
The Black-Scholes Model and Risk-Sensitive Asset
Management

Santeri Helin

Master’s Thesis in Mathematics

University of Jyvaskyla
Department of Mathematics and Statistics

Spring 2021



1. Tiivistelmä

Optiohinnoittelun teoria on keskeisessä osassa tutkielmaamme ja tavoitteenamme
on saada optiohinnoittelun teoriaa käyttäen teoreettinen estimaatti option reilusta
hinnoittelusta. Tätä option reilua hintaa sijoittajat voivat käyttää myöhemmin
salkkujensa arvon maksimointiin. Yksi kuuluisimmista malleista optioiden hinnoit-
telussa on Black-Scholes-malli.

Black-Scholes-malli on keskeisessä roolissa modernissa finanssiteoriassa ja on
käytössä myös tällä hetkellä. Mallin käyttämisessä yksi suurimmista eduista on,
että malli riippuu ainoastaan yhdestä ei havaittavissa olevasta parametrista σ
nimeltään volatiliteetti. Tämä huomataan tutkielmassa johdettaessa Black-Scholes-
yhtälöä. Tämän volatiliteetin johtamiseen on olemassa myös keinoja, mutta emme
keskity niihin tutkielman aikana.

Oletamme tutkielman aikana, että volatiliteetti pysyy vakiona, jotta laskut
voitaisiin tehdä. Tämä ei kuitenkaan vastaa oikeaa tilannetta sijoittamisessa,
sillä volatiliteetti voi vaihdella ajan kuluessa. Black-Scholes-yhtälöä johdettaessa ole-
tamme myös, että sijoittaessa ei ilmaannu veroja tai rahansiirron aikana tulevia kus-
tannuksia. Lisäksi tutkimme Black-Scholes-mallissa ainoastaan Euroopan optioita,
koska kyseisessä mallissa optiot voidaan suorittaa ainoastaan niiden ennalta säädel-
lyn viimeisen käyttöpäivän ajanhetkellä.

Tutkimuksemme koostuu kahdesta päätavoitteesta. Näistä ensimmäinen on Eu-
roopan put ja call optioiden reilun hinnan määrittäminen, jolla tarkoitetaan, että ke-
nenkään ei tulisi saada riskitöntä voittoa. Tämän tavoitteen suorittamista varten
käytämme Black-Scholes-mallia. Aloitamme mallin esittelyllä kappaleessa 5 ja
jatkamme tästä esittelemällä todennäköisyysmitan vaihtamisen kappaleessa 6. Kol-
mannessa kappaleessa on esitelty tärkeimmät stokastiikan perustyökalut laskemista
varten. Koska stokastinen integrointi on tärkeässä roolissa tutkielmassamme, esit-
telemme myös yhden kuuluisimmista stokastisista integraaleista nimeltä Itô inte-
graali. Stokastinen integrointi ja Itôn lause esitellään neljännessä kappaleessa. Kap-
paleessa 7 käytämme aiemmin esittelemiämme teorioita, kuten todennäköisyysmitan
vaihtoa ja stokastista laskentaa, Black-Scholes-yhtälön ratkaisemiseen.

Kuten ensimmäisessä päätavoitteessa, oletamme myös toisessa päätavoit-
teessamme, että mahdollisia veroja tai rahansiirron kustannuksia ei ole. Toisen
päätavoitteen tarkoituksena on mallintaa optimaalista investoimista. Tässä meillä on
käytössä yleisempi malli, joka koostuu monesta erilaisesta riskialttiista komponentista
ja riskittömästä sijoittajan omaisuudesta pankkitilillä. Valitsemme sopivan rahasto-
hallinnon ja yritämme löytää sille optimaalisen strategian h∗ maksimoimalla valitun
apuväline funktion. Apuväline funktioita (utility function) on valittavana monenlaisia
ja siten yhtä oikeaa valintaa ei voi määritellä. Tutkimusta tehdessä valitsemme usein
funktion, jota on matemaattisesti helppo käsitellä ja jolla on mielekkäitä matemaat-
tisia ominaisuuksia.

2. Introduction

Option pricing theory is a concept where we aim to value an option theoretically
by using variables such as stock price, exercise price, volatility, interest rate and expi-
ration date. By using option pricing theory we can obtain the theoretical estimation
of an options fair value which can be used later by, for example, traders to maximize



2

profits. One commonly used model in option pricing that we are going to introduce
is called the Black-Scholes model.

The Black-Scholes model has a big role in the modern financial theory and is
still widely used today. This model was first developed in 1973 by Fischer Black,
Robert Merton and Myron Scholes. Due to its success the creators of the model
Robert Merton and Myron Scholes were even given the Nobel price award. Fisher
Black were also in close collaboration with Robert Merton and Myron Scholes but
since he died before the Noble price was granted he did not have enough time to get
the reward. One of the main features of the Black-Scholes model is that the pricing
formula depends only on one non-observable parameter σ, the so called volatility. The
volatility can be evaluated for example by using the historical method or the implied
method. This is one of the main reasons behind the success of the Black-Scholes
formula.

The focus of the thesis is the modelling of the two basic activities on a financial
market. The first one we discuss is the option pricing and the second one is the
optimal investment. The prices of both of these activities on certain underlyings are
modelled by the same processes, exponential diffusion processes, and both actions
can be performed on the same underlyings at the same time.

To be more precise we have two main objectives to accomplish. The first one
is to determine a fair price for the European call and put options, which is done
by using the Black-Scholes model. We start by introducing our model in chapter 5
and then continue by introducing the change of measure technique in the chapter
6. The basic tools needed for the computations are in the third chapter. Since
stochastic integration is used in our theorems we also introduce one of the most
popular stochastic integrals, the Itô integral, ensuring the foundation for our theorems
and main results. Stochastic integration and Itô’s formula will be introduced in the
fourth chapter. In chapter 7 we finally show that how one can derive the Black-Scholes
formula by using the change of measure technique and stochastic calculus.

In the final part our second objective is to find the most suitable strategy for a
given utility function. Like in the Black-Scholes model we also need to assume that
there are no transaction costs or taxes but in this case we can have many possible
solutions depending on the utility function. We consider the Risk-sensitive asset man-
agement criterion in the special case, where asset and factor risks are not correlated.
Here our main objective is to maximise the expected log return of the portfolio by
using the risk-sensitive asset management criterion. This criterion is known for giv-
ing penalty for high variance, negative skewness and high kurtosis while rewarding
positive skewness (see [2] Chapter 2.2).

Choosing logarithm of the portfolio value as a reward function provides us with
a setting where the calculations can be carried out. This leads to a risk-sensitive
asset management criterion, which is a great choice when managing portfolio value.
For example this criterion works well with Markowitz’ mean-variance analysis. and is
consistent with utility theory (see [2] Chapter 2.2). We can also show that the risk-
sensitive asset management criterion is a log coherent optimization criterion meaning
that is satisfies the four axioms that we are going to introduce in the chapter 8. The
Appendix part discusses existence and uniqueness of solutions for the SDEs we use
in the Risk-sensitive asset management part.
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3. Basic tools from probability theory

3.1. σ-algebra. The σ-algebra is a basic tool in probability theory since it serves,
for example, as domain of definition of a probability measure.

Definition 3.1. Let Ω be a non-empty set. A system F of subsets A ⊆ Ω is
called σ-algebra on Ω if the following is satisfied:

• ∅,Ω ∈ F ,
• if A ∈ F then also Ac ∈ F ,

• if A1, A2, · · · ∈ F then we also have that
∞⋃
i=1

Ai ∈ F .

3.2. Filtration. The investor can not predict the future which means that he
does not know at time 0 what is going to happen to the values St. When s ∈]0, T ]
and at time t > 0 he knows all the values Ss when s ∈ [0, t] but does not know the
values when s ∈]t, T ]. For modeling this situation we use a filtration.

Definition 3.2. Let I be an index set. A filtration is a family of σ-algebras
(Ft)t∈I satisfying the following property:

Fs ⊆ Ft ⊆ F for all 0 ≤ s ≤ t ∈ I

Definition 3.3. We define a natural filtration of a family of random variables
(Xt)t≥0 on {Ω,F} by setting:

FXt = σ{Xu, u ∈ [0, t]}, t ≥ 0,

i.e. FXt is the smallest σ-algebra such that all Xu, u ∈ [0, t], are measurable.

3.3. Brownian motion. The Brownian motion is a particularly important ex-
ample of a stochastic process and it can be seen as a core of our financial model. It
is used to model random phenomena in finance.

A Brownian motion is a real-valued continuous stochastic process (Xt)t≥0 with
independent and stationary increments.

Definition 3.4. A family of random variables (Xt)t≥0 is called an (Ft)t≥0- Brow-
nian motion if the following is satisfied:

• Xt is Ft-measurable for all t ≥ 0.
• Continuity: P almost surely the map t→ Xt(ω) : [0,∞)→ R is continuous.
• Independent increments: If s ≤ t, Xt −Xs is independent of Fs.
• Stationary increments: If s ≤ t, Xt − Xs and Xt−s − X0 have the same

probability law.
Notice that this definition induces the distribution of the process (Xt)t≥0.

Remark 3.5. A Brownian motion (Xt)t≥0 is called standard if

X0 = 0, E(Xt) = 0, E(X2
t ) = t.

From now on we will assume that the Brownian motion (Xt)t≥0 we use is standard if
nothing else is mentioned. The random variable Xt is normally distributed:

P(Xt ≤ x) =
1√
2πt

∫ x

−∞
e−

z2

2t dz.
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3.4. Conditional expectation.

Definition 3.6. Let (Ω,F ,P) be a probability space and let G be a sub-σ-algebra
in F . Assume a F -measurable random variable X : Ω → R such that E|X| < ∞.
Then a random variable Y : Ω→ R is called a conditional expectation of X given G
if

(1) Y is G-measurable
(2) E(Y 1IG) = E(X1IG) for all G ∈ G.

Then we have that E[X|G] = Y .

Remark 3.7. lf E|X| < ∞ then E[X|G] always exists and is a.s. unique. More
about this can be found in [10] Theorem 10.1.1.

3.5. Martingales and Doob’s inequality.

Definition 3.8. Let (Mt)0≤t≤T be (Ft)0≤t≤T -adapted and such that E|Mt| < ∞
for all t ∈ [0, T ].

M is called martingale provided that for all s and t such that 0 ≤ s ≤ t ≤ T
one has

E(Mt|Fs) = Ms a.s.

Definition 3.9. According to [9] Definition 1.1.18 a local martingale is a pro-
cess such that there exists an increasing sequence (Tn)n of stopping times satisfying:
limn→∞ Tn = ∞ a.s. and every stopped process XTn = (Xt∧Tn)t≥0 is an uniformly
integrable martingale.

Proposition 3.10. Let M = (Mt)0≤t≤T be a right- continuous martingale. Then
one has, for λ, t ≥ 0 and p ∈ (1,∞), that

E
(

sup
t≤T
|Mt|p

)
≤
(

p

p− 1

)p
E|MT |p.

This inequality is known as the Doob’s inequality and the proof can be seen in [7]
Proposition 3.1.16.

4. Stochastic integration

Before starting to think about the Black-Scholes model we will briefly introduce
stochastic integration and some pivotal tools in stochastic calculus like Ito’s formula.

We use the index t to indicate time.
The probability space (Ω,F ,P) we will use is equipped with the filtration (Ft)t≥0,

which satisfies the usual conditions. The usual conditions are the following:

• (Ω,F ,P) is complete
• A ∈ Ft for all sets A ∈ F with the property P(A) = 0
• the filtration (Ft)t≥0 is right continuous.

We are interested in progressively measurable processes (Ht)t≥0.

Definition 4.1. A process H : [0,∞]×Ω→ R is called progressively measurable
with respect to a filtration (Ft)t≥0 if the preimage {(t, ω) ∈ [0, s]× Ω : H(t, ω) ∈ B}
belongs to B([0, s])⊗Fs for all B ∈ B(R) and for all s ∈ [0,∞].
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The important thing to notice is that we do not require the preimage to be only
in B([0, s])⊗F but in the smaller σ-algebra B([0, s])⊗Fs.

The value of a portfolio in discrete time can be calculated by taking a sum of the
differences of stock prices multiplied by the trading strategy. For initial wealth V0

and a self-financing strategy φ = (Ht)0≤t≤T we have that the value of a portfolio is

V0 +
t∑

j=1

Hj(S̃j − S̃j−1),

where S̃t is the discounted stock price at time t . Naturally when modelling stock

prices in continuous time we are interested in integrals of the form
∫
Ht dS̃t. The

problem is that the processes modelling stock prices are usually functions of one or
multiple Brownian motions hence we can not use the Stieltjes integral for our cal-
culations because the Brownian motion a.s does not have paths of finite variation.
Moreover, we know from the Paley, Wiener-Zygmund Theorem that a standard Brow-
nian motion is nowhere differentiable. See for example [6][Theorem 10.3]. That means
we do not have the equality

∫
H(t) dBt =

∫
H(t)B′t dt. Our goal is to define a new

integral with respect to a Brownian motion, the Itô-integral.

4.1. Construction of the Itô-integral for simple processes. Let (Bt)t≥0 be
a standard Brownian motion defined on a stochastic basis (Ω,F ,P; (Ft≥0)) satisfying
the usual conditions. We approach in the same way as when defining the Riemann
integral which means that we start from simple processes and then generalize our
integral to progressively measurable processes.

Definition 4.2. A process (Ht)t≤T is called simple if it can be written in the
following form:

Ht(ω) =
n∑
i=1

φi(ω)1I(ti−1,ti](t).

Here 0 ≤ t0 < t1 < · · · < tn = T and φi is an Fti−1
-measurable random variable and

satisfies

max
i

sup
ω
|φi(ω)| ≤ c,

where c > 0 is a constant. We denote the space of simple functions by H0.

By using the above definition we construct the stochastic integral as a continuous
process (I(H)t)0≤t≤T defined for any t ∈]tk, tk+1] as

(4.1) I(H)t =
∑

1≤i≤k

φi(Bti −Bti−1
) + φk+1(Bt −Btk).

We can write this integral as a sum going from 1 to n by using minimum of ti and
t as

(4.2) I(H)t =
∑

1≤i≤n

φi(Bti∧t −Bti−1∧t).
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This can be seen by considering t ∈]tk, tk+1] as above in three cases. When i ≤ k
we have the expression

∑
1≤i≤k φi(Bti−Bti−1

) and when i = k+1 the above definition
has the term φk+1(Bt−Btk). The final case is when i > k+ 1 and now we always get
zero since ti∧ t = ti−1∧ t = t. From the expression (4.2) one can see the continuity of
t → I(H)t. The continuity comes from the continuity of the Brownian motion. We

will write
∫ t

0
Hs dBs for I(H)t.

4.2. Properties of the Itô-integral for simple processes.

Proposition 4.3. The Itô integral for simple processes is linear. This means that
for constants α and β we have that I(αH + βK)t = αI(K)t + βI(H)t, where H and
K are processes in H0.

Proof. Let Ht(ω) =
∑n

i=1 φi(ω)1I(ti−1,ti](t) and Kt(ω) =
∑m

j=1 ψj(ω)1I(sj−1,sj ](t)

be simple processes. Because Ht(ω) and Kt(ω) may be constant on different intervals
we define a new partition 0 = u0 < u1 < · · · < uN = T , where Ht(ω) and Kt(ω)
both are constant. Since now we have more time points than before the former

numbering does not fit and hence we use new functions φ̂ and ψ̂. We have Hu(ω) =∑N
k=1 φ̂k(ω)1I(ui−1,ui](u) and Ku(ω) =

∑N
k=1 ψ̂k(ω)1I(ui−1,ui](u), where N ≥ n,m. The

new representations are consistent with the old representations as the (ui)
N
i=0 partition

is a finer partition than the (sj)
m
j=0 and (ti)

n
i=0 partitions.

Then let α and β be constants. We get for any u ∈]uN , uN+1]

I(αH + βK)u(ω) =
N∑
k=1

(αφ̂k(ω) + βψ̂k(ω))(Buk(ω)−Buk−1
(ω))

+ (αφ̂N+1(ω) + βψ̂N+1(ω))(Bu(ω)−BuN (ω)).

After rearranging terms we get

I(αH + βK)u(ω) =
N∑
k=1

αφ̂k(ω)(Buk(ω)−Buk−1
(ω)) + αφ̂N+1(ω)(Bu(ω)−BuN (ω))

+
N∑
k=1

βψ̂k(ω)(Buk(ω)−Buk−1
(ω)) + βψ̂N+1(ω)(Bu(ω)−BuN (ω))

= α
N∑
k=1

φ̂k(ω)(Buk(ω)−Buk−1
(ω)) + φ̂N+1(ω)(Bu(ω)−BuN (ω))

+ β

N∑
k=1

ψ̂k(ω)(Buk(ω)−Buk−1
(ω)) + ψ̂N+1(ω)(Bu(ω)−BuN (ω))

which is by definition αI(H)u + βI(K)u. �

Proposition 4.4. If the process (Ht)0≤t≤T is defined like in Definition 2.1. we

have that
(∫ t

0
Hs dBs

)
0≤t≤T

is a continuous (Ft)0≤t≤T -martingale.
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Proof. Since the continuity of I(H)t is clear it is enough to show the three con-
ditions of a martingale. For our proof we use the expression I(H)t =

∑
1≤i≤k φi(Bti−

Bti−1
) + φk+1(Bt − Btk) for t ∈ [tk, tk+1]. The measurability condition holds because

each term in the expression is Ft-measurable for all t ≥ 0 and a sum of measurable
terms is measurable.

For the integrability condition we show that

E|I(H)t| = E
∣∣∣∣ ∑

1≤i≤k

φi(Bti −Bti−1
) + φk+1(Bt −Btk)

∣∣∣∣ <∞.
By using the triangle inequality we put the absolute value inside the sum. Then we

use the upper bound c for the random variables φi and pull c out of the expectation.
We get

E|I(H)t| ≤ c
∑

1≤i≤k

E
∣∣Bti −Bti−1

∣∣+ cE
∣∣Bt −Btk

∣∣.
Now using Hölder’s inequality the terms E|Bti − Bti−1

| can be estimated in the
following way.

E|Bti −Bti−1
| ≤

(
E|Bti −Bti−1

|2
) 1

2 .

Stationary increments of a Brownian motion now gives us

E|Bti −Bti−1
|2 = ti − ti−1.

Consequently we have a finite sum whose each term is also finite, therefore inte-
grability holds.

Finally we are going to check the martingale property which is that for any s ≤ t
on the interval [0, T ] we have

E [I(H)t|Fs] = I(H)s a.s.

For our convenience let us use the expression

(4.3) Mtk =
∑

1≤i≤k

φi(Bti −Bti−1
).

By using this expression the relation (4.1) gets the form

I(H)t = Mtk + φk+1(Bt −Btk).

Since (Bt)t≥0 is a Brownian motion we have that (Bt)t≥0 is a (Ft)t≥0-martingale. In
view of expression in (4.3) and recalling that B0 = 0 we get terms Mt1 = φ1Bt1 , Mt2 =
φ1Bt1 + φ2(Bt2 − Bt1), . . . , Mtk = φ1Bt1 + · · · + φk(Btk − Btk−1

). Since the sequence
Mti is a combination of Fti−1

- measurable random variables φ1 . . . φi and Bt1 . . . Bti it
is adapted.
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By linearity we get

E[Mtk |Fs] = E

[ ∑
1≤i≤k

φi(Bti −Bti−1
)|Fs

]

=
∑

1≤i≤k

E[φi(Bti −Bti−1
)|Fs],

hence we can calculate the conditional expectations term by term.
Let m be such that s ∈]tm, tm+1] and assume that m+ 1 ≤ k. Let us consider an

arbitrary interval (ti−1, ti]. There are three possible cases for s:

(1) s ≤ ti−1

(2) ti < s
(3) ti−1 < s ≤ ti.

In the first case in order to pull φi out, we can use the tower property for Fti−1
⊇ Fs

and get

E[φi(Bti −Bti−1
)|Fs] = E

[
E[φi(Bti −Bti−1

)|Fti−1
]|Fs

]
= Eφi

[
E[Bti −Bti−1

|Fti−1
]|Fs

]
= Eφi

[
E[Bti−1

−Bti−1
]|Fs

]
= 0.

Next we consider the second case ti < s. In this case we have that ti is smaller
than tm for all 1 ≤ i ≤ m in the sum, hence every term is Fs-measurable and we get

E[φi(Bti −Bti−1
)|Fs] = φi(Bti −Bti−1

).

Finally we have the third case ti−1 < s ≤ ti. Here we get

E[φi(Bti −Bti−1
)|Fs] = φm+1(E[Bti |Fs]− E[Bti−1

|Fs])
= φm+1(Bs −Btm).

Now we have that for all s and m such that s ∈]tm, tm+1] and m+ 1 < k

E[Mtk |Fs] =
∑

1≤i≤m

φi(Bti −Bti−1
) + φm+1(Bs −Btm).

For s ∈]tm, tm+1] with m+ 1 ≤ k we also have

E[φk+1(Bt −Btk)|Fs] = 0

like in case (1) above. Hence E [I(H)t|Fs] = I(H)s. If s ∈]tk, t], then also it holds
E [I(H)t|Fs] = I(H)s by the arguments above. As a result we have shown that
E [I(H)t|Fs] = I(H)s and the other conditions for a martingale which means that
(I(H)t)0≤t≤T is a continuous (Ft)0≤t≤T -martingale. �

The next property is unique for stochastic integrals and is called Itô isometry. We
first define and prove Itô isometry for simple processes.
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Proposition 4.5. For a simple process (Ht)t≥0 we have that

(1) E
((∫ t

0
Hs dBs

)2
)

= E
(∫ t

0
H2
s ds

)
(2) E

(
supt≤T

∣∣∣∫ t0 Hs dBs

∣∣∣2) ≤ 4E
(∫ T

0
|Hs|2 ds

)
.

Proof. To prove (1) we use the notation Mtk from the previous proof and have

E(M2
tk

) = E

(∑
1≤i≤k

φi(Bti −Bti−1
)

)2


= E

(∑
1≤i≤k

∑
1≤j≤k

φiφj(Bti −Bti−1
)(Btj −Btj−1

)

)
.

In this expression when i = j we sum the terms φ2
i (Bti−Bti−1

)2 and when i 6= j we
sum terms that have the form φiφj(Bti − Bti−1

)(Btj − Btj−1
). By using the linearity

of the expectation we can move the expectation inside the sum and calculate the
expectation of every term one by one. When i < j we use the tower property of the
conditional expectation and get

E
[
φiφj(Bti −Bti−1

)(Btj −Btj−1
)
]

= E
[
E[φiφj(Bti −Bti−1

)(Btj −Btj−1
)|Ftj−1

]
]
.

Since we have i < j the term φiφj(Bti − Bti−1
) is Ftj−1

-measurable and we can
pull it out. We get

E
[
E[φiφj(Bti −Bti−1

)(Btj −Btj−1
)|Ftj−1

]
]

= E
[
φiφj(Bti −Bti−1

)E[(Btj −Btj−1
)|Ftj−1

]
]
.

Since we know that (Bt)0≤t≤T is a Brownian motion we can use the same procedure
as in the proof of Proposition 4.4 and obtain E[(Btj − Btj−1

)|Ftj−1
] = 0. This means

that E
[
φiφj(Bti −Bti−1

)(Btj −Btj−1
)
]

= 0. Then if i = j we have,

E
[
φ2
i (Bti −Bti−1

)2
]
.

= E
[
E[φ2

i (Bti −Bti−1
)2|Fti−1

]
]

= E
[
φ2
iE[(Bti −Bti−1

)2|Fti−1
]
]
.

Since (Bti −Bti−1
)2 is independent of Fti−1

hence we have that

E[(Bti −Bti−1
)2|Fti−1

] = E[(Bti −Bti−1
)2] = ti − ti−1.

The last equality comes from the fact that the standard Brownian motion has sta-
tionary increments, mean zero and variance var(Bt) = t.

Finally we combine all the steps we made and we see that
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EM2
tk

= E

(∑
1≤i≤k

φi(Bti −Bti−1
)

)2
 = E

(∑
1≤i≤k

φ2
iE((Bti −Bti−1

)2|Fti−1
)

)

= E

(∑
1≤i≤k

φ2
i (ti − ti−1)

)
.

Then we take the expectation of the square of the integral I(H)t and get

E(I(H)2
t ) = EM2

tk
+ 2E (Mtkφk+1(Bt −Btk)) + E(φ2

k+1(Bt −Btk)
2)

= EM2
tk

+ φ2
k+1(t− tk).

The term 2E (Mtkφk+1(Bt −Btk)) is zero by the tower property and the last term
can be treated in the same way as in the EM2

tk
calculation. The equality

E(I(H)2
t ) = E

(∑
1≤i≤k

φ2
i (ti − ti−1)

)
+ φ2

k+1(t− tk) = E
(∫ t

0

H2
s ds

)
can be seen by the following way. We define

Hs(ω) =
n∑
i=1

φi(ω)1I(ti−1,ti](s)

and have Hs(ω)2 =
∑n

i=1 φi(ω)21I(ti−1,ti](s). The integral of Hs(ω)2 can be calculated
simply by multiplying the value of the function φ2

i (ω) by the length of the interval
]ti−1, ti], hence we get

∫ t

0

H2
s ds =

∫ t

0

n∑
i=1

φi(ω)21I(ti−1,ti](s) ds =
k∑
i=1

φ2
i (ti − ti−1) + φ2

k+1(t− tk).

To prove (2) we use Doob’s inequality applied to the continuous martingale
(I(H)t)0≤t≤T and get

E
(

sup
t≤T
|I(H)t|2

)
≤ 4E|I(H)T |2 = 4E

∣∣∣∣ ∫ T

0

Hs dBs

∣∣∣∣2.
To finish our proof we use Itô’s isometry and get

E
(

sup
t≤T
|I(H)t|2

)
≤ 4E

(∫ T

0

|Hs|2 ds
)
.

�

4.3. Extension of the Itô-integral to a class of square integrable pro-
cesses. Now since we have defined a stochastic integral for simple processes our next
goal is to extend this definition for a larger class of progressively measurable processes
H
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H =

{
(Ht)0≤t≤T : (Ft)t≥0 − progressively measurable, E

(∫ T

0

H2
s ds

)
< +∞

}
.

Proposition 4.6. Let (Bt)t≥0 be an (Ft)-Brownian motion. There exists a unique
linear mapping J from H to the space of continuous (Ft)t∈[0,T ]-martingales defined on
the interval [0, T ] such that if (Ht)0≤t≤T is a simple process then P almost surely for

any 0 ≤ t ≤ T it holds J(H)t = I(H)t and if t ≤ T , E(J(H)2
t ) = E(

∫ t
0
H2
s ds).

Lemma 4.7. If (Hs)s≤T belongs to H, then there exists a sequence (Hn
s )s≤T of

simple processes such that

(4.4) lim
n→+∞

E
(∫ T

0

|Hs −Hn
s |2 ds

)
= 0

A proof of this lemma can be found in [5] Problem 2.5.
Let us have H ∈ H and a sequence of simple processes (Hn)∞n=1 converging to H

like in Lemma 4.7. Proposition 4.5 (2) gives us the following result:

E
(

sup
t≤T
|I(Hn+p)t − I(Hn)t|2

)
≤ 4E|I(Hn+p)T − I(Hn)T |2(4.5)

= 4E
(∫ T

0

|Hn+p
s −Hn

s |2 ds
)
.(4.6)

Therefore because we have (4.4) we get that there exists a subsequence (Hnk)∞k=0

with Hn0 ≡ 0 such that

E
(

sup
t≤T
|I(Hnk+1)t − I(Hnk)t|2

)
≤ 1

2k
,

which gives us also that

∞∑
k=0

(
E sup
t≤T
|I(Hnk+1)t − I(Hnk)t|2

) 1
2

<∞.

The almost sure convergence of the series
∞∑
k=0

sup
t≤T
|I(Hnk+1)t − I(Hnk)t|

can be seen by using Hölder’s inequality: Let ak := supt≤T |I(Hnk+1)t − I(Hnk)t|2.
We get

E
∞∑
k=0

a
1
2
k =

∞∑
k=0

Ea
1
2
k ≤

∞∑
k=0

(Eak)
1
2 ≤

∞∑
k=0

(
1

2k

) 1
2

<∞,

where expectation can be moved inside the series because of Fubini’s theorem. The

inequality Ea
1
2
k ≤ (Eak)

1
2 follows from Hölder’s inequality. Since we have an expression

that has a finite expectation we also can conclude that the probability that
∑∞

k=0 a
1
2
k <

∞ is one, hence
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P

(
∞∑
n=0

sup
t≤T
|I(Hnk+1)t − I(Hnk)t| <∞

)
= 1.

Thus the series whose general term is I(Hnk+1)t − I(Hnk)t is uniformly convergent.
We set ΩT := {ω ∈ Ω :

∑∞
n=0 supt≤T |I(Hnk+1)t − I(Hnk)t| <∞} and define

J(H)t(ω) :=

{∑∞
k=0[I(Hnk+1)t − I(Hnk)t] : ω ∈ ΩT

0 : ω /∈ ΩT .

Now we see that the process (J(H)t)0≤t≤T is path-wise continuous. This follows from
the fact that the general term I(Hnk+1)t − I(Hnk)t in the sum is continuous and the
partial sums are uniformly convergent (converging in a supremum norm) which gives
us that the limit, which is J(H)t(ω), is continuous. The integral for a process H in

H we denote also by
∫ t

0
Hs dBs = J(H)t.

We can also prove that the process (J(H)t)0≤t≤T is a martingale in L2(Ω,F ,P).
We can see that (I(Hn)t)

∞
n=1 is a Cauchy sequence in L2(Ω,F ,P). First we use the

fact that the Itô integral is linear for simple processes and get

E|I(Hn)t − I(Hm)t|2 = E|I(Hn −Hm)t|2.
Then Itô isometry for simple processes (Proposition 4.5 (1)) gives us

E|I(Hn −Hm)t|2 = E
(∫ t

0

(Hn
s −Hm

s ) dBs

)2

= E
∫ t

0

(Hn
s −Hm

s )2 ds.

From Lemma 4.7 we have that E
∫ t

0
(Hn

s −Hm
s )2 ds→ 0. This means that

(4.7) E|I(Hn)t − I(Hm)t|2 < ε for all n,m ≥ N(ε).

Now because the space L2(Ω,F ,P) is closed we know that there exists a unique
limit Xt ∈ L2(Ω,F ,P) such that

(4.8) L2 − lim
n
I(Hn)t = Xt.

Now we have that

(4.9) Xt =
∞∑
n=0

[I(Hnk+1)t − I(Hnk)t] = J(H)t a.s.

because from the L2(Ω,F ,P)-convergence of I(Hn)t to Xt and the a.s. convergence
to J(H)t follows also the convergence in probability. Both Xt and J(H)t are limits
of the same sequence and hence Xt and J(H)t must be equal.

Because the I(Hn)t is adapted and it converges to J(H)t in L2 also the limit has
to be adapted. Integrability is also straightforward since it follows from L2 conver-
gence. It is sufficient to prove the martingale inequality. Since we know that the
processes (I(Hn)t)0≤t≤T are martingales we prove that the limit (J(H)t)0≤t≤T is also
a martingale.
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From (4.8) and (4.9) we can conclude that for any u ∈ [0, T ]

E|J(H)u − I(Hn)u|2 → 0 as n→∞.

For G ∈ Fs we get by using Hölder’s inequality that

(4.10)
∣∣E (J(H)u1IG)− E (I(Hn)u1IG)

∣∣ ≤ (E|J(H)u − I(Hn)u|2
) 1

2 (E1IG)
1
2 → 0

as n→∞.

Since (I(Hn)t)0≤t≤T is a martingale we have for u = t that

E (J(H)t1IG) = lim
n→∞

E (I(Hn)t1IG)

= lim
n→∞

E (I(Hn)s1IG)

= E (J(H)s1IG) ,

where in the last step we use (4.10) with u = s.

Proposition 4.8. For a process (Ht)0≤t≤T that belongs to H we have:

(1) E
(
supt≤T |J(H)t|2

)
≤ 4E

(∫ T
0
H2
s ds

)
(2) If t ≤ T , E(J(H)2

t ) = E
(∫ t

0
|Hs|2 ds

)
(3)

∫ τ
0
Hs dBs =

∫ T
0

1Is≤τHs dBs a.s
for any (Ft)t≥0-stopping time τ .

Proof. We show (1): from Proposition 4.5 (2) we know that

E
(

sup
t≤T
|I(Hn)t|2

)
≤ 4E

(∫ T

0

|Hn
s |2 ds

)
.

Then by using (4.8) and (4.9) we get by taking the limit n→∞ that

E
(

sup
t≤T
|J(H)t|2

)
≤ 4E

(∫ T

0

H2
s ds

)
.

We show (2): from Proposition 4.5 (1) it follows that

E(I(Hn)2
t ) = E

((∫ t

0

Hn
s dBs

)2
)

= E
(∫ t

0

|Hn
s |2 ds

)
then by taking the limit n→∞ we get

E(J(H)2
t ) = E

(∫ t

0

|Hs|2 ds
)
.

The proof of assertion (3) can be found in [1] Proposition 3.4.5. �
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4.4. Extension from H to H̄. Because of the problems we face in modelling

we usually do not have the condition E
(∫ T

0
H2
s ds

)
< +∞, we define processes that

only satisfy the weaker integrability condition
∫ T

0
H2
s ds < +∞ a.s. That is why we

define a new set of processes H̄ in the following way:

H̄ =

{
(Ht)0≤s≤T , (Ft)t≥0 − progressively measurable,

∫ T

0

H2
s ds < +∞ a.s.

}
.

Next we define an extension of the stochastic integral from H to H̄ with the
following properties:

Proposition 4.9. There exists a unique linear mapping J̄ from H̄ into the vector
space of continuous processes defined on [0, T ], such that:

(1) Extension property: If (Ht)0≤t≤T is a simple process, then P almost surely
for any 0 ≤ t ≤ T it holds J̄(H)t = I(H)t

(2) Continuity property: If (Hn)n≥0 is a sequence of processes defined in H̄ such

that limn→∞
∫ T

0
(Hn

s )2 ds = 0 almost surely we also have that supt≤T |J̄(Hn)t|
converges to 0 in probability.

For J̄(H)t we use the same notation as for J(H)t and we write J̄(H)t =:∫ t
0
Hs dBs.

The proof can be found in [1] Proposition 3.4.6.

Remark 4.10. In this case the process
(∫ t

o
Hs dBs

)
0≤t≤T

is a local martingale.

Proposition 4.11. The Itô integral is linear, which means that for constants α
and β we have that J̄(αX + βY )t = αJ̄(X)t + βJ̄(Y )t, where X and Y are processes
in H̄.

Proof. First let us consider two processes X and Y from H̄ and define

Tn = inf

{
0 ≤ s ≤ T,

∫ s

0

X2
u du ≥ n

}
and T̂n = inf

{
0 ≤ s ≤ T,

∫ s

0

Y 2
u du ≥ n

}
.

Then we define two sequences Xn
t and Y n

t such that Xn
s = Xs1I{s≤Tn} and Y n

s =

Ys1I{s≤T̂n}. These two sequences Xn
t and Y n

t are defined such that
∫ T

0
|Xn

s − Xs|2 ds
and

∫ T
0
|Y n
s − Ys|2 ds converge to 0 in probability (see [1] Proposition 3.4.6). By

using Proposition 4.9 (2) (continuity of J̄) we can take the limit in the equality
J̄(αXn + βY n)t = αJ̄(Xn)t + βJ̄(Y n)t and get the desired result. �

To sum up let us have a stochastic process (Ht)0≤t≤T and a (Ft)-Brownian mo-

tion (Bt)t≥0. The stochastic integral (
∫ T

0
Hs dBs)0≤t≤T can be defined if we have the

condition
∫ T

0
H2
s ds <∞ a.s. and the (Ft)t≥0-progessive measurability of the process

(Ht)0≤t≤T .

4.5. Itô’s Formula. From calculus we know that, if f ∈ C1(R) and −∞ < x <
y <∞ there is a fundamental formula such that
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f(y) = f(x) +

∫ y

x

f ′(u) du.

Our goal is to derive a variant of this formula for Itô integrals.

Definition 4.12. A continuous and adapted process (X)0≤t≤T , Xt : Ω → R
is called Itô-process provided that there is L ∈ H̄ and a progressively measurable
process (at)0≤t≤T such that∫ t

0

|au(ω)| du <∞ for 0 ≤ t ≤ T, a.s.

for all 0 ≤ t ≤ T and ω ∈ Ω, and x0 ∈ R such that

Xt(ω) = x0 +

(∫ t

0

Lu dBu

)
(ω) +

∫ t

0

au(ω) du for 0 ≤ t ≤ T, a.s.

Proposition 4.13. Let (Xt)0≤t≤T be an Itô process like in Definition 4.12 and
let f : [0,∞) × R → R be a continuous function such that all the partial derivatives
∂f/∂t, ∂f/∂x, and ∂2f/∂x2 exist on (0,∞)×R and can be continuously extended to
[0,∞)× R and are continuous. Then one has that

f(t,Xt) = f(0, X0) +

∫ t

0

∂f

∂u
(u,Xu) du+

∫ t

0

∂f

∂x
(u,Xu)Lu dBu

+

∫ t

0

∂f

∂x
(u,Xu)au du+

1

2

∫ t

0

∂2f

∂x2
(u,Xu)L

2
u du.

The above formula we call Itô’s formula.

The proof for Itô’s formula in a simple case can be found in [7] Chapter 3.3, and
for the general case see [12] Theorem 4.4.

5. Description of the Black-Scholes model

5.1. Interest rate process. The interest rate process can be derived by first
considering the interval [0, T ] where time goes from 0 to T . Then we divide this
interval into n parts so the size of each subinterval becomes T

n
. This means that we

consider subintervals Ij = [j T
n
, (j + 1)T

n
]. Then suppose that trading occurs only at

time points tj = j T
n
, j = 0, . . . , n − 1 with equal distance. We fix r as the riskless

constant interest rate over each interval Ij and invest 1 euro at time 0, which we will
get back at maturity T . Our process is now given by

Bn
tj

= (1 + rn)j, j = 0, . . . , n,

where rn is the interest rate in the time interval Ij.
In the continuous time model we assume that we can trade in any momentum of

time hence the price process Bt is given by

(5.1) Bt = ert.
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The above interest rate is called instantaneous interest rate. If we put B0 amount
of money in the bank then after time t we have B0e

rt = Bt amount of money. From
this we also have that for B0 the amount of money that is kept follows the equation
B0 = Bte

−rt. This sort of pricing is called the discounted price of the fixed deposit
at time t. If Bt is the amount we should get at time t the intuition of the discounted
price is that it tells what amount we should deposit now. So if Bt is the amount of
money we require Bte

−rt is the amount we should invest.
We also find out that when solving the equation

(1 + rn)n = erT

we get that rn = e
rT
n −1. Then by choosing rn this way and using the Taylor expansion

for rn we notice that the terms rT
n

and e
rT
n − 1 are approximately the same. From

the definition of the function ex we know see that the equality BT = erT holds when
Bn
tn = BT also limit wise since limn→∞(1 + rT

n
)n = erT by definition.

5.2. The behaviour of price processes. For price processes in the Black Sc-
holes model we use continuous-time processes with a riskless asset and one risky asset.
Our riskless asset can be for example a bank account with S0

t amount of money at
time t and a risky asset for example a stock with price St at time t. We set S0

0 = 1
and S0

t = ert for r ≥ 0 and t ≥ 0 like in equation (5.1). For this we have that S0
t

follows the following ordinary differential equation

(5.2) dS0
t = rS0

t dt.

It is very easy to see that S0
t = ert is a solution to the equation (5.2) for S0

0 = 1.
For describing the behavior of the risky asset we use the geometric Brownian motion
which has the following stochastic differential equation:

(5.3) dSt = St(µdt+ σdBt).

Here µ and σ are constants and (Bt)t≥0 is a standard Brownian motion. The part
Stµdt is a drift term and σ is a variance term which represents the volatility of the
stock price. We use the above model on the interval [0, T ] where T is the maturity of
the stock and hence the selling time.

To solve the equation (5.3) we first introduce the stochastic exponential

E(B)t = eBt−
t
2 , t ∈ [0, T ].

We will apply Itô’s formula for the function f(t, x) = ex−
t
2 and we let Xt = Bt,

where Xt is an Itô process. We have that f ∈ C1,2([0, T ] × R). For the partial

derivatives we get ∂f
∂u

(u, x) = −1
2
f(u, x) and ∂f

∂x
(u, x) = ∂2f

∂x2
(u, x) = f(u, x). From

Itô’s formula we get

f(t, Bt) = eBt−
t
2 = 1 +

∫ t

0

−1

2
eBu−

u
2 du+

∫ t

0

eBu−
u
2 dBu +

1

2

∫ t

0

eBu−
u
2 du

= 1 +

∫ t

0

eBu−
u
2 dBu.
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From this we immediately get that s0E(B)t solves

s0 +

∫ t

0

s0e
Bu−u2 dBu = s0 +

∫ t

0

s0E(Bu)udBu.

Likewise, for a constant σ, the process E(σB)t satisfies the equation

Yt = 1 + σ

∫ t

0

YudBu.

This means that s0E(σB)t = s0e
σBt−σ

2t
2 solves

Yt = s0 + σ

∫ t

0

YudBu.(5.4)

Let Yt = e−µtSt, where we assume that (St)t≥0 solves (5.3). Then by Itô’s formula
applied to f(t, x) = e−µtx,

Yt = f(t, St) = s0 +

∫ t

0

−µYu du+

∫ t

0

e−µuσSudBu +

∫ t

0

e−µuµSudu+
1

2

∫ t

0

0 du

= s0 +

∫ t

0

σYudBu +

∫ t

0

−µYu + µYu du

= s0 +

∫ t

0

σYudBu.

From this by using (5.4) it follows that Yt = s0e
σBt−σ

2t
2 which means that

(5.5) St = s0e
µt−σ

2t
2

+σBt .

Here the initial value s0 is the price observed at time 0. From (5.5) we see that the
process (St)t≥0 is log-normally distributed (exponential function form). This means
that (St)t≥0 can not have negative values thus it fits well for price modelling. We can
also see that (St)t≥0 is a solution of (5.5) if and only if the process (log(St))t≥0 is a
Brownian motion with drift. The process (St)t≥0 has the following properties:

• for all ω ∈ Ω, t 7→ St(ω) : [0, T ]→ R is a continuous function
• Independent relative increments: if u ≤ t, the relative increment St−Su

Su
is in-

dependent of the σ-algebra σ(Sv, v ≤ u). This follows from St−Su
Su

= St
Su
−1 =

eµt−
σ2

2
t+σBt−µu+σ2

2
u−σBu−1 = eµ(t−u)−σ

2

2
(t−u)+σ(Bt−Bu)−1 and because Bt−Bu

is independent from Bv for all v ≤ t, we have that St−Su
Su

is independent from
Sv for all v ≤ u.
• stationary relative increments: if u ≤ t then St−Su

Su
has the same law as

St−u−S0

S0
, hence both are log normally distributed.

5.3. Self-financing strategies. We define a trading strategy as a R2-valued
process φ = (φt)0≤t≤T = (H0

t , Ht)0≤t≤T which is progressively measurable with respect
to the augmented natural filtration (Ft)0≤t≤T of the Brownian motion. We call H0

t

a quantity of riskless asset and Ht a quantity of a risky asset at time t. We define
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the value of a portfolio by using the inner product of the R2 valued vectors φt and
(S0

t , St). The value of the portfolio at time t is given by the equation

(5.6) Vt(φ) = H0
t S

0
t +HtSt.

Next we formulate the self-financing condition in the continuous time case by
setting

dVt(φ) = H0
t dS

0
t +HtdSt.

We assume that

∫ T

0

|H0
t | dt < +∞ and

∫ T

0

H2
t dt < +∞ a.s.

This implies that the integrals∫ T

0

H0
t dS

0
t =

∫ T

0

H0
t re

r dt

and ∫ T

0

Ht dSt =

∫ T

0

HtSt(µdt+ σdBt) =

∫ T

0

µHtStdt+

∫ T

0

σHtStdBt

are well defined because the map t → St is continuous and thus bounded on [0, T ]
almost surely.

Here we used (5.2) and (5.3) respectively.

Definition 5.1. (a) A self-financing trading strategy consists of two pro-
gressively measurable processes (H0

t )0≤t≤T and (Ht)0≤t≤T satisfying:

(1)
∫ T

0
|H0

t | dt+
∫ T

0
H2
t dt < +∞ a.s.

(2) H0
t S

0
t +HtSt = H0

0S
0
0 +H0S0 +

∫ t
0
H0
u dS

0
u +

∫ t
0
Hu dSu a.s. for all t ∈ [0, T ].

(b) We define the discounted price process S̃ by setting S̃ = e−rtSt.

Proposition 5.2. Let φ = (H0
t , Ht)0≤t≤T be an R2-valued adapted process which

satisfies condition (1) in Definition 5.1. If we set Vt(φ) = H0
t S

0
t +HtSt and Ṽt = e−rtVt

then φ defines a self-financing process if and only if

(5.7) Ṽt(φ) = V0(φ) +

∫ t

0

HudS̃u a.s.

for all t ∈ [0, T ].

Proof. Let us consider the self-financing strategy φ. Since from Definition 5.1 it
follows that dVt(φ) = H0

t dS
0
t +HtdSt is an Itô-process we can use Itô’s formula. We

differentiate Ṽt(φ) by using Itô’s formula. Since Ṽt = e−rtVt(φ) we use the function
f(t, x) = e−rtx and get

Ṽt(φ) = f(t, Vt(φ)) = V0(φ) +

∫ t

0

(−r)Ṽs(φ) ds+

∫ t

0

e−rs dVs(φ).

Now we see that

dṼt(φ) = −rṼt(φ)dt+ e−rtdVt(φ).
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Then we use S0
t = ert and dVt(φ) = H0

t dS
0
t +HtdSt to obtain

dṼt(φ) = −re−rt(H0
t e

rt +HtSt)dt+ e−rt(H0
t d(ert) +HtdSt)

= −re−rtH0
t e

rtdt− re−rtHtStdt+ e−rtH0
t re

rtdt+ e−rtHtdSt

= −rH0
t dt− re−rtHtStdt+ rH0

t dt+ e−rtHtdSt

= Ht(−re−rtStdt+ e−rtdSt)

= HtdS̃t.

This yields the equation (5.7) because HtdS̃t is the differential form of the equation
(5.7). �

6. Change of probability and representation of martingales

Next we introduce a method to remove the drift of a Brownian motion and change
processes into martingales by changing the probability measure. Our goal is to get a

probability Q under which S̃t is a martingale. The measure Q can be found by using
Girsanov’s theorem. Finding an equivalent martingale measure Q is important for
achieving a fair game trading environment.

6.1. Equivalent probabilities. Let (Ω,F ,P) be a probability space. Another
probability measure Q on (Ω,F) is called absolutely continuous relative to P if for
every A ∈ F when P(A) = 0 holds then we always have that also Q(A) = 0.

Theorem 6.1. The probability measure Q is absolutely continuous relative to P
if and only if there exists a non-negative random variable Z on (Ω,F) such that for
all A ∈ F

Q(A) =

∫
A

Z(ω)dP(ω).

The random variable Z is called density of Q relative to P and sometimes denoted by
dQ
dP .

More information about this theorem can be found in [1] Theorem 4.2.1. The
implication ⇒ is in fact the Radon-Nikodym theorem. The probability measures
are called equivalent if each one is absolutely continuous relative to the other. This
means that if P(A) = 0 then Q(A) = 0 and if Q(A) = 0 then also P(A) = 0 for all
A ∈ F .

Lemma 6.2. If Q is absolutely continuous relative to P with density Z then P and
Q are equivalent if and only if P(Z > 0) = 1.

Proof. First we assume that P(Z > 0) = 1 and show that P and Q are equivalent.
If this is not true then there exists a set A ∈ F with P(A) > 0 and Q(A) = 0. But
since Q(A) =

∫
A
Z dP =

∫
Ω

1IAZ dP we have that Q(A) = 0 only if 1IAZ = 0 P-a.s.
This is impossible because P(Z > 0) = 1 and P(A) > 0.

For the other direction we first assume that for any A ∈ F with P(A) > 0 we
also have Q(A) > 0. Let us also assume that P(Z > 0) < 1. Then we define a set
B = {ω ∈ Ω : Z(ω) = 0} and we get P(B) = P(Z = 0) = 1 − P(Z > 0) > 0.
But for Q(B) we get that Q(B) =

∫
Ω

1IBZ dP = 0 which is against our assumption
P(B) > 0⇒ Q(B) > 0. �
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6.2. Girsanov’s theorem. Let (Ω,F , (Ft)0≤t≤T ,P) be a probability space with
the augmented natural filtration of a standard Brownian motion on the time interval
[0, T ].

Theorem 6.3. Let (θt)0≤t≤T be a progressively measurable process satisfying∫ T

0

θ2
s ds <∞

almost surely and such that the process (Lt)0≤t≤T defined by

Lt = exp

(
−
∫ t

0

θs dBs −
1

2

∫ t

0

θ2
s ds

)
, t ∈ [0, T ]

is a martingale. Then with respect to Q, given by

Q(A) =

∫
A

Lt dP, A ∈ F ,

the process (Wt)0≤t≤T defined by

Wt = Bt +

∫ t

0

θs ds, 0 ≤ t ≤ T

is a standard Brownian motion.

Proof for Girsanov’s theorem can be found in [1] Theorem 4.2.2.

Remark 6.4. In applications it is often difficult to check whether (Lt)0≤t≤T is a
martingale. As a sufficient condition for showing that (Lt)0≤t≤T is a martingale we
can use the Novikov condition

Ee
1
2

∫ T
0 θ2t dt <∞.

6.3. Representation of Brownian martingales. If the filtration of the cor-
responding martingale is generated by a Brownian motion we have a Brownian mar-
tingale. For obtaining the fair price of the option we will use the so-called martingale
representation. Let (Ω,F ,P) be a complete probability space and (Bt)0≤t≤T be a stan-
dard Brownian motion with augmented natural filtration (Ft)0≤t≤T . We know that if

the process (Ht)0≤t≤T is progressively measurable, and such that E
(∫ T

0
H2
t dt
)
<∞,

then the process
(∫ t

0
HsdBs

)
0≤t≤T

is a square integrable martingale which is null at

0. Next we will show that any Brownian martingale can be represented in terms of a
stochastic integral.

Theorem 6.5. Let (Ft)0≤t≤T be the augmented natural filtration of a Brownian
motion and (Mt)0≤t≤T be a square-integrable martingale. There exists a progressively

measurable process (Ht)0≤t≤T such that E
(∫ T

0
H2
s ds

)
<∞ , and

(6.1) Mt = M0 +

∫ t

0

Hs dBs almost surely for all t ∈ [0, T ].
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More about this theorem can be found in [1] Theorem 4.2.4. This representation
only applies to the martingales relative to the natural filtration of the Brownian
motion. The martingales we are interested in are square integrable and they are
martingales with respect to the filtration (Ft)0≤t≤T and therefore we always have the
representation (6.1).

Remark 6.6. From this theorem we have a representation

U = E(U) +

∫ T

0

Hs dBs a.s.

for every FT -measurable square-integrable random variable U , where (Ht)0≤t≤T is a

progressively measurable process such that E
(∫ T

0
H2
t ds

)
<∞ .

Proof. Let U be an FT -measurable random variable satisfying EU2 < ∞. Let
us consider the martingale given by Nt := E(U |Ft). Firstly (Nt)t≥0 is a martingale
because it is Ft-adapted by construction and E|Nt| < ∞ for all t ≥ 0. The relation

E|Nt| <∞ holds because by Hölder’s inequality we can see that E|Nt| ≤ (EN2
t )

1
2 and

EN2
t = E(E[U |Ft])2 ≤ E(E[U2|Ft]) = EU2 <∞.

Here we used Jensen’s inequality for conditional expectation and the tower prop-
erty. Jensen’s inequality for conditional expectation can be found in [8] Theorem 4
(iii).

To show the martingale property we use the tower property again and get

E[Nt|Fs] = E[E[U |Ft]|Fs] = E[U |Fs] = Ns when s ≤ t.

This shows that (Nt)t≥0 is a martingale. Finally the representation

U = E(U) +

∫ T

0

Hs dBs

comes from the fact that NT = U = N0 +
∫ T

0
Hs dBs, and since E(U) = N0 we have

that

U = E(U) +

∫ T

0

Hs dBs.

�

7. Pricing and hedging of options in the Black-Scholes model

7.1. A probability under which S̃t is a martingale. We will now consider
the description of the Black-Scholes model and use Theorem 3.1 in order to switch the

probability measure from P to Q, where the discounted share price S̃t = e−rtSt, t ∈
[0, T ], is a martingale with respect to the probability Q. First we will show that such
Q exists. By using Ito’s product rule and the stochastic differential equation (5.3),
we have
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dS̃t = d(e−rtSt) = −re−rtStdt+ e−rtdSt

= −re−rtStdt+ e−rt(St(µdt+ σdBt))

= −re−rtStdt+ e−rtStµdt+ e−rtStσdBt

= −rS̃tdt+ S̃tµdt+ S̃tσdBt

= S̃t((µ− r)dt+ σdBt).

If we then set Wt = Bt + (µ−r)t
σ

, we have dBt = dWt − µ−r
σ
dt, and by substituting

this into S̃t((µ− r)dt+ σdBt) we will get

(7.1) dS̃t = S̃tσdWt.

From Girsanov’s theorem by setting θt = (µ−r)
σ

we have that there exists a proba-

bility Q equivalent to P under which (Wt)0≤t≤T = Bt + (µ−r)t
σ

is a standard Brownian

motion. We also see from (7.1) that (S̃t) should be a martingale (provided that the
integrand is square integrable) with respect to the probability Q because there is no
drift.

The differential equation (7.1) with initial condition S̃0 can be solved by using a
stochastic exponential multiplied by a constant σ, which is

E(σWt) = exp

(
σWt −

σ2

2
t

)
.

This we have shown with Ito’s formula in chapter 3.2. From this we have that

S̃t = S̃0 exp

(
σWt −

σ2

2
t

)
.

7.2. Pricing. In this section, we will focus on European options. Our goal is
by using theorems from the previous sections to obtain a fair price, which we call
a premium, of the European call-option and put-option. This means that in a fair
market model it should not be possible to make a riskless profit, and the odds for
gaining should be the same for the stock trader and the writer. For example if the
premium is too cheap the trader’s risk of losing money is slim to none and if the price
is too high no one wants to start trading. This means that for instance free premium
gives the trader a possibility to make riskless profit because even if he loses (ST < K)
he can decide to not buy the stock with strike price K and hence loses no money
(loss=premium=0).

The characteristics of a European call option is that it can only be exercised at
maturity time T . This means that the trader can not decide the time when to buy a
stock and hence he can only decide wether buy the stock at time T or not. European
option trading starts when someone buys a European call option with the price called
premium. After the premium is paid the holder of a call option can decide wether
to buy or not to buy shares with the price decided beforehand called the strike price
K. Assume we have a European call-option with strike price K > 0 at time T > 0.
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We define the payoff function of a European call-option at time T as a non-negative
FT -measurable random variable that can be written as

f(ST ) = (ST −K)+,

where ST is the price of a stock at maturity T . We take the maximum of ST − K
and zero, because it is assumed that the holder will not exercise the option in case
ST < K, so that the value is then zero. Hence the function describes the possible
gain. For example if ST > K the option holder buys a share for the price K and if
he sells it immediately he makes profit

ST −K − premium

and if ST ≤ K the option holder does not buy and loses the premium amount of
money that he paid before starting to trade.

In the case of a put the option holder is allowed to decide wether sell or not to
sell the asset at time T with the strike price K. This means that, opposite to the call
option, the stock holder buys a put option if he expects the price of the underlying
to fall. In the case of a put we define a European option to be f(ST ) = (K − ST )+.

We introduce now admissible strategies which we define in the following manner:

Definition 7.1. A strategy φ = (H0
t , Ht)0≤t≤T is called admissible if it is self-

financing and if the discounted value of the corresponding portfolio Ṽt(φ) = H0
t +HtS̃t

is non-negative for all t ∈ [0, T ]. We also assume that supt∈[0,T ] Ṽt is square integrable
for all t ∈ [0, T ] with respect to Q.

Any option considered here is a non-negative FT -measurable random variable. An
option h is called replicable if its payoff at maturity time T is the same as the final
value of an admissible strategy φ. This means that we have h = VT (φ). In the case
of a call for the option h = (ST −K)+ to be replicable it is useful that it is square
integrable with respect to Q. The random variable h = (ST−K)+ is square integrable
because EQ(ST )2 < ∞. In the case of a put, the random variable h is also bounded
because the maximum of a function f(ST ) = (K − ST )+ is the strike price K.

Next we are going to consider a formula for calculating the value of any replicating
portfolio. First we notice that from Remark 6.6 any option which is defined by a
non-negative FT -measurable random variable h, that is square integrable under the
probability Q, is replicable. Therefore we always assume that h ∈ L2(Q). The fact
that h is replicable follows from Remark 6.6 because

h = Eh+

∫ T

0

Hs dBs = Eh+

∫ T

0

Hs

S̃sσ
dS̃s,

since dS̃s = S̃sσdBs by (7.1). Now we can define a trading strategy ψ = (Ĥ0
t , Ĥt)0≤t≤T

by setting Ĥt = Hs
S̃sσ

and Ĥ0
t = Ṽt − H̃tS̃t. Then we have h = ṼT (ψ).

Theorem 7.2. The value at time t of any replicating portfolio is given by

Vt = EQ(e−r(T−t)h|Ft).

Now we have another way to define the option value at time t which is the ex-
pression EQ(e−r(T−t)h|Ft).



24

Proof. First we assume that there is an admissible strategy (H0, H) replicating
the option. We use equation (5.6) to define our portfolio’s value at time t which is

Vt = H0
t S

0
t +HtSt,

and the discounted process is also defined like before by setting Ṽt = Vte
−rt. This

gives us the equation

Ṽt = H0
t +HtS̃t.

Since the strategy is self-financing, we get from Proposition 3.2 and equation (7.1)

Ṽt = V0 +

∫ t

0

Hu dS̃u

= V0 +

∫ t

0

HuσS̃u dWu.

By definition of admissible strategies we have to verify that supt∈[0,T ] Ṽt is square
integrable with respect to the probability Q. We can also see from the upper equality

that (Ṽt) is a stochastic integral relative to (Wt). So we show that (Ṽt) is a square
integrable martingale with respect to Q, which means that we have to show that

EQ

(∫ t
0
H2
uσ

2S̃2
u du

)
<∞.

Let us define Ĥu := HuσS̃u. Then we have∫ t

0

HuσS̃u dWu =

∫ t

0

Ĥu dWu.

Since (H0
t , Ht)t≥0 is a self-financing (Ft)t≥0 progressively measurable strategy, Defi-

nition 5.1 gives us that ∫ T

0

H2
t dt <∞. a.s.

This also gives us that∫ T

0

Ĥ2
t dt =

∫ T

0

(HuσS̃u)
2 du <∞ a.s.

since

∫ T

0

(HuσS̃u)
2 du =

∫ T

0

H2
uσ

2S̃2
u du ≤ σ2

∫ T

0

H2
u sup
u∈[0,T ]

S̃2
u du

= σ2 sup
u∈[0,T ]

S̃2
u

∫ T

0

H2
u du <∞.

Here we used that supu∈[0,T ] S̃
2
u <∞ a.s. because (S̃u)u∈[0,T ] is a.s. continuous on

[0, T ].

Next we introduce the sequence of stopping times τn = inf{t > 0 :
∫ t

0
Ĥ2
u du =

n} for n = 1, 2, . . . . Now we have that
∫ T∧τn

0
Ĥu dWu =

∫ T
0
Ĥu1I{u≤τn}dWu and
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EQ

(∫ τn
0
Ĥ2
u du

)
= n. Then we consider the limit where n approaches infinity and by

Itô-isometry we get

lim
n→∞

EQ

(∫ T∧τn

0

Ĥu dWu

)2

= lim
n→∞

EQ

(∫ T∧τn

0

Ĥ2
u du

)
= EQ

(
lim
n→∞

∫ T∧τn

0

Ĥ2
u du

)
= EQ

∫ T

0

Ĥ2
u du.

We continue by using the fact that EQ

(
supt∈[0,T ] Ṽt

)2

<∞. We have

EQ

∫ T

0

Ĥ2
u du = lim

n→∞
EQ

(∫ T∧τn

0

Ĥu dWu

)2

= lim sup
n

EQ

(∫ T∧τn

0

Ĥu dWu

)2

≤ EQ

(
lim sup

n

(∫ T∧τn

0

Ĥu dWu

)2
)

≤ EQ

(
sup

0≤t≤T

(∫ t

0

Ĥu dWu

)2
)
.

If a sequence has a limit it coincides with its limit superior. Hence the lemma of
Fatou can be applied.

Since Ṽt = V0 +
∫ t

0
HuσS̃u dWu we also have that∫ t

0

HuσS̃u dWu =

∣∣∣∣ ∫ t

0

HuσS̃u dWu + V0 − V0

∣∣∣∣ ≤ |Ṽt|+ |V0|.

Taking square and supremum of both sides we get

sup
0≤t≤T

|
∫ t

0

HuσS̃u dWu|2 ≤ 2

(
sup

0≤t≤T
|Ṽt|
)2

+ 2|V0|2

which proves that sup0≤t≤T |
∫ t

0
HuσS̃u dWu|2 is square integrable since

EQ sup
t∈[0,T ]

|Ṽt|2 <∞

by assumption. The process (Ṽt)0≤t≤T is also martingale because (Hu)0≤u≤T is pro-
gressively measurable with respect to the given filtration. This gives us the equation

Ṽt = EQ(ṼT |Ft).
By hypothesis VT = h and its discounted value at time t is given by Ṽt = Vte

−rt

we can write the upper equation like in Theorem 7.2.

(7.2) Vt = EQ(e−r(T−t)h|Ft).
�
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Now we have proven that if an admissible portfolio (H0, H) replicates the option
defined by random variable h we can get its value from equation (7.2).

Theorem 7.3. There exists processes H0 and H defining an admissible strategy,
such that

H0
t S

0
t +HtSt = EQ(e−r(T−t)h|Ft)

under the probability Q with h ∈ L2(Q).

This shows that the option is indeed replicable.

Proof. We have that under the probability Q, the process (Mt)0≤t≤T given by
Mt := EQ(e−rTh|Ft) is a square-integrable martingale. The filtration (Ft)0≤t≤T , which
is the augmented natural filtration of the Brownian motion (Bt)0≤t≤T , is also the aug-
mented natural filtration of (Wt)0≤t≤T . Since (Mt)0≤t≤T is a square-integrable martin-
gale and adapted with respect to the filtration (Ft)0≤t≤T , from the representation of
Brownian martingales (Theorem 6.5), there exists a progressively measurable process

(Kt)0≤t≤T such that E
(∫ T

0
K2
u du

)
<∞ and

∀t ∈ [0, T ] Mt = M0 +

∫ t

0

Ku dWu a.s.

Then the strategy φ = (H0
t , Ht)0≤t≤T can be chosen by setting Ht = Kt

σS̃t
and H0

t =

Mt−HtS̃t (compare with the equations Ṽt = H0
t +HtS̃t and Ṽt = V0 +

∫ t
0
HuσS̃u dWu).

The strategy φ is then, by Proposition 5.2 and equality (7.1), a self-financing strategy
and its value at time t is given by

Vt(φ) = ertMt = EQ
(
e−r(T−t)h|Ft

)
.

From this expression we can see that Vt(φ) is a non-negative random variable, with
sup0≤t≤T Vt(φ) square-integrable under Q and VT (φ) = h. Non-negativity follows from
the fact that h is a non-negative FT -masurable random variable. We have found an
admissible strategy replicating h.

�

Remark 7.4. Let us try to express the option value Vt at time t by using a
function of t and St. This can be done when the random variable h can be written as
h = f(ST ) (as a function of the asset price at time T ). By using h = f(ST ) we have

Vt = EQ
(
e−r(T−t)f(ST )|Ft

)
.

By using the formula S̃T = S̃0 exp
(
σWT − σ2

2
T
)

we have that

ST = S̃0 exp

(
σWT −

σ2

2
T

)
erT

and by writing ST = ST
St
St we can get the expression WT −Wt to show up:
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Vt = EQ
(
e−r(T−t)f(ST )|Ft

)
= EQ

(
e−r(T−t)f(Ste

σWT−σ
2T
2
−(σWt−σ

2t
2

)er(T−t))|Ft
)

= EQ

(
e−r(T−t)f(Ste

r(T−t)eσ(WT−Wt)−(σ
2

2
)(T−t))|Ft

)
.

The random variable St is Ft-measurable and, under Q, WT −Wt is independent
of Ft. From Proposition A.2.5 [1], we can compute

EQ

(
e−r(T−t)f(Ste

r(T−t)eσ(WT−Wt)−(σ
2

2
)(T−t))|Ft

)
as if St was a constant. We write

Vt = F (t, St),

where

F (t, x) = EQ

(
e−r(T−t)f(xer(T−t)eσ(WT−Wt)−(σ

2

2
)(T−t))

)
.

This can also be written in the following form by calculating the product of the
two exponential functions inside the function f . We get

(7.3) F (t, x) = EQ

(
e−r(T−t)f(xe(r−σ

2

2
)(T−t)+σ(WT−Wt))

)
.

From the fact that WT −Wt is a zero-mean normal random variable with T − t
variance under Q we can calculate the expected value by using the density of normal
distribution and writing WT −Wt = Y

√
T − t, where Y is standard Gaussian random

variable. We have

F (t, x) = e−r(T−t)
∫ ∞
−∞

f(xe(r−σ
2

2
)(T−t)+σy

√
T−t)

e−y
2/2

√
2π

dy.

Next we calculate the function F (t, x) explicitly for calls and puts. We use the
definition of f we introduced in the subsection Pricing 7.2 for calculation which is
f(x) = (x−K)+ in the case of the call. From equality (7.3) we have,

F (t, x) = EQ

(
e−r(T−t)(xe(r−σ

2

2
)(T−t)+σ(WT−Wt) −K)+

)
= EQ

(
xeσ(WT−Wt)−σ

2(T−t)
2 −Ke−r(T−t)

)
+

= E
(
xeσ

√
θg−σ

2θ
2 −Ke−rθ

)
+
.

Here g is a standard Gaussian random variable and θ = T − t.
Let us check when the expression xeσ

√
θg−σ

2θ
2 −Ke−rθ is positive because otherwise

we get zero. We have that

xeσ
√
θg−σ

2θ
2 −Ke−rθ ≥ 0
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and in order to remove the exponential functions we take logarithm of both sides of
the above inequality after adding Ke−rθ on both sides and get

log(x) + σ
√
θg − σ2θ

2
≥ log(K)− rθ.

We also want to separate our Gaussian random variable from the expression and
after that we divide the inequality by σ

√
θ. We get

g +
log( x

K
) + (r − σ2

2
)θ

σ
√
θ

≥ 0.

Let us set

d1 =
log( x

K
) + (r + σ2

2
)θ

σ
√
θ

and d2 =
log( x

K
) + (r − σ2

2
)θ

σ
√
θ

= d1 − σ
√
θ.

We can now compute the expected value for xeσ
√
θg−σ

2θ
2 −Ke−rθ using notations

above, because we know when the expression is positive (otherwise we get zero). We
get

F (t, x) = E
(

(xeσ
√
θg−σ

2θ
2 −Ke−rθ)1I{g+d2≥0}

)
=

∫ ∞
−d2

(xeσ
√
θy−σ

2θ
2 −Ke−rθ)e

−y2
2

√
2π
dy

=

∫ d2

−∞
(xe−σ

√
θy−σ

2θ
2 −Ke−rθ)e

−y2
2

√
2π
dy.

Notice that in the last equality we have term−σ
√
θy because of the transformation

y → −y. We continue writing the above expression as difference of two integrals:

F (t, x) = x
1√
2π

∫ d2

−∞
e−σ

√
θy−σ

2θ
2 e−

y2

2 dy −Ke−rθ 1√
2π

∫ d2

−∞
e−

y2

2 dy.

In the first integral using the change of variable z = y + σ
√
θ the upper bound

changes to d2 + σ
√
θ = d1 and we obtain

x
1√
2π

∫ d2

−∞
e−σ

√
θy−σ

2θ
2 e−

y2

2 dy = x
1√
2π

∫ d1

−∞
e−σ

√
θ(z−σ

√
θ)−σ

2θ
2 e−

(z−σ
√
θ)2

2 dz

= x
1√
2π

∫ d1

−∞
e−σ

√
θz+σ2θ−σ2θ/2+σ

√
θz−σ2θ/2e−

z2

2 dz

= x
1√
2π

∫ d1

−∞
e−

z2

2 dz.

Finally using the notation N(d) = 1√
2π

∫ d
−∞ e

−x
2

2 dx for the expression



29

x
1√
2π

∫ d1

−∞
e−

z2

2 dz −Ke−rθ 1√
2π

∫ d2

−∞
e−

y2

2 dy,

we obtain the Black-Scholes formula for call options:

F (t, x) = xN(d1)−Ke−rθN(d2).

8. Risk-Sensitive Asset Management

In this section we have a different problem and objective than in the first part of
the thesis. Instead of having only one risky asset we can have many different risky
assets and we also introduce a new concept for defining the trading strategy by taking
a proportion of investor’s whole wealth and different risky assets. Before our main
goal was to calculate the fair price for the European call and put option but now we
will choose a certain asset management and aim to find the optimal control h∗. There
are many different utility functions that can be used to model the investor’s wealth
with a given risk, hence the decision maker can choose a value function that will suit
for his needs. Here the value function we are going to use is called risk-sensitive asset
management criterion. Comparing with the first section where there was no point
of view about the most suitable value function, here there are many possibilities to
choose.

We are going to present the risk-sensitive asset management model in a diffusion
setting and solve the risk-sensitive asset management problem when asset and factor
risks are uncorrelated, which means that ΛΣT = 0.

8.1. Financial Market. Let (Ω,F ,P, (Ft)0≤t≤T ) be the underlying probability
space. Our Brownian motion B(t) is defined like in Definition 3.4 but this time we
expand our calculations to RN and define an RN -valued (Ft)0≤t≤T -Brownian motion
with independent components Bk(t), k = 1, . . . , N .

So far we have only considered a market consisting of a single risky asset whose
price St satisfies the following SDE

(8.1) dSt = µStdt+ σStdBt, S0 = s0.

This time we have m-risky assets whose price Si(t), i = 1, . . . ,m is modelled as a
diffusion process satisfying the SDE:

dSi(t)

Si(t)
= (a+ AX(t))idt+

N∑
k=1

σikdBk(t), Si(0) = si, i = 1, . . . ,m.

We see that the drift of Si(t) is more complicated than in the equation (8.1). The
difference is that the drift term is now an affine function of a n-dimensional Gaussian
diffusion process X = (X(t))t≥0 satisfying the SDE

(8.2) dX(t) = (b+BX(t))dt+ ΛdB(t), X(0) = x.

We interpret the factor X(t) as an exogenous macroeconomic, microeconomic or
statistical process driving asset returns. Exogenous simply means that X(t) affects a
model without being affected by it. The process X can be used for example to model
interest rates, inflation or a stochastic risk premium.
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The value of a unit deposit at time 0 in the money market asset we denote by
S0(0). The dynamics of S0 is:

dS0(t)

S0(t)
= (a0 + AT0X(t))dt, S0(0) = 1.

From this expression we can conclude that the value S0 in the money market is no
longer risk-free, but subject to the randomness of the factor process X globally.

We set N = m + n and assume that the market parameters a0, a, b, A0, A, B,
Σ := [σij], i = 1, . . . ,m, j = 1, . . . , N , Λ := [Λij], i = 1, . . . , n, j = 1, . . . , N used
before are constant vectors and matrices of appropriate dimensions which will be
explained in detail below. We also assume that the matrix ΣΣT is positive definite
which means that the covariance matrix ΣΣT has a full rank m. The product ΣΣT

is a m×m matrix because Σ is a m×N matrix and hence its transpose is a N ×m
matrix. Multiplying a m×N matrix with a N ×m matrix we get a m×m matrix.
The implication is that we can not replicate m assets by only using the portfolio for
m − 1 assets. For example if the rank would be m − 1 we do not have all the share
prices for our trading.

We let Gt := σ((S(s), X(s)), 0 ≤ s ≤ t) be the sigma-field generated by the
security and factor processes by time t.

8.2. Investment portfolio. An investor’s general objective is to start with the
capital v0 at time 0 and maximize later the portfolio value at a fixed time T > 0 with
no intermediate consumption or external income. We define an Rm-valued stochastic
process h in order to share or allocate the total portfolio among assets. We define
the ith component of the process h in the following way:

hi(t) :=
Hi(t)Si(t)

Vt
,

where Si(t) is the price of the ith component, Hi(t) is the quantity of Si(t) and Vt is
the total portfolio value. We see that hi(t) denotes the proportion of total portfolio
value invested in the ith risky security at time t, where i = 1, . . . ,m. For example
if hi > 0 an investor owns the asset, in other words, he has paid money to buy the
asset. The case hi < 0 means that the investor tries to sell the asset that he does
not own and he benefits if the price of the asset falls. The case hi > 0 is also called
long asset and the case hi < 0 short asset. If a proportion hi(t) > 1 the investor has
leverage for example by borrowing cash.

We define asset h0(t) to be the balance of the total portfolio that is not allocated
to a risky asset. We can express the proportion of total portfolio value invested in
the money market instrument by using the budget equation:

h0(t) = 1−
m∑
i=1

hi(t) = 1− hT (t)1,

where 1 is the proportion relative to whole wealth, and then we take away everything
that is invested in the risky assets, which is

∑m
i=1 hi(t). We also write h = (h1, . . . , hm)

and 1 ∈ Rm denotes an m-element column vector with all elements set to 1. We invest
the excess cash h0(t) > 0 to the money market instrument while h0(t) < 0 means
that we have a cash requirement met by borrowing from the money market.
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In order to define the Girsanov exponential in this context we introduce the mul-
tidimensional version of Girsanov’s theorem.

Theorem 8.1. Let T be a fixed positive time, and let Θ(t) = (Θ1(t), . . . ,ΘN(t)) be
an N-dimensional progressively measurable process with respect to (Gt)t≥0. We define

Z(t) = exp

{
−
∫ t

0

Θ(u) dB(u)− 1

2

∫ t

0

‖Θ(u)‖2 du

}
,

W (t) = B(t) +

∫ t

0

Θ(u) du,

and assume that

E
∫ T

0

‖Θ(u)‖2Z2(u) du <∞.

We set Z = Z(T ). Then EZ = 1, and under the probability measure Q given by

Q(A) =

∫
A

Z(ω) dP(ω) for allA ∈ G,

the process W (t) is an N-dimensional Brownian motion.

It is easy to see that (Zt) is a martingale: Itô’s formula helps us to see that (Zt)
is a local martingale (see [5], page 213) since it satisfies

Z(t) = Z(0)−
∫ t

0

ΘZ(u)dB(u)

and by the L2-assumption the Itô integral is a martingale.
The proof for Theorem 8.1 is similar to the one dimensional case but instead of

one dimensional Levy’s theorem we use N -dimensional Levy’s theorem. The proof
can be found in [11] Theorem 5.4.1.

Then we define the class of admissible strategies A in a more general way than
in Definition 7.1. Because of the dependence on the factor process X(t) we do not
immediately have that h(t) is bounded by a constant and hence we need almost sure
square integrability of h(t).

Definition 8.2. The class of admissible strategies A consists of all control pro-
cesses h such that

(1) h(t) is progressively measurable with respect to (Gt)t≥0 and is right continu-
ous with left limits.

(2) P
(∫ t

0
|h(s)|2 ds <∞

)
= 1 a.s., for all t > 0.

(3) The Girsanov exponential χht given by

χht := exp

{
−θ
∫ t

0

h(s)TΣ dWs −
1

2
θ2

∫ t

0

h(s)TΣΣTh(s) ds

}
,

is an exponential martingale.

Lemma 8.3. For the Girsanov exponential Z(t) in Theorem 8.1 we also have the
following result:

E[Z(T )] = 1 if and only if (Z(t))t∈[0,T ] is a martingale.
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Proof. First assume that (Z(t))t∈[0,T ] is a martingale. Then from martingale
property it follows that

E[Z(T )] = E[Z(0)] = 1.

Then assume that E[Z(T )] = 1. If we write Z(t) with Itô’s formula we see that
we have only a stochastic integral and a constant left meaning that we have a local
martingale since stochastic integrals are local martingales in general. We need to
show that (Z(t))t∈[0,T ] is a true martingale.

By using [15] Lemma 2 we know that a non-negative local supermartingale X
such that X0 is integrable is a supermartingale. Since a local martingale is also a
local supermartingale and Z(t) is non-negative (exponential function) we can apply
this theorem (also Z(0) = 1 is integrable).

Since we have that (Z(t))t∈[0,T ] is a supermartingale the supermartingale condition
gives us

(8.3) E[1IAZ(s)] ≥ E[1IAZ(T )].

Since this holds for any A ∈ Fs it also holds for the complement AC and hence our
assumption E[Z(T )] = 1 = E[Z(0)] implies that (8.3) is in fact

E[1IAZ(s)] = E[1IAZ(T )].

This is because (8.3) must hold for A and AC , but summing those up would get
1 = E[Z(0)] ≥ E[Z(s)] ≥ E[Z(T )] = 1. This implies that ’≥’ is in fact ’=’, which
means that we have a martingale condition. �

We can now use the Theorem 8.1 with Θ = hT (s)Σ and Θ2 = hT (s)ΣΣTh(s).

8.3. Formulating the portfolio dynamics. Let us first formulate the value of
the investor’s portfolio in the 1-dimensional case in order to understand the general
model more easily. We assume that investment strategies are self-financing meaning
that there are no external inputs to or outputs from the portfolio. We also assume that
there is no market friction which means that when buying or selling assets there are
no transaction costs, so that the modelled price does not change when the transaction
is executed. We can interpret the definition of h in the same way also in the single
asset case. The adapted process h(t) describes the proportion of total portfolio value
at time t invested in the risky asset but now it has only one dimension. From this it
follows that the the proportion invested in the cash that is not allocated to the risky
asset is (1− h(t)).

At time t the total portfolio value is V (t) and the money value invested in stocks
is h(t)V (t). From the money value we can get the units of stocks by dividing h(t)V (t)
by S(t). Then we use the equation (8.1) and get the value of a holding over a time
interval dt which is

(8.4)
h(t)V (t)

S(t)
dS(t) = h(t)V (t)(µdt+ σdB(t)).

If we denote the interest rate by r we can write down the cash amount that is generated
in the money market account in time dt and we get (1 − h(t))V (t)r dt. The total
appreciation of the portfolio value dV (t) is the sum of the money market account
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earnings (1 − h(t))V (t)r dt and the part invested in stocks which is the equation
(8.4). We get

dV (t) = (1− h(t))V (t)r dt+ h(t)V (t)(µdt+ σdB(t)

= V (t)rdt− h(t)V (t)rdt+ h(t)V (t)µdt+ V (t)h(t)σdB(t)

= V (t)((µ− r)h(t) + r)dt+ V (t)h(t)σdB(t).

Now it is time to formulate our SDE in the multidimensional case while taking the
budget equation in to consideration. As an investment strategy we take h ∈ A and
assume that the wealth V (t) in response to h satisfies the following geometric diffusion
SDE:

(8.5)
dV (t)

V (t)
= (a0 + AT0X(t))dt+ hT (t)(a− a01 + (A− 1AT0 )X(t))dt+ hT (t)ΣdBt,

with initial capital V (0) = v0. Here we see that our new interest rate is a0 +AT0X(t)
instead of r and our µ is a+ AX(t). This means that the part

a− a01 + (A− 1AT0 )X(t)

plays the same role as µ− r in the 1-dimensional case.
Since we know that all the summands in the geometric diffusion SDE must have

the same dimensions we can figure out the structure of the terms. The transposes
in the multidimensional version are needed to do the multiplications correctly since
our h(t) is now m-dimensional. The process X(t) has n-dimensions since Λ is a
n × N matrix which is multiplied by N -dimensional Brownian motion resulting in
n-dimensional column vector and the other terms in dX(t) = (b+BX(t))dt+ΛdB(t)
also must have the same dimensions in order to define the summation.

Starting from the term a0 + AT0X(t) in equation (8.5) we see that a0 is a 1-
dimensional constant and AT0 is a n-dimensional row vector which is multiplied with
n-dimensional column vector X(t) resulting in 1-dimensional term hence the sum of
a0 and AT0X(t) is well defined. The term hT (t)(a− a01 + (A− 1AT0 )X(t)) simplifies
also into a 1-dimensional object since a, a01 and (A− 1AT0 )X(t) are column vectors
with m-elements hence when we multiply m-dimensional row vector hT (t) with those
terms we get 1-dimensional objects. Since a0 is just a market parameter that is a
constant it is already 1-dimensional and hence the term a01 is just a column vector
with every element a0 (m-elements). To see that (A−1AT0 )X(t) is an m-dimensional
column vector we look at the two terms 1AT0X(t) and AX(t) individually. From
earlier we know that AT0X(t) is 1-dimensional hence when multiplied with m-element
column vector 1 we are left with an m-element column vector. In the term AX(t) we
have m× n matrix A and when we multiply it with n× 1 column vector X(t) we are
left with m× 1 column vector. The final term hT (t)ΣdBt is also 1-dimensional since
the term ΣdBt is a m-element column vector (m×N matrix multiplied with N × 1
Brownian motion) and when hT (t) is multiplied with ΣdBt we get a scalar product
which gives a 1-dimensional object (m-row vector multiplied with m-column vector).

For our convenience we define ã := a − a01 and Ã := A − 1AT0 . Now we can
express the portfolio dynamics in the following way:

(8.6)
dV (t)

V (t)
= (a0 + AT0X(t))dt+ hT (t)(ã+ ÃX(t))dt+ hT (t)ΣdBt, V (0) = v0.
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This SDE can be solved in the similar way as in section 5.2 but this time we have
more dimensions and more complicated terms. The existence and uniqueness of the
solution for the SDE (8.6) can be found in the Appendix part. For comparison we can
use the solution of the one dimensional case for the stock price St to derive expression
for Vt. The price St has the following form:

St = s0e
µt−σ

2t
2

+σBt = s0e
∫ t
0 (µ−σ

2

2
) ds+

∫ t
0 σ dBs .

Simply by replacing µ with (a0 +AT0X(s)+hT (s)(ã+ ÃX(s)), σ2 with hT (s)ΣΣTh(s)
and σ with hT (s)Σ we get the expression for Vt:

Vt =v0 exp

{∫ t

0

((a0 + AT0X(s) + hT (s)(ã+ ÃX(s))− 1

2
hT (s)ΣΣTh(s)) ds

+

∫ t

0

hT (s)Σ dBs

}
.

8.4. Risk-sensitive asset management criterion. In risk-sensitive control
the aim is to optimize the following criterion:

JθRS = −1

θ
lnE

[
e−θF (T,x,h)

]
,

where T > 0 is the fixed time horizon and x is the initial value of the factor process
X(t). The function F can be chosen by the the decision maker in such a way he thinks
suits best to get what he wants. The cost or reward function F is used to model the
reward and the parameter θ ∈] − 1, 0[∪]0,∞) describes the decision maker’s degree
of risk aversion.

For the reward function F (T, x, h) we choose the logarithm of the portfolio value
V (T ) like Bielecki and Pliska proposed in [14]. This leads to the risk-sensitive asset
management criterion:

(8.7) J(x, h) := −1

θ
lnE

[
e−θ lnV (T )

]
= −1

θ
lnE[V (T )−θ].

In the case where θ is positive our aim is to maximise the expectation of the risk-
adjusted log return of the investor’s portfolio lnE[V (T )]. For example when θ is
positive in order to make V (T ) big we choose such h that the expression (8.7) is
large. In the other words our task is to find such h that we get the maximum of the
risk-sensitive asset management criterion (8.7).

Since the initial capital v0 in the equation

Vt =v0 exp

{∫ t

0

((a0 + AT0X(s) + hT (s)(ã+ ÃX(s))− 1

2
hT (s)ΣΣTh(s)) ds

+

∫ t

0

hT (s)Σ dBs

}
plays no role in the optimization we can set it to any positive value we want, for
example, we set v0 = 1. We can interpret this decision by saying that we are using
the investor’s initial capital as the unit of account.
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For our convenience we use the following short notation for the risk-sensitive asset
management criterion:

δθ(lnV ) = −1

θ
lnE[e−θ lnV ].

Our function δθ satisfies the following axioms (see [2] Axioms 2.3-2.7).

Axiom 1. If V1 and V2 are non-negatively correlated then:

δθ(lnV1 + lnV2) ≥ δθ(lnV1) + δθ(lnV2).

If V1 and V2 are non-positively correlated then:

δσ(lnV1 + lnV2) ≤ δθ(lnV1) + δθ(lnV2).

Axiom 2. Logarithmic homogeneity.

δθ(λ lnV ) = λδλθ(lnV ).

Axiom 3. Monotonicity.

δθ(lnV1) ≥ δθ(lnV2) if and only if V1 ≥ V2.

Axiom 4. Logarithmic risk-free condition.

δθ(lnV + kr) = kr + δθ(lnV ),

where r is a constant risk-free rate and k is a constant.

Among these axioms the most important ones are homogeneity and logarithmic
super/sub-additivity. These axioms are also equivalent to the logarithmic convexity
and concavity axioms.

Axiom 5. Logarithmic convexity. Take 0 ≤ λ ≤ 1. If V1 and V2 are non-negatively
correlated then:

δθ(λ lnV1 + (1− λ) lnV2) ≥ λδλθ(lnV1) + (1− λ)δλθ(lnV2).

If V1 and V2 are non-positively correlated then:

δθ(λ lnV1 + (1− λ) lnV2) ≤ λδ(1−λ)θ(lnV1) + (1− λ)δ(1−λ)θ(lnV2).

8.5. Solving the risk-sensitive asset management problem when asset
and factor risks are uncorrelated. In this section we solve a special case of the
general problem by using the measure change technique. The key assumption which
simplifies the problem is that our asset and factor risks are uncorrelated, meaning
that ΛΣT = 0. Firstly we are going to use the expression for the total portfolio value
V (t), which was the solution for our SDE in the appendix part. By setting v0 = 1,
like we discussed in the risk sensitive asset management criterion part, we have the
following equality:

V (t) = exp

{∫ t

0

(a0 + AT0X(s)) + hT (s)(ã+ ÃX(s))− 1

2
hT (s)ΣΣTh(s)) ds

+

∫ t

0

hT (s)Σ dB(s)

}
.

Our goal is to get an expression of V (t), where the Girsanov exponential χht is clearly
visible. Then we can get rid of the χht term by using a new measure Ph. We can get
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this expression by using the trick where we express the power function as V (t)−θ =
exp(−θ lnV (t)) like in (8.7). Then we should get the following equation:

(8.8) e−θ lnV (t) = exp

{
θ

∫ t

0

g(X(s), h(s); θ) ds

}
χht ,

where

g(x, h; θ) =
1

2
(θ + 1)hTΣΣTh− hT (ã+ Ãx)− a0 − AT0 x

and

χht := exp

{
−θ
∫ t

0

h(s)TΣ dB(s)− 1

2
θ2

∫ t

0

h(s)TΣΣTh(s) ds

}
, t ∈ [0, T ].

This can be seen by doing the following calculations: Since

e−θ lnV (t) = exp

{
− θ

∫ t

0

a0 + AT0X(s) + hT (s)(ã+ ÃX(s))− 1

2
hT (s)ΣΣTh(s) ds

+

∫ t

0

hT (s)Σ dB(s)

}
and

exp

{
θ

∫ t

0

g(X(s), h(s); θ) ds

}
χht

= exp

{
θ

∫ t

0

1

2
(θ + 1)hT (s)ΣΣTh(s)− hT (s)(ã+ ÃX(s))− a0 − AT0X(s) ds

}
× exp

{
−θ
∫ t

0

hT (s)Σ dBs −
1

2
θ2

∫ t

0

hT (s)ΣΣTh(s) ds

}
= exp

{∫ t

0

1

2
θ2hT (s)ΣΣTh(s) +

1

2
θhT (s)ΣΣTh(s)− θhT (s)(ã+ ÃX(s))− θa0 − θAT0X(s)

− 1

2
θ2hT (s)ΣΣTh(s) ds− θ

∫ t

0

hT (s)Σ dB(s)

}
= exp

{
− θ

∫ t

0

a0 + AT0X(s) + hT (s)(ã+ ÃX(s))− 1

2
hT (s)ΣΣTh(s) ds

− θ
∫ t

0

hT (s)Σ dB(s)

}
.

Then we define the new measure Ph we mentioned in the beginning of the chapter
such that

dPh

dP
= χh(T ).

Because h ∈ A we know that χh(T ) is a martingale and that

Bh
t = Bt + θ

∫ t

0

ΣTh(s) ds, t ∈ [0, T ]

is a standard Brownian motion under Ph. From our assumption ΛΣT = 0 it follows
that X(t) satisfies the uncontrolled SDE:

dX(t) = (b+BX(t)) dt+ ΛdB(t).



37

This is true because we can replace dB(t) with dBh(t) since

ΛBh(t) = ΛB(t) + θ

∫ t

0

ΛΣTh(s) ds = ΛB(t).

Then we use the new expression obtained in (8.8) in the risk-sensitive asset man-
agement criterion J(x, h) in (8.7) and get the auxiliary criterion function I under the
measure Ph. Under the measure Ph the term χht disappears and we get

I(x, h) = −1

θ
lnEh

[
exp

{
θ

∫ T

0

g(Xs, h(s); θ) ds

}]
,

where Eh is the expectation w.r.t. Ph.
Since X(t) is independent of h under the measure Ph our problem namely maxi-

mizing −1
θ

lnE[V (T )−θ], can be solved by maximizing the auxiliary criterion function
I(x, h). Since the function g(x, h; θ) has the same structure as a multidimensional
quadratic function where the sign of the leading coefficient 1

2
(θ+1)ΣΣT is positive we

have a ’parabola’ that opens upward. this means that the criterion I(x, h) reaches its
maximum when the function g(x, h; θ) reaches its minimum. Our task is to minimize
the function g(x, h; θ), and to do that we first solve the minimum in the 1-dimensional
case and then generalize the obtained solution.

In the 1-dimensional case g(x, h; θ) gets the following form:

1

2
(θ + 1)h2Σ2 − h(ã+ Ãx)− a0 − AT0 x.

The derivative with respect to h gives (θ + 1)hΣ2 − ã − Ãx which is zero when
h = 1

(θ+1)Σ2 (ã + Ãx). In order to solve h∗ we follow the same steps as in the 1-

dimensional case but we take into account that our h is now a column vector with
m-elements (hT = (h1, . . . , hm)). First we compute the partial derivatives with respect
to each component hi, where i = 1, . . . ,m. In order to make the computations more
clear we substitute x = X(t) in the function g(x, h, θ), where X(t) is n × 1 column
vector. We notice that each partial derivative with respect to each component has a
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similar form which means that for every k ∈ 1, . . . ,m we get

∂

∂hk
g(X(t), h, θ) =

∂

∂hk

(
1

2
(θ + 1)hTΣΣTh− hT (ã+ ÃX(t))− a0 − AT0X(t)

)
=

1

2
(θ + 1)

∂

∂hk

(
hTΣΣTh

)
− ∂

∂hk

(
hT ã

)
− ∂

∂hk

(
hT ÃX(t)

)
=

1

2
(θ + 1)

∂

∂hk

m∑
i,j=1

hi(ΣΣT )ijhj −
∂

∂hk
(h1ã1 + · · ·+ hmãm)

− ∂

∂hk

m∑
i=1

n∑
j=1

hiÃijXj(t).

=
1

2
(θ + 1)

(
∂

∂hk

m∑
j=1

hk(ΣΣT )kjhj +
∂

∂hk

m∑
i 6=k,i=1

hi(ΣΣT )ikhk

)

− ãk −
n∑
j=1

ÃkjXj(t)

=
1

2
(θ + 1)

(
2hk(ΣΣT )kk +

m∑
j 6=k,j=1

(ΣΣT )kjhj +
m∑

i 6=k,i=1

hi(ΣΣT )ik

)

− ãk −
n∑
j=1

ÃkjXj(t)

=
1

2
(θ + 1)

(
m∑
j=1

(ΣΣT )kjhj +
m∑
i=1

hi(ΣΣT )ik

)
− ãk −

n∑
j=1

ÃkjXj(t).

We notice that the two sums inside the brackets can be written in the following way:

m∑
j=1

(ΣΣT )kjhj +
m∑
i=1

hi(ΣΣT )ik = 2
m∑
j=1

(ΣΣT )kjhj,

By substituting 2
∑m

j=1(ΣΣT )kjhj to the equation

∂

∂hk
g(X(t), h, θ) =

1

2
(θ + 1)

(
m∑
j=1

(ΣΣT )kjhj +
m∑
i=1

hi(ΣΣT )ik

)
− ãk −

n∑
j=1

ÃkjXj(t)

we get for k = 1, . . . ,m the following expression:(
∂

∂hk
g(X(t), h, θ)

)m
k=1

= (θ + 1)(ΣΣT )h− ã− ÃX(t).

The optimal control h∗ can now be obtained by solving
(

∂
∂hk

g(X(t), h, θ)
)m
k=1

= 0

with respect to h. This leads to the formula

h∗ =
1

θ + 1
(ΣΣT )−1(ã+ ÃX(t)),
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where (ΣΣT )−1 is a m×m matrix, ã is a m× 1 vector, Ã is a m×n matrix and X(t)
is a n× 1 vector. This solution exists because by assumption ΣΣT is positive-definite
and hence the inverse matrix (ΣΣT )−1 exists.

We check that the investment strategy h∗(t) = 1
θ+1

(ΣΣT )−1(ã + ÃX(t)) belongs
to A. Firstly h∗(t) satisfies (1) in Definition 8.2 since h∗(t) depends only on constants
θ, Σ, ã, Ã and a continuous adapted Gaussian process X(t), which satisfies the SDE
(7.2). From this it follows that h∗(t) is continuous and progressively measurable with
respect to (Gt)t≥0. For the assertion (2) we need to show that

P

(∫ t

0

∣∣∣∣ 1

θ + 1
(ΣΣT )−1(ã+ ÃX(s))

∣∣∣∣2 ds <∞
)

= 1.

To complete our calculations we first define a matrix norm called ’vector induced
matrix norm’ which has the properties we need (see [16] Definition 2.3.1).

Definition 8.4. f : Rm×n → R is a matrix semi-norm if the following three
properties hold:

(1) f(A) ≥ 0, A ∈ Rm×n,
(2) f(A+B) ≤ f(A) + f(B), A,B ∈ Rm×n,
(3) f(αA) = |α|f(A), α ∈ R, A ∈ Rm×n.

The vector induced matrix norm (also called operator norm) has the following defi-
nition:

‖A‖ = sup
x 6=0

‖Ax‖
‖x‖

,

where A is a matrix and x is a vector.

This norm can be constructed by using many different vector norms, for example
the euclidean norm, and it also satisfies the following inequalities:

(1) ‖Ax‖ ≤ ‖A‖‖x‖
(2) ‖AB‖ ≤ ‖A‖‖B‖,

where A,B are matrices and x is a vector. We continue to show the assertion (2) in
Definition 8.2. We get∫ t

0

∥∥∥∥ 1

θ + 1
(ΣΣT )−1(ã+ ÃX(t))

∥∥∥∥2

ds

≤
∫ t

0

(
2

∥∥∥∥ 1

θ + 1
(ΣΣT )−1ã

∥∥∥∥2

+ 2

∥∥∥∥ 1

θ + 1
(ΣΣT )−1ÃX(s))

∥∥∥∥2
)
ds

≤ 2

∥∥∥∥ 1

θ + 1
(ΣΣT )−1ã

∥∥∥∥2

t+ 2

∫ t

0

∥∥∥∥ 1

θ + 1
(ΣΣT )−1

∥∥∥∥2

‖Ã‖2‖X(s))‖2 ds.

We continue by taking an euclidean norm of the process X(t) and move all the
constants out of the integral. In order to move X(t) out of the integral we can
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estimate it by taking the supremum on the compact interval [0, t] and get

2

∥∥∥∥ 1

θ + 1
(ΣΣT )−1ã

∥∥∥∥2

t+ 2

∥∥∥∥ 1

θ + 1
(ΣΣT )−1

∥∥∥∥2

‖Ã‖2

∫ t

0

n∑
k=1

sup
0≤u≤t

|Xk(u))|2 ds

= 2

∥∥∥∥ 1

θ + 1
(ΣΣT )−1ã

∥∥∥∥2

t+ 2

∥∥∥∥ 1

θ + 1
(ΣΣT )−1

∥∥∥∥2

‖Ã‖2

n∑
k=1

sup
0≤u≤t

|Xk(u))|2t,

where every Xk(t) is path-wise continuous so that supremum on compact interval is
finite and then we sum up n-finite values and multiply by t, which gives us a finite
expression. The final assertion (3) can also be shown but we do not do it here since
it would exceed the scope of this thesis.

By substituting h∗ into the function g(x, h; θ) we get

g(x, h∗; θ) =
1

2
(θ + 1)

(
1

θ + 1
(ΣΣT )−1(ã+ Ãx)

)T
ΣΣT 1

θ + 1
(ΣΣT )−1(ã+ Ãx)

−
(

1

θ + 1
(ΣΣT )−1(ã+ Ãx)

)T
(ã+ Ãx)− a0 − AT0 x

=
1

2
(θ + 1)

1

θ + 1
(ãT + xT ÃT )(ΣΣT )−1ΣΣT 1

θ + 1
(ΣΣT )−1(ã+ Ãx)

− 1

θ + 1
(ãT + xT ÃT )(ΣΣT )−1(ã+ Ãx)− a0 − AT0 x

=
1

2

1

θ + 1
(ãT + xT ÃT )(ΣΣT )−1(ã+ Ãx)

− 1

θ + 1
(ãT + xT ÃT )(ΣΣT )−1(ã+ Ãx)− a0 − AT0 x

= −1

2

1

θ + 1
(ãT + xT ÃT )(ΣΣT )−1(ã+ Ãx)− a0 − AT0 x

= −1

2

1

θ + 1

(
xT ÃT (ΣΣT )−1Ãx+ ãT (ΣΣT )−1Ãx+ xT ÃT (ΣΣT )−1ã

+ ãT (ΣΣT )−1ã
)
− a0 − AT0 x

= −1

2

1

θ + 1
xT ÃT (ΣΣT )−1Ãx− 1

θ + 1
ãT (ΣΣT )−1Ãx

− 1

2

1

θ + 1
ãT (ΣΣT )−1ã− a0 − AT0 x.

In the second last equality ãT (ΣΣT )−1Ãx = xT ÃT (ΣΣT )−1ã, because xT ÃT (ΣΣT )−1ã
is 1-dimensional object hence taking transpose does not change it (xT is 1× n, ÃT is
n×m, (ΣΣT )−1 is m×m and ã is m× 1).

The value function Φ(t, x) for the criterion I(x, h;T, θ) is the maximum value that
can be obtained by using the process h∗. Hence we get a solution for our problem by
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substituting h∗ into I(x, h;T, θ), which gives us the following expression:

Φ(t, x) = sup
h∈A

I(x, h;T, θ)

= −1

θ
lnEh

[
exp

{
θ

∫ T

0

g(X(s), h∗(s); θ) ds

}]
= −1

θ
lnEh

[
exp

{
− θ

∫ T

0

(
1

2

1

θ + 1
XT (s)ÃT (ΣΣT )−1ÃX(s)

+
1

1 + θ
ãT (ΣΣT )−1ÃX(s)

+
1

2

1

θ + 1
ãT (ΣΣT )−1ã+ a0 + AT0X(s)

)
ds

}]
.

The problem in this expression is that we still have to evaluate integrals with respect
to the stochastic processes X(t). In order to get a fully satisfactory expression without
integrals w.r.t. stochastic processes X(t) one can proceed like in [2] Theorem 2.8 and
Corollary 2.9. It is shown that the solution can be obtained by solving a Hamilton-
Jacobi-Bellman PDE and then as a direct consequence we get the following solution
for the case ΛΣT = 0:

Corollary 8.5. Suppose ΛΣT = 0. Then the investment strategy h∗(t) defined
by

h∗ =
1

θ + 1
(ΣΣT )−1(ã+ ÃX(t))

belongs to A and is optimal in A. Its value, defined by Φ(t, x) = supA I(x, h;T, θ), is

Φ(0, x) =
1

2
xTQ(0)x+ qT (0)x+ k(0),

where q, Q and k respectively solve

Q̇(t)−Q(t)ΛΛTQ(t) +BTQ(t) +Q(t)B +
1

θ + 1
ÃT (ΣΣT )−1Ã = 0

for t ∈ [0, T ], with terminal condition Q(T ) = 0

q̇(t) + (BT −Q(t)ΛΛT )q(t) +Q(t)b+ A0 +
1

θ + 1
ÃT (ΣΣT )−1ã = 0

with terminal condition q(T ) = 0, and

k(s) =

∫ T

s

l(t) dt

for 0 ≤ s ≤ T , where

l(t) =
1

2
tr(ΛΛTQ(t))− θ

2
qT (t)ΛΛT q(t) + bT q(t) +

1

2

1

θ + 1
ãT (ΣΣT )−1ã+ a0.
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9. Appendix

9.1. Solving the geometric diffusion SDE. We show that the process

Vt =v0 exp

{∫ t

0

((a0 + AT0X(s) + hT (s)(ã+ ÃX(s))− 1

2
hT (s)ΣΣTh(s)) ds

+

∫ t

0

hT (s)Σ dBs

}
.

solves the equation (8.6) by using an n-dimensional Itô formula from [3] (Theorem
5.4.1).

Proof. First, for convenience we define a(t) := (a0 +AT0X(t) +hT (t)(ã+ ÃX(t))
and b(t) := ΣTh(t). We see that bT b and bTdB(t) are scalar products hence

(9.1) hT (t)ΣΣTh(t) =
n∑
k=1

b2
k(t) and hT (t)ΣdB(t) =

n∑
k=1

bk(t)dBk(t).

By using the new notation we have

Vt = v0 exp

{∫ t

0

a(s) ds− 1

2

n∑
k=1

∫ t

0

b2
k ds+

n∑
k=1

∫ t

0

bkdBk(s)

}
.

We use the n-dimensional Itô formula for Vt = f(t, Y (t)) = f(Y (t)) with the function

f(x) = v0e
x.

Since we do not have a time variable t in our case the Itô formula simplifies to

Vt = v0 +

∫ t

0

∂f

∂x
(Y (s)) dY (s) +

1

2

∫ t

0

∂f

∂x2
(Y (s)) d〈M,M〉s.

Because we have an exponential function in Itô’s formula we get

Vt = v0 +

∫ t

0

Vsa(s) ds+
n∑
k=1

∫ t

0

Vsbk dBk(s) +
1

2

∫ t

0

Vs

n∑
k=1

b2
k ds−

1

2

∫ t

0

Vs

n∑
k=1

b2
k ds

= v0 +

∫ t

0

Vsa(s) ds+
n∑
k=1

∫ t

0

Vsbk dBk(s),

where we have that 〈M,M〉t =
∑n

k=1

∫ t
0
b2
k ds. Now we can see that Itô’s formula gave

us the equation

(9.2) Vt = v0 +

∫ t

0

Vsa(s) ds+
n∑
k=1

∫ t

0

Vsbk dBk(s).

We write the equation (9.2) by using the differential form and divide it by Vt and get

dVt
Vt

= a(t)dt+
n∑
k=1

bkdBk(t).

Then by using the previous notations we see that we have equation (8.6). Uniqueness
of this solution is proved below. �
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Finally we are going to verify 〈M,M〉t =
∑n

k=1

∫ t
0
b2
k ds. According to the Def-

inition 5.3.1 in [3] the quadratic variation 〈M〉t is defined such that M2
t − 〈M〉t

is a local martingale, where Mt is a continuous local martingale. We have that
Mt =

∑n
k=1

∫ t
0
bk dBk(s) and for convenience we write∫ t

0

bk dBk(s) = Xk(t).

Then we have that M2
t =

(∑n
k=1 Xk(t)

)2
. Using Itô’s formula with a function f(x) =

x2 gives us

M2
t = M2

0 +
n∑
k=1

∫ t

0

∂f

∂xk
dXk(s) +

1

2

n∑
m,l=1

∫ t

0

∂2f

∂xm∂xl
d〈Xm, Xl〉s

= M2
0 +

n∑
k=1

∫ t

0

∂f

∂xk
dXk(s) +

n∑
m,l=1

〈Xm, Xl〉t,

where

〈Xm, Xl〉t =

{∫ t
0
b2
m ds : m = l

0 : m 6= l.

When m 6= l we see that the product ((Xm(t)Xl(t))t≥0 is already a martingale so
nothing needs to be substracted. From the expression of M2

t we can see that in

order to make M2
t a martingale we need to substract the term

∑n
m=1

∫ t
0
b2
m ds because

M2
0 = 0 and

∑n
k=1

∫ t
0

∂f
∂xk

dXk(s) is already a local martingale since it is a stochastic

integral. Hence we have 〈M,M〉t =
∑n

k=1

∫ t
0
b2
k ds.

9.2. Uniqueness of the solution. We still need to prove that the solution we
obtained in subsection 9.1 is unique. The classical criteria for the uniqueness of the
SDE

(9.3) S(t) = s0 +

∫ t

0

α(s, S(s)) ds+

∫ t

0

β(s, S(s)) dB(s)

are that coefficients α and β should be Lipschitz-continuous, in space, uniformly in
time and of linear growth, i.e.

|α(ω, t, x)− α(ω, t, y)| ≤ L|x− y|,

and

|α(ω, t, x)| ≤ K(1 + |x|), and the same for β.

However, we are not in this setting. The coefficient α in (9.2) is given by

α(ω, t, V (t)) := V (t)((a0 + AT0X(t)) + hT (t)(ã+ ÃX(t))).

For the coefficient β in the stochastic integral we choose for the bk(t) defined in (9.1)
its left-continuous version.

Define N > 0

τN = inf{t > 0 : |X(t)| ≥ N or ‖b(t)‖ ≥ N},
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where ‖ ‖ is the euclidean norm. Then we obtain an SDE with standard assumptions
on the coefficients and

Ŝ := (S(t ∧ τN))t∈[0,T ]

has a unique solution of (9.3) by [3] (Theorem 6.2.1) .
In order to show that we also have a unique solution without stopping we show

that when N →∞ the stopped solution is the same as the original one. Assume now
that S and Ŝ are two solutions of (9.3). Then

P(S(t) = Ŝ(t), t ∈ [0, T ]) = lim
N→∞

P(S(t ∧ τN) = Ŝ(t ∧ τN), t ∈ [0, T ]) = 1

since P(τN ≤ T ) → 0 as N → ∞. This is true because the larger N is the later we
are exceeding the bound N . In other words the probability that we are going to hit
N is going to zero as N goes to infinity. Since Ŝ(t) is a unique solution anyway the

fact that S(t) = Ŝt a.s. shows that also S(t) is a unique solution.
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