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Abstract. We study the relationship of viscosity and weak solutions to the equation

∂t u − Δpu = f (Du),

where p > 1 and f ∈ C(RN ) satisfies suitable assumptions. Our main result is that bounded viscosity
supersolutions coincide with bounded lower semicontinuous weak supersolutions. Moreover, we prove the
lower semicontinuity of weak supersolutions when p ≥ 2.

1. Introduction

A classical solution to a partial differential equation is a smooth function that satis-
fies the equation pointwise. Since many equations that appear in applications admit no
such solutions, a more general class of solutions is needed. One such class is the exten-
sively studied distributional weak solutions defined by integration by parts. Another
is the celebrated viscosity solutions based on generalized pointwise derivatives. When
both classes of solutions can be meaningfully defined, it is naturally crucial that they
coincide. This has been profusely studied starting from [10]. In [12], the equivalence
of solutions was proved for the parabolic p-Laplacian. The objective of the present
work is to prove this equivalence in a different way while also allowing the equation
to depend on a first-order term. To the best of our knowledge, the proof is new even
in the homogeneous case, at least when 1 < p < 2.

More precisely, we study the parabolic equation

∂t u − Δpu = f (Du), (1.1)

where 1 < p < ∞ and f ∈ C(RN ) satisfies a certain growth condition, for details
see Sect. 2. We show that bounded viscosity supersolutions to (1.1) coincide with
bounded lower semicontinuous weak supersolutions. Moreover, we prove the lower
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semicontinuity of weak supersolutions in the range p ≥ 2 under slightly stronger
assumptions on f .

To show that viscosity supersolutions are weak supersolutions, we apply the tech-
nique introduced by Julin and Juutinen [11]. In contrast to [12], we do not employ the
uniqueness machinery of viscosity solutions. Instead, our strategy is to approximate a
viscosity supersolution u by its inf-convolution uε. It is straightforward to show that
uε is still a viscosity supersolution in a smaller set. This and the pointwise proper-
ties of the inf-convolution imply that uε is also a weak supersolution in the smaller
set. Furthermore, it follows from Caccioppoli’s estimates that uε converges to u in
a suitable Sobolev space. It then remains to pass to the limit to see that u is a weak
supersolution.

To show that weak supersolutions are viscosity supersolutions, we apply the argu-
ment from [12] that is based on the comparison principle of weak solutions. However,
we could not find a reference for comparison principle for Eq. (1.1). Therefore, we
give a detailed proof of such a result.

To prove the lower semicontinuity of weak supersolutions, we adapt the strategy
of [17]. First, we prove estimates for the essential supremum of a subsolution using
Moser’s iteration technique. Then, we use those estimates to deduce that a supersolu-
tion is lower semicontinuous at its Lebesgue points.

The equivalence of viscosity and weak solutions for the p-Laplace equation and
its parabolic version was first proven in [12]. A different proof in the elliptic case
was found in [11]. Recently the equivalence of solutions has been studied for various
equations. These include the normalized p-Poisson equation [1], a non-homogeneous
p-Laplace equation [22] and the normalized p(x)-Laplace equation [25]. Moreover,
in [24] the equivalence is shown for the radial solutions of a parabolic equation. We
also mention that an unpublished version of [18] applies [11] to sketch the equivalence
of solutions to (1.1) in the homogeneous case when p ≥ 2.

Comparison principles for quasilinear parabolic equations have been studied by
several authors. In [13], comparison is proven for ∂t u − Δpu + f (u, x, t) = 0 when
p > 2 and f is a continuous function such that | f (u, x, t)| ≤ g(u) for some g ∈ C1.
The homogeneous case for the p-parabolic equation is considered also in [16] and the
general equation ∂t u − divA(x, t, Du) = 0 in [15]. Equations with gradient terms
are studied for example in [2], where comparison principle is shown for the equation
∂t u − Δpu − |Du|β = 0 when p > 2 and β > p − 1. In the recent papers [4,5], both
positive results and counter examples are provided for the comparison, strong compari-
son, andmaximumprinciples for the equation ∂t u − Δpu − λ |u|p−2 u − f (x, t) = 0.
Furthermore, according to [3], the equation ∂t u − Δpu = q(x) |u|α can admit multi-
ple solutions with zero boundary values when 0 < α < 1.

The paper is organized as follows. Section 2 contains the precise definitions of weak
and viscosity solutions. In Sect. 3, we show that weak supersolutions are viscosity
supersolutions, and the converse is shown in Sect. 4. Finally, the lower semicontinuity
of weak supersolutions is considered in Sect. 5.
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2. Preliminaries

The symbols Ξ and Ω are reserved for bounded domains in R
N × R and R

N ,
respectively. For t1 < t2, we define the cylinder Ωt1,t2 := Ω × (t1, t2) and its para-
bolic boundary ∂pΩt1,t2 := (Ω × {t1}) ∪ (∂Ω × (t1, t2]). Moreover, for T > 0 we
set ΩT := Ω0,T .

The Sobolev space W 1,p(Ω) contains the functions u ∈ L p(Ω) for which the dis-
tributional gradient Du exists and belongs in L p(Ω). It is equipped with the norm

‖u‖W 1,p(Ω) := ‖u‖L p(Ω) + ‖Du‖L p(Ω) .

A Lebesgue measurable function u : Ωt1,t2 → R belongs to the parabolic Sobolev
space L p(t1, t2;W 1,p(Ω)) if u(·, t) ∈ W 1,p(Ω) for almost every t ∈ (t1, t2) and the
norm

(∫
Ωt1,t2

|u|p + |Du|p dz

) 1
p

is finite. By dz, we mean integration with respect to space and time variables, i.e.,
dz = dx dt . Integral average is denoted by

−
∫

ΩT

u dz := 1

|ΩT |
∫

ΩT

u dz.

Growth condition

Unless otherwise stated, the function f ∈ C(RN ) is assumed to satisfy the growth
condition

| f (ξ)| ≤ C f (1 + |ξ |β) for all ξ ∈ R
N , (G1)

where C f > 0 and 1 ≤ β < p.

Definition 2.1. (Weak solution) A function u : Ξ → R is a weak supersolution to
(1.1) in Ξ if u ∈ L p(t1, t2;W 1,p(Ω)) whenever Ωt1,t2 � Ξ , and∫

Ξ

−u∂tϕ + |Du|p−2 Du · Dϕ − ϕ f (Du) dz ≥ 0

for all non-negative test functions ϕ ∈ C∞
0 (Ωt1,t2). Forweak subsolutions, the inequal-

ity is reversed and a function is a weak solution if it is both a super- and subsolution.

To define viscosity solutions to (1.1), we set for all ϕ ∈ C2 with Dϕ 	= 0

Δpϕ := |Dϕ|p−2
(

Δϕ + p − 2

|Dϕ|2
〈
D2ϕDϕ, Dϕ

〉)
.
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Definition 2.2. (Viscosity solution) A lower semicontinuous and bounded function
u : Ξ → R is a viscosity supersolution to (1.1) in Ξ if whenever ϕ ∈ C2(Ξ) and
(x0, t0) ∈ Ξ are such that⎧⎪⎪⎨

⎪⎪⎩
ϕ(x0, t0) = u(x0, t0),

ϕ(x, t) < u(x, t) when (x, t) 	= (x0, t0),

Dϕ(x, t) 	= 0 when x 	= x0,

then

lim sup
(x,t)→(x0,t0)

x 	=x0

(
∂tϕ(x, t) − Δpϕ(x, t) − f (Dϕ(x, t))

) ≥ 0.

An upper semicontinuous and bounded function u : Ξ → R is a viscosity subsolution
to (1.1) in Ξ if whenever ϕ ∈ C2(Ξ) and (x0, t0) ∈ Ξ are such that⎧⎪⎪⎨

⎪⎪⎩
ϕ(x0, t0) = u(x0, t0),

ϕ(x, t) > u(x, t) when (x, t) 	= (x0, t0),

Dϕ(x, t) 	= 0 when x 	= x0,

then

lim inf
(x,t)→(x0,t0)

x 	=x0

(
∂tϕ(x, t) − Δpϕ(x, t) − f (Dϕ(x, t))

) ≤ 0.

A function that is both a viscosity sub- and supersolution is a viscosity solution.

If a function ϕ is like in the definition of viscosity supersolution, we say that ϕ

touches u from below at (x0, t0). The limit superior in the definition is needed because
the operator Δp is singular when 1 < p < 2. When p ≥ 2, the operator is degenerate
and the limit superior disappears.

3. Weak solutions are viscosity solutions

We show that bounded, lower semicontinuous weak supersolutions to (1.1) are vis-
cosity supersolutionswhen 1 < p < ∞ and f ∈ C(RN ) satisfies the growth condition
(G1). One way to prove this kind of results is by applying the comparison principle
[12]. However, we could not find the comparison principle for Eq. (1.1) in the literature
and therefore we prove it first. To this end, we first prove comparison Lemmas 3.2
and 3.3 for locally Lipschitz continuous f . The local Lipschitz continuity allows us
to absorb the first-order terms into the terms that appear due to the p-Laplacian, see
Step 2 in proof of Lemma 3.2. To deal with general f , we take a locally Lipschitz
continuous approximant fδ such that ‖ f − fδ‖L∞(RN ) < δ/4T . Then, for sub- and
supersolutions u and v, we consider the functions

uδ := u − δ

T − t/2
and vδ := v + δ

T − t/2
.
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These functions will be sub- and supersolutions to (1.1) where f is replaced by fδ .
Since fδ is locally Lipschitz continuous, it follows from Lemmas 3.2 and 3.3 that
uδ ≤ vδ . Letting δ → 0 then yields that u ≤ v.

For similar comparison results, see [2, Proposition 2.1] and [13]. See also Chapters
3.5 and 3.6 in [23] for the elliptic case. A minor difference in our results is that instead
of requiring that both the subsolution and the supersolution have uniformly bounded
gradients, we only require this for the subsolution.
To prove the comparison principle, we need to use a test function that depends

on the supersolution itself. However, supersolutions do not necessarily have a time
derivative. One way to deal with this is to use mollifications in the time direction. For
a compactly supported ϕ ∈ L p(ΩT ), we define its time-mollification by

ϕε(x, t) =
∫
R

ϕ(x, t − s)ρε(s) ds,

where ρε is a standard mollifier whose support is contained in (−ε, ε). Then, ϕε

has time derivative and ϕε → ϕ in L p(ΩT ). Furthermore, the time-mollification of a
supersolution satisfies a regularized equation in the sense of the following lemma.

Lemma 3.1. Let v ∈ L∞(ΩT ) be a weak supersolution (subsolution) to (1.1) in ΩT .
Then, we have∫

ΩT

−vε∂tϕ +
(
|Dv|p−2 Dv

)ε · Dϕ − ϕ ( f (Dv))ε dz ≥ (≤) 0 (3.1)

for all ϕ ∈ W 1,p(ΩT ) ∩ L∞(ΩT ) with compact support in ΩT . Moreover, if the
stronger growth condition

| f (ξ)| ≤ C f

(
1 + |ξ |p−1

)
(G2)

holds, then the assumption ϕ ∈ L∞(ΩT ) is not needed.

Observe that in the above lemma ϕ is in the usual Sobolev space W 1,p(ΩT ) so it
has a weak time derivative ∂tϕ ∈ L p(ΩT ). To prove the lemma, one first assumes that
ϕ is smooth. Then, testing the weak formulation of (1.1) with ϕε , changing variables
and using Fubini’s theorem yields (3.1). The general case follows by approximating
ϕ in W 1,p(ΩT ) with the standard mollification. We omit the details.

Lemma 3.2. Let 1 < p < 2 and let f be locally Lipschitz. Let u, v ∈ L∞(ΩT ),
respectively, be weak sub- and supersolutions to (1.1) in ΩT . Assume that for all
(x0, t0) ∈ ∂pΩT

ess lim sup
(x,t)→(x0,t0)

u(x, t) ≤ ess lim inf
(x,t)→(x0,t0)

v(x, t).

Suppose also that Du ∈ L∞(ΩT ). Then, u ≤ v a.e. in ΩT .
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Proof. (Step 1) Let l > 0 and set w := (u − v − l)+. Let also s ∈ (0, T ). We want
to use w · χ[0,s] as a test function, but since it is not smooth, we must perform molli-
fications. Let h > 0 and define

ϕ := η
(
(u − v − l) ε

)
+ ,

where

η(t) =

⎧⎪⎪⎨
⎪⎪⎩
1, t ∈ (0, s − h],
(−t + s + h)/2h, t ∈ (s − h, s + h),

0, t ∈ [s + h, T ).

The function ϕ is compactly supported and belongs in W 1,p(ΩT ). Therefore, by
Lemma 3.1 we have∫

ΩT

−(u − v)ε∂tϕ dz

≤
∫

ΩT

((
|Dv|p−2 Dv

)ε −
(
|Du|p−2 Du

)ε) · Dϕ + ϕ
(
f (Du)ε − f (Dv)ε

)
dz.

(3.2)

We use the linearity of convolution and integration by parts to eliminate the time
derivative. We obtain∫

ΩT

−(u − v)ε∂tϕ dz

= −
∫

ΩT

(u − v)ε
(
(u − v − l)ε

)
+ ∂tη + η(u − v)ε∂t

(
(u − v − l)ε

)
+ dz

= −
∫

ΩT

(u − v − l)ε((u − v − l)ε)+∂tη + l
(
(u − v − l)ε

)
+ ∂tη

+ η(u − v − l)ε∂t
(
(u − v − l)ε

)
+ + lη∂t

(
(u − v − l)ε

)
+ dz

= −
∫

ΩT

((u − v − l)ε)2+∂tη + 1

2
η∂t ((u − v − l)ε)2+ dz

= −1

2

∫
ΩT

((u − v − l)ε)2+∂tη dz

→
ε→0

−1

2

∫
ΩT

(u − v − l)2+∂tη dz.

Moreover, by the Lebesgue differentiation theorem for a.e. s ∈ (0, T ) it holds

−1

2

∫
ΩT

(u − v − l)2+∂tη dz = 1

4h

∫ s+h

s−h

∫
Ω

w2(x, t) dx dt →
h→0

1

2

∫
Ω

w2(x, s) dx .

The terms at the right-hand side of (3.2) converge similarly. Hence, for a.e. s ∈ (0, T )

we have
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1

2

∫
Ω

w2(x, s) dx

≤
∫

Ωs

| f (Du) − f (Dv)| w dz −
∫

Ωs

(
|Du|p−2 Du − |Dv|p−2 Dv

)
· Dw dz

=: I1 − I2. (3.3)

(Step 2)We seek to absorb some of I1 into I2 so that we can conclude fromGrönwall’s
inequality that w ≡ 0 almost everywhere. Since f is locally Lipschitz continuous,
there are constants M ≥ max(2 ‖Du‖L∞(ΩT ) , 1) and L = L(M) such that

| f (ξ) − f (η)| ≤ L |ξ − η| when |ξ | , |η| < M. (3.4)

We denote Ω+
s := {x ∈ Ωs : w ≥ 0},

A := Ω+
s ∩ {|Dv| < M} and B := Ω+

s ∩ {|Dv| ≥ M} .

Observe that in B we have by the growth condition (G1), choice of M and the assump-
tion that β ≥ 1

| f (Du)| ≤ C f (1 + |Du|β) ≤ C f (M + Mβ) ≤ 2C f M
β ≤ 2C f |Dv|β (3.5)

and

| f (Dv)| ≤ C f (1 + |Dv|β) ≤ 2C f |Dv|β . (3.6)

It follows from (3.4), (3.5), (3.6) and Young’s inequality that

I1 ≤
∫
A
L |Du − Dv| w dz +

∫
B

(| f (Du)| + | f (Dv)|) w dz

≤
∫
A
L |Du − Dv| w dz +

∫
B
4C f |Dv|β w dz

≤
∫
A

ε |Du − Dv|2 + C(ε, L)w2 dz +
∫
B

ε |Dv| βp
β + C(ε, p, β, L ,C f )w

p
p−β dz

≤ ε

∫
A

|Du − Dv|2 dz + ε

∫
B

|Dv|p dz + C(ε, p, β, L ,C f , ‖w‖L∞)

∫
Ωs

w2 dz,

(3.7)

where in the last step we used that p
p−β

> 2 to estimate

∫
Ωs

w p/(p−β) dz =
∫

Ωs

w p/(p−β)−2w2 dz ≤ ‖w‖p/(p−β)−2
L∞(ΩT )

∫
Ωs

w2 dz.

Using the vector inequality

(
|a|p−2 a−|b|p−2 b

)
· (a − b)≥(p − 1) |a − b|2

(
1 + |a|2+|b|2

) p−2
2

, (3.8)
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which holds when 1 < p < 2 [19, p98], we get

I2 =
∫

Ωs

(
|Du|p−2 Du − |Dv|p−2 Dv

)
· Dw dz

≥ (p − 1)
∫

Ω+
s

|Du − Dv|2(
1 + |Du|2 + |Dv|2) 2−p

2

dz

≥ (p − 1)
∫
A

|Du − Dv|2(
1 + M2 + M2

) 2−p
2

dz + (p − 1)
∫
B

(|Dv| − |Du|)2(
3 |Dv|2) 2−p

2

dz

≥ C(p, M)

∫
A

|Du − Dv|2 dz + (p − 1)
∫
B

(|Dv| − 1
2M

)2
(
3 |Dv|2) 2−p

2

dz

≥ C(p, M)

∫
A

|Du − Dv|2 dz + (p − 1)
∫
B

( 1
2 |Dv|)2(

3 |Dv|2) 2−p
2

dz

= C(p, M)

∫
A

|Du − Dv|2 dz + C(p)
∫
B

|Dv|p dz, (3.9)

where C(p, M),C(p) > 0. Combining the estimates (3.7) and (3.9), we arrive at

I1 − I2 ≤ (ε − C(p, M))

∫
A

|Du − Dv|2 dz + (ε − C(p))
∫
B

|Dv|p dz

+ C0

∫
Ωs

w2 dz,

where C0 = C(ε, p, β, L ,C f , ‖w‖L∞). Recalling (3.3) and taking small enough ε

yields ∫
Ω

w2(x, s) dx ≤ 2C0

∫
Ωs

w2 dz.

Since this holds for a.e. s ∈ (0, T ), Grönwall’s inequality implies that w ≡ 0 a.e. in
ΩT . Finally, letting l → 0 yields that u − v ≤ 0 a.e. in ΩT . �

Lemma 3.3. Let p ≥ 2 and let f be locally Lipschitz. Let v ∈ L∞(ΩT ) be a weak
supersolution to (1.1) and let u ∈ L∞(ΩT ) be a weak subsolution to

∂t u − Δpu − f (Du) ≤ −δ in ΩT

for some δ > 0. Assume that for all (x0, t0) ∈ ∂pΩT

ess lim sup
(x,t)→(x0,t0)

u(x, t) ≤ ess lim inf
(x,t)→(x0,t0)

v(x, t).

Suppose also that Du ∈ L∞(ΩT ). Then, u ≤ v a.e. in ΩT .
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Proof. Let l > 0 and set w := (u − v − l)+. Let also s ∈ (0, T ). Repeating the first
step of the proof of Lemma 3.2, we arrive at the inequality

1

2

∫
Ω

w2(x, s) dx

≤
∫

Ωs

| f (Du) − f (Dv)| w dz −
∫

Ωs

(
|Du|p−2 Du − |Dv|p−2 Dv

)
· Dw dz

−
∫

Ωs

δw dz

=: I1 − I2 −
∫

Ωs

δw dz. (3.10)

Moreover, we define the constants M and L , and the sets A and B, exactly in the same
way as in the proof of Lemma 3.2. Then, by (3.4), (3.5), (3.6) and Young’s inequality

I1 ≤
∫
A
L |Du − Dv| w dz +

∫
B

(| f (Du)| + | f (Dv)|) w dz

≤
∫
A

ε |Du − Dv|p + C(ε, L)w
p

p−1 dz +
∫
B
4C f |Dv|β w dz

≤ ε

∫
A

|Du − Dv|p dz + ε

∫
B

|Dv|p dz + C(ε, p, β, L ,C f )

∫
Ωs

w
p

p−1

+ w
p

p−β dz. (3.11)

Using the vector inequality(
|a|p−2 a − |b|p−2 b

)
· (a − b) ≥ 22−p |a − b|p , (3.12)

which holds when p ≥ 2 [19, p. 95], we get

I2 ≥ C(p)
∫
A

|Du − Dv|p dz + C(p)
∫
B

|Du − Dv|p dz.

Furthermore, since in B it holds

|Du − Dv|p ≥ (|Dv| − |Du|)p ≥
(

|Dv| − 1

2
M

)p

≥ C(p) |Dv|p ,

we arrive at

I2 ≥ C(p)
∫
A

|Du − Dv|p dz + C(p)
∫
B

|Dv|p dz. (3.13)

Combining (3.11) and (3.13) with (3.10), we get

1

2

∫
Ω

w2 dx ≤ (ε − C(p))

(∫
A

|Du − Dv|p dz +
∫
B

|Dv|p dz

)

+
∫

Ωs

C(ε, p, β, L ,C f )
(
w

p
p−1 + w

p
p−β

)
− δw dz.
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By taking small enough ε = ε(p), the above becomes∫
Ω

w2(x, s) dx ≤
∫

Ωs

C(p, β, L ,C f )
(
w

p
p−1 + w

p
p−β

)
− δw dz. (3.14)

Observe that since w is bounded and p
p−1 ,

p
p−β

> 1, the integrand at the right-hand

side is bounded by some constant times w2. To argue this rigorously, we write down
the following algebraic fact.
If a0, δ, γ > 0 and α > 1, then there exists C(α, γ, δ, a0) > 0 such that

γ aα ≤ δa + C(α, γ, δ, a0)a
2 for all a ∈ [0, a0).

To see this, let first α < 2. Then, by Young’s inequality

γ aα = γ a · aα−1 ≤ δ

1 + a
2

3−α

0

a
2

3−α + C(α, γ, δ, a0)a
(α−1)· 2

α−1

≤ δa + C(α, γ, δ, a0)a
2.

If α ≥ 2, then

γ aα = γ aα−2 · a2 ≤ γ aα−2
0 a2.

Applying the algebraic fact on (3.14), we get∫
Ω

w2(x, s) dx ≤ C(p, β, L ,C f , δ, ‖w‖L∞)

∫
Ωs

w2 dz.

The conclusion now follows from Grönwall’s inequality and letting l → 0. �

Next, we use the previous comparison results to prove the comparison principle for
general continuous f .

Theorem 3.4. Let 1 < p < ∞. Let u, v ∈ L∞(ΩT ), respectively, be weak sub- and
supersolutions to (1.1) in ΩT . Assume that for all (x0, t0) ∈ ∂pΩT

ess lim sup
(x,t)→(x0,t0)

u(x, t) ≤ ess lim inf
(x,t)→(x0,t0)

v(x, t).

Assume also that Du ∈ L∞(ΩT ). Then, u ≤ v a.e. in ΩT .

Proof. For δ > 0, define

uδ := u − δ

T − t/2
.

Then, for any non-negative test function ϕ ∈ C∞
0 (ΩT )we have by integration by parts∫

ΩT

−uδ∂tϕ dz =
∫

ΩT

−u∂tϕ + δ

T − t/2
∂tϕ dz
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=
∫

ΩT

−u∂tϕ − ϕ
δ

2 (T − t/2)2
dz

≤
∫

ΩT

−u∂tϕ − ϕ
δ

2T 2 dz.

Since f is continuous, there is a locally Lipschitz continuous function fδ such that
‖ f − fδ‖L∞(RN ) ≤ δ

4T (see, e.g., [21]). Then, since u is a weak subsolution, we have∫
ΩT

−uδ∂tϕ + |Duδ|p−2 Duδ · Dϕ − ϕ fδ(Duδ) dz

≤
∫

ΩT

−u∂tϕ + |Du|p−2 Du · Dϕ − ϕ f (Du) + ϕ ‖ f − fδ‖L∞(RN) − ϕ
δ

2T 2 dz

≤
∫

ΩT

− δ

4T 2 ϕ dz.

Hence, uδ is a weak subsolution to

∂t uδ − Δpuδ − fδ(Duδ) ≤ − δ

4T 2 in ΩT .

Similarly, since v is a weak supersolution, we define

vδ := v + δ

T − t/2

and deduce that vδ is a weak supersolution to

∂tvδ − Δpvδ − fδ(Dvδ) ≥ 0 in ΩT .

Now it follows from the comparison Lemmas 3.2 and 3.3 that uδ ≤ vδ a.e. in ΩT .
Thus,

u ≤ v + 2δ

T − t/2
a.e. in ΩT .

Letting δ → 0 finishes the proof. �

Now that the comparison principle is proven, we are ready to show that weak
solutions are viscosity solutions. To state this part of the equivalence, we define the
lower semicontinuous regularization of a function u : Ξ → R by

u∗(x, t) := ess lim inf
(y,s)→(x,t)

u(y, s) := lim
R→0

ess inf
BR(x)×(t−Rp,t+Rp)

u.

The time scaling Rp is technically convenient in Sect. 5. We have included it here for
notational consistency.

Theorem 3.5. Let 1 < p < ∞. Let u ∈ L∞
loc(Ξ) be a weak supersolution to (1.1) in

Ξ for which u = u∗ almost everywhere in Ξ . Then, u∗ is a viscosity supersolution to
(1.1) in Ξ .
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Proof. Assume on the contrary that there is φ ∈ C2(Ξ) touching u∗ from below at
(x0, t0) ∈ Ξ , Dφ(x, t) 	= 0 for x 	= x0 and

lim sup
(x,t)→(x0,t0)

x 	=x0

(
∂tφ(x, t) − Δpφ(x, t) − f (Dφ(x, t))

)
< 0. (3.15)

Denote Qr := Br (x0) × (t0 − r, t0 + r). It follows from above that there are r > 0
and δ > 0 such that

∂tφ − Δpφ − f (Dφ) < −δ in Qr\ {x = x0} . (3.16)

Indeed, otherwise there would be a sequence (xn, tn) → (x0, t0) such that xn 	= x0
and

∂tφ(xn, tn) − Δpφ(xn, tn) − f (Dφ(xn, tn)) > −1

n
,

but this contradicts (3.15). Using Gauss’s theorem and (3.16), we obtain for any non-
negative test function ϕ ∈ C∞

0 (Qr ) that∫
Qr

−φ∂tϕ + |Dφ|p−2 Dφ · Dϕ − ϕ f (Dφ) dz

= lim
ρ→0

∫
Qr \{|x−x0|≤ρ}

−φ∂tϕ + |Dφ|p−2 Dφ · Dϕ − ϕ f (Dφ) dz

= lim
ρ→0

( ∫
Qr \{|x−x0|≤ρ}

ϕ∂tφ − ϕ div(|Dφ|p−2 Dφ) − ϕ f (Dφ) dz

+
∫ t0+r

t0−r

∫
{|x−x0|=ρ}

ϕ |Dφ|p−2 Dφ · (x − x0)

ρ
dS dt

)
= lim

ρ→0

∫
Qr \{|x−x0|≤ρ}

ϕ
(
∂tφ − Δpφ − f (Dφ)

)
dz

≤
∫
Qr

−δϕ dz.

Let l := min∂pQr (u∗ − φ) > 0 and set φ̃ := φ + l. Then, by the above inequality, φ̃
is a weak subsolution to

∂t φ̃ − Δpφ̃ − f (Dφ̃) ≤ −δ in Qr

and on ∂pQr it holds φ̃ = φ + l ≤ φ + u∗ − φ = u∗. Hence, Theorem 3.4 implies
that φ̃ ≤ u almost everywhere in Qr . By the definition of u∗, it follows that

φ̃ ≤ u∗ everywhere in Qr , (3.17)

which is a contradiction since in particular φ̃(x0, t0) = φ(x0, t0) + l > u∗(x0, t0).
To see (3.17), fix (y0, s0) ∈ Qr and let ε > 0. By continuity of φ̃ and the definition

of u∗, there is R > 0 such that∣∣φ̃(y, s) − φ̃(y0, s0)
∣∣ ≤ ε for all (y, s) ∈ Q′

R
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and ∣∣ ess inf
Q′

R

u − u∗(y0, s0)
∣∣ < ε,

where we denoted Q′
R := BR(y0) × (s0 − Rp, s0 + Rp). In particular,

u∗(y0, s0) ≥ ess inf
Q′

R

u − ε.

By the definition of ess inf
Q′

R

u, there is A ⊂ Q′
R with |A| > 0 such that

ess inf
Q′

R

u + ε > u(y, s) for all (y, s) ∈ A.

Moreover, since φ̃ ≤ u almost everywhere in Qr , we can take (y, s) ∈ A such that

φ̃(y, s) ≤ u(y, s).

Now we have by the last three displays

u∗(y0,s0) ≥ ess inf
Q′

R

u − ε > u(y, s) − 2ε ≥ φ̃(y, s) − 2ε ≥ φ̃(y0, s0) − 3ε.

Since ε > 0 was arbitrary, this implies that u∗(y0, s0) ≥ φ̃(y0, s0). �

4. Viscosity solutions are weak solutions

We show that bounded viscosity supersolutions to (1.1) are weak supersolutions
when 1 < p < ∞ and f ∈ C(RN ) satisfies the growth condition (G1). We use the
method developed in [11]. The method of [11] was previously applied to parabolic
equations in [24], but for radially symmetric solutions.
The idea is to approximate a viscosity supersolution u to (1.1) by the inf-convolution

uε(x, t) := inf
(y,s)∈Ξ

{
u(y, s) + |x − y|q

qεq−1 + |t − s|2
2ε

}
,

where ε > 0 and q ≥ 2 is a fixed constant so large that p − 2 + q−2
q−1 > 0. If u

is bounded, it is straightforward to show that the inf-convolution uε is a viscosity
supersolution in the smaller set

Ξε = {
(x, t) ∈ Ξ : Br(ε)(x) × (t − t (ε), t + t (ε)) � Ξ

}
,

where r(ε), t (ε) → 0 as ε → 0. Moreover, uε is semi-concave by definition and
therefore it has a second derivative almost everywhere. It follows from these pointwise
properties that uε is a weak supersolution to (1.1) in Ξε. Caccioppoli-type estimates
then imply that uε converges to u in a parabolic Sobolev space and consequently u is
a weak supersolution.
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The standard properties of the inf-convolution are postponed to the end of this
section. Instead, we begin by proving the key observation: that the inf-convolution
of a viscosity supersolution is a weak supersolution in the smaller set Ξε. When
p ≥ 2, the idea is the following. Since uε is a viscosity supersolution to (1.1) that
is twice differentiable almost everywhere, it satisfies the equation pointwise almost
everywhere. Hence, we may multiply the equation by a non-negative test function ϕ

and integrate over Ξε so that the integral will be non-negative. Then, we approximate
this expression through smooth functions uε, j defined via the standard mollification.
Since uε, j is smooth, we may integrate by parts to reach the weak formulation of
the equation, see (4.1). It then remains to let j → ∞ to conclude that uε is a weak
supersolution. The range 1 < p < 2 is more delicate because of the singularity of the
p-Laplace operator

Δpu := |Du|p−2
(

Δu + (p − 2)

|Du|2
〈
D2uDu, Du

〉)
,

and therefore we consider the case p ≥ 2 first.

Lemma 4.1. Let p ≥ 2. Let u be a bounded viscosity supersolution to (1.1) in Ξ .
Then, uε is a weak supersolution to (1.1) in Ξε.

Proof. Fix a non-negative test function ϕ ∈ C∞
0 (Ξε). By Remark 4.8, the function

φ(x, t) := uε(x, t) − C(q, ε, u)
(
|x |2 + t2

)
is concave in Ξε and we can approximate it by smooth concave functions φ j so that(
φ j , ∂tφ j , Dφ j , D2φ j

) → (
φ, ∂tφ, Dφ, D2φ

)
a.e. in Ξε. We define

uε, j (x, t) := φ j (x, t) + C(q, ε, u)
(
|x |2 + t2

)
.

Since uε, j is smooth and ϕ is compactly supported in Ξε, we integrate by parts to get∫
Ξε

ϕ

(
∂t uε, j − ∣∣Duε, j

∣∣p−2
(

Δuε, j + (p − 2)∣∣Duε, j
∣∣2

〈
D2uε, j Duε, j , Duε, j

〉 )

− f (Duε, j )

)
dz

=
∫

Ξε

ϕ∂t uε, j − ϕ div
(∣∣Duε, j

∣∣p−2
Duε, j

)
− ϕ f (Duε, j ) dz

=
∫

Ξε

−uε, j∂tϕ + ∣∣Duε, j
∣∣p−2

Duε, j · Dϕ − ϕ f (Duε, j ) dz. (4.1)

This implies that

lim inf
j→∞

∫
Ξε

ϕ

(
∂t uε, j − ∣∣Duε, j

∣∣p−2
(

Δuε, j + (p − 2)∣∣Duε, j
∣∣2

〈
D2uε, j Duε, j , Duε, j

〉 )
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− f (Duε, j )

)
dz

≤ lim
j→∞

∫
Ξε

−uε, j∂tϕ + ∣∣Duε, j
∣∣p−2

Duε, j · Dϕ − ϕ f (Duε, j ) dz.

We intend to use Fatou’s lemma at the left-hand side and dominated convergence at
the right-hand side. Once we verify their assumptions, we arrive at the inequality∫

Ξε

ϕ
(
∂t uε − Δpuε − f (Duε)

)
dz ≤

∫
Ξε

−uε∂tϕ

+ |Duε|p−2 Duε · Dϕ − ϕ f (Duε) dz.

The left-hand side is non-negative since by Lemma 4.7 the inf-convolution uε is still
a viscosity supersolution in Ξε. Consequently uε is a weak supersolution in Ξε as
desired. It remains to justify our use of Fatou’s lemma and the dominated convergence
theorem. It follows from Remark 4.8 that

∣∣uε, j
∣∣, ∣∣∂t uε, j

∣∣ and ∣∣Duε, j
∣∣ are uniformly

bounded by some constant M > 0 in the support of ϕ with respect to j . This justifies
our use of the dominated convergence theorem. Observe then that since φ j is concave,
we have D2uε, j ≤ C(q, ε, u)I . Hence,

∂t uε, j − ∣∣Duε, j
∣∣p−2

(
Δuε, j + (p − 2)∣∣Duε, j

∣∣2
〈
D2uε, j Duε, j , Duε, j

〉 )
− f (Duε, j )

≥ −M − C(q, ε, u)Mp−2 (N + p − 2) − sup
|ξ |≤M

| f (ξ)| .

The integrand at the left-hand side of (4.1) is therefore bounded from below with
respect to j , justifying our use of Fatou’s lemma. �
Next, we consider the singular case 1 < p < 2.We cannot directly repeat the previ-

ous proof because Δpuε no longer has a clear meaning at the points where Duε = 0.
To deal with this, we consider the regularized terms

Δp,δu :=
(
δ + |Du|2

) p−2
2

(
Δu + p − 2

δ + |Du|2Δ∞u

)
, (4.2)

where Δ∞u = 〈
D2uDu, Du

〉
.

Lemma 4.2. Let 1 < p < 2 . Let u be a bounded viscosity supersolution to (1.1) in
Ξ . Then, uε is a weak supersolution to (1.1) in Ξε.

Proof. (Step 1) Let ϕ ∈ C∞
0 (Ξε) be a non-negative test function. We set

φ(x, t) := uε(x, t) − C(q, ε, u)
(
|x |2 + t2

)
,

where C(q, ε, u) is the semi-concavity constant of uε in Ξε. Then, by Remark 4.8 we
can approximate φ by smooth concave functions φ j so that

(
φ j , ∂tφ j , Dφ j , D2φ j

) →(
φ, ∂tφ, Dφ, D2φ

)
a.e. in Ξε. We define

uε, j (x, t) := φ j (x, t) + C(q, ε, u)
(
|x |2 + t2

)
.



J. Siltakoski J. Evol. Equ.

Let δ ∈ (0, 1). Since uε, j is smooth and ϕ is compactly supported in Ξε, we calculate
via integration by parts∫

Ξε

ϕ

(
∂t uε, j −

(
δ + ∣∣Duε, j

∣∣2) p−2
2

(
Δuε, j + p − 2

δ + ∣∣Duε, j
∣∣2 Δ∞uε, j

)
− f (Duε, j )

)
dz

=
∫
Ξε

ϕ∂t uε, j − ϕ div

((
δ + ∣∣Duε, j

∣∣2) p−2
2 Duε, j

)
− ϕ f (Duε, j ) dz

=
∫
Ξε

−uε, j ∂tϕ +
(
δ + ∣∣Duε, j

∣∣2) p−2
2 Duε, j · Dϕ − ϕ f (Duε, j ) dz.

Recalling the shorthand Δp,δ defined in (4.2), we deduce from the above that

lim inf
j→∞

∫
Ξε

ϕ
(
∂t uε, j − Δp,δuε, j − f (Duε, j )

)
dz

≤ lim
j→∞

∫
Ξε

−uε, j∂tϕ +
(
δ + ∣∣Duε, j

∣∣2) p−2
2

Duε, j · Dϕ − ϕ f (Duε, j ) dz. (4.3)

We use Fatou’s lemma at the left-hand side and the dominated convergence at the right-
hand side. Once we verify their assumptions, we arrive at the auxiliary inequality∫

Ξε

ϕ
(
∂t uε − Δp,δuε − f (Duε)

)
dz

≤
∫

Ξε

−uε∂tϕ +
(
δ + |Duε|2

) p−2
2

Duε · Dϕ − ϕ f (Duε) dz. (4.4)

Next, we verify the assumptions of Fatou’s lemma and the dominated convergence
theorem. By Remark 4.8, the functions

∣∣uε, j
∣∣, ∣∣∂t uε, j

∣∣ and
∣∣Duε, j

∣∣ are uniformly
bounded by some constant M > 1 in the support of ϕ with respect to j . Hence,
the assumptions of the dominated convergence theorem are satisfied. Observe then
that the concavity of φ j implies that D2uε, j ≤ C(q, ε, u)I . Thus, the integrand at the
left-hand side of (4.3) has a lower bound independent of j when Duε, j = 0. When
Duε, j 	= 0, we have

∂t uε, j −
(
δ + ∣∣Duε, j

∣∣2) p−2
2

(
Δuε, j + p − 2

δ + ∣∣Duε, j
∣∣2 Δ∞uε, j

)
− f (Duε, j )

= ∂t uε, j −
(
δ + ∣∣Duε, j

∣∣2) p−2
2

δ + ∣∣Duε, j
∣∣2

( ∣∣Duε, j
∣∣2 (

Δuε, j + p − 2∣∣Duε, j
∣∣2 Δ∞uε, j

)
+ δΔuε, j

)

− f (Duε, j )

≥ −∂t uε, j −
(
δ + ∣∣Duε, j

∣∣2) p−2
2

δ + ∣∣Duε, j
∣∣2 C(q, ε, u)

(∣∣Duε, j
∣∣2 (N + p − 2) + δN

)
− f (Duε, j )

≥ −∂t uε, j − C(q, ε, u)
(
δ + ∣∣Duε, j

∣∣2) p−2
2

(2N + p − 2) − f (Duε, j )

≥ −M − C(q, ε, u)δ
p−2
2 (2N + p − 2) − sup

|ξ |≤M
| f (ξ)| ,
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so that our use of Fatou’s lemma is justified.

(Step 2) We let δ → 0 in the auxiliary inequality (4.4). Since uε is Lipschitz contin-
uous, the dominated convergence theorem implies

lim inf
δ→0

∫
Ξε

ϕ
(
∂t uε − Δp,δuε − f (Duε)

)
dz

≤
∫

Ξε

−uε∂tϕ + |Duε|p−2 Duε · Dϕ − ϕ f (Duε) dz. (4.5)

Applying Fatou’s lemma (we verify assumptions at the end), we get

lim inf
δ→0

∫
Ξε

ϕ
(
∂t uε − Δp,δuε − f (Duε)

)
dz

≥
∫

Ξε

lim inf
δ→0

ϕ
(
∂t uε − Δp,δuε − f (Duε)

)
dz

=
∫

Ξε∩{Duε 	=0}
lim inf

δ→0
ϕ

(
∂t uε − Δp,δuε − f (Duε)

)
dz

+
∫

Ξε∩{Duε=0}
lim inf

δ→0
ϕ(∂t uε − δ

p−2
2 Δuε − f (0)) dz

=
∫

Ξε∩{Duε 	=0}
ϕ

(
∂t uε − Δpuε − f (Duε)

)
dz

+
∫

Ξε∩{Duε=0}
ϕ (∂t uε − f (0)) dz ≥ 0, (4.6)

where the last inequality follows from Lemma 4.7 since uε is twice differentiable
almost everywhere. Combining (4.5) and (4.6), we find that uε is a weak supersolution
in Ξε. It remains to verify the assumptions of Fatou’s lemma, i.e., that the integrand
at the left-hand side of (4.5) has a lower bound independent of δ. When Duε = 0, this
follows directly from the inequality

D2uε ≤ q − 1

ε
|Duε|

q−2
q−1 I,

which holds by Lemma 4.6. When Duε 	= 0, we recall that by Lipschitz continuity
∂t uε and Duε are uniformly bounded in Ξε, and estimate

−
(
δ + |Duε|2

) p−2
2

(
Δuε + p − 2

δ + |Duε|2
Δ∞uε

)

= −
(
δ + |Duε|2

) p−2
2

δ + |Duε|2
(

|Duε|2
(

Δuε + p − 2

|Duε|2
Δ∞uε

)
+ δΔuε

)

≥ −
(
δ + |Duε|2

) p−2
2

δ + |Duε|2
(q − 1)

ε

(
|Duε|

q−2
q−1+2

(N + p − 2) + |Duε|
q−2
q−1 δN

)

≥ −
(
δ + |Duε|2

) p−2
2 (q − 1)

ε
|Duε|

q−2
q−1 (2N + p − 2)
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≥ − |Duε|p−2+ q−2
q−1

(q − 1)

ε
(2N + p − 2)

≥ −‖Duε‖p−2+ q−2
q−1

L∞(Ξε)

(q − 1)

ε
(2N + p − 2) ,

where we used that p− 2+ q−2
q−1 > 0. Hence, the assumptions of Fatou’s lemma hold.

�

If uε is the sequence of inf-convolutions of a viscosity supersolution to (1.1), then
by next Caccioppoli’s inequality the sequence Duε converges weakly in L p

loc(Ξ) up
to a subsequence. However, we need stronger convergence to pass to the limit under
the integral sign of∫

Ξ

−uε∂tϕ + |Duε|p−2 Duε · Dϕ − ϕ f (Duε) dz ≥ 0.

For this end, we show in Lemma 4.4 that Duε converges in Lr
loc(Ξ) for all 1 < r < p.

Lemma 4.3. (Caccioppoli’s inequality) Let 1 < p < ∞. Assume that u is a locally
Lipschitz continuous weak supersolution to (1.1) in Ξ . Then, there is a constant C =
C(p, β,C f ) such that for any test function ξ ∈ C∞

0 (Ξ) we have∫
Ξ

ξ p |Du|p dz ≤ C
∫

Ξ

M2∂tξ
p + Mp |Dξ |p + (M

p
p−β + M)ξ p dz,

where M = ‖u‖L∞(spt ξ).

Proof. Since u is locally Lipschitz continuous, the function ϕ := (M − u) ξ p is an
admissible test function. Testing the weak formulation of (1.1) with ϕ yields∫

Ξ

ξ p |Du|p dz ≤
∫

Ξ

u∂tϕ + pξ p−1(M − u) |Du|p−1 |Dξ | + ϕ f (Du) dz. (4.7)

We have by integration by parts∫
Ξ

u∂tϕ dz =
∫

Ξ

−ξ pu∂t u + u(M − u)∂tξ
p dz

=
∫

Ξ

−1

2
ξ p∂t u

2 + u(M − u)∂tξ
p dz

=
∫

Ξ

1

2
u2∂tξ

p + u(M − u)∂tξ
p dz ≤

∫
Ξ

CM2∂tξ
p dz.

By Young’s inequality,

∫
Ξ

pξ p−1(M − u) |Du|p−1 |Dξ | dz ≤
∫

Ξ

1

4
ξ p |Du|p dz + C(p)

∫
Ξ

Mp |Dξ |p dz.
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Using the growth condition (G1) and Young’s inequality, we get∫
Ξ

ϕ f (Du) dz

≤
∫

Ξ

(M − u) ξ pC f
(
1 + |Du|β)

dz

=
∫

Ξ

C f (M − u) ξ p−βξβ |Du|β + C f (M − u)ξ p dz

≤
∫

Ξ

1

4
ξ p |Du|p + C(p, β,C f ) (M − u)

p
p−β ξ p + C f (M − u) ξ p dz

≤
∫

Ξ

1

4
ξ p |Du|p + C(p, β,C f )

(
M

p
p−β + M

)
ξ p dz.

Combining these estimates with (4.7) and absorbing the termswith Du to the left-hand
side yields the desired inequality. �

The proof of Lemma 4.4 is based on that of Lemma 5 in [20], see also Theorem 5.3
in [15]. For the convenience of the reader, we give the full details.

Lemma 4.4. Let 1 < p < ∞. Suppose that
(
u j

)
is a sequence of locally Lipschitz

continuous weak supersolutions to (1.1) such that u j → u in L p
loc(Ξ). Then,

(
Du j

)
is a Cauchy sequence in Lr

loc(Ξ) for any 1 < r < p.

Proof. Let U � Ξ and take a cutoff function θ ∈ C∞
0 (Ξ) such that 0 ≤ θ ≤ 1 and

θ ≡ 1 in U . For δ > 0, we set

w jk =

⎧⎪⎪⎨
⎪⎪⎩

δ, u j − uk > δ,

u j − uk,
∣∣u j − uk

∣∣ ≤ δ,

−δ, u j − uk < −δ.

Then, the function (δ − w jk)θ is an admissible test function with a time derivative
since it is Lipschitz continuous. Since u j is a weak supersolution, testing the weak
formulation of (1.1) with (δ − w jk)θ yields

0 ≤
∫

Ξ

−u j∂t ((δ − w jk)θ) + ∣∣Du j
∣∣p−2

Du j · D((δ − w jk)θ) − (δ − w jk)θ f (Du j ) dz

=
∫

Ξ

−θ
∣∣Du j

∣∣p−2
Du j · Dw jk + (δ − w jk)

∣∣Du j
∣∣p−2

Du j · Dθ − (δ − w jk)θ f (Du j )

+ u j∂t (w jk)θ − (δ − w jk)u j∂tθ dz.

Since
∣∣w jk

∣∣ ≤ δ and Dw jk = χ{|u j−uk |<δ}
(
Du j − Duk

)
, the above becomes

∫
{|u j−uk |<δ}

θ
∣∣Du j

∣∣p−2
Du j · (

Du j − Duk
)
dz

≤
∫

Ξ

2δ
∣∣Du j

∣∣p−1 |Dθ | + 2δθ
∣∣ f (Du j )

∣∣ + u j∂t (w jk)θ + 2δ
∣∣u j

∣∣ |∂tθ | dz.
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Since uk is a weak supersolution, the same arguments as above but testing this time
with (δ + w jk)θ yield the analogous estimate∫

{|u j−uk |<δ}
−θ |Duk |p−2 Duk · (

Du j − Duk
)
dz

≤
∫

Ξ

2δ |Duk |p−1 |Dθ | + 2δθ | f (Duk)| − uk∂t
(
w jk

)
θ + 2δ |uk | |∂tθ | dz.

Summing up these two inequalities, we arrive at∫
{|u j−uk |<δ}

θ
(∣∣Du j

∣∣p−2
Du j − |Duk |p−2 Duk

)
· (
Du j − Duk

)
dz

≤ 2δ
∫

Ξ

|Dθ |
(∣∣Du j

∣∣p−1 + |Duk |p−1
)
dz + 2δ

∫
Ξ

θ
(∣∣ f (Du j )

∣∣ + | f (Duk)|
)
dz

+
∫

Ξ

(u j − uk)∂t
(
w jk

)
θ dz + 2δ

∫
Ξ

(∣∣u j
∣∣ + |uk |

) |∂tθ | dz
=: I1 + I2 + I3 + I4. (4.8)

We proceed to estimate these integrals. Denoting M := sup j

∥∥u j
∥∥
L∞(spt θ)

< ∞, we
have by the Caccioppoli’s inequality Lemma 4.3

sup
j

∫
spt θ

∣∣Du j
∣∣p dz ≤ C(p, β,C f , θ, M). (4.9)

The estimate (4.9) and Hölder’s inequality imply that

I1 ≤ δC(p, β,C f , θ, M).

To estimate I2, we also use the growth condition (G1) and the assumption β < p. We
get

I2 ≤ 2δ
∫

Ξ

θC f (2 + ∣∣Du j
∣∣β + |Duk |β) dz ≤ δC(p, β,C f , θ, M).

The integral I3 is estimated using integration by parts and that
∣∣w jk

∣∣ ≤ δ

I3 =
∫

Ξ

θ(u j − uk)∂t
(
w jk

)
dz =

∫
Ξ

1

2
θ∂tw

2
jk dz =

∫
Ξ

−1

2
w2

jk∂tθ dz ≤ δC(θ, M).

For the last integral, we have directly I4 ≤ δC(θ, M). Combining these estimates with
(4.8), we arrive at∫

{|u j−uk |<δ}
θ

(∣∣Du j
∣∣p−2

Du j − |Duk |p−2 Duk
)

· (
Du j − Duk

)
dz ≤ δC0,

(4.10)

where C0 = C(p, β,C f , θ, M). If 1 < p < 2, Hölder’s inequality and the algebraic
inequality (3.8) give the estimate (recall that 1 < r < p and θ ≡ 1 in U )∫

U∩{|u j−uk |<δ}
∣∣Du j − Duk

∣∣r dz
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≤
( ∫

U∩{|u j−uk |<δ}
(
1 + ∣∣Du j

∣∣2 + |Duk |2
) r(2−p)

2(2−r)
dz

) 2−r
2

·
(∫

U∩{|u j−uk |<δ}

∣∣Du j − Duk
∣∣2(

1 + ∣∣Du j
∣∣2 + |Duk |2

) 2−p
2

dz

) r
2

≤ C(p, β, r,C f , θ, M)

·
(∫

{|u j−uk |<δ}
θ

(∣∣Du j
∣∣p−2

Du j − |Duk |p−2 Duk
)

· (
Du j − Duk

)
dz

) r
2

,

where in the last inequality we also used (4.9) with the knowledge r(2−p)
(2−r) ≤ p(2−p)

2−p =
p.
If p ≥ 2, Hölder’s inequality and the algebraic inequality (3.12) imply∫

U∩{|u j−uk |<δ}
∣∣Du j − Duk

∣∣r dz

≤
(∫

Ξ

1 dz

) p−r
p

(∫
U∩{|u j−uk |<δ}

∣∣Du j − Duk
∣∣p dz

) r
p

≤ C(p, r)

(∫
{|u j−uk |<δ}

θ
(∣∣Du j

∣∣p−2
Du j − |Duk |p−2 Duk

)
· (
Du j − Duk

)
dz

) r
p

.

Hence, (4.10) leads to∫
U∩{|u j−uk |<δ}

∣∣Du j − Duk
∣∣r dz ≤ δ

r
max(2,p)C(p, β, r,C f , θ, M).

On the other hand, Hölder’s and Tchebysheff’s inequalities with (4.9) imply∫
U∩{|u j−uk |≥δ}

∣∣Du j − Duk
∣∣r dz

≤ ∣∣U ∩ {∣∣u j − uk
∣∣ ≥ δ

}∣∣ p−r
p

( ∫
U∩{|u j−uk |≥δ}

∣∣Du j − Duk
∣∣p dz

) r
p

≤ δr−p
∥∥u j − uk

∥∥p−r
L p(U )

C(p, β, r,C f , θ, M).

So we arrive at∫
U

∣∣Du j − Duk
∣∣r dz ≤ (δ

r
max(2,p) + δr−p

∥∥u j − uk
∥∥p−r
L p(U )

)C(p, β, r,C f , θ, M).

Taking first small δ > 0 and then large j, k, we canmake the right-hand side arbitrarily
small. �

Now we are ready to prove the main result of this section which states that bounded
viscosity supersolutions are weak supersolutions.

Theorem 4.5. Let 1 < p < ∞. Let u be a bounded viscosity supersolution to (1.1)
in Ξ . Then, u is a weak supersolution to (1.1) in Ξ .
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Proof. Fix a non-negative test function ϕ ∈ C∞
0 (Ξ) and take an open cylinder

Ωt1,t2 � Ξ such that spt ϕ � Ωt1,t2 . Let ε > 0 be so small that Ωt1,t2 � Ξε. Then,
Lemma 4.2 implies that uε is a weak supersolution to (1.1) in Ξε. Therefore, by the
Caccioppoli’s inequality Lemma 4.3, Duε is bounded in L p(Ωt1,t2). Hence, Duε con-
verges weakly in L p(Ωt1,t2) up to a subsequence. Since also uε → u in L p(Ωt1,t2) by
dominated convergence and the fact that uε → u pointwise in Ωt1,t2 , it follows that
u ∈ L p(t1, t2;W 1,p(Ω)).
Since uε is a weak supersolution, it remains to show that up to a subsequence

lim
ε→0

∫
Ωt1,t2

uε∂tϕ + |Duε|p−2 Duε · Dϕ dz =
∫

Ωt1,t2

u∂tϕ + |Du|p−2 Du · Dϕ dz

(4.11)

and

lim
ε→0

∫
Ωt1,t2

ϕ f (Duε) dz =
∫

Ωt1,t2

ϕ f (Du) dz. (4.12)

Since uε → u in L p(Ωt1,t2) and Duε → Du in Lr (Ωt1,t2) for any 1 < r < p by
Lemma 4.4, the claim (4.11) follows by applying the vector inequality (see [19, pp.
95–96])

∣∣∣|a|p−2 a − |b|p−2 b
∣∣∣ ≤

{
22−p |a − b|p−1 when p < 2,

2−1
(|a|p−2 + |b|p−2) |a − b| when p ≥ 2.

To show (4.12), let M ≥ 1 and write using the growth condition (G1)∫
Ωt1,t2

| f (Duε) − f (Du)| dz

≤
∫

{|Duε |<M}
| f (Duε) − f (Du)| dz +

∫
{|Duε |≥M}

C f (2 + |Duε|β + |Du|β) dz

=: I1 + I2.

Then, by Hölder’s inequality

I2 = C f

∫
{|Duε |≥M}

2 |Duε|p
|Duε|p + |Duε|p

|Duε|p−β
+ |Du|β |Duε|p−β

|Duε|p−β
dz

≤ C f

(
2

Mp
+ 1

Mp−β

)
‖Duε‖p

L p(Ωt1,t2 ) + C f
1

Mp−β
‖Du‖β

L p(Ωt1 ,t2 )
‖Duε‖p−β

L p(Ωt1 ,t2 )

≤ 1

Mp−β
C(p, β,C f , ‖Du‖L p(Ωt1 ,t2 ) , sup

ε
‖Duε‖L p(Ωt1,t2 )).

On the other hand, we have | f (Duε) − f (Du)| → 0 a.e. in Ωt1,t2 up to a subse-
quence and the integrand in I1 is dominated by an integrable function since the growth
condition (G1) implies

| f (Duε) − f (Du)| ≤ C f (2 + |M |β + |Du|β) when |Duε| < M.
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Hence, for any M ≥ 1, we have I1 → 0 as ε → 0 by the dominated convergence
theorem. By taking first large M ≥ 1 and then small ε > 0, we can make I1 + I2
arbitrarily small. �

The rest of this section is devoted to the properties of the inf-convolution. The facts
in the following lemma are well known, see, e.g., [6,11,14] or [24].

Lemma 4.6. Assume that u : Ξ → R is lower semicontinuous and bounded. Then,
uε has the following properties.

(i) We have uε ≤ u in Ξ and uε → u pointwise as ε → 0.

(ii) Denote r(ε) := (
qεq−1 oscΞ u

) 1
q , t (ε) := (2ε oscΞ u)

1
2 . For (x, t) ∈ R

N+1,
set

Ξε := {
(x, t) ∈ Ξ : Br(ε)(x) × (t − t (ε), t + t (ε)) � Ξ

}
.

Then, for any (x, t) ∈ Ξε there exists (xε, tε) ∈ Br(ε)(x) × [t − t (ε), t + t (ε)]
such that

uε(x, t) = u(xε, tε) + |x − xε|q
qεq−1 + |t − tε|2

2ε
.

(iii) The function uε is semi-concave inΞε with a semi-concavity constant depending
only on u, q and ε.

(iv) Assume that uε is differentiable in time and twice differentiable in space at
(x, t) ∈ Ξε. Then,

∂t uε(x, t) = t − tε
ε

,

Duε(x, t) = (x − xε)
|x − xε|q−2

εq−1 ,

D2uε(x, t) ≤ q − 1

ε
|Duε|

q−2
q−1 I.

Next, we show that the inf-convolution of a viscosity supersolution to (1.1) is still
a supersolution in the smaller set Ξε. Since the inf-convolution is “flat enough,” that
is, since q > p/(p − 1), the inf-convolution essentially cancels the singularity of the
p-Laplace operator. This allows us to extract information on the time derivative at
those points of differentiability where Duε vanishes.

Lemma 4.7. Let 1 < p < ∞. Let u be a bounded viscosity supersolution to (1.1) in
Ξ . Then, the inf-convolution uε is also a viscosity supersolution to (1.1) in Ξε.

Moreover, if uε is differentiable in time and twice differentiable in space at (x, t) ∈
Ξε and Duε(x, t) = 0, then ∂t uε(x, t) − f (0) ≥ 0.

Proof. Assume that ϕ touches uε from below at (x, t) ∈ Ξε. Let (xε, tε) be like in the
property (ii) of Lemma 4.6. Then,

ϕ(x, t) = uε(x, t) = u(xε, tε) + |x − xε|q
qεq−1 + |t − tε|2

2ε
, (4.13)
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ϕ(y, τ ) ≤ uε(y, τ ) ≤ u(z, s) + |y − z|q
qεq−1 + |τ − s|2

2ε
for all (y, τ ), (z, s) ∈ Ξ.

(4.14)

Set

ψ(z, s) := ϕ(z + x − xε, s + t − tε) − |x − xε|q
qεq−1 − |t − tε|2

2ε
.

Then, ψ touches u from below at (xε, tε) since by (4.13)

ψ(xε,tε) =ϕ(x, t) − |x − xε|q
qεq−1 − |t − tε|2

2ε
= u(xε, tε)

and selecting (y, τ ) = (z + x − xε, s + t − tε) in (4.14) gives

ψ(z, s) = ϕ(z + x − xε, s + t − tε) − |x − xε|q
qεq−1 − |t − tε|2

2ε
≤ u(z, s).

Since u is a viscosity supersolution, it follows that

0 ≤ lim sup
(z,s)→(xε,tε)

z 	=xε

(
∂sψ(z, s) − Δpψ(z, s) − f (Dψ(z, s))

)

= lim sup
(z,s)→(x,t)

z 	=x

(
∂sϕ(z, s) − Δpϕ(z, s) − f (Dϕ(z, s))

)
,

and the first claim is proven. To prove the second claim, assume that uε is differentiable
in time and twice differentiable in space at (x, t) ∈ Ξε and Duε(x, t) = 0. By the
property (iv) in Lemma 4.6, we have x = xε, so that

uε(x, t) = u(x, tε) + |t − tε|2
2ε

.

Hence, by the definition of inf-convolution

u(y, s) + |x − y|q
qεq−1 + |t − s|2

2ε
≥ uε(x, t) = u(x, tε) + |t − tε|2

2ε
for all (y, s) ∈ Ξ.

Arranging the terms as

u(y, s) ≥ u(x, tε) − |x − y|q
qεq−1 − |t − s|2

2ε
+ |t − tε|2

2ε
=: φ(y, s),

we see that the function φ touches u from below at (x, tε). Since u is a viscosity
supersolution and Dφ(y, s) 	= 0 when y 	= x , we have

lim sup
(y,s)→(x,tε)

y 	=x

(
∂sφ(y, s) − Δpφ(y, s) − f (Dφ(y, s))

) ≥ 0.
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On the other hand, since q > p/(p − 1), we have Δpφ(y, s) → 0 as y → x . Hence,
we get

0 ≤ ∂sφ(x, tε) − f (0) = t − tε
ε

− f (0) = ∂t uε(x, t) − f (0),

where the last equality follows from the property (iv) in Lemma 4.6. �
Remark 4.8. Semi-concavity implies that the inf-convolution uε is locally Lipschitz
in Ξε (see [8, p. 267]). Therefore, uε is differentiable almost everywhere in Ξε,
∂t uε ∈ L∞

loc(Ξε) and uε ∈ L∞(t1, t2;W 1,∞(Ω)) for anyΩt1,t2 � Ξε (see [8, p. 266]).
Moreover, since the functionφ(x, t) := uε(x, t)−C(q, ε, u)(|x |2+|t |2) is concave,

Alexandrov’s theorem implies that uε is twice differentiable almost everywhere inΞε.

Furthermore, the proof of Alexandrov’s theorem in [8, p. 273] establishes that if φ j is
the standard mollification of φ, then D2φ j → D2φ almost everywhere in Ξε.

5. Lower semicontinuity of supersolutions

We show the lower semicontinuity of weak supersolutions when p ≥ 2 and the
function f ∈ C(RN ) satisfies that f (0) = 0 as well as the stronger growth condition

| f (ξ)| ≤ C f

(
1 + |ξ |p−1

)
. (G2)

Our proof follows the method of Kuusi [17], but the first-order term causes some
modifications. In particular, our essential supremum estimate is slightly different, see
Theorem 5.3 and the brief discussion before it. The assumption f (0) = 0 is used to
ensure that the positive part u+ of a subsolution is still a subsolution.

We begin by proving estimates for the essential supremum of a subsolution using
Moser’s iteration technique. We first need the following Caccioppoli’s inequalities.

Lemma 5.1. (Caccioppoli’s inequalities)Assume that p ≥ 2and that (G2)holds. Sup-
pose that u is anon-negativeweak subsolution to (1.1) inΩt1,t2 andu ∈ L p−1+λ(Ωt1,t2)

for some λ ≥ 1. Then, there exists a constant C = C(p,C f ) that satisfies the estimates

ess sup
t1<τ<t2

∫
Ω

u1+λ(x, τ )ζ p(x, τ ) dx

≤ C
∫

Ωt1,t2

λu p−1+λ |Dζ |p + u1+λ |∂tζ | ζ p−1 + λ
(
uλ + u p−1+λ

)
ζ p dz

and∫
Ωt1,t2

∣∣∣∣D(u
p−1+λ

p ζ )

∣∣∣∣
p

dz

≤ C
∫

Ωt1,t2

λpu p−1+λ |Dζ |p + λp−1u1+λ |∂tζ | ζ p−1 + λp
(
uλ + u p−1+λ

)
ζ p dz

for all non-negative ζ ∈ C∞(Ω ×[t1, t2]) such that spt ζ(·, t) � Ω and ζ(x, t1) = 0.

Proof. We test the regularized equation in Lemma (3.1) with ϕ := min(uε, k)λ−1

uεζ pη, where η is the following cutoff function
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η(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0, t ∈ (t1, s − h),

(t − s + h)/2h, t ∈ [s − h, s + h],
1, t ∈ (s + h, τ − h),

(−t + τ + h)/2h, t ∈ [τ − h, τ + h],
0, t ∈ (τ + h, t2),

and t1 < s < τ < t2, h > 0.We denote g(l) := ∫ l
0 min(r, k)λ−1r dr . Then, integration

by parts and Lebesgue’s differentiation theorem yield for a.e. s, τ ∈ (t1, t2)∫
Ωt1,t2

∂t (u
ε)min(uε, k)λ−1uεζ pη dz

=
∫

Ωt1,t2

∂t g(u
ε)ζ pη dz

=
∫

Ωt1,t2

−ηg(uε)∂t (ζ
p) − ζ pg(uε)∂tη dz

→
ε→0,h→0

∫
Ωs,τ

−g(u)∂t (ζ
p) dz −

∫
Ω

ζ p(x, s)g(u(x, s)) dx

+
∫

Ω

ζ p(x, τ )g(u(x, τ )) dx .

Letting s → t1 and observing that the other terms of (3.1) converge as well, we obtain
for a.e. τ ∈ (t1, t2) that∫

Ω

g(u(x, τ ))ζ p(x, τ ) dx

≤
∫

Ωt1,τ

g(u)∂t (ζ
p) − |Du|p−2 Du · D(uλ−1

k uζ p) + uλ−1
k uζ p f (Du) dz,

where we have denoted uk := min(u, k). Since

Duλ−1
k = χ{u<k}(λ − 1)uλ−2Du,

we have by Young’s inequality

− |Du|p−2 Du · D(uλ−1
k uζ p) ≤ −ζ p

(
(λ − 1)χ{u<k}uλ−1 + uλ−1

k

)
|Du|p

+ pζ p−1uλ−1
k u |Du|p−1 |Dζ |

≤ −1

2
ζ puλ−1

k |Du|p + C(p)u p−1+λ |Dζ |p .

Moreover, by the growth condition (G2) and Young’s inequality

uλ−1
k uζ p f (Du) ≤ C f ζ

puλ−1
k u + C f ζ

puλ−1
k u |Du|p−1

≤ C f ζ
puλ−1 + C(p,C f )ζ

pu p−1+λ + 1

4
ζ puλ−1

k |Du|p .
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Collecting the estimates, moving the terms with Du to the left-hand side and letting
k → ∞, we arrive at

λ−1
∫

Ω

uλ+1ζ p(x, τ ) dx +
∫

Ωt1,τ

1

4
ζ puλ−1 |Du|p dz

≤ C(p,C f )

∫
Ωt1,τ

λ−1uλ+1
∣∣∂tζ p

∣∣ + u p−1+λ |Dζ |p + ζ p(uλ−1 + u p−1+λ) dz.

(5.1)

Since the integrals are positive, this yields the first inequality of the lemma by taking
essential supremum over τ . The second inequality follows from (5.1) by using that∫

Ωt1,t2

∣∣∣∣D(u
p−1+λ

p ζ )

∣∣∣∣
p

dz ≤ C(p)
∫

Ωt1,t2

u p−1+λ |Dζ |p + λpζ puλ−1 |Du|p dz.

� �

We first prove the following essential supremum estimate where we assume that the
subsolution is bounded away from zero.

Lemma 5.2. Assume that p ≥ 2 and that (G2) holds. Suppose that u is a weak
subsolution to (1.1) in Ξ and BR(x0) × (t0 − T, t0) � Ξ where R, T < 1 are such
that

R p

T
≤ 1 and u ≥

(
Rp

T

) 1
p−1

. (5.2)

Then, there exists a constant C(N , p,C f ) such that

ess sup
Bσ R(x0)×(t0−σ pT,t0)

u ≤ C

(
T

Rp
(1 − σ)−N−p−

∫
BR(x0)×(t0−T,t0)

u p−2+δ dz

)1/δ

for every 1/2 ≤ σ < 1 and 1 < δ < 2.

Proof. Let σ R ≤ s < S < R. For j ∈ 0, 1, 2, . . ., we set

R j := S − (S − s) (1 − 2− j )

and

Uj := Bj × Γ j := BRj (x0) × (t0 − (R j/S)pT, t0).

We choose test functions ϕ j ∈ C∞(Uj ) such that spt ϕ j (·, t) � BRj (x0),

0 ≤ ϕ j ≤ 1, ϕ j ≡ 0 on ∂pU j , ϕ j ≡ 1 in Uj+1

and

∣∣Dϕ j
∣∣ ≤ C

S − s
2 j ,

∣∣∂tϕ j
∣∣ ≤ Rp

T

C

(S − s)p
2 j p.
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We set γ := 1 + p/N and

λ j := 2γ j − 1, j = 0, 1, 2, . . . .

Assuming that we already know that u ∈ L p−1+λ j (Uj ), then we have by a parabolic
Sobolev’s inequality (see [7, p7])∫

Uj+1

uκα dz ≤
∫
Uj

(
uα/pϕ

β/p
j

)κp
dz

≤ C(N , p)
∫
Uj

∣∣∣D(uα/pϕ
β/p
j )

∣∣∣p dz

(
ess sup

Γ j

∫
Bj

(
uα/pϕ

β/p
j

)(κ−1)N
dx

)p/N

,

(5.3)

where

α = p − 1 + λ j , κ = 1 + p(1 + λ j )

N (p − 1 + λ j )
, β = p(p − 1 + λ j )

1 + λ j
.

The first estimate in Lemma 5.1 gives

ess sup
Γ j

∫
Bj

(
uα/pϕ

β/p
j

)(κ−1)N
dx = ess sup

Γ j

∫
Bj

u1+λ j ϕ
p
j dx

≤ Cλ j

∫
Uj

u p−1+λ j
∣∣Dϕ j

∣∣p + u1+λ j
∣∣∂tϕ j

∣∣ϕ p−1
j +

(
uλ j + u p−1+λ j

)
ϕ
p
j dz.

(5.4)

Using the second estimate with ζ = ϕ
β/p
j , we obtain∫

Uj

∣∣∣D(uα/pϕ
β/p
j )

∣∣∣p dz

≤ Cλ
p
j

∫
Uj

u p−1+λ j
∣∣Dϕ j

∣∣p + u1+λ j
∣∣∂tϕ j

∣∣ϕ p−1
j +

(
uλ j + u p−1+λ j

)
ϕ
p
j dz.

(5.5)

Combining (5.3) with (5.4) and (5.5), we arrive at

(∫
Uj+1

uκα dz

) 1
γ

≤ Cλ
p
j

∫
Uj

2 j p

(S − s)p
u p−1+λ j + Rp2 j p

T (S − s)p
u1+λ j + uλ j dz,

(5.6)

where γ = 1 + p/N . We wish to iterate this inequality, but having multiple terms at
the right-hand side is a problem. This is where the assumption (5.2) comes into play.
Since u ≥ (Rp/T )1/(p−1), we have

uλ j =
(
1

u

)p−1

u p−1+λ j ≤
(

T

Rp

) p−1
p−1

u p−1+λ j ≤ 1

(S − s)p
u p−1+λ j
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and since T/Rp ≥ 1, we have also

u1+λ j =
(
1

u

)p−2

u p−1+λ j ≤
(

T

Rp

) p−2
p−1

u p−1+λ j ≤ T

Rp
u p−1+λ j .

Using these estimates it follows from (5.6) that

(∫
Uj+1

uκα dz

) 1
γ

≤ Cλ
p
j 2

j p

(S − s)p

∫
Uj

u p−1+λ j dz. (5.7)

Observe that

κα = p − 1 + λ j (1 + p/N ) + p/N = p − 1 + λ j+1.

Hence, by denoting Y := C(S − s)−p, the inequality (5.7) becomes

(∫
Uj+1

u p−1+λ j+1 dz

) 1
γ

≤ Y (2γ ) j p
∫
Uj

u p−1+λ j dz.

We iterate this inequality. When j = 0, it reads as

(∫
U1

u p−1+λ1 dz

) 1
γ ≤ Y

∫
U0

u p dz.

Then, when j = 1, we have

(∫
U2

u p−1+λ2 dz

) 1
γ 2 ≤ Y

1
γ (2γ )

p 1
γ

(∫
U1

u p−1+λ1 dz

) 1
γ ≤ Y 1+ 1

γ (2γ )
p 1

γ

∫
U0

u p dz.

Continuing this way, we arrive at

(∫
Uj+1

u p−1+λ j+1 dz

) 1
γ j+1

≤ Y
1+ 1

γ
+...+ 1

γ j (2γ )
p( 1

γ
+ 2

γ 2
+...+ j

γ j )
∫
U0

u p dz

≤ CY
N
p +1

∫
U0

u p dz,

so that (∫
Uj+1

u p−1+λ j+1 dz

) 1
p−1+λ j+1

≤
(
CY

N
p +1

∫
U0

u p dz

) γ j+1

p−1+λ j+1
.

Since γ j+1/(p − 1 + λ j+1) → 1/2 and p − 1 + λ j+1 → ∞ as j → ∞, we obtain
that

ess sup
Q(s)

u ≤ C

(
(S − s)−N−p

∫
Q(S)

u p dz

)1/2

,
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where Q(s) = B(x0, s) × (t0 − (s/S)pT, t0). By Young’s inequality, we have for
every 1 < δ < 2 that

ess sup
Q(s)

u ≤
(
ess sup
Q(S)

u2−δ(S − s)−N−p
∫
Q(S)

u p−2+δ dz

)1/2

≤ 1

2
ess sup
Q(S)

u +
(

(S − s)−N−p
∫
BR(x0)×(t0−T,t0)

u p−2+δ dz

)1/δ

. (5.8)

A standard iteration argument such as [9, Lemma 1.1] now finishes the proof. Indeed,
if f : [T0, T1] → R is a non-negative bounded function such that all T0 ≤ t ≤ τ ≤ T1
satisfy

f (t) ≤ θ f (τ ) + (τ − t)−ηA, (5.9)

where A, θ, η ≥ 0 with θ < 1, then

f (T0) ≤ C(η, θ)(T1 − T0)
−ηA.

Selecting T0 := σ R, T1 := (σ R + R) /2 and the other variables so that (5.8) implies
(5.9), we get the desired estimate. �

Next, we consider the case where the non-negative subsolution is not necessarily
bounded away from zero. Observe that the estimate differs from the usual estimate for
the p-Laplacian because of the power 1/(p− 1) in the first term (cf. [7, Theorem 4.1]
or [17, Theorem 3.4]). However, we have the additional assumption (5.10).

Theorem 5.3. Assume that p ≥ 2 and that (G2) holds. Suppose that u is a non-
negative weak subsolution to (1.1) inΞ and BR(x0)×(t0−T, t0) � Ξ with R, T < 1
such that

R p

T
≤ 1. (5.10)

Then, there exists a constant C = C(N , p,C f , δ) such that we have the estimate

ess sup
B(x0,R/2)×(t0−T/2p,t0)

u

≤ C

(
Rp

T

) 1
p−1 · δ−1

δ + C

(
T

Rp
−
∫ t0

t0−T
−
∫
BR(x0)

u p−2+δ dx dt

) 1
δ

for all 1 < δ < 2.

Proof. We denote

Λ := (1 − σ)−N−p, θ :=
(
Rp

T

) 1
p−1

.
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Using Lemma 5.2 on the subsolution v := θ + u, we get the estimate

ess sup
Bσ R(x0)×(t0−σ pT,t0)

u ≤ C

(
Λ

T

Rp
−
∫
BR(x0)×(t0−T,t0)

(θ + u)p−2+δ dz

) 1
δ

≤ CΛ
1
δ

(
T

Rp
θ p−2+δ

) 1
δ

+ CΛ
1
δ

(
T

Rp
−
∫
BR(x0)×(t0−T,t0)

u p−2+δ dz

) 1
δ

,

where

T

Rp
θ p−2+δ = T 1− p−2+δ

p−1 R−p+ p(p−2+δ)
p−1 =

(
T 1−δRp(δ−1)

) 1
p−1 =

(
Rp

T

) δ−1
p−1

.

Taking σ = 1/2 now yields the desired inequality. �

Lemma 5.4. Assume that p ≥ 2 and that f (0) = 0. Let u be a weak subsolution to
(1.1) in Ωt1,t2 . Then, u+ = max(u, 0) is also a weak subsolution.

Proof. Fix a non-negative test function ζ ∈ C∞
0 (Ωt1,t2). We test the regularized

equation in Lemma 3.1 with min {k(uε)+, 1} ζ . Then, by similar arguments as in the
proof of Lemma 5.1 we get the estimate∫

Ωt1,t2

min {ku+, 1} (−u∂tζ + |Du|p−2 Du · Dζ − ζ f (Du)) dz

≤ − 1

2k

∫
Ωt1,t2

(min {ku+, 1})2 ∂tζ dz − k
∫

{0<ku<1}
ζ |Du|p dz.

Letting k → ∞ this implies∫
{u>0}

−u∂tζ + |Du|p−2 Du · Dζ − ζ f (Du) dz ≤ 0.

Since f (0) = 0 and u+∂tζ = 0 = Du+ a.e. in {u ≤ 0}, we get that∫
Ωt1,t2

−u+∂tζ + |Du+|p−2 Du+ · Dζ − ζ f (Du+) dz ≤ 0.

� �

Theorem 5.5. Assume that p ≥ 2, (G2) holds and that f (0) = 0. Suppose that
u is a weak supersolution to (1.1) in Ξ . Let u∗ denote the lower semicontinuous
regularization of u, that is,

u∗(x, t) := ess lim inf
(y,s)→(x,t)

u(y, s) := lim
R→0

ess inf
BR(x)×(t−Rp,t+Rp)

u.

Then, u = u∗ almost everywhere.
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Proof. For all M ∈ N, we define the cylinders

QM
R (x, t) := BR(x) × (t − MRp, t + MRp).

We denote by EM the set of Lebesgue points with respect to the basis {QM
R }, that is,

EM :=
{

(x, t) ∈ Ξ : lim
R→0

−
∫
QM

R (x,t)
|u(x, t) − u(y, s)|p− 1

2 dy ds = 0

}
.

Then, EM ⊂ EM+1 so that

E :=
⋂
M∈N

EM = E1.

Moreover, we have |E | = |Ξ |, which follows from [26, p. 13] by a simple argument,
see for example [8, p. 54].

We now claim that if (x0, t0) ∈ E , then

u(x0, t0) ≤ ess lim inf
(x,t)→(x0,t0)

u(x, t). (5.11)

We make the counter assumption

u(x0, t0) − ess lim inf
(x,t)→(x0,t0)

u(x, t) = ε > 0.

Let R0 be a radius such that∣∣∣∣∣ ess lim inf
(x,t)→(x0,t0)

u(x, t) − ess inf
Q1

R(x0,t0)
u

∣∣∣∣∣ ≤ ε/2

for all 0 < R ≤ R0. For such R, we have

u(x0, t0) − ess inf
Q1

R(x0,t0)
u ≥ ε/2. (5.12)

We set v := (u(x0, t0) − u)+. Since (x0, t0) ∈ E , we find for any M ∈ N a radius
R1 = R1(M) such that

−
∫
QM

R1
(x0,t0)

v p− 1
2 dx dt ≤ −

∫
QM

R1
(x0,t0)

|u(x0, t0) − u|p− 1
2 dx dt ≤

(
1

M

)2

. (5.13)

On the other hand, by Lemma 5.4 the function v is a weak subsolution to

∂tv + Δpv − g(Dv) ≤ 0,

where g(ξ) = − f (−ξ). Observe also that the cylinder QM
R1

(x0, t0) satisfies the con-

dition (5.10) since Rp
1 /(MRp

1 ) ≤ 1. Hence, we may apply Theorem 5.3 with δ = 3/2
and then use (5.13) to get

ess sup
QM

(R1)/2(x0,t0)

v ≤ C

(
Rp
1

Rp
1 M

) 1
3(p−1)

+ C

(
Rp
1 M

Rp
1

−
∫
QM

R1
(x0,t0)

v p− 1
2 dx dt

) 2
3
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≤ C

M3(p−1)
+ C

(
M · 1

M2

) 2
3

≤ C

(
1

M

) 1
3

.

Now we first fix M so large that C/M
1
3 ≤ ε/4 and this will also fix R1. Then, we

take R ∈ (0, R0] so small that Q1
R(x0, t0) ⊂ QM

(R1)/2
(x0, t0). Then, (5.12) leads to a

contradiction since

ε/4 ≥ ess sup
QM

(R1)/2(x0,t0)

v ≥ ess sup
Q1

R(x0,t0)

v ≥ u(x0, t0) − ess inf
Q1

R(x0,t0)
u ≥ ε/2.

Hence, (5.11) holds and we have

u(x0, t0) ≤ ess lim inf
(x,t)→(x0,t0)

u(x, t) ≤ lim
R→0

−
∫
Q1

R

u(x, t) dx dt = u(x0, t0).

Thus, u∗ = u almost everywhere and it is easy to show that u∗ is lower semicontinuous.
�
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[4] V. Bobkov and P. Takáč. On maximum and comparison principles for parabolic problems with the
p-Laplacian. To appear in RACSAM.
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