapted.

(iii) L(dk) = μk .
(iv) (G0, σ (d1), . . . , σ (dK )) are independent if and only if for all k ∈ {1, . . . , K }, all

A ∈ G satisfying A ⊆ Ak and P(A) > 0, and all B ∈ B(X) it holds that

P(d ∈ B | A) := P({d ∈ B} ∩ A)

P(A)
= μk(B). (28)

Proof Claims (i), (ii) and (iii) are trivial. Regarding claim (iv), suppose that dk is
independent of Gk−1 for all k ∈ {1, . . . , K }, then in particular (dk)

K
k=1 is independent

of G0. Let k ∈ {1, . . . , K }, A ∈ G satisfying A ⊆ Ak and P(A) > 0, and B ∈ B(X)

be given. Then,

P(d ∈ B | A) = P({d ∈ B} ∩ A)

P(A)
= P⊗ P

′({dk ∈ B} ∩ (A ×�′))
P⊗ P′(A ×�′)

= P⊗ P
′(dk ∈ B) = μk(B),

where we use (i), independence, and (iii). In order to prove the reverse implication,
let B1, . . . , BK ∈ B(X), let k ∈ {1, . . . , K }, and let A ∈ G be such that A ⊆ Ak and
P(A) > 0. It holds that

P⊗ P
′((A ×�′) ∩ {d1 ∈ B1, . . . , dK ∈ BK })

= P⊗ P
′
⎡

⎣(A ∩ {d ∈ Bk})×
⎛

⎝
⋂

�∈{1,...,K }\{k}
{d ′� ∈ B�}

⎞

⎠

⎤

⎦

= P(A)P(d ∈ Bk | A)
∏

�∈{1...,K }\{k}
P
′(d ′� ∈ B�) = P(A)

∏

�∈{1...,K }
μ�(B�).

(29)

This suffices to prove the reverse implication. ��
Lemma A.9 requires a special setting:

123



Journal of Theoretical Probability

Setting A.8 Let X be a separable Banach space, N ∈ N and let (dn)N
n=1 ∈

Ap-simple(�, P, (Fn)N
n=0; X ,P), i.e., for all n ∈ {1, . . . , N } we have a Kn ∈ N such

that

(i) P(dn ∈ · |Fn−1) =∑Kn
k=1 μn,k1An−1,k a.s., where

(ii) An−1,1, . . . , An−1,Kn ∈ Fn−1 is a partition of � with P(An−1,k) > 0 and
μn,1, . . . , μn,Kn ∈ P .

We set K0 := 1 and

J0 := {(n, k) : n ∈ {0, . . . , N }, k ∈ {1, . . . , Kn}},
J := {(n, k) : n ∈ {1, . . . , N }, k ∈ {1, . . . , Kn}}.

On J0 we introduce the lexicographical order (m, j) ≺ (n, k) if either m < n and
j ∈ {1, . . . , Km} or m = n and j ∈ {1, . . . , k}. For an auxiliary probability space
(�′,F ′, P

′) and independent random variables d ′n,k : �′ → X with L(d ′n,k) = μn,k ,
n ∈ {1, . . . , N }, and k ∈ {1, . . . , Kn} let

dn,k(ω, ω′) := dn(ω)1An−1,k (ω)+ d ′n,k(ω
′)1�\An−1,k (ω).

We define

G0,1 := F0 ⊗ {∅,�′},
Gn,k := Gn−1,Kn−1 ∨ σ(dn,1, . . . , dn,k) (n ∈ {1, . . . , N }, k ∈ {1, . . . , Kn − 1}),

Gn,Kn := Gn−1,Kn−1 ∨ σ(dn,1, . . . , dn,Kn ) ∨
(

Fn ⊗ {∅,�′}
)

.

Finally, we let

(i) K := K1 + · · · + KN ,
(ii) (H�)

K
�=0 be the lexicographical ordering of (Gn,k)(n,k)∈J0 ,

(iii) (ϕ�)
K
�=1 be the lexicographical ordering of (dn,k)(n,k)∈J ,

(iv) (A�)
K−1
�=0 be the lexicographical ordering of (An−1,k)(n,k)∈J ,

(v) (ϕ′�)K
�=1 be the lexicographical ordering of (d ′n,k)(n,k)∈J .

Lemma A.9 Assume Setting A.8. Then, the following holds true:

(i) (ϕ�)
K
�=1 is (H�)

K
�=1-adapted and ϕ� is independent from H�−1.

(ii) A� ∈ H� for � ∈ {0, . . . , K − 1}.
(iii)

∑N
n=1 dn =∑K

�=1 ϕ�1A�−1 .

(iv) If en :=∑Kn
k=1 d ′n,k1An−1,k , then

(a) (en)N
n=1 is a decoupled tangent sequence of (dn)N

n=1 and

(b)
∑N

n=1 en =∑K
�=1 ϕ′�1A�−1 .
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Proof (i) Fix � ∈ {1, . . . , K }. By definition, ϕ� is H�-measurable. To show that ϕ�

is independent from H�−1, it is enough to verify that Gn−1,Kn−1 , dn,1, . . . , dn,Kn are
independent for n ∈ {1, . . . , N }. Because

Gn−1,Kn−1 = Fn−1 ⊗ σ
(

d ′m, j : m ∈ {1, . . . , n − 1}, j ∈ {1, . . . , Km}
)

,

where for n = 1 the second factor is replaced by {∅,�′}, it remains to check that

(

Fn−1 ⊗ {∅,�′}
)

, dn,1, . . . , dn,Kn

are independent. But this follows fromLemmaA.7. (ii) and (iv) followby construction,
(iii) from dn(ω) =∑Kn

k=1 dn,k(ω, ω′)1An−1,k (ω) for n ∈ {1, . . . , N }. ��

A.2 Proof of Theorem 4.3

(ii)⇒ (i). First, we remark that it is sufficient to consider the case � = {λ0}. We do
so and denote �λ0 simply by �.
Step 1 We show that (ii) implies the following:

(II) For every N ∈ N, every stochastic basis (�,F , P, (Fn)N
n=0), every sequence

of independent random variables (ϕn)N
n=1 with L(ϕn) ∈ Pp-ext such that

ϕn is Fn-measurable and independent of Fn−1, and for all An ∈ Fn , n ∈
{0, . . . , N − 1}, it holds that

E�

(
N
∑

n=1
ϕn1An−1 ,

N
∑

n=1
ϕ′n1An−1

)

≤ 0,

whenever (ϕ′n)N
n=1 is a copy of (ϕn)N

n=1 independent of FN .

(a) We verify that if (ii) holds, then (ii) remains valid with P replaced by Pp-ext.
(a.0) First, we consider (ϕn)

N
n=1 such that for all n ∈ {1, . . . , N } there exist a

Kn ∈ N and (μn,k)
Kn
k=1 ⊆ P with L(ϕn) = μn,1 ∗ · · · ∗ μn,Kn . As An ∈ Fϕ

n
for n ∈ {0, . . . , N − 1} there are Bn ∈ Xn such that An = {(ϕ j )

n
j=1 ∈ Bn}

for n ≥ 1, whereas for n = 0 we have A0 ∈ {∅,�}. Now let ((ψn,k)
Kn
k=1)

N
n=1

be independent random variables satisfying L(ψn,k) = μn,k . Then, it holds
in distribution that

ϕ11A0 +
N
∑

n=2
ϕn1{(ϕ j )

n−1
j=1∈Bn−1}

d=
K1∑

k=1
ψ1,k1A0 +

N
∑

n=2

Kn∑

k=1
ψn,k1{(∑K j

�=1 ψ j,�)
n−1
j=1∈Bn−1}

and
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ϕ′11A0 +
N
∑

n=2
ϕ′n1{(ϕ j )

n−1
j=1∈Bn−1}

d=
K1∑

k=1
ψ ′1,k1A0 +

N
∑

n=2

Kn∑

k=1
ψ ′n,k1{(∑K j

�=1 ψ j,�)
n−1
j=1∈Bn−1}

where ((ψ ′
n,k)

Kn
k=1)

N
n=1 is an independent copy of ((ψn,k)

Kn
k=1)

N
n=1. Hence, if

(ii) holds, then (ii) remains valid with P replaced by the set of finite convo-
lutions of elements from P .

(a.1) Assume that L(ϕn) ∈ Pp-ext for n ∈ {1, . . . , N }. By Lemmas A.4 and 4.4,
we can restrict the An to An = {(ϕ j )

n
j=1 ∈ Bn} with P((ϕ j )

n
j=1 ∈ ∂ Bn) = 0

and Bn ∈ B(Xn) for n ∈ 1, . . . , N − 1, whereas we keep A0 ∈ {∅,�}.
We find a uniformly Lp-integrable family of independent random variables
(ϕn,k)

N ,∞
n=1,k=1 such that L(ϕn,k) is a finite convolution of measures from P

and L(ϕn,k)
w∗→ L(ϕn) as k →∞. Lemma A.5 gives

(

ϕ1,k1A0 +
N
∑

n=2
ϕn,k1{(ϕ j,k )

n−1
j=1∈Bn−1}, ϕ

′
1,k1A0 +

N
∑

n=2
ϕ′n,k1{(ϕ j,k )

n−1
j=1∈Bn−1}

)

w∗−→
(

ϕ11A0 +
N
∑

n=2
ϕn1{(ϕ j )

n−1
j=1∈Bn−1}, ϕ

′
11A0 +

N
∑

n=2
ϕ′n1{(ϕ j )

n−1
j=1∈Bn−1}

)

as k →∞. By Lemma 4.4, we conclude step (a), i.e., (ii) is valid for Pp-ext.
(b) We now prove that if (ii) is valid for Pp-ext, then (II) holds.

(b.0) Let (�,F , P, (Fn)N
n=0) and (ϕn)N

n=1 be as in (II), and setμn := L(ϕn). If each

μn is aDiracmeasure in an xn ∈ X , thenE�(
∑N

n=1 ϕn1An−1 ,
∑N

n=1 ϕ′n1An−1)
is a weighted sum of terms �(

∑

n∈I xn,
∑

n∈I xn) with I ⊆ {1, . . . , n} (the
empty sum is treated as zero). In this case, (ii) implies that each of these
terms in non-positive, so that in what follows we assume there exists an
� ∈ {1, . . . , N } such that μ� is not a Dirac measure. We will prove that for
all ε > 0 it holds that

E�

(
N
∑

n=1
ϕn1An−1 ,

N
∑

n=1
ϕ′n1An−1

)

< 3ε, (30)

which completes the proof of (II). By passing to the larger probability
space (�,F , P) ⊗ ([0, 1],B([0, 1]), λ) (where λ is the Lebesgue mea-
sure), endowed with the filtration (Fn ⊗ B([0, 1]))N

n=0, we may assume that
(�,Fn, P) is divisible for all n ∈ {0, . . . , N }. Fix ε > 0, and let Pε be as in
Lemma A.3 with the property that μ� ◦ P−1ε is not a Dirac measure. Recall
from Lemma A.3 that

E

∣
∣
∣
∣
∣
∣

�

⎛

⎝

N
∑

n=1
ϕn1An−1 ,

N
∑

n=1
ϕ′n1An−1

⎞

⎠−�

⎛

⎝

N
∑

n=1
Pε(ϕn)1An−1 ,

N
∑

n=1
Pε(ϕ

′
n)1An−1

⎞

⎠

∣
∣
∣
∣
∣
∣

< ε. (31)
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(b.1) Set μ�,ε := μ� ◦ P−1ε and recall that μ�,ε is not a single Dirac measure, but
a finite sum of Dirac measures. For m ∈ N, we proceed as follows:

Step 0 We apply Lemma A.2 with G = {∅,�} and F = F0 to find a km,1 ∈ {2, 3, . . .}
and a sequence of independent, F0-measurable, μ�,ε-distributed random variables
(ψm,1, . . . , ψm,km,1−1), and to find an Am,0 ∈ σ(ψm,1, . . . , ψm,km,1−1) with ‖1A0 −
1Am,0‖Lp(P) ≤ 2−m . Set ψm,km,1 := Pε(ϕ1).
Step n; n = 1, . . . , N − 1 Apply Lemma A.2 with G = σ(ψm,1, . . . , ψm,km,n )

(note that ψm,km,1 = Pε(ϕ1), . . . , ψm,km,n = Pε(ϕn)) and F = Fn+1, to find
a km,n+1 ∈ {km,n + 2, km,n + 3, . . .} and independent, Fn+1-measurable, μ�,ε-
distributed random variables (ψm,km,n+1, . . . , ψm,km,n+1−1), independent of the σ -
algebraσ(ψm,1, . . . , ψm,km,n ) aswell, and tofindan Am,n ∈ σ(ψm,1, . . . , ψm,km,n+1−1)
with ‖1An − 1Am,n‖Lp(P) ≤ 2−m . Set ψm,km,n+1 := Pε(ϕn+1).

(b.2) By construction,

lim
m→∞

∥
∥
∥
∥
∥

N
∑

n=1
(1Am,n−1 − 1An−1)Pε(ϕn)

∥
∥
∥
∥
∥
Lp(P;X)

= lim
m→∞

∥
∥
∥
∥
∥

N
∑

n=1
(1Am,n−1 − 1An−1)Pε(ϕ

′
n)

∥
∥
∥
∥
∥
Lp(P;X)

= 0,

hence by Lemma 4.4 there exists an M ∈ N such that, for Bn−1 = AM,n−1,
n ∈ {1, . . . , N },

∣
∣
∣
∣
∣
E�

(
N
∑

n=1
Pε(ϕn)1Bn−1 ,

N
∑

n=1
Pε(ϕ

′
n)1Bn−1

)

−E�

(
N
∑

n=1
Pε(ϕn)1An−1 ,

N
∑

n=1
Pε(ϕ

′
n)1An−1

)∣
∣
∣
∣
∣
< ε. (32)

(b.3) We would like to apply (ii), verified for Pp-ext in part (a), to
∑N

n=1 1Bn−1ϕn ,
however, our construction of Bn−1 only guarantees that Pε(ϕn) is independent
of Bn−1, not that ϕn is independent of Bn−1. Hence, we proceed as follows.

Let (φk)
kM,N
k=1 be a sequence of independent random variables such that

L(φk) :=
{

μn : k = kM,n,

μ� : else .

Recall that μ� was specified in (b.0). By the Factorization Lemma for all
n ∈ {1, . . . , N }, there exists a Cn−1 ∈ XkM,n−1 such that

Bn−1 =
{

(Pε(ϕ1), . . . , Pε(ϕkM,n−1)) ∈ Cn−1
}

.
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Define, for n ∈ {1, . . . , N },

B̃n−1 :=
{(

Pε(φ1), . . . , Pε(φkM,n−1)
) ∈ Cn−1

}

.

By construction,

(
N
∑

n=1
1Bn−1 Pε(ϕn),

N
∑

n=1
1Bn−1 Pε(ϕ

′
n)

)

d=
(

N
∑

n=1
1B̃n−1 Pε(φkn ),

N
∑

n=1
1B̃n−1 Pε(φ

′
kn

)

)

,

where (φ′k)
kM,N
k=1 is an independent copy of (φk)

kM,N
k=1 , so that

E�

(
N
∑

n=1
Pε(ϕn)1Bn−1 ,

N
∑

n=1
Pε(ϕ

′
n)1Bn−1

)

= E�

(
N
∑

n=1
Pε(φkM,n )1B̃n−1 ,

N
∑

n=1
Pε(φ

′
kM,n

)1B̃n−1

)

. (33)

By the assumption that (ii) holds for L(ϕn) ∈ Pp-ext, it follows that

E�

(
N
∑

n=1
φkn1B̃n−1 ,

N
∑

n=1
φ′kn

1B̃n−1

)

≤ 0.

The inequality above in combination with (19) implies that

E�

(
N
∑

n=1
Pε(φkn )1B̃n−1 ,

N
∑

n=1
Pε(φ

′
kn

)1B̃n−1

)

< ε.

Combining the inequality above with (33), (32), and (31), we arrive at the
desired estimate (30).

Step 2 Lemma A.9 (withP = Pp-ext) combined with statement (II) above implies that
Item (i) of Theorem 4.3 holds for all (dn)N

n=1 ∈ Ap-simple(�, (Fn)N
n=1; X ,Pp-ext) (see

Definition A.6).
Step 3 Let (dn)n∈N be as in (i) of Theorem 4.3 with dn ≡ 0 if n > N for some
N ∈ N. By Corollary 3.2 we obtain for n ∈ {1, . . . , N } random variables d0

n : � ×
[0, 1] → X and Hn : � × (0, 1] → [0, 1] such that d0

n is Fn−1 ⊗ B([0, 1])/B(X)-
measurable, Hn is independent of Fn−1 ⊗ {∅, (0, 1]} with L(Hn) = λ, and dn(ω) =
d0

n (ω, Hn(ω, s)) for all (ω, s) ∈ �n × (0, 1] for some �n ∈ Fn of measure one. We
define �̄ := �× (0, 1]N , F̄0 := F0⊗{∅, (0, 1]N }, F̄n := Fn ⊗ σ(π1, . . . πn), where
πn : (0, 1]N → (0, 1] is the projection onto the n-th coordinate, and P̄ := P ⊗ λN

where λN is the Lebesgue measure on (0, 1]N . Then, H̄n, d̄n, ēn : �̄ → [0, 1] are
given by H̄n(ω, s) := Hn(ω, πn(s)), d̄n(ω, s) := d0

n (ω, H̄n(ω, s)), and ēn(ω, s) :=
d0

n (ω, πn(s)), n ∈ {1, . . . , N }. We get:
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(i) {(ω, s) ∈ �̄ : d̄n(ω, s) = dn(ω)} ⊇ �n × (0, 1].
(ii) The fact that H̄n is uniformly [0, 1] distributed and independent of F̄n−1 and

d0
n is Fn−1 ⊗ B([0, 1])/B(X)-measurable implies that (ēn)n∈N is an (F̄n)

N
n=1-

decoupled tangent sequence of (d̄n)n∈N.
(iii) The function κn−1[ω, B] := λ({h ∈ [0, 1] : d0

n (ω, h) ∈ B}), B ∈ B(X), is a
regular conditional probability for P(dn ∈ · |Fn−1).

Next note that for all ε > 0 and n ∈ {1, . . . , N } there exists an d0,ε
n : �×[0, 1] → X

which satisfies

d0,ε
n (ω, s) =

mε∑

k=1
1Fn−1,k,ε

(ω) fn,k,ε(s),

with mε ∈ N, fn,k,ε ∈ Lp([0, 1]; X), pair-wise disjoint Fn−1,1,ε, . . . , Fn−1,mε,ε ∈
Fn−1 of positive measure, and ‖d0,ε

n − d0
n‖Lp(�×[0,1];X) < ε. Moreover, we can pick

fn,k,ε such that L( fn,k,ε) ∈ Pp-ext. Indeed, let ( f�)�∈N ⊂ Lp([0, 1]; X) be dense. For
ε > 0, we can choose an appropriate η = η(p, ε) > 0 and define

S1 := {ω ∈ � : ‖d0
n (ω, ·)− f1‖Lp([0,1];X) < η},

S2 := {ω ∈ � : ‖d0
n (ω, ·)− f2‖Lp([0,1];X) < η}\S1, . . . .

From these sets (Sn)n∈N, we extract the collection (Fn−1,k,ε)
mε

k=1, find ωk ∈ Fn−1,k,ε∩
κ−1n−1(P), and let fn,k,ε := d0

n (ωk, ·). We continue and define d̄ε
n , ēε

n : �̄ → [0, 1] by
d̄ε

n(ω, s) := d0,ε
n (ω, H̄n(ω, s)), and ēε

n(ω, s) := d0,ε
n (ω, πn(s)), n ∈ {1, . . . , N }. By

construction, we have

(i) ‖ēε
n − ēn‖Lp(�̄;X) = ‖d̄ε

n − d̄n‖Lp(�̄;X) < ε for all n ∈ {1, . . . , N },
(ii) (ēε

n)N
n=1 is an (F̄n)

N
n=1-decoupled tangent sequence of (d̄n

ε
)n∈N,

(iii) a conditional regular conditional probability kernel for L(dε
n | F̄n−1) is given by∑mε

k=1 1Fn−1,k,ε
(ω)L( fn,k,ε).

As (d0,ε
n )N

n=1 ∈ Ap-simple(�, (Fn)N
n=0; X ,Pp-ext), this concludes the proof that (ii)

implies (i) in Theorem 4.3.
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24. Kwapień, S., Woyczyński, W.A.: Semimartingale integrals via decoupling and tangent processes.

Probab. Math. Stat. 12(2), 165–200 (1991)
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