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Abstract 

1. Sulfonation is an important high affinity elimination pathway for phenolic compounds. 

2. In this study sulfonation of 7-hydroxycoumarin and 13 its derivatives were evaluated 

in liver cytosols of human and six animal species. 7-hydroxycoumarin and its 

derivatives are strongly fluorescent, and their sulfate conjugates are nonfluorescent at 

excitation 405 nm and emission 460 nm. A convenient fluorescence based kinetic assay 

of sulfonation was established. 

3. The sulfonation rate of most of the 7-hydroxycoumarin derivatives was low in liver 

cytosol of human and pig, whereas it was high with most compounds in dog and 

intermediate in rat, mouse, rabbit, and sheep. Sulfonation of the 7-hydroxycoumarin 

derivatives followed Michaelis-Menten kinetics with Km values of 0.1 - 12 µM, Vmax 

of 0.005–1.7 µmol/(min * g protein) and intrinsic clearance (Vmax/Km) of 0.004–1.9 

L/(min * g cytosolic protein).  

4. Fluorescence based measurement of sulfonation of 7-hydroxycoumarin derivatives 

provides a sensitive and convenient high-throughput assay to determine sulfonation rate 

in different species and tissues and can be applied to evaluate sulfonation kinetics and 

inhibition. 
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Introduction 

Metabolism of foreign substances in a living organism is essential to avoid their adverse health 

effects. The substances are transformed in xenobiotic metabolizing reactions of oxidation, 

reduction, hydrolysis or conjugation, most often to more water soluble and excretable 

metabolites, but sometimes to reactive toxic metabolites. In conjugation reactions a small 

endogenous molecule is transferred to a functional group of xenobiotic, which is already 

present or is created by enzyme catalyzed oxidation, reduction or hydrolysis reactions. 

Conjugation reactions are eminently important in biotransformation, because they usually 

inactivate xenobiotics or render reactive metabolites less harmful [Gonzalez et al., 2018, 

Parkinson et al., 2019].   

Sulfonation takes place for phenols, alcohols or primary or secondary amines, whose sulfate 

conjugates are negatively charged and more water-soluble sulfates or sulfamates. These 

metabolites are excreted efficiently mostly to urine or sometimes to bile by anionic 

transporters. Usually coordination of sulfonation to overall metabolism of foreign substances 

is protecting the body against adverse health effects, but sulfates of hydroxylated amines such 

as heterocyclic amines can form reactive metabolites with deleterious effects [James & 

Ambadapadi, 2013, Tibbs et al., 2015]. 

Cytosolic sulfotransferases (E.C. 2.8.2.) in liver catalyze sulfonation of xenobiotics and 

endogenous substances such as steroids, bile acids, monoamine neurotransmitters and thyroid 

hormones by transferring the sulfonate group from the cofactor 3’-phosphoadenylyl sulfate 

(PAPS). The same compounds may also be glucuronidated by UDP-glucuronosyltransferases. 

Usually, conjugation of alcohols, phenols and amines by sulfotransferases occurs efficiently at 

lower concentrations than the corresponding glucuronidation reactions, which are localized in 

the endoplasmic reticulum and possesses higher conjugation capacity than sulfonation. The 

function of these two conjugation enzymes is complementary and makes the transformation of 

alcohols, phenols and amines to excretable conjugates very efficient [Rowland et al., 2013, 

Suiko et al.,2017, Tibbs et al., 2015].  

The rate of sulfonation can be measured by assays based on radiometric, absorbance, 

fluorescence and HPLC-MS detection. In radiometric assay the sulfur atom of transferred 

sulfone is labeled with 35S, which can be measured precisely and at high sensitivity from the 

isolated metabolite in an endpoint experimental setup [Paul et al., 2012]. The absorbance and 

fluorescence assays are based on indirect measurement of sulfonation in which the actual 



substrates and p-nitrophenol sulfate or 4-methyl-7-hydroxycoumarin sulfate are tightly coupled 

to the regeneration of PAP to PAPS by aryl sulfotransferase IV enzyme. In this coupling 

reaction sulfates are transformed to absorbing p-nitrophenol or fluorescent 4-methyl-7-

hydroxycoumarin. The increase in absorbance or fluorescence can be measured by continuous 

or endpoint assays; measurement of fluorescence is more sensitive than of absorbance [Chen 

et al., 2005, Lu et al., 2010].  The decrease of fluorescence of 7-hydroxycoumarin or resorufin 

during sulfonation has also been measured directly. In HPLC-MS assays substrates and the 

formed metabolites are separated by HPLC and then detected and analyzed by different kinds 

of MS approaches [Paul et al., 2012]. 

We have previously published a simple and convenient method to measure glucuronidation of 

7-hydroxycoumarin derivatives in a multiwell plate format [Rahikainen et al., 2013, Juvonen 

et al., 2018]. We report here several new 7-hydroxycoumarin derivatives to measure 

sulfonation. These substrates are fluorescent in their parent form and are transformed to 

nonfluorescent sulfate conjugates by sulfotransferases (Figure 1). The primary aim of this study 

was to establish fluorescence based assay for sulfonation of the 7-hydroxycoumarin derivatives 

(Figure 2). The assay was applied to evaluate sulfonation kinetics and compare sulfonation 

characteristics in liver cytosol of human, rat, mouse, rabbit, dog, pig and sheep. 

Figure 1. 

Figure 2. 

Materials and methods 

Chemicals. PAPS, 7-hydroxycoumarin (umbelliferone) (99%), 7-hydroxy-4-

trifluoromethylcoumarin (HFC) (99%) were from Sigma-Aldrich (Mannheim, Germany). 

MgCl2 were from Riedel-de Haen (Vantaa, Finland). Water was deionized by MilliQ gradient 

A10. The 7-hydroxycoumarin derivatives (6-methoxy-7-hydroxycoumarin (scopoletin) (3), 

3,4-dimethyl-7-hydroxycoumarin (4), 3-ethyl-4-methyl-7-hydroxycoumarin (5), 3-ethyl-4,8-

dimethyl-7-hydroxycoumarin (6), 3,4,8–trimethyl-7-hydroxycoumarin (7), 3-(4-

methylphenyl)-7-hydroxycoumarin (8), 3-(4-hydroxyphenyl)-7-hydroxycoumarin (9), 3-(4-

fluorophenyl)-7-hydroxycoumarin (10), 3-(4-methoxyphenyl)-7-hydroxycoumarin (11), 12 3-

(4-dimethylaminophenyl)-7-hydroxycoumarin (12), 3-(4-pyridin-3-yl)-7-hydroxycoumarin 

(13), 3-(1H-1, 2, 4-tirazol-1-yl)-7-hydroxycoumarin (14) were synthesized using either the 

Perkin-Oglialor condensation reaction of von Pechmann condensation reaction described in 

detail earlier  [Timonen et al., 2011, Juvonen et al., 2018b].  



Biological samples. The male human liver tissue used in this study was obtained from the Oulu 

University Hospital (Oulu, Finland) as surplus from organ transplantation surgery. The 

collection of the surplus tissue was approved by the Ethics Committee of the Medical Faculty 

of the University of Oulu (January 21, 1986). After surgical excision, the liver samples were 

immediately transferred to ice, cut into pieces, snap frozen in liquid nitrogen and stored at -

80°C until cytosol was prepared. Pig liver samples were from eight month old female pigs used 

for practicing surgical procedures at the Kuopio University. DBA/2N/Kuo mice (20–25 g) and 

male Wistar rats (200–300 g) were obtained from the National Laboratory Animal Centre, 

Kuopio University. Mice were given intraperitoneally 0.1 mL 0.9 % saline or 0.1 mL olive 

oil/10 g/day for four days, pyrazole (Sigma, 95 % purity) in saline (150 mg/kg) or pregnenolone 

16α-carbonitrile (PCN, Sigma, 95 % purity) (5 mg/kg) in oil for four days, or 80 mg/kg 

phenobarbital intraperitoneally in the first morning and then 40 mg/kg on four consecutive 

mornings. The mice and rats had unrestricted access to water and standard chow Lactamin R36 

(Lactamin). The Ethics Committee for Animal Experiments, University of Kuopio, approved 

these experiments (01-38, June 1, 2000). Animals were killed 24 h after the last treatment.  

male and female Beagle dog necropsy was performed at F. Hoffmann-La Roche Ltd (Nutley, 

NJ) according to institutional guidelines in compliance with national and regional legislation 

[Heikkinen et al., 2015]. Female Dutch belted rabbits were 4 – 11 months and weighted 2.7 – 

3.8 kg (Licence number: ESAVI/8621/04.10.07/2017). The rabbits were sacrificed by injecting 

a lethal dose of pentobarbital (Mebunat vet 60 mg/ml, Orion Pharma, Finland; 2 ml/kg) into 

the marginal ear-vein and the liver samples were immediately transferred to ice, cut into pieces, 

and stored at -80°C until cytosol was prepared. Adult female sheep liver samples were obtained 

from Oulu University (Oulu, Finland) and the collection of the liver specimen was approved 

by the Ethics committee of the University (No ESAVI/3510/04.10.03/2011). 

Detailed description of the preparation of liver cytosol samples are described previously 

[Heikkinen et al., 2015]. 

Sulfonation assay. Reaction mixtures for sulfonation assays contained 100 mM potassium 

phosphate buffer pH 7.4, 2.5 mM MgCl2, 10 µM PAPS,  0.05–0.3 g/L cytosol as enzyme source 

and 10 µM 7-hydroxycoumarin derivative as substrate. In the first experiments three negative 

control mixtures were tested, namely i) without the substrate, ii) without the cofactor PAPS, or 

iii) without the enzyme source. In subsequent experiments, the control samples lacked the 

enzyme source since it gave the highest fluorescence background. Incubations were carried out 

in a 96 multiwell plate format in 100 µl volume at 37°C. Fluorescence decline of the substrates 



was monitored every other minute for 40 min after addition of PAPS, using an excitation filter 

at 405 nm and detection at 460 nm, in a Victor2 1420 Multilabel counter (PerkinElmer, Life 

Sciences, Turku, Finland). Fluorescence values were transformed to molarity using the 

substrates to create standard curves at every time point. Slopes of the decrease in substrate 

concentration per minute were calculated using linear regression analysis, in which the slope 

of the linear part of the kinetic assay indicated the sulfonation rate (µM/min). Sulfonation rate 

was calculated by subtracting the blank value from the full reaction value and then normalizing 

the sulfonation rate by the protein concentration.  

Enzyme kinetic analyses were performed in the same 96 multiwell plate assays, with excitation 

at 405 nm and detection at 460 nm, using different substrate concentrations (0–10 µM). The 

reactions proceeded linearly for at least 15 min even at the lowest substrate concentrations. The 

data was analyzed by the Michaelis-Menten equation v = S * Vmax /(Km + S), in which v is the 

reaction rate at substrate concentration (S), Vmax is limiting rate of the reaction and Km is the 

Michaelis constant equal to the substrate concentration, at which the reaction rate is 50 % of 

Vmax. 

For multivariate analysis, we did principal component analysis (PCA) using SIMCA 15.0.2 

(Umetrics). For analysis of 7-hydroxycoumarin derivatives sulfonation by cytosols of different 

species, we first normalized the values within samples from the sulfonation of the same 

substrate, so that all values were divided by the highest value (normalized value = value / max 

value), due to large variation in sulfonation rate between samples from different species.  

Results 

First, the fluorescence intensity of 7-hydroxycoumarin was measured in cytosols of rabbit liver 

in the presence of all necessary reagents for sulfonation. Negative control samples lacked 

cytosol or the cofactor PAPS. Fluorescence decreased in rabbit liver cytosol when all the 

reagents were present, whereas no decrease occurred in the negative control samples, indicating 

that the fluorescent 7-hydroxycoumarin was transformed to nonfluorescent sulfate conjugates 

(Figures 3A and B). Similar decrease in fluorescence occurred for all the 7-hydroxycoumarin 

derivatives in liver cytosols of different species (data not shown). The decrease in fluorescence 

was dependent on the amount and cytosol of species used (data not shown). The solvents 

methanol, ethanol, acetonitrile and dimethylsulfoxide at concentration of up to 10 % (v/v) did 

not affect the sulfonation rate (Figure 3C). Fluorescence of the 7-hydroxycoumarins standards 

was changed in a buffer dependent fashion and not depending on the concentrations of 7-



hydroxycoumarin derivatives during the 40-min incubation (Figure 3D). Therefore, a standard 

line was calculated at every time point and used to transform fluorescence to concentration, 

which improved accuracy of the results (Figures 3A and B). In the subsequent experiments the 

amount of cytosol was adjusted so that the reaction took place linearly at least for the first ten 

minutes at the used substrate concentration. This data indicated that the sulfonation rates of the 

fluorescent 7-hydroxycoumarin derivatives could be accurately quantitated under standardized 

assay conditions, using various enzyme sources.  

Figure 3. 

Next, the sulfonation rates of thirteen 7-hydroxycoumarin derivatives at 10 µM concentration 

by liver cytosol of human, rat, mouse, rabbit, dog, pig and sheep were determined (Figure 4). 

Sulfonation of the 7-hydroxycoumarin derivatives was catalyzed by cytosol of all species, but 

the rates varied considerably among species and derivatives. The highest sulfonation rates 

occurred with coumarin derivatives 8 and 12.  The sulfonation rates of all 7-hydroxycoumarin 

derivatives except 12 were lower in pig and human than the other species, in which sulfonation 

occurred mostly at high rate. Slow sulfonation rates were observed in rat for 9, in dog for 6, in 

male mouse for 7-hydroxycoumarin, 4, 5 and 7, in female mouse for 7-hydroxycoumarin and 

4, in rabbit for 2, 8, 13 and 14, and in sheep for 2, 3, 13 and 13. 

Figure 4. 

In DBA/2 mice the sulfonation rates of 7-hydroxycoumarin derivatives were mostly similar 

between males and females (Figure 5). To assess the effect of classical inducers of xenobiotic 

metabolizing enzymes, the mice were treated with phenobarbital, PCN and pyrazole. 

Phenobarbital and PCN commonly did not affect sulfonation rate, while pyrazole decreased it 

for several 7-hydroxycoumarin derivatives, e.g. 4 (Figure 5). 

Figure 5. 

The effect of substrate concentration on sulfonation rate was evaluated. The rates could be 

analyzed by Michaelis-Menten equation with high statistical significance (mostly r2 > 0.9, 

Figure S1, Table 1). Michaelis-Menten parameters varied substantially both among species and 

the substrates. The Km values varied 13-fold in rat and 220-fold in human, and a 4 to 90-fold 

variation was observed among the compounds. The Vmax values varied between 5-fold (rat) and 

39-fold (human) among the species and 3 to 118-fold fold among the compounds (Table 1). 



Intrinsic clearance (Vmax/Km) varied between 17-fold (rat) and 167-fold (sheep) among the 

species and 15 to 351-fold among the compounds (Figure 6).  

Figure 6. 

Kinetic data was analyzed with the PCA models. PCA model for intrinsic clearance had three 

components showing large explanation of the variation in the data (culumulative R2X = 0.98) 

as well as good predictability of the model (cumulative Q2 = 0.86) (Figure 7). PCA models for 

Km and Vmax had both four components and good explanation of the variation in the data 

(Cumulative R2X = 0.88 and 0.94, respectively), but showed poor predictability Q2 = 0.28 and 

0.14, respectively) (Figure 7). The dog had the most efficient sulfonation, as the intrinsic 

clearance was the highest with compounds 3, 4, 5, 6, 9, 11 and 12. Rat catalyzed also efficiently 

the sulfonation of several compounds such as 1, 2, 7, 8, 13 and 14. The sulfonation efficiency 

was intermediate in sheep. Pig exhibited <10 % intrinsic clearance compared with the species 

with the highest ones. Intrinsic clearance was <10 % for nine compounds in rabbit cytosol and 

for seven compounds in human cytosol compared to the value of the highest species. Km values 

of the compounds in the reactions were >1 µM except for 3 (scopoletin) catalyzed by pig 

cytosol, whereas the value was <1 µM of many compounds in the reactions by cytosol of other 

species. The highest intrinsic clearance was obtained for 1 catalyzed by rat cytosol, because 

the 1’s Km-values was high and its sulfonation Vmax high. Close to the highest intrinsic 

clearance value were obtained for 2 sulfonation catalyzed by cytosol of dog and sheep (> 80 

%), and for 9 and 6 sulfonation catalyzed by dog cytosol (>70 %). The intrinsic clearance of 

12 sulfonation was more similar between species than other 7-hydroxycoumarin derivatives. 

Figure 7.  

Discussion 

Phenols are typical substrates for sulfonation during metabolism of xenobiotics in mammals 

[Suiko et al., 2017, Tibbs et al., 2015]. In this study a convenient fluorescence based assay was 

developed to determine sulfonation rates of phenolic 7-hydroxycoumarin and its 13 derivatives. 

In the assay fluorescence of the substrates decreased during sulfonation, as the parent 

compounds are fluorescent and their sulfate conjugates are nonfluorescent at 405 nm excitation 

and 460 nm emission wavelengths. The sulfonation rate could be precisely quantitated, since 

the sample acted as its own background at the first time point to which the decrease in 

fluorescence was compared. Moreover, the substrates themselves acted as standards in every 

reaction. The sulfonation reaction followed Michaelis-Menten kinetics, indicating lack of 



substrate inhibition [James & Ambadapi, 2013, Leyh et al., 2013]. The assay was also so 

sensitive that the sulfonation rate could be measured at low substrate concentrations with small 

amounts of enzyme source.  

The present method extends the spectrum of technology to determine the rate of sulfonation. 

As reviewed by Paul et al. [Paul et al., 2012], sulfonation can be measured by various analytical 

techniques such as radiometric, absorbance, fluorescence or HPLC-MS. The radiometric 

method based on 35S labelled PAPS and the MS-based methods are sensitive and are the 

standard methods to measure sulfonation rate. Their disadvantages are need of special 

equipment and radioactive reagents. The assay is also laborious and amenable only to endpoint 

measurements. Previously reported fluorometric assays measured decrease in fluorescence of 

substrates such as 7-hydroxycoumarin [Leach et al., 1999] and resorufin [Beckman, 1991] or 

measured coupling of an actual sulfonation substrate and 4-methyl-7-hydroxycoumarin sulfate 

to regeneration of PAP to PAPS by arylsulfotransferase IV [Chen et al., 2005, Lu et al., 2010]. 

The advantages of all types of fluorometric sulfonation assays are 1) high sensitivity, 2) 

applicability from single sample to high throughput format at different types of experimental 

setups, 3) good repeatability and 4) simplicity and convenience. The extra advantages of the 

coupling fluorescence sulfonation assay are that it can be used to measure all kinds of substrates 

and less PAPS is needed. Its disadvantage is that fluorescent 4-methyl-7-hydroxycoumarin is 

formed during the incubation and it can compete with the actual substrate. In addition, 4-

methyl-7-hydroxycoumarin sulfate can inhibit the sulfotransferase enzyme which is measured. 

The present study describes a direct, sensitive and convenient sulfonation assay of novel 

fluorescent 7-hydroxycoumarin derivatives. The assay can be applied to study sulfonation rate 

and kinetics in different tissues. The reaction follows Michaelis-Menten kinetics, allowing for 

screening of potential inhibitors of sulfonation in vitro. 

Interspecies variation of xenobiotic metabolism is commonly, but inadequately known kinetic 

factor determining differences in effects of chemicals between species [Reichard 2016]. 

Marked interspecies variation in sulfonation rates are known to exist. For example, sulfonation 

activity is particularly low in pig and high in cat [Coughtrie, 2016, Dalgaard, 2015]. Our study, 

to our best knowledge, is the first to directly compare baseline sulfonation rates in liver cytosol 

of human, mouse, rat, pig, rabbit, dog and sheep. The results showed that phenolic 7-

hydroxycoumarins are sulfonated in all these species, but substantial differences in sulfonation 

rate and efficiency exists. In dog and rat sulfonation of most of the compounds occurred faster 

than in other species, while in pig and human sulfonation rate of the compounds was lower in 



comparison. The substantial variation in sulfonation was illustrated by rates at fixed substrate 

concentration, and the kinetic parameters Km, Vmax and Vmax/Km varied 2–100 fold (depending 

on the substrate) among the species. Treatment of mice with inducers of xenobiotic 

metabolizing enzymes did not affect sulfonation rates. 

The human genome contains 14 sulfotransferase genes encoding cytosolic sulfotransferases in 

4 gene families [HGNC database; https://www.genenames.org/data/genegroup/#!/group/762]. 

Sulfotransferase genes encoding catalytically active proteins exist also in many other animals, 

including mouse, rat, rabbit, dog and pig [Blanchard et al., 2004, Gamage et al., 2006]. 

Sulfotransferases in family sulfotransferase 1 catalyze primarily sulfonation of phenols and 

sulfotransferase 2 enzymes catalyze primarily sulfonation of steroids including aromatic 

estrogens [Coughtrie, 2016, James & Ambadapi, 2013]. Therefore the 7-hydoxycoumarin 

derivatives could be sulfonated by sulfotransferase 1 or 2 enzymes, which are expressed in 

liver of human [Riches et al., 2009], mouse [Alnouti & Klaassen, 2006, Saeki et al., 1998], rat 

[Maiti and Chen, 2015, Runge-Morris et al., 1998], pig [Kojima & Degawa, 2014, Moe et al., 

2007] and dog [Tsoi & Swedmark, 2005]. Information about sulfotransferase genes in sheep is 

lacking. There are major interspecies differences in the expressed complement of 

sulfotransferases, which makes extrapolation of data on xenobiotic sulfonation in animals to 

humans particularly unreliable. Some of these interspecies differences are further confounded 

by sex differences that do not occur in humans [Coughtrie, 2016]. 

At present we cannot ascribe the observed baseline sulfonation to any particular 

sulfotransferase enzyme in any species. Because sulfonation rates of some 7-hydroxycoumarin 

derivatives are cluster with each other in PCA and some did not among the different species, 

sulfonation of these compounds are presumably catalyzed by multiple sulfotransferases. It will 

be possible in future studies to evaluate substrate selectivity for human sulfotransferases since 

heterologously expressed human sulfotransferases are commercially available.  

Conclusions 

A convenient fluorescence based sulfonation assay was established for 7-hydroxycoumarin 

derivatives. Because this assay was sensitive and quantitative, it could be applied to determine 

sulfonation kinetics in liver cytosol of human, mouse, rat, pig, rabbit, dog and sheep. 

Sulfonation was fastest in dog showing higher intrinsic clearance (Vmax/Km) for most of the 

compounds than the other species. In pig, human and rabbit the intrinsic clearance was less for 

most of the compounds compared with the other species. The assay can be applied also to other 

https://www.genenames.org/data/genegroup/#!/group/762


human and animal tissues to study baseline sulfonation levels. The assay can be also used to 

study potential inhibitors of sulfonation. Future studies will be directed at assessing which 

particular sulfotransferase enzymes mediate sulfonation of the 7-hydroxycoumarin derivatives.  
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Table 1. Km- and Vmax values of 7-hydroxycoumarin derivatives sulfonation by cytosol of 

seven species. The unit of Km is µM (95 % confidence interval) and Vmax is nmol/(min * g 

protein) (95 % confidence interval). Sulfonation rates of 7-hydroxycoumarin derivatives (1 – 

14) were determined at 6-12 different concentration intervals 0 – 10 µM of incubations 0.05 - 

0. 3 g/L liver cytosol protein, 5 mM MgCl2, 10 µM PAPS and 0- 20 µM 7-hydroxycoumarin 

derivative in 100 mM phosphate buffer pH 7.4. ND means not determined and no MM that 

Michaelis-Menten equation was not applicable to the analysis. 

 

 



Figure captions 

 

 

Figure 1. Sulfonation of 7-hydroxycoumarin derivatives by sulfotransferases (ST). Fluorescent 

7-hydroxycoumarin derivatives are sulfonated to nonfluorescent sulfate conjugates by 

sulfotransferase enzymes.  

 

Figure 2. Structures of the 7-hydroxycoumarin derivatives. 1 is 7-hydroxycoumarin 

(umbelliferone), 2 4-trifluoromethoxy-7-hydroxycycoumarin, 3 6-methoxy-7-



hydroxycoumarin (scopoletin), 4 3,4-dimethyl-7-hydroxycoumarin, 5 3-ethyl-4-methyl-7-

hydroxycoumarin, 6 3-ethyl-4,8-dimethyl-7-hydroxycoumarin, 7 3,4,8-trimethyl-7-

hydroxycoumarin, 8 3-(4-methylphenyl)-7-hydroxycoumarin, 9 3-(4-hydroxyphenyl)-7-

hydroxycoumarin, 10 3-(4-fluorophenyl)-7-hydroxycoumarin, 11 3-(4-methoxyphenyl)-7-

hydroxycoumarin, 12 3-(4-dimethylaminophenyl)-7-hydroxycoumarin, 13 3-(4-pyridin-3-yl)-

7-hydroxycoumarin, 14 3-(1H-1, 2, 4-tirazol-1-yl)-7-hydroxycoumarin. 

 

Figure 3. Decrease of 7-hydroxycoumarin fluorescence during sulfonation. Panel A shows 

decrease of fluorescence and panel B decrease of concentration of 10 µM 7-hydroxycoumarin 

fluorescence in 100 mM phosphate buffer pH 7.4 in presence of 0.2 g/L rabbit liver cytosol 

protein, 10 µM PAPS, 5 mM MgCl2. Panel C shows the effect of solvents on the sulfonation 

rate of 7-hydroxycoumarin with rabbit cytosol and panel D the effect of 100 mM phosphate or 

Tris-HCl buffer pH 7.4 on the fluorescence of 7-hydroxycoumarin during the 40 min 

incubation. Corresponding results were obtained with the other 7-hydroxycoumarin 

derivatives.  

  



 

Figure 4. Sulfonation rates of 7-hydroxycoumarin and its 13 derivatives by liver cytosol of 

different species. The rates were determined in incubations containing 0.1-0.3 g/L liver cytosol 

protein, 5 mM MgCl2, 10 µM PAPS and 10 µM 7-hydroxycoumarin derivative in 100 mM 

phosphate buffer pH 7.4. The activities were determined from the linear phases of the reactions. 

The number of samples were three for human, four for mice, two for rats and five for pigs, 

rabbits, dogs and sheep.  



 

Figure 5. The effect of pretreatment of mice on sulfonation rate of 7-hydroxycoumarin and its 

13 derivatives by liver cytosol. The rates were determined in incubations containing 0.1-0.3 

g/L liver cytosol protein, 5 mM MgCl2, 10 µM PAPS and 10 µM 7-hydroxycoumarin derivative 

in 100 mM phosphate buffer pH 7.4. The activities were determined from the linear phases of 

the reactions. The samples were pooled from at least ten mice. 



 

Figure 6. Intrinsic clearance of 7-hydroxycoumarin derivatives in liver cytosol of different 

species. Sulfonation rates of 7-hydroxycoumarin derivatives were determined at different 

concentrations of incubations 0.05–0.3 g/L liver cytosol protein, 5 mM MgCl2, 10 µM PAPS 

and 0–20 µM 7-hydroxycoumarin derivative in 100 mM phosphate buffer pH 7.4. The 

sulfonation rates were analyzed by Michaelis-Menten equation v = Vmax * S / (Km + S). Km is 

the Michaelis-Menten constant, Vmax the limiting rate of the sulfonation reaction and v is the 

rate at the substrate concentration S. 

 

 



 

Figure 7. Biplot of the principal component analysis model of the Michaelis-Menten kinetic 

parameters Km, Vmax and Vmax/Km of sulfonation of 7-hydroxycoumarin derivatives in cytosol 

of human, mouse, rat, dog, rabbit, pig and sheep liver. In the intrinsic clearance (Vmax/Km) PCA 

model, the first two components shown explained 68% and 17% of variance in the data, 

respectively. In the Km PCA model, the first two components shown explained 36% and 23% 

of variance in the data, respectively. In the Vmax PCA model, the first two components shown 

explained 45% and 27% of variance in the data, respectively. Substrates (black circles) show 

association with liver cytosols of different species (open hexagons). The Horizontal axis 

indicates relative magnitude of the indicated parameter and the vertical axis the relative 

magnitude between the species in the intrinsic clearance (Vmax/Km), Vmax or Km -PCA models. 



 

Figure S1. Michaelis-Menten graphs of sulfonation of 7-hydroxycoumarin derivatives in liver 

cytosol of different species. Sulfonation rates of 7-hydroxycoumarin derivatives were 

determined at different concentrations of incubations 0.05–0.3 g/L liver cytosol protein, 5 mM 

MgCl2, 10 µM PAPS and 0–20 µM 7-hydroxycoumarin derivative in 100 mM phosphate buffer 

pH 7.4. The number in parenthesis is correlation coefficient r2-value of nonlinear Michaelis-

Menten equation v = S * Vmax / (Km + S), in which v is the sulfonation rate at 7-

hydroxycoumarin derivative concentration S, Vmax is limiting rate and Km the Michaelis-

Menten constant. 

 


