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This is the first paper that explores lottery-like demand in cryptocurrency markets. Since
recent research provides evidence that cryptocurrency returns appear to be short-memory
processes, we modify Bali, Cakici and Whitelaw’s (2011) and Bali, Brown, Murray, and
Tang’s (2017) MAX measure and employ a weekly forecast horizon and daily log-returns
from the previous week to calculate the metric for our portfolio sorts. From an econometric
point of view, this study proposes statistical tests that are robust to unknown dynamic
dependency structures in the cryptocurrency data. Our results show that average raw and
risk-adjusted return differences between cryptocurrencies in the lowest and highest MAX
quintiles exceed 1.50% per week. These results are robust after controlling for Bitcoin risk
or potential microstructure effects. Our findings are important also from a theoretical point
of view because they suggest that parallel to stock markets, similar behavioral mechanisms
of underlying investor behavior are present also in new virtual currency markets.
� 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Bali, Cakici andWhitelaw (2011) adopt extreme positive returns as a proxy for lottery-like payoffs. Their finding indicates
that stocks that exhibited the highest daily return (sample maximum of the daily returns) over the prior month (MAX) pro-
duced significantly lower returns over the subsequent one-month holding period. This negative MAX-effect has also been
found in international equity markets (Walkshäusl, 2014; Chan and Chui, 2016). Bali et al. (2011) argue that individual inves-
tor portfolios lack diversification due to the investors’ preferences for lottery-type stocks, which implies that this lottery-like
demand could cause the negative idiosyncratic volatility premium. The authors show that after controlling for the MAX-
effect, the negative effect of idiosyncratic volatility on stock returns vanishes. Hung and Yang (2018) argue that many stock
markets are subject to daily price limits and therefore propose a modified MAX measure. Their findings confirm earlier stud-
ies in that stocks with highest (lowest) modified MAX experience lower (higher) future returns, indicating that stocks with
highest (lowest) modified MAX tend to be overpriced (underpriced).

In a recent paper, Asness et al. (2020) argue that because a stock’s beta is the product of the correlation and volatility, a
stock can have a high MAX simply because of high volatility or high skewness. Hence, higher than second moments of the
return distribution play a specific role in the analysis of the MAX-effect. To decompose these effects, they propose a scaled
MAX (SMAX) that goes long on stocks with low MAX return divided by estimated ex-ante volatility and short on stocks with
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the opposite feature. The authors emphasize that the SMAX factor captures lottery-like demand in a manner that is not as
mechanically related to volatility but more so to the overall shape of the underlying return distribution. Their findings con-
firm earlier studies as they imply that lottery-like demand play a significant role in stock markets.

Given this strong evidence of lottery-like demand in equity markets, it is surprising to note that there are yet no studies
available investigating lottery-like demand in cryptocurrency markets. This is curious as many scholars argue that cryp-
tocurrency markets are more likely to be subject to speculation than having the purpose of being a medium of exchange.
In this regard, using a wide range of econometric models, one strand of literature affirms reoccurring speculative bubble
behavior in cryptocurrency markets (Cretarola and Figá-Talamanca, 2020; Geuder et al., 2019; Chaim and Laurini, 2019;
Fry, 2018). Moreover, Baur et al. (2018, p.178) who explore whether Bitcoin is mainly used as an alternative currency or
rather as a speculative investment conclude: ‘‘Bitcoin is mainly used as a speculative investment despite or due to its high
volatility and large returns.”

Motivated by this current literature, our paper explores another dimension of speculative behavior in cryptocurrency
markets, that is, lottery-like demand. This study employs a set of 20 cryptocurrencies to implement the analysis of the
MAX-effect over the January 2016–December 2019 period that exhibit the highest market capitalizations in these markets
as of January 2, 2016. Specifically, at the beginning of each week, the cryptocurrencies are sorted into quintiles by the max-
imum of the daily returns during the last seven trading days prior to portfolio formation. The first quintile comprises those
cryptocurrencies that have the lowest daily maximum return within the last week, whereas the fifth quintile comprises the
ones that exhibit the highest daily maximum return over the same period. The zero-cost strategy is long on the fifth and
short on the first quintile. This strategy is updated at the beginning of each week. Even though cryptocurrency markets
are traded 24/7, as a robustness check, a second strategy is implemented where a one-day delay between portfolio formation
and asset allocation is implemented. To risk-adjust the payoffs, we regress the zero-cost portfolio returns on the excess
returns of Bitcoin, which is employed as cryptocurrency market factor in our analysis. Statistical inference is based on blocks
bootstraps using different block lengths.

This study contributes in some important aspects to current literature. First, this paper adds to literature investigating
lottery-like demands in asset markets. While earlier studies exclusively focus on equity markets (Bali et al., 2011, 2017;
Walkshäusl, 2014; Chan and Chui, 2016; Hung and Yang, 2018; Asness et al., 2020), this is the first research that investigates
this theme in cryptocurrency markets. This is an important issue for at least two reasons: First, as of March 2020, the overall
market capitalization of the cryptocurrency market is more than USD 260 billion.2 In this regard, Fry and Cheah (2016, p.350)
highlight that ‘‘from an economic perspective the sums of money involved are substantial.” Our paper differs from Bali et al.’s
(2011) and Bali et al.’s (2017) from a methodological point of view because we employ weekly forecast horizons. This choice is
motivated by the recent literature on cryptocurrency research documenting that the data on their valuation and returns appear
to be short-memory processes (Grobys et al., 2020), and moreover, monthly data would not provide enough observations for the
relevant, recent period of their market expansion (Shen, Urquhart, and Wang, 2020). Furthermore, cryptocurrency markets are
well-known for their speculative nature (Cretarola and Figà-Talamanca, 2020; Geuder et al., 2019; Chaim and Laurini, 2019; Fry,
2018; Baur et al., 2018). Hence, the question arises of whether virtual currency markets are subject to any of the same market
forces or pricing anomalies as equity markets. This paper fills this important gap in the literature.

Second, this paper adds to the relatively new strand of literature investigating cross-sectional patterns in cryptocurrency
returns. In this regard, one strand of the literature explores potential risk factors in cryptocurrency markets such as size and
momentum (Shen et al., 2020; Grobys and Sapkota, 2019; Liu et al., 2020; Li et al., 2019), whereas another strand of the lit-
erature investigates the profitability of technical trading rules (Gerritsen et al., 2019; Corbet et al., 2019; Miller et al., 2019).
This study adds to this literature by exploring the MAX-effect. In doing so, this study also contributes to the ongoing discus-
sion on the efficiency of the cryptocurrency market because the literature has not yet achieved a consensus. In this regard,
Kristoufek and Vosvrda (2019) provide an excellent summary of the current discussion. Our paper takes a new perspective
and hypothesizes that if the cryptocurrency markets were efficient, information about the past maximum daily cryptocur-
rency returns would not predict subsequent returns.

Finally, another contribution of this study is that it proposes a simple econometric test for the risk-adjustment of the
strategy’s payoffs. This is an important issue because the results of standard statistical inference can be misleading in the
presence of non-normality, as already pointed out in an early paper by Affleck-Graves and McDonald (1989). A more recent
stream of literature on blocks bootstrap shows that test statistics based on bootstraps are statistically more reliable than
standard test statistics. In this regard, Liu et al. (2019), who test the out-of-sample return predictability, propose a new sta-
tistical bootstrap-based test for the directional accuracy of stock returns and show that their test offers both more correct
size and better power than the standard test. Moreover, Huang, Li, Wang, and Zhou (2020) re-assess established stylized facts
of the well-known Time Series Momentum (TSM) effect and compare the t-statistics in a pooled regression framework with
nonparametric bootstraps. Their findings indicate that while the standard t-statistic in a pooled regression appears large, it is
not statistically reliable as it is less than the critical values of block bootstraps.3 The test proposed in our study addresses the
2 According to coinmarketcap.com, the total market capitalization in the cryptocurrency market was USD 260.3 billion as of March 5, 2020.
3 In the statistical literature, recent studies show that employing bootstrapping improves inference for predictive quantile regressions with persistent

predictors and conditionally heteroskedastic errors (Fan and Lee, 2019), yields better approximations of the critical values derived for testing for an unknown
change in mean in time series settings with weekly dependent observations (Peštová and Pešta, 2018), and provides reliable test statistics for linear errors-in-
variables (EIV) models that contain measurement errors in the input and output data (Pešta, 2017; Platanakis, 2018).
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statistical inference problem because it is based on a blocks bootstrap procedure that is appropriate in the presence of unknown
(dynamic) dependency structures in the cryptocurrency data.

The results show that the difference between returns on cryptocurrency portfolios with the highest and lowest max-
imum daily returns is �1.54% per week. While the negative relationship confirms the results from the previous equity
market studies (Bali et al., 2011, 2017; Walkshäusl, 2014; Chan and Chui, 2016; Hung and Yang, 2018; Asness et al.,
2020), the economic magnitude is considerably higher in the case of cryptocurrency markets. The return difference in
raw returns is statistically significant at a 1% risk level. Trimming the data by cutting of 5% of the payoff distribution
neither lowers the spread nor diminishes its statistical significance. Controlling for Bitcoin risk increases the spread by
21 basis points per month. The results are robust because accounting for potential the microstructure issues does not
change the results. Consistent with earlier literature focusing on equity markets, this evidence suggests that investors
may be willing to pay more for cryptocurrencies that exhibit extreme positive returns, and thus, these cryptocurrencies
exhibit lower returns in the future. These findings have important implications from a theoretical point of view because
they suggest that similar behavioral mechanisms of underlying investor behavior as in the stock markets are present
even in the new virtual currency markets (Tversky and Kahneman, 1992; Barberis and Huang, 2008; Brunnermeier
et al., 2007).

2. Literature review

In a fundamental study on the gambling behavior in stock markets, Kumar et al. (2016) show that correlated trading by
gambling-motivated investors generates excess return co-movement among stocks with lottery features. Inspired by Kumar
(2009), they use US data from 1980 to 2005 and measure the attractiveness of a stock as a gambling object using an LIDX
lottery index and assign all stocks from the CRSP into vigintiles (20 bins) each year by price, idiosyncratic volatility, and
idiosyncratic skewness. Bin 20 contains stocks from the lowest price group and the highest volatility, and skewness groups.
For each stock, the price, volatility, and skewness vigintile bin scores are added to produce a score between 3 and 60, and the
score is then scaled between 0 and 1. A higher value of LIDX for a stock indicates that the stock is more attractive to investors
who enjoy speculative trading and gambling. The authors show that lottery-like stocks co-move strongly with one another,
and this return co-movement is strongest among lottery stocks located in regions where investors exhibit stronger gambling
propensity. Looking directly at investor trades, they also find that investors with a greater propensity to gamble trade
lottery-like stocks more actively and that those trades are more strongly correlated. Finally, they give empirical evidence that
time variation in general gambling enthusiasm and income shocks from fluctuating economic conditions induce a systematic
component in investors’ demand for lottery-like stocks.

In a recent paper, Alkan and Guner (2018) use daily market data and quarterly book value data on stocks listed on Borsa
Istanbul, excluding REITs and stocks in the ‘Emerging market andWatch-list’ market segments for the period from January 3,
2000 to June 30, 2016. By proxying the lottery-like preferences with demand for stocks with extreme positive returns (MAX),
they find that ‘high-MAX’ stocks significantly underperform ‘low-MAX’ stocks. This holds also after controlling for a series of
potential explanatory return characteristics. The negative relationship between MAX and expected returns seem to be driven
by stocks strongly preferred by individual investors and strengthens following the periods of high investor sentiment. The
MAX discount increased during the period of temporary short-sale restrictions at Borsa Istanbul, but overall, they stress a
limits-to-arbitrage explanation for the observed MAX anomaly.

Nguyen and Truong (2018) use a sample of U.S. stocks over the period 1973–2015 and find that quarterly earnings
announcements account for more than 18% of the total maximum daily returns in the high MAX portfolio, but maximum
daily returns as triggered by earnings announcements do not entail lower future returns. The idea of MAX-type pricing does
not pertain when conditioning MAX returns on earnings announcements, and the earnings announcement dependent MAX
returns do not indicate a probability of future large short-term upward returns. Furthermore, excluding earnings announce-
ment related MAX returns in constructing the lottery demand factor results in not only a larger lottery demand premium but
also superior factor model performance.

Additionally, Chichernea et al., (2019) analyze the role of investors’ heterogeneous preferences for skewness effects to the
negative correlation between idiosyncratic volatility (IVOL) and mean returns. Using data on all common stocks covered by
the CRSP traded on New York Stock Exchange, American Stock Exchange, and NASDAQ, they compute institutional holdings
based on 13F filings for all firms covered by the Thomson Reuters. The monthly sample starts from 1980 and ends in 2016,
and they exclude the so called penny stocks (i.e., stocks with a lagged price under a $1). Their results reveal that the IVOL
puzzle is stronger within stocks held primarily by agents with a preference for lottery-like payoffs and during economic
downturns, when the demand for lottery-like payoffs is high. Hence, their results support theories that suggest lottery pref-
erences could be a significant source of the IVOL puzzle.

Finally, Brown, Lu, Ray and Teo (2018) use an extensive, hand-collected data set on hedge fund manager vehicle purchase
records and details from various websites covering the period 2006–2012. The authors show that motivated by sensation
seeking, hedge fund managers who own powerful sports cars take on more investment risk but do not deliver higher returns,
resulting in lower Sharpe ratios, information ratios, and alphas. Moreover, sensation-seeking managers trade more fre-
quently, actively, and unconventionally, and prefer lottery-like stocks. They also show that some investors are themselves
susceptible to sensation seeking and that sensation-seeking investors fuel the demand for sensation-seeking hedge fund
3



K. Grobys and J. Junttila J. Int. Financ. Markets Inst. Money 71 (2021) 101289
managers. While investors perceive sensation seekers to be less competent, they do not fully appreciate the superior invest-
ment skills of sensation-avoiding fund managers.

Even though a considerable strand of literature dealing with lottery-like demand in equity market settings exists, it is
surprising to note that there is no study available that explores this issue in cryptocurrency markets, which are known to
be highly speculative in their nature. This is the first study that addresses this issue.
3. Data

Daily data for the following cryptocurrencies were retrieved from coinmarketcap.com: Bitcoin (BTC), Ripple (XRP), Lite-
coin (LTC), Ethereum (ETH), Dash (DASH), Dogecoin (DOGE), Peercoin (PPC), BitShares (BTS), Stellar (XLM), Nxt (NXT), Maid-
SafeCoin (MAID), Namecoin (NMC), Factom (FCT), Bytecoin (BCN), Monero (XMR), Rubycoin (RBY), Emercoin (EMC), Clams
(CLAM), BlackCoin (BLK), MonaCoin (MONA), and NEM (XEM)4 These cryptocurrencies comprise 99% of the overall market
capitalization as of January 2, 2016. Since we employed Bitcoin as the market factor, we excluded this cryptocurrency from
the main analysis. As a consequence, the 20 cryptocurrencies that we use in our sorts are between rank 2 and 21 in terms of
market capitalizations as of January 2, 2016. As we employ only large cap cryptocurrencies – speaking in relative terms –
we control ex-ante for liquidity. The daily data set used in this study starts on January 1, 2016 and ends on December 31,
2019, resulting in 1463 daily observations. As cryptocurrencies are traded 24/7, weekly non-overlapping returns were calcu-
lated as the return over seven trading days leaving us with 209 observations as
4 Sin
capitali

5 Usi
meets t
fail to m
nature.
require
differen
limitati
ri;t ¼ log
Pi;j7�7

Pi;j7�14

� �
;

where i refers to the cryptocurrency considered, j 2 1;2;3; � � � ;208;209f g is an indicator mapping to the daily matrix, and
t 2 1;2;3; � � � ;208;209f g indicates the weekly time dimension of the data matrix. Note that the price vectors Pi have dimen-
sion Pi 2 M1456;1. This means, as an example, we compound the log-return of cryptocurrency i for the last week of our sample
(i.e.,t ¼ 209) as ri;209 ¼ log Pi;1456=Pi;1449

� �
. Moreover, data for the weekly US risk-free rate for the same sample period are

downloaded from Kenneth French’s website. All cryptocurrency data are denoted in terms of US dollars. The excess returns
for all the cryptocurrencies are calculated by subtracting the US risk-free rate from the raw return observations. In our anal-
ysis we use weekly data since monthly data would not provide enough observations as pointed out by (Shen, Urquhart, and
Wang, 2020) and in accordance with Platanakis et al. (2018) and Platanakis and Urquhart’s (2019) research.5 Descriptive
statistics for the weekly raw cryptocurrency returns are reported in Table A1 in the appendix.
4. Empirical framework

4.1. Statistical inference and blocks bootstraps

A wide range of recent literature suggests (dynamic and other) dependency structures in cryptocurrencies such as spec-
ulative bubble formation (Cretarola and Figà-Talamanca, 2020; Geuder et al, 2019; Chaim and Laurini, 2019; Fry, 2018),
regime switches and volatility clustering (Ardia et al., 2019; Caporale and Zekokh, 2018; Conrad et al., 2018; Chu et al.,
2017; Dyhrberg, 2016; Katsiampa, 2017), and seasonal patterns (Aharon and Qadan, 2019; Baur et al., 2019; Caporale and
Plastun, 2019). To provide an illustrative example of these issues, we plot the time series evolution of daily log-returns of
the cryptocurrency Ethereum in Fig. A1 in the appendix. Visual inspections show very clear patterns of alternating periods
of low and high volatility regimes (e.g., volatility clustering), which is a stylized fact of financial markets. We also plot the
bounds for 2.5% and 97.5% of the empirical distribution.

In this regard, Fig. A1 reveals that there are often considerable spikes (both positive and negative) in the time series, indi-
cating that the cryptocurrency is prone to outliers and extreme events. Furthermore, in the calendar year 2017 – during the
formation of the Bitcoin-bubble –Ethereum generated average daily log-returns of 1.23%, which with a t-statistic of 3.33
indicated statistical significance on any level. In the calendar year 2018, however, – during the burst of the Bitcoin-
bubble – Ethereum generated average daily log-returns of �0.44%, which were with a t-statistic of �1.51 statistically not
different from zero. This empirical fact could be evidence for a regime switch in the first moment of the time series of Ether-
eum log-returns. The duration of clusters in the first and second moment needs to be taken into account to make accurate
ce data for YbCoin (market capitalization USD 1903017 as of January 2, 2016) were not available, YbCoin was replaced by MonaCoin (market
zation USD 1627740 as of January 2, 2016).
ng weekly data instead of monthly data used in earlier studies (e.g., Bali et al., 2011; Bali et al., 2017; Asness et al., 2020; Hung and Yang, 2018) also
he requirements of a scientific replication as asked for by Hou et al., 2020, who investigated 452 asset pricing anomalies and found that most anomalies
eet currently acceptable standards for empirical finance. They emphasize that the crux is that unlike natural sciences finance is mostly observational in
Therefore, it is critical to evaluate the reliability of published results against ‘similar, but not identical’, specifications. This paper satisfies the
ments of scientific replication in line with Hamermesh (2007) because it (i) uses a sample period that is different from earlier paper and (ii) considers a
t asset market. Second, it uses a similar but not identical model: While earlier studies employ monthly data, this study uses weekly data (due to the data
on pointed out).
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statistical inference. It is noteworthy that the other cryptocurrencies used in our sample (unreported) exhibit very similar
features, which is perhaps not surprising as Borri (2019) points out that cryptocurrencies appear to be highly correlated.

It is important to note that standard econometric tests do not account for these issues. Due to the overwhelming evidence
of cryptocurrency returns’ non-normality (see also Table 2 for our data), this paper employs one type of (non-parametric)
blocks bootstrap simulation of the reported t-statistics that is robust to unknown dependency structures in the cryptocur-
rency data.6 The reported t-statistics from all our empirical analyses can be therefore referred to as heteroscedasticity-and-auto
correlation-robust (HAC) t-statistics. It is important to stress that the chosen block length in our blocks bootstrap addresses the
issue of persistent regimes in the first and second moment as well as the reoccurrence of outliers in the data.

First, X is denoted as the regressor matrix that has the dimension T � K with K 2 1;2f g, and T refers to the number of
observations. Specifically, X can be either simply a T � 1 vector of ones – if we are estimating the t-statistics of the raw pay-
offs – or a T � 2 matrix that has a vector of ones in the first column and a vector of Bitcoin excess returns in the second col-
umn – if we are estimating the risk-adjusted payoffs. Moreover, we denote the T � 1 vector of MAX-payoffs as Y and then
construct the block matrix W ¼ XY½ �. We start the algorithm to create b ¼ 1; � � � ;B samples of matrices W1; � � � ;WB as fol-
lows: In each run b, we randomly draw with replacement a block with expected block length h from the matrix W . For
instance, if the first randomly drawn block length is n, we draw randomly with replacement with probability 1= T � nð Þ a
block that has the dimension n� K þ 1ð Þ from the rows 1;2; � � � ; T � nð Þ of the matrix W . This block is used to create a
new matrix Wb and, hence, is the first block of dimensionn� K þ 1ð Þ in Wb.

If the second randomly drawn block length is m, we randomly draw with replacement with probability 1= T �mð Þ a block
from the rows 1;2; � � � ; T �mð Þ of W that has the dimension m� K þ 1ð Þ and which is stacked below the first block of obser-
vations in Wb. This procedure is stopped when the matrix Wb has more than T rows. All rows after T are cut-off so that Wb

has the same dimension asW . Using random block lengths that follow a geometric distribution ensures that the K þ 1ð Þ data
series’ in Wb exhibit ergodicity.

Second, for each run b the OLS estimators are calculated as bbb ¼ Xb
0Xbð Þ�1Xb

0yb, where

Yb ¼
y1b
y2b
..
.

yTb

2
6664

3
7775, and Xb can be either Xb ¼

1
1
..
.

1

2
664

3
775, or Xb ¼

1 x1b
1
..
.

1

x2b
..
.

xTb

2
664

3
775:

Note that Xb and Yb are retrieved from Wb ¼ XbYb½ �. Specifically,

Wb ¼
1 y1b
1
..
.

1

y2b
..
.

yTb

2
6664

3
7775, or Wb ¼

1 x1b y1b
1
..
.

1

x2b y2b
..
. ..

.

xTb yTb

2
664

3
775, respectively. Hence, bbb is either a scalar or a 2� 1 vector. Each bbb is

stacked in a vector bhb such that either bhb
0 ¼ ba1; ba2; � � � ; baB

� �
or bhb

0 ¼ ba1; bb1; ba2; bb2; � � � ; baB; bbB

� �
.

Third, the bootstrap population parameter mean vector is estimated by
6 Not
virtuall
�bhb ¼ 1
B

XB

b¼1
bhb
and the bootstrap population covariance matrix of
ffiffiffi
T

p bhb � bh� �
is estimated by
bC � ¼ T
B

XB

b¼1
bhb � �bhb

� � bhb � �bhb

� �
0

On the main diagonal of the blocks bootstrap covariance matrix bC � are the bootstrapped variances for the corresponding

estimated parameters in bh which denotes the estimated parameter vector based on the actual data. Dividing each element inbh by the square root of the corresponding element of the main diagonal in bC � provides our HAC-robust estimates of the t-
statistics. Note also that in constructing Wb, we use in each given run b a randomly drawn block length h that follows a geo-
metric distribution, that is, h GEO pð Þ. Using a random block length of h ¼ 20, we calculatep according to the definition
E h½ � ¼ 1�p

p for the geometric distribution. Hence, we use p ¼ 0:0476 for drawing random blocks fromWb. Employing a random

block length that follows a geometric distribution ensures that the time series in the bootstrapped matrices Wb are ergodic
(Godfrey, 2009, p.201). Finally, our blocks bootstrap approach makes use of B ¼ 1000 bootstrap replications. It is noteworthy
that Godfrey (2009, p.123) emphasizes that experiments have shown that this blocks bootstrap methodology can lead to
much more accurate statistical inferences than the kernel-based method for estimating variance.
e that the descriptive statistics reported in Table A.1. in the appendix strongly support the evidence documented in the current literature. Specifically,
y all cryptocurrency returns exhibit excess kurtosis and a high level of skewness.
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4.2. Sorting the portfolios

Unlike Bali et al. (2011) who use monthly data, we start our empirical analysis by sorting all twenty cryptocurrencies at
the beginning of each week by the maximum daily log-return during the last week (i.e., seven days) in an increasing order
from lowest to highest daily maximum log-return. The rationale of this approach is that first of all Bali et al.’s (2011) findings
indicate that average raw return differences in the stock markets between the low MAX and high MAX equity portfolios are
�0.98% per month for stocks with the maximum return in the first half of the month versus �0.95% per month for those with
the maximum return in the second half of the month. This implies that this effect is not driven by a certain week within the
previous month. As a result, the MAX-effect should persist even when using data of the most recent previous week. The sec-
ond issue why we employ weekly data for the analysis of holding period returns is simply data availability. In this regard,
Shen et al. (2020), who propose a three factor pricing model for the cryptocurrency market, argue that monthly data would
not provide enough observations in the case of most recent cryptocurrency market data for all the smaller cryptocurrencies
than Bitcoin. Finally, recent research on the profitability of technical trading rules implemented on cryptocurrency markets
documents that cryptocurrencies appear to be short-memory processes (Grobys et al., 2020).

Next, the cryptocurrencies are allocated into five portfolio groups. The first quintile comprises those cryptocurrencies that
have the lowest daily maximum log-return within the last week, whereas the fifth quintile comprises those cryptocurrencies
that exhibit the highest daily maximum log-return over the same period. The zero-cost strategy is long on the fifth and short
on the first quintile, and the allocation is updated based on this strategy at the beginning of each week.

Tables 1 and 2 report the estimated average point estimates for each quintile, the zero-cost portfolio, the trimmed zero-
cost portfolio and the descriptive statistics of the portfolio distributions. The cumulative returns of the zero-cost portfolio are
plotted in Fig. 1. From Fig. 1 we observe that the cumulative returns virtually linearly decrease across time. Moreover, we
learn from Table 1 that the average predicted return linearly decreases as we move from lowest to highest maximum daily
return portfolio, which confirms the corresponding literature in equity market research (Bali et al., 2011, 2017; Walkshäusl,
2014; Chan and Chui, 2016; Hung and Yang, 2018; Asness et al., 2020). The zero-cost portfolio generates �1.54% weekly
average returns with a HAC-robust t-statistic of �2.68 indicating statistical significance even on a 1% level. While the eco-
Table 1
Predicted raw returns. A set of twenty cryptocurrencies is employed and sorted at the beginning of each week by the maximum daily log-return during the last
week in an increasing order from lowest to highest daily maximum log-return. The cryptocurrencies are then allocated to five portfolio groups. The first quintile
comprises those cryptocurrencies that have the lowest daily maximum log-return within the last week, whereas the fifth quintile comprises those
cryptocurrencies that exhibit the highest daily maximum log-return over the same period. The zero-cost strategy is long on the fifth and short on the first
quintile. This strategy is updated at the beginning of each week. Trimmed data denotes the spread where 2.50% of each tail is cut off. The sample period is from
January 2016 until December 2019. HAC-robust t-statistics are given in parentheses.

Metric Low (L) Group 2 Group 3 Group 4 High (H) (H-L) (H-L)a

Average return 1.33 1.38 0.55 1.08 �0.22 �1.54*** �1.89***
(HAC-robust t-statistic) (�2.68) (�2.83)
Past MAX 3.18 5.23 7.27 10.24 21.39
Past VOLA 1.33 1.66 1.97 2.50 4.42

Table 2
Descriptive portfolio statistics. We employ a set of twenty cryptocurrencies and sorted them at the beginning of each week by the maximum daily log-return
during the last week in an increasing order from lowest to highest daily maximum log-return. The cryptocurrencies are then allocated to five portfolio groups.
The first quintile (L) comprises those cryptocurrencies that have the lowest daily maximum log-return within the last week, whereas the fifth quintile (H)
comprises those cryptocurrencies that exhibit the highest daily maximum log-return over the same period. The zero-cost strategy (H-L) is long on the fifth and
short on the first quintile. This strategy is updated at the beginning of each week. This table reports the descriptive statistics of the quintile portfolios, where
mean is each group’s sample average, median is each group’s value corresponding to the 50% of the sorted observations in that corresponding sample,
minimum and maximum denote each group’s lowest and highest weekly return over the sample period, std.dev. is each group’s standard deviation over the
sample period, skewness and kurtosis measure each group’s third and fourth central moment, whereas Jarque-Bera denotes each group’s Jarque-Bera test
statistic (assuming normality under the null hypothesis) and the last row denoted as probability is the p-value corresponding to each group’s Jarque-Bera test
statistic. The sample period is from January 2016 until December 2019.

Metric Low (L) Group 2 Group 3 Group 4 High (H) (H-L)

Mean 1.33 1.38 0.55 1.08 �0.22 �1.54
Median 1.19 0.13 �0.20 �0.39 �1.18 �1.89
Maximum 51.11 48.19 58.93 64.89 70.15 59.87
Minimum �38.22 �48.44 �59.93 �46.53 �72.09 �40.81
Std. Dev. 13.23 13.90 13.33 15.47 16.80 14.21
Skewness 0.34 0.41 0.11 0.72 0.67 0.73
Kurtosis 4.21 5.06 6.01 5.77 6.69 6.30
Jarque-Bera 16.80 42.42 79.21 84.57 133.25 112.93
Probability 0.00 0.00 0.00 0.00 0.00 0.00
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Fig. 1. Cumulative returns. This figure plots the cumulative returns of the zero-cost MAX portfolio over time. The sample period is from January 2016 until
December 2019.
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nomic magnitude as reported here exceeds the spread documented by Bali et al. (2011) and Bali et al. (2017) by a large mar-
gin, our findings confirm both their and Asness et al.’s (2020) findings in that the past volatility of the high MAX portfolio is
highly correlated with past idiosyncratic volatility of individual cryptocurrency portfolio groups.

Indeed, the past portfolio volatility is strictly linearly increasing as we move from the lowest to the highest MAX group. It
may be surprising that the average of the past MAX which ranges from 3.18% to 21.39% average daily maximum return, is
very close to the figures documented by Bali et al. (2011) who report figures between 1.30% and 23.60%. This finding is per-
haps related to the sorting procedure as Bali et al. (2011) use deciles and we employ quintiles. Furthermore, one could argue
that the enormous payoff might be attributed to a few observations in the tails. To address this concern, we trim the data and
cut-off 2.50% of the observations on both the left- and right-hand tail of the payoff distribution. From Table 1 we observe that
the average payoff even increases after trimming, which strongly suggests that this pattern cannot be attributed to the rare
observations in the tails.
7
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Recent research argues that cryptocurrency returns are highly correlated with each other (Borri, 2019). One may wonder
whether the payoff of the zero-cost strategy can be explained by an exposure against the market risk. To address this con-
cern, we regress the zero-cost portfolio returns on the excess returns of Bitcoin, that is,
MAXt ¼ aþ bBTCex
t þ ut ; ð1Þ
where MAXt denotes the return on the zero-cost portfolio that is long on those cryptocurrencies that had the lowest max-
imum daily log-return in the last week prior to portfolio formation and short on those cryptocurrencies that had the highest
daily log-return in the last week prior to portfolio formation. Moreover, BTCex

t denotes Bitcoin returns in excess of the US risk-
free tate, a and b are parameters to be estimated and ut is an ergodic stationary stochastic process that is assumed to be

distributed as ut 0;r2
ut

� �
. The point estimate for a is�1.75 per week with corresponding HAC-robust t-statistic of�2.70 indi-

cating statistical significance even on a 1% significance level. Next, one could wonder how sensitive our results are with
respect to the chosen random block length of h ¼ 20 in the blocks bootstrap procedure. In Table A3 in the appendix, we
report the corresponding HAC-robust t-statistics for various block lengths h ¼ 10;15;20;25;30f g. Our results are robust with
respect to the changes in the random block length in the bootstrap simulation.

As mentioned in Bali et al. (2011), investors may pay high prices for assets that have experienced extreme positive returns
in the past in the expectation that this behavior will reoccur in the future. Hence, the question arises whether these expec-
tations are rational. While Bali et al. (2011) explore this issue by examining the average month-to-month portfolio transition
matrix, our data span requires an investigation of the week-to-week portfolio transition matrix. Specifically, in our research
context the portfolio allocation transition matrix indicates the average probability that a cryptocurrency in quintile i in the
current week will move to quintile j in the subsequent week. The results are reported in Table 5. Since we operate with 209
weekly observations and we need one month for determining the previous week MAX values, the reported figures are the
averages across 207 transitions. If the maximum daily returns are completely random, then each entry in the matrix should
equal 0.2 (20%) as a high or low maximum return in one week should not provide any information about the maximum
return in the following week.

We learn from Table 5 that the elements (1,1) and (5,5) both exceed 20%. Table 5 also illustrates the corresponding t-
statistic of the hypothesis that the transition probability i; jð Þ is equal to 20%. We see that the transition probabilities (1,1)
and (5,5) are both statistically significant even on a 1% significance level. While Bali et al. (2011) document that stocks in
decile 10 (which indicates the group exhibiting the maximum daily return in the last month) have a 35% chance of appearing
in the same decile next month, our results strongly support Bali et al.’s (2011) because 34% of all cryptocurrencies that are in
quintile 5 (indicating the cryptocurrencies group exhibiting the maximum daily return in the last week) appear on average in
the same group next week. It is noteworthy that the chance of cryptocurrencies that were in the high MAX portfolio end up
again in the same portfolio is even higher than the transition probabilities (5,1) and (5,2) taken together. This result strongly
indicates that cryptocurrencies that have experienced extreme positive returns in the past are more likely to generate
extreme positive returns in the future than generating extreme negative returns. This, in turn, implies that investors’ expec-
tations appear to be rational.

4.3. Is lottery-like demand priced in the cross section of cryptocurrency returns?

Bali et al. (2011) point out that a different way to examine the persistence of extreme positive daily returns is to look at
firm-level cross-sectional regressions of MAX on lagged predictor variables. Investigating this issue in the U.S. stock market,
for each month they run a regression across firms of the maximum daily return within that month on the maximum daily
return from the previous month and seven lagged control variables. These control variables have in earlier literature been
found to be associated with the cross section of expected equity market returns. Specifically, they control for beta, size,
book-to-market ratio, momentum, reversal, illiquidity and idiosyncratic volatility.

The current literature on cryptocurrencies documents a short term reversal effect in the cross section of cryptocurrencies
(Shen, Urquhart, and Wang, 2020; Grobys and Sapkota, 2019). Moreover, Bali et al. (2011) highlight that the MAX-effect is
strongly related to idiosyncratic volatility and reversals. Motivated by these two suggestions, also operational in the case of
cryptocurrencies, we employ at a cryptocurrency-level cross-sectional regressions by first regressing the excess returns of
each cryptocurrency i on its maximum daily return in week t-1 (MAX), the excess return of week t-1 (reversal, denoted
by CRYPTOex

i;t�1), and the idiosyncratic volatility in week t-1 measured by the individual weekly volatility of cryptocurrency
i. The corresponding regressions are then given by
CRYPTOex
i;t ¼ ai þ bi;1MAXex

i;t�1 þ bi;2CRYPTO
ex
i;t�1 þ bi;3IVOL

ex
i;t�1 þ ei;t ð2:1Þ
where CRYPTOex
i;t denotes the weekly excess log-return of cryptocurrency i at time t, MAXex

i;t�1 denotes the maximum daily

excess log-return of cryptocurrency i at time t-1, IVOLexi;t�1 denotes the idiosyncratic weekly volatility of cryptocurrency i

at time t-1, ei;t is a cryptocurrency-specific white noise term assumed to be distributed as et 0;r2
et

� �
and ai, bi;1, bi;2, bi;3

are parameters that are estimated of this dynamic model. The point estimates are reported in Table A5 in the appendix. Con-

sistent with Bali et al. (2011), the time series average sensitivity against MAX, that is,
PK

i¼1b
^

i;1 is negative and estimated at
8
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�0.1938. To assess the cross-sectional impact on pricing the cryptocurrencies, we place the estimated betas in a regressor
matrix B, and stack the sample averages of cryptocurrency excess returns in a vector denoted z. Specifically,

B ¼

1 b
^

1;1 b
^

1;2 b
^

1;3

1 b
^

2;1 b
^

2;2 b
^

2;3

..

.

1
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b
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b
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K;2
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66666664
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, and z ¼

PT
t¼1CRYPTO

ex
1;tPT

t¼1CRYPTO
ex
2;t

..

.PT
t¼1CRYPTO

ex
K;t

2
66664

3
77775.

Then, the parameter vector of cross-sectional risk-premiums, k, is estimated as
7 Not
are diff
rolling t
that ou
reasona
bk ¼ B0Bð Þ�1B0z ð2:2Þ

yielding bk ¼ 0:39;3:47;4:43;0:51ð Þ0. Using blocks bootstrap as described in Section 4.1, definingW ¼ Bz½ �, and employing

a random block length of h ¼ 3 and B ¼ 1000 bootstrap replications, the corresponding HAC-robust covariance matrix bC �
k,

given by bC �
k ¼ T

B

PB
b¼1

bkb � �bkb

� � bkb � �bkb

� �
0 is then estimated to be
bC �
k ¼

0:0236 �0:0529 �0:0458 �0:0114
�0:0529 0:8152 �0:3338 0:2126
�0:0458
�0:0114

�0:3338
0:2126

1:9599 �0:1933
�0:1933 0:0629

2
6664

3
7775
Hence, the corresponding vector of HAC-robust t-statistics, tbk are estimated as tbk ¼ 2:54;3:83;3:18;2:03ð Þ.7 This result has

some important implications. First, lottery-like demand is clearly priced in the cross section of cryptocurrency log-returns.
Higher exposure to beta risk associated with MAX is positively related to the cross section of expected cryptocurrency returns.
The economic magnitude of the risk premium is close to the risk premium related to the reversal’s beta risk. Second, idiosyn-
cratic volatility appears to matter as well but the economic magnitude is small and the t-statistic is – even if indicating statis-
tical significance on a common 5% – considerably smaller than the risk premium related to MAX and reversals. Third, this model
is capable of explaining 61% of the variation in cross-sectional average returns. The explanatory power of this model is consid-
erably higher than that of Shen et al.’s (2020) three-factor model that produces an R-square value of (only) 16%.

4.4. Other robustness checks

Even though cryptocurrency markets are – unlike equity markets – traded 24/7, one could wonder if the results are robust
if a one-day delay between portfolio formation and allocation is implemented. For instance, in momentum research,
Jegadeesh and Titman (1993) propose in their seminal paper to implement a one-week delay between the portfolio forma-
tion period and the holding period to account for microstructure issues such as bid-ask spread, price pressure, and lagged
reaction effects. Since cryptocurrencies appear to be short memory processes, as documented by Grobys et al. (2020), we
address this issue by implementing the MAX strategy by discounting the most recent past trading day when determining
the maximum daily log-return in the previous week. The results are reported in Tables 3 and 4. The results are virtually
the same. Again, we regress the zero-cost strategy that skips one day between formation and holding period on the Bitcoin
excess returns. The results are reported in Table A4 in the appendix and confirm our previous findings. We also report the
corresponding HAC-robust t-statistics for various random block length variations as in Section 4.2. Our results remain
unchanged.

Another concern could be a potential survivorship bias. However, a survivorship bias in our study’s research context
would be to view the performance of existing cryptocurrencies or funds in the market as a representative comprehensive
sample without regarding those that had been unsuccessful. This, in turn, would bias our results in terms of overestimation
of our MAX strategy’s performance. Our study explicitly accounts for the survivorship bias because it uses cryptocurrencies
that exhibited at the beginning of the sample, that is, on January 2, 2016, the highest market capitalization. This information
had been, however, available to the naïve investor.

Furthermore, as pointed out by Ahmed, Grobys, and Sapkota (2020), one could argue that the rank of market capitaliza-
tions of our set of cryptocurrencies could be too volatile during the sample period, which could cast doubt on the reliability
of our results. To investigate this issue, we report in Table A6 the rank of our cryptocurrencies in terms of market capital-
ization in the beginning and at the end of the sample. The rank correlation is estimated at 0.4496 with a t-statistic of
7.24 statistically significant on any level. This result confirms the findings of Ahmed et al. (2020) who explore the profitabil-
ity of technical trading implemented among ten large cap cryptocurrencies that exhibit the so-called ‘privacy function’. The
e that the standard OLS estimates for the t-statistics are estimated as tbk ¼ 3:34;6:99;4:12;4:06ð Þ. These estimates are, however, upwards biased. There
erent alternatives to address this issue e.g. in monthly data. One application of Fama’s and MacBeth’s (1973) cross-sectional regressions employs a
ime window of 60 observations to estimate the betas and consecutively estimates the corresponding lambda vector. The problem with this approach is
r sample does not provide enough observations to generate reasonable estimates. Hence, given our research setting, bootstrapping serves as a
ble choice for estimating the covariance matrix. The advantages of bootstrapping are detailed by Godfrey (2009).
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Table 3
Predicted raw returns with skipping one day between formation and holding period. A set of twenty cryptocurrencies is employed and sorted at the beginning
of each week by the maximum daily log-return during the last week in an increasing order from lowest to highest daily maximum log-return. In determining
the highest daily maximum log-return, the most recent past return is skipped. The cryptocurrencies are then allocated to five portfolio groups. The first quintile
comprises those cryptocurrencies that have the lowest daily maximum log-return within the last week, whereas the fifth quintile comprises those
cryptocurrencies that exhibit the highest daily maximum log-return over the same period. The zero-cost strategy is long on the fifth and short on the first
quintile. This strategy is updated at the beginning of each week. The sample period is from January 2016 until December 2019. HAC-robust t-statistics are given
in parentheses.

Metric Low (L) 2 3 4 High (H) (H-L) (H-L)a

Average return 1.65 1.01 0.98 0.65 �0.17 �1.82** �2.24***

(HAC-robust t-statistic) (�2.43) (�2.87)
Past MAX 2.73 4.74 6.66 9.48 19.75
Past VOLA 1.29 1.59 1.89 2.46 4.33

*Statistical significant on a 10% level.
** Statistical significant on a 5% level.
a Data are trimmed at 5%.

Table 4
Descriptive portfolio statistics with skipping one day between formation and holding period. This table reports the descriptive statistics of the quintile
portfolios sorted by the maximum daily log-return during the last week while skipping the most recent past daily log-return. The sample period is from January
2016 until December 2019.

Metric Low (L) Group 2 Group 3 Group 4 High (H) (H-L)

Mean 1.65 1.01 0.98 0.65 �0.17 �1.82
Median 1.24 0.19 �0.29 �0.50 �1.25 �1.95
Maximum 51.11 46.01 62.76 60.87 70.15 62.92
Minimum �38.22 �48.44 �59.93 �46.53 �72.09 �40.81
Std. Dev. 13.41 13.23 14.20 14.55 16.97 15.01
Skewness 0.35 0.14 0.28 0.36 0.73 0.77
Kurtosis 4.15 4.98 5.86 4.60 6.72 6.38
Jarque-Bera 15.69 34.82 73.81 26.80 138.74 119.36
Probability 0.00 0.00 0.00 0.00 0.00 0.00

Table 5
Transition matrix. This table reports the weekly transition matrix. Each entry denotes the probability of transition from group i to j in the next week. This table
also reports the t-statistic of the hypothesis that the transition probability i; jð Þ is equal to 0.20. The sample period is from January 2016 until December 2019.
The t-statistics are given in parentheses.

i/j Low (L) Group 2 Group 3 Group 4 High (H)

Low (L) 0.2705***

(4.86)
0.2017
(0.14)

0.2186
(1.50)

0.1655***

(�2.94)
0.1437***

(�4.78)

Group 2 0.2089
(0.71)

0.2464***

(3.37)
0.2017
(0.14)

0.2041
(0.32)

0.1389***

(�5.35)

Group 3 0.2222*
(1.73)

0.2307**

(2.33)
0.1896
(�0.81)

0.1932
(�0.51)

0.1643***

(�2.94)

Group 4 0.1643***

(�3.25)
0.1812
(�1.56)

0.2150
(1.15)

0.2258**

(2.00)
0.2138
(1.07)

High (H) 0.1341***

(�5.63)
0.1401***

(�5.08)
0.1751**

(�2.04)
0.2114
(0.94)

0.3394***

(8.84)

* Statistical significant on a 10% level.
** Statistical significant on a 5% level.
*** Statistical significant on a 1% level.
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authors find that the rank correlation of their set of cryptocurrencies is 0.77 and statistically significant over the 2016–2018
period. Hence, in line with Ahmed et al. (2020) we infer that even though there is variation in market capitalizations across
time, the rank among the large cap cryptocurrencies is, on average, fairly stable confirming the reliability of our results.

Next, one could wonder whether the results would change if we included Bitcoin in the sample due to its overwhelming
market dominance. First, we chose an equal-weighted scheme for the portfolios which is in line with the literature on tra-
ditional currencies. That means that even if Bitcoin was included and allocated to either long or short leg, its return would
have only 25% of the overall portfolio weight. Nevertheless, to get more clarity on this issue, we next include Bitcoin in the
sample and exclude NEM from the sample. We again employ portfolio sorts and allocate all cryptocurrencies into five port-
10
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folio groups. The first quintile comprises those cryptocurrencies that have the lowest daily maximum log-return within the
last week, whereas the fifth quintile comprises those cryptocurrencies that exhibit the highest daily maximum log-return
over the same period. The zero-cost strategy is long on the fifth and short on the first quintile, and the allocation is updated
based on this strategy at the beginning of each week. The results are reported in Table A7 in the appendix. The results are
virtually the same and our conclusions remain unchanged.

Finally, one could wonder to which extend the reported statistical significances would change if we used traditional
heteroscedasticity-and-autocorrelation-robust (HAC) t-statistics such as those proposed in Newey and West (1987). To
address this issue, we report in Table A8 in the appendix the raw and risk-adjusted MAX-payoffs as reported in Tables 1,
3, A3 and A4, respectively, using (i) standard t-statistics, (ii) our proposed HAC-robust t-statistics using a random block
length of h = 20, and heteroscedasticity-and-autocorrelation-robust t-statistics as proposed by Newey andWest (1987) using
three different lag-lengths l with l={1,3,5}. From Table A8. we observe that using standard t-statistics that do not account for
any dependency structures in the data would suggest that only the risk-adjusted MAX strategy implemented by skipping the
most recent past trading day and calculating the maximum daily log-return between trading day when determining the
maximum daily log-return in the previous week generates an average payoff significant on a 5% level (t-statistic �2.08).
Using Newey andWest (1987) covariance estimators, accounting for one lag suggests that only risk-adjusted MAX strategies
generate average payoffs significant on a 5% level (t-statistic�2.14 in both cases). As wemove to the Newey andWest (1987)
covariance estimators accounting for five lags, we obtain similar levels of statistical significance as we obtain using our pro-
posed heteroscedasticity-and-autocorrelation-robust test statistics using a random block length of h = 20. The findings of our
analysis are in line with Godfrey (2009), who argues that asymptotically valid tests such as the HAC-robust t-tests as pro-
posed by Newey and West (1987) may involve severe size distortions, especially when the data set is small and the data are
fat-tailed and highly skewed. Moreover, it is important to stress that using Newey and West (1987) covariance estimators,
we lose (due to the lag structure) information that could be important for statistical inference. As an example, cryptocur-
rency data suggest latent regimes in the first moment that last considerably longer than five weeks (see Section 4.1.). This
is not accounted for when using Newey andWest (1987) covariance estimators. Using blocks bootstraps in association with a
randomly chosen block length we first (i) ensure, that latent regimes in the first and/or second moment in that data gener-
ating process are preserved, and second (ii) we do not lose valuable information in the data.
5. Conclusion

This study investigates lottery-like behavior in new digital financial markets. To account for market liquidity, we obtained
data for a set of 20 cryptocurrencies that exhibited the highest market capitalization as of January 2, 2016. We excluded Bit-
coin from the main sample because we employed Bitcoin as risk factor in regressions adjusting for market risk. Motivated by
the recent literature on cryptocurrency research emphasizing that cryptocurrency markets are rather subject to speculation
than medium of exchange, this study contributes to the literature by exploring another type of speculative behavior in cryp-
tocurrency markets, that is, lottery-like demand. The general set-up of this study follows the literature on investigating this
issue for equity markets. However, there are also some important differences. For instance, equity market research typically
operates with monthly data, whereas our study uses weekly data, as the most recent literature argues first that cryptocur-
rencies appear to be short-memory processes, and second using lower frequented data – such as monthly data – would not
provide enough observations for reasonable statistical inference.

Noting that there is a wide range of literature on cryptocurrencies that indicates excessive tail risks, non-linearities (such
as regimes switches), and volatility clustering, we propose an econometric estimation procedure based on blocks bootstraps
to account for the poor performance of asymptotical tests in terms of severe size distortions. Confirming earlier studies, the
current research finds that the difference between returns on cryptocurrency portfolios with the highest and lowest maxi-
mum daily returns is negative. However, the economic magnitude is considerably higher (e.g., �1.54% per week) than the
figures documented in equity markets. Hence, our study concluded that investors find cryptocurrencies that exhibit high
payoffs desirable and hence, they offer lower future returns. The results are robust.

From a practical point of view, our results may have important implications for portfolio management investing in cryp-
tocurrencies. In this regard, it is important to stress that an essential difference between traditional asset markets (such as
equity markets) and cryptocurrency markets is the availability of short-selling.8 Specifically, investors in cryptocurrency mar-
kets face short selling constraints implying that the MAX strategy could only be implemented as a long-only strategy. Therefore,
a speculative investment strategy could involve betting on cryptocurrencies exhibiting the lowest maximum return in the week
preceding portfolio formation. Exploring the profitability of such investment vehicles is beyond the scope of this paper and
hence left for future research.

Finally, our findings are interesting also from a theoretical point of view because they suggest that the similar behavioral
mechanisms of underlying investor behavior are present even in digital financial markets. As more data becomes available,
future research is encouraged to investigate this issue using monthly data. Moreover, it is reasonable to assume that a
lottery-prone investor will be monitoring small-cap cryptocurrencies extensively. Future research is therefore encouraged
8 To the best of our knowledge, Bitcoin is the only cryptocurrency serving as underlying for financial derivatives. In this regard, Corbet et al. (2018) explore
the effects of Bitcoin futures and find that spot volatility has increased following the appearance of futures contracts.
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to investigate the MAX-effect for utility tokens or security tokens because these digital financial tools are likely to be subject
to even more speculative behavior than the market for cryptocurrencies originally designed for as a medium for transaction.
Appendix

See Table A2.
Table A1
Descriptive statistics. This table reports the descriptive statistics of the cryptocurrencies used in this study. The weekly data is from January 2016 until
December 2019.

BITSHARES BLACKCOIN BTC BYTECOIN CLAMS DASH DODGE EMERCOIN ETH FACTOM LTC

Mean 0.76 0.18 1.30 0.93 �0.39 1.18 1.28 �0.29 2.35 0.61 1.15
Median �0.79 �0.30 0.60 �1.65 0.00 0.10 �0.99 �1.77 0.83 �1.20 �0.31
Maximum 83.18 47.16 55.91 124.98 61.62 56.47 74.69 82.61 95.98 80.27 104.45
Minimum �62.48 �80.93 �37.71 �48.26 �97.48 �38.12 �81.43 �82.81 �43.18 �61.35 �63.52
Std. Dev. 20.71 19.74 10.65 22.80 21.07 15.36 18.28 21.11 18.24 19.69 15.85
Skewness 0.82 �0.53 0.47 1.90 �1.03 0.55 0.80 0.72 1.37 0.79 1.46
Kurtosis 5.84 4.78 6.54 9.73 7.06 4.28 7.68 6.38 7.87 5.96 13.02
Jarque-Bera 93.36 37.25 116.72 519.79 180.09 24.60 213.03 117.08 272.03 98.42 947.74
Probability 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

MAIDSAFECOIN MONACOIN MONERO NAMECOIN NEM NXT PEERCOIN RUBYCOIN STELLAR XRP

Mean 0.71 1.07 2.17 0.00 2.32 0.12 �0.43 �0.50 1.55 1.65
Median 0.41 �1.81 0.23 0.75 �0.86 �2.74 �1.31 0.94 �1.79 �1.33
Maximum 52.93 198.76 65.63 96.20 94.85 139.27 61.86 83.95 169.78 135.55
Minimum �49.95 �58.52 �39.55 �84.43 �58.00 �64.11 �47.66 �105.31 �59.92 �49.53
Std. Dev. 15.94 23.57 16.91 18.74 21.59 21.06 15.03 23.83 22.27 20.67
Skewness �0.01 3.70 0.91 �0.14 1.42 1.80 0.91 �0.26 2.97 2.68
Kurtosis 3.55 27.75 5.27 9.57 6.95 12.27 6.17 5.67 21.02 14.96
Jarque-Bera 2.64 5810.77 73.68 376.89 206.71 861.43 116.07 64.43 3134.73 1494.74
Probability 0.27 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table A2
Market capitalizations. This table reports the market capitalizations of the set of cryptocurrency used
in this study. The market capitalizations are retrieved from coinmarketcap.com as of January 2, 2016.

No Cryptocurrency Market Capitalization

0 BTC 6,467,437,080
1 XRP 201,799,631
2 LTC 152,873,521
3 ETH 73,843,278
4 DASH 19,794,713
5 DOGE 14,940,681
6 PPC 9,756,959
7 BTS 8,591,688
8 XLM 8,436,465
9 NXT 6,863,998
10 MAID 6,789,470
11 NMC 6,073,338
13 FCT 5,646,935
13 BCN 5,582,979
14 XMR 5,295,952
15 RBY 2,763,547
16 EMC 2,729,184
17 CLAM 2,199,047
18 BLK 2,000,105
19 MONA 1,627,740
20 XEM 1,573,830
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Table A3
Risk-adjusted returns. This table reports the estimated parameters of the time series regression given by MAXt ¼ aþ bBTCex

t þ ut , where MAXt denotes a zero-
cost portfolio that is long on those cryptocurrencies that had the lowest maximum daily log-return in the last week prior to portfolio formation and short on
those cryptocurrencies that had the highest daily log-return in the last week prior to portfolio formation. Moreover, BTCex

t denotes Bitcoin returns in excess of
the US risk-free rate, a and b are parameters to be estimated and ut is an ergodic stationary stochastic process. The sample period is from January 2016 until
December 2019. HAC-robust t-statistics are given in parentheses.

Block length h alpha beta t-statistic alpha t-statistic beta

10 �1.75** 0.16 �2.42 1.05
15 �1.75** 0.16 �2.55 1.04
20 �1.75*** 0.16 �2.70 1.10
25 �1.75*** 0.16 �2.81 1.08
30 �1.75*** 0.16 �2.70 1.15

** Statistical significant on a 5% level.
*** Statistical significant on a 1% level.

Table A4
Risk-adjusted returns with skipping one day between formation and holding period. This table reports the estimated parameters of the regression given by
MAX�

t ¼ aþ bBTCex
t þ ut , where MAX�

t denotes a zero-cost portfolio that is long on those cryptocurrencies that had the lowest maximum daily log-return in the
last week prior to portfolio formation and short on those cryptocurrencies that had the highest daily log-return in the last week prior to portfolio formation. In
determining the highest daily maximum log-return, this strategy skips the most recent past daily log-return. Moreover, BTCex

t denotes Bitcoin returns in excess
of the US risk-free rate, a and b are parameters to be estimated and ut is an ergodic stationary stochastic process. The sample period is from January 2016 until
December 2019. HAC-robust t-statistics are given in parentheses.

Block length h alpha beta t-statistic alpha t-statistic beta

10 �2.14** 0.25 �2.38 1.31
15 �2.14** 0.25 �2.34 1.32
20 �2.14** 0.25 �2.35 1.32
25 �2.14** 0.25 �2.46 1.36
30 �2.14** 0.25 �2.32 1.36

** Statistical significant on a 5% level.

Table A5
Time series regressions. This table reports the estimated parameters of the time series regression, CRYPTOex

i;t ¼ ai þ bi;1MAXex
i;t�1 þ bi;2REVERSAL

ex
i;t�1þ

bi;3IVOL
ex
i;t�1 þ ui;t , where CRYPTOex

i;t denotes the weekly excess log-return of cryptocurrency i at time t, MAXex
i;t�1 denotes the maximum daily excess log-return

of cryptocurrency i at time t-1, IVOLexi;t�1 denotes the idiosyncratic weekly volatility of cryptocurrency i at time t-1, ui;t is a cryptocurrency-specific white noise
term and ai , bi;1, bi;2, bi;3 are parameters that are estimated in this time series model.

Cryptocurrency Average excess returns b
^

MAX b
^

Reversal b
^

Volatility

XRP 1.62 �1.13 0.45 5.18
LTC 1.12 0.55 �0.05 �1.77
ETH 2.32 0.78 �0.10 �2.42
DASH 1.16 0.27 0.05 0.27
DOGE 1.25 �0.78 0.32 3.11
PPC �0.46 0.23 �0.08 �1.20
BTS 0.73 �0.92 0.39 5.27
XLM 1.52 �0.24 0.17 1.57
NXT 0.10 �1.85 0.44 8.46
MAID 0.68 0.59 �0.08 �0.72
NMC �0.03 �0.07 �0.08 �0.19
FCT 0.59 0.25 �0.16 0.00
BCN 0.91 �0.55 0.20 2.38
XMR 2.14 0.92 0.01 �2.90
RBY �0.53 0.08 �0.04 �1.36
EMC �0.31 �0.73 0.21 2.83
CLAM �0.41 �0.52 0.21 1.16
BLK 0.16 �0.44 0.04 1.90
MONA 1.04 �0.34 0.06 2.11
XEM 2.29 0.05 0.04 1.25
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Table A6
Rank correlations. This table reports the rank correlations of the cryptocurrencies as of the
beginning of the sample (e.g., January 2, 2016) and the end of the sample (e.g., December
28, 2019).

Cryptocurrency Rank as of January 2, 2016 Rank as of December 28, 2019

XRP 2 3
LTC 3 6
ETH 4 2
DASH 5 28
DOGE 6 34
PPC 7 413
BTS 8 105
XLM 9 10
NXT 10 291
MAID 11 130
NMC 12 352
FCT 13 205
BCN 14 92
XMR 15 16
RBY 16 1303
EMC 17 471
CLAM 18 1261
BLK 19 564
MONA 20 93
XEM 21 31

Table A7
Predicted raw returns using Bitcoin in the sample. A set of twenty cryptocurrencies including Bitcoin is employed and sorted at the beginning of each week by
the maximum daily log-return during the last week in an increasing order from lowest to highest daily maximum log-return. The cryptocurrencies are then
allocated to five portfolio groups. The first quintile comprises those cryptocurrencies that have the lowest daily maximum log-return within the last week,
whereas the fifth quintile comprises those cryptocurrencies that exhibit the highest daily maximum log-return over the same period. The zero-cost strategy is
long on the fifth and short on the first quintile. This strategy is updated at the beginning of each week. Trimmed data denotes the spread where 2.50% of each
tail is cut off. The sample period is from January 2016 until December 2019. HAC-robust t-statistics are given in parentheses.

Metric Low (L) Group 2 Group 3 Group 4 High (H) (H-L) (H-L)a

Average return 1.11 1.43 0.62 0.95 �0.26 �1.37** �1.68***

(HAC-robust t-statistic) (�2.27) (�2.70)
Past MAX 3.05 5.07 7.06 9.96 20.90
Past VOLA 1.26 1.60 1.93 2.44 4.36

** Statistical significant on a 5% level.
*** Statistical significant on a 1% level.
a Data are trimmed at 5%.

Table A8
Predicted returns using traditional heteroscedasticity-and-autocorrelation-robust test statistics. This table reports the raw and risk-adjusted MAX payoffs as
reported in tables 1, 3, A.3 and A.4, respectively, using (i) standard t-statistics, (ii) our proposed heteroscedasticity-and-autocorrelation-robust test statistics
using a random block length of h = 20, and heteroscedasticity-and-autocorrelation-robust test statistics as proposed in Newey-West (1987) using three
different lag-lengths l with l ¼ 1;3;5f g. The sample period is from January 2016 until December 2019.

Metric (H-L)a (H-L)b (H-L)c (H-L)d

Point estimate �1.54 �1.75 �1.82 �2.14
Standard t-statistic �1.57 �1.78 �1.75 �2.08
HAC-robust t-statistics using our proposed bootstrapping approach and a random block length ofh ¼ 20 �2.68 �2.70 �2.43 �2.35
HAC-robust t-statistics as proposed in Newey-West (1987) using a lag-length of l = 1 �1.89 �2.14 �1.76 �2.14
HAC-robust t-statistics as proposed in Newey-West (1987) using a lag-length of l = 3 �2.13 �2.47 �1.82 �2.22
HAC-robust t-statistics as proposed in Newey-West (1987) using a lag-length of l = 5 �2.51 �2.77 �2.48 �2.78

a In the first column, (H-L) denotes the spread of the raw returns as reported in Table 1.
b In the second column, (H-L) denotes the spread of the risk-adjusted returns as reported in Table A3.
c In the third column, (H-L) denotes the spread of the raw returns as reported in Table 3.
d In the fourth column, (H-L) denotes the spread of the risk-adjusted returns as reported in Table A4.
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