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Summary 8 

 9 

Consumer diet estimation with biotracer-based mixing models provides valuable information about trophic 10 

interactions and the dynamics of complex ecosystems. Here we assessed the performance of four Bayesian and 11 

three numerical optimisation-based diet estimation methods for estimating the diet composition of herbivorous 12 

zooplankton utilising consumer fatty acid profiles and resource library consisting of the results of homogenous 13 

diet feeding experiments. The method performance was evaluated in terms of absolute errors, central 14 

probability interval checks, the success in identifying the primary resource in the diet, and the ability to detect 15 

the absence of resources in the diet. Despite occasional large inconsistencies, all the methods were able to 16 

identify the primary resource most of the time. The numerical optimisation method QFASA utilising chi-17 

squared (QFASA-CS) or Kullback-Leibler (QFASA-KL) distance measures had the smallest absolute errors, most 18 

frequently found the primary resource, and adequately detected the absence of resources. While the Bayesian 19 

methods usually performed well, some of the methods produced ambiguous results and some had much longer 20 

computing times than QFASA. Therefore, we recommend using QFASA-CS or QFASA-KL. Our systematic tests 21 

showed that FA models can be used to accurately estimate complex dietary mixtures in herbivorous 22 

zooplankton. 23 

 24 

 25 

1 Introduction 26 

 27 

Studying consumer-resource interactions in food webs advances understanding of the flow of energy through 28 

trophic levels and the carbon and nutrient cycles in ecosystems. Assimilable indicators, i.e., biotracers, are 29 

regularly used in diet research [1]. Stable isotopes (SI) have been used to estimate the importance of 30 

autochthonous and allochthonous carbon in aquatic food webs [2-4], but they provide only limited information 31 
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about consumer diets as often the number of resources exceeds the number of used isotopes [5]. Stable isotope 32 

mixing model outputs can also be strongly influenced by poorly constrained assumptions [6]. The number of 33 

fatty acids (FA), however, can easily exceed the number of resources in a diet due to the large number of 34 

different FAs present in living organisms [7,8]. FA profile-based diet estimation (hereafter “FA diet estimation”) 35 

can be conducted using a numerical optimisation-based method Quantitative Fatty Acid Signature Analysis 36 

(QFASA) [7] or Bayesian methods initially developed for SI-based diet estimation and later adapted to FA diet 37 

estimation; Fatty Acid Source Tracing Algorithm for R (FASTAR) [9] and MixSIAR [10]. Compared to SI-based 38 

diet estimation, FA diet estimation can also provide information about the nutritional value of the assimilated 39 

resources [8] which enhances our understanding of consumers’ nutritional ecology. 40 

Diet estimation with FAs is relatively new, and both modelling approaches have been developed lately; 41 

QFASA was published in 2004 and FASTAR in 2014. The 2016 published MixSIAR is claimed to improve on the 42 

error structure of its predecessor FASTAR [11] but the differences are not compared in any FA diet estimation 43 

study we know of. Many different QFASA variants have also been introduced lately in 2014 [12] and 2017 [13] 44 

but their performance has not been simultaneously evaluated in any study. While simulation tests have been 45 

conducted separately on QFASA [14], FASTAR [9] and MixSIAR, although not with FA data [11], performance 46 

synthesis of the established FA diet estimation methods is still lacking. Numerical optimisation methods and 47 

Bayesian methods have been compared only in a recent concise study where QFASA utilising Aitchison’s 48 

(QFASA-AIT) distance measure and FASTAR utilising the MixSIR model were compared using the FA profiles 49 

of two beluga whale individuals [15]. This comparison was, however, neither systematic nor extensive. 50 

Therefore, there is currently not enough evidence on how these different approaches perform comparatively 51 

when challenged in various ways. 52 

When a resource is consumed by a consumer, dietary FAs are assimilated to the tissues of the consumer, 53 

and thus the FA profile of the consumer starts to resemble the FA profiles of its resources in varying degrees 54 

[16]. However, the FAs do not always directly assimilate but are often modified by the consumer metabolism to 55 

some extent [16,17]. Therefore, FA modification must be accounted for in FA diet estimation. Iverson et al. [7] 56 

introduced the concept of ‘calibration coefficients’, a coefficient calculated from empirical data for each FA to 57 

account for the FA modification and until recently it has been the main method of accounting for FA 58 

modification in FA diet estimation. The calibration coefficients attempt to capture the FA modification by 59 

constituting a linear mapping from resource to consumer. It is therefore possible to estimate the diet based only 60 

on the consumer and resource FA profiles. However, it has been shown that optimally with both QFASA and 61 

the Bayesian methods, homogenous diet feeding experiments with the consumers should be carried out when 62 

possible to better consider for the diet specific FA modification in the consumers [8,18]. In such experiments, 63 

the resource FA profiles are not directly observed, but rather the FA profiles of consumers that have consumed 64 

only single resource. Therefore, the FA modification already accounted for in the FA profiles and thus, a source 65 
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of uncertainty can be avoided altogether. Consequently, the resource library data used in this study are the 66 

results of homogenous diet feeding experiments. 67 

Whereas all the diet estimation methods utilise the exact same data, the problems they solve and hence 68 

their estimates are essentially different. Each QFASA variant solves an optimisation problem by minimising a 69 

given distance measure between the observed and predicted consumer FA profiles by finding a point estimate 70 

for the resource proportion vector in the diet that minimises the specified distance measure. In contrast, the 71 

Bayesian methods solve the joint posterior probability distribution, i.e., the conditional probability distribution 72 

of the diet proportions given the observed consumer FA profiles. The posterior probability distribution can be 73 

then used to calculate a desired point estimate to be used for comparison purposes.  74 

All FA diet estimation methods require a resource library containing FA profiles of all the possible 75 

resource types as an input [10,19]. Therefore, for a given consumer, the resource library will likely contain some 76 

resources that are not part of that consumer’s diet. The effects of these absent resources, or the number of 77 

different resources on a diet, have not been well studied before.  78 

To compare the performance of different FA models, it is beneficial to use a consumer with a fast and 79 

conservative FA metabolism so that FA modification is minimal. Hence the differences in diet estimates are due 80 

to the models and not the consumer data. Herbivorous zooplankton are important heterotrophic consumers 81 

linking primary producers and planktivorous fish in aquatic food webs, and a crucial link in the transfer of 82 

essential biomolecules through aquatic food webs [20,21]. Daphnia is an optimal consumer for testing different 83 

FA models since they reproduce parthenogenetically, have rapid FA turnover [22,23] and have limited capacity 84 

to synthesize essential FAs EPA or DHA from ALA [23,24]. Moreover, Daphnia feed primarily on different types 85 

of phytoplankton and bacteria, but may also feed on terrestrial organic matter directly or in microbial-mediated 86 

pathways [3,25,26] resulting in multiple potential resources (>10) in the diet. Furthermore, the role of 87 

allochthonous carbon in the Daphnia diet has been debated [3,27,28], and the role of cyanobacteria as a resource 88 

for zooplankton is of interest as lake occurrence and intensity of cyanobacteria blooming increases in a warming 89 

climate [29-32]. 90 

Here, we assessed the performance of current FA-based diet estimation methods; two versions of 91 

Bayesian FASTAR [9], two versions of Bayesian MixSIAR [10], and three versions of numerical optimisation-92 

based QFASA [7], which was performed with the QFASAR-package [33]. Systematic and extensive simulations 93 

were conducted in R Statistical Software version 3.6.1 [34]. We evaluated the performance of the different 94 

methods using a large testbench consisting of 100 replicas of 25 hypothetical Daphnia diets varying in the 95 

number of resource items and their relative proportions. Each replica consisted of three simulated observations 96 

of the consumer’s FA profile. We measured the performance of the methods in terms of the absolute error 97 

between the true diet and the point estimate, the frequency in which the true diet was within the 68% and 95% 98 

central probability intervals, the methods’ ability to detect the absence of resources in the diet, and the ability to 99 

identify the primary resource in the diet. Computational efficiency was assessed alongside the method 100 
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performance evaluation. The effect of sample size was also explored by conducting simulations with one to five 101 

observations on select hypothetical diets. 102 

 103 

 104 

2 Material and methods 105 

 106 

2.1 Daphnia fatty acid profile resource library 107 

The Daphnia FA profile resource library used in this study was formed from the results of homogenous diet 108 

feeding experiments conducted on Daphnia and presented as relative FA proportions. This means that the 109 

resource FA profiles are not the FA profiles of the resources but instead they are the FA profiles of the consumer 110 

that has eaten only a single resource. The library is based on the one presented by Galloway et al. [8] which 111 

consisted of phytoplankton; cryptomonads (crypto), diatoms (diatom), dinoflagellate (dino), golden algae 112 

(golden) and green algae (green), bacteria; actinobacteria (actino) and cyanobacteria (cyano), and terrestrial 113 

particulate organic matter (t-POM). We expanded the library by adding previously unpublished data points for 114 

existing resource items as well as introduced three completely new resource items, namely, euglenoids 115 

(eugleno), methane oxidising bacteria (MOB), and microbes that had consumed t-POM (t-POMb). 116 

The newly constructed library was further examined for consistency. We found that several resources 117 

showed indications of multimodality consisting of two or more clusters in the FA tracer space, possibly resulting 118 

from the feeding tests being carried out on different resource species. As multimodality in the resource FA 119 

profiles implies a multimodal distribution of consumer FA profiles, which would complicate the comparison of 120 

different methods by introducing untraceable errors in the estimates, we decided to modify the resource library 121 

by keeping only the data points belonging to the primary mode or the cluster with the most data points to create 122 

a more concise resource library of 49 FA profile observations for 11 resource items using 23 FA tracers (library 123 

presented in supplementary: Table S1). Furthermore, a non-metric multidimensional scaling analysis (NMDS) 124 

of Bray-Curtis similarity was conducted to assess the similarity of resource FA profiles as these similarities could 125 

make differentiating between resources harder for the methods (Figure S1). 126 

Some of the FA tracers are a sum of FA proportions specific to certain resources, i.e., diatoms, green 127 

algae, and MOB all have a distinct FA group in the library (Table S1). The group BrFA includes all branched 128 

FAs (iso-14:0, iso-15:0, anteiso-15:0, iso-17:0 and anteiso-17:0); group MOB MUFA includes 16:1ω8, 16:1ω6 and 129 

18:1ω8; group Green PUFA includes 16:3ω3, 16:2ω6, 16:4ω3 and 16:4ω1; and group Diatom PUFA includes 130 

16:3ω4, 16:2ω7 and 16:2ω4. This grouping saves computing time as the number of dimensions is reduced and it 131 

should not affect the diet estimates. 132 

 133 

2.2 Models 134 
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The examined seven methods use mixing models to estimate the diet of a consumer based on observations of 135 

the consumer’s FA profile and a library of observed resource FA profiles. The FA profiles are expressed as 136 

relative proportions of the FAs. Common to these methods is that the models’ predicted or the expectation of 137 

the predicted consumer FA profile vector, 𝒚 = (𝑦1, … , 𝑦𝑀), is assumed to be a weighted average of the FA profiles 138 

of the resources, 𝒙𝑖 = (𝑥𝑖1 , … , 𝑥𝑖𝑀), that the consumer has eaten, where the weights, 𝜋𝑖, are the relative 139 

proportions of the different resources in the consumer’s diet. If we collect the relative proportions to a diet vector 140 

𝝅 = (π1, … , π𝑁), and denote the 𝑁 × 𝑀 matrix of 𝑀 FA tracers in 𝑁 resource items by 𝑋, the consumer FA profile 141 

can be written as 142 

𝒚 = 𝝅𝑋. 143 

Using the resource library and the observed consumer FA profiles, the mixing models estimate the unknown 144 

diet vector, i.e., which resources items and how much of each has the consumer assimilated. 145 

FASTAR implements two Bayesian models for diet estimation; MixSIR [35] and SIAR [36]. In FASTAR, 146 

the observation model for the consumer FA tracer observations, 𝑦𝑘, is a normal distribution where the mean is 147 

a weighted sum of the resource FA tracers, 𝑥𝑖𝑘, which are inferred from the resource library, and the variance 148 

is a weighted sum of the sample variances, 𝜔𝑖𝑘
2 , of the resource FA observations in the resource library, where 149 

the weights are the relative diet proportions squared,  150 

𝑦𝑘 ~ 𝑁(∑ 𝜋𝑖𝑥𝑖𝑘𝑖 , ∑ 𝜋𝑖
2𝜔𝑖𝑘

2
𝑖 ). 151 

In SIAR, an otherwise similar observation model is used except that an unknown tracer-specific residual 152 

error term, 𝜎𝑘
2, is added to the observation model variance term, 153 

𝑦𝑘 ~ 𝑁(∑ 𝜋𝑖𝑥𝑖𝑘𝑖 , ∑ 𝜋𝑖
2𝜔𝑖𝑘

2 + 𝜎𝑘
2

𝑖 ). 154 

The initial MixSIAR article [11] discusses two new models which are compared to two previous SI 155 

models; MixSIR and SIAR, also utilised by FASTAR. The new models ‘Model 2: Consumers as perfect 156 

integrators, but with residual error’ and ‘Model 4: Consumers between perfect specialists and perfect integrators 157 

including multiplicative error’ were developed to improve the error structure in these mixing models as the 158 

previous models were seen to inadequately account for error by the authors. The authors describe the perfect 159 

integrator as a consumer that randomly samples the resource distributions many times, effectively sampling the 160 

resource mean. Perfect specialist is described as a consumer that samples exactly at one location from each 161 

source distribution, thus all variability in consumer FA values result from individual specialisation and 162 

sampling error. The residual error here means that the observed spread in consumer FA values is entirely due 163 

to unexplained deviations from the mean. Multiplicative error here considers the consumption rate of the 164 

resources. As these are descriptions for SI and not FA data, we decided to include both models in our 165 

comparison to assess how well they are suited in FA diet estimation. 166 

In Model 2 (hereafter MixSIAR 1), the observation model for the consumer FA tracer observations, 𝑦𝑘, 167 

is a normal distribution where the mean is the weighted sum of the resource FA tracers, 𝑥𝑖𝑘, which are inferred 168 

from the resource library, and the variance, 𝜎𝑘
2, is an unknown tracer-specific residual error term,  169 
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𝑦𝑘 ~ 𝑁(∑ 𝜋𝑖𝑥𝑖𝑘𝑖 , 𝜎𝑘
2). 170 

In Model 4 (hereafter MixSIAR 2), an otherwise similar observation model is used except that the 171 

variance is a weighted sum of the sample variances, 𝜔𝑖𝑘
2 , of the resource FA observations in the resource library, 172 

where the weights are the relative diet proportions squared, multiplied by an unknown tracer-specific error 173 

term, 𝜀𝑘,  174 

𝑦𝑘 ~ 𝑁(∑ 𝜋𝑖𝑥𝑖𝑘𝑖 , ∑ 𝜋𝑖
2𝜔𝑖𝑘

2 × 𝜀𝑘𝑖 ). 175 

All of the Bayesian models use the symmetric and uninformative ‘flat’ Dirichlet prior distribution for 176 

the diet vector, and the vector of the residual error terms, 𝜎𝑘
2, in SIAR was given a Gamma prior whereas in 177 

MixSIAR 1 a Wishart prior was used, while MixSIAR 2 uses a uniform distribution, 𝑈(0,20), for the 178 

multiplicative error term, 𝜀𝑘. 179 

The output of the Bayesian methods is the joint posterior probability distribution of the unknown diet 180 

vector and the observation model parameters, which is obtained by updating the joint prior probability 181 

distribution with the consumer FA profile observations using Bayes’ rule. The resulting posterior distribution 182 

then reflects the modeller’s beliefs about the unknown variables naturally incorporating the degree of 183 

uncertainty about the unknown variables, which is reflected in the spread of the distributions. 184 

QFASA differs from the Bayesian methods as it does not aim to solve a probability distribution of the 185 

unknown diet vector, but instead uses a numerical nonlinear optimisation algorithm to find a point-estimate 186 

which minimises some objective function, 𝑄, that is used to describe the similarity between the observed FA 187 

profiles, 𝒚, and the predicted FA profile 𝒚̂ = 𝝅𝑋̅, where 𝑋̅ is a matrix consisting of the average FA profiles for 188 

each resource in the library. We focus on three objective functions based on the Aitchison distance measure 189 

(QFASA-AIT), the Chi-squared distance measure (QFASA-CS), and the Kullback-Leibler distance measure 190 

(QFASA-KL). 191 

The Aitchison distance measure [12] yields an objective function 192 

𝑄𝐴𝐼𝑇 = ∑ (∑ (log [
𝑦𝑘,𝑗

𝑔(𝒚𝑘)
] − log [

𝑦̂𝑗

𝑔(𝒚̂)
])

2
 
𝑗 )

2
 
𝑘 , 193 

where 𝑔(∙) denotes the geometrical mean. 194 

The objective function for the Chi-squared distance measure (Stewart et al. 2014) is defined as 195 

𝑄𝐶𝑆 = ∑ ∑
(𝑦𝑘,𝑗−𝑦̂𝑗)

2

𝑐𝑘,𝑗

 
𝑗

 
𝑘 , 196 

where 197 

𝑐𝑘,𝑗 = {
1 if 𝑦𝑘,𝑗 = 𝑦̂𝑗 = 0

𝑦𝑘,𝑗 + 𝑦̂𝑗 otherwise
. 198 

Finally, the objective function based on the Kullback-Leibler distance measure is 199 

𝑄𝐾𝐿 = ∑ (∑ (𝑦𝑘,𝑗 − 𝑦̂
𝑗
)log [

𝑦𝑘,𝑗

𝑦̂𝑗

] 
𝑗 )

2
 
𝑘 . 200 
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To quantify the uncertainty about the point-estimate, QFASAR uses 100 sample bootstrapping to produce a 201 

variance estimate [37]. 202 

In the Bayesian models, the Dirichlet prior distribution forces each diet proportion to the open interval 203 

(0,1), which does not include zero, and thus none of the resource proportions are estimated to the zero. However, 204 

the absence of resource items should be indicated by exceedingly small estimates of diet proportions. The 205 

QFASA variants QFASA-AIT and QFASA-KL have the limitation that none of the predicted FA tracers can be 206 

zero, and additionally in QFASA-AIT none of the observed consumer FA tracers can be zero, as these would 207 

result in division by zero in their respective objective functions.  208 

 209 

2.3 Test bench 210 

As consumer FA profiles for known diet vectors are difficult to obtain, we simulated “hypothetical” consumer 211 

FA profiles for a set of hypothetical diet vectors using a simulation model to test the seven diet estimation 212 

methods. Our simulation model utilises the resource library FA profile observations which are the observed 213 

consumer FA profiles resulting from homogenous diet feeding experiments conducted by feeding the consumer 214 

only one resource item. Thus, the resource library observation 𝒚̃𝑘 for the 𝑘th resource item corresponds to a 215 

known “mono-diet” vector, 𝝅̃𝑘, whose 𝑘th element is one and all the other elements are zero.  216 

We built a Bayesian model for simulating the hypothetical consumer FA profiles utilising the resource 217 

library observations. We assumed that the resource library observations and the consumer FA profile 218 

observations are produced by the same process and inferred the statistical properties of the process using the 219 

resource library. The simulation model is constructed as follows. The expected value, 𝐸(𝒚|𝝅, 𝑋), of an observed 220 

consumer FA profile 𝒚 given a diet vector 𝝅 and the matrix of resource FA tracers 𝑋 is 221 

𝐸(𝒚|𝝅, 𝑋) = 𝝅𝑋. 222 

Since the observed consumer FA profile vector 𝒚 consists of the relative proportions of each FA in the consumer 223 

tissue, and is thus a simplex vector, we used a Dirichlet observation model for the consumer FA profiles, i.e., 224 

𝒚|𝝅, 𝜂, 𝑋 ~ Dirichlet(𝜂𝝅𝑋), 225 

where the natural parameter vector of the Dirichlet distribution is expressed as the product of its expected value 226 

and a concentration parameter, 𝜂, which attempts to capture the variability in the observation process. 227 

The mono-diet observations can be written using this model as 228 

𝒚̃𝑘|𝝅̃𝑘 , 𝜂, 𝑋 ~ Dirichlet(𝜂𝝅̃𝑘𝑋), 229 

and they are conditional on the same unknown concentration parameter 𝜂 and the unknown matrix of resource 230 

FA tracers 𝑋. The pairs of library observations and known mono-diet vectors (𝒚̃𝑘 , 𝝅̃𝑘) can be then used as 231 

calibration data to learn about the unknown model parameters (𝜂, 𝑋) by updating the parameter prior 232 

distributions according to Bayes’ rule. For each row, 𝒙𝑖, in the matrix 𝑋, we used a Dirichlet prior, 233 

𝒙𝑖  ~ Dirichlet(1,1, . . . ,1), 234 

whereas a uniform prior was assigned for the concentration parameter, 235 

𝜂 ~ Uniform(0.0001, 2000). 236 
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After fitting the model to the resource library data, five hypothetical consumer observations were generated for 237 

each of the 25 hypothetical diet vectors by sampling from the posterior predictive distribution of the 238 

hypothetical consumer observation. This procedure was replicated 100 times resulting in a total of 2500 test 239 

cases. A graphical description of the simulation model is presented in Figure 1. All the hypothetical consumers 240 

include one to eight absent resources and in most of the hypothetical diets the number of absent resources is 241 

greater than the number of present resources. The hypothetical diet vectors are shown in Table S2. 242 

The simulation model parameter inference was conducted using Hamiltonian Monte Carlo sampling 243 

with probabilistic programming language Stan version 2.9.0 [38,39]. We used a warmup period of 1000 samples 244 

after which the next 1000 samples were recorded. The Stan code for calibrating the simulation model is 245 

presented in the supplementary materials. 246 

 247 

2.4 Evaluating method performance 248 

The evaluations for all 25 hypothetical diets were conducted using three observations since often little FA 249 

consumer data is available due to time and cost constraints. The metrics were calculated for all cases, and 250 

additionally grouped by hypothetical diets to assess potential challenges created by different combination of 251 

resources and the effect of number of different resources in the diet, or by resources to assess Daphnia specific 252 

challenges to the methods. The effect of sample size was then separately assessed on four hypothetical diets 253 

selected based on the three-observation performance with the number of observations ranging from one to five. 254 

Notably, however, MixSIAR does not allow running MixSIAR 1 or 2 with only one observation and thus one-255 

observation performance on MixSIAR could not be assessed. 256 

We calculated absolute errors, i.e., the distances of the point estimates from the true diet proportions, for 257 

each case where in the case of the Bayesian methods (i.e., FASTAR and MixSIAR) the median of the marginal 258 

posterior distribution was used as the equivalent for the QFASA point estimate. The absolute errors were 259 

calculated separately for resource proportions resource proportions with only present resources and with only 260 

absent resources. 261 

As the proper accounting for the uncertainty in the estimates is a desirable feature of the models, we 262 

calculated the 68% and 95% central probability intervals (CPI) for each present resource proportion and for each 263 

model fit to determine how often the true diet proportions were inside these intervals. For the Bayesian models 264 

the 𝑝-CPIs were calculated from the MCMC posterior samples such that the lower and upper endpoints of the 265 

intervals correspond with the 𝑝/2 and (1 − 𝑝/2)-quantiles of the MCMC samples, respectively. The CPIs for 266 

QFASA were calculated using the quantile function (i.e., the inverse of the cumulative distribution function) of 267 

a [0,1]-truncated normal distribution where the mean was the QFASA point estimate and the standard deviation 268 

was the square root of the reported variance in the covariance matrix produced by QFASAR as the 269 

bootstrapping samples of QFASAR cannot be accessed due to its implementation. 270 
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We examined the methods’ ability to detect the absence of resources in the diet. As discussed earlier, in the 271 

Bayesian models none of the diet proportions can be zero, and thus the absence of resources should be indicated 272 

by exceedingly small estimates of diet proportions. Thus, we developed a heuristic rule for detecting absent 273 

resources using the posterior marginal distributions of the Bayesian models and the constructed [0,1]-truncated 274 

normal distribution for QFASA. We calculated the probability of the estimate being smaller than 0.02 and if this 275 

probability was higher than 50%, we decided that the method had identified an absent resource, i.e., we checked 276 

if 𝑃(𝜋𝑖 < 0.02) > 0.50. We then applied this heuristic rule for each absent resource in all the test cases. The zero 277 

heuristic was also tested on resources that were present to assess whether the heuristic would falsely identify 278 

present resources as absent. 279 

Finding the primary resource in consumer diet is a desirable feature for a diet estimation method. 280 

Therefore, we examined whether the methods could find the primary resource of the diet by checking if the 281 

primary resource in the hypothetical diet was indeed the resource with the highest estimated proportion in the 282 

diet. This examination was done only on hypothetical diets which had a distinct primary resource, therefore 283 

excluding hypothetical diets H13-H16 and H19-H20 from this examination. 284 

 285 

 286 

3 Results 287 

 288 

QFASA-CS and QFASA-KL had the smallest mean absolute errors in present resource cases and absent resource 289 

cases (Table 1). The frequency of errors larger than 0.1 was considerably higher on QFASA-AIT than other 290 

methods (Figure 2). QFASA-CS and QFASA-KL were followed by FASTAR and MixSIAR methods, with 291 

QFASA-AIT having the largest absolute error (Table 1). SIAR and MixSIAR 1 always had mean absolute errors 292 

with absent resources above 0.005 (Figure 2). While most of the log-gradient for absolute error of absent 293 

resources for MixSIR were near zero, the mean was not as mean is highly sensitive to outliers (Figure 2). Finding 294 

the true diet proportion inside the 68% CPI and 95% CPI was most frequent in SIAR (Table 1). For 68% CPI 295 

MixSIR, MixSIAR 1, QFASA-CS and QFASA-KL the frequencies were close to SIAR while MixSIAR 2 and 296 

QFASA-AIT had smaller frequencies (Table 1). For 95% MixSIAR 1 was closest to SIAR while MixSIR, MixSIAR 297 

2, QFASA-CS and QFASA-KL were less frequent, and QFASA-AIT was the least frequent (Table 1). MixSIR 298 

detected most absent resources (86.3% of cases) but notably it also detected many present resources as absent 299 

(40.5% of cases) (Table 1). QFASA-CS, QFASA-KL and MixSIAR 2 detected absent resources well, while SIAR, 300 

MixSIAR 1 and QFASA-AIT had problems with the absent resource detection (Table 1, Figure 2). Only MixSIR 301 

considerably falsely detected present resources as absent although QFASA-AIT had some problems as well, 302 

while SIAR and MixSIAR 2 had the least false negatives (Table 1). Notably, however, MixSIR and QFASA-AIT 303 

had cases where they detected the primary resource as absent. 304 
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Examination of the individual hypothetical diets revealed that while the absolute errors generally 305 

stayed below 0.2, MixSIR and QFASA-AIT produced some high errors of over 0.5 on some hypothetical diets 306 

and resources (Figures S2). Absolute errors for absent resources were generally below 0.1 but for some 307 

hypothetical diets and resources the error was higher than 0.2 especially for MixSIR and QFASA-AIT (Figures 308 

S3). Finding the true diet proportion inside the 68% CPI was especially problematic with hypothetical diets H17-309 

H18 and H21-H25 for all methods (Figure S4), and the same effect could be observed for 95% CPI as well (Figure 310 

S5). H19 was the most troublesome hypothetical for detecting absent resources from the diet as only MixSIR 311 

reached over 0.15 detection rate (Figure S6). Hypothetical diets H23 and H24 resulted in the highest number of 312 

falsely detected absent resources (Figure S7). 313 

Absolute errors for different resources were mostly below 0.1 for all methods except MixSIR and 314 

QFASA-AIT (Figure S8). However, the errors on euglenoids were over 0.2 on all Bayesian methods and QFASA-315 

AIT (Figure S8). Notably some resources such as diatoms, green algae and MOB were estimated in QFASA 316 

extremely close to zero when absent in the diet (Figure S9). Again, estimating euglenoids was the most 317 

problematic for the methods as they were not frequently in the 68% CPI or even in the 95% CPI for all but 318 

MixSIR, QFASA-CS and QFASA-KL (Figures S10 and S11). Compared to other methods, MixSIR had frequent 319 

problems with actinobacteria, dinoflagellates and golden algae, whereas QFASA-AIT had problems with 320 

diatoms, MOB and tPOM in both CPI ranges (Figures S10 and S11). Cyanobacteria and dinoflagellates were the 321 

most problematic resources for the methods to detect as absent in general (Figure S12). The least amount of false 322 

detections was with diatoms, euglenoids, green algae and MOB’s in general, while cyanobacteria, tPOM and 323 

tPOMb resulted in the highest number of false detections (Figure S13). Furthermore, the 70% similarities found 324 

in the NMDS analysis between actinobacteria and euglenoids, and cryptomonads and golden algae (Figure S1), 325 

did not result in observable problems for the methods. 326 

Four hypothetical diets were selected to assess the effect of the number of observations on the diet 327 

estimates. H2 was one of the easiest for the methods, whereas H17, H19 and H23 were problematic. The absolute 328 

errors of diet estimates decreased as the number of observations increased in all cases except MixSIAR 1 in H19 329 

(Figure 3). However, the decrease in the absolute error was notable only up to three observations after which 330 

the error seemed to level off. 331 

 332 

 333 

4 Discussion 334 

 335 

We tested seven different FA diet estimation methods systematically and extensively and assessed their 336 

performance by several criteria. Our results demonstrate that FA diet estimation is a powerful tool for 337 

determining the diets of herbivorous zooplankton including 11 different resources. Moreover, it seems that 338 

recent developments in diet estimation methods have improved their accuracy of diet estimation. In our 339 
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systematic testing, QFASAR utilising QFASA-CS or QFASA-KL estimated most accurately the contribution of 340 

different phytoplankton, bacteria, and terrestrial organic matter in herbivorous zooplankton, showing that a 341 

modern numerical optimisation method can unravel dietary components from a complex group of possible 342 

resources. While QFASA-CS and QFASA-KL had mean absolute errors of ~0.056, the Bayesian methods SIAR, 343 

MixSIAR 1 and MixSIAR 2 did not fall far behind (mean absolute error ~0.080). QFASAR utilising QFASA-AIT 344 

and FASTAR utilising MixSIR, however, had problems in the estimates as seen in higher mean absolute errors 345 

(>0.113). Furthermore, QFASA-AIT estimated the primary resource falsely in almost 60% of the cases, MixSIR 346 

falsely estimated present resources as being absent in over 40% of the cases, and both of these methods had 347 

several cases where the primary resource was estimated as being absent. In a prior study [40], QFASA-AIT 348 

performed better than QFASA-KL, whereas Stewart [13] recommended the use of QFASA-CS but did not 349 

compare it to either QFASA-KL or QFASA-AIT. The reason for the inferior performance of QFASA-AIT with 350 

our dataset, however, could not be identified. Our tests with our Daphnia library suggest that FA diet estimates 351 

are most accurate on QFASAR utilising QFASA-CS or QFASA-KL. Therefore, we recommend using these 352 

methods in the estimation of different phytoplankton, bacteria, and terrestrial organic matter in Daphnia diet. 353 

Hypothetical diets with the only three present resources (H17-H18 and H21-H25) were the most 354 

problematic diets for the methods to estimate. In general, the smaller the number of present resources, the 355 

greater the absolute errors were. However, the only hypothetical diet (H19) with one absent resource was 356 

distinctly troublesome for the models to distinguish the absent resource as only MixSIR could adequately 357 

identify the absence of that resource, although notably it also estimated 50% of the present diet items as absent. 358 

Six of the hypothetical diets that did not have a primary resource (H13-H16 and H19-H20) represent generalists, 359 

whereas the other hypothetical diets represent specialists. The absolute errors were smallest with evenly 360 

distributed hypothetical generalist diets (H19-H20) which also had the least absent resources (one and three 361 

respectively). This could support the conclusions of prior studies [18,41] that more evenly distributed diet 362 

proportions of a generalist diet are easier for the methods to estimate. However, with the Bayesian methods this 363 

might be explained by the prior distribution whose expected value is equal diet proportions. Furthermore, the 364 

absolute errors for hypothetical diets with four 0.25 resource proportions (H13-H16) were among the highest. 365 

Therefore, the concept of generalist diets being easier for the methods to estimate is questionable. Our tests 366 

suggest that smaller absolute errors are mainly tied to smaller number of absent resources in the diet with all 367 

estimation methods. 368 

In the context of intriguing questions specific to zooplankton diets, QFASA (QFASA-CS and QFASA-369 

KL) and Bayesian methods (both of the MixSIAR methods, and SIAR) accurately estimated the proportions of 370 

allochthonous resources in herbivorous zooplankton diet (H12) and were able to tell whether terrestrial 371 

resources were consumed directly or via microbial loop pathway (H11). Therefore, our updated resource library 372 

could be used to estimate the importance of allochthonous carbon for herbivorous Daphnia in different lakes 373 

and seasons. Moreover, these methods accurately also estimated the utilisation of cyanobacteria (H9), and thus 374 
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FA diet estimation can accurately show if Daphnia have consumed (assimilated) cyanobacteria or not. Any of 375 

the tested FA diet estimation methods were not able to accurately estimate the contribution of Euglenoids in 376 

Daphnia diet, however, they were present in only one hypothetical diet (H6) as they are only common in 377 

eutrophic lakes and do not well support growth of Daphnia [20]. Having only one hypothetical diet include the 378 

resource is the most probable cause for the higher absolute errors and lower results in CPI checks. These results 379 

encourage the use of FA in diet estimation for Daphnia as all possible resources can be detected if they are a 380 

substantial part of the diet. 381 

According to our simulations, the absolute errors decreased as the number of observations increased. 382 

However, the absolute error levelled off after three observations suggesting that no further improvements could 383 

be obtained with the inclusion of more observations. This is an interesting result as it confirmed our a priori 384 

belief that three observations would be reasonable for the tests, and it might also discourage researchers from 385 

conducting unnecessary expensive and time-consuming extra measurements. If empirical data can be assumed 386 

to resemble our simulated data, it is likely that adding more than three observations will result in diminishing 387 

returns also on empirical consumer data. Therefore, we recommend using at least three replicates for fatty acid 388 

estimations. 389 

The implementation of FASTAR described in the initial article [9] treated each consumer FA observation 390 

separately and the resulting posterior MCMC samples were then concatenated across individuals. According to 391 

[9] the intention was to treat each consumer as a fixed effect, each having their own diet. Fitting the model 392 

separately for each consumer achieves that and provides correct posterior distribution for each consumer. When 393 

concatenating these posterior samples, the resulting aggregate represents the population level estimates 394 

(assuming the sampled consumers represent diets for unsampled individuals, and that the diets among 395 

unsampled individuals occur in proportion to those in the samples). Such a distribution does not represent any 396 

of the analysed consumers, but the population aggregate across individuals. These assumptions are a possible 397 

explanation for the poor results of MixSIR. Consequently, some MixSIR diet estimate distributions were bimodal 398 

or trimodal; in these cases, the calculated point estimates potentially represent none of the modes. While SIAR 399 

was the best performing method in both 68% and 95% CPI checks, it too, fits the model separately to each 400 

observation and sums up the resulting posterior densities instead of using all the observations at once. However, 401 

multimodality was not observed in SIAR diet estimates, most likely because there was more overlap in its single 402 

observation posterior densities due to larger uncertainty in its estimates. For analyses involving multiple 403 

individuals, we caution that if studies make assumptions different from those in FASTAR [9], they consider 404 

alternative methods. 405 

The viability of a zero heuristic to detect absent resources of the model outputs is debateable. SIAR and 406 

MixSIAR 1 produce wider posterior probability distributions than the other Bayesian methods, and thus their 407 

zero-heuristic results are inferior to other methods as their medians rarely reach less than 0.02. Generally, the 408 

less false identifications there are, the less true absent detections there are. Choosing a different value as the 409 
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limit would not therefore make much difference. Consequently, we do not believe a reliable heuristic to detect 410 

absent resources could be created for current methods. Therefore, the uncertainty with low estimates is a 411 

problem that scientists have to be aware of in the current methods. 412 

The recent study by Choy et al. [15] compared QFASAR utilising QFASA-AIT to FASTAR utilising 413 

MixSIR on beluga whale data and concluded that QFASAR were more accurate diet estimation method than 414 

MixSIR. Our results show that all tested methods except QFASA-AIT and MixSIR can estimate well enough 415 

herbivorous zooplankton diets, where QFASAR with QFASA-CS or QFASA-KL gave the most reliable diet 416 

estimates. There are several possible reasons for the differing results as the tested species was a consumer with 417 

a high trophic level, contrary to our first-degree heterotrophs, and only one observation was used instead of the 418 

three observations we recommend. Furthermore, calibration coefficients – instead of homogenous diet feeding 419 

experiments – were used to account for FA modification in QFASAR and incorporated into FASTAR library, 420 

unlike in our work. We, however, recognise that homogenous diet feeding experiments are not feasible for all 421 

consumers and thus calibration coefficients [7] or other methods of accounting for FA modification in the 422 

consumer may be required. Regardless, the diet estimation methods should be tested prior the implementation 423 

to field data. 424 

Creating a well working resource library is difficult, since large variance and multimodality can 425 

interfere with adequate differentiation between different resources. Large variance generally makes the 426 

estimates less accurate, but this should not be a problem for modern FA diet estimation methods [42]. While 427 

multimodality itself is not a problem, all current diet estimation methods assume unimodality, hence the 428 

removal of multimodality from our FA library. The Bayesian methods utilise the mean and standard deviation 429 

of each resource. Therefore, the possible multimodality or skewness can cause the expected value to be not 430 

representative of the data. Moreover, QFASAR utilises only the mean of each resource, resulting in loss of 431 

observed variation in the FA data. Therefore, we urge scientists to check for multimodality before conducting 432 

studies. Furthermore, means for assessing the library variances and multimodality should be created, in future 433 

modelling tools. A diet estimation method more in line with the simulation model presented in this study – here 434 

utilised in creating the hypothetical consumer vectors – should be considered as the basis for the next generation 435 

FA diet estimation methods, as the uncertainty would be fully incorporated into the model. 436 

A feature of Bayesian modelling separating it from QFASA is the possibility to use prior information. 437 

This information can be incorporated in the form of informative prior distributions for the model parameters, 438 

which could have improved the performance of MixSIAR. Here we did not test informative priors as QFASA 439 

cannot utilise such information and FASTAR does not have a readily available implementation for informative 440 

priors. For herbivorous zooplankton the usefulness of adding prior information to the model has, however, 441 

already been demonstrated [8]. If prior information is available, we recommend using MixSIAR methods for 442 

diet estimation. 443 
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Lengthy computing times have been a challenge with Bayesian mixing models [41]. In our simulations 444 

the FASTAR and QFASAR methods computed a single test case with three observations on average in less than 445 

a minute, while MixSIAR 1 computation run lasted over an hour and MixSIAR 2 over four hours on a modern 446 

desktop computer. In this light, the recent advance in Bayesian modelling is questionable, tens or hundreds of 447 

times longer but with minimal improvement in estimate accuracy compared to both FASTAR and QFASA. 448 

However, Hamiltonian Monte Carlo, which is implemented in the probabilistic programming language Stan 449 

[38,39], and which we used in the generation of the simulation data for this article, should be explored in the 450 

future as a solution to the long computation time [43]. 451 

Based on our results, using at least three observations, and choosing either QFASA-CS or QFASA-KL 452 

produce the most accurate results. For the Bayesian methods recommending one method is not straightforward. 453 

While SIAR produced satisfactory estimates, the assumptions of FASTAR were not suitable for our case, and 454 

neither of the MixSIAR methods performed as well as QFASA-CS or QFASA-KL. The best Bayesian method for 455 

finding absent resources was MixSIAR 2 whereas otherwise SIAR was the most reliable. According to our 456 

experiments, MixSIR should not be used in any case when more than one observation is available as MixSIAR 457 

requires at least two observations. Adding more than three observations did not considerably improve the 458 

results with our data. Detecting absent resources is not reliable with current methods, and this is an uncertainty 459 

that must be accepted.  460 

To summarise on the differences between the two approaches, QFASA is computationally fast and gives 461 

reliable estimates on our data, but there is no way to incorporate priors, uncertainty is not modelled, and the 462 

diet estimates are point estimates. Contrarily, the Bayesian framework offers the possibility to utilise prior 463 

information and to explicitly account for all possible sources of uncertainty, which are incorporated in the 464 

posterior probability distribution. However, especially MixSIAR is comparatively very slow to compute and 465 

adding complexity only increases computational requirements. At the time, the current Bayesian methods can 466 

be recommended only when prior information is available, which means that users should explore MixSIAR. 467 

Our systematic testing showed that the established FA diet estimation methods should be tested prior to use to 468 

understand the limitations and uncertainties of these methods. We conclude that QFASAR utilising QFASA-CS 469 

or QFASA-KL can accurately unravel complex dietary mixtures in herbivorous zooplankton and can be used to 470 

estimate the contribution of different phytoplankton, bacteria, and terrestrial organic matter in herbivorous 471 

cladoceran diet. There is, however, several means by which the modeling frameworks can be advanced. 472 
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Figures and tables 579 

Figure 1 580 

 581 

Figure 1. Graphical representation of the model used for creating the hypothetical consumer FA profiles. Here 582 

X is the unknown matrix of resource FA tracers, 𝑦̃𝑗𝑘 is the kth observation vector in the jth resource mono-diet 583 

feeding test in the resource library, 𝝅̃𝑗 is the jth mono-diet vector, π is the hypothetical diet vector input, y is 584 

the hypothetical FA profile from which we generated our test data by drawing three random samples, and η is 585 

the unknown parameter controlling the variability in the observation process. The grey circle represents the 586 

observed nodes, the quadrangles represent known and input nodes, and the white circles represent unknown 587 

parameters which are inferred using the resource library data. 588 

  589 
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Figure 2 590 

 591 

Figure 2. The summary of results for each method presented as a log density gradient for the absolute error 592 

for present resource items (panel a) and absent resource items (panel b) with red vertical lines indicating the 593 

mean. The log density gradients illustrate the distribution of the absolute errors where darker areas indicating 594 

higher frequency of errors (N = 11500 and N = 16000, for present and absent resource cases, respectively). The 595 

frequency of finding the true present resource proportion in the 68% and 95% CPI (panels c and d), the 596 

frequency of identifying the absence of a resource (panel e), and the frequency of falsely identifying a resource 597 

as absent when the resource was present (panel f), for all relevant resources are represented as bars. The 598 

circles represent the averages for each 11 resources for all hypothetical diets and the rhombi represent the 599 

averages for each 25 hypothetical consumers for all resources. 600 

  601 
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Table 1 602 

Table 1. The averages and 0.95-quantiles (in parentheses) of absolute errors for present resource cases and 603 

absent resource cases, frequencies of the true present diet proportion being inside 68% and 95% CPI, the 604 

frequency of identifying the absence of resources over absent resource cases (true absent) and present resource 605 

cases (false absent), and the frequency of detecting the primary resource for each method. The best performing 606 

method for each criterion is bolded and underlined, while other well performing methods are only bolded. 607 

Framework Method 

Absolute error CPI Zero heuristic  

Present 

cases 

Absent 

cases 68% 95% 

Absent 

detected 

False 

absent 

detected 

Primary 

resource 

FASTAR 

SIAR 
0.085 

(0.282) 

0.031 

(0.069) 
0.632 0.906 0.334 0.006 0.976 

MixSIR 
0.113 

(0.283) 

0.022 

(0.141) 
0.507 0.661 0.863 0.405 0.809 

MixSIAR 

Model 1 
0.080 

(0.241) 

0.036 

(0.076) 
0.509 0.852 0.164 0.007 0.981 

Model 2 
0.075 

(0.211) 

0.027 

(0.104) 
0.400 0.715 0.611 0.069 0.972 

QFASAR 

QFASA-

AIT 

0.138 

(0.504) 

0.059 

(0.236) 
0.333 0.545 0.439 0.105 0.407 

QFASA-

CS 

0.056 

(0.141) 

0.018 

(0.087) 
0.486 0.733 0.692 0.064 0.996 

QFASA-

KL 

0.055 

(0.139) 

0.020 

(0.084) 
0.482 0.730 0.642 0.059 0.995 
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Figure 3 610 

 611 

Figure 3. The effect of the number of observations on absolute error for present resources for hypothetical diets 612 

H2, H17, H19 and H23. The tests were not conducted on MixSIAR with one observation since the software does 613 

not allow it. 614 


